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Abstract. New line shape calculations for CO buffered by Ar are compared to high-resolution 
measurements from a difference-frequency laser spectrometer, over a range of thermodynamic 
conditions relevant to the atmosphere.  The calculations are based on solving the quantum 
kinetic (i.e. transport/relaxation) equation for the molecules within the impact approximation, 
and rely on the commonly used MOLSCAT [1] and MOLCOL [2] codes to determine the speed-
dependent collisional relaxation rate.  Velocity-changing effects are treated classically using a 
rigid sphere potential.  The comparison initially reveals that the experimental profiles exhibit 
only 10% to 30% of the expected Dicke narrowing, which leads us to reevaluate our 
understanding of the narrowing process.  A more subtle aspect of the disagreement between 
theory and experiment draws our attention to an assumption implicit in the calculation of the 
collisional relaxation rate: the assumption of a Maxwellian form for the velocity dependence of 
the off-diagonal elements of the density matrix (i.e. the optical coherences).  This assumption 
allows for an analytical simplification of the problem, but eliminates velocity-changing effects 
(so that they must be added back in using a supplementary classical calculation, which is based 
here on a rigid sphere interaction).  We find that the removal of the above-mentioned assumption 
should allow for accurate and fully quantum mechanical (but numerical) line shape calculations 
for systems like CO-Ar on existing computers. 
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INTRODUCTION 

Infrared absorption line shapes in the atmosphere are typically analyzed using semi-
empirical models, the most common example being the Voigt profile.  While there are 
many more complicated examples, accounting for collisional narrowing, speed-
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dependent broadening, and shifting, they are all limited ultimately by their reliance on 
empirical parameters.  Using such models, it is possible to relate the line shape to 
some previously measured line shape, but it is not possible to predict the line shape 
from non-spectroscopic information, i.e. directly from the interaction potential, as is 
the objective of the line shape calculations described here.  Owing to the complexity 
of the problem, there have only ever been a few attempts at a full line shape 
calculation [1-3], and none has been able to reproduce modern high-resolution spectra 
within their experimental uncertainties.  Note that while there have been many 
purported calculations of line widths and shifts, these parameters depend on the line 
shape, and so it is impossible to calculate a width or shift directly in a rigorous way.  
Rather, the line profile must be calculated first and the width or shift measured from it. 

The present study is restricted to isolated rovibrational absorption lines in the 
fundamental band of carbon monoxide buffered by argon (CO-Ar).  We ignore the far 
wings of the lines and work within the binary impact approximation.  CO-Ar was 
chosen for the present study for several reasons.  First, dilutions of CO in Ar simulate 
the general atmospheric situation, in which infrared-active trace gases are diluted in 
nitrogen.  Second, CO is a diatomic molecule, and thus its rovibrational absorption 
spectrum is simple, containing well isolated lines that can be measured and analyzed 
(nearly) independently of one another.  Finally, the use of Ar (a structureless atom 
under atmospheric conditions) as the collision partner simplifies the calculations. 

For atmospheric-type systems like CO-Ar, the principal processes contributing to 
the line shape are collisional broadening and Doppler broadening.  However, at the 
level of accuracy provided by the present spectrometer, it is necessary to consider that 
the collisional broadening depends on the speed of the active molecule, and that the 
Doppler broadening is reduced by velocity-changing collisions.  The latter effect is 
known as collisional, or Dicke, narrowing.  Collisional line shifting is an order of 
magnitude weaker than the broadening in CO-Ar [4] and is neglected here (see, 
however, Ref. [5]).  Line mixing is also weak below 1 atm, and the slight asymmetry it 
introduces into the experimental profiles can be accurately removed using a fitted 
parameter.  Line mixing is thereby omitted from the calculations, in keeping with our 
focus on isolated lines. 

There are a number of other, relatively minor, considerations that are nonetheless 
significant to the formation of the line shape when it is measured at high resolution.  
These include, for example: the homogenization of the speed-dependent collisional 
broadening by speed-changing collisions, the coupling of the collisional broadening 
and translational motion because they are both speed dependent, the influence of the 
CO:Ar mass ratio on the velocity memory, and a possible correlation between the 
velocity-changing and dephasing effects of collisions.1  In principle, all of these 
considerations should be included in the present calculations by virtue of our 
approach, which is first to solve the quantum kinetic equation that describes the 
interaction of the molecules with each other and with the radiation field, and then to 
derive the line shape from the solution.  However, we shall deliberately remove the 
correlation between velocity-changing and dephasing collisions from consideration by 
an approximation that will be discussed below. 

                                                 
1 The word “dephasing” is used here in a generic sense and includes dephasing, reorienting, and state-changing processes. 
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In order to test our calculations, we measured the shapes of seven CO-Ar lines in 
the P branch of the fundamental band using a difference-frequency laser spectrometer.  
These line spectra were recorded at pressures of 0.025, 0.05, 0.1, 0.2, 0.5, and 1 atm, 
and at temperatures of 214, 236, 259, 296, and 324 K, thereby covering the 
thermodynamic conditions found in the Earth’s troposphere and lower stratosphere.  
The particular lines studied were: P(1), P(2), P(5), P(7), P(10), P(13), and P(16).  In 
this paper, we describe first the calculation of the shapes of these lines, and then the 
experimental apparatus used to measure them.  Following that, we present our findings 
and a discussion of their implications. 

CALCULATIONS 

To obtain the transport/relaxation equation, we follow Ref. [6] and consider a 
transition between an initial state b and a final state a (in the case of photon emission) 
in the presence of a field represented by Eexp[-i(ωt - k·r)], where ω is the frequency 
and k is the wavevector. We then write the resonant part ρr of the off-diagonal element 
of the density matrix for the active molecule as ρr = -iς(ω,v)nbμbaEexp[-i(ωt - k·r)], 
where nb is the thermal equilibrium population of state b, and μba is the matrix element 
of the electric dipole moment corresponding to a transition between states b and a. The 
population of the final state a is taken to be zero. Upon making the rotating wave 
approximation, we arrive at the following transport/relaxation equation [7]: 

 
 ( ) ),(ˆ),(i)( 00 vvvkv ωςωςωως S−⋅−−−= . (1) 

 
Here ς0(v) is the (typically Maxwellian) velocity distribution of the molecules in 

state b in the absence of the field, ω0 is the resonant frequency, and Ŝ  is the collision 
operator. The Ŝ  term contains all the effects of intermolecular collisions, leading to 
Dicke narrowing and collisional broadening, while the other two terms are “free-
streaming” terms. The k·v term, in particular, represents the Doppler shift that gives 
rise to Doppler broadening. The line shape I(ω) is obtained from ς(ω,v) as [6]: 

 

 ∫= vv 3d),(Re1)( ως
π

ωI . (2) 

 
In general, the effects of Ŝ  may be difficult to calculate, or even to  express in a 

useful form. One approach (and our approach) is to assume that Ŝ  can be written as 

DVC
ˆˆˆ SSS += , where VCŜ  is the velocity-changing collision operator, which 

represents collisions that affect the translational motion, and DŜ  is the dephasing 
collision operator, which represents collisions that affect the internal relaxation. By 
writing Ŝ  in this form, one assumes that the effects of collisions on the translational 
motion and internal relaxation are statistically independent. Eq. (1) then becomes: 

 
 ( ) ),(ˆ),(ˆ),(i)( DVC00 vvvvkv ωςωςωςωως SS −−⋅−−−= . (3) 
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Nearly all line shape models effectively assume that the collision operator can be 
separated in this way, as they can be derived from Eq. (3) under various simplifying 
assumptions (see Ref. [8]). 

In order to solve Eq. (3), it is converted into a matrix equation using an infinite and 
complete set of orthonormal basis functions (which is later truncated for numerical 
calculation).  The details of this conversion are provided in Ref. [6].  The result is: 

 
 ( ) ff

DVC0 ii)( SSK1L −−+−−= ωωω , (4) 
 

where 1 is the unit matrix, K is the Doppler shift matrix, and the Sf matrices arise from 
the velocity-changing and dephasing parts of the collision operator.  Recipes for K, 

f
VCS , and f

DS  are given in Ref. [7].  For the current study, f
VCS  was calculated 

classically using a rigid sphere potential for the CO-Ar interaction, while f
DS  was 

calculated from energy-dependent pressure-broadening cross-sections obtained using 
the MOLSCAT [9] and MOLCOL [10] quantum mechanical scattering codes, 
employing the ab initio potential energy surface of Toczyłowski and Cybulski [11].  
The matrix L(ω) was then used to solve the equation b = L(ω)c(ω) for the column 
vector c(ω), given that b is a column vector whose first element is 1 and whose other 
elements are 0.  Once c(ω) is known, the line shape is given by: 
 
 { }πωω /)(Re)( 0cI = , (5) 
 
where c0(ω) is the first element of c(ω). 

More details on the calculations and the computational method can be found in 
Refs. [1,12] and especially Ref. [13].  Excepting the MOLSCAT and MOLCOL 
calculations, the calculations described here were performed on a 700 MHz desktop 
computer, and the calculation of a single line shape took about 10 seconds. 

We conclude this section by noting that f
VCS  and f

DS  each contain a physically 
meaningful parameter that can be factored out of the matrix as a scalar.  For f

VCS , this 
parameter is the effective frequency of velocity-changing collisions, ν, while for f

DS , it 
is the thermally-averaged collisional relaxation rate, Γ0.  There is no consensus in the 
literature (see Ref. [12]) as to whether ν should be equal to the dynamic friction 
coefficient, νdiff, which can be calculated from the mass diffusion constant D via: 

 

 
mD

TkB
diff =ν , (6) 

 
where kB is the Boltzmann constant, T is the temperature, and m is the mass of the 
active molecule.2  For the present calculations, we assumed initially that ν = νdiff and 
later relaxed that assumption.  As for the thermal average, Γ0, it can be calculated as: 

                                                 
2 The mass diffusion constant, D, can be related to the diameter, d, of the rigid sphere interaction [7].  However, to maintain 
contact with the literature, we use D rather than d to characterize the interaction leading to Dicke narrowing. 
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where υ is the active molecule speed, fM(υ) is the Maxwellian speed distribution, and 
Γ(υ) is the speed-dependent collisional relaxation rate (obtained from the energy-
dependent pressure-broadening cross-section).  However, the accuracy with which Γ0 
can be calculated is only ±2% at present, which is the principal limitation on the 
accuracy of the overall calculation, and is too poor for the analysis of subtle line shape 
effects such as Dicke narrowing.  Therefore, we elected to treat Γ0 as a fitted 
parameter.  We verify below that our fitted values of Γ0 agree with our calculated 
values in their magnitude and their density dependence in all cases – with one 
important exception that we will discuss in some detail. 

MEASUREMENTS 

The spectrometer has been described in Refs. [13,14,15], but we repeat some 
pertinent details here. Two visible laser beams, one of which is tunable, are 
overlapped in an LiIO3 crystal to generate an infrared (IR) beam at the difference 
frequency. This beam is split so that one branch passes through a temperature-
controlled absorption cell, a second branch passes through a 15 cm long reference cell 
filled with low pressure CO at room temperature, and a third branch is used to monitor 
the incident intensity. The reference cell branch is only used to measure line shifts, 
which are not discussed here. Each branch of the beam is detected by a separate LN2-
cooled InSb detector, and the incident intensity signal is used to normalize the 
absorption cell signals and thereby remove absorption by laboratory air from the 
spectra. To detect the relatively weak laser beam against the laboratory’s background 
IR signal, one of the visible laser beams is chopped by an acousto-optic modulator and 
the detected signals are processed by lock-in amplifiers. The spectrometer is depicted 
in Fig. 1.  It has a frequency uncertainty of less than 1 MHz and a signal-to-noise ratio 
between 3000:1 and 10,000:1, depending mostly on the effective integration time 
employed (between 0.5 and 2 seconds). 

The temperature-controlled, vacuum-jacketed absorption cell used for the current 
study was 50 cm long, and used a circulating heat transfer fluid and chiller to regulate 
the temperature. We were able to set the gas temperature to any value between roughly 
210 K and 330 K, with a stability of ±0.1 K. The cell was fitted with CaF2 windows 
mounted at Brewster’s angle, and with five T-type thermocouples distributed along the 
length of the cell.  Using a combination of the thermocouple measurements and 
spectroscopic temperature retrievals (following the method of Ref. [16]), we were able 
to determine the CO-Ar gas temperatures to within ±0.3 K.  The gas pressures were 
recorded with an MKS Baratron capacitance manometer, which was calibrated by the 
manufacturer immediately before the study and found to be accurate to within 0.05% 
of the reading. The mixing ratio of CO to Ar was about 0.1%, and thus we can neglect 
the influence of self-broadening on the speed-dependence of the total broadening. 
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FIGURE 1.  Schematic diagram of the difference-frequency laser spectrometer as viewed from above. 

FINDINGS 

At pressures above 0.2 atm, the line shape is insensitive to Dicke narrowing and is 
dominated by collisional broadening.  For all temperatures and spectral lines in this 
pressure regime, our calculations (but with Γ0 fitted) reproduce the measured line 
shapes within their experimental noise (i.e. within ±0.03% or better).  As an example, 
the residual for the P(13) transition at 1.0 atm and 259 K is shown at the bottom of 
Fig. 2, underneath the corresponding absorption spectrum. The residual is defined as 
the difference between the calculated spectrum and the measured spectrum, and 
agreement between the two is confirmed by the fact that the residual is flat and equal 
to zero within the experimental noise. (While the spectra are recorded point by point, 
we have joined the points by straight line segments as a guide to the eye.)  Note that 
there are a number of adjustable parameters used to fit our calculated line shapes to 
our experimental profiles and produce residuals such as the one shown in Fig. 2. Since 
our line shape calculation does not include the line strength (i.e. peak height) or the 
relative frequency of the line centre in a particular experimental scan, it is necessary to 
fit for those parameters. It is also necessary to fit for a linear baseline slope and 
intercept. None of these parameters influences the line shape. As mentioned earlier, 
weak line mixing does introduce a small asymmetry into CO-Ar lines under the 
conditions studied [1,17], but as we are interested in modelling an isolated line, we 
exclude line mixing from our calculation and account for the asymmetry with a final 
fitted parameter. All these fitted parameters are discussed further in Ref. [1].  The 
broadening and shifting coefficients obtained from our spectra in the > 0.2 atm regime 
are reported in Ref. [5]. 

The situation below 0.2 atm, where Dicke narrowing, Doppler broadening, and 
collisional broadening are all significant, is more problematic.  In this pressure regime, 
when ν is fixed equal to νdiff (as calculated using Eq. (6) and the empirical model of 
Bzowski et al. [18] for the mass diffusion constant D), we find for all lines and all 
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temperatures that our line shape calculations fail to reproduce the measured line 
shapes within their experimental noise. That is true even though Γ0 is fitted in a least-
squares minimization of the residual.  As an example, the residual for the P(7) line at 
0.05 atm and 296 K is shown in Fig. 3(a), where the ‘w’ structure near line centre 
indicates a difference between the measured and calculated shapes. Note that while the 
maximum value of the residual is only about 1% of the peak absorption, it is well 
above the noise level as characterized by the fluctuations visible in the line wings. 

 

 

FIGURE 2.  Measured spectrum of the P(13) line at 1.0 atm and 259 K (above), and the difference 
between the calculated spectrum and the measured spectrum (below). Note the expanded vertical scale 
in the lower plot. The arbitrary absorption units are the same for both plots, and are chosen such that the 
peak absorption is normalized to 1. 

 
On the other hand, when ν is fitted, the calculations do reproduce the measurements 

within the experimental noise, as shown in Fig. 3(b). This same agreement is found for 
all spectral lines at all temperatures and pressures. Note that the increased noise near 
line centre in Fig. 3(b) should not be confused with structure in the residual. The noise 
increases because, for this scan, the CO:Ar mixing ratio was slightly higher than 
desirable, leading to a weak transmission signal at line centre. 

The question therefore becomes: what are our fitted values of ν?  Before presenting 
those values, we briefly check whether our fitted values of Γ0 agree with our 
calculated values and whether they exhibit the correct physical variation with pressure. 
Fig. 4 shows a plot of the collisional broadening coefficient, γ0 = Γ0/P, versus pressure 
P for the P(2) line at 296 K. The results when ν is fixed equal to νdiff and when ν is 
fitted are shown as hollow and solid circles, respectively.  On physical grounds, γ0 
should be constant with pressure, as is the case in the P > 0.2 atm regime for both the 
solid and hollow circles.  But a non-physical deviation (from a constant high-pressure 
value) is seen at low pressures in both cases.  Fitting ν substantially reduces the 
deviation in γ0, but does not eliminate it. The deviation in γ0 when ν = νdiff was 
discussed in Ref. [1], where it was attributed to an overestimation of the narrowing 
(the least-squares fitting procedure compensates for an overestimation of the 
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narrowing by increasing the broadening).  That interpretation is supported here by the 
substantial reduction in the deviation when ν is fitted. However, we also see here that 
the interpretation of Ref. [1] is only partly correct, as γ0 is not constant at low 
pressures even when ν is fitted. 

 

 

FIGURE 3.  Measured spectrum of the P(7) line at 0.05 atm and 296 K, along with residuals (a) when ν 
is fixed equal to νdiff and (b) when ν is fitted. Note the expanded vertical scale in the residual plots. The 
arbitrary absorption units are the same for all plots, and are chosen such that the peak absorption is 
normalized to 1. 

 
The remaining deviation in γ0 when ν is fitted cannot be attributed to any 

systematic error in the experiment, because its magnitude varies with temperature such 
that it is: (1) largest at 259 K, in the middle of the temperature range studied, and (2) 
negligible at 214 K.  The first point makes a systematic error in the temperature or 
pressure measurement extremely unlikely, while the second point rules out any effect 
from the instrumental line shape.  Thus we conclude that the low-pressure deviation in 
γ0 results from some error in our calculation. We return to this point below. In any 
case, the low-pressure deviation in γ0 does not affect our fitted values of ν, as will be 
shown shortly. 

We now consider the fitted values of ν. Although there is disagreement in the 
literature as to the magnitude of ν, there is general agreement that it is proportional to 
the pressure (e.g. Refs. [19,20]), as expected of a collision rate. Within our 
experimental uncertainty, we also find ν to be proportional to the pressure, as shown in 
Fig. 5 for P ≤ 0.1 atm. At P ≥ 0.2 atm, the line shape becomes insensitive to ν, and the 
uncertainty in our retrieved values of ν is too large for those values to be useful. The 
solid line in Fig. 5 depicts νdiff, which is three to ten times larger than ν, depending on 
the spectral line. Thus our measured spectra contain less Dicke narrowing than we 
would predict under the assumption that ν = νdiff. 
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FIGURE 4.  Broadening coefficient γ0 = Γ0/P versus pressure P for the P(2) line at 296 K when ν is 
fixed equal to νdiff (hollow circles) and when ν is fitted (solid circles). The solid horizontal line is the 
calculated value. The ±2% error in the calculated value is indicated in the positive direction by the 
dashed horizontal line. The 2σ error bars on the data points are too small to show for pressures above 
0.1 atm. 

 
To highlight the reduction of Dicke narrowing in our spectra, we plot in Fig. 6 

(lower panel) the ratio ν/νdiff versus rotational quantum number J.  The solid triangles 
in Fig. 6 are our values obtained at 296 K and 0.05 atm.  Note that normalizing by νdiff 
removes the pressure dependence.  In units of 10-3 cm-1/atm, our calculated values of 
νdiff are: 31.1 at 214 K, 28.6 at 236 K, 26.5 at 259 K, 23.8 at 296 K, and 22.2 at 324 K. 
These values should be accurate to within 2.5% [18].  We see from the top panel of 
Fig. 6 that the variation of Γ0 with J mirrors that of ν/νdiff, a fact which will be 
discussed below.  As an aside, the hollow circles in Fig. 6 are values obtained when 
our calculated speed dependence for the collisional broadening is replaced by a fitted, 
quadratic speed dependence similar to that used in Ref. [14] and other papers.  These 
erroneous values are qualitatively similar to those shown in Fig. 4(a) of Ref. [14], 
demonstrating the advantage of using a rigorous calculation for the form of the speed-
dependent broadening. 

In summary, for all spectral lines under all conditions, we find that the Dicke 
narrowing is reduced relative to what we would predict from the mass diffusion 
constant. This reduction is not substantially affected by using a soft or hard collision 
model in place of our rigid sphere calculation (results not shown).  Nor is it affected 
by the low pressure deviation in γ0 (or equivalently, in Γ0), as evidenced by the 
following two facts: (1) unlike Γ0, ν is proportional to the pressure; and (2) within the 
precision of the retrieval, the low-pressure values of ν/νdiff at 214 K (where there is no 
significant deviation in γ0) agree with the values at 259 K (where the deviation in γ0 is 
most pronounced). 
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FIGURE 5.  Pressure dependence of ν for the P(2) line (circles), the P(7) line (squares), and the P(13) 
line (triangles), at 296 K. The solid line indicates νdiff, while the dashed line is a linear fit through the 
origin for P(7) and the dash-dotted line is a linear fit through the origin for P(2). For clarity, 1σ error 
bars are shown only on the P(2) data points. 

DISCUSSION 

We are left with two outstanding questions: (1) why do we find less Dicke narrowing 
in our measured spectra than we calculate from the mass diffusion constant? and (2) 
why is γ0 not constant at low pressures even when ν is fitted?  We begin with the first 
question.  The model of Rautian and Sobel’man [21] (further developed in Refs. 
[22,23]), suggests that we overestimate the amount of Dicke narrowing because we 
separate the collision operator into independent velocity-changing and dephasing 
parts.  By doing so, we neglect the fact that some velocity-changing collisions are 
really “VCD”, or “velocity-changing and dephasing”, collisions. Such collisions were 
also excluded from Dicke’s original theory [24], which assumed that “the gas 
collisions should not influence the internal state of the radiator”. It has not been 
established whether, or to what degree, VCD collisions should contribute to Dicke 
narrowing in CO-Ar. 

To examine this issue, we discard the VC, D, and VCD nomenclature, which is 
based on intuitive notions of the effects of collisions rather than on a rigorous 
description of the collision process.  Instead, we consider a rigorous decomposition of 
the collision operator Ŝ , which is provided by Eqs. (2.142-2.148) of Ref. [25].  These 
equations relate ρŜ  (written there simply as S) to quantum mechanical scattering 
amplitudes by dividing it into a leaving term, -S(1), and a returning term, S(2).  
Adapting the notation of Ref. [25] slightly, -S(1) is given by: 
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FIGURE 6.  ν/νdiff versus J at 0.05 atm and 296 K, as retrieved using our calculated speed dependence 
for Γ(υ) (solid triangles) and using a quadratic, fitted speed dependence instead (hollow circles). 1σ 
error bars are shown on one of the J = 16 data points. The relaxation rate Γ0 for the same spectra is 
shown on the scale above, for comparison. The error bars on Γ0 are too small to show. 

 
 

 )(),(),()1( vvvS dc
dc

dcbaba ρν∑−=− , (8) 

 
where a and b are the lower and upper states, respectively, of the rovibrational 
transition corresponding to the spectral line of interest; c and d are those states for 
some other transition; and ν(ba|dc,v) represents the collisional transfer of coherence 
from the transition ba and the velocity v to the transition dc and all other velocities v'.  
Note that ν(ba|dc,v) is more general than the effective frequency of velocity-changing 
collisions ν in that it includes transfer between components of the optical coherence as 
well as between velocities.  The leaving term -S(1) therefore involves leaving both to 
other velocities and to other components of the optical coherence (i.e. to other spectral 
lines), although only the latter aspect is clear from Eq. (8).  The leaving to other 
velocities can be seen by applying the optical theorem [25, pp. 61 ff.] to the forward-
scattering amplitudes. The returning term S(2) is analogous to -S(1) in that it involves 
returning both from other velocities and from other components of the optical 
coherence, but both of these aspects are explicit in the returning term: 
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where A(bav|dcv') represents the collisional transfer of coherence from the transition 
dc and the velocity v' to the transition ba and the velocity v. 

Inspection of Eq. (9) reveals that, in the case of rotationally inelastic collisions (i.e. 
dc ≠ ba) 3, the returning from other velocities occurs in the same terms as the returning 
from other components of the optical coherence. For an isolated line, those terms can 
be neglected (because, by the definition of an isolated line, ρdc is negligible at 
frequencies near the transition ba for all dc ≠ ba), and so the velocity exchange 
associated with rotationally inelastic collisions cannot homogenize the Doppler 
broadening. Thus the structure of the collision operator determines that only 
rotationally elastic collisions contribute to the Dicke narrowing of an isolated line. 
The velocity changes associated with rotationally inelastic collisions still occur, but 
they do not influence the spectrum. Accordingly, a velocity-changing collision rate 
based on mass diffusion (i.e. νdiff) will overestimate the effective (elastic) rate ν. 
Furthermore, since rotationally inelastic collisions are the dominant mechanism for 
collisional broadening in CO-Ar at atmospheric temperatures [26], we expect large 
values of Γ0 to be associated with small values of ν – a “correlation”, evident in Fig. 6.  
The abstention of rotationally inelastic collisions from Dicke narrowing is implied in 
Ref. [27], in which the returning in velocity is absent in the case of an isolated line, 
and more recently in Ref. [28], where Dicke narrowing due to rotationally inelastic 
collisions reappears in the presence of line mixing. 

We now turn to our second outstanding question: why is γ0 not constant at low 
pressures even when ν is fitted?  Since the deviation occurs at low pressure, and 
increases with decreasing pressure, it is unlikely to result either from an error in the 
speed-dependent collisional broadening or from an overestimation of speed-class 
exchange. Errors in either of these two aspects of the calculation ought to become 
more significant with increasing pressure.  The deviation is even less likely to result 
from an error in the Doppler broadening, which is well understood and trivial to 
calculate.  Our use of a rigid sphere potential to calculate the Dicke narrowing is 
absolved of responsibility by noting that the deviation is not appreciably affected by 
replacing our rigid sphere model with a hard or soft collision model (results not 
shown).  So we hypothesize that the deviation occurs because we have oversimplified 
the collision operator by separating it as in Eq. (3), and because fitting ν is not 
sufficient to restore the lost information. 

In considering this point, it is worth examining the approach by which the 
dephasing part of the collision operator, DŜ , is calculated.  The scattering amplitudes 
in a binary collision can be calculated using either the MOLSCAT or the MOLCOL 
software package.  In principle, these amplitudes are sufficient to determine all the 
effects of collisions on the line shape; however, progressing from scattering 
amplitudes to the line shape is difficult because of the integral nature of the S(2) term 
in Eq. (9), with its ρ(v') dependence (note the prime).  That dependence is a feature 
                                                 
3 By assuming that a,b,c and d represent different levels, we are ignoring spatial degeneracy (m sublevels). We thus avoid the 
added complexity of m-changing collisions or pure reorientation effects and the problem of complete mixing of lines that are 
degenerate in the absence of a magnetic field. 
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common to all Boltzmann-like equations and is the principal reason why analytical 
solutions have not been found (with the sole exception of Maxwell molecules [29, Ch. 
5]).  To avoid this problem, the available post-processor codes calculate pressure-
broadening cross-sections from the scattering amplitudes based on the Ben-Reuven 
[30] Shafer-Gordon [31] theory, which gives the line shape only in the high pressure 
limit (i.e. neglecting Doppler broadening and the effects of velocity-changing 
collisions on the spectrum).  The result of this theory can be obtained from our kinetic 
theory by employing the ansatz: 

 
 )'()()',( Mact vv fndcdc ωρωρ =  (10) 

 
for some velocity-independent function )(ωρdc , where nact is the number density of 
the active molecules and )'(M vf  is the Maxwellian velocity distribution.  Substituting 
Eq. (10) into Eqs. (8) and (9) produces the collisional change 
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where in the last term, we have interchanged v with v' in order to bring out the 
common factor fM(v).  For an isolated line, we only have dc = ba; in that case, by 
identifying ),( vωρba  with ),( vως  in Eq. (1), using the ansatz of Eq. (10), and 
ignoring the vk ⋅  term (which is negligible compared to the collision term in the high-
pressure limit), we obtain a Lorentzian line with a width given by Eq. (7), in which 
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More generally, we can define the dephasing contribution as: 
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which can be computed from an integral over the relative velocity of a binary collision 
(see Eq. (24) of Ref. [20]) after the appropriate scattering amplitudes have been 
obtained from MOLSCAT or MOLCOL.4  To see how this contribution relates to the 
total collision operator, 'd)()'(

'
vvvv

v∫ dcdcbaA ρ  can now be added to and subtracted 

from the full colllisional contributions of Eqs. (8) and (9), resulting in: 
 

                                                 
4 Here SD should not be confused with the corresponding matrix in the section “Calculations”. 
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The term involving the sum and the integral in Eq. (14) is approximated by our VCŜ , 
which is responsible for Dicke narrowing and whose contribution is calculated here 
using the classical billiard-ball model.  A similar division of Ŝ  has also been carried 
out in the classical description of Rautian and Sobel’man [21].  Such a separation is 
not unique, and is useful only if one has reliable models for DŜ  and VCŜ . 

The preceding paragraphs are meant not only to explain the low-pressure deviation 
in our fitted values of γ0, but also to  suggest an approach to performing fully quantum 
mechanical line shape calculations in the near future.  The MOLSCAT and MOLCOL 
codes already calculate all the quantum mechanical scattering amplitudes required to 
determine the full collision operator; the limitation has been in obtaining a solution for 
the off-diagonal density matrix elements responsible for the spectral line shape, i.e. 

),( vωρba .  Using today’s computers, it should be possible to do so numerically, 
abandoning Eq. (10).  In that case, it would not be necessary to patch Dicke narrowing 
back into the collision operator with a classical term VCŜ , nor to fit the velocity-
changing collision rate ν.  The scattering calculations would yield the complete 
collision operator, including all effects implied by the labels VC, D, and VCD, and the 
resulting quantum kinetic equation would yield the correct shape for an isolated 
spectral line.  There appears to have been only one attempt along this line [2]. 

CONCLUSIONS 

We have demonstrated that theoretical line shapes obtained by solving the quantum 
kinetic equation for CO-Ar can reproduce the most accurately measured line shapes 
available to within their experimental noise, provided that the line shapes are 
insensitive to the amount of Dicke narrowing present (i.e. for pressures above 0.2 
atm).  In that case, the line shapes can be calculated ab initio except for the thermally 
averaged relaxation rate Γ0, which must be fitted to overcome the present limit on the 
accuracy with which it can be calculated.  For pressures at which the line shape is 
sensitive to the amount of Dicke narrowing (i.e. below 0.2 atm), a comparison 
between our measured and quantum kinetic line shapes has shown that the magnitude 
of the Dicke narrowing in CO-Ar is 10% to 30% of that predicted from mass 
diffusion.  Furthermore, an examination of the structure of the collision operator has 
revealed that the reduced narrowing is probably due to inelastic collisions, which do 
not cause Dicke narrowing for an isolated line.  Finally, we have noted that current 
quantum mechanical calculations of pressure-broadening cross-sections assume that 
the velocity dependence of the off-diagonal elements of the density matrix is 
Maxwellian – an assumption that removes velocity-changing effects from the line 
shape problem.  By abandoning that assumption and solving the problem numerically, 
it should be possible to calculate the complete line shape quantum mechanically, 
starting only from the potential energy surface for the CO-Ar interaction. 
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