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Abstract

An increasing number of models have been proposed to explain the link structure

observed in complex networks. The central problem addressed in this thesis is: how

do we select the best model? The model-selection method we implement is based on

supervised learning. We train a classifier on six complex network models incorporating

various link attachment mechanisms, including preferential attachment, copying and

spatial. For the classification we represent graphs as feature vectors, integrating

common complex network statistics with raw counts of small connected subgraphs

commonly referred to as graphlets. The outcome of each experiment strongly indicates

that models which incorporate the preferential attachment mechanism fit the network

structure of Facebook the best. The experiments also suggest that graphlet structure

is better at distinguishing different network models than more traditional complex

network statistics.

To further the understanding of our experimental results, we compute the ex-

pected number of triangles, 3-paths and 4-cycles which appear in our selected models.

This analysis shows that the spatial preferential attachment model generates 3-paths,

triangles and 4-cycles in abundance, giving a closer match to the observed network

structure of the Facebook networks used in our model selection experiment. The other

models generate some of these subgraphs in abundance but not all three at once. In

general, we show that our selected models generate vastly different amounts of trian-

gles, 3-paths and 4-cycles, verifying our experimental conclusion that graphlets are

distinguishing features of these complex network models.

Key words : complex networks, social networks, machine learning, graph theory
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Chapter 1

Introduction

1.1 Motivation

It has been readily observed that link-structured information arises naturally in many

unrelated contexts in the real world. In many instances a graph, also called a net-

work, is an appropriate model for such phenomena. Since the dawn of the internet age,

with computational capacity rapidly advancing, the ability to study these so called

real world or complex networks has increased dramatically. This study points to these

networks sharing many common properties such as a power law degree distribution,

high level of clustering, small average path lengths, assortativity and disassortativ-

ity amongst vertices and community structure. There have been numerous models

proposed to replicate the structure of these complex networks. The study of these

models has been a steadily advancing area of research [8, 25, 103].

The central question posed in this thesis is: how can you determine which model

is the best for a given complex network? In some instances, posing and validating

a model can be a straight forward exercise. For example, when Newton first posed

his model for gravity, he could easily provide evidence for its accuracy by predicting

how objects fall on Earth or the motion of the planets, etc. In this case, what the

model should be able to predict is clear. It is not as clear what a complex network

model should be able to predict. Many complex networks such as social networks

and the web graph are constantly evolving, with vertices and edges being added and

deleted all the time. Proposing that the goal of a particular model should be its

ability to precisely replicate the given complex network is meaningless. In practice, a

1
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particular static instance of a complex network is taken, and models are ranked based

on their ability to generate “similar” networks. In Section 1.4 we provide an overview

of complex networks including common examples, their properties and some models

which have been proposed to replicate them.

Historically, the approach to validating a model for a complex network was to show

that the model was capable of replicating the complex network properties which are

described in Section 1.4.2. This approach, while leading to many interesting models

and techniques, has widely ignored whether or not the models generate graphs which

are truly similar to the complex networks they are meant to model. The problem of

determining whether or not two graphs are similar is a well-studied problem in its

own right [45]. The basic premise of the problem is to develop a similarity measure

(sometimes a distance metric) which assigns a score indicating the level of similarity

between two graphs. Typical approaches to developing similarity measures have been

to compute the maximum common subgraph or minimum common supergraph of the

two graphs [47, 113, 122, 46, 65, 44, 43]. A different approach to the graph similarity

problem is to use graph kernels. A kernel function is an inner product of two vectors

from a feature space. In a graph kernel, each graph is represented as a feature vector

which inhabits the feature space, and the similarity score is determined by taking the

inner product or graph kernel of the two feature vectors. The feature vectors contain

information about the structure of the graph. Graph kernels have been proposed

which include all subgraph counts [71], subtree counts [112], cycle counts [73], path

counts [38] and graphlets [117].

Techniques for graph similarity often incorporate information about the subgraph

structure of the two graphs. It is common to refer to small subgraphs as graphlets in

the literature [54, 110, 117]. The term motifs has also been used but this term refers

to induced subgraphs which occur much more frequently than you would expect in a

random graph of the same size and density [93]. The goal of this thesis is to explore the
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role of graphlets in verifying models for complex networks. In placing graphlets at the

forefront of the validation procedure, we make a departure from previous approaches

which use complex network statistics such as the power law degree distribution and

the small world property. Recent work in validating models for complex networks

has also started adopting this graphlet perspective. One such paper, which largely

inspires our model-selection method in Chapter 3, is the work of Middendorf et al.

[91]. In this paper, the authors use a supervised learning algorithm to determine

which of seven proposed models is most likely to have generated a particular PPI

network. Supervised learning is a branch of machine learning in which a classifier

learns a set of labelled training data. The training data in this case contains feature

vectors whose entries correspond to raw graphlet counts, and the label is the model

which the feature vector comes from. Two sets of feature vectors are used: one

which incorporates the graphlet counts for all graphlets that can be formed by a

walk of length of 8 (148 non-isomorphic graphs), and all graphlets which contain 7

edges (130 non-isomorphic graphs). Once the classifier has been trained, a feature

vector computed from a PPI network is evaluated by the classifier to determine which

model achieves the highest score. The conclusion of this work is that models which

incorporate the copying mechanism are most likely to have generated the PPI. This

conclusion corresponds to the biological fact that proteins copy the functions of other

proteins. In Chapter 3 we incorporate a similar approach based on supervised learning

to determine which model can best replicate network data taken from Facebook.

Additional work in model validation of PPIs using graphlets includes the work of

Prẑulj [54, 110]. Also in [33], an unsupervised learning algorithm using graphlet-based

feature vectors is used to cluster data taken from a variety of complex networks. The

idea is to see whether or not data taken from the same type of complex network, like

a social network, gets clustered together.
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What is the advantage of using graphlets over complex network statistics in vali-

dating models for complex networks? Graphlets are the fundamental building blocks

for a graph. Suppose that we know nothing about a particular graph G and we are

incrementally given knowledge of the graphlets. We are first given the graphlets of

size 1, consisting of a set of n isolated vertices. From this, we deduce the size of the

graph is n. Next, we are shown the graphlets of size 2; from which, we can deduce the

number of edges. Next, we are given the graphlets of size 3; the number of 3-paths and

triangles. From this, we begin to understand the amount of clustering present in the

graph. As we are incrementally shown more graphlets of increasing size, our knowl-

edge of G steadily increases culminating in the final reveal of the one graphlet of size

n, G itself. The use of complex network statistics does not allow for this possibility of

refinement in our understanding of G. Furthermore, we argue that knowledge of only

relatively small graphlets provide more information about the graph than complex

network statistics. In Chapter 3, we demonstrate this experimentally by showing that

our classification algorithm is more accurate at identifying the correct model when

it is built using feature vectors incorporating counts for the graphlets of size 3 and 4

than feature vectors which incorporate information about complex network statistics

alone. As graphlets serve as building blocks of a graph, we suspect that complex

network statistics themselves may be implicitly contained in graphlet counts. This is

clearly the case for the clustering coefficient (see Equation 1.4 on page 25) We also

show this is the case for the power law coefficient (see Theorem 2.1.2 on page 40.)

Another important advantage is that by using graphlets, one can naturally repre-

sent graphs as vector based data, thus opening up a wide variety of machine learning

algorithms which are designed for vectors [24]. These algorithms run very efficiently

while algorithms which compute graph similarity based on graph structure tend to be

NP-Hard and are prohibitively expensive to compute [42]. Unfortunately, as we ex-

perience first hand in Chapter 3, algorithms for counting graphlets are also expensive
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to compute. Fortunately, faster algorithms are currently being developed to speed up

graphlet counting [79, 66].

The use of graphlets can also be justified from a theoretical point of view. Orig-

inally proposed by S. Ulam and P. Kelly [80], the Reconstruction Conjecture states

that if G is an undirected graph on n ≥ 3 vertices then G is uniquely determined

by its vertex-deleted subgraphs. A vertex-deleted subgraph is obtained by deleting a

single vertex and its incident edges from the graph. In other words, the graphlets of

size n− 1. While the conjecture is outstanding, it has been proved for several classes

of graphs: regular graphs [80], trees [80], disconnected graphs [80], threshold graphs

[115] and unit interval graphs [115]. The Reconstruction Conjecture has also been ver-

ified for all graphs on at most 11 vertices [90]. Though confirmation of the conjecture

has not yet occurred, it has generated much interest in the mathematical community

with well over 300 papers being published on the Conjecture. These papers deal with

related questions such as: how much information can be determined about G from

its set of vertex-deleted subgraphs? A fascinating result by Bollobás [26] shows that

almost every graph is uniquely determined by only 3 of its vertex-deleted subgraphs.

Note that the result is for a specific set of 3 vertex-deleted subgraphs, not any random

set of 3.

A current hot topic which which is related to graphlets is graph limits. The

recent development of models for complex networks has motivated the study of graph

sequences (Gn) with |V (Gn)| → ∞. A natural question arises: what does it mean

for such a sequence to converge and what is the limit of a convergent sequence?

To define a notion of convergence we must count the number of edge preserving

maps, or homomorphisms, from F into G. For two simple graphs F and G, we

denote the number of homomorphisms of F into G by hom(F, G) and denote the

homomorphism density of F into G by
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t(F, G) =
hom(F, G)

|V (G)||V (F )| .

Note that the homomorphism density gives the probability that a random mapping

V (F ) → V (G) is a homomorphism. We say that (Gn) converges if for every simple

graph F , the sequence (t(F, Gn)) converges. Through the works of [35, 36, 37, 34] a

complete theory for dense graph sequences (i.e. |E(Gn)| = Θ(n2)) has emerged. Un-

fortunately, much of the developed theory falls apart for sparse graphs (i.e. |E(Gn)| =

Θ(n).) The difficulty of establishing an appropriate theory for sparse graphs is due

to the struggle to find an appropriate normalization constant for homomorphism

densities in sparse graphs. There have been some attempts to develop a theory of

graph limits for sparse graphs [29]. As it happens, most real world network models

generate sparse graphs. Though the current theory of graph limits may be of lim-

ited use in furthering our understanding of complex network models, its prominence

in the mathematical community does provide additional validation of the graphlet

perspective.

1.2 Outline and Contributions of this Thesis

We begin with a quick overview of the terms and notation used in this thesis in

Section 1.3. We follow with a short review of real world networks, common complex

network properties and the models used to replicate them.

Given that the graphlet perspective is a relatively new way to think about model-

validation, the number of occurrences of specific graphlets in many complex network

models has not been analyzed. Notable exceptions include computing the expected

number of injective copies of triangles and 3-paths in the preferential attachment

model [59, 116] and the expected number of induced subgraphs in the Random Ge-

ometric Model [127, 75, 15]. In Chapter 2 we focus on computing the expected
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number of triangles, 3-paths and 4-cycles in our selected models. Our focus on these

particular graphlets is motivated by their importance in the model selection experi-

ment in Chapter 3. In our analysis, we consider the case where the graphs have dn

edges for some positive integer d. Our focus is primarily on the rate at which the

expected number of these graphlets grow as the size of the graph tends to infinity.

The conclusion of our analysis is that each of the models generate vastly different

frequencies of small graphlets. Many of the graphlet counts computed in Chapter 2

verify the observations made during the model selection experiment in Chapter 3. In

particular, it was observed that the SPA model is the only model we study which

generates triangles, 3-paths and 4-cycles in abundance. This observation is through

calculation in Chapter 2. For graphs with an expected power law degree distribution,

we pose a relationship between the power law coefficient γ and the number of induced

triangles and 3-paths in Theorem 2.1.2. An important conclusion of this theorem is

that the amount of clustering present in a graph with an expected power law degree

distribution cannot be determined from the power law coefficient. We also pose a

relationship in Theorem 2.1.1 which relates the power law coefficient to the number

of edges in the graph.

In Chapter 3, we perform a model-selection experiment to determine which of our

selected models is most likely to generate an online social network. The data used is

from Facebook and was obtained from the data sets of [96]. Our conclusion is that

models which incorporate the preferential attachment mechanism perform best. This

coincides with the conventional wisdom that preferential attachment is an important

mechanism in social networks. Our experiment also show that graphlets alone are

sufficient in differentiating our selected models. We also show that graphlets are better

at distinguishing our selected models than our chosen complex network statistics. The

work contained in Chapter 3 has been published in Internet Mathematics [74].
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1.3 Mathematical Background

1.3.1 Graph Theory

We take the time to provide a comprehensive explanation of the graph theory terms

which will be used throughout this thesis. Note that graph and network are terms

which refer to the same thing. Both terms are common place and we use both in this

thesis.

A graph G is a set V (G) of vertices along with a set E(G) of 2-element subsets of

V (G) called edges. We can think of an edge in E(G) as a line connecting two vertices

u, v ∈ V (G). The edge e connecting vertices u and v will be denoted e = uv = vu.

We say that e is incident to the vertices u and v. We call a loop an edge of the form

vv. The size of V (G) and E(G) are denoted |V (G)| and |E(G)| respectively. The

size of a graph G is the size of its vertex set so that |G| = |V (G)| typically denoted

n. We call a graph simple if there is at most one edge between any two vertices. A

graph in which multiple edges between two vertices or loops are possible is called a

multi-graph. Unless otherwise stated, we will deal with simple graphs in this thesis.

This previous definition is for what is called an undirected graph. We can have a

directed graph if we think of each edge uv ∈ E as being directed from u to v.

We say that vertices u and v are adjacent in G if uv ∈ E(G). We denote

adjacency by u ∼ v. The neighbourhood of a vertex v denoted by N(v), is the

set of all vertices adjacent to v. The degree of a vertex v in a graph G, denoted by

degG(v), is the number of vertices adjacent to v. We will sometimes suppress G in

this notation and simply write deg(v) when the graph we are working with is clear. In

several cases, we will have a sequence of graphs (Gn). In this case, we will generally

write degGn(v) = degn(v). We call u an isolated vertex if deg(u) = 0 and call u a

universal vertex if deg(u) = n − 1. In a directed graph, we differentiate between

whether or not an incident edge is an in or an out edge. We denote the in-degree of
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vertex v a directed graph G as deg−
G(v) and the out-degree as deg+

G(v).

A path in G is a sequence of vertices v1v2 . . . vk where vi is adjacent to vi+1 for

1 ≤ i ≤ k − 1 with each vi distinct. The length of a path is defined to be the number

of vertices in the path.

We say that a graph G is connected if for every u, v ∈ V (G), there is a path

starting at u and ending at v in G. Otherwise, we say that G is disconnected. If G

is directed then we say that G is strongly connected if there exists a directed path

from u to v and from v to u for all u, v ∈ V (G).

The distance between two vertices u and v in a connected graph, denoted by

d(u, v), is the length of the shortest path between u and v. The diameter of a graph

G is the longest distance between any two vertices in G.

Certain special classes of graphs will arise frequently in this thesis; we take the

time to describe these classes. The complete graph on n vertices denoted Kn is a

graph where each vertex is universal. The graph K3 is often called a triangle in this

thesis. The complete bipartite graph on n + m vertices Kn,m is a graph whose

vertex set can be partitioned into two sets of size n and m with no vertex adjacent to

a vertex within its own set but each vertex adjacent to every vertex outside its own

set.

The path on n vertices denoted Pn is a graph which consists of a single path

of length n. The cycle on n vertices denoted by Cn is a connected graph in which

every vertex has degree two. In this thesis we will deal extensively with the size 3 and

size 4 connected graphs. We give them special names as indicated in Figure 1.1. Note

that some of the graphs in Figure 1.1 have more common names; g1 = P3, g2 = K3,

g4 = P4, g6 = C4 and g8 = K4. In this thesis we will stick with the more common

names while using the names in Figure 1.1 for the less common graphs g3, g5 and g7.

We say that two graphs G and H are isomorphic, denoted by G ∼= H, if

there exists a bijection f : V (G) → V (H) such that (u, v) ∈ E(G) if and only if
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g1 g2 g3 g4 g5 g6 g7 g8

Figure 1.1: Size 3 and Size 4 Connected Graphs

(f(u), f(v)) ∈ E(H). This means that G and H are identical up to some relabelling

of their vertices. Graph isomorphism forms an equivalence relation with equivalence

classes called isomorphism classes. In this thesis when we refer to a graph G, we are

almost always referring to the isomorphism class which contains G. We will denote

G to be the set of all isomorphism classes of graphs. We denote Gn to be the set of

all isomorphism classes of graphs with n vertices and denote Gn,m to be the set of all

isomorphism classes of graphs with n vertices and m edges. We also denote Cn to be

the set of all isomorphism classes of connected graphs on n vertices.

A graph automorphism is a graph isomorphism of G to itself. In other words, a

relabelling of the vertex set that preserves the graph structure. We denote the set of

all automorphisms for a graph G as Aut(G).

There are two different ways in which we can think of a fixed graph F being

a subgraph of another graph G. We say that F is an injective subgraph of G if

V (F ) ⊂ V (G) and E(F ) ⊂ E(G) and the assignment of endpoints to edges in F is the

same as in G. We denote the number of injective copies of F in G by inj(F, G). Note

that if F is an injective subgraph of G then it is possible that a non-edge between

two vertices in F may be an edge in G. We say that F is an induced subgraph of G if

there exists an injective function f : V (F ) → V (G) such that uv ∈ E(F ) if and only

if uv ∈ E(G). We denote the number of induced copies of F in G as ind(F, G). It is

generally the case in graph theory text books such as [125] that an injective subgraph

is referred to simply as a subgraph, while an induced subgraph is referred to explicitly

as an induced subgraph. In this thesis we will be primarily interested in the number
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P3 g7

Figure 1.2: inj(P3, g7) = 8, ind(P3, g7) = 2

of induced subgraphs of a certain type contained in a graph. For this reason, we go

against the convention and refer to induced subgraphs simply as subgraphs and say

injective subgraphs when referring to injective subgraphs.

Example 1.3.1 Consider the following graphs.

There is a useful connection between inj(F, G) and ind(F, G) which we will use

often in this thesis. The following Theorem is due to Kocay [82].

Theorem 1.3.2 Let G1, G2, . . . Gm be all the graphs on k vertices and consider any

graph G. Then for any Gi ∈ Gk we have

inj(Gi, G) =
m∑

j=1

inj(Gi, Gj)ind(Gj, G).

Example 1.3.3 Consider the two graphs P3 and g7 from Figure 1.2. Using Theorem

1.3.2 we can write inj(P3, g7) = inj(P3, P3)ind(P3, g7) + inj(P3, K3)ind(K3, g7) =

(1)(2) + (3)(2) = 8.

It is also observed in [35] that hom(F, G) and inj(F, G) are related. Let Θ be any

equivalence relation on V (F ) and let F/Θ be the graph formed by identifying vertices

in the same equivalence class of Θ. We can write hom(F, G) =
∑

Θ inj(F/Θ, G).

Therefore, since inj(F, G) and ind(F, G) are related, it is clear that hom(F, G) and

ind(F, G) are related as well.
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1.3.2 Probability Theory

Probability will be used extensively in this thesis. We take the time to outline the

terminology and important theorems which will be used frequently.

A random variable X is a variable whose value is determined by some random

process. For example, if X is the value of a roll of a dice, then X is a random variable

whose possible values are 1, 2, 3, 4, 5, 6. We denote the probability that X takes the

value of x by Pr(X = x) = Pr(x).

One important type of random variable is an indicator variable. An indicator

variable for an event S is a random variable such that

XS =

⎧⎪⎨
⎪⎩

1 if S occurs

0 if S does not occur

For example, if S is the event that the roll of a die is an even number, then XS = 1

if a 0, 2 or 4 is rolled and XS = 0 if a 1, 3 or 5 is rolled.

The expected value for a random variable X is defined as

E(X) =
∑

i

xiPr(xi),

where the sum ranges over all possible values xi for X. It is easy to see that for

an indicator variable XS that E(XS) = Pr(XS = 1). The variance of a random

variable X, which measures the spread of the distribution of X, is defined by

V (X) =
∑

i

(xi − E(X))2,

where the sum is over all possible values xi for X. When computing the variance,

often the simple formula V (X) = E(X2) − E(X)2 is used.

Linearity of Expectation says that if X is a sum of random variables X1 +
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X2 + . . . + Xn then

E(X) =
n∑

i=1

E(Xi).

We often have to consider how the probability of a certain event X is affected by

the occurrence of some different event Y . Such a calculation involves conditional

probability. The probability that X occurs given that we know that Y = y is

denoted by Pr(X|Y = y). Using this, we define the conditional expectation of X

given Y = y as

E(X|Y = y) =
∑

i

xiPr(X = xi|Y = y).

Though E(X|Y = y) seems like it should be a number, it is actually a random

variable. The following is a useful lemma for determining its expectation.

Lemma 1.3.4 Consider two random variables X and Y . Then E(E(X|Y )) = E(X).

We say that an event X occurs asymptotically almost surely or a.a.s. if the

probability that the event occurs tends to 1 as n → ∞. We say that an event X

occurs with extreme probability or w.e.p. if the probability that X occurs is

bounded below by 1 − e−Θ(log2(n)).

1.3.3 Asymptotic Approach and O-notation

In Chapter 2 we compute the expected graphlet counts in various random graph

models. In many cases, obtaining exact expressions for these expectations will require

meticulous calculation. Most often, we are not interested in the exact expression, but

the leading term of the expression which gives the rate at which the expectation grows

with the size of the graph n. This allows us to make some simplifications which make



14

the expectation calculations more tractable. The use of order notation will be used

frequently in this process, so we take the time to outline the notation here.

• We write f(n) = O(g(n)) to mean that there exists an N and constant c such

that for all n ≥ N , |f(n)| ≤ cg(n).

• We write f(n) = Ω(g(n)) to mean there exists and N and constant c such that

for all n ≥ N , |f(n) ≥ cg(n).

• We write f(n) = o(g(n)) to mean that for all ε > 0, there exists an N such that

for all n ≥ N , |f(n)| ≤ ε|g(n)|.

• We write f(n) = Θ(g(n)) to mean there exists an N and two constants c1, c2

such that for all n ≥ N , c1g(n) ≤ f(n) ≤ c2g(n).

• We write f(n) 
 g(n) to mean that f(n) = (1 + o(1))g(n).

To highlight the differences between these notations, let us compare f(n) = O(n2),

g(n) = Θ(n2) and h(n) 
 n2. For f(n), we have that f(n) ≤ cn2 for all n ≥ N for

some constant c. All we know is that f(n) is bounded above by n2. It could be the case

that f(n) = n, f(n) = ln(n) or f(n) = nln(n), to list a few possibilities. On the other

hand, g(n) = Θ(n2) implies that g(n) is sandwiched in between c1n
2 ≤ g(n) ≤ c2n

2

for all n ≥ N for some constants c1, c2. This implies that the leading term in g(n)

must be of order n2. Now consider h(n) = (1 + o(1))n2 = n2 + o(n2). In this case,

as n → ∞, h(n) tends to n2. The major difference between Θ(n2) and (1 + o(1))n2

is that in the former case, we do not know the coefficient of the n2 term and in the

later, we know the coefficient is 1.

A common application of O-notation is in simplifying the Binomial series.

Example 1.3.5 For any complex α, we can write the Binomial series (1 + 1
n
)α =∑∞

i=1

(
α
i

)
( 1

n
)i where n > 1. Using the O-notation, we can write this as (1 + 1

n
)α =

1 + α 1
n

+ O(( 1
n
)2).
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In our expected subgraph calculations we will often be confronted with sums of

the general form
∑b

i=a f(i) in which no simplification exists. Obtaining estimates for

such sums can be done by replacing the sum with an integral as prescribed in the

following lemma.

Lemma 1.3.6 Let f be a monotonic integrable function on a ≤ x ≤ n + 1. Then we

can write
∑n

i=a f(i) =
∫ n+1

a
f(x)dx + Δ where Δ = O(f(n) − f(a)). Furthermore, if

f is decreasing then
∑n

i=a f(i) =
∫ n+1

a
f(x)dx + O(f(a)) and if f is increasing then∑n

i=a f(i) =
∫ n+1

a
f(x)dx + O(f(n)).

Proof Let f be a monotonic function. The fact that
∑n

i=a f(i) =
∫ n+1

a
f(x)dx + Δ

follows from a left end point approximation of
∫ n+1

a
f(x)dx using unit intervals. To

determine Δ we let δi = maxi≤x≤i+1 |f(x) − f(i)| which is the maximum error of the

approximation on the interval [i, i+1]. For the overall error we have Δ ≤ ∑
i δi. Since

f is monotonic we have δi = |f(i+1)−f(i)|. If f is increasing then δi = f(i+1)−f(i)

so Δ ≤ ∑n
i=a δi = f(n + 1) − f(a) = O(f(n)). Similarly, if f is decreasing then

δi = f(i) − f(i + 1) so Δ ≤ ∑
i δi = f(a) − f(n + 1) = O(f(a)). �

Lemma 1.3.6 will be used extensively in Chapter 2. When using it, we will refer to

the lemma and generally suppress some of the details of the calculation in an attempt

to make proofs readable. A common application of Lemma 1.3.6 is to simplify the

sum
∑n

i=a
1
ip

. As any good calculus student knows, the solution of this sum depends

on the value of p. In regards to Lemma 1.3.6, when p = 1, the integral we compute is

different than the one we compute for p �= 1. In Examples 1.3.7 and 1.3.8 we provide

the details of the applications of Lemma 1.3.6 to this sum for both cases.

Example 1.3.7 Consider
∑n

i=a
1
i
. Since f(i) = 1

i
is a decreasing function, using

Lemma 1.3.6, we can write
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n∑
i=a

1

i
=

∫ n+1

a

1

x
dx + O(

1

a
)

= ln(n + 1) − ln(a) + O(
1

a
).

The ln(n + 1) term in this case can be written as ln(n(1 + 1
n
)) = ln(n) + ln(1 +

1
n
) = ln(n) + O( 1

n
). The simplification of ln(1 + 1

n
) to O( 1

n
) follows from the Taylor

expansion of ln(1 + x) =
∑∞

i=1
(−1)i+1

i
xi for |x| < 1. Overall, we obtain

∑n
i=a

1
i

=

ln(n) − ln(a) + O( 1
a
).

Example 1.3.8 Now consider the sum
∑n

i=a
1
ip

for p �= 1. The function f(i) = 1
ip

is

a decreasing function so using Lemma 1.3.6 we get

n∑
i=a

1

ip
=

∫ n+1

a

1

xp
dx + O(

1

ap
)

=
1

1 − p
(n + 1)1−p + O(

1

ap
)

=
1

1 − p
n1−p + O(a−p)

In the final step, from the Binomial series we have

(1 + n)1−p = n1−p(1 +
1

n
)1−p

= n1−p(1 + O(
1

n
))

= n1−p + O(n−p).

Now if p < 1, then n1−p is the leading term so we write
∑n

i=a
1
ip

= 1
1−p

n1−p +

O(a−p). However, if p > 1 then n1−p → 0 and O(a−p) is the dominant term. In this
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case we write
∑n

i=a
1
ip

= O(a−p).

One particular equation that will be used frequently is ind(P3, G)+3ind(K3, G) 
∑n
i=1

deg(vi)
2

2
. We provide a lemma containing this result so it can be understood in

the remainder of the thesis.

Lemma 1.3.9 Let Gn be a graph of size n such that the number of edges in Gn tends

to infinity with n. Then we can write

ind(P3, Gn) + 3ind(K3, Gn) 

n∑

i=1

degn(vi)
2

2
.

Proof We begin with the observation that ind(P3, Gn)+3ind(K3, Gn) =
∑n

i=1

(
degn(vi)

2

)
.

This follows since each pair of edges incident to a vertex vi either results in an induced

3-path or a triangle. Note that counting in this way counts each triangle 3 times.

Performing some simplifications gives

ind(P3, Gn) + 3ind(K3, Gn) =
n∑

i=1

(
degn(vi)

2

)

=
n∑

i=1

degn(vi)(degn(vi) − 1)

2

=
1

2

n∑
i=1

degn(vi)
2 − degn(vi)

= (1 + o(1))
n∑

i=1

degn(vi)
2

2



n∑

i=1

degn(vi)
2

2
.

Note that the step 1
2

∑n
i=1 degn(vi)

2−degn(vi) = (1+o(1))
∑n

i=1
degn(vi)

2

2
only holds

if
∑n

i=1 degn(vi) tends to infinity. Since
∑n

i=1 degn(vi) is equivalent to two times the

number of edges, this is satisfied. �
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1.4 Networks in the Real World

The use of networks to model phenomena in the real world is far reaching, touching

many distinct disciplines such as the social sciences, chemistry, biology, computer

science and engineering to name a few. In this section we provide an overview of

the body of work on complex networks. In this short review, we focus primarily on

material which is used in this thesis. For more information, the reader can check

the following surveys [8, 25, 103]. There are also several text books that have been

written on the subject, such as [123, 39, 56, 107, 31].

1.4.1 Examples of Complex Networks

Different types of complex networks can be coarsely divided into 4 different classes:

social, biological, technological and information. The main focus of this thesis is

online social networks but the model-selection experiment of Chapter 3 could be used

to validate a model for any type of complex network.

Social Networks

In a social network, individuals or groups of individuals are modelled by vertices,

and an edge between two vertices represents a relationship, commonly friendship,

between the individuals or groups of individuals. Relationships may or may not be

mutual, so that a social network may be undirected or directed. For example, in

Facebook friendships are mutual, but in Twitter they are not.

The study of social networks commonly called social network analysis is one of

the pioneering fields of complex network analysis. Besides a general interest in un-

derstanding human interactions, social scientists study social networks to develop a

better understanding of how information or a disease may spread through a social

network.

With the advent of online social networking services, papers are rapidly appearing
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in an attempt to further our understanding of these large complex networks. Some

online social networks which have been studied include Facebook, CyWorld, MySpace,

Orkut, Youtube, Flickr, Yahoo! 360, LiveJournal and Twitter [6, 49, 85, 89, 23, 51,

96, 16, 78, 88]. In this thesis, we study the data sets of Porter et al from [96]

containing Facebook networks of 100 different American universities and colleges.

A classic example of a social network is the collaboration network. In this network,

two individuals are connected by an edge if they have collaborated together on a

project. For example, a collaboration network can be formed amongst academics who

have co-authored papers together. Collaboration networks amongst academics from

physics, bio-medical research, high-energy physics and computer science were studied

by Newman in [99, 100, 101] and collaboration networks amongst mathematicians

and neuroscientists were studied by Barabási et al in [19]. Another example of a

collaboration network is the movie actor collaboration network which was studied in

[118, 104, 17].

Information Networks

Unlike social networks whose edges model a social relationship between individu-

als, edges in an information networks convey that there is some information shared

amongst the two individuals. Perhaps the two most studied information networks are

the World Wide Web and citation networks.

In the World Wide Web (WWW), whose network is commonly called the web

graph, web pages are represented by vertices and there is a directed edge from one

web page to another if the former contains a hyperlink to the latter. The WWW is

immensely large with a study by Hirate et al. in 2005 [72] putting the size at 53.7

billion web pages. Due to this immense size, only samples of the Web graph obtained

by crawling web sites can be feasibly analyzed. Earlier studies of the structure of the

web graph include Albert et al. [9, 10], Kleinberg et al. [81] and Broder et al. [40].
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In a citation network, papers are represented by vertices, and there is a directed

edge from one paper to another if the former cites the latter in its bibliography.

Citation networks which have been analyzed include publications in journals cataloged

by the Institute of Scientific Information [114], publications in the journal Physical

Review D volumes 11-50 [114] and high energy physics citations in ArXiv [89].

Technological Networks

Technological networks are typically man-made networks in which some resource

is distributed amongst certain junctures. One interesting example is the power grid.

In this network generators, transformers and substations are modelled by vertices,

and edges represent power lines. The power grid network for the western US was

studied by Watts and Strogatz in [118]. A similar network is the airline network

where airports are represented by vertices and edges indicate that flights go between

the airports. This network is studied by Amaral et al. [12].

The Internet forms a technological network at the router level where routers are

modelled as vertices and routers are connected if they send information to one an-

other. At the inter-domain or autonomous level we model domains (a collection of

routers and computers) as vertices and domains are connected by an edge if they send

information to one another. Faloutsos et al. studied the internet at the router and

inter-domain levels in [61]. Other papers which have analyzed the internet include

[21, 106, 48].

Biological Networks

Our last type of network models biological systems at the cellular level. A large

number of different types of biological networks have been studied. One important

type of biological networks are protein protein interaction (PPI) networks. In these
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networks, proteins are modelled as vertices, with edges between proteins if they in-

teract with one another. The process of determining the interactions amongst pro-

teins requires meticulous lab work by biologists. Often interactions are missed or

interactions which are not present are mistakenly “discovered”. However, there are

several high confidence methods such as yeast 2-hybrid systems which work well.

Additional information on PPI networks can be found in [109]. The study of PPI

networks is an extensive field. Some papers published on PPI networks include

[18, 50, 105, 111, 110, 54].

Metabolic pathways are another biological network which has garnered a lot of

attention over the years. In this network, metabolic substrates are represented by

vertices with directed edges between substrates if a chemical reaction exists that can

transform one substrate into the other. The study of these networks is important

in enhancing our understanding of cell function and has applications to genetic en-

gineering. Papers which have studied the properties of metabolic pathways include

[11, 63, 20, 64, 55, 119].

1.4.2 Properties of Complex Networks

Through the study of complex networks described in Section 1.4, various common

properties of these networks have come to light.

Power Law Degree Distribution and Assortativity

Arguably the most important observation of complex networks is that their degree

distributions have heavy tails. It has been widely reported that these heavy tails follow

a power law in many complex networks [9, 87, 40, 61, 96, 114, 55, 119, 18, 11]. Let

Nk,n indicate the proportion of vertices in G of size n which has degree k. A power law

degree distribution for G is a degree distribution which obeys
Nk,n

n
= Ck−γ for some

constant C and γ > 1. We refer to γ as the power law coefficient. It is uncommon
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that a complex network follows a power law precisely for all values of k. Note that

a power law degree distribution is not defined for k = 0. Also, due to the finiteness

of samples of complex networks, there are typically large deviations in the tail of

the distribution which cannot be accounted for in a power law distribution of the

degrees. This makes providing a precise definition for of a power law for finite graphs

challenging. Typical methods for verifying that empirical data follows a power law is

to plot the proportion of vertices of degree k on a log-log plot. If the data does follows

a power law then the plot should be linear as log(
Nk,n

n
) = −γ log(k) + log(C). To

determine whether or not a linear relationship exists, a linear regression is performed.

It has been noted that such an approach is not statistically valid and a more accurate

method has been proposed [53].

Many of the models for complex networks have been designed specifically so that

they replicate the power law behaviour of the degree distribution of complex networks.

In analyzing the degree distribution of these models, it is often shown that the degree

distribution of the models asymptotically satisfies a power law degree distribution.

We will say that a sequence of graphs (Gn), or simplify Gn, satisfies a power law

degree distribution a.s.s. if as n → ∞,
Nk,n

n
= (1 + o(1))Ck−γ. In many cases, the

power law only holds up to some maximum degree kmax.

Note that for directed graphs, the notions of a power law in-degree or out-degree

distribution are identical to those discussed above.

With a power law degree distribution, there are relatively few vertices incident to

a large number of edges, while most vertices are incident to a small number of edges.

The presence of such a degree distribution is easily understood in the web graph or

social networks since high degree vertices or highly influential individuals or webpages

have a tendency to attract more friends or links. On the other hand, individuals or

webpages with a low amount of influence struggle to attract more friends or links.

This indicates an undemocratic nature of a power law degree distribution.



23

Another complex network property which depends on the degree is the assortativ-

ity coefficient introduced by Newman in [102]. The assortativity coefficient r ∈ [−1, 1]

is a measurement of how the degree of a vertex affects the degree of the vertices it

links to. An assortativity coefficient which is close to 1 indicates there is a strong

tendency for vertices of the same degree to link to one another. We call the network

assortative in this case. If r is close to −1 then there is a strong tendency for vertices

to link to vertices with very different degrees. We call the network disassortative in

this case. If r = 0 then vertices have no tendency to link to any specific vertices. In

complex networks, edges are not formed completely at random but are dependent on

some properties of the vertices so that complex networks have non zero assortativity

coefficients. In [102], the authors’ study concludes that social networks tend to be

assortative while technological and biological networks tend to be disassortative.

The assortativity coefficient is determined by the following equation

r =

∑
i eii −

∑
i aibi

1 − ∑
i aibi

, (1.1)

where eij is the proportion of edges from a vertex of degree i to a vertex of degree j

and ai =
∑

j eij and bj =
∑

i eij.

A recent paper by Litvak and Hofstad [97] demonstrates that for large disas-

sortative graphs with a power law degree distribution, the assortativity coefficient

decreases with the size of the graph. As a result, for large graphs, the assortativity

graph is close to zero and under estimates the level of disassortativity present in the

graph. In Chapter 3 we use the assortativity coefficient as a valid network statistic

in our experiment. We feel this is justified as we use a social network, which do tend

to be assortative [102].

Small World Property



24

The most well known property of complex networks is certainly the small world

property which was famously demonstrated by the “six degrees of separation” exper-

iment of Milgram in [92]. In Milgram’s experiment, it was observed that on average,

any two random American’s are separated by at most 6 people. Though there has

been some scrutiny of this experiment, the small world property is a well observed

phenomenon in many complex networks. Roughly stated, the property holds if the

distance between vertices grows much slower than the size of the network.

There are several ways in which this concept can be expressed mathematically.

The most popular seems to be through the use of the average path length l of the

network. Another possibility is to use the diameter of the graph but this is problematic

if the graph is disconnected. The average path length is defined in [118] to be

l =
∑

u,v∈S

d(u, v)

|S| , (1.2)

where S is the largest connected component of G. In the case that G is directed,

we take S to be the largest strongly connected component and treat the pairs (u, v)

and (v, u) separately in the sum in Equation 1.2. We say that a graph G is a small

world graph if l = O(ln(n)) so that the average path length does not grow faster

than the logarithm of the graph size. This definition is often used to define the small

world property and was introduced by Watts and Strogatz in [118] in their study of

graphs with small average path lengths and high clustering. Studies have shown that

many complex networks such as the internet at the router and inter-domain level [21],

WWW [9, 40], metabolic pathways networks [63], PPI networks [18] and Facebook

[96] are small world graphs..

Clustering

An apparent organizational pattern in many real world networks is that they tend

to cluster into small highly connected groups. In the context of social networks,
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clusters represent groups of individuals who all know each other (they play for the

same sports team, take university classes together, etc.). The tendency of a network

to cluster is quantified by the clustering coefficient. There are two separate but related

definitions used for the clustering coefficient. Since both are used regularly we will

define both.

The first one was introduced by Watts and Strogatz in [118]. We begin by defining

the local clustering coefficient of a vertex v as

Cv(G) =
number of edges between neighbours of v(

degG(v)
2

) .

If the degree of v is 0 or 1 we set Cv(G) = 0. The local clustering coefficient

measures for each vertex v, the fraction of incident edges which close to form a

triangle containing v. The first clustering coefficient is defined by taking the average

of all the local clustering coefficients

C1(G) =
n∑

v=1

Cv(G)

n
. (1.3)

The other definition of the clustering coefficient is used quite frequently in social

network analysis and was introduced by Faust and Wasserman in [62]. The clustering

coefficient in this case is simply defined as

C2(G) =
3ind(K3, G)

inj(P3, G)
=

3ind(K3, G)

ind(P3, G) + 3ind(K3, G)
(1.4)

In [116], Bollobás and Riordan show that the local clustering coefficients can be

used to obtain C2(G) as well

C2(G) =

∑n
v=1

(
dG(v)

2

)
Cv(G)∑n

v=1

(
dG(v)

2

) .

For both definitions, C1(G), C2(G) ∈ [0, 1], where 0 is achieved for triangle free
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graphs, 1 is achieved for the complete graph and p is achieved for the random graph.

For a general graph G, the coefficients are not the same (see Example 1.4.1). In

[8] it is shown that complex networks experience significantly more clustering than

a random graph of the same size and density, so that for complex networks either

definition is appropriate. The most appropriate definition for this thesis is C2(G)

because of its relation to the number of induced 3-paths and triangles in G. For our

experiment in Chapter 3, we do not use the clustering coefficient as a feature. Since

we use the number of 3-paths and triangles as features, the addition of the clustering

coefficient provides no additional information.

Example 1.4.1 The the following graphs C1(G) = 1
6
, whereas C2(G) = 1

3
.

G

1.5 Graph Models

Many random graph models have been proposed for complex networks over the years.

These models are designed so that they generate graphs with the same real world

properties described in Section 1.4.2. A model’s ability to replicate these properties

has historically been enough to justify the use of the model. In this section, we

review the models that will be studied in this thesis. These models are generally

designed to replicate an apparent mechanism which guides edge formation in complex

networks. The three mechanisms we consider are preferential attachment, copying
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and spatial. The preferential attachment mechanism increases the likelihood that high

degree vertices in the network will continue to accumulate more neighbours, while low

degree vertices will not. Through the copying mechanism, a vertex accumulates its

neighbours by copying the neighbours of an existing vertex. In the spatial mechanism,

vertices lie in a metric space and edges are formed between vertices which are close

to one another. We consider these three mechanisms because each could plausibly

guide edge creation in a social network. The preferential attachment mechanism is

appropriate in a social network because popular individuals have more influence in the

network and are more likely to accumulate more friends. The copying mechanism is

appropriate because it is common to meet new people through another individual thus

copying their friends. Individuals who live close to one another are also more likely to

be friends while those who live far away from one another are less likely, thus justifying

the spatial mechanism. The geometry of a spatial model doesn’t necessarily need

to refer to geographical location. The spatial representation could model common

interests, with individuals having more common interests being closer in the space

than those who have less. In Chapter 3 we conduct a model-selection experiment to

determine which of these mechanisms is the most likely to have generated data from

Facebook.

The formation of a graph under each of the models follows the same paradigm in

which vertices are added to the graph one vertex at a time.

Procedure 1.5.1 (General Random Graph Generation Algorithm)

1. Begin with an initial graph G0.

2. Form a new graph Gn by adding a new vertex vn to Gn−1.

3. Assign edges from vn to vertices in V (Gn−1) by a specified mechanism.

Each model forms a sequence of graphs (G0, G1, . . . , Gn). The only difference

between each model is the edge formation mechanism in Step 3.
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1.5.1 Erdős-Rényi Random Graph

The Erdős-Rényi Random Graph, or simply the random graph, was first introduced

by Erdős and Rényi in [60]. The model has two parameters: the number of vertices

n and a probability p. The graph is formed by taking the n vertices and adding an

edge independently between each pair of vertices with probability p. Equivalently,

the Random Graph can be formed using Procedure 1.5.1 by allowing each vertex

to appear one at a time and adding an edge independently to each existing vertex

with probability p. We will denote the random graph with parameters n and p by

ER(n, p). The properties of ER have been extensively studied. In particular, it is

well established that the random graph is not a good model for complex networks.

The independence of the edge formation leads to a Binomial degree distribution, not

a power law. The Random Graph displays little clustering in contrast to the high

level of clustering in complex networks. The Random Graph however does have the

small world property [28].

1.5.2 Preferential Attachment Models

The preferential attachment (PA) model was originally introduced by Barabási and

Albert in [17]. The motivation for the introduction of this model was to provide a more

appropriate real world graph model which produced a power law degree distribution.

The authors of [17] provide a heuristic argument that the power law coefficient for

the PA graph is 3. A precise definition of the PA model was given by Bollobás et al.

in [30] along with a rigorous proof that the power law coefficient is 3.

The original PA model has 2 parameters: the number of vertices n, and the

number of edges added in each step d. For the PA model, we can either start with a

small connected graph or a single vertex with d loops. In Chapter 2, for computing

expected subgraph counts in the PA model, we will start with a single vertex with
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d loops. In Chapter 3, for our model-selection experiment, we start with a small

random graph. Most papers consider an initial vertex with d loops and we describe

the PA model for this case.

In the PA model, we iteratively form a graph Gn by adding a vertex vn to Gn−1

and forming d edges from vn to d i.i.d chosen vertices in Gn−1. The endpoint vi of

each edge is chosen according to the distribution

Pr(i = s) =
degn−1(vs)

2d(n − 1)
if 1 ≤ s ≤ n − 1. (1.5)

Note that it is possible that vi is chosen more than once in the same time step. In

this case, there are multiple edges from vn to vi. New vertices select there neighbours

preferentially by picking vertices with a probability proportional to their degree. We

denote the PA model with parameters n and d as PA(n, d). In general, the PA model

does not generate simple graphs as multiple edges are possible. However, we consider

the PA model to generate simple graphs by removing multiple edges after generating

the graph.

Many papers [59, 41, 94, 95, 58, 57] consider variations of the original PA mod-

els. The motivation behind these generalization is to create a preferential attachment

model with a tunable power law degree distribution coefficient. We consider a gener-

alized version of the original PA model from [59] where vertices are given an initial

attractiveness parameter α > 0 so that Pr(i = s) ∝ degn−1(vs) + α. The generalized

PA model denoted by PA(n, d, α) is formed in precisely the same way as in [30] except

the probability that an endpoint vi is chosen as an endpoint of an edge from vn is

Pr(i = s) =
degn−1(vs) + α

(2d + α)(n − 1)
if 1 ≤ s ≤ n − 1. (1.6)

The generalized PA model allows us to tune the power law coefficient. The follow-

ing result in [30] shows the PA(n, d) has a power law degree distribution for degree
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k = 0, 1, . . . , n
1
15 with coefficient 3.

Theorem 1.5.2 Consider the original preferential attachment model PA(n, d) and

let Nk,n be the number of vertices of degree k at time n. Let

αk,d =
2d(d + 1)

(k + d)(k + d + 1)(k + d + 2)
.

Then for any fixed ε > 0 a.a.s.

(1 − ε)αk,d ≤ Nk,n

n
≤ (1 + ε)αk,d

for 0 ≤ k ≤ n
1
15 .

In [94], it is shown that PA(n, d, α) has a power law degree distribution with

power law coefficient 3 + α.

1.5.3 Copy and Duplication Models

There have been many different Copy models, sometimes called Duplication models,

which have been suggested to model the growth of the web graph and biological

networks over the years [81, 86, 84, 17, 52, 105, 32]. The first copy models appeared

as models for the web graph [81, 86]. These models differ in several ways, with

the underlaying graph being directed in some [81, 86, 84] and undirected in others

[105, 52, 17, 32]. Another major difference is that in some models, a fixed number

of edges are added in each step [81, 86] and in others a random number of edges are

added in each step [105, 52, 17, 84, 32].

We are going to study a version of the copy model studied in [17] and [32] which

gives a more general model of those studied in [105, 52]. This model is an undirected

model. We also study the directed version of the model we describe. It will be

necessary to include an additional step in the directed case as we will describe later.
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Start with an initial connected graph Gn0 on n0 vertices. In each time step n > n0,

a new vertex vn is added to Gn−1. Edge formation occurs in two steps. In the

copying step, a copy vertex w is selected uniformly at random from Gn−1 and each

neighbour (out-neighbour) of w is attached by an edge (directed edge) from vn with

probability p. In the directed case we add an edge from vn to w with probability

q. Note this step is necessary otherwise the in-degree of new vertices will always

be zero. Vertices with in-degree 0 can never obtain new copy edges. In the second

step, edges are added from vn to d u.a.r. selected vertices in Gn−1. We will denote

the undirected copy graph with parameters n, p, d, Gn0 as Copy(n, p, d, Gn0) and the

directed copy model with parameters n, p, q, d, Gn0 as DCopy(n, p, q, d, Gn0). We call

the special case where d = 0 the pure copy model and denote the undirected and

directed versions by Copy(n, p,Gn0) and DCopy(n, p, q, Gn0) respectively. The pure

directed copy model is studied in [84] and it is shown that DCopy(n, 1, 1, Gn0) has

a power law degree distribution with coefficient 2, while it is shown in [17] that the

undirected pure copy model does not have a power law degree distribution. However,

it is shown that if d > 0, the Copy(n, p, d, Gn0) does generate a power law degree

distribution. The following result is proved in [22] and will be used in this thesis so

we include it below.

Theorem 1.5.3 Let Gn = Copy(n, p, d, Gn0) where d > 0. Let Nk,n be the number

of vertices of degree k in Gn. Then for some constant c we can write,

E(Nk,n)

n
= (1 + O(

1

k
))ck−γ,

where γ is the largest solution to the equation 1 = pγ − p + pγ−1.

In Chapter 2, for the undirected copy model, we also consider the case where

p = 0 and d > 0. This graph is called the uniform attachment graph and is denoted

by UA(n, d).
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1.5.4 Random Geometric Graphs

In the random geometric graph (RGG) model, n vertices X1, X2, . . . , Xn are placed

in a metric space (S, d) according to some probability density function. An edge is

placed between two vertices Xi, Xj if d(Xi, Xj) < r. It is most common and will be

the case in this thesis, that the vertices are placed uniformly at random in the space.

An extensive survey of the random geometric graph can be found in the book [108].

We consider a slight variation of the RGG in which vertices within the specified

threshold r are joined by an edge with probability 0 < p ≤ 1. This version is

sometimes called the percolated random geometric graph. We will denote the RGG in

the metric space (S, d), with n vertices, threshold r ∈ (0, 1) and probability p ∈ (0, 1]

as Geo(S, d, n, r, p). In this thesis we will mostly consider the metric space ([0, 1]t, d∞)

where d∞ is the infinity norm induced by the torus metric. The use of the torus metric

results in each position in [0, 1]t being identical. The use of the torus metric simplifies

the calculations in Chapter 2. The use of the torus metric is also justifiable from a

modelling perspective if there is no inherit advantage in one location over any other.

A similar RGG identical to this one but using the Euclidean metric is studied in

[13, 14, 15, 98].

The RGG has been used as a model for PPI networks [110, 54], wireless ad-hoc

networks [127] and virus spreading [75]. The model has a Poisson degree distribu-

tion [108] which might be viewed as a disadvantage in modelling complex networks.

Furthermore, small values for the threshold r makes it impossible for vertices which

are far apart in the space to be connected. As a result, RGGs tend to have larger

average path lengths as compared to our other selected models. However, the work

of Prẑulj in [110, 54] argues that RGG’s are good models for PPI networks because

of their ability to replicate the graphlet structure of these networks. In Chapter 3 we

determine whether or not RGG’s are also good at replicating the graphlet structure



33

of Facebook networks.

We review the metric spaces we will use for the RGG in this thesis. We use

([0, 1]t, d) for t ≥ 1 with several different distance functions d. The Euclidean

distance between two points x, y ∈ [0, 1]t where x = (xi)
t
i=1 and (yi)

t
i=1 is defined

as deuc(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xt − yt)2. We focus primarily on a

variation of the Euclidean metric which removes the boundary in [0, 1]t. We define

the torus metric in [0, 1]t as dtor(x, y) = minu∈{0,1,−1}{deuc(x, y + u)}. When using

the torus metric in [0, 1]2 we can visualize points as laying on a torus. When using

the torus metric in [0, 1] we can visualize points as laying on the circumference of a

circle. One additional metric we will use is the product metric.

Definition 1.5.4 Let (X1, d1) . . . (Xn, dn) be a sequence of metric spaces. The p-

product metric dp for 1 ≤ p < ∞ on X1 × . . . × Xn is defined as

dp((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = (d1(x1, y1)
p + d2(x2, y2)

p + . . . + dn(xn, yn)p)
1
p .

We call these metric spaces the Lp spaces. The special case where p → ∞ gives the

infinity norm defined as

d∞((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = max
i

{di(xi, yi)}.

Note that dp is the generalization of the Euclidean metric. In Section 2.6.5 we

consider the metric space ([0, 1]t, d∞) where each (Xi, di) is ([0, 1], dtor) in Definition

1.5.4.

1.5.5 Spatial Preferred Attachment Model

The Spatial Preferred Attachment model introduced in [7] was originally proposed

as a model for the web graph. In the model, vertices are placed independently and
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uniformly at random into [0, 1]k. The distance between two vertices is determined

using the torus metric.

The model generates a sequence of directed graphs (Gt)
n
t=1. At time t, a new

node vt is added uniformly at random into the space. Each previous node vi has an

influence region at time t which has area

A(vi, t) =
A1deg−

t (vi) + A2

t
,

where A1 and A2 are constants. The new node vt forms a directed edge from vt

to vi with probability p for each vi such that vt ∈ A(vi, t − 1). In words, an edge

forms from vt to vi with probability p only if vt is placed in vi’s influence region

at time t. The dependence of A(vi, t) on deg−1
t (vi) implies that the SPA model

implicitly incorporates the preferential attachment mechanism by allowing vertices

with higher in-degree to accumulate more neighbours. We will denote a SPA graph of

size n generated with parameter n, k, p, A1, A2 as SPA(n, k, p, A1, A2). The allowable

ranges for the parameters are 0 ≤ pA1 ≤ 1 and A2 ≥ 0. We will typically consider

the 2D case so we will suppress the t in the notation when it is clear we are in 2D.

The authors show in [7] that with high probability the SPA model generates an

in-degree distribution which has a power law coefficient of 1 + 1
pA1

.

Theorem 1.5.5 ([7]) Consider SPA(n, t, p, A1, A2). Then for any k ≥ 0,

E(Nk,n) = (1 + o(1))ckn

where c0 = 1
1+pA2

and for k > 0, ck = (1 + o(1))ck
−(1+ 1

pA1
)
. Let kf = kf (n) =

( n
log8(n)

)
pA1

4pA1+2 . Then for k = 0, . . . , kf , w.e.p.,

Nk,n = (1 + o(1))ckn.
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From Theorem 1.5.5 we have that
Nk,n

n
follows a power law with coefficient 1+ 1

pA1

with concentration for all values of k = 0, 1, . . . , kf .

The presence of vertices with large influence regions leads to the possibility of

long links, implying that average path lengths in the SPA model should be smaller

than average path lenfgths in RGG’s. However, the spatial nature of the network

should lead to a clustered structure, an important property of complex networks.

This observation is verified by calculation in Chapter 2 and through experiment in

Chapter 3.



Chapter 2

Graphlet Counts in Complex Network Models

We investigate the distribution of graphlets amongst our chosen complex network

models. Specifically, we focus on the case where the model generates a graph with

a linear number of edges (dn for some constant d ∈ Z
+) and compute the expected

number of triangles, 3-paths, and 4-cycles in each of our models. We choose to focus

on the case where the models generate a linear number of edges primarily because

the edges in the models grow linearly with the size of the graph for much of their

parameter ranges. Also, the conventional wisdom in complex network analysis is

that the number of edges grows linearly with the size of the network, or equivalently,

that the average degree remains constant. There are some that disagree with this

conventional wisdom. In [89], Leskovec et al. argues that the number of edges grows

super linearly or according to a densification power law as the size of the graph

increases. In Theorem 2.1.1 in Section 2.1 we show for graphs with an expected

degree distribution with γ > 2, the number of edges grows linearly with n and when

γ ≤ 2 the number of edges grows super linearly. Analysis of complex networks has

shown that power law coefficients in both ranges are possible [8, 25]. Furthermore,

the result of Theorem 2.1.1 is for a graph whose expected degree distribution follows

the power law precisely, a requirement that is never met in complex networks. In

conclusion, it seems that perhaps both camps might be correct, but in this thesis we

focus on the linear number of edges cases.

The conclusion from our analysis is that even though some of the models share

various similar properties such as a power law degree distribution and the small

36
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world property, they generate very different frequencies of graphlets. We begin with

an overview and discussion of our results from this chapter in Section 2.1. In the

following sections, we provide the details for the proofs whose results are summarized

in Figure 2.1.

2.1 Comparing Subgraph Counts Amongst the Models

Some of our models such as the preferential and uniform attachment models al-

ways generate graphs with a linear number of edges while others only generate

a linear number of edges for a specific range of their parameters. For the pure

copy model Copy(n, p, 0, Gn0) we require that p = 1
2
. For the more general copy

model Copy(n, p, d, Gn0) we require that 0 < p < 1
2
. For the directed copy model

DCopy(n, p, q, Gn0) we need q > 0 and 0 < p < 1. For the random geometric graph

Geo([0, 1]t, d∞, n, r, p) we require that r = Θ(( 1
n
)

1
t ). For the spatial preferred attach-

ment model we require that 0 < pA1 < 1. The asymptotic growth for the number of

triangles, 3-paths and 4-cycles for these ranges are shown in Figure 2.1. Additionally

we include the coefficient of the power law in this range where applicable.

A general comment on the information contained in Figure 2.1 is that the models

generate vastly different concentrations of triangles, 3-paths and 4-cycles. These

results verify the observation in Chapter 3 that graphlets differentiate the models

very well. Also, as expected, we see that the complex network models generate

graphs which experience a much higher degree of clustering than the Random Graph.

In the Random Graph, as n → ∞, a constant number of triangles form and a linear

number of 3-paths form. As there are so few triangles as compared to 3-paths, there

is an extremely low amount of clustering present in the Random Graph.
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Model K3 P3 C4 Power Law

Max Θ(n
3
2 ) Θ(n2) Θ(n2) N/A

Min 0 0 0 N/A
ER Θ(1) Θ(n) Θ(1) x

PA, α = 0 Θ(ln(n)3) Θ(nln(n)) Θ(ln(n)4) γ = 3
PA, α > 0 Θ(ln(n)) Θ(n) ? γ ∈ (3,∞)

UA Θ(ln(n)) Θ(n) Θ(ln(n)) x

Pure Copy, p = 1
2

Θ(n
3
4 ) Θ(n

5
4 ) Θ(n

5
4 ) x

Copy, 0 < p <
√

2 − 1 Θ(n3p2
) Θ(n) Θ(n) γ ∈ (3,∞)

Copy, p =
√

2 − 1 Θ(n3p2
) Θ(nln(n)) Θ(nln(n)) γ = 3

Copy,
√

2 − 1 < p < 1
2

o(n) Θ(n4−γ) Θ(n4−γ) γ ∈ (2, 3)
DCopy, q > 0, 0 < p < 1

2
Θ(n) Θ(n) ? ?

DCopy, q > 0, p = 1
2

Θ(n) Θ(nln(n)) ? ?
DCopy, q > 0, 1

2
< p < 1 Θ(n) Θ(n2p) ? ?

GEO-tD Θ(n) Θ(n) Θ(n) x
SPA2D, 0 < pA1 < 1

2
Θ(n) Θ(n) Ω(n) γ ∈ (3,∞)

SPA2D, pA1 = 1
2

Θ(n) Θ(nln(n)) Ω(n) γ = 3
SPA2D, 1

2
< pA1 < 2

3
Θ(n) Θ(n2pA1) Ω(n) γ ∈ (2.5, 3)

SPA2D, 2
3
≤ pA1 < 1 Θ(n) Θ(n2pA1) Ω(n3pA1−1) γ ∈ (2, 2.5)

Figure 2.1: A comparison of the orders of magnitude of the expected number of
triangles, 3-paths and 4-cycles for a linear number of edges.

There are several interesting observations which follow from comparing the infor-

mation in Figure 2.1. One such observation is the effect the power law coefficient has

on the number of edges and 3-paths in a graph. The results we state in Theorems

2.1.1 and 2.1.2 are for graphs which have an expected power law degree distribu-

tion. That is, if Nk,n is the number of vertices of degree k in a graph of size n, then

E(Nk,n) = Ck−γn. Dealing with an expected power law degree distribution allows

us to smooth over some of the difficulties in defining an actual power law degree

distribution as discussed in Section 1.4.2.

Theorem 2.1.1 Let Nk,n be the number of vertices in Gn of degree k. Suppose that

Gn has an expected power law degree distribution E(Nk,n) = ck−γn and let en be the
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number of edges in Gn. Then

E(en) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
4−2γ

n3−γ + O(n) if 1 < γ < 2

c
2
nln(n) + O(n) if γ = 2

O(n) if γ > 2

Proof We have en = 1
2

∑n
i=1 degn(vi) = 1

2

∑n−1
k=1 kNk,n. Now taking expectation

we can write E(en) = 1
2

∑n−1
k=1 kE(Nk,n) = cn

2

∑n−1
k=1 k1−γ. Using Lemma 1.3.6 to

approximate this sum, we have three regions for our solution: 1 < γ < 2, γ = 2, and

γ > 2.

Case 1: 1 < γ < 2 Using Lemma 1.3.6 we have,

E(en) =
cn

2

n−1∑
k=1

k1−γ

=
cn

2

( ∫ n

1

k1−γdk + O(1)
)

=
cn

2
[
n2−γ

2 − γ
+ O(1)]

=
c

4 − 2γ
n3−γ + O(n).

Case 2: γ = 2 Using Lemma 1.3.6 we have,

E(en) =
cn

2

n−1∑
k=1

k−1

=
cn

2

( ∫ n

1

k−1dk + O(1)
)

=
cn

2
[ln(n) + O(1)]

=
c

2
nln(n) + O(n)
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Case 3: γ > 2 Using Lemma 1.3.6 we have,

E(en) =
cn

2

n−1∑
k=1

k1−γ

=
cn

2

( ∫ n

1

k1−γdk + O(1)
)

=
cn

2
[
n2−γ

2 − γ
+ O(1)]

=
c

4 − 2γ
n3−γ + O(n)

= O(n).

Note that if γ > 2 then n > n3−γ. �

In Theorem 2.1.1, the graph G is undirected. An equivalent theorem for directed

graphs with an expected power law in or out degree distribution can be obtained

by removing the factor of 1
2

from
∑n

i=1 degn(vi). In either case, if the power law

coefficient is greater than two, we have a linear number of edges.

Using a similar proof as the one in Theorem 2.1.1, we can show that the power

law coefficient also dictates the number of induced triangles and 3-paths.

Theorem 2.1.2 Let Gn be a graph on n vertices with an expected degree distribution

satisfying E(Nk,n) = ck−γn and let Xn = ind(P3, Gn) and Yn = ind(K3, Gn).

E(Xn) + 3E(Yn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
6−2γ

n4−γ + O(n) if 2 < γ < 3

c
2
nln(n) + O(n) if γ = 3

O(n) if γ > 3

Proof Recall the relation Xn + 3Yn =
∑n

i=1

(
deg(vi)

2

)
. Simplifying this we can obtain

Xn + 3Yn = 1
2

∑n−1
k=1 k2Nk,n − en. Applying expectation we obtain E(Xn) + 3E(Yn) =

cn
2

∑n−1
k=1 k2−γ − E(en). We know E(en) from Theorem 2.1.1. What needs to be
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computed is
∑

k k2−γ. Using Lemma 1.3.6 to approximate this sum, we have three

regions for our solution: 2 < γ < 3, γ = 3, and γ > 3.

Case 1: 2 < γ < 3 Using Lemma 1.3.6 we can approximate cn
2

∑n−1
k=1 k2−γ as

cn

2

n−1∑
k=1

k2−γ =
cn

2

( ∫ n

1

k2−γdk + O(1)
)

=
cn

2
[
n3−γ

3 − γ
+ O(1)]

=
c

6 − 2γ
n4−γ + O(n).

From Theorem 2.1.1 we have that E(en) = O(n). Combining this with the

above gives E(Xn) + 3E(Yn) = c
6−2γ

n4−γ + O(n).

Case 2: γ = 3 Using Lemma 1.3.6 we can approximate cn
2

∑n−1
k=1 k−1 as

cn

2

n−1∑
k=1

k−1 =
cn

2

( ∫ n

1

k−1dk + O(1)
)

=
cn

2
[ln(n) + O(1)]

=
c

2
nln(n) + O(n)

From Theorem 2.1.1 we have that E(en) = O(n) when γ = 3. Combining this

with the above gives E(Xn) + 3E(Yn) = c
2
nln(n) + O(n).

Case 3: γ > 3 Using Lemma 1.3.6 we can approximate cn
2

∑n−1
k=1 k2−γ as

cn

2

n−1∑
k=1

k2−γ =
cn

2

( ∫ n

1

k2−γdk + O(1)
)
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=
cn

2
[
n3−γ

3 − γ
+ O(1)]

=
c

6 − 2γ
n4−γ + O(n)

= O(n).

Note that if γ > 3 then n > n4−γ. From Theorem 2.1.1 we have that E(en) =

O(n) when γ > 3. Combining this with the above gives E(Xn)+3E(Yn) = O(n).

�

There is also a directed version of Theorem 2.1.2. We will state the directed result

in terms of an expected in-degree distribution which is a power law. In this case we

write
∑n

i=1

(
deg−(vi)

2

)
as the sum of directed 3-paths and directed triangles. In this

case, not every directed 3-path or triangle would be counted, but only those with a

vertex with in-degree two. If we only allow at most one edge between vertices and do

not allow bi-directional edges then there is only one directed 3-path and one directed

triangle which have a vertex of in-degree 2. Below we show all the simple directed

triangles and 3-paths.

vi

vj

vk

K1
3

vi

vj

vk

K2
3

vi vj vk

P 1
3

vi vj vk

P 2
3

vi vj vk

P 3
3
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Theorem 2.1.3 Let N−
k,n be the number of vertices with in-degree k in Gn. Suppose

Gn is a graph on n vertices whose in-degree distribution satisfies E(N−
k,n) = ck−γn

and let Xn = ind(P 3
3 , Gn) and Yn = ind(K1

3 , Gn).

E(Xn) + E(Yn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
6−2γ

n4−γ + O(n) if 2 < γ < 3

c
2
nln(n) + O(n) if γ = 3

O(n) if γ > 3

Proof The proof proceeds in an identical manner as the proof of Theorem 2.1.2

except that we write Xn + Yn =
∑n

i=1

(
deg−n (vi)

2

)
instead of Xn + 3Yn =

∑n
i=1

(
degn(vi)

2

)
.

�

In Figure 2.1 on 38 we have three models which generate graphs with a power

law coefficient equal to 3: the original PA model, the undirected Copy model with

p =
√

2 − 1 ∼ 0.4142 and d > 0, and the SPA model with pA1 = 1
2
. Note that

the SPA model has an in-degree distribution which is a power law. From Theorem

2.1.2, all three models asymptotically have the same number of 3-paths up to the

power law constant c. What is interesting is that each of these models displays a

different level of clustering. The original PA model displays the least clustering as

it generates Θ(ln(n)3) triangles. The Copy model generates Θ(nx) triangles where

x ∼ 0.51, which is far more than the PA model. The SPA model generates the most

with Θ(n) triangles. The SPA model is the most clustered in this case. Its interesting

that graphs with a similar degree distribution can generate vastly differing clustered

structure. The number of 4-cycles in each of these models are also vastly different.

The PA model has the least with Θ(ln(n)4) followed by the SPA model with Θ(n)

and the Copy model has the most with at least Ω(nln(n)). The copying mechanism

is what is responsible for the large number of 4-cycles in the Copy model. As is

described in Theorem 2.5.18 on 103, a new 4-cycle is formed at time n + 1 for every
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3-path which is copied at time n+1, which is why the number of 4-cycles is bounded

below by the number of 3-paths in this case.

The undirected Copy model with
√

2 − 1 < p < 1
2

and d > 0 and the SPA model

with 1
2

< pA1 < 1 also generate graphs with a power law in-degree distribution with

γ ∈ (2, 3). In Figure 2.1 and as a consequence of Theorem 2.1.2, both models have the

Θ(n4−γ) 3-paths. Note that in the Copy model the power law coefficient runs from 2

to 3 as p goes from 1
2

to
√

2− 1 and in the SPA model the power law coefficient runs

from 2 to 3 as pA1 runs from 1
2

to 1. Again, the SPA model is the more clustered

of the two models generating Θ(n) triangles while the Copy model generates o(n)

triangles. Unlike the γ = 3 case, the Copy model and SPA model generate the same

number of 4-cycles when γ ∈ (2, 3). From Figure 2.1, both generate Ω(nx) 4-cycles

with x ∈ (1, 2).

The PA model with α > 0, the Copy model with 0 < p <
√

2 − 1, and the SPA

model with 0 < pA1 < 1
2

all generate power law degree distributions with γ ∈ (3,∞).

From Figure 2.1 and as a consequence of Theorem 2.1.2, all three models generate

O(n) 3-paths. The PA model is the least clustered generating O(ln(n)) triangles.

The copy model has significantly more with Θ(nx) triangles where x ∈ (0, .51). The

SPA model is the most clustered with Θ(n) triangles. The Copy model and the SPA

both generate O(n) 4-cycles in this range.

The most important take away from our discussion above, is that the power law

coefficient determines the number of 3-paths but generally gives no indication of the

number of triangles present in the graph. The SPA model is by far the most clustered

of the 3 models we study which generate power law degree distributions. The spatial

nature of the SPA model is without a doubt the reason for the clustered structure of

the model. Note that for 0 < pA1 < 1
2
, from Figure 2.1, we see that the SPA model

and the RGG both generate O(n) 3-paths, triangles and 4-cycles. This indicates

that for values of pA1 < 1
2
, the spatial mechanism of the SPA model is perhaps more
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dominant than the preferential attachment mechanism while for p ≥ 1
2

the preferential

attachment mechanism is the more dominant of the two.

It is also interesting to compare the PA model and the UA model. In both models,

a new vertex vn is added at time n and d edges are added from vn to already present

vertices. In the PA model, the endpoints of these edges are chosen preferentially so

that vertices of higher degree are more likely to be picked. In the UA model, the

endpoints of these edges are chosen uniformly at random. Comparing the number

of triangles generated in these models in Figure 2.1, we see that the original PA

model generates Θ(ln(n)3) triangles while the UA model generates Θ(ln(n)) triangles.

We should not be surprised that preferential attachment leads to a more clustered

structure as compared to uniform attachment. It is interesting to note that once

we distort the preferential mechanism even slightly in PA(n, d, α), the number of

triangles asymptotically grows as Θ(ln(n)) which is the same order of growth as the

uniform attachment model. You might have expected that the number of triangles

in PA(n, d, α) would have reduced gradually to Θ(ln(n)) as α increased as increasing

values of α have a greater distortion on the preferential attachment mechanism in

PA(n, d, α). It turns out not to be the case. The generalized PA model however does

maintain a power law degree distribution while the UA model has a Poisson degree

distribution [30].

2.2 Maximum and Minimum Subgraph Counts

To supplement the comparison of the subgraph counts for our selected models we

include the maximum and minimum number of copies of these subgraphs. Specifically,

we are interested in finding the maximum and minimum number of triangles, 3-paths

and 4-cycles which can appear in n- vertex graphs with dn edges for some positive

constant d ∈ Z
+.
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2.2.1 Maximizing the Number of Triangles and 3-Paths Given a Linear

Number of Edges

Recall the relation ind(P3, G) + 3ind(K3, G) =
∑

v∈V (G)

(
deg(v)

2

)
. We can write,

ind(P3, G) + 3ind(K3, G) =
∑

v∈V (G)

(
deg(v)

2

)

=
∑

v∈V (G)

deg(v)(deg(v) − 1)

2

≤
∑

v∈V (G)

deg(v)2

2
.

Using this, we can give an upper bound for the maximum number of triangles

and 3-paths by considering the maximum value of
∑

v∈V (G) deg(v)2. The problem

of maximizing
∑

v∈V (G) deg(v)2 given G with n vertices and m edges was done by

Ahlswede and Katan in [5].

Theorem 2.2.1 ([5]) Let G be a graph with n vertices and m edges. The graph G

which maximizes
∑

v∈V (G)

(
deg(v)

2

)
is the quasi-star or the quasi-complete graph. Further-

more, if 0 ≤ m < 1
2

(
n
2

)
− n

2
then G is the quasi-star and if 1

2

(
n
2

)
+ n

2
< m ≤

(
n
2

)
then

G is the quasi-complete graph.

Let k and j be the unique integers such that m =
(

k
2

)
+ j for 0 ≤ j ≤ k − 1. The

quasi-complete graph on n vertices and m edges denoted by QC(n, m) is formed

by creating a k-clique and one vertex of degree j whose endpoints all lie within the

k-clique. In other words, given n vertices and m edges, the quasi-complete graph

is formed by making the largest possible k-clique possible and taking the remaining

edges all incident to one vertex outside the clique while making the endpoint inside

the clique. It is not possible to have more than k−1 edges not in the clique, otherwise

a clique of size k + 1 can be formed. The remaining n − k − 1 vertices are isolated.



47

Figure 2.2: QC(7, 8) and QS(7, 8)

Let c and j be the unique integers so that m = c(n − 1) −
(

c
2

)
+ j where 0 ≤ j <

n − c − 1. The quasi-star graph on n vertices and m edges denoted by QS(n, m)

is formed by creating c universal vertices and adding the remaining j edges incident

to any one non-universal vertex. In other words, given n vertices and m edges, the

quasi star graph is formed by creating the maximum number of universal vertices. As

stated, the number of edges in the quasi-star graph is m = c(n − 1) −
(

c
2

)
+ j where

0 ≤ j < n − c − 1. Counting the edges, we get c(n − 1) edges incident to a universal

vertex, but we count each edge between universal vertices twice so we subtract
(

c
2

)
.

The number of edges left over can’t exceed n − c − 2 otherwise another universal

vertex would be created. It is interesting to note that the QS(n, m) is isomorphic to

the complement of QC(n,
(

n
2

)
− m). We show examples of QC(7, 8) and QS(7, 8) in

Figure 2.2.

Since we are only interested in graphs with dn edges, from Theorem 2.2.1, the

quasi-star is the graph which maximizes
∑

v∈V (G) deg(v). It is shown in [126] that

the maximum number of triangles in a graph with n vertices and m edges occurs in

QC(n, m). Using this result we can determine the maximum number of triangles in

a graph with dn edges.

Theorem 2.2.2 Let G be a graph with n vertices and m = nd edges for some integer

d. Then the maximum number of triangles in such a graph is (2d)
3
2

6
n

3
2 + O(n).
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Proof The result of [126] implies that the maximum number of triangles occurs in

QC(n, nd). Recall that in QC(n, m) we can write m =
(

k
2

)
+ j for 0 ≤ j ≤ k−1. It is

easy to count the number of triangles in QC(n, m) is
(

k
3

)
+

(
j
2

)
: each set of 3 vertices

in the k-clique give a triangle and each pair of the j extra edges gives a triangle. To

determine the number of triangles in our case we must compute the value of k. To

this end we set nd =
(

k
2

)
+ j. We can express k =

√
2(dn − j) + O(1). To show this

we found upper and lower bounds for k. For the lower bound k2

2
≥

(
k
2

)
= dn − j

implying that k ≥
√

2(dn − j). For the upper bound (k−1)2

2
≤

(
k
2

)
= dn− j implying

that k ≤
√

2(dn − j) + 1.

Using the fact that j = O(k) we have,

ind(K3, QC(n, m)) =

(
k

3

)
+

(
j

2

)

=
k3

6
+ O(k2)

=
(
√

2(nd − j) + O(1))3

6
+ O((

√
2(nd − j) + 1)2)

= 2
3
2
((nd − j)

3
2 + O(n))

6
+ O(n)

=
(2d)

3
2

6
n

3
2 + O(n).

�

For the maximum number of 3-paths we use the upper bound of 1
2

∑
v∈V (G) deg(v)2.

We can write ind(P3, G) + 3ind(K3, G) = 1
2

∑
v∈V (G) deg(v)2. Since we are only in-

terested in the case where G has a linear number of edges, we know from [5] that∑
v∈V (G) deg(v)2 is maximized when G = QS(n, m). Therefore, an upper bound can

be obtained by summing over the degrees squared in QS(n, m). To obtain a lower

bound, we simply count the number of 3-paths in QS(n, m).
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Theorem 2.2.3 Let G be a graph with n vertices and m = nd edges for some positive

integer d such that n >
(

d
2

)
+ d + 1. Then the maximum number of 3-paths in such a

graph is d
2
n2 + O(n).

Proof To get the result we will establish a lower and an upper bound for the maxi-

mum number of 3-paths in a graph. Let G be a graph with n vertices and dn edges

which achieves the maximum number of 3-paths. For the upper bound we observe

that

ind(P3, G) ≤ 1

2

∑
v∈V (G)

deg(v)2 − 3ind(K3, Gn)

≤ 1

2

∑
v∈V (G)

deg(v)2

≤ 1

2

∑
v∈V (QS(n,nd))

deg(v)2.

Recall that in QS(n, m) we can write m = c(n−1)−
(

c
2

)
+ j for 0 ≤ j < n− c−1.

There are c vertices of degree n − 1, j vertices of degree c + 1, n − c − j − 1 vertices

of degree c and one vertex of degree j + c.

One vertex of degree j and n − c − 1 vertices of degree c. Therefore we have

that 1
2

∑
v∈QS(n,m) deg(v)2 = c(n−1)2

2
+ (n−c−j−1)c2

2
+ j (c+1)2

2
+ (j+c)2

2
. To determine the

appropriate parameters in the case m = dn we set dn = c(n − 1) −
(

c
2

)
+ j. Observe

that if n is large enough than we will always have c = d and j = d +
(

d
2

)
. Suppose

that c = d. Than we have n− 1 + n− 2 + . . . + n− (d− 1) = dn−
(

d
2

)
edges incident

to our d isolated vertices. Therefore, we have j =
(

d
2

)
remaining edges. Therefore,

we must have
(

d
2

)
< n − d − 1 which implies that n >

(
d
2

)
+ d + 1 which is always

possible as d is fixed. Therefore in QS(n, dn) with n >
(

d
2

)
+ d + 1, we have c = j

and j =
(

d
2

)
+ d.
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1

2

∑
v∈QS(n,nd)

deg(v)2 =
d(n − 1)2

2
+

(n − 2d −
(

d
2

)
− 1)d2

2
+ (

(
d

2

)
+ d)

(d + 1)2

2

+
2d +

(
d
2

)
2

=
d

2
n2 + O(n).

For the lower bound we count the number of 3-paths in QS(n, nd). Observe that

if G is the graph with nd edges which has the maximum number of 3-paths then it

follows that ind(P3, QS(n, nd)) ≤ ind(P3, G). We first observe that if j = 0, then

each universal vertex along with any pair of the n − c non-universal vertices induces

a 3-path giving c
(

n−c
2

)
3-paths. If j > 0, then each additional edge added destroys

exactly c 3-paths. Any pair of the j extra edges forms a 3-path so that
(

j
2

)
3-paths are

created. Overall we have that ind(P3, QS(n, m)) = c
(

n−c
2

)
− jc +

(
j
2

)
. When m = dn

and c = d and j =
(

d
2

)
+ d we have

ind(P3, QS(n, nd)) = d

(
n − d

2

)
− (

(
d

2

)
+ d)d +

((
d
2

)
+ d

2

)

= d
(n − d)(n − d + 1)

2
+ O(1)

=
d

2
n2 + O(n).

Since the upper and lower bounds have the same order, we conclude that the

maximum number of 3-paths in a graph with dn edges with n >
(

d
2

)
+ d + 1 is

d
2
n2 + O(n). �
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2.2.2 Minimum Number of Triangles and 3-Paths Given a Linear

Number of Edges

To determine the minimum number of triangles in a graph with n vertices and m = dn

vertices we consider Turán’s Theorem [121].

Theorem 2.2.4 (Turán’s Theorem) Let G be a graph without a copy of Kr+1.

Then G can have at most (1 − 1
r
)n2

2
edges.

The graph which is Kr+1-free with the maximum number of edges is called the

Turán graph T (n, r). In the case of K3, the Turán graph is Kn
2

, n
2

if n is even and

is K�n
2
�,�n

2
�+1 if n is odd. If n is even, then T (n, 3) has n2

4
edges and if n is odd,

then T (n, 3) has (n−1)(n+1)
4

. In the next result we argue that the minimum number of

triangles in a graph with dn such that n ≥ 4d is 0.

Theorem 2.2.5 If d ∈ Z
+ and n ≥ 4d then the minimum number of triangles in a

graph G ∈ Gn,dn is 0.

Proof To create a triangle free graph we follow the procedure of Turán and split the

vertex set into two sets of roughly equal size and proceed to create a bipartite graph.

Suppose that n is even. Then by Turán’s Theorem, as long as dn ≤ n2

4
, we are able

to place edges in a bipartite graph with both partition sets containing n
2

vertices,

without forming a triangle. Thus if n ≥ 4d this is possible. Now suppose n is odd.

Then by Turán’s Theorem, as long as dn ≤ (n−1)(n+1)
2

, we are able to place edges in

a bipartite graph with partition sets of size n−1
2

and n+1
2

without forming a triangle.

In this case, we must have that n ≥ 4d − 1
n
≥ 4d.

�

In this next theorem we argue that the minimum number of 3-paths in a graph

with dn edges tends to 0 as n → ∞.
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Theorem 2.2.6 For d ∈ Z
+, for sufficiently large n, the minimum number of 3-paths

in a graph G ∈ Gn,dn is 0.

Proof Consider the following construction which is similar in nature to the quasi-

complete graph. We take our dn edges and form the largest possible k-clique. With

the remaining j = nd −
(

k
2

)
edges we add each edge as an isolated K2 component.

This may not be possible for every n and dn but we argue that for large enough n

it is possible. We have nd =
(

k
2

)
+ j for 0 ≤ j < k where k =

√
2(nd − j) + O(1).

Therefore we have j = O(k) = O(
√

n) left over edges to distribute amongst n − k =

n − O(
√

n) = O(n) vertices. �

2.2.3 Maximum and Minimum Number of 4-Cycles Given a Linear

Number of Edges

Theorem 2.2.7 For d ∈ Z
+ and n ≥ 4d, the maximum number of 4-cycles in a

graph G ∈ Gn,dn is (1 + o(1))d2

4
n2.

Proof For the upper bound, we observe that each pair of independent edges con-

tributes to at most one 4-cycle. Each 4-cycle contains exactly two pairs of indepen-

dent edges. Therefore two times the number of 4-cycles is less than or equal to the

number of pairs of independent edges, which is less than or equal to the number of

pairs of edges. We can write ind(C4, G) ≤ 1
2

(
dn
2

)
= (dn)2

4
− dn

4
.

For the lower bound, we count the number of 4-cycles in the complete bipartite

graph Kt,t. This graph has t2 edges. Therefore the size of each bipartition set is

t = �
√

dn�. In this graph, each pair of independent edges forms exactly one 4 cycle.

There are exactly
(

t2

2

)
− t

(
t
2

)
= t4

2
+ O(t3) pairs of independent edges. If we count

the number of 4-cycles by pairs of independent edges than each 4-cycle gets counted

twice. Therefore ind(C4, Kt,t) = t4

4
+ O(t3). For a linear number of edges we have

ind(C4, G) ≥ (�
√

dn�)4
4

+ O((
√

dn)3) = d2

4
n2 + O(n

3
2 ).
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Combining the upper and lower bounds we have a maximum number of 4-cycles

of (1 + o(1))d2

4
n2. �

For the minimum number of 4-cycles we note that each 4-cycle contains 4 induced

3-paths. From Theorem 2.2.6 we can conclude that asymptotically the minimum

number of 4-cycles in a graph with dn edges is 0.

2.3 Erdős-Rényi Model

Though we do not consider the Random Graph to be a suitable model for complex

networks, it is important as a point of comparison, to give the subgraph counts for

this model. A formula for counting the expected induced subgraphs in ER(n, p) was

given by Bollobás in [27].

Theorem 2.3.1 ([27]) Let Gn = ER(n, p) and let H be a graph with k ≤ n vertices

and m edges. If Xn = ind(H,Gn) then,

E(Xn) =
|H|!

|Aut(H)|p
m(1 − p)(

k
2)−m

(
n

k

)
. (2.1)

With Equation 2.1 we can compute the expected triangle, 3-path and 4-cycle

counts in ER(n, p) with dn edges. We know that the expected number of edges in

ER(n, p) is p
(

n
2

)
. To determine the value of p which gives a linear number of edges

we solve nd = p
(

n
2

)
to get p = 2d

n−1
.

Theorem 2.3.2 Let Gn = ER(n, 2d
n−1

).

H E(ind(H,Gn))

K3
4
3
d3 + O( 1

n
)

P3 2d2n + O(1)

C4 2d4 + O( 1
n
)
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Proof From Equation 2.1 since |Aut(K3)| = 6, we have E(ind(K3, Gn)) = p3
(

n
3

)
.

Evaluating at p = 2d
n−1

we get,

E(ind(K3, Gn)) = (
2d

n − 1
)3(

n3

6
+ O(n2))

=
4

3
d3 + O(

1

n
)

From Equation 2.1 since |Aut(P3)| = 2, we have E(ind(P3, Gn)) = 3p2(1 − p)
(

n
3

)
.

Evaluating at p = 2d
n−1

we get,

E(ind(P3, Gn)) = 3(
2d

n − 1
)2(1 − 2d

n − 1
)(

n3

6
+ O(n2))

= 2d2n + O(1)

From Equation 2.1 since |Aut(C4)| = 8, we have E(ind(C4, Gn)) = 3p4(1−p)2
(

n
4

)
.

Evaluating at p = 2d
n−1

we get,

E(ind(C4, Gn)) = 3(
2d

n − 1
)4(1 − 2d

n − 1
)2(

n4

24
+ O(n3))

= 2d4 + O(
1

n
)

�

2.4 Preferential Attachment Model

The expected number of injective subgraphs in the original PA model was computed

by Bollobás and Riordan in [116] and in the generalized PA model by Eggemann and

Noble in [59]. In both these papers, a general method for counting the number of
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injective copies of a subgraph is given. The goal of these papers was to compute

the injective subgraph counts of K3 and P3 so that the clustering coefficient (see

Equation 1.3) of PA(n, d, α) could be computed. We begin by summarizing these

results. We also provide a simple argument to extend the result for the number of

injective 3-paths in PA(n, d, α) to the number of induced 3-paths in PA(n, d, α). We

also introduce a modified version of the original PA model and count the number of

triangles and 4-cycles in this model. We will argue that our simplified model behaves

in a similar way as the original PA model by showing that asymptotically the growth

of the number of triangles and 3-paths coincide.

We now state the results of [116] and [59] for the expected number of injective

copies of K3 and P3. We begin with the K3 count. We state the result as the number

of induced K3’s instead of the number of injective K3’s as both quantities are the

same.

Theorem 2.4.1 ([116],[59]) Consider the preferential attachment model

Gn = PA(n, d, α) and let Xn = ind(K3, Gn). Then,

E(Xn) =

⎧⎪⎨
⎪⎩

(1 + o(1))d(d−1)(d+1)
48

ln(n)3 if α = 0(
d(d − 1) (1+α)2

α2 + d(d − 1)2 (1+α)3

α2(2+α)

)
ln(n) + O(1) if α > 0

Note that if d = 1, then no triangles are possible in the PA model. Also, one might

expect since as α → 0 the generalized PA model tends to the original PA model the

same would be so for the expected triangle counts in Theorem 2.4.1. This is not the

case and the authors of [59] admit that they see no clear reason why this is not the

case.

Frequency results are given for the number of injective 3-paths. We give results

for the original PA model and the generalized PA model separately.
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Theorem 2.4.2 ([116]) Consider Gn = PA(n, d) and let Xn = inj(P3, Gn). Then,

E(Xn) = (1 + o(1))
d(d + 1)

2
nln(n).

Furthermore, for any fixed ε > 0, the following holds a.a.s.

(1 − ε)
d(d + 1)

2
nln(n) ≤ Xn ≤ (1 + ε)

d(d + 1)

2
nln(n)

Theorem 2.4.3 ([59]) Consider Gn = PA(n, d, α) for α > 0 and let Xn = inj(P3, Gn).

Then,

E(Xn) =
(2 + 5α

2α
d2 +

2 − α

2α
d
)
n + O(n

2
2+α )

Furthermore, for any ε > 0 and γ > 0, there exists an n∗ such that for all n ≥ n∗

Pr(|Xn − E(Xn)| ≥ n
4+α
4+2α

+ε) ≤ 1

nγ
.

We now turn our attention to counting the number of induced triangles, 3-paths

and 4-cycles in the preferential attachment model. We’ve already obtained the num-

ber of induced triangles in Theorem 2.4.1 by using the results of [116] and [59] for

injective triangles. Using Lemma 1.3.2 to write ind(P3, G) = inj(P3, G)+3inj(K3, G)

we can use Theorems 2.4.2 and 2.4.3 to compute the expected 3-path count.

Theorem 2.4.4 Let Gn = PA(n, d, α) and let Xn = ind(P3, Gn). Then,

E(Xn) =

⎧⎪⎨
⎪⎩

(1 + o(1))d(d+1)
2

nln(n) if α = 0(
2+5α
2α

d2 + 2−α
2α

d
)
n + O(n

2
2+α ) if α > 0

Proof α = 0 : Using Lemma 1.3.2, Theorems 2.4.1 and 2.4.2 and linearity of expec-

tation we can write,
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E(Xn) = E(inj(P3, Gn)) − 3E(inj(K3, Gn))

= (1 + o(1))
d(d + 1)

2
nln(n) − 3(1 + o(1))

d(d − 1)(d + 1)

48
ln(n)3

= (1 + o(1))
d(d + 1)

2
nln(n)

α > 0 : Again, using Lemma 1.3.2, Theorems 2.4.1 and 2.4.3 and the linearity of

expectation we can write,

E(Xn) = E(inj(P3, Gn)) − 3E(inj(K3, Gn))

=
(2 + 5α

2α
d2 +

2 − α

2α
d
)
n + O(n

2
2+α )

− 3(
(
d(d − 1)

(1 + α)2

α2
+ d(d − 1)2 (1 + α)3

α2(2 + α)

)
ln(n) + O(1))

=
(2 + 5α

2α
d2 +

2 − α

2α
d
)
n + O(n

2
2+α )

�

The only subgraph left to be counted is the 4-cycle. The number of injective

l-cycles for l ≥ 3 in the original PA model was counted in [116].

Theorem 2.4.5 Let l ≥ 3 be fixed and consider Gn = PA(n, d) with d ≥ 2. Then,

E(inj(Cl, Gn)) = (1 + o(1))Bd,l(ln(n))l

as n → ∞ where Bd,l is a positive constant depending on d and l. Furthermore, as

d → ∞ we have Cd,l = Θ(dl).
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To compute ind(C4, Gn) we could attempt a similar approach as the one used to

count the number of induced 3-paths. Using Lemma 1.3.2 we can write inj(C4, G) =

ind(C4, G)+ ind(g7, G)+3ind(g8, G). Unfortunately such an approach would require

us to compute E(ind(g7, G)) and E(ind(g8, G)) which would be more work than

computing E(ind(C4, G)) directly. In general, counting induced subgraphs in the PA

model is not an easy task.

We propose a modified PA model in which it is easier to count the number of

4-cycles. Recall for i < n + 1 in the PA model, the probability that vn+1 selects vi

as an endpoint is proportional to degn(vi). At time n, degn(vi) is a random variable

as its value is determined by the number of edges it receives up to time n, which

depends on a random process. The purpose of this modified PA model is to make, at

time n + 1, the probability that vn+1 selects vi as an endpoint to one of its d edges

a deterministic value as opposed to a random variable. Specifically, this probability

is chosen so that the probability that vn+1 selects vi as an endpoint is proportional

to E(degn(vi)). The expected degree for a vertex in the PA model was computed in

[17], [30].

Theorem 2.4.6 The expected degree of vi at time n in PA(n, d) is given by

E(degn(vi)) = d

√
n

i
(1 + O(

1

i
))

.

Unfortunately, as stated in [30], the individual vertex degrees at time n are not

concentrated around this expectation. However, it is shown in Theorem 1.5.2 that

the number of vertices of degree k at time n is concentrated around its expected value

for k ≤ n
1
15 .

We define the modified preferential attachment model denoted by PA(n, d)

to be a graph model identical in description to the original preferential attachment
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model except that at time n, the probability that vn selects vi as an endpoint to an

edge is

Pr(i = s) =
1

2
√

s
√

n − 1
. (2.2)

Note that if the degree of each vertex vi in the PA model was equal to dn
i

at time n,

then the probability of selecting vi at time n as an endpoint for vn would be

Pr(i = s) =
degn−1(vs)

2d(n − 1)

=
1

2
√

s
√

n − 1

We have defined the modified PA model so that it behaves as the PA model would

behave if its individual degrees coincided with their expectation.

Computing the expected number of induced subgraphs of size k can be done

using a simple approach in the modified PA model. Compute the probability that an

arbitrary set of k vertices induces the subgraph, then sum over all possible sets of size

k. Using the linearity of expectation we can find the expected subgraph count. We

will use this approach to count the number of triangles and 4-cycles. From Theorem

2.4.1 we already know the number of triangles in the PA model. We recompute this

result in the modified PA model showing that, in both cases, the number of triangles

grows as Θ(ln(n)3) as n → ∞.

Before we start counting subgraphs we first compute some probabilities which we

will frequently use. For our asymptotic notation, we note that for vertices 1 ≤ i <

j < k < l ≤ n, each of the 4 indices i, j, k, l are increasing with n. We begin with the

probability that vi ∼ vj. We have
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Pr(vi ∼ vj) = 1 − Pr(vi � vj)

= 1 − (1 − 1

2
√

i
√

j − 1
)d

= 1 − (1 − d

2
√

i
√

j − 1
+ O(

1

ij
))

=
d

2

1√
i
√

j − 1
+ O(

1

ij
)

Simplifying further we could write 1√
j−1

= 1q
j(1− 1

j
)

= 1√
j
(1 − 1

j
)−

1
2 = 1√

j
+ O(1

j
).

Applying this we have 1√
i
√

j−1
= 1√

i
√

j
+ O( 1

j
√

i
). So,

Pr(vi ∼ vj) =
d

2

1√
i
√

j
+ O(

1

j
√

i
) (2.3)

Next consider the probability that there is an edge between vk and vi and between

vk and vj. For this to happen, at time k both vi and vj have to be selected at least

once as one of the d endpoints for edges from vk. Since multiple edges are allowed,

we have to consider the probability that there are t ≥ 1 edges formed to vi and s ≥ 1

edges formed to vj. We have

Pr(vk ∼ vi ∩ vk ∼ vj) =
d−1∑
t=1

(
d

t

)( 1

2
√

i
√

k − 1

)t d−t∑
s=1

(
d − t

s

)( 1

2
√

j
√

k − 1

)s

(1 − 1

2
√

i
√

k − 1
− 1

2
√

j
√

k − 1
)d−s−t

=
d(d − 1)

4

1√
i
√

j(k − 1)
(1 + O(

1√
i
√

k
− 1√

j
√

k
))

=
d(d − 1)

4

1√
i
√

j(k − 1)
+ O(

1

i
√

jk
3
2

)



61

We can simplify this further by writing 1
k−1

= 1
k

+ O( 1
k2 ). Using this we have

1√
i
√

j(k−1)
= 1√

i
√

jk
+ O( 1√

i
√

jk2 ). Therefore,

Pr(vk ∼ vi ∩ vk ∼ vj) =
d(d − 1)

4

1√
i
√

jk
+ O(

1√
i
√

jk2
+

1

i
√

jk
3
2

) (2.4)

The probabilities computed in Equations 2.3 and 2.4 are sufficient to count the

number of triangles. To count the number of 4-cycles we require three more proba-

bilities.

The first is Pr(vk ∼ vj ∩vk � vi). As multiple edges are allowed, we must account

for the possibility that there are t ≥ 1 edges to vj. We have

Pr(vk ∼ vj ∩ vk � vi) =
d∑

t=1

(
d

t

)
(

1

2
√

j
√

k − 1
)t(1 − 1

2
√

i
√

k − 1
− 1

2
√

j
√

k − 1
)d−t

=
d

2
√

j
√

k − 1
(1 + O(

1

2
√

i
√

k
+

1

2
√

j
√

k
)

=
d

2
√

j
√

k − 1
+ O(

1

k
√

i
√

j
),

Using 1√
k−1

= 1√
k

+ O( 1
k
) we can simplify to get,

Pr(vk ∼ vj ∩ vk � vi) =
d

2

1√
j
√

k
+ O(

1

k
√

j
) (2.5)

The next is the probability that there are edges from vl to vi and vj but not to

vk. Again, since there are multiple edges we account for the possibility that there are

t ≥ n edges to vi and s ≥ 1 edges to vj chosen in step l. We can write

Pr(vl ∼ vi ∩ vl ∼ vj ∩ vl � vk) =
d−1∑
t=1

(
d

t

)
(

1

2
√

j
√

l − 1
)t

d−t∑
s=1

(
d − t

s

)
(

1

2
√

i
√

l − 1
)s
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(1 − 1

2
√

k
√

l − 1
− 1

2
√

j
√

l − 1
− 1

2
√

i
√

l − 1
)d−s−t

=
d(d − 1)

4
√

i
√

j(l − 1)
(1 + O(

1√
k
√

l − 1
− 1√

j
√

l − 1

− 1√
i
√

l − 1
))

=
d(d − 1)

4
√

i
√

j(l − 1)
+ O(

1

i
√

jl
3
2

).

We can simplify this using 1
l−1

= 1
l
+ O( 1

l2
). Doing so gives us

Pr(vl ∼ vi ∩ vl ∼ vj ∩ vl � vk) =
d(d − 1)

4l
√

i
√

j
+ O(

1

l2
√

i
√

j
+

1

il
3
2

√
j
) (2.6)

Finally we consider the probability that there is no edge between vi and vj. We

write Pr(vi � vj) = (1 − 1
2
√

i
√

j
)d. This is easily simplified to

Pr(vi � vj) = 1 − O(
1√
i
√

j
) (2.7)

We have the probabilities we need and are now ready to compute the expected

number of triangles in the modified PA model.

Theorem 2.4.7 Let Gn = PA(n, d) for d ≥ 2 and let Xn = ind(K3, Gn). Then,

E(Xn) =
d2(d − 1)

48
ln(n)3 + O(ln(n)2).

Proof Consider vertices vi, vj, vk with 1 ≤ i < j < k ≤ n and let Xijk be the indicator

variable for the event that vi, vj, vk induce a K3. Since adding edges in different time

steps in the modified PA model are independent processes, we have

Pr(Xijk = 1) = Pr(vi ∼ vj)Pr(vk ∼ vj ∩ vk ∼ vi).

Using Equations 2.3 and 2.4,
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Pr(Xijk = 1) =
(d

2

1√
i
√

j
+ O(

1√
ij

)
)(d(d − 1)

4

1√
i
√

jk
+ O(

1√
i
√

jk2
+

1

i
√

jk
3
2

)
)

=
d2(d − 1)

8

1

ijk
+ O(

1

ij
3
2 k

)

Let Xn = ind(K3, Gn). By linearity of expectation we have E(Xn) =
∑n−2

i=1

∑n−1
j=i+1

∑n
k=j+1 E(Xij∑n−2

i=1

∑n−1
j=i+1

∑n
k=j+1

(
d2(d−1)

8
1

ijk
+ O( 1

ij
3
2 k

)
)
.

To solve this triple sum we use the approximation technique described in Lemma

1.3.6 to replace the sums by integrals. This is the first time in this thesis in which we

use Lemma 1.3.6 to simplify a multiple sum. For this proof we will provide all the

details of computing E(Xn). For future applications of Lemma 1.3.6, we will spare

the reader the full details of the calculations.

For the error term, we can deduce O(
∑n−2

i=1

∑n−1
j=i+1

∑n
k=j+1

1

ij
3
2 k

) = O(ln(n)2). We

have

E(Xn) =
d2(d − 1)

8

n−2∑
i=1

1

i

n−1∑
j=i+1

1

j

n∑
k=j+1

1

k
+ O(ln(n)2).

Using Lemma 1.3.6, we can write the first sum as
∑n

k=j+1
1
k

= ln(n + 1) − ln(j +

1) + O(1
j
). Using Taylor expansion ln(n + 1) = ln(n(1 + 1

n
)) = ln(n) + ln(1 + 1

n
) =

ln(n)+O( 1
n
). Therefore, this sum can be written as

∑n
k=j+1

1
k

= ln(n)− ln(j)+O(1
j
).

Plugging this back into E(Xn) we obtain

E(Xn) =
d2(d − 1)

8

n−2∑
i=1

1

i

n−1∑
j=i+1

1

j
(ln(n) − ln(j) + O(

1

j
)) + O(ln(n)2)

=
d2(d − 1)

8

n−2∑
i=1

1

i

n−1∑
j=i+1

(
ln(n)

j
− ln(j)

j
) + O(ln(n)2)
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Using Lemma 1.3.6, we can write the next sum as
∑n−1

j=i+1
ln(n)

j
− ln(j)

j
= ln(n)2

2
+

ln(1+i)2

2
− ln(n)ln(i) + O( ln(n)

i+1
). Note that

∫ ln(x)
x

dx = ln(x)2

2
. Again using the Taylor

expansion for ln(1 + i) we can write E(Xn) as

E(Xn) =
d2(d − 1)

8

n−2∑
i=1

1

i
(
ln(n)2

2
+

ln(i)2

2
− ln(n)ln(i) + O(

ln(n)

i + 1
))

+ O(ln(n)2)

=
d2(d − 1)

8

n−2∑
i=1

(
ln(n)2

2i
+

ln(i)2

2i
− ln(n)ln(i)

i
) + O(ln(n)2)

Using Lemma 1.3.6 one final time and the fact that
∫ ln(i)2

i
di = ln(i)3

3
gives

E(Xn) =
d2(d − 1)

8
(
1

2
ln(n)2ln(n − 1) +

1

6
ln(n − 1)3 − 1

2
ln(n)ln(n − 1)2)

+ O(ln(n)2)

=
d2(d − 1)

48
ln(n)3 + O(ln(n)2)

�

Comparing the number of triangles in the PA model and the modified PA model

we see that both grow as Θ(ln(n)3) as n → ∞. The coefficient of the leading terms

differ however by a factor of d(d−1)(d+1)
48

− d2(d−1)
48

= d(d−1)
48

. Calculating the expected

number of 3-paths in the modified PA model yields a leading term which grows as

Θ(nln(n)) as n → ∞ which matches the growth of the number of 3-paths in the PA

model. For the sake of brevity we will not include this calculation. We now calculate

the expected number of 4-cycles in the modified PA model.

To count the number of 4-cycles in the modified PA model we need to consider

the implicit directed nature of the PA model (older vertices select younger vertices as
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their endpoints). From this perspective, there are 3 unique ways in which a 4-cycle

can appear in the modified PA model. Note that the ages of the vertices vi, vj, vk, vl

satisfies 1 ≤ i < j < k < l ≤ n.

vk vj

vi vl vlvi

vj vk

vlvj

vkvi

C1
4 C2

4 C3
4

To compute the number of 4-cycles we count each of these 3 cases separately.

Theorem 2.4.8 Let Gn = PA(n, d) and let Xn = ind(C4, Gn). Then,

E(Xn) =
d2(9d − 1)(d − 1)

384
ln(n)4 + O(ln(n)3).

Proof Let Xn = ind(C4, Gn). Furthermore, let X i
n = ind(Ci

4, Gn) for i = 1, 2, 3.

Then Xn = X1
n + X2

n + X3
n.

Case 1: X1
n Let X1

ijkl be an indicator variable for the event that vertices vi, vj, vk, vl

with 1 ≤ i < j < k < l ≤ n induce a copy of C1
4 . Then Pr(X1

ijkl = 1) = Pr(vl ∼

vi ∩ vl ∼ vj ∩ vl � vk)Pr(vk ∼ vj ∩ vk ∼ vi)Pr(vj � vi). Using Equations (2.4,

2.6, 2.7),

Pr(X1
ijkl = 1) =

d2(d − 1)2

16

1

ijkl
+ O(

1

ijk2l
).

Using the linearity of expectation we can write
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E(X1
n) =

n−3∑
i=1

n−2∑
j=1+1

n−1∑
k=j+1

n∑
l=k+1

(d2(d − 1)2

16

1

ijkl
+ O(

1

ijk2l
)
)
.

Approximating this sum using Lemma 1.3.6 we obtain

E(X1
n) =

d2(d − 1)2

384
ln(n)4 + O(ln(n)3).

The details of the calculation above are identical in nature to the calculation

for the number of triangles in the modified PA model.

Case 2: X2
n Let X2

ijkl be an indicator variable for the event that vertices vi, vj, vk, vl

with 1 ≤ i < j < k < l ≤ n induce a copy of C2
4 . Then Pr(X2

ijkl = 1) = Pr(vl ∼

vi ∩ vl ∼ vk ∩ vl � vj)Pr(vk ∼ vj ∩ vk � vi)Pr(vj ∼ vi). Using Equations (2.4,

2.5, 2.3) we can write,

Pr(X2
ijkl = 1) =

d3(d − 1)

16

1

ijkl
+ O(

1

ij
3
2 kl

)

Using linearity of expectation we can write

E(X2
n) =

n−3∑
i=1

n−2∑
j=1+1

n−1∑
k=j+1

n∑
l=k+1

(d3(d − 1)

16

1

ijkl
+ O(

1

ij
3
2 kl

)
)
.

Using Lemma 1.3.6 to approximate this sum we obtain

E(X2
n) =

d3(d − 1)

96
ln(n)4 + O(ln(n)3).

Case 3: X3
n Let X3

ijkl be an indicator variable for the event that vertices vi, vj, vk, vl

with 1 ≤ i < j < k < l ≤ n induce a copy of C3
4 . Then Pr(X3

ijkl = 1) = Pr(vl ∼

vj ∩ vl ∼ vk ∩ vl � vi)Pr(vk ∼ vi ∩ vk � vj)Pr(vi ∼ vj). Using Equations (2.6,

2.5, 2.3) we can write
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Pr(X3
ijkl = 1) =

d3(d − 1)

16

1

ijkl
+ O(

1

ij
3
2 kl

)

This is identical to Pr(X3
ijkl = 1). Therefore we obtain E(X3

n) = d3(d−1)
96

ln(n)4+

O(ln(n)3).

Finally by linearity of expectation E(Xn) = E(X1
n) + E(X2

n) + E(X3
n). So,

E(Xn) =
d2(d − 1)2

384
ln(n)4 +

d3(d − 1)

96
ln(n)4 +

d3(d − 1)

96
ln(n)4 + O(ln(n)3)

=
d2(9d − 1)(d − 1)

384
ln(n)4 + O(ln(n)3).

�

Comparing our result to the number of injective 4-cycles given in Theorem 2.4.5,

we see that both grow asymptotically as ln(n)4.

2.5 Copy Model

Next we compute subgraph counts for our two copy models. Recall the two models we

look at are the undirected copy model Copy(n, p, d, Gn0) and the directed copy model

DCopy(n, p, q, Gn0). For the undirected copy model we consider the cases d = 0 (pure

copy model) and p = 0 (uniform attachment model) as well as the general case. When

considering subgraphs in the DCopy(n, p, q, Gn0) we treat the graph generated as an

undirected graph after its generation. That is to say, after generation we ignore the

direction of the edges.
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2.5.1 Solving Recurrence Relations

Most of the papers which introduce a copy model include a calculation for the ex-

pected number of edges which the model generates [17, 22, 84]. Each of these papers

computes this expectation by writing a recurrence relation and solving it by approxi-

mating the relation by a differential equation. Such an approach requires assumptions

on the recurrence relation that are not met (such as the number of edges changing

continuously with n). These recurrence relations can in fact be solved directly. We

outline some general solutions and techniques that we will use frequently in the re-

mainder of this section.

The Gamma function is defined for every complex z = a + ib with a > 0 by

the integral Γ(z) =
∫ ∞

0
tz−1e−tdt. For a positive integer n, we can write the Gamma

function simply as Γ(n) = (n − 1)!. For a non integer z, exact computation of Γ(z)

is very difficult. We can fortunately obtain an approximation through Stirling’s

approximation Γ(z) =
√

2π
z

( z
e
)z(1 + O(1

z
)). We will often need to use Stirling’s

approximation to simplify the expression Γ(n+a)
Γ(n)

for a > 0 which constantly appears

in solutions to our recursive relations.

Lemma 2.5.1 If a > 0 then using Stirling’s approximation we can simplify Γ(n+a)
Γ(n)

=

(n
e
)a(1 + O( 1

n
)) and Γ(n)

Γ(n+a)
= (n

e
)−a(1 + O( 1

n
)).

Proof Let a > 0 and use Stirling’s approximation to simplify Γ(n+a)
Γ(n)

.

Γ(n + a)

Γ(n)
=

√
2π

n+a
(n+a)n+a

en+a (1 + O( 1
n+a

))√
2π
n

nn

en (1 + O( 1
n
))

=
1

ea

√
n

n + a

(n + a)n+a

nn
(1 + O(

1

n
))

=
1

ea
(n + a)a(

n + a

n
)n+a− 1

2 (1 + O(
1

n
))

=
1

ea
na(1 +

a

n
)n+2a− 1

2 (1 + O(
1

n
))
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= (
n

e
)a(1 + O(

1

n
))

In the second last step we use the Binomial series to write (1 + a
n
)n+2a− 1

2 =

(1 + O( 1
n
)) and (1 + O( 1

n
))(1 + O( 1

n
)) = (1 + O( 1

n
)).

For Γ(n)
Γ(n+a)

we write

Γ(n)

Γ(n + a)
=

1
Γ(n+a)
Γ(n)

=
1

(n
e
)a(1 + O( 1

n
))

= (
n

e
)−a(1 + O(

1

n
)).

In the above we used the fact that 1
1+O( 1

n
)

= 1 + O( 1
n
). �

The recurrence relations that appear in this section take two general forms.

Lemma 2.5.2 Let a > 0 and consider the recurrence relation Xn+1 = Xn(1 + a
n
)

starting at index n0. Then

Xn = Xn0(n0 − 1)!
Γ(n + a)

Γ(n)Γ(n0 + a)
. (2.8)

Proof Let a > 0 and consider the recursion Xn+1 = Xn(1 + a
n
). We first verify the

solution for the base case Xn0 holds. We have

Xn0 = Xn0(n0 − 1)!
Γ(n0 + a)

Γ(n0)Γ(n0 + a)

=
Xn0(n0 − 1)!

Γ(n0)

= Xn0 .
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We now verify our solution by substituting Xn = Xn0(n0 − 1)! Γ(n+a)
Γ(n)Γ(n0+a)

into the

recursion relation to get

Xn+1 = Xn(1 +
a

n
)

= Xn0(n0 − 1)!
Γ(n + a)

Γ(n)Γ(n0 + a)
(
n + a

n
)

= Xn0(n0 − 1)!
Γ(n + 1 + a)

Γ(n + 1)Γ(n0 + a)
.

Here we use the functional equation Γ(z + 1) = zΓ(z) for the Gamma function. �

If a is a positive integer then we can get an exact solution for the recursion. If a is

not an integer then we will use Stirling’s approximation to get an approximate solu-

tion. Using Lemma 2.5.1 we can write the solution in Lemma 2.5.2 as the following.

Lemma 2.5.3 For a non integer a we can write the solution of the recursive relation

in Lemma 2.5.2 as

Xn =
Xn0(n0 − 1)!

Γ(n0 + a)ea
na + O(na−1),

Proof For the proof we manipulate Xn0(n0 − 1)! Γ(n+a)
Γ(n)Γ(n0+a)

using Stirling’s approxi-

mation. Using Lemma 2.5.1 we can write

Xn =
Xn0(n0 − 1)!

Γ(n0 + a)

Γ(n + a)

Γ(n)

=
Xn0(n0 − 1)!

Γ(n0 + a)ea
na(1 + O(

1

n
))

Therefore we have Xn =
Xn0 (n0−1)!

Γ(n0+a)ea na + O(na−1). �
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The second recursive relation that occurs frequently in this section is a more

general form of the relation in Lemma 2.5.2.

Lemma 2.5.4 Let a > 0 and consider the recursive relation Xn+1 = Xn(1 + a
n
) + bn

for some sequence bn beginning at index n0. Then

Xn =
Γ(n + a)

Γ(n0 + a)Γ(n)

[( n−1∑
i=n0

bi
Γ(n0 + a)Γ(i + 1)

Γ(i + 1 + a)

)
+ Xn0(n0 − 1)!

]
.

Proof Let a > 0, bn be some sequence and consider the recursive relation Xn+1 =

Xn(1 + a
n
) + bn. We verify the solution by plugging

Xn =
Γ(n + a)

Γ(n0 + a)Γ(n)

[( n∑
i=n0

bi
Γ(n0 + a)Γ(i + 1)

Γ(i + 1 + a)

)
+ Xn0(n0 − 1)!

]

into the recursive relation to get

Xn(1 +
a

n
) + bn

=
Γ(n + a)

Γ(n0 + a)Γ(n)

[( n−1∑
i=n0

bi
Γ(n0 + a)Γ(i + 1)

Γ(i + 1 + a)

)
+ Xn0(n0 − 1)!

]
(
n + a

n
) + bn

=
Γ(n + 1 + a)

Γ(n0 + a)Γ(n + 1)

[( n−1∑
i=n0

bi
Γ(n0 + a)Γ(i + 1)

Γ(i + 1 + a)

)
+ Xn0(n0 − 1)!

]
+ bn

=
Γ(n + 1 + a)

Γ(n0 + a)Γ(n + 1)

[( n−1∑
i=n0

bi
Γ(n0 + a)Γ(i + 1)

Γ(i + 1 + a)

)
+ Xn0(n0 − 1)!

+ bn
Γ(n0 + a)Γ(n + 1)

Γ(n + a + 1)

]

=
Γ(n + 1 + a)

Γ(n0 + a)Γ(n + 1)

[( n∑
i=n0

bi
Γ(n0 + a)Γ(i + 1)

Γ(i + 1 + a)

)
+ Xn0(n0 − 1)!

]
= Xn+1

�
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We can apply Lemma 2.5.1 to simplify this expression, but it is not possible to

fully simplify the expression unless the sequence bn is known.

Lemma 2.5.5 Let a > 0 and consider the recursive relation Xn+1 = Xn(1 + a
n
) + bn

for some sequence bn beginning at index n0. Then

Xn = [na

n−1∑
i=n0

bi(
1

i
)a +

Xn0(n0 − 1)!

Γ(n0 + a)ea
na + O(na

n−1∑
i=n0

bi

ia+1
)](1 + O(

1

n
)).

Proof For a > 0 we know that Xn satisfies

Xn =
Γ(n + a)

Γ(n0 + a)Γ(n)

[ n−1∑
i=n0

bi
Γ(n0 + a)Γ(i + 1))

Γ(i + 1 + a)
+ Xn0(n0 − 1)!

]

from Lemma 2.5.4.

Using Lemma 2.5.1 we can simplify this to,

Xn =
1

Γ(n0 + a)
(
n

e
)a[

n−1∑
i=n0

Γ(n0 + a)bi(
i

e
)−a(1 + O(

1

i
)) + Xn0(n0 − 1)!](1 + O(

1

n
))

= [na

n−1∑
i=n0

bi(
1

i
)a +

Xn0(n0 − 1)!

Γ(n0 + a)ea
na + O(na

n−1∑
i=n0

bi

ia+1
)](1 + O(

1

n
))

�

2.5.2 The Undirected Pure Copy Model

For the pure copy model we simply write Copy(n, p, 0, Gn0) = Copy(n, p,Gn0). We

begin by giving the expected number of edges in Copy(n, p,Gn0). This result was

given in [17] and states that E(en) 
 n2p. We give a result that uses our recursive

relation approach and not the DE approach used in [17].

Theorem 2.5.6 ([17]) Consider the pure copy model Gn = Copy(n, p,Gn0) and let

en be the number of edges in Gn. Then
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E(en) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

en0 (n0−1)!

Γ(n0+2p)
(n

e
)2p + O(n2p−1) if 0 < p < 1, p �= 1

2

en0

n0
n if p = 1

2

en0

n0(n0−1)
n(n + 1) if p = 1

Proof Let en = ind(K2, Gn) and let N(vi, n) be the neighbourhood of a vertex vi at

time n. For w ∈ N(vi, n) let X(w, vi, n + 1) be an indicator variable for the event

that the edge from vi to w is copied by vn+1 at time n + 1. An edge w incident to

vi is copied to vn+1 with probability p when vi is selected as the copy vertex at time

n + 1. Therefore Pr(X(w, vi, n + 1) = 1) = p
n
. Using conditional expectation we can

write

E(en+1|Gn) = en + E(
n∑

i=1

∑
w∈N(vi,n)

X(w, vi, n + 1))

= en +
n∑

i=1

∑
w∈N(vi,n)

p

n

= en +
n∑

i=1

pdegn(vi)

n

= en +
2p

n
en

= en(1 +
2p

n
)

Applying expectation again gives the recursive relation E(en+1) = E(en)(1 +

2p
n

). From Lemma 2.5.2 we know the solution of this recursive relation is en =

en0 (n0−1)!

Γ(n0+2p)
Γ(n+2p)

Γ(n)
. When p = 1

2
we can write this solution as

E(en) =
en0(n0 − 1)!

Γ(n0 + 1)

Γ(n + 1)

Γ(n)

=
en0(n0 − 1)!

n0!

n!

(n − 1)!
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=
en0

n0

n

When p = 1 we can write the solution as

E(en) =
en0(n0 − 1)!

Γ(n0 + 2)

Γ(n + 2)

Γ(n)

=
en0(n0 − 1)!

(n0 + 1)!

(n + 1)!

(n − 1)!

=
en0

n0(n0 − 1)
n(n + 1)

If p is not equal to 1
2

or 1 then 2p is not an integer so we use Lemma 2.5.3 to get

E(en) =
en0(n0 − 1)!

Γ(n0 + 2p)
(
n

e
)2p + O(n2p−1).

�

Note that to get a linear number of edges in the pure copy model we must set

p = 1
2
.

It is easy to extend the approach of Theorem 2.5.6 to compute the expected

number of any clique in Copy(n, p,Gn0). In the proof of Theorem 2.5.6, an edge

can only be copied if it is incident to the copy vertex chosen. Similarly, any clique

incident to the copy vertex can be copied to form a new clique where the copy vertex

is replaced by the new vertex vn+1 if each edge incident to the copy vertex in the clique

is copied to vn+1. This is in fact the only way cliques can form in Copy(n, p,Gn0). In

particular, if the clique number of Gn0 is t, then the clique number of Copy(n, p,Gn0)

will also be t.

Theorem 2.5.7 Consider the pure copy model Gn = Copy(n, p,Gn0). Let Kt be a

clique on t vertices and let Xn = ind(Kt, Gn). Then
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E(Xn) =
Xn0(n0 − 1)!

Γ(n0 + tpt−1)etpt−1 ntpt−1

+ O(ntpt−1−1).

Proof A t-clique which is incident to vi is copied to vn+1 if vi is chosen as the copy

vertex, which occurs with probability 1
n
, and each edge in the t-clique incident to

vi is copied to vn+1, which occurs with probability pt−1. We set X(C, vi, n + 1) to

be an indicator variable for the event that the t-clique C incident to vi is copied to

vn+1. Then Pr(X(C, vi, n+1) = 1) = pt−1

n
. Now let Kt,vi,n be the set containing each

t-clique incident to vi at time n. Using conditional expectation we can write

E(Xn+1|Gn) = Xn + E(
n∑

i=1

∑
C∈Kt,vi,n

X(C, vi, n + 1))

= Xn +
n∑

i=1

∑
Kt∈Kt,vi,n

pt−1

n

= Xn +
n∑

i=1

|Kt,vi,n|
pt−1

n

= Xn +
tpt−1

n
Xn

= Xn(1 +
tpt−1

n
).

In the above
∑n

i=1 |Kt,vi,n| = tXn because each t-clique is incident to t vertices.

Applying expectation again we get E(Xn+1) = E(Xn)(1+ tpt−1

n
). The solution to this

recursive relation is given in Lemma 2.5.3 as

E(Xn) =
Xn0(n0 − 1)!

Γ(n0 + tpt−1)etpt−1 ntpt−1

+ O(ntpt−1−1).

�

Unfortunately counting subgraphs in the pure copy model is not always as straight-

forward as copying subgraphs incident to the copy vertex. To see how the process
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gets more complex let’s try counting the number of 3-paths in the pure copy model.

Let’s begin with the case p = 1. There are two different ways in which a new 3-path

can form at time n + 1. Let u be the copy vertex selected for vn+1. In the first

way, every 3-path which contains u gets copied with u being replaced by vn+1 in the

copied 3-path. In the second way, a new 3-path is formed between u, vn+1 and each

neighbour of u. Note that in this case, the neighbour of u is the vertex of degree two

in the new 3-path.

Theorem 2.5.8 Consider the pure copy model Gn = Copy(n, 1, Gn0). Let en =

ind(K2, Gn) and Xn = ind(P3, Gn). Then

E(Xn) =
( 2en0

n0(n0 − 1)(n0 + 2)
+

Xn0

n0(n0 − 1)(n0 − 2)

)
n3 + O(n2).

Proof Let Pvi,n be the set of all 3-paths which contain vi at time n. We set

X(C, vi, n + 1) to be an indicator variable for the event that a specific 3-path C

incident to vi is copied at time n + 1. Since p = 1 this event occurs if and only if vi

is selected as the copy vertex at time n + 1 so Pr(X(C, vi, n + 1) = 1) = 1
n
. Define

Y (vi, n+1) = degn(vi) if vi is chosen as the copy vertex at time n+1 and 0 otherwise.

In other words, Y (vi, n + 1) is the number of 3-paths created at time n + 1 in the

second way described above. Note that E(Y (vi, n + 1)) = degn(vi)
n

. So

E(Xn+1|Gn) = Xn + E(
n∑

i=1

∑
C∈Pvi,n

X(C, vi, n + 1) +
n∑

i=1

Y (vi, n + 1))

= Xn +
n∑

i=1

|Pvi,n|
n

+
n∑

i=1

degn(vi)

n

= Xn +
3Xn

n
+

2en

n

= Xn(1 +
3

n
) +

2en

n
.
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In the above we write
∑n

i=1 |P (vi, n)| = 3Xn since each 3-path is incident to 3

vertices. Applying expectation again and using linearity of expectation we can write,

E(Xn+1) = E(Xn)(1 +
3

n
) +

2E(en)

n

= E(Xn)(1 +
3

n
) +

2en0

n0(n0 − 1)
(n + 1).

In the above, we use Theorem 2.5.6 with p = 1, to get E(en) =
en0

n0(n0−1)
n(n + 1).

The recursive relation here takes the form of the general case considered in Lemma

2.5.4 with bn =
2en0

n0(n0−1)
(n + 1). We can write the solution as,

E(Xn) =
Γ(n + 3)

Γ(n0 + 3)Γ(n)

[( n−1∑
i=n0

2en0

n0(n0−1)
(i + 1)Γ(n0 + 3)Γ(i + 1)

Γ(i + 4)

)
+ Xn0(n0 − 1)!

]

=
(n + 2)!

Γ(n0 + 3)(n − 1)!

[( n−1∑
i=n0

2en0Γ(n0+3)

n0(n0−1)
(i + 1)!

(i + 3)!

)
+ Xn0(n0 − 1)!

]

=
n(n + 1)(n + 2)

Γ(n0 + 3)

[(2en0Γ(n0 + 3)

n0(n0 − 1)

n−1∑
i=n0

1

(i + 2)(i + 3)

)
+ Xn0(n0 − 1)!

]

=
2en0n(n + 1)(n + 2)

n0(n0 − 1)

n − n0

(n + 2)(n0 + 2)
+

Xn0

n0(n0 − 1)(n0 − 2)
n(n + 1)(n + 2)

=
( 2en0

n0(n0 − 1)(n0 + 2)
+

Xn0

n0(n0 − 1)(n0 − 2)

)
n3 + O(n2).

Above we used
∑n−1

i=n0

1
(i+2)(i+3)

=
∑n−1

i=n0

(
1

i+2
− 1

i+3

)
= 1

n0+2
− 1

n+2
= n−n0

(n+2)(n0+2)
.

�

When p �= 1 there is an additional way in which a 3-path can form at time n + 1.

Suppose u is the copy vertex chosen at time n+1. It is possible for a triangle which is

incident to u to be copied as a 3-path if one but not both of the edges in the triangle

incident to u are copied by vn+1.
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Theorem 2.5.9 Consider the pure copy model Gn = Copy(n, p,Gn0) with 0 < p < 1.

Let en = ind(K2, Gn), Tn = ind(K3, Gn) and Xn = ind(P3, Gn). Then

E(Xn) =

⎧⎪⎨
⎪⎩

(
Xn0 (n0−1)!

Γ(n0+p2+2p)ep2+2p
+

en0 (n0−1)!An

Γ(n0+2p)e2p )np2+2p + O(np2+2p−1) if 0 < p < 2
3

(
Xn0 (n0−1)!

Γ(n0+p2+2p)ep2+2p
+

Tn0 (n0−1)!Bn

Γ(n0+3p2)e3p2 )np2+2p + O(np2+2p−1) if 2
3
≤ p ≤ 1

where An =
∑n−1

i=n0
i−1−p2

and Bn =
∑n−1

i=n0
i2p2−2p−1.

Proof Let Pvi,n,1 be the set of 3-paths in which vi is the middle vertex at time n and

let Pvi,n,2 be the set of 3-paths in which vi is an end vertex. Let Tvi,n be the set of

triangles which are incident to vi at time n and let N(vi, n) be the neighbourhood of vi

at time n. Let X(C, vi, n+1, 1) be the indicator variable for the event that the 3-path

C in which vi is the middle vertex is copied at time n+1. Let X(C, vi, n+1, 2) be the

indicator variable for the event that the 3-path C in which vi is not the middle vertex

is copied at time n+1. Let Y (C, vi, n+1) be the indicator variable for the event that

only one edge of the triangle C incident to vi is copied by vn+1 and let Z(w, vi, n + 1)

be the indicator variable for the event that the edge w ∈ N(vi, n) is copied at time

n + 1. We have that Pr(X(C, vi, n + 1, 1) = 1) = p2

n
, P r(X(C, vi, n + 1, 2) = 1) =

p
n
, P r(Y (C, vi, n + 1) = 1) = 2p(1−p)

n
and Pr(Z(C, vi, n + 1) = 1) = p

n
. By conditional

expectation,

E(Xn+1|Gn) = Xn + E(
n∑

i=1

∑
C∈Pvi,n,1

X(C, vi, n + 1, 1) +
n∑

i=1

∑
C∈Pvi,n,2

X(C, vi, n + 1, 2)

+
n∑

i=1

∑
C∈Tvi,n

Y (C, vi, n + 1) +
n∑

i=1

∑
w∈N(vi,n)

Z(w, vi, n + 1))

= Xn +
n∑

i=1

|Pvi,n,1|
p2

n
+

n∑
i=1

|Pv1,n,2|
p

n
+

n∑
i=1

|Tvi,n|
2p(1 − p)

n
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+
n∑

i=1

pdegn(vi)

n

= Xn +
p2

n
Xn +

2p

n
Xn +

6p(1 − p)

n
Tn +

2pen

n

= Xn(1 +
p2 + 2p

n
) +

6p(1 − p)

n
Tn +

2pen

n
.

Note that
∑n

i=1 |Pvi,n,1| = Xn because each 3-path has only one middle vertex

while
∑n

i=1 |Pvi,n,2| = 2Xn because each 3-path has two vertices of degree 1. Finally

we simplify
∑n

i=1 |Tvi,n| = 3Tn because each triangle is counted three times in the

sum.

Applying expectation again we get

E(Xn+1) = E(Xn)(1 +
p2 + 2p

n
) +

6p(1 − p)

n
E(Tn) +

2pE(en)

n
.

Substituting in E(en) =
en0 (n0−1)!

Γ(n0+2p)e2p n2p+O(n2p−1) from Theorem 2.5.6 and E(Tn) =

Tn0 (n0−1)!

Γ(n+3p2)e3p2 n3p2
+ O(n3p2−1) from Theorem 2.5.7 we get the recursive relation

E(Xn+1) = E(Xn)(1 +
p2 + 2p

n
) +

en0(n0 − 1)!

Γ(n0 + 2p)e2p
n2p−1 +

Tn0(n0 − 1)!

Γ(n + 3p2)e3p2 n3p2−1

+ O(n2p−2 + n3p2−2).

If p ≤ 2
3

then 2p − 1 > 3p2 − 1, so we can write

E(Xn+1) = E(Xn)(1 +
p2 + 2p

n
) +

en0(n0 − 1)!

Γ(n0 + 2p)e2p
n2p−1 + O(n3p2−1).

If p ≥ 2
3

then 3p2 − 1 > 2p − 1 and

E(Xn+1) = E(Xn)(1 +
p2 + 2p

n
) +

Tn0(n0 − 1)!

Γ(n + 3p2)e3p2 n3p2−1 + O(n2p−1).
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Case 1: p ≤ 2
3

From Lemma 2.5.5 we know the can write the solution of this recur-

sive relation as,

E(Xn) = [np2+2p

n−1∑
i=n0

en0(n0 − 1)!

Γ(n0 + 2p)e2p
i−1−p2

+ O(np2+2p

n−1∑
i=n0

i−2−p2

)

+
Xn0(n0 − 1)!

Γ(n0 + p2 + 2p)ep2+2p
np2+2p](1 + O(

1

n
))

= [
Xn0(n0 − 1)!

Γ(n0 + p2 + 2p)ep2+2p
+

en0(n0 − 1)!An

Γ(n0 + 2p)e2p
]np2+2p + O(np2+2p−1)

where An =
∑n−1

i=n0
i−1−p2

.

Case 2: p ≥ 2
3

From Lemma 2.5.5 we can write

E(Xn) = [np2+2p

n−1∑
i=n0

Tn0(n0 − 1)!

Γ(n0 + 3p2)e3p2 i2p2−2p−1 + O(np2+2p

n−1∑
i=n0

i2p2−2p−2)

+
Xn0(n0 − 1)!

Γ(n0 + p2 + 2p)ep2+2p
np2+2p](1 + O(

1

n
))

= [
Xn0(n0 − 1)!

Γ(n0 + p2 + 2p)ep2+2p
+

Tn0(n0 − 1)!Bn

Γ(n0 + 3p2)e3p2 ]np2+2p + O(np2+2p−1)

where Bn =
∑n−1

i=n0
i2p2−2p−1.

�

Next we count the number of 4-cycles in the pure copy model. As we should

expect, counting subgraphs in the Copy model becomes more difficult as the size of

the subgraphs increase as more cases need to be considered. There are 3 different

ways in which a 4-cycle can appear at time n + 1. Let vi be the copy vertex selected

at time n + 1 and let w1, w2 ∈ N(vi, n).
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vn+1

vi

w1

w2

z

The first case is the typical case where vn+1 copies a 4-cycle which is incident to

vi. The new 4-cycle here consists of vertices vn+1, w1, w2 and z.

vn+1

vi

w1

w2

In the second case, a new 4-cycle is formed between vn+1, vi, w1, w2 as long as there

is no edge between w1 and w2. In this case, vi, w1, w2 form an induced 3-path where

vi is the middle vertex. Therefore, for every 3-path with vi as the middle vertex is

copied, a new 4-cycle forms.
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vn+1

vi

w1

w2

z

In the final case, consider a g7 which is incident to vi at time n with vi as a

vertex of degree 3. Then a 4-cycle can form at time n + 1 between vn+1, w1, w2 and

z. To count the number of 4-cycles created in this case we would need to develop an

expression for the number of g7’s in the pure copy model. Instead we obtain a lower

bound for the number of 4-cycles in the pure copy model by only considering the first

two cases above.

Theorem 2.5.10 Consider the pure copy model Gn = Copy(n, p,Gn0) with 0 < p <

1. Let Xn = ind(C4, Gn). Then,

E(Xn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω(np2+2p) if 0 < p < 2
3

Ω(n
16
9 ln(n)) if p = 2

3

Ω(n4p2
) if 2

3
< p < 1

Proof Let Yn = ind(P3, Gn). Let Xvi,n be the set of C4’s which are incident to vi

at time n. Let Pvi,n be the set of 3-paths in which vi is the middle vertex at time

n. For C ∈ Xvi,n let X(C, vi, n + 1) be an indicator variable for the event that the

4-cycle C incident to vi is copied by vn+1 at time n + 1. Note that in this case, vi is

chosen as the copy vertex and the two edges in C which are incident to vi are copied

by vn+1. We have Pr(X(C, vi, n + 1) = 1) = p2

n
. For C ∈ Pvi,n, let Y (C, vi, n + 1) be

an indicator variable for the event that the 3-path C is copied at time n + 1 with the
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role of vi in C being replaced by vn+1 in the new 3-path. Note that in this case, vi is

chosen as the copy vertex and the two edges in C which are incident to vi are copied

by vn+1. SoPr(Y (C, vi, n + 1)) = p2

n
. By conditional expectation,

E(Xn|Gn) ≥ Xn + E(
n∑

i=1

∑
C∈Xvi,n

X(C, vi, n + 1)) + E(
n∑

i=1

∑
C∈Pvi,n

Y (C, vi, n + 1))

= Xn +
n∑

i=1

|Xvi,n|
p2

n
+

n∑
i=1

|Yvi,n|
p2

n

= Xn +
4p2

n
Xn +

p2

n
Yn.

Note that each 4-cycle is incident to 4 vertices so we have
∑n

i=1 |Xvi,n| = 4Xn.

Applying expectation again gives

E(Xn+1) ≥ (1 +
4p2

n
)E(Xn) +

p2

n
E(Yn).

From Theorem 2.5.9 we have E(Yn) = Θ(np2+2p) giving the recursive relation,

E(Xn+1) ≥ (1 +
4p2

n
)E(Xn) + Θ(np2+2p−1).

We can write the solution to this recursion using Lemma 2.5.5 as

E(Xn) = Ω(n4p2
n−1∑
i=n0

i−3p2+2p−1 + n4p2

+ n4p2
n−1∑
i=n0

i−3p2+2p−2)

To simplify this expression we need to approximate
∑n−1

i=n0
i−3p2+2p−1 using Lemma

1.3.6. Note that when p = 2
3

we have −3p2 + 2p − 1 = −1 so this case needs to be

dealt with separately. If p �= 2
3

then we have
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E(Xn) = Ω(n4p2
n−1∑
i=n0

i−3p2+2p−1 + n4p2

+ O(n4p2
n−1∑
i=n0

i−3p2+2p−2))

= Ω(n4p2

[n−3p2+2p − n−3p2+2p
0 ] + n4p2

)

= Ω(np2+2p + n4p2

)

If p < 2
3
, then np2+2p is the dominant term and when 2

3
< p < 1, n4p2

is the

dominant term. When p = 2
3

we have

E(Xn) = Ω(n
16
9

n−1∑
i=n0

i−1 + n
16
9 + O(n

16
9

n−1∑
i=n0

i−2))

= Ω(n
16
9 ln(n))

�

2.5.3 Copy Model with p = 0 and d > 0 (Uniform Attachment Model)

In this section we consider the undirected copy model Copy(n, 0, d, Gn0) in which the

copying probability is set to zero. The model in this case is similar to the PA model

only that at time n, the d end points of the edges from vn are chosen u.a.r. as opposed

to proportional to the degree of the destination vertex. The procedure for counting

subgraphs in this model follows the same method we used in the modified PA model.

For our calculations we will begin with Gn0 being the empty graph so at time 1, v1

is added and creates d loops to itself. We will call this graph model the uniform

attachment model denoted by UA(n, d). The process generates multi-graphs. After

generating the graph, we delete all loops and multi-edges so that a simple graph

remains. We give the expected number of triangles, 3-paths and 4-cycles in the

uniform attachment model.
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Theorem 2.5.11 Let Gn = UA(n, d) with d > 1 and let Xn = ind(K3, Gn). Then

E(Xn) = d2(d − 1)ln(n) + O(1).

Proof Let Xn = ind(K3, Gn) and for 1 ≤ i < j < k ≤ n let Xijk be an indicator

variable for the event that vi, vj, vk induce a triangle. We can write Pr(Xijk = 1) =

Pr(vi ∼ vj ∩ vi ∼ vk ∩ vj ∼ vk) = Pr(vi ∼ vj)Pr(vi ∼ vk ∩ vj ∼ vk). We have,

Pr(vi ∼ vj) = 1 − (1 − 1

j
)d

This gives

Pr(vi ∼ vj) =
d

j
+ O(

1

j2
). (2.9)

Also,

Pr(vi ∼ vk ∩ vj ∼ vk) =
d−1∑
t=1

(
d

t

)
(
1

k
)t

d−t∑
s=1

(
d − t

s

)
(
1

k
)s(1 − 2

k
)d−s−t.

This can be simplified to give

Pr(vi ∼ vk ∩ vj ∼ vk) =
d(d − 1)

k2
+ O(

1

k3
). (2.10)

Therefore

Pr(Xijk = 1) = (
d

j
+ O(

1

j2
))(

d(d − 1)

k2
+ O(

1

k3
))
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=
d2(d − 1)

jk2
+ O(

1

jk3
).

By linearity of expectation,

E(Xn) =
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

E(Xijk = 1)

=
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

d2(d − 1)

jk2
+ O(

1

jk3
).

Using Lemma (1.3.6) we can approximate this sum to obtain,

E(Xn) = d2(d − 1)ln(n) + O(1).

�

Now we give the calculation for the number of 3-paths in the UA model. For

the result, we must consider the inherent directed nature of the UA model (younger

vertices form edges to older vertices) to see that there are 3 unique ways in which a

3-path can form.
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vi

vj

vk

P 1
3

vi

vj

vk

P 2
3

vi

vj

vk

P 3
3

Theorem 2.5.12 Let Gn = UA(n, d) and Xn = ind(P3, Gn). Then,

E(Xn) =
d(5d − 1)

2
n + O(ln(n)2)

Proof Let Xn = ind(P3, Gn) and let X i
n = ind(P i

3, Gn) for i = 1, 2, 3. By linearity of

expectation we can write E(Xn) = E(X1
n) + E(X2

n) + E(X3
n).

To compute these expectations we will need the following 4 probabilities: Pr(vi ∼

vj), P r(vi � vj), P r(vk ∼ vi ∩ vk ∼ vj) and Pr(vk ∼ vi ∩ vk � vj). We have already

shown Pr(vi ∼ vj) = d
j

+ O(1
j

2
) and Pr(vk ∼ vi ∩ vk ∼ vj) = d(d−1)

k2 + O( 1
k3 ).

Additionally,

Pr(vi � vj) = (1 − 1

j
)d,

which gives

Pr(vi � vj) = 1 + O(
1

j
). (2.11)

Also we have,
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Pr(vk ∼ vi ∩ vk � vj) =
d∑

t=1

(
d

t

)
(
1

k
)t(1 − 1

k
)d−t

which simplifies to,

P (vk ∼ vi ∩ vk � vj) =
d

k
+ O(

1

k2
). (2.12)

Case 1: X1
n For i ≤ i < j < k ≤ n let X1

ijk be the event that vi, vj, vk induce a copy

of P 1
3 . We have

P (X1
ijk = 1) = Pr(vk ∼ vi ∩ vk ∼ vj)Pr(vi � vj)

=
(d(d − 1)

k2
+ O(

1

k3
)
)(

1 + O(
1

j
)
)

=
d(d − 1)

k2
+ O(

1

k3
).

Using linearity of expectation and Lemma 1.3.6,

E(X1
n) = d(d − 1)

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

1

k2
+ O(

1

k3
)

=
d(d − 1)

2
n + O(ln(n)).

Case 2: X2
n For i ≤ i < j < k ≤ n let X2

ijk be the event that vi, vj, vk induce a copy

of P 2
3 . We have
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Pr(X2
ijk = 1) = Pr(vk ∼ vi ∩ vk � vj)Pr(vi ∼ vj)

= (
d

k
+ O(

1

k2
))(

d

j
+ O(

1

j2
))

=
d2

jk
+ O(

1

j2k
).

Using linearity of expectation and Lemma 1.3.6,

E(X2
n) = d2

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

1

jk
+ O(

1

j2k
)

= d2n + O(ln(n)2).

Case 3: X3
n For i ≤ i < j < k ≤ n let X3

ijk be the event that vi, vj, vk induce a copy

of P 3
3 . Then,

Pr(X3
ijk = 1) = Pr(vk ∼ vj ∩ vk � vi)Pr(vi ∼ vj)

= (
d

k
+ O(

1

k2
))(

d

j
+ O(

1

j2
))

=
d2

jk
+ O(

1

j2k
)

This is the same as Pr(X2
ijk = 1). Therefore E(X3

n) = d2n + O(ln(n)2).

Overall,

E(Xn) = E(X1
n) + E(X2

n) + E(X3
n)
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=
d(d − 1)

2
n + 2d2n + O(ln(n)2)

=
d(5d − 1)

2
n + O(ln(n)2).

�

Next we count the number of 4-cycles in the uniform attachment model. Again,

the procedure here is identical to the procedure used to count 4-cycles in the modified

PA model. There is only one probability that we will need that we have not yet

computed. This probability is

Pr(vl ∼ vi ∩ vl ∼ vj ∩ vl � vk) =
d−1∑
t=1

(
d

t

)
(
1

l
)t

d−t∑
s=1

(
d − t

s

)
(
1

l
)s

(1 − 3

l
)d−s−t

=
d(d − 1)

l2
(1 − O(

1

l
))

This gives,

Pr(vl ∼ vi ∩ vl ∼ vj ∩ vl � vk) =
d(d − 1)

l2
+ O((

1

l
)3)

Recall that when we counted the number of 4-cycles in the modified PA model,

there were 3 unique types of 4-cycles that could form. We remind the reader of the

3 types in the diagram below.



91

vk vj

vi vl vlvi

vj vk

vlvj

vkvi

C1
4 C2

4 C3
4

Theorem 2.5.13 Let Gn = UA(n, d) with d > 1 and let Xn = ind(C4, Gn). Then

E(Xn) =
d2(5d − 1)(d − 1)

2
ln(n) + O(1).

Proof Let Xn = ind(C4, Gn) and let X i
n = ind(Ci

4, Gn) for i = 1, 2, 3. By linearity

of expectation E(Xn) = E(X1
n) + E(X2

n) + E(X3
n). To compute E(Xn) we compute

the expectation of each X i
n separately.

Case 1: X1
n For 1 ≤ i < j < k < l ≤ n let X1

ijkl be the indicator variable for the

event that vi, vj, vk, vl induce a copy of C1
4 . Using Equations 2.13, 2.10, and

2.11 we can write

Pr(X1
ijkl = 1) = Pr(vl ∼ vi ∩ vl ∼ vj ∩ vl � vk)Pr(vk ∼ vj ∩ vk ∼ vi)Pr(vi � vj)

= (
d(d − 1)

l2
+ O(

1

l3
))(

d(d − 1)

k2
+ O(

1

k3
))(1 + O(

1

j
))

=
d2(d − 1)2

l2k2
+ O(

1

l2k2j
).

Using linearity of expectation we can write

E(X1
n) =

n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=k+1

(d2(d − 1)2

l2k2
+ O(

1

l2k2j
)
)
.
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Using Lemma 1.3.6 we can write this as,

E(X1
n) =

d2(d − 1)2

2
ln(n) + O(1).

Case 2: X2
n Let X2

ijkl be the indicator variable for the event that vi, vj, vk, vl induce

a copy of C2
4 for 1 ≤ i < j < k < l ≤ n. Using Equations 2.13, 2.12, and 2.11

we can write,

Pr(X1
ijkl = 1) = Pr(vl ∼ vi ∩ vl ∼ vk ∩ vl � vj)Pr(vk ∼ vj ∩ vk � vi)Pr(vi ∼ vj)

= (
d(d − 1)

l2
+ O(

1

l3
))(

d

k
+ O(

1

k2
))(

d

j
+ O(

1

j2
))

=
d3(d − 1)

jkl2
+ O(

1

j2kl2
).

Using linearity of expectation we can write

E(X2
n) =

n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=k+1

(d3(d − 1)

jkl2
+ O(

1

j2kl2
)
)
.

Using Lemma 1.3.6 to approximate the sums by integrals we can write

E(X2
n) = d3(d − 1)ln(n) + O(1).

Case 3: X3
n Let X3

ijkl be the indicator variable for the event that vi, vj, vk, vl induce

a copy of C3
4 for 1 ≤ i < j < k < l ≤ n. Using Equations 2.13, 2.12, and 2.11

we can write,

Pr(X3
ijkl = 1) = Pr(vl ∼ vj ∩ vl ∼ vk ∩ vl � vi)Pr(vk ∼ vi ∩ vk � vj)Pr(vi ∼ vj)
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= (
d(d − 1)

l2
+ O(

1

l3
))(

d

k
+ O(

1

k2
))(

d

j
+ O(

1

j2
))

=
d3(d − 1)

jkl2
+ O(

1

j2kl2
).

Using linearity of expectation we can write

E(X3
n) =

n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=k+1

(d3(d − 1)

jkl2
+ O(

1

j2kl2
)
)
.

This is the same expression we obtained for E(X2
n) so we have

E(X3
n) = d3(d − 1)ln(n) + O(1).

Combining all three cases we obtain

E(Xn) =
d2(5d − 1)(d − 1)

2
ln(n) + O(1).

�

2.5.4 Copy Model with p > 0 and d > 0

The undirected copy model Copy(n, d, p, Gn0) combines the mechanisms of the pure

copy model and the uniform attachment model. The motivation in adding the uniform

attachment mechanism is that it results in a power law degree distribution because

the copy mechanism alone is not sufficient to produce a power law [22]. In this section

we count the expected number of triangles, 3-paths and provide a lower bound for

the number of 4-cycles. We begin with the number of edges that was given in [22].

Their result was computed by approximating the recursive relation by a differential

equation. We resolve the equation using our method of directly solving the recursive

relation.
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Theorem 2.5.14 ([22]) Let Gn = Copy(n, p, d, Gn0) and en = ind(K2, Gn). Then

E(en) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
1−2p

n + O(n2p) if p < 1
2

dnln(n) + O(n) if p = 1
2

Θ(n2p) if p > 1
2

Proof Let en = ind(K2, Gn). For a vertex vi and w ∈ N(vi, n) let X(w, vi, n + 1) be

an indicator variable for the event that vn+1 picks vi as its copy vertex and copies w.

We have Pr(X(w, vi, n + 1) = 1) = p
n
. At time n + 1, v + n + 1 adds d random edges

to vertices in Gn.

Setting up the recursive relation gives,

E(en+1|Gn) = en + E(
n∑

i=1

∑
w∈N(vi,n)

X(w, vi, n + 1) + d)

= en +
n∑

i=1

|N(vi, n)|p
n

+ d

= en + en
2p

n
+ d.

Note that
∑n

i=1 |N(vi, n)| = 2en. Applying expectation again gives the recursive

relation

E(en+1) = (1 +
2p

n
)E(en) + d.

We can obtain a solution for this recursion using Lemma 2.5.5,

E(en) = [n2p

n−1∑
i=n0

di−2p + O(n2p

n−1∑
i=n0

i−2p−1) + n2p en0(n0 − 1)!

Γ(n0 + 2p)e2p
](1 + O(

1

n
)).
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To simplify this further we approximate
∑n−1

i=n0
i−2p. Using Lemma 1.3.6 to ap-

proximate this sum we consider 3 possibilities for p: 0 ≤ p ≤ 1
2
, p = 1

2
, and 1

2
< p < 1.

Case 1: 0 < p < 1
2

E(en) = [dn2p

∫ n

n0

i−2pdi + O(n2p)](1 + O(
1

n
))

=
d

1 − 2p
n + O(n2p)

Case 2: p = 1
2

E(en) = [dn

∫ n

n0

i−1di + O(n)](1 + O(
1

n
))

= dnln(n) + O(n)

Case 3: 1
2

< p < 1

E(en) = [dn2p

∫ n

n0

i−2pdi + O(n2p)](1 + O(
1

n
))

= Θ(n2p)

�

The Copy model has a linear number of edges when 0 < p < 1
2
. As this is the

case we are interested in, we only count the expected number of triangles, 3-paths,

and 4-cycles for 0 < p < 1
2
.

We begin with the number of triangles. There will be three ways in which a new

triangle can form at time n+1. Consider the two edges in the new triangle which are

incident to vn+1. We can either have both of these edges formed due to the copying

mechanism, one edge from copying and the other from one of the d extra edges or

both from the d extra edges. We might suspect that since d is fixed and that n → ∞,
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that the majority of the new triangles are formed via the copying mechanism. We

show that this is almost true. In our result we use the power law degree distribution

of Copy(n, p, d, Gn0) which we stated in Theorem 1.5.3. Recall that the result stated

that Copy(n, p, d, Gn0) has a power law degree distribution coefficient γ which is the

largest solution of 1 = pγ−p+pγ−1. Note that for a power law to form we must have

d > 0 but otherwise γ is independent of the value of d. For a linear number of edges

in Copy(n, p, d, Gn0) we require that 0 < p < 1
2
. In our result, we need to determine

the range of power law coefficients in Copy(n, p, d, Gn0) for this range of p. We in fact

already have this answer from Theorem 2.1.1. Recall that in this theorem, we proved

that in a graph with a power law degree distribution with a linear number of edges,

the power law coefficient must be greater than 2. Therefore, in Copy(n, p, d, Gn0)

with 0 < p < 1
2
, we have that γ > 2. It is easy to verify by plugging p = 1

2
into

1 = pγ − p + pγ−1 that this value of p corresponds to γ = 2. We argue that as p

decreases from 1
2

to 0 that γ increases from 2 to ∞. As p → 0 it follows that pγ−1 → 0

(since we know γ > 2). Therefore for 1 = pγ−p+pγ−1 to hold we require that pγ → 1

as p → 0 which implies that γ → ∞. Therefore, when 0 < p < 1
2
, we have γ ∈ (2,∞).

Theorem 2.5.15 Let Gn = Copy(n, d, p, Gn0) where p < 1
2
, d > 0 and let Xn =

ind(K3, Gn). Then

E(Xn) =

⎧⎪⎨
⎪⎩

o(n) if 0.4739 < p < 0.5

Θ(n3p2
) if p ≤ 0.4739

Proof Let Xn = ind(K3, Gn). There are three ways in which a new triangle can form

at time n + 1. The first is that both of the edges in the new triangle incident to vn+1

are produced by copying. For this case let Tvi,n be the set of triangles incident to

vertex vi at time n and let X(C, vi, n+1) be an indicator variable for the event that a

triangle C ∈ Tvi,n is copied to vn+1. Then P (X(C, vi, n+1) = 1) = p2

n
. For the second

case, of the two edges incident to vn+1 in a new triangle, one is formed by copying and
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the other is an extra edge. For w1 ∈ N(vi, n) and w2 ∈ N(w1, n) let Y (vi, w1, w2, n+1)

be the event that vn+1 selects vi as its copy vertex, copies an edge to w1 and forms

a random edge to w2. We have that Pr(Y (vi, w1, w2, n + 1) = 1) = dp
n2 . In the final

way, we have that both of the edges in the new triangle incident to vn+1 are formed

through extra edge addition. Let Z(wi, wj, n+1) be the event that wi and wj are both

selected as random edges from vn+1. We have that Pr(Z(wi, wj, n + 1) = 1) = d2

n2 .

Using conditional expectation we can write,

E(Xn+1|Gn) = Xn + E(
n∑

i=1

∑
C∈Tvi,n

X(C, vi, n + 1))

+ E(
n∑

i=1

∑
w1∈N(vi,n)

∑
w2∈N(w1,n)

Y (vi, w1, w2, n))

+ E(
n∑

i=1

∑
wj∈N(wi,n)

Z(wi, wj, n + 1))

= Xn +
n∑

i=1

|Tvi,n|
p2

n
+

n∑
i=1

∑
w1∈N(vi,n)

∑
w2∈N(w1,n)

pd

n2

Applying expectation again we can write

E(Xn+1) = E(Xn) + E(
n∑

i=1

|Tvi,n|
p2

n
)

+ E(
n∑

i=1

∑
w1∈N(vi,n)

∑
w2∈N(w1,n)

pd

n2
) + E(

n∑
i=1

∑
wj∈N(w1,n)

d2

n2
)

= E(Xn) +
3p2

n
E(Xn) + E(

n∑
i=1

∑
w1∈N(vi,n)

degn(w2)
pd

n2
) + E(

n∑
i=1

degn(wi)
d2

n2
)

= E(Xn) +
3p2

n
E(Xn) +

pd

n2
E(

n∑
i=1

degn(vi)
2) +

2d2

n2
E(en).

Note that
∑n

i=1

∑
w1∈N(vi,n)

∑
w2∈N(w1,n)

pd
n2 = pd

n2

∑n
i=1 degn(vi)

2.
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From Theorem 2.5.14 we have E(en) = d
1−2p

n + O(n2p). The only piece here that

remains to be worked out is E(
∑n

i=1 degn(vi)
2). Let Nk,n be the number of vertices

of degree k in Gn. Then E(
∑n

i=1 degn(vi)
2) = E(

∑n−1
k=1 k2Nk,n) =

∑n−1
k=1 k2E(Nk,n).

Using the power law degree distribution for Gn from Theorem 1.5.3 we can write

n−1∑
k=1

k2E(Nk,n) =
n−1∑
k=1

k2(1 + O(
1

k
)ck−γn

= cn

n−1∑
k=1

(k2−γ + O(k1−γ)).

To simplify this sum with integrals using Lemma 1.3.6 we have to consider 3

possible ranges for γ: 2 < γ < 3, γ = 3 and γ > 3.

Case 1: 2 < γ < 3 Using Lemma 1.3.6 we have,

cn

n−1∑
k=1

k2−γ + O(k1−γ) = cn[
n3−γ

3 − γ
+ O(1)]

=
c

3 − γ
n4−γ + O(n)

Using this we can write the recursion relation as E(Xn+1) = (1 + 3p2

n
)E(Xn) +

pdc
3−γ

n2−γ + O( 1
n
). Solving this using Lemma 2.5.5 gives

E(Xn) = [n3p2
n−1∑
i=n0

(
pdc

3 − γ
i2−γ−3p2

+ O(i−1−3p2

)) +
Xn0(n0 − 1)!

Γ(n0 + 3p2)
n3p2

+ O(n3p2
n−1∑
i=n0

i1−γ−3p2

)](1 + O(
1

n
))
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To approximate
∑n−1

i=n0
i2−γ−3p2

we need to know the range of values for 2 −

γ − 3p2. Specifically we need to identify the values of p and γ for the following

three ranges: 2 − γ − 3p2 < −1, 2 − γ − 3p2 = −1 and 2 − γ − 3p2 > −1.

Through numerical calculation we can show that when p ≈ .4739 we have that

γ ≈ 2.3262 and 2 − γ − 3p2 = −1. If follows that for p ∈ (.4739, .5) we have

γ ∈ (2, 2.3262) and 2 − γ − 3p2 ∈ (−.75,−1). Note that when p = .5 we have

2 − γ − 3p2 = −.75.

Let’s begin with the case that 2 − γ − 3p2 < −1. In this case we can write the

solution as

E(Xn) = [n3p2
n−1∑
i=n0

(
pdc

3 − γ
i2−γ−3p2

+ O(i−1−3p2

)) +
Xn0(n0 − 1)!

Γ(n0 + 3p2)
n3p2

+ O(n3p2
n−1∑
i=n0

i1−γ−3p2

)](1 + O(
1

n
))

= [
pdcn3p2

(3 − γ)(3 − γ − 3p2)
n3−γ−3p2

+ O(n3p2

)](1 + O(
1

n
))

= [
pdc

(3 − γ)(3 − γ)
n3−γ + O(n3p2

)]

= o(n).

Note that in this case 3− γ < 1 and 3p2 < 1 so overall, the number of triangles

is sub-linear.

We next consider the case where 2 − γ − 3p2 = −1. In this case we can write

the solution as

E(Xn) = [n3p2
n−1∑
i=n0

(
pdc

3 − γ
i−1 + O(i−1−3p2

)) +
Xn0(n0 − 1)!

Γ(n0 + 3p2)
n3p2
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+ O(n3p2
n−1∑
i=n0

i1−γ−3p2

)](1 + O(
1

n
))

= [
pdc

3 − γ
n3p2

ln(n) + O(n3p2

)](1 + O(
1

n
)

= o(n).

Note that the leading term here n3p2
ln(n) is sub-linear here since ln(n) = o(nx)

for all x > 0.

Finally we consider the final case where 2 − γ − 3p2 > −1. In this case we can

write the solution as

E(Xn) = [n3p2
n−1∑
i=n0

(
pdc

3 − γ
i2−γ−3p2

+ O(i−1−3p2

)) +
Xn0(n0 − 1)!

Γ(n0 + 3p2)
n3p2

+ O(n3p2
n−1∑
i=n0

i1−γ−3p2

)](1 + O(
1

n
))

= Θ(n3p2

).

Case 2: γ = 3 Using Lemma 1.3.6 we have,

cn
∑

k

k−1 + O(k−2) = cn[ln(n) + O(1)]

= cnln(n) + O(n).

We can write the recursion relation as E(Xn+1) = (1 + 3p2

n
)E(Xn) + pdc ln(n)

n
+

O( 1
n
). Solving this using Lemma 2.5.5 gives
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E(Xn) = [n3p2
n−1∑
i=n0

pdc(ln(i)i−1−3p2

+ O(i−1−3p2

)) +
Xn0(n0 − 1)!

Γ(n0 + 3p2)
n3p2

+ O(n3p2
n−1∑
i=n0

ln(i)i−2−γ−3p2

)](1 + O(
1

n
))

= Θ(n3p2

).

Case 3: γ > 3 Using Lemma 1.3.6 we have,

cn
∑

k

k2−γ + O(k1−γ) = cn[
n3−γ

3 − γ
+ O(1)]

=
c

3 − γ
n4−γ + O(n)

= O(n).

Note that in this case n > n4−γ since γ > 3.

E(Xn+1) = (1 +
3p2

n
)E(Xn) + O(

1

n
)

= (1 +
3p2

n
)E(Xn) + O(

1

n
).

We can solve this recursive relation using Lemma 2.5.5 to obtain

E(Xn) = [n3p2
n−1∑
i=n0

O(i−1−3p2

) + O(n3p2
n−1∑
i=n0

i−2−3p2

)

+ n3p2 Xn0(n0 − 1)!

Γ(n0 + 3p2)e3p2 ](1 + O(
1

n
))
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= Θ(n3p2

).

�

When p < .4739, the number of triangles in the Copy model grows at a rate

of Θ(n3p2
) which is the same that triangles grow in the pure copy model (Theorem

2.5.7). This is not surprise, since the graph is sparse, it is unlikely that the d extra

edges added in each step would contribute many triangles. When p > .4739, we see

from the proof of Theorem 2.5.15 that the number of triangles grows sub-linear but at

a rate faster than Θ(n3p2
). A possible explanation for this is that as p → 1

2
the graph

is becoming denser. The result indicates as p approaches 1
2

the number of triangles

is approaching Θ(n).

If the extra edges are not contributing very many extra triangles then they must be

contributing many extra induced P3’s. Recall the relation ind(P3, G) = inj(P3, G) −

3ind(K3, G). Since we suspect that there are many more P3’s than triangles in

Copy(n, p, d, Gn0) will count the number of injective P3’s. The easiest method of

computing this is use the expression inj(P3, Gn) =
∑n

i=1

(
degn(vi)

2

)
.

Theorem 2.5.16 Let Gn = Copy(n, p, d, Gn0) for 0 < p < 1
2
, d > 0 and let Xn =

inj(P3, Gn). Then

E(Xn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
2

n4−γ

3−γ
+ O(n) if

√
2 − 1 < p < 1

2

c
2
nln(n) + O(n) if p =

√
2 − 1

Θ(n) if 0 < p <
√

2 − 1

Proof This follows immediately from Theorem 2.1.2 and the relation inj(P3, Gn) =

ind(P3, Gn) + 3ind(K3, Gn). The only detail missing is find the value of p which

corresponds to the power law coefficient γ = 3. This is easy to obtain by placing

γ = 3 into 1 = pγ − p + pγ−1. Solving this you obtain p =
√

2− 1. The result follows
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since when 0 < p <
√

2− 1 γ > 3, when p =
√

2− 1 γ = 3 and when
√

2− 1 < p < 1

2 < γ < 1.

�

Corollary 2.5.17 Let Gn = Copy(n, p, d, Gn0) with d > 0, 0 < p < 1
2

and let

Xn = ind(P3, Gn). Then,

E(Xn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
2

n4−γ

3−γ
+ O(n) if

√
2 − 1 < p < 1

2

c
2
nln(n) + O(n) if p =

√
2 − 1

Θ(n) if 0 < p <
√

2 − 1

Proof The result follows immediately from Theorems 2.5.15 and 2.5.16 and the re-

lation inj(P3, G) = ind(P3, G) + 3ind(K3, Gn).

�

We conclude with a lower bound for the number of 4-cycles in the copy model.

For our result, we will only consider those 4-cycles that are created through copying,

while ignoring those which are created through random edge addition. It is suspected

that 4-cycles created in that manner are minimal as compared to those created by

copying. Our proof will proceed in the same manner as the proof for the number of

4-cycles in the pure copy model in Theorem 2.5.10.

Theorem 2.5.18 Let Gn = Copy(n, p, d, Gn0) with 0 < p < 1
2

and let Xn = ind(C4, Gn).

Then we have

E(Xn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω(n4−γ) if
√

2 − 1 < p < 1
2

Ω(nln(n)) if p =
√

2 − 1

Ω(n) if 0 < p <
√

2 − 1

Proof Let Xn = ind(C4, Gn) and Yn = ind(P3, Gn). Let Xvi,n be the set of C4’s

which are incident to vi at time n. Let Pvi,n be the set of 3-paths in which vi is the
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middle vertex at time n. For C ∈ Xvi,n let X(C, vi, n + 1) be an indicator variable

for the event that the 4-cycle C incident to vi is copied by vn+1 at time n + 1. It

is easy to see that Pr(X(C, vi, n + 1) = 1) = p2

n
. For C ∈ Pvi,n let Y (C, vi, n + 1)

be an indicator variable for the event that the 3-path C is copied at time n + 1

with the role of vi in C being replaced by vn+1 in the new 3-path. It is easy to see

Pr(Y (C, vi, n + 1) = 1) = p2

n
. By conditional expectation

E(Xn|Gn) ≥ Xn + E(
n∑

i=1

∑
C∈Xvi,n

X(C, vi, n + 1)) + E(
n∑

i=1

∑
C∈Pvi,n

Y (C, vi, n + 1))

= Xn +
n∑

i=1

|Xvi,n|
p2

n
+

n∑
i=1

|Pvi,n|
p2

n

= Xn +
4p2

n
Xn +

p2

n
Yn.

Note that each 4-cycle is counted 4 times in
∑n

i=1 |Xvi,n| so we have
∑n

i=1 |Xvi,n| =

4Xn. Also, each 3-path with vi as the middle vertex is counted once in
∑n

i=1 |Pvi,n|

so
∑n

i=1 |Pvi,n| = Yn. Applying expectation again gives

E(Xn+1) ≥ (1 +
4p2

n
)E(Xn) +

p2

n
E(Yn).

From Theorem 2.5.17 we have 3 different ranges of p which gives different expres-

sions for E(Yn). We consider each of these separately.

Case 1: 0 < p <
√

2 − 1 From Theorem 2.5.17 we have that E(Yn) = Θ(n). For our

recursive relation this gives,

E(Xn+1) ≥ (1 +
4p2

n
)E(Xn) + Θ(1).

Using Lemma 2.5.5 we can solve this to obtain,



105

E(Xn) ≥ [n4p2
n−1∑
i=n0

Θ(i−4p2

) +
Xn0(n0 − 1)!

Γ(n0 + 4p2)e4p2 n4p2

+ O(n4p2
n−1∑
i=n0

i−1−4p2

](1 + O(
1

n
))

= Ω(n).

Case 2: p =
√

2 − 1 From Theorem 2.5.17 we have that E(Yn) = Θ(nln(n)). Plug-

ging this into our recursive relation gives us

E(Xn+1) ≥ (1 +
4p2

n
)E(Xn) + Θ(ln(n)).

Using Lemma 2.5.5 we can solve this to obtain,

E(Xn) ≥ [n4p2
n−1∑
i=n0

Θ(ln(i)i−4p2

) +
Xn0(n0 − 1)!

Γ(n0 + 4p2)e4p2 n4p2

+ O(n4p2
n−1∑
i=n0

i−1−4p2

ln(i)](1 + O(
1

n
))

= Ω(nln(n))

Case 3:
√

2 − 1 < p < 1
2

From Theorem 2.5.17 we have that E(Yn) = Θ(n4−γ) where

γ is the power law coefficient which is in the range of 2 < γ < 3 for this range

of p. Plugging this into our recursive relation gives us,

E(Xn+1) ≥ (1 +
4p2

n
)E(Xn) + Θ(n3−γ).

Using Lemma 2.5.5 we can solve this to obtain,
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E(Xn) ≥ [n4p2
n−1∑
i=n0

Θ(i3−γ−4p2

) +
Xn0(n0 − 1)!

Γ(n0 + 4p2)e4p2 n4p2

+ O(n4p2
n−1∑
i=n0

i2−4p2

](1 + O(
1

n
))

= Ω(n4−γ).

�

2.5.5 The Directed Pure Copy Model

The pure directed copy model is studied in [84] where Gn0 is a single isolated vertex.

We use their proof to extend their result for the number of edges in the pure directed

copy model. We also give the case where q = 0 which is not included in their result.

The number of edges in the q = 0 case is obtained using the same approach as the

undirected pure copy model.

Theorem 2.5.19 ([84]) Consider the directed pure copy model Gn = DCopy(n, p, q, Gn0)

and let en = ind(K2, Gn). Then,

E(en) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

en0 (n0−1)!

Γ(n0+p)ep np + O(np−1) if q = 0, 0 < p < 1

q
1−p

n + O(np) if q > 0, 0 < p < 1

qnln(n) + O(n) if q > 0, p = 1

Proof Let en = ind(K2, Gn) and let N+(vi, n) be the out neighbourhood of a vertex

vi at time n. For w ∈ N+(vi, n), let X(w, vi, n + 1) be an indicator variable for the

event that the out-edge from vi to w is copied at time n + 1. It is easy to see that

Pr(X(w, vi, n + 1) = 1) = p
n
. Let Y (n + 1) be the indicator variable for the event

there is an edge between vn+1 and the copy vertex selected at time n + 1. It is easy

to see that Pr(Y (n + 1) = 1) = q. Using conditional expectation we can write
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E(Xn+1|Gn) = Xn + E(
n∑

i=1

∑
w∈N+(vi,n)

X(w, vi, n + 1)) + E(Y (n + 1))

= Xn +
n∑

i=1

∑
w∈N+(vi,n)

p

n
+ q

= Xn +
n∑

i=1

pdeg+
n (vi)

n
+ q

= Xn +
pXn

n
+ q.

Note that for a directed graph G,
∑

v∈V (G) deg+(vi) = Xn. Applying expectation

again gives the recursive relationship E(Xn+1) = E(Xn)(1 + p
n
) + q. This recursive

relation is of the general form in Lemma 2.5.4 with bn = q. When q = 0 we get the

recursive relation E(Xn+1) = E(Xn)(1 + p
n
). Using Lemma 2.5.2, the solution in this

case is E(Xn) =
Xn0 (n0−1)!

Γ(n0+p)ep np + O(np−1).

When q �= 0, we get the solution from Lemma 2.5.5,

E(Xn) = [np

n−1∑
i=n0

qi−p +
en0(n0 − 1)!

Γ(n0 + p)ea
np + O(np

n−1∑
i=n0

i−p−1)](1 + O(
1

n
)).

In simplifying
∑n−1

i=n0
i−p using Lemma 1.3.6 we deal with the cases 0 < p < 1 and

p = 1 separately. If 0 < p < 1 then we have

E(Xn) = [np

n−1∑
i=n0

qi−p +
en0(n0 − 1)!

Γ(n0 + p)ea
np + O(np

n−1∑
i=n0

i−p−1)](1 + O(
1

n
))

=
q

1 − p
n + O(np).

If p = 1 then we have,
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E(Xn) = [n
n−1∑
i=n0

qi−1 +
en0(n0 − 1)!

Γ(n0 + 1)ea
n + O(n

n−1∑
i=n0

i−2)](1 + O(
1

n
))

= qnln(n) + O(n).

�

The general approach in determining the expected number of triangles and 3-paths

for the directed pure copy model is similar to the approach used for the undirected

pure copy model. However, the directed nature can affect the types of subgraphs that

can be copied. Let’s first consider counting triangles.

In a directed graph there are 2 different types of triangles which can appear, we

will see that only one type can form at time n + 1 in the directed pure copy model.

T1 T2

In T1, there is a vertex with out degree 2 and in T2 the edges form a directed

3-cycle. New directed triangles which appear at time n + 1 are only of the T1 type.

A new T1 will form at time n + 1 if the copy vertex vi is incident to a T1 as the

vertex with out-degree 2 and each of these edges are copied by vn+1. There is no way

for a new T2 to form at time n + 1 in the directed pure copy model. Any T2’s in

DCopy(n, p, q, Gn0) will only be those that were initially present in Gn0 .

At time n + 1, triangles can form in two different ways. The first way happens

when vn+1 copies a directed triangle incident to the copy vertex as we described above.
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Additional directed triangles can form in the directed copy model if an edge forms

from vn+1 to the copy vertex u. In this case, vn+1, u and each out-neighbour of vn+1

induce a directed triangle. In these directed triangles, vn+1 has out-degree two so

that a new T1 is formed in this case.

Theorem 2.5.20 Consider the directed copy model Gn = DCopy(n, p, q, Gn0) and

let Xn = ind(T1, Gn). Then

E(Xn) =

⎧⎪⎨
⎪⎩

Xn0 (n0−1)!

Γ(n0+p2)ep2 np2
+ O(np2−1) if q = 0, 0 < p < 1

q2p
(1−p)(1−p2)

n + O(np) if q > 0, 0 < p < 1

Proof Let Xn = ind(T1, Gn) and let en = ind(K2, Gn). Let Xvi,n denote the set of

T1’s incident to vi at time n in which vi has out-degree two in the directed triangle.

Let N+(vi, n) denote the out-neighbourhood of vi at time n. For all directed triangles

C in which vi has out-degree 2 let X(C, vi, n + 1) be the indicator that the triangle

C incident to vi is copied at time n + 1. This event occurs if vi is chosen as the copy

vertex at time n + 1 and each of the out-neighbours in C of vi are copied. Therefore

Pr(X(C, vi, n + 1) = 1) = p2

n
. Let Y (w, vi, n + 1) be the indicator variable for the

event that vi is selected as the copy vertex at time n + 1, an edge forms between vi

and vn+1 and vn+1 forms an edge to w ∈ N+(vi, n). All three of these events are

independent so Pr(Y (w, vi, n + 1) = 1) = qp
n

. Using conditional expectation we can

write

E(Xn+1|Gn) = Xn + E(
n∑

i=1

∑
C∈Xvi,n

X(C, vi, n + 1)) + E(
n∑

i=1

∑
w∈N+(vi,n)

Y (w, vi, n + 1))

= Xn +
n∑

i=1

p2

n
|Xvi,n| +

n∑
i=1

qp

n
|N+(vi, n)|

= Xn +
p2

n
Xn +

qp

n
en.
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Note that
∑n

i=1 |Xvi,n| = Xn as vi is the vertex of out-degree 2 in exactly one T1.

Applying expectation once more gives the recursive relation

E(Xn+1) = (1 +
p2

n
)E(Xn) +

qp

n
E(en).

This is the general form we have in Lemma 2.5.4. When q = 0 the recursive

relation simplifies to E(Xn+1) = (1 + p2

n
)E(Xn) whose solution from Lemma 2.5.3 is

E(Xn) =
Xn0(n0 − 1)!

Γ(n0 + p2)ep2 np2

+ O(np2−1).

If q �= 0 and 0 < p < 1 then using Lemma 2.5.5 we can write the solution of the

recursive relation as

E(Xn) = [np2
n−1∑
i=n0

(
q2p

1 − p
+ O(ip−1))i−p2

+
Xn0(n0 − 1)!

Γ(n + p2)ep2 np2

+ O(np2
n−1∑
i=n0

i−p2+p−2)](1 + O(
1

n
))

= [np2
n−1∑
i=n0

q2p

1 − p
i−p2

+
Xn0(n0 − 1)!

Γ(n + p2)ep2 np2

+ O(np2
n−1∑
i=1

i−p2+p−1)](1 + O(
1

n
))

=
q2p

(1 − p)(1 − p2)
n + O(np).

�

Counting 3-paths in the directed copy model is more complex than counting tri-

angles. There are three different directed 3 paths which can form at time n + 1 in

DCopy(n, p, q, Gn0).

P 1
3 P 2

3 P 3
3
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We count these 3 different types of 3-paths separately and combine them after-

wards to get the 3-path count for DCopy(n, p, q, Gn0).

Let’s begin with P 1
3 . There is only one way in which a P 1

3 can form at time n + 1.

vn+1u

In the diagram above, the red edges are added at time n + 1 and the black edges

are present at time n. A new P 1
3 forms at time n + 1 if vn+1 copies a P 1

3 which is

incident to the copy vertex u where u is the vertex of out-degree 2 in the P 1
3 .

Theorem 2.5.21 Consider the pure directed copy model Gn = DCopy(n, p, q, Gn0)

and let Xn = ind(P 1
3 , Gn). Then

E(Xn) =
Xn0(n0 − 1)!

Γ(n0 + p2)ep2 np2

+ O(np2−1).

Proof Let Xn = ind(P 1
3 , Gn). Let P 1

vi,n
be the number of P 1

3 ’s incident to vi at time

n in which vi is the vertex with out-degree two. For each vi and each C ∈ P 1
vi,n

, let

X(C, vi, n+1) be the event that a C ∈ P 1
vi,n

is copied at time n+1. This event occurs

if vi is chosen as the copy vertex at time n + 1 and each out-neighbour of vi in C is

copied by vn+1. Since all these events are independent Pr(X(C, vi, n + 1) = 1) = p2

n
.

Using conditional expectation we can write
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E(Xn+1|Gn) = = Xn + E(
n∑

i=1

∑
C∈P 1

vi,n

X(C, vi, n + 1))

= Xn +
n∑

i=1

∑
C∈P 1

vi,n

p2

n

= Xn +
n∑

i=1

|P 1
vi,n

|p
2

n

= Xn + Xn
p2

n
.

Note that
∑n

i=1 |P 1
vi,n

| = Xn. Applying expectation again we get the recursive

relation E(Xn+1) = (1 + p2

n
)E(Xn). Using Lemma 2.5.2 we get the solution

E(Xn) =
Xn0(n0 − 1)!

Γ(n0 + p2)ep2 np2

+ O(np2−1).

�

There are 3 different ways that a new P 2
3 can form at time n + 1 which we depict

in the diagrams below. Red edges are added at time n + 1, dashed red edges are

edges that could be added at time n + 1 but need to not be present for the induced

P 2
3 appear and black edges are those edges present at time n.

vn+1u

Case 1
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In Case 1, vn+1 copies a P 2
3 incident to the copy vertex u by replacing u in the

new P 2
3 formed at n + 1. It does not matter whether or not an edge forms from vn+1

to u.

vn+1uw

Case 2

In Case 2, a new P 2
3 is formed between vn+1, the copy vertex u and each out-

neighbour of u if vn+1 forms an edge to u but not to w.

vn+1u

w1

w2

Case 3

In Case 3, a new P 2
3 is formed between vn+1 and the copy vertex u’s out-neighbours

w1 and w2. In this case we require that an edge does not form between vn+1 and w2,

otherwise vn+1, w1 and w2 would induce a triangle. Also note that in the diagram

above, if the edge formed from vn+1 to w2 and not from vn+1 to w1 then vn+1, w1 and

w2 would induce a P 3
3 and not a P 2

3 .
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Theorem 2.5.22 Consider the pure directed copy model Gn = DCopy(n, p, q, Gn0)

with q > 0 and 0 < p < 1. Let Xn = ind(P 2
3 , Gn). Then

E(Xn) =
q2

(1 − p2)(1 − p)
n + O(np).

Proof Let Xn = ind(P 2
3 , Gn), en = ind(K2, Gn) and Tn = ind(T1, Gn). For Case

1, let P 2
vi,n

be the set of P 2
3 ’s incident to u at time n in which u is the vertex with

out-degree 1 and in-degree 0 in the P 2
3 . For a vertex vi and each C ∈ P 2

vi,n
let

X(C, vi, n + 1) be an indicator variable for the event that C is copied at time n + 1.

This event occurs if vi is selected as the copy vertex at time n+1 and vn+1 copies the

out-edge of u in C. Therefore Pr(X(C, vi, n + 1) = 1) = p
n
. For Case 2, let N+(vi, n)

be the set of out-neighbours of vi at time n. For a vertex vi and w ∈ N+(vi, n) let

Y (w, vi, n + 1) be an indicator variable for the event that vi is selected as the copy

vertex at time n + 1 and an edge forms from vn+1 to u but no edge forms from vn+1

to w. Therefore Pr(Y (w, vi, n + 1) = 1) = q(1−p)
n

. For Case 3, let Tvi,n be the set of

T1’s incident to vi at time n in which vi is the vertex with out-degree 2. For C ∈ Tvi,n

consisting of vertices vi,w1, w2 we assume wlog that there is a directed edge from w1

to w2. For a vertex vi and C ∈ Tvi,n let Z(C, vi, n+1) be an indicator variable for the

event that vi gets selected as the copy vertex at time n + 1 and vn+1 form an edge to

w1 but not to w2. We have that Pr(Z(C, vi, n + 1) = 1) = p(1−p)
n

. Using conditional

expectation we can write

E(Xn+1|Gn) = Xn + E(
n∑

i=1

∑
C∈P 2

vi,n

X(C, vi, n + 1)) + E(
n∑

i=1

∑
w∈N+(vi,n)

Y (w, vi, n + 1))

+ E(
n∑

i=1

∑
C∈Tvi,n

Z(C, vi, n + 1))

= Xn +
n∑

i=1

|P 2
vi,n

|p
n

n∑
i=1

deg+(vi, n)
q(1 − p)

n
+

n∑
i=1

|Tvi,n|
p(1 − p)

n
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= Xn +
p

n
Xn +

q(1 − p)

n
en +

p(1 − p)

n
Tn

Note that
∑n

i=1 |P 2
vi,v

| = Xn and
∑n

i=1 |Tvi,n| = Tn.

Applying expectation again we obtain,

E(Xn+1) = (1 +
p

n
)E(Xn) +

q(1 − p)

n
E(en) +

p(1 − p)

n
E(Tn).

If q > 0 and 0 < p < 1 then E(en) = q
1−p

n + O(np) and E(Tn) = q2p
(1−p)(1−p2)

n +

O(np). Therefore we can write,

E(Xn+1) = (1 +
p

n
)E(Xn) + q2 +

q2p2

(1 − p2)
+ O(np−1)

= (1 +
p

n
)E(Xn) +

q2

1 − p2
+ O(np−1)

In the proof of Theorem 2.5.20 we solved an equation of a similar form. Using

Lemma 2.5.5 we get the solution of this recursive relation as

E(Xn) =
q2

(1 − p2)(1 − p)
n + O(np).

�

We now consider the case of counting the number of P 3
3 ’s in DCopy(n, p, q, Gn0).

There will be 4 ways in which a P 3
3 can form DCopy(n, p, q, Gn0).

vn+1uw

Case 1
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In Case 1, a new P 3
3 is formed by vn+1 copying a P 3

3 incident to u at time n + 1

where u is the vertex with out-degree 1 and in-degree 0. Note that there is also a

potential additional P 3
3 formed here between vn+1, u and w if there is no edge added

between vn+1 and u at time n + 1. We consider this to be a separate case depicted

below.

vn+1uw

Case 2

In Case 2, a new P 3
3 is formed at time n + 1 between vn+1, the copy vertex u and

each out-neighbour w of u if vn+1 copies an edge to w but does not form an edge to

u.

vn+1uw

Case 3

In Case 3, a new P 3
3 forms between vn+1, the copy vertex u and each in-neighbour

w of u in the event that an edge forms from vn+1 to u.
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vn+1u

w1

w2

Case 4

In Case 4, a new P 3
3 is formed between vn+1 and the copy vertex u’s out-neighbours

w1 and w2. In this case we require that an edge does not form between vn+1 and w2,

otherwise vn+1, w1 and w2 would induce a triangle. Also, note that in the diagram

above, if the edge formed from vn+1 to w2 and not from vn+1 to w1 then vn+1, w1 and

w2 would induce a P 2
3 and not a P 3

3 .

Theorem 2.5.23 Consider the pure directed copy model Gn = DCopy(n, p, q, Gn0)

with q > 0 and 0 < p < 1. Let Xn = ind(P 3
3 , Gn). Then

E(Xn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pq+q+p2q
(1−p2)(1−2p)

n + O(n2p) if 0 < p < 1
2

pq+q+p2q
1−p2 nln(n) + O(n) if p = 1

2

Θ(n2p) if 1
2

< p < 1

Proof Let Xn = ind(P 3
3 , Gn), en = ind(K2, Gn) and Tn = ind(T1, Gn). To determine

E(Xn) we consider the four cases described above. For Case 1, let P 3
vi,n

be the set

of P 3
3 ’s incident to u at time n in which u is the vertex with out-degree 1 and in-

degree 0 in the P 3
3 . For a vertex vi and each C ∈ P 3

vi,n
let X(C, vi, n + 1) be an

indicator variable for the event that C is copied at time n + 1. This event occurs if

vi is selected as the copy vertex at time n + 1 and vn+1 copies the out-edge of u in
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C. Therefore Pr(X(C, vi, n + 1) = 1) = p
n
. For Case 2, let N+(vi, n) be the set of

out-neighbours of vi at time n. For a vertex vi and w ∈ N+(vi, n) let Y (w, vi, n + 1)

be an indicator variable for the event that vi is selected as the copy vertex at time

n + 1, an edge forms from vn+1 to w but no edge forms from vn+1 to vi. Therefore

Pr(Y (w, vi, n+1) = 1) = p(1−q)
n

. For Case 3, let N−(vi, n) be the set of in-neighbours

of vi at time n. For a vertex vi and w ∈ N−(vi, n) let Z(w, vi, n + 1) be an indicator

variable for the event that vi is selected as the copy vertex and an edge forms from

vn+1 to vi. We have Pr(Z(w, vi, n + 1) = 1) = q
n
. For Case 4, let Tvi,n be the set of

T1’s in which vi has out-degree 2. For C ∈ Tvi,n consisting of vertices vi, w1, w2 we

assume wlog that there is a directed edge from w1 to w2. For a vertex vi and C ∈ Tvi,n

let W (C, vi, n + 1) be an indicator variable for the event that vi gets selected as the

copy vertex at time n + 1 and vn+1 forms an edge to w1 but not to w2. We have that

Pr(W (C, vi, n + 1) = 1) = p(1−p)
n

. Using conditional expectation we can write,

E(Xn+1|Gn) = Xn + E(
n∑

i=1

∑
C∈P 3

vi,n

X(C, vi, n + 1)) + E(
n∑

i=1

∑
w∈N+(vi,n)

Y (w, vi, n + 1))

+ E(
∑
i=1

∑
w∈N−(vi,n)

Z(w, vi, n + 1) + E(
n∑

i=1

∑
C∈Tvi,n

W (C, vi, n + 1))

= Xn +
n∑

i=1

|P 3
vi,n

|p
n

+
n∑

i=1

deg+(vi, n)
p(1 − q)

n
+

n∑
i=1

deg−(vi, n)
q

n

+
n∑

i=1

|Tvi,n|
p(1 − p)

n

= Xn +
2p

n
Xn +

p(1 − q)

n
en +

q

n
en +

p(1 − p)

n
Tn.

Note that in the above we have
∑n

i=1 |P 3
vi,n

| = 2Xn as in each P 3 containing 2

vertices with out-degree 1 and in-degree 2.

Applying expectation again gives the recursive relation
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E(Xn+1) = (1 +
2p

n
)E(Xn) +

p(1 − q) + q

n
E(en) +

p(1 − p)

n
E(Tn).

If q > 0 and 0 < p < 1 then E(en) = q
1−p

n + O(np) and E(Tn) = q2p
(1−p)(1−p2)

n +

O(np). Therefore we can write,

E(Xn+1) = (1 +
2p

n
)E(Xn) +

(p(1 − q) + q)q

1 − p
+

p(1 − p)q2p

(1 − p)(1 − p2)
+ O(np−1)

= (1 +
2p

n
)E(Xn) +

pq + q + p2q

1 − p2
+ O(np−1)

If we set d = pq+q+p2q
1−p2 , then we solved the same recursive relation in Theorem

2.5.14. Therefore we obtain

E(Xn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pq+q+p2q
(1−p2)(1−2p)

n + O(n2p) if 0 < p < 1
2

pq+q+p2q
1−p2 nln(n) + O(n) if p = 1

2

Θ(n2p) if 1
2

< p < 1

�

Combining Theorems 2.5.21, 2.5.22,and 2.5.23 gives the expected number of 3-

paths in the pure directed copy model.

Theorem 2.5.24 Consider the pure directed copy model Gn = DCopy(n, p, q, Gn0)

with q > 0 and 0 < p < 1. Let Xn = ind(P3, Gn). Then

E(Xn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qp3−q2+2pq2−1
(1−p)2(2p−1)(1+p))

n + O(n2p) if 0 < p < 1
2

pq+q+p2q
1−p2 nln(n) + O(n) if p = 1

2

Θ(n2p) if 1
2

< p < 1
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2.6 Random Geometric Graphs

In this section we compute the expected subgraph counts in Geo([0, 1]t, d∞, n, r, p).

Recall that the infinity norm we use is derived from the torus metric. More specifically,

d∞ is derived from the product metric on ([0, 1], dtor)× ([0, 1], dtor)× . . .× ([0, 1], dtor).

Note that when t = 1, we have d∞ = dtor.

Our selection of the metric space ([0, 1]t, d∞) is due in part because the geometry of

the space leads to tractable calculations for subgraph counts. We begin this section

with an overview of the work that has already been done in computing expected

subgraph counts in RGG’s. In particular the 1D case of this RGG has received a

considerable amount of attention due to its connection to interval graphs. The RGG

with p = 1 has been well studied and some results concerning expected subgraph

counts have been given. We proceed with a discussion of these results.

2.6.1 Overview of Other Works

A comprehensive study of RGG’s with p = 1 and r = 1 is compiled by Penrose

in his book [108]. The RGG’s with the Euclidean metric that are studied in this

book are sometimes called unit disk graphs. In this book, the author gives many

results including work on subgraph counts, vertex degrees and connectivity. Specific

expected subgraph counts are not given in this book but a general theory about how

the expected value behaves is given. In particular, they show that subgraph counts

in the RGG’s satisfies a central limit theorem. Though [108] provides this powerful

general result for expected subgraph counts, it does not provide a comprehensive

mechanism for computing expected subgraph counts for a specified subgraph. There

have been some papers that have considered specific subgraph counts. In [127] the

authors consider ad-hoc networks which they model using Geo([0, 1]2, dtor, n, r, 1). In

this work the authors give a precise calculation of the expected number of triangles and
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3-paths. In [75] the authors consider a virus spreading in the Geo([0, 1], dtor, n, r, 1)

and Geo([0, 1]2, dtor, n, r, 1). The authors give precise calculations for the expected

number of edges and triangles in these models. In [15] the authors consider the RGG

Geo([0, 1]t, d∞, n, r, 1) as a model for telecommunication networks. Note that in this

paper, d∞ is derived from the Euclidean metric. In this paper they give a precise

count for the expected number of k-cliques for all k in the RGG model. To the best

of our knowledge there are no further results on specific subgraph counts in the RGG

model in the literature.

2.6.2 General Method for Counting Subgraphs in Random Geometric

Graphs

In this section we motivate our procedure for counting subgraphs in RGG’s. Here we

provide general definitions and theorems that can be used for any RGG.

Suppose we have a graph H of size k and wish to count the expected number

of times H appears in Geo(S, d, n, r, p). Our approach follows two steps. We first

consider the case that p = 1 and compute the probability that Geo(S, d, k, r, 1) ∼= H.

When p = 1, two vertices u and v are adjacent if d(u, v) < r. In the second step, we

consider the probability that H will remain when we “flip on” the value of p. Now

edges that were present when p = 1 are present with probability p and not present

with probability 1 − p.

All previous work in computing expected subgraph counts in RGGs [75, 15, 127]

has only dealt with the p = 1 case. Though each of these papers dealt with different

geometric spaces, their general approach was the same; compute the probability that

a set of k vertices induce H and sum over all possible k-sets. Our approach will be

similar but more descriptive than the approaches described in [75, 15, 127].

We define PrH = Pr(Geo(S, d, k, r, 1) ∼= H). We will see for some graphs H, in

some geometric spaces, that PrH = 0. If PrH > 0, then we call H a feasible graph.
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The computation of PrH depends on the underlying metric space and in general

is a tricky computation. To properly compute PrH you must consider all possible

orderings of k vertices in the space which lead to an induced H. We will develop

general methods for computing PrH for the metric space ([0, 1]t, d∞) in Sections 2.6.3

and 2.6.5.

Once PrH is computed, the following lemma can be used to compute

E(ind(H,Geo(S, d, n, r, 1))). This result is observed in [108] but the proof is omit-

ted. The proof is straightforward and we include it here.

Lemma 2.6.1 ([108]) Consider H ∈ Ck. Let Gn = Geo(S, d, n, r, 1) and Hn =

ind(H,Gn). Then E(Hn) = PrH

(
n
k

)
.

Proof For any k-set Sk ⊂ V (Gn), the probability that Sk induces H in Gn is PrH .

By the linearity of expectation E(Hn) =
∑

Sk⊂V (Gn)

PrH = PrH

(
n
k

)
. �

Next we give a lemma for computing the expected number of subgraphs in the

general RGG Geo(S, d, n, r, p). The result and the proof will be easier to understand

by imagining the construction of Geo(S, d, n, r, p) in the following way. We first form

the graph Geo(S, d, n, r, 1). Then, for each edge, we either retain the edge with

probability p or remove the edge with probability 1−p. Now consider H, G ∈ Ck with

inj(H,G) �= 0. Consider a k-set of Geo(S, d, n, r, 1) which induces G. It is possible

that this k-set will induce H in Geo(S, d, n, r, p) if the correct edges are removed to

leave an induced copy of H. For example, three vertices all mutually within distance

r of one another would form a triangle in Geo(S, d, n, r, 1). These three vertices would

induce a 3-path in Geo(S, d, n, r, p) if exactly one of the edges is removed.

Lemma 2.6.2 Consider H ∈ Ck. Let Gn = Geo(S, d, n, r, p) and Hn = ind(H,Gn).

Then
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E(Hn) =
∑
G∈Ck

inj(H,G)PrGpe(H)(1 − p)e(G)−e(H)

(
n

k

)
,

where e(G) and e(H) are the number of edges in G and H respectively.

Proof Let T denote the set of all k-sized subsets of V (Gn). For T ∈ T , let HT be

an indicator variable for the event that T induces H in Gn and HT be the event that

T would have induced H if p = 1. We can write

Pr(HT = 1) =
∑
G∈Ck

Pr(HT = 1 ∩ GT = 1) =
∑
G∈Ck

Pr(HT = 1|GT = 1)Pr(GT = 1).

By definition, Pr(GT = 1) = PrG. For Pr(HT = 1|GT = 1), we have for each

injective copy of H in G, an induced copy of H can remain if the edges in G which

are not in H are removed while the edges in G that are in H remain. Therefore we

have that Pr(HT = 1|GT = 1) = inj(H, G)pe(H)(1 − p)e(G)−e(H). Therefore

Pr(HT = 1) =
∑
G∈Ck

inj(H, G)PrGpe(H)(1 − p)e(G)−e(H).

Since HT is an indicator variable, Pr(HT = 1) = E(HT ). Overall we have

E(Hn) =
∑
T∈T

Pr(HT = 1)

=
∑
T∈T

E(HT )

=
∑
T∈T

∑
G∈Ck

inj(H, G)PrGpe(H)(1 − p)e(G)−e(H)

=
∑
G∈Ck

inj(H, G)PrGpe(H)(1 − p)e(G)−e(H)

(
n

k

)
.

�
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We see that if we take p = 1, the result from Lemma 2.6.2 reduces to give the

result from Lemma 2.6.1. In Lemma 2.6.2 the term in the sum which corresponds

to H is PrHpe(H)
(

n
k

)
as inj(H,H) = 1. When p = 1, all other terms in the sum

disappear and we are left with PrH

(
n
k

)
.

2.6.3 General Method for Counting Subgraphs in 1D Random

Geometric Graphs

In this section we describe a general method for computing PrH in 1D geometric

graphs. The 1D case is the easiest case because vertices placed in [0, 1] have a natural

ordering in the space. Thus considering all possible vertex placements which induce

H is more straightforward than in higher dimensions.

Consider vertices u1, u2, . . . , uk placed in [0, 1]. Consider these vertices located

in [0, 1] at x1 < x2 < . . . < xk. We use the convention of relabeling the vertices

v1, v2, . . . , vk so that the vertex vi corresponds to the vertex located at xi. We define

PrH(v1, v2, . . . , vk) = Pr(Geo([0, 1], d, k, r, 1) ∼= H|x1 < x2 < . . . < xk). To determine

PrH(v1, v2, . . . , vk) we need to consider all placements of v1, v2, . . . , vk which satisfy

x1 < x2 < . . . < xk which lead to an induced copy of H. The computation of

PrH(v1, v2, . . . , vk) is one fundamental part in the computation of PrH . Two further

considerations are needed. One of these considerations is simply the k! labelings of

the vertices u1, u2, . . . , uk as v1, v2, . . . , vk. In other words, k! refers to the number of

ways to place u1, u2, . . . , uk can be placed so that they occupy the same position in

the space, i.e. the k! orders in which the vi’s can be placed in the space.

The final consideration concerns what we call the automorphism orderings of the

vertices in the space. It is best to illustrate this idea with an example. Consider three

vertices u1, u2, u3. We wish to compute the probability that these 3 vertices induce a

3-path in [0, 1]. To do so we consider placing the vertices in the space so that they

are located at x1 < x2 < x3. The final concern becomes clear when we think; which
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vertex in the 3-path is located at x1? In the 3-path, there are 2 vertices of degree

1 and one vertex of degree 2. It matters which order these vertices are placed in

the space. For example, suppose we place the degree 2 vertex at x1 and the degree

1 vertices at x2 and x3. For this to induce a 3-path we would need |x3 − x1| < r,

|x2 − x1| ≥ r and |x2 − x3| ≥ r, which is impossible since x1 < x2 < x3. However,

if we place the degree 2 vertex at x2 it is possible for a 3-path to form. We denote

the automorphism orbits for a graph G by A1, A2, . . . , Am. We write ai for a vertex

in Ai. We define an automorphism ordering, denoted by a<, as an ordering of

the vertices by their automorphism orbits. In an automorphism ordering, we do not

distinguish between vertices from the same automorphism orbit. The ordering of

the vertices in the automorphism ordering corresponds to the ordering in [0, 1]. We

denote A<(G) as the set of all automorphism orderings in G. In the 3-path there are

two automorphism orbits: A1 containing the vertices of degree 1 and A2 containing

the vertices of degree 2. We have A<(P3) = {a1a1a2, a1a2a1, a2a1a1}. Given a< ∈

A<(H) we define PrH,a<(v1, v2, . . . , vk) = Pr(Geo([0, 1], d, k, r, 1 ∼= H)|a<). For the 3-

path, for the automorphism orderings a1a1a2 and a2a1a1, we have PrP3,a<(v1, v2, v3) =

0 so that a2a1a1 is the only automorphism ordering which contributes a non-zero

probability to the calculation of PrP3 .

We are now ready to give our subgraph counting lemma.

Lemma 2.6.3 Consider a graph H ∈ Ck and let Geo([0, 1], d, n, r, 1). Then

PrH = k!
∑

a<∈A<(H)

PrH,a<(v1, v2, . . . , vk). (2.13)

Proof Consider k vertices u1, u2, . . . , uk. To determine the probability that these k

vertices induce H in Gk we need to consider all the arrangements of u1, u2, . . . , uk in

[0, 1] which induce H. Let L(u1, u2, . . . , uk) the set of all labelings of u1, u2, . . . , uk

as v1, v2, . . . , vk located at x1 < x2 < . . . < xk. Summing over all possible vertex
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labelings and automorphism orderings we have,

PrH =
∑

L(u1,u2,...,uk)

∑
a<∈A<(H)

PrH,a<(v1, v2, . . . , vk)

= k!
∑

a<∈A<(H)

PrH,a<(v1, v2, . . . , vk)

=
∑

a<∈A<(H)

k!PrH,a<(v1, v2, . . . , vk).

�

2.6.4 Counting Subgraphs in Geo([0, 1], dtor, n, r, p)

In this section we use Lemma 2.6.2 and Lemma 2.6.3 to compute the expected sub-

graph counts for size 3 and size 4 connected graphs in Geo([0, 1], dtor, n, r, p). For

brevity, for the remainder of this section we write Geo(n, r, p) as we work exclusively

with ([0, 1], dtor).

Before we proceed, we would like to point out a feature of the metric space

([0, 1], dtor) which simplifies the computation of PrH .

With the torus metric, the interval [0, 1] can also be viewed as a circle with cir-

cumference 1, with the distances between vertices determined by their distance along

the circumference of the circle. For our computations, it will be more convenient

to imagine the vertices placed in [0, 1]. Therefore, to determine the torus distance

between two points in [0, 1], we will have to consider the influence region of vertices

close to 0 or 1 as “wrapping” around the boundary and coming out of the other

side of interval. This “wrap around” effect serves to complicate the computation of

PrH . Fortunately, for small enough values of r, we show it is possible to ignore this

effect. First consider the following example to illustrate how the value of r affects

Geo(n, r, 1).
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0 0.3 0.6 1

v1 v2 v3

Figure 2.3: Three vertices v1, v2, v3 placed in Geo(3, r, 1).

We see that v1, v2, v3 are located at x1 = 0, x2 = 0.3 and x3 = 0.6. Therefore

dtor(v1, v2) = 0.3, dtor(v2, v3) = 0.3 and dtor(v1, v3) = 0.4. Note that for v1 and v3, a

distance of 0.4 is determined by wrapping around the boundary of [0, 1]. If r < 0.3,

then no two vertices are within distance r so Geo(3, r, 1) consists of three isolated

vertices. If 0.3 ≤ r < 0.4, then v1 ∼ v2, v2 ∼ v3 and v1 � v3 so Geo(3, r, 1) ∼= P3.

However if 0.4 ≤ r ≤ 0.5, then v1 ∼ v2, v2 ∼ v3 and v1 ∼ v3 so Geo(3, r, 1) ∼= K3.

Note that if r ≥ 1
2

then Geo(n, r, 1) ∼= Kn for every n.

As this example illustrates, depending on the value of r, the subgraph induced by

a given set of vertices can change. In particular, for larger values of r the influence

region of a vertex can wrap around the boundary which will lead to more complex

considerations. To make things simple, we would like to only consider arrangements

in which the wrap around effect can be ignored. In other words, we do not wish to

consider vertices placed in (1 − r, 1).

In Lemma 2.6.4 we argue that any placement of k vertices in [0, 1] is equivalent

to another placement of vertices such that one vertex is located at 0, no vertex lies

outside of [0, 1 − 1
k
] and the distance between each pair of vertices is preserved.

Lemma 2.6.4 Consider the placement of k vertices v1, v2, . . . , vk in [0, 1] located at

x1 < x2 < . . . < xk. The vertices can be relabeled and have their vertex locations

shifted so that all k vertices lie in [0, 1 − 1
k
], x1 = 0 and torus distance between each

pair of vertices is preserved.

Proof Consider an arbitrary placement of v1, v2, . . . , vk satisfying x1 < x2 < . . . < xk.
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If no vertex lies in [1 − 1
k
, 1] then map each vertex vi to xi − x1. Then x1 = 0, no

vertex lies in [1 − 1
k
, 1] and the torus distance between each pair is preserved.

Suppose now that some vertex does lie in (1− 1
k
, 1]. Suppose further that for each

i, i + 1, dtor(xi, xi+1) = 1
k
. In this case, the vertices are maximally spread out in the

space and each interval [ i
k
, i+1

k
), i = 0, 1, . . . , k − 1 contains exactly one vertex. Map

each vertex to the new location xi−x1. Now the vertices are located at 0, 1
k
, . . . , 1− 1

k
.

Thus x1 = 0, no vertex lies in (1 − 1
k
, 1) and the torus metric distance between each

pair of vertices is preserved.

Again, suppose that some vertex lies in (1 − 1
k
, 1]. If the distance between each

pair of vertices is not 1
k

then it implies that there exists a pair of vertices vi, vi+1 such

that xi+1 − xi > 1
k
. Translate the location of each vertex vj to xj − xi + k−1

k
. Now

xi is located 1 − 1
k

and such xi+1 − xi > 1
k
, there is no vertex located in (1 − 1

k
, 1].

At this point we re-labeled the vertices by v1, v2, . . . , vk so that x1 < x2 < . . . < xk.

Now since no vertex is located in (1 − 1
k
, 1], we translate the vertices one more time

by xi − x1. �

If we only consider r ≤ 1
k
, then Lemma 2.6.4 allows us to ignore the “wrap around”

effect by only consider placements of u1, u2, . . . , uk in [0, 1 − 1
k
].

We are now ready to start computing some subgraph counts. We begin with the

simple task of counting the number of edges. The calculation of the expected number

of edges with p = 1 is given in [75]. We restate their result using our method in

Lemma 2.6.3 and extend the result to the more general case 0 < p < 1.

Theorem 2.6.5 Let Gn = Geo(n, r, p), en = ind(K2, Gn) and r ≤ 1
2
. Then E(en) =

2rp
(

n
2

)
.

Proof Let H = K2 and let en = ind(H,Gn). We first use Lemma 2.6.3 to compute

PrH . For K2, there is only one automorphism ordering a< to consider. Consider
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v1, v2 located at x1 = 0 < x2. For v2 to be adjacent to v1 is needs to fall into the

interval (0, r). Therefore,

PrH,a<(v1, v2) =

∫ r

0

dx2 = r.

By Lemma 2.6.3, PrH = 2r. Using Lemma 2.6.2 we have E(en) = 2rp
(

n
2

)
.

�

We now proceed to use Lemma’s 2.6.3 and 2.6.2 to compute the expected subgraph

counts of the size 3 and size 4 connected graphs. For the size 4 subgraphs we use the

names given in Figure 1.1.

The calculation for the number of triangles in the p = 1 case can be found in [75].

We extend this to the general 0 < p < 1 case and include the calculation for the

expected number of P3’s in the following theorem.

Theorem 2.6.6 Let Gn = Geo(n, r, p) with 0 ≤ r ≤ 1
3

and let Xn = ind(K3, Gn) and

Yn = ind(P3, Gn). Then E(Xn) = 3r2p3
(

n
3

)
and E(Yn) = (9r2p2(1 − p) + 3r2p2)

(
n
3

)
.

Proof K3 : In K3 there is only one automorphism orbit and thus only one automor-

phism ordering a< to consider in the computation of PrK3 . Consider vertices

v1, v2, v3 located at x1 = 0 < x2 < x3. For all three of these vertices to be

adjacent to one another we need x1 = 0 < x2 < x3 < r. Therefore,

PrK3,a<(v1, v2, v3) =

∫ r

0

∫ r

x2

dx3dx2 =
r2

2
.

By Lemma 2.6.3,

PrK3 = 3!
r2

2
= 3r2.

When 0 < p < 1, we use Lemma 2.6.2 to obtain
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E(Xn) =
∑
G∈C3

inj(K3, G)PrGpe(K3)(1 − p)e(G)−e(H)

(
n

3

)

Since K3 is the only G ∈ C3 such that inj(K3, G) �= 0, we have E(Xn) =

3r2p3
(

n
3

)
.

P3 : Let Yn = ind(P3, Gn). In a 3-path there are two automorphism orbits A1 and

A2. Let A1 contain the two vertices of degree 1 and let A2 contain the vertex

of degree 2. There are three distinct automorphism orderings of these vertices:

a<,1 = a1a1a2, a<,2 = a1a2a1, and a<,3 = a2a1a1. Of these three orderings,

only a<,2 results in a non-zero PrP3,a<(v1, v2, v3). For a1,<, the two vertices in

A1 are not adjacent to one another so x2 > r. However the vertex in A2 is

adjacent to both the vertices in A1. However since this vertex is located at

x3 and x3 > x2 > r it cannot be adjacent to the vertex located at x1. Thus

PrP3,a<,1(v1, v2, v3) = 0 for this automorphism ordering. A similar explanation

gives PrP3,a<,3(v1, v2, v3) = 0. Consider the automorphism ordering a1a2a1. For

the vertices to induce a P3 we require that x1 = 0 < x2 < r < x3 < x2 + r.

Therefore,

PrP3,a<,2(v1, v2, v3) =

∫ r

0

∫ x2+r

r

dx3dx2 =
r2

2
.

By Lemma 2.6.3, PrP3 = 3! r2

2
= 3r2. Since inj(P3, P3) = 1 and inj(P3, K3) = 3,

by Lemma 2.6.2 we have E(Yn) = (9r2p2(1 − p) + 3r2p2)
(

n
3

)
.

�

It is interesting to note that in Geo(n, r, 1) we expect to see the same number of

P3 and K3 if r ≤ 1
3
.

Theorem 2.6.6 serves as a good example for the reader in how Lemmas 2.6.2 and

2.6.3 can be used to find expected subgraph counts in Geo(n, r, p). We now give the



131

expected subgraph counts for the size 4 connected graphs. We use the gi notation for

these subgraphs which was introduced in Figure 1.1. In an attempt to not overwhelm

the reader, we break the result into two Theorems: one which gives the Prgi
values

and another which gives the expected subgraph counts.

Theorem 2.6.7 Consider Gn = Geo(4, r, 1) where 0 ≤ r < 1
4
. Then

gi g3 g4 g5 g6 g7 g8

Prgi
0 8r3 8r3 0 4r3 4r3

Proof g3 : In g3 there are two automorphism orbits: A1 which contains all the degree

1 vertices and A2 which contains the degree 3 vertex. There are 4 automorphism

orderings to consider: a<,1 = a1a1a1a2, a<,2 = a1a1a2a1, a<,3 = a1a2a1a1 and

a<,4 = a2a1a1a1. We argue that for each of these orderings

Prg3,a<,i
(v1, v2, v3, v4) = 0. For a<,1, the vertex in A2 is adjacent to each of the

vertices in A1 but no two vertices in A1 are adjacent to one another. According

to this ordering we have x1 = 0 < x2 < x3 < x4. The vertex in A2 is located at

x4. Since the vertex in A2 is adjacent to the vertex located at x1 it follows that

x4 ∈ [0, r]. Since x2 < x3 < x4 < r it follows that the vertices at x2 and x3 are

also adjacent to the vertex at x1. This gives a contradiction. A similar argument

shows that the other automorphism orderings result in Prg3,a<,i
(v1, v2, v3, v4) =

0.

g4 = P4 : In P4, there are two automorphism orbits: A1 which consists of the degree

1 vertices and A2 which consists of the degree 2 vertices. There are 6 auto-

morphism orderings: a<,1 = a1a1a2a2, a<,2 = a1a2a1a2, a<,3 = a1a2a2a1, a<,4 =

a2a2a1a1, a<,5 = a2a1a2a1, and a<,6 = a2a1a1a2. It is straightforward to check

that only a<,3 = a1a2a2a1 results in a non-zero PrP4,a< . For this ordering of
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gi A<(gi)
a1 a1

a2 a1 a1a1a1a2, a1a1a2a1, a1a2a1a1, a2a1a1a1

a2 a1

a2 a1 a1a1a2a2, a1a2a1a2, a1a2a2a1, a2a2a1a1, a2a1a2a1, a2a1a1a3

a1 a3

a2 a2 a1a2a2a3, a1a2a3a2, a1a3a2a2, a2a1a2a3, a2a1a3a2, a2a2a1a3, a2a2a3a1, a2a3a1a2,
a2a3a2a1, a3a1a2a2, a3a2a1a2, a3a2a2a1

a1 a1

a1 a1 a1a1a1a1

a1 a2

a2 a1 a1a1a2a2, a1a2a1a2, a1a2a2a1, a2a2a1a1, a2a1a2a1, a2a1a1a2

a1 a1

a1 a1 a1a1a1a1

Figure 2.4: Automorphism orderings for C4
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vertices we need placements of vertices at x1 = 0 < x2 < r < x3 < x2 + r <

x4 < x3 + r to get an induced copy of P4. This gives

PrP4,a<,3(v1, v2, v3, v4) =

∫ r

0

∫ x2+r

r

∫ x3+r

x2+r

dx4dx3dx2 =
r3

3
.

Using Lemma 2.6.3 we have PrP4 = 4! r3

3
= 8r3.

g5 : In g5 there are 3 automorphism orbits: A1 which contains the degree 1 vertex, A2

which contains the degree 2 vertices and A3 which contains the degree 3 vertex.

We have 12 automorphism orderings of the vertices: a<,1 = a1a2a2a3, a2,< =

a1a2a3a2, a3,< = a1a3a2a2, a<,4 = a2a2a1a3, a<,5 = a2a2a3a1, a<,6 = a2a1a2a3, a<,7 =

a2a1a3a2, a<,8 = a2a3a1a2, a<,9 = a2a3a2a1, a<,10 = a3a1a2a2, a<,11 = a3a2a1a2,

and a<,12 = a3a2a2a1. It is straightforward to check the automorphism order-

ings a<,3 = a1a3a2a2 and a<,5 = a2a2a3a1 are the only two of the 12 which gives

a non-zero value for Prg5,a<,i
(v1, v2, v3, v4). Let’s consider a1a3a2a2 first. For

this ordering to induce a g5 we require x1 = 0 < x2 < r < x3 < x4 < x2 + r.

This gives

Prg5,a<,3(v1, v2, v3, v4) =

∫ r

0

∫ x2+r

r

∫ x2+r

x3

dx4dx3dx2 =
r3

6
.

For the ordering a2a2a3a1 to induce a g5 we require x1 = 0 < x2 < x3 < r <

x2 + r < x4 < x3 + r. This gives

Prg5,a<,5(v1, v2, v3, v4) =

∫ r

0

∫ r

x2

∫ x3+r

x2+r

dx4dx3dx2 =
r3

6
.

Using Lemma 2.6.3 we have



134

Prg5 =
∑

a<∈A<

k!Prg5,a<(v1, v2, v3, v4)

= 4!
r3

6
+ 4!

r3

6

= 8r3.

g6 = C4: There is only one automorphism orbit for C4 and thus only one automor-

phism ordering to check. Consider the order x1 = 0 < x2 < x3 < x4. Each of

these vertices must be adjacent to exactly two of the other vertices. Since v2

and v3 are the two vertices closest to v1, it follows that v1 is adjacent to both

of these vertices. It follows that v4 is also adjacent to v2 and v3 (v4 has two

neighbours one of which can not be v1). Since v4 is adjacent to v2 it follows

that x4 < x2 + r. Since x3 < x4, we must also have x3 < x2 + r so v2 and v3

are adjacent as well. But then v2 and v3 are universal vertices. A contradiction

which implies that PrC4,a<(v1, v2, v3, v4) = 0.

g7 : In g7 there are two automorphism orbits: A1 containing the degree 2 vertices

and A2 containing the degree 3 vertices. There are 6 automorphism order-

ings: a<,1 = a1a1a2a2, a<,2 = a1a2a1a2, a<,3 = a1a2a2a1, a<,4 = a2a2a1a1, a<,5 =

a2a1a2a1, and a<,6 = a2a1a1a2. It is straightforward to check that a<,3 is the

only arrangement in which Prg7,a<,i
�= 0. For this ordering to induce a g7 we

require x1 = 0 < x2 < x3 < r < x4 < x2 + r. This gives

Prg7,a<,3(v1, v2, v3, v4) =

∫ r

0

∫ r

x2

∫ x2+r

r

dx3dx2dx1 =
r3

6
.

Using Lemma 2.6.3 we have Prg7 = 4! r3

6
= 4r3.

g8 = K4: There is only one automorphism class for K4. For this ordering to induce
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a K4 we require that x1 = 0 < x2 < x3 < x4 < r. This gives

PrK4,a< =

∫ r

0

∫ r

x2

∫ r

x3

dx4dx3dx2 =
r3

6
.

Using Lemma 2.6.3 we have PrK4 = 4! r3

6
= 4r3.

�

In Figure 2.5, we experimentally verify our results from Theorem 2.6.7 and 2.6.6 by

running 5000 simulations of Geo(1000, 0.01, 1) and comparing our expected subgraph

calculations with the expected value of the samples.

We obtain the expected subgraph counts in Geo(n, r, p) by taking our result above

in Theorem 2.6.7 and plugging them into Lemma 2.6.2. The only detail which is left

to work out is to determine for each G ∈ Ck and each gi ∈ Ck the number of injective

copies of gi in each G. This is a straightforward exercise and we tabulate the results

in Figure 2.6.

Theorem 2.6.8 Let Gn = Geo(n, r, p) where 0 ≤ r < 1
4
. Let Xi,n = ind(gi, Gn).

Then

gi E(Xi,n)

g3 (8r3p3(1 − p) + 8r3p3(1 − p)2 + 16r3p3(1 − p)3)
(

n
4

)
g4 (48r3p3(1 − p)3 + 24r3p3(1 − p)2 + 16r3p3(1 − p) + 8r3p3)

(
n
4

)
g5 (8r3p4 + 48r3p4(1 − p)2 + 16r3p4(1 − p))

(
n
4

)
g6 (12r3p4(1 − p)2 + 4r3p4(1 − p))

(
n
4

)
g7 (4r3p5 + 24r3p5(1 − p))

(
n
4

)
g8 4r3p6

(
n
4

)
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Figure 2.5: Histograms showing subgraph counts for P3, K3, P4, g5, g7, K4 from 5000
simulations of Geo([0, 1], dtor, 1000, 0.01, 1). The blue line corresponds to the expec-
tations from Theorems 2.6.6 and 2.6.7 and the red line corresponds to the average of
the sample.
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inj(gi, gj) g3 g4 g5 g6 g7 g8

g3 1 0 1 0 2 4
g4 0 1 2 4 6 12
g5 0 0 1 0 4 12
g6 0 0 0 1 1 3
g7 0 0 0 0 1 6
g8 0 0 0 0 0 1

Figure 2.6: Number of injective copies of gi contained in gj

Proof g3: Using the results from Theorem 2.6.7 and Lemma 2.6.3 we have

E(X3,n) =
∑
G∈Ck

inj(g3, G)Prg3p
e(g3)(1 − p)e(G)−e(g3)

(
n

4

)
.

From Theorem 2.6.7 we have that Prg3 = 0 so the only non-zero terms to consider

are those in which inj(g3, gj) �= 0. These give,

E(X3,n) =
∑
G∈Ck

inj(g3, G)PrGpe(g3)(1 − p)e(G)−e(g3)

(
n

4

)

= (inj(g3, g5)Prg5p
e(g3)(1 − p)e(g5)−e(g3) + inj(g3, g7)Prg7p

e(g3)(1 − p)e(g7)−e(g3)

+ inj(g3, g8)Prg8p
e(g3)(1 − p)e(g8)−e(g3))

(
n

4

)

= ((1)(8r3)p3(1 − p) + (2)(4r3)p3(1 − p)2 + (4)(4r3)p3(1 − p)3)

(
n

4

)

= (8r3p3(1 − p) + 8r3p3(1 − p)2 + 16r3p3(1 − p)3)

(
n

4

)

The results for the remaining graphs follow in an identical manner.

�

The method used in Theorems 2.6.6 and 2.6.8 can be used to count the expected

number of subgraphs in Geo(n, r, p) for any subgraph you may be interested in. It

is straightforward to use this method to count the expected number of subgraphs of
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any complete subgraph of size m. The expected number of complete subgraphs of

size m in the p = 1 case was previously computed in [15]. We prove their result using

our method and extend it to the 0 < p < 1 case in the following theorem.

Theorem 2.6.9 Let Gn = Geo(n, r, p) with r ≤ 1
m

and let Km be a complete graph

on m ≤ n vertices. Then E(ind(Km, Gn)) = mrm−1p(m
2 )

(
n
m

)
.

Proof Let Xn = ind(Km, Gn). In Km, there is only one automorphism orbit and

thus only one automorphism ordering a<. For this ordering to induce a Km we require

that x1 = 0 < x2 < . . . < xm < r. This gives

PrKm,a<(x1, x2, . . . , xm) =

∫ r

0

∫ r

x2

∫ r

x3

. . .

∫ r

xm−1

dxmdxm−1 . . . dx2 =
rm−1

(m − 1)!
.

This gives PrKm = m! rm−1

(m−1)!
= mrm−1. Using Lemma 2.6.2 we have E(Xn) =

mrm−1p(m
2 )

(
n
m

)
. �

Counting Subgraphs in Geo([0, 1], deuc, n, r, p)

Before continuing our investigation of Geo([0, 1]t, d∞, n, r, p) in higher dimensions it

would be interesting to first consider the 1D RGG with the Euclidean metric instead

of the torus metric. The main difference between the Euclidean metric and the torus

metric is that under the Euclidean metric each point in [0, 1] is distinct. For this

reason, when computing PrH,a<(x1, . . . , xk), we can no longer fix the location of x1

at 0 or use Lemma 2.6.4. This makes the computation of PrH more difficult because

now that x1 is not at a fixed location, there are more vertex arrangements to consider.

However, Lemma 2.6.2 and Lemma 2.6.3 can still be used. The 1D RGG with the

Euclidean metric was studied in [13, 14, 15] for the case p = 1. The following

calculation for the number of edges is originally given in [15] for the p = 1 case. We

extend to the 0 < p < 1 case.
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Theorem 2.6.10 Let Gn = Geo([0, 1], deuc, n, r, p) and let en = ind(K2, Gn). Then

E(en) = (2r − r2)p
(

n
2

)
.

Proof In K2 there is only one automorphism class and one automorphism ordering

a< to consider. Consider the placement of vertices v1 and v2 at x1 < x2. If x1 falls

into [0, 1 − r] the right hand side of the influence region of v1 lies entirely in [0, 1]. If

x1 ∈ [1 − r, 1] then the left hand side of v1’s gets truncated by the barrier at 1. We

can write

PrK2,a<(v1, v2) =

∫ 1−r

0

∫ x1+r

x1

dx2dx1 +

∫ 1

1−r

∫ 1

x1

dx2dx1

= r(1 − r) + r − 1

2
+

(1 − r)2

2

= r − r2

2
.

By Lemma 2.6.3 PrK2 = 2!(r− r2

2
) = 2r− r2. By Theorem 2.6.2 we have E(en) =

(2r − r2)p
(

n
2

)
.

�

We see that if r is small, then the number of edges in the 1D RGG with the

torus metric and the Euclidean metric are almost the same since r2 will be small.

This is not surprising because when r is small the border effect created by using the

Euclidean metric is minimal.

We conclude our work with the 1D RGG by considering the subgraph counts for

K3 and P3. The calculation for K3 for the p = 1 case was originally given in [15]. We

extend this result for the case 0 < p < 1.

Theorem 2.6.11 Let Gn = Geo([0, 1], deuc, n, r, p) with 0 ≤ r ≤ 1 and let Xn =

ind(K3, Gn). Then E(Xn) = r2(3 − 2r)p3
(

n
3

)
.
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Proof In K3 there is only one automorphism orbit and only one automorphism order-

ing a< to consider. Consider the placement of the vertices v1, v2, v3 at x1 < x2 < x3.

Much like the case for K2, we consider the case where x1 ∈ [0, 1−r] and x1 ∈ [1−r, 1]

separately. We can write

PrK3,a<(v1, v2, v3) =

∫ 1−r

0

∫ x1+r

x1

∫ x1+r

x2

dx3dx2dx1 +

∫ 1

1−r

∫ 1

x1

∫ 1

x2

dx3dx2dx1

=
r2(1 − r)

2
+

r

2
− 1

3
+

(1 − r)2

2
− (1 − r)3

6

= r2(
1

2
− r

3
).

From Lemma 2.6.3 we have that PrK3 = 3!r2(1
2
− r

3
) = r2(3 − 2r). By Lemma

2.6.2 we have that E(Xn) = r2(3 − 2r)p3
(

n
3

)
.

�

Theorem 2.6.12 Consider Gn = Geo([0, 1], deuc, n, r, p) and let Xn = ind(P3, Gn).

Then

E(Xn) =

⎧⎪⎨
⎪⎩

((3r2 − 4r3)p2 + 3r2(3 − 2r)p2(1 − p))
(

n
3

)
if r ∈ [0, 1

2
)

((r − 1)2(4r − 1)p2 + 3r2(3 − 2r)p2(1 − p))
(

n
3

)
if r ∈ [1

2
, 1]

.

Proof As was the case with the torus metric, only the automorphism ordering a< =

a1a2a1 leads to an induced P3. Consider vertices v1, v2, v3 located at x1 < x2 < x3.

The cases with r ≤ 1
2

and r > 1
2

need to be dealt with separately. The reason for

this, which will become clear as we progress through the proof, is that there are less

possible vertex arrangements if r > 1
2
.

Case 1: 0 < r < 1
2

There are two possible regions in which v1 can be placed. The
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first interval is x1 ∈ [0, 1−2r]. In this case x2 ∈ [x1, x1+r] and x3 ∈ [x1+r, x2+r].

The second possible location for x1 is in [1−2r, 1−r]. Note that if x1 ∈ [1−r, 1]

then there would be no where to place x3 so that deuc(x1, x3) < r. If x1 ∈

[1 − 2r, 1 − r] then we can either have x2 ∈ [x1, 1 − r] and x3 ∈ [x1 + r, x2 + r]

or x2 ∈ [1 − r, x1 + r] and x3 ∈ [x1 + r, 1]. We compute

PrP3,a<(v1, v2, v3) =

∫ 1−2r

0

∫ x1+r

x1

∫ x2+r

x1+r

dx3dx2dx1

+

∫ 1−r

1−2r

∫ 1−r

x1

∫ x2+r

x1+r

dx3dx2dx1

+

∫ 1−r

1−2r

∫ x1+r

1−r

∫ 1

x1+r

dx3dx2dx1

=
1

2
r2 − 2

3
r3.

By Lemma 2.6.3, we have that PrP3 = 3!(1
2
r2 − 2

3
r3) = r2(3 − 4r). Using

Theorem 2.6.2 we get ((3r2 − 4r3)p2 + 3r2(3 − 2r)p2(1 − p))
(

n
3

)
.

Case 2: 1
2
≤ r ≤ 1 For Case 2, it is no longer possible to place x1 ∈ [0, 1 − 2r] as

1 − 2r < 0. We now must place x1 ∈ [0, 1 − r]. Then we can either have

x2 ∈ [x1, 1−r] and x3 ∈ [x1 +r, x2 +r] or x2 ∈ [1−r, x1 +r] and x3 ∈ [x1 +r, 1].

We compute

PrP3,a<(v1, v2, v3) =

∫ 1−r

0

∫ 1−r

x1

∫ x2+r

x1+r

dx3dx2dx1

+

∫ 1−r

0

∫ x1+r

1−r

∫ 1

x1+r

dx3dx2dx1

=
(4r − 1)(r − 1)2

6
.
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By Lemma 2.6.3 we have PrP3 = 3! (4r−1)(r−1)2

6
= (4r−1)(r−1)2. Using Theorem

2.6.2 we have E(Xn) = ((r − 1)2(4r − 1)p2 + 3r2(3 − 2r)p2(1 − p))
(

n
3

)
. �

2.6.5 Counting Subgraphs in RGG’s in Higher Dimensions

Computing subgraph probabilities is naturally more difficult in higher dimensions

because the geometry becomes more complicated. For this reason, we consider a ge-

ometric graph on [0, 1]t using the d∞ metric induced by the torus metric. For this

metric, it is possible to use the geometry in one dimension to obtain the subgraph

counts in higher dimensions. Before proceeding in our study of this RGG, we sum-

marize the results in the literature for expected subgraph counts in RGG’s in higher

dimensions. We also extend these results to the 0 < p < 1 case using Theorem 2.6.2

Subgraphs in Geo([0, 1]2, dtor, n, r, p)

In [127] and [75], the authors study the RGG Geo([0, 1]2, dtor, n, r, 1). The number

of edges, triangles and 3-paths in Geo([0, 1]2, dtor, n, r, 1) are computed in [127]. The

edge and triangle calculations are also performed in [75].

Theorem 2.6.13 Consider Gn = Geo([0, 1]2, dtor, n, r, 1). Let en = ind(K2, Gn),

Xn = ind(K3, Gn) and Yn = ind(P3, Gn). Then E(en) = πr2
(

n
2

)
, E(Xn) = (π −

3
√

3
4

)πr4
(

n
3

)
and E(Yn) = 3

√
3

4
πr4

(
n
3

)
.

We use Theorem 2.6.2 to extend these results to Geo([0, 1]2, dtor, n, r, p).

Theorem 2.6.14 Consider Gn = Geo([0, 1]2, dtor, n, r, p). Let en = ind(K2, Gn),

Xn = ind(K3, Gn) and Yn = ind(P3, Gn) . Then E(en) = πr2p
(

n
2

)
, E(Xn) = (π −

3
√

3
4

)πr4p3
(

n
3

)
and E(Yn) = (3(π − 3

√
3

4
)πr4p2(1 − p) + 3

√
3

4
πr4p2)

(
n
3

)
.

Proof Follows from the results from Theorem 2.6.13 and Theorem 2.6.2.

�
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Counting Subgraphs in Geo([0, 1]t, d∞, n, r, p)

In this section we consider the RGG Geo([0, 1]t, d∞, n, r, p) where d∞ is the infinity

norm induced from the product metric on ([0, 1], dtor)×([0, 1], dtor)× . . .×([0, 1], dtor).

A similar RGG is studied in [13, 14, 15] where the metric in each dimension is the

Euclidean metric, not the torus metric.

We begin by showing that Gk = Geo([0, 1]t, d∞, k, r, 1) is equal to the graph in-

tersection of t 1D RGG’s. Consider vertices u1, u2, . . . , uk placed in [0, 1]t with each

vertex ui located at (xj
i )

t
j=1. We write S = [0, 1]t = S1 × S2 × . . .× St. We define the

i-th projection of Gk to be the random geometric graph Gi
k = Geo(Si, dtor, k, r, 1)

on the vertex set u1, u2, . . . , uk where uj is located at xj = xi
j. Note the location of

vertices in Gi
k is the projection of the vertex location in Gk to the i-th coordinate. As

an illustration, let u1 be a vertex in Geo([0, 1]2, d∞, k, r, 1) which is located at (1
2
, 1

3
).

Then in G1
k, u1 is located at 1

2
and in G2

k, u1 is located at 1
3
.

For two graphs G and H, we define the intersection of G and H as the graph

G ∩ H with V (G ∩ H) = V (G) ∩ V (H) and E(G ∩ H) = E(G) ∩ E(H).

Lemma 2.6.15 Let Gk = Geo([0, 1]t, d∞, k, r, 1) and let Gi
k be the i-th projection of

Gi
k. Then Gk = ∩t

i=1G
i
k.

Proof Consider k vertices u1, u2, . . . , uk where ui is located at (xi
j)

t
j=1. We first note

that Gk and ∩t
i=1G

i
k are on the same vertex set. To prove the lemma we show that

each edge in Gk is also an edge in ∩t
i=1G

i
k and vice-versa.

Suppose (ui, uj) ∈ E(Gk). Then

d∞(xi, xj) = max(dtor(x
1
i , x

1
j), dtor(x

2
i , x

2
j), . . . , dtor(x

t
i, x

t
j)) < r.

This implies that in each coordinate l, dtor(x
l
i, x

l
j) < r. Therefore (ui, uj) is an edge

is each projection Gl
k. Therefore (ui, uj) is an edge in ∩t

i=1G
l
k.
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Now suppose (ui, uj) ∈ E(∩t
i=1G

i
k). Then (ui, uj) is in each l projection Gl

k.

This implies that in an coordinate l that dtor(x
l
i, x

l
j) < r. Therefore d∞(xi, xj) =

max(dtor(x
1
i , x

1
j), dtor(x

2
i , x

2
j), . . . , dtor(x

t
i, x

t
j)) < r and (ui, uj) is also an edge in Gk.

�

The result of Lemma 2.6.15 states that Gk is equivalent to the intersection of t

1D RGG’s with the torus metric. We use this fact to develop a method of count-

ing subgraphs in Geo([0, 1]t, d∞, n, r, 1) which relies on the projections of Gk. The

basic idea is to sum over all possible sets of projections (G1
k, G

2
k, . . . , G

t
k) such that

∩t
i=1G

i
k
∼= H. Since each Gi

k is formed independently, we can simply multiply the

probabilities of each projection forming in Geo([0, 1], dtor, k, r, 1) together. There

is one additional fact that needs to be accounted for. In 1D, all labelings of the

vertices u1, u2, . . . , uk were allowable but this will not be the case in tD for the in-

tersection of t 1D RGG’s. For example, if we have G1
3
∼= P3 and G2

3
∼= P3 it is

not necessarily the case that G1
3 ∩ G2

3
∼= P3. Any labeling of G1

3 is allowed but G2
3

must be labeled so that edges exist between the same vertices in G2
3 as G1

3. We

consider this specific case further in Example 2.6.16. In Section 2.6.3 we computed

the probability PrH = Pr(Geo([0, 1], dtor, k, r, 1) ∼= H). Recall that our method for

doing so was to fix a labeling for Geo([0, 1], dtor, k, r, 1) and compute the probability

that for this labeling Geo([0, 1], dtor, k, r, 1) ∼= H. We then simply summed over all

labelings (or multiplied by k!) to account for all labelings of Geo([0, 1], dtor, k, r, 1)

to get PrH . For each projection, it will not always be the case that each ver-

tex labeling is possible. We introduce the following notation which will aid in

the developing a general method for counting subgraphs in Geo([0, 1]t, dtor, k, r, 1).

Let PrH,t = Pr(Geo([0, 1]t, d∞, k, r, 1) ∼= H). For a fixed ordering of vertices in

Geo([0, 1], dtor, k, r, 1) denoted by φ, let PrH,φ = Pr(Geo([0, 1], dtor, k, r, 1) ∼= H|φ).

We can easily return to the probability that a fixed labeling of Geo([0, 1], dtor, k, r, 1)

is isomorphic to H by dividing the results of Theorems 2.6.6 and 2.6.7 by k!.
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v1

v2

v3

G1
3 G2

3 G3 G1
3 G2

3 G3

v1

v2

v3

v1

v2

v3

Case 1

v1

v2

v3

v1

v2

v3

v1

v2

v3

Case 2

Figure 2.7: 3-path example for G3

To illustrate our procedure for counting subgraphs in Geo([0, 1], dtor, k, r, 1), we

compute PrP3,2 in Example 2.6.16.

Example 2.6.16 We have three vertices v1, v2, v3 located at x = (x1, x2), y = (y1, y2)

and z = (z1, z2). In Figure 2.7 we give 2 of the 3 possible projections whose intersec-

tion induce P3 (the third possibility is G1
3
∼= P3 and G2

2
∼= K3 which is just the reverse

of Case 1).

In Case 1, we have a K3 and a P3 which intersect to give G3
∼= P3. The main

difficulty in computing PrP3,2 is determining all the possible vertex labelings of the

projections which will lead to an intersection isomorphic to P3. For a fixed labeling

of vertices φ, from Theorem 2.6.6 we know that PrK3,φ = PrP3,φ = 3r2

3!
= r2

2
. It is

easy to see that in this case, any ordering of G1
3 and of G2

3 leads to an intersection

isomorphic to P3. This brings the probability of G1
3 and G2

3 giving an intersection of

P3 in Case 1 to 3! r2

2
3! r2

2
= 9r4. We additionally must account for the fact that in

Case 1 we could also have G1
3 = P3 and G2

3 = K3. Therefore, the total probability of

Case 1 is 18r4

In Case 2, we have that both projections are P3’s. For G1
3 we have the freedom

to select any labeling of the vertices; for G2
3 we do not. Consider the labeling in the
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Figure 2.7 above. In G2
3 the only restriction is that the vertex v2 must be the vertex of

degree 2 in P3. This gives two possible orderings of the vertices in G2
3 (v1 and v3 can

be swapped). Overall, the total contribution of Case 2 to the probability that G3
∼= P3

is 3! r2

2
2 r2

2
= 3r4.

Overall, PrP3,2 = 21r4.

This example highlights the process of counting subgraphs in Geo([0, 1]d, d∞, n, r, 1).

We break down each set of projections such that ∩t
i=1G

i
k
∼= H into separate cases

where each case consists of the isomorphism classes of the projection which can inter-

sect to give an isomorphic copy of H. For each case, we must account for all possible

ordering of the vertices in each projection and all possible orderings of the projections.

To compute PrH,t, we simply sum over all these ordering. We use this procedure to

count the number of cliques, 3-paths and 4-cycles in Geo([0, 1]t, d∞, n, r, p). We begin

by counting the number of cliques.

Theorem 2.6.17 Consider Gn = Geo([0, 1]t, d∞, n, r, p) with r ≤ 1
m

and let Xn =

ind(Km, Gn). Then E(Xn) = (mrm−1)tp(m
2 )

(
n
m

)
.

Proof The only possible set of projections G1
m, G2

m, . . . , Gt
m such that ∩t

i=1G
i
m
∼= Km

is if each Gi
m

∼= Km. For this special case, any vertex labeling of these projections

gives ∩t
i=1G

i
m

∼= Km. From Theorem 2.6.9 we have that PrKm = mrm−1 so that

PrKm,φ = mrm−1

m!
= rm−1

(m−1)!
. Since each projection is formed independently we have

PrKm,t = (mrm−1)t

Applying Theorem 2.6.2 we obtain E(Xn) = (mrm−1)tp(m
2 )

(
n
m

)
. �

Next we compute the number of 3-paths in Geo([0, 1]t, d∞, n, r, 1). The proof is

merely an extension of the argument in Example 2.6.16 for counting 3-paths in 2D.
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Theorem 2.6.18 Consider Gn = Geo([0, 1]t, d∞, n, r, 1) with r ≤ 1
3
. Then PrP3(Gn) =

3r2t(4t − 3t).

Proof If ∩t
i=1G

i
3
∼= P3 then each projection must either be a P3 or a K3. Each set of

projections consists of i = 1, 2, . . . , t P3’s and t − i K3’s. Recall from Theorem 2.6.6

that PrP3,φ = PrK3,φ = r2

2
. For each K3, any vertex labeling is allowed. For the first

P3, any labeling of the vertices is allowed but in each of the remaining i − 1 P3’s,

the vertex of degree two must have the same label as the first projection Gi
3
∼= P3.

Therefore, each subsequent P3 can be labeled in 2 ways. The probability for each K3

as a projection is 3r2. The probability for the first P3 is 3r2 but the probability for

each subsequent P3 is 2 r2

2
= r2. Additionally, we must also account for all the possible

locations of the P3’s and K3’s in a set of projections. Since there are i P3’s there are
(

t
i

)
possible ways to place them in a set of projections. Overall, given a set of projections

consisting of i P3’s and t− i K3’s, we have a probability that the intersection of such

a set induces P3 is
(

t
i

)
(3r2)(r2)i−1(3r2)t−i =

(
t
i

)
3t+1r2t3−1. Summing over all possible

number of P3 projections i = 1, 2, . . . , t we obtain

PrP3,2 = 3t+1r2t

t∑
i=1

(
t

i

)
3−i

= 3t+1r2t((
4

3
)t − 1)

= 3r2t(4t − 3t)

�

Note that when t = 2 we get that PP3,2 = 21r4 which corresponds to what we

computed in Example 2.6.16.

Using Theorem 2.6.2, we can extend our 3-path count to the general 0 < p ≤ 1

case.
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Theorem 2.6.19 Consider Gn = Geo([0, 1]t, d∞, n, r, 1) with r ≤ 1
3
. Let Xn =

ind(P3, Gn). Then E(Xn) = (3r2t(4t − 3t)p2 + 3p2(1 − p)(3r2)t)
(

n
3

)
.

Proof This immediately from Theorem 2.6.17 with m = 3, Theorem 2.6.18 and

Lemma 2.6.2.

�

For our final result we count the number of 4-cycles in Geo([0, 1]t, d∞, n, r, 1) for

t ≥ 2. Recall from the result of Theorem (2.6.7) that the 4-cycle could not form in

Geo([0, 1]t, dinfty, n, r, 1). However, as the next result shows, 4-cycles can appear in

higher dimensions.

Theorem 2.6.20 Let Gn = Geo([0, 1]t, d∞, n, r, 1) for t ≥ 2 and r ≤ 1
4

and let

Xn = ind(C4, Gn). Then

E(Xn) = 4tr3t[(
7

6
)t − t

6
− 1]

(
n

4

)
.

Proof For G4 to be isomorphic to C4, we require that each projection of G4 is a g7.

Additionally we require that the vertices in each projection are labeled in a certain

way. Consider the labeling of Gi
4 and Gj

4 below.

u v

wx
Gi

4

u v

wx

Gj
4

For this labeling we have Gi
4∩Gj

4
∼= C4. However, if Gj

4 had the same labeling as Gi
4

then Gi
4 ∩ Gj

4
∼= g7. Suppose that the first projection is a g7 with the same labeling
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as Gi
4 above. Then any labeling of this projection is permitted. Each remaining

projection must either be a g7 labeled as Gi
4 (or with u and w swapped or x and v

swapped), labeled as Gj
4 (or with u and w swapped or x and v swapped), or a K4.

In the case of a K4 projection, any labeling is permitted. Recall from Theorem 2.6.7

that Prg7 = PrK4 = 4r3. The first g7 to appear can have any labeling but each

subsequent g7 only has 4 permitted labelings. The probability for these remaining g7

projections is 4(4r3

4!
) = 2r3

3
. Suppose you have a projection is i = 2, 3, . . . , t g7’s and

t − i K4’s. Accounting for the
(

t
i

)
orderings of the g7’s in the set of projections, the

probability that such a set induced a 4-cycle is
(

t
i

)
(4r3)(2r3

3
)i−1(4r3)t−i =

(
t
i

)
4tr3t6−i.

Summing over all possible projections with i = 2, 3, . . . , t g7’s and t− i K4’s we obtain

PrC4,t = 4r3r3t

t∑
i=2

(
t

i

)
6−i

= 4tr3t[(
7

6
)t − t

6
− 1]

By Lemma 2.6.1 E(Xn) = 4tr3t[(7
6
)t − t

6
− 1]

(
n
4

)
.

�

2.6.6 Geo([0, 1]t, d∞, n, r, p) with a Linear Number of Edges

We now return to the case where Gn = Geo([0, 1]t, d∞, n, r, p) has a linear number

of edges. Let en = ind(K2, Gn). From Theorem 2.6.17 with m = 2, we have that

E(en) = (2r)t
(

n
2

)
= (2r)2pn(n−1)

2
. Setting E(en) = dn for d ∈ Z

+ and solving for r we

obtain,

r = (
d

2t−1pn
)

1
t (1 + O(

1

n
)).

From Theorem 2.6.17 with m = 3, we have that the expected number of triangles
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is (3r2)tp3
(

n
3

)
. The expected number of triangles in Gn with a linear number of edges

is,

(3[(
d

2t−1pn
)

1
t (1 + O(

1

n
))]2)tp3

(
n

3

)

=
3td2p3

4t−1p2n2

n3 + O(n2)

6

= (
3

4
)t−1pd2

2
n + O(1).

From Theorem 2.6.18 we have that the expected number of 3-paths is [3r2t(4t −

3t)p2 + 3p2(1 − p)(3r2)t]
(

n
3

)
. For a linear number of edges it can be shown that the

expected number of 3-paths is [3d2(4t−3t)
4t−1 + 3t+1(1−p)d2

4t−1 ]n + O(1).

Finally from Theorem 2.6.20 we have that the expected number of 4-cycles is

4tr3t[(7
6
)t−1 − 1]

(
n
4

)
. For a linear number of edges it can be shown that the expected

number of 4-cycles is (1
2
)t d3

3
[(7

6
)t − t

6
− 1]n + O(1).

We see that with a linear number of edges in Gn, the number of triangles, 3-paths

and 4-cycles all grow linearly with n.

2.7 Spatial Preferred Attachment Model

In this section we count the expected number of triangles, 3-paths, and 4-cycles in

the SPA model. We begin with the number of edges that was computed in the

introductory paper [7].

Theorem 2.7.1 ([7]) Let Gn = SPA(n, m, p, A1, A2) and let en = ind(K2, Gn).

Then
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E(en) =

⎧⎪⎨
⎪⎩

(1 + o(1)) pA2

1−pA1
n if pA1 < 1

(1 + o(1))nln(n) if pA1 = 1

Moreover, if pA1 < 1, then a.a.s. we have that

en = (1 + o(1))
pA2

1 − pA1

n

We are only interested in the 0 < pA1 < 1 case which gives a linear number of

edges in the SPA model. From Theorem 2.7.1, we know that the number of edges is

concentrated around its expectation in this case.

Our method for counting the number of triangles, 3-paths and 4-cycles relies on

the number of common in-neighbours of vertices vi and vj at time n. The number

of common in-neighbours of vi and vj at time n was explored in [76] and [77]. We

review the results of these papers and begin with a result on the in-degree of a vertex

v at time t.

Theorem 2.7.2 ([77]) Let ω = ω(n) be any function which goes to infinity with n.

The following statement holds a.a.s. for every vertex v for which deg−
n (v) = k =

k(n) ≥ ωln(n) Let i = f−1(k), and let tk be

tk = f−1(
A2k

A1ωln(n)
).

Then, for all values of t such that tk ≤ t ≤ n,

deg−(v, t) = (1 + o(1))
A2

A1

(t

i

)pA1

= (1 + o(1))k
( t

n

)pA1

This theorem states that once a vertex accumulates ωln(n) edges, its in-degree

is known for the remainder of the process. Recall that the influence region of vi at

time t has area A(vi, t) = A1deg−n (vi)+A2

t
. So it follows that the influence region of these
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vertices are known for the remainder of the process. Unfortunately, it is not possible

to predict the in-degree of each individual vertex from birth due to randomness which

occurs near birth: whether or not a new vertex receives new edges close to its birth

greatly influences its future in-degree.

In [77] the authors use the result of Theorem 2.7.2 to compute the number of

common neighbours between vertices of at least final degree ωln(n). In [76], the

authors give a similar result in terms of a modified SPA model. Counting triangles,

3-paths, and 4-cycles in this modified SPA model will be much easier than in the SPA

model. We argue that these two models behave in a similar way so that working with

the modified SPA model is justified.

Procedure 2.7.3 (Modified SPA Model SPA∗(n, m, p, A1, A2)) We define the mod-

ified SPA model to be identical to the SPA model except that we define the influence

region of vi at time t for i ≤ t ≤ n to be A(vi, t) =
A2( t

i
)pA1+A2

t
.

Observe that the modified SPA model is designed so that implicitly, each vertex

has in-degree as specified in Theorem 2.7.2 (with the (1+o(1)) factor removed). Thus

if each vertex in the SPA model had in-degree as specified in Theorem 2.7.2 then

the modified SPA model and SPA model would coincide. We provide the following

argument to show that the two models are asymptotically the same. Consider the

graph SPA(n, 2, p, A1, A2) with vertices v1, v2, . . . , vn which are ranked so that i < j

implies that deg−(vi, n) > deg−(vj, n). From Theorem 1.5.5 we know that the SPA

model follows a power law degree distribution with coefficient 1 + 1
pA1

. If Nk,n is

the number of vertices with in-degree k then
Nk,n

n

 ck

−1− 1
pA1 for some constant

c. Therefore we have that
∑k

i=1 ci
−1− 1

pA1 = 1 − cpA1k
− 1

pA1 is the proportion of

vertices with in-degree less than or equal to k. Therefore, cpA1k
− 1

pA1 is the proportion

of vertices with in-degree more than k. Also we have that j
n

is the proportion of

vertices with in-degree greater than k. Now consider the vertex vj which has degree
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k ≥ ω(n)ln(n) and let jk be the birth time of vj. Then by Theorem 2.7.2, k =

(1 + o(1))A2

A1

(
n
jk

)pA1

. By the discussion above

j 
 cpA1k
− 1

pA1 n

= Θ((
n

jk

)pA1

)
− 1

pA1 n)

= Θ(jk)

Therefore the birth time of vj is on the order of j. Therefore, vertices whose

in-degree are at least ω(n)ln(n) behave the same way in the SPA model as they do

in the modified SPA model.

For the remainder of this section we consider the modified SPA model in 2D.

The mathematics involved with the modified SPA model is more tractable than the

mathematics involved with the SPA model and we expect that the results for both

models are the similar. The simplicity in using the modified SPA model arises because

the influence region of a vertex v at time n is deterministic in the modified SPA model

and a random variable in the SPA model. However, from the discussion above, many

of the vertices in the SPA model have in-degrees that are concentrated around their

expectations so that these vertices have influence regions that behave in a similar way

as the modified SPA model.

We define the influence radius of a vertex vi at time n to be the radius of the

influence region A(vi, n). In 2D this gives πr(vi, t)
2 =

A2( t
i
)pA1+A2

n
. Writing this in

terms of r(vi, t) we obtain,

r(vi, t) =

√
A2

π

√
( t

i
)pA1 + 1

t
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=

√
A2

π
t

pA1−1
2 i−

pA1
2

√
1 + (

t

i
)−pA1

=

√
A2

π
t

pA1−1
2 i−

pA1
2 (1 + O(t−pA1ipA1)

=

√
A2

π
t

pA1−1
2 i−

pA1
2 + O(t−(

pA1+1
2

)i
pA1
2 )

Let c(n, vi, vj) be the number of common in-neighbours of vi and vj at time n. In

[77] the authors give a relationship between cn(vi, vj, n) and the distance between vi

and vj in the metric space for the SPA model and in [76] the authors give a similar

result for the modified SPA model. We give the result from [76] as we will use the

modified SPA model.

Theorem 2.7.4 ([76]) Consider vertices vi and vj (1 ≤ i < j ≤ n) in

SPA∗(n, 2, p, A1, A2) with metric dtor. Then we have,

1. If d(vi, vj) > r(vi, j + 1) + r(vj, j + 1), then cn(vi, vj, n) = 0

2. If d(vi, vj) ≤ r(vi, n) − r(vj, n), then E(c(vi, vj, n)) = (1 + o(1))pA2

A1
(n

j
)pA1.

3. If r(vi, n)−r(vj, n) < d(vi, vj) ≤ r(vi, j+1)+r(vj, j+1), then E(cn(vi, vj, n)) =

C(i
− (pA1)2

1−pA1 )(j−pA1)(d
− 2pA1

1−pA1 )(1 + O(( i
j
)

pA1
2 )) where C = pA−1

1 A
1

1−pA1
2 π

−(
pA1

1−pA1
)
.

In [76], the authors state that if cn(vi, vj, n) is large enough than it is concentrated

around its expectation in Theorem 2.7.4. Given our asymptotic analysis, this is a

reasonable assumption for us to make.

In Case 1, vi and vj are born far enough apart that their influence regions have

an empty intersection at time n. In the modified SPA model, the influence region

A(vi, n) constantly shrinks over time so it is not possible that these influence regions

will intersect at some future time so the number of common neighbours will be zero.

In Case 2, vj is born so close to vi that vj’s entire influence region remains enclosed

in vi’s influence region for the entire process. Thus, each in-neighbour of vj is also an
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in-neighbour of vi provided these in-neighbours form an edge to vi which occurs with

probability p. In Case 3, vj is initially contained in the influence region of vi, but by

the end of the process their influence regions are disjoint.

Let us consider the problem of counting the number of triangles in the modified

SPA model. Given the directed nature of the modified SPA model, it is only possible

for directed edges to form from younger vertices to older vertices. Therefore only one

type of directed triangle can form which is T1 which we introduce when we counted

triangles for the directed copy model.

vi vj

vk

T1

We see that vk is a common in-neighbour of vi and vj. This suggests that counting

the number of triangles can be achieved by counting common neighbours through the

use of Theorem 2.7.4. To count the number of triangles, we consider each pair of

vertices vi and vj with i < j. For each vk which is a common in-neighbour of vi

and vj, vi, vj, vk will induce a triangle if there is a directed edge from vj to vi. From

Theorem 2.7.4 we must consider Case 2 and Case 3 (vi and vj have no common

neighbours in Case 1). In both of these cases vj is born inside vi’s influence region so

the probability that there is an edge from vj to vi is p.

Theorem 2.7.5 Let Gn = SPA∗(n, 2, p, A1, A1) with pA1 < 1 and let Xn = ind(K3, Gn).

Then
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E(Xn) = Θ(n).

Proof Let Xn = ind(K3, Gn) and let Xijk be the indicator variable for the event

for 1 ≤ i < j < k ≤ n that vi, vj, vk induce a K3 in Gn. We compute Xn by

considering three disjoint exhaustive events. Let X1
ijk be an indicator variable for the

event that vi, vj, vk induce a triangle and d(vi, vj) > r(vi, j + 1) + r(vj, j + 1); X2
ijk

be an indicator variable for the event that vi, vj, vk induce a triangle and d(vi, vj) ≤

r(vi, n)−r(vj, n) and let X3
ijk be the event that vi, vj, vk induce a triangle and r(vi, n)−

r(vj, n) < d(vi, vj) ≤ r(vi, j +1)+r(vj, j +1). Observe that Xijk = X1
ijk +X2

ijk +X3
ijk.

We can compute Xn =
∑n−2

i=1

∑n−1
j=i+1

∑n
k=j+1 Xijk = X1

n + X2
n + X3

n where X l
n =∑n−2

i=1

∑n−1
j=i+1

∑n
k=j+1 X l

ijk for l = 1, 2, 3.

Case 1 X1
n: To compute X1

n we need to compute X1
ijk for each triple 1 ≤ i < j < k ≤

n. Observe that X1
ijk = 0 for each i, j, k as d(vi, vj) > r(vi, j + 1) + r(vj, j + 1)

implies that vi and vj has no common neighbours from Theorem 2.7.4 and thus

vi, vj, vk can not induce a triangle.

Case 2 X2
n: Define the indicator variable Yijk for the event that vk is a common

neighbour of vi and vj given d(vi, vj) ≤ r(vi, n) − r(vj, n). Let Zij be the

indicator variable for the event that d(vi, vj) ≤ r(vi, n) − r(vj, n) and vi ∼ vj.

Note that we can write Xijk = YijkZij. Overall we can write,

X2
n =

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

X1
ijk

=
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

YijkZij

=
n−2∑
i=1

n−1∑
j=i+1

Zij

n∑
k=j+1

Yijk
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Note that
∑n

k=j+1 Yijk = cn(vi, vj, n). From Theorem 2.7.4 we have cn(vi, vi, n) =

(1+o(1))pA2

A1
(n

j
)pA1 . Plugging this into the above and applying expectation gives,

E(X2
n) =

n−2∑
i=1

n−1∑
j=i+1

E(Zij)(1 + o(1))
pA2

A1

(
n

j
)pA1

= (1 + o(1))
n−2∑
i=1

n−1∑
j=i+1

E(Zij)
pA2

A1

(
n

j
)pA1 .

Since Zij is an indicator variable we have that E(Zij) = Pr(Zij = 1). To

compute Pr(Zij = 1) we need to use conditional probability since Zij is an

indicator variable for two events. We can write

Pr(Zij = 1) = Pr(d(vi, vj) ≤ r(vi, n) − r(vj, n) ∩ vi ∼ vj)

= Pr(vi ∼ vj|d(vi, vj)

≤ r(vi, n) − r(vj, n))Pr(d(vi, vj) ≤ r(vi, n) − r(vj, n))

= pPr(d(vi, vj) ≤ r(vi, n) − r(vj, n)).

Note that if d(vi, vj) ≤ r(vi, n) − r(vj, n), then vi ∼ vj occurs with probability

p. For d(vi, vj) ≤ r(vi, n)− r(vj, n), we need vj to be within distance r(vi, n)−

r(vj, n) of vi. This happens if vj falls into a circle of radius r(vi, n) − r(vj, n)

centered at vi. Such a circle has area π[r(vi, n)−r(vj, n)]2. Earlier we computed

that r(vi, n) =
√

A2

π
n

pA1−1
2 i−

pA1
2 + O(n−(

pA1+1
2

)i
pA1
2 ). Note that the error term

here comes from the error term associated with the Taylor expansion from the

square root. Finally we can compute
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Pr(Zij = 1) = pπ[

√
A2

π
n

pA−1
2 i−

pA1
2 + O(n−(

pA1+1
2

)i
pA1
2 )

− p

√
A2

π
n

pA−1
2 j−

pA1
2 + O(n−(

pA1+1
2

)j
pA1
2 )]2

= pA2n
pA1−1[i−

pA1
2 − j−

pA1
2 + O(n−pA1j

pA1
2 )]2

= pA2n
pA1−1i−pA1 [1 − (

i

j
)

pA1
2 + O(n−pA1(

j

i
)

pA1
2 )]2

= pA2n
pA1−1i−pA1(1 − 2(

i

j
)

pA1
2 + O(n−pA1(

j

i
)

pA1
2 ))

= pA2n
pA1−1i−pA1 − 2pA2n

pA1−1(
1

ij
)

pA1
2 + O(n−1i−

3pA1
2 j

pA1
2 )

We can compute

E(X2
n) = (1 + o(1))

n−2∑
i=1

n−1∑
j=i+1

p2A2

A1

(
n

j
)pA1 [A2n

pA1−1i−pA1 − 2A2n
pA1−1(

1

ij
)

pA1
2

+ O(n−1i
−3pA1

2 j
pA1
2 )]


 p2A2
2

A1

n2pA1−1[
n−2∑
i=1

n−1∑
j=i+1

(
1

ij
)pA1 − 2i−

pA1
2 j−3

pA1
2 ]

+ O(npA1−1

n−2∑
i=1

n−1∑
j=i+1

i−
3pA1

2 j−
pA1
2 )

We have three different double sums to work out. We can use Lemma 1.3.6

to get an approximate answer by using integrals instead of sums. Working out

the error term above gives an error term smaller in magnitude than the error

associated with approximating the other two sums so we will drop that term in

the next calculations. For the sum
∑n−2

i=1

∑n−1
j=i+1(

1
ij

)pA1 we can work out,
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n−2∑
i=1

n−1∑
j=i+1

(
1

ij
)pA1 =

n−2∑
i=1

i−pA1

n−1∑
j=i+1

j−pA1

=
n−2∑
i=1

i−pA1(
n1−pA1

1 − pA1

+ O(i−pA1))

=
n1−pA1

1 − pA1

n−2∑
i=1

(
1

i
)pA1 + O(

n−2∑
i=1

i−2pA1)

=
n1−pA1

1 − pA1

(
n1−pA1

1 − pA1

+ O(1))

=
n2−2pA1

(1 − pA1)2
+ O(n1−pA1)

Now we consider the sum
∑n−2

i=1

∑n−1
j=i+1 i−

pA1
2 j−3

pA1
2 . In working out

∑n−1
j=i+1 j−

3pA1
2

we need to consider 3 different ranges: 0 < pA1 < 2
3
, pA1 = 2

3
and 2

3
< pA1 < 1.

If 0 < pA1 < 2
3

then we have,

n−2∑
i=1

n−1∑
j=i+1

i−
pA1
2 j−3

pA1
2 =

n−2∑
i=1

i−
pA1
2

n−1∑
j=i+1

j−
3pA1

2

=
n2−2pA1

(1 − 3pA1

2
)(1 − pA1

2
)

+ O(n1− 3pA1
2 )

If pA1 = 2
3

then we have,

n−2∑
i=1

n−1∑
j=i+1

i−
1
3 j−1 =

n−2∑
i=1

i−
1
3

n−1∑
j=i+1

j−1

=
∑
i=1

n − 2i−
1
3 [ln(n) − ln(i) + O(

1

i
)]
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=
n−2∑
i=1

ln(n)i−
1
3 −

n−2∑
i=1

ln(i)i−
1
3 + O(

n−2∑
i=1

i−
4
3 )

=
3ln(n)n

2
3

2
+ O(ln(n)) − (

3ln(n)n
2
3

2
+

9

4
n

2
3 + O(n− 2

3 )) + O(1)

=
9

4
n

2
3 + O(ln(n))

If 2
3

< pA1 < 1 then we have,

n−2∑
i=1

n−1∑
j=i+1

i−
pA1
2 j−3

pA1
2 =

n−2∑
i=1

i−
pA1
2

n−1∑
j=i+1

j−
3pA1

2

=
n−2∑
i=1

i−
pA1
2 [

n1− 3pA1
2

1 − 3pA1

2

− i1−
3pA1

2

1 − 3pA1

2

+ O(i
−3pA1

2 )]

=
2

2 − 3pA1

n−2∑
i=1

n1− 3pA1
2 i−

pA1
2 − i1−2pA1

O (i−
3pA1

2 )

=
2

2 − 3pA1

[
n2−2pA1

1 − pA1

2

− n2−2pA1

2 − 2pA1

+ O(n1− 3pA1
2 )

=
n2−2pA1

(2 − pA1)(1 − pA1)
+ O(n1− 3pA1

2 ).

Combining all of these gives,

E(X2
n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p2A2
2(8pA1−4−5p2A2

1)

(1−pA1)2(3pA1−2)(pA1−2)
n + O(n1−pA1) if 0 < pA1 < 2

3

9p2A2
2

2A1
n + O(

√
n) if pA1 = 2

3

p2A2
2

(1−pA1)(2−pA1)
n + O(n1−pA1) if 2

3
< pA1 < 1

Case 3: X3
n For the third case, the expected number of common in-neighbours for vi

and vj depends on the distance between vi and vj. We set d1 = r(vi, n)−r(vj, n)

and d2 = r(vi, j +1)+ r(vj, j +1). Then from Theorem 2.7.4, if d1 < d(vi, vj) <

d2 then E(cn(vi, vj, n)|d(vi, vj)) = C(i
− (pA1)2

1−pA1 )(j−pA1)(d
− 2pA1

1−pA1 )(1 + O(( i
j
)

pA1
2 ))

where C = pA−1
1 A

1
1−pA1
2 π

−(
pA1

1−pA1
)
.
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To determine X3
n we need to work out an unconditional expectation for cn(vi, vj, n)

for the case that d1 < d(vi, vj) < d2. We can do so by,

E(cn(vi, vj, n)) = E(E(cn(vi, vj, n)|d(vi, vj)))

=

∫ r2

r1

E(cn(vi, vj, n)|d(vi, vj))f(x)dx

where f(x) = 2πx is the probability density function for x = d(vi, vj). Combin-

ing the above with the result of Theorem 2.7.4 we get

E(cn(vi, vj, n)) =

∫ r2

r1

2πC(i
− (pA1)2

1−pA1 )(j−pA1)(x
1− 2pA1

1−pA1 )(1 + O((
i

j
)

pA1
2 ))dx

= 2πC(i
− (pA1)2

1−pA1 )(j−pA1)(1 + O((
i

j
)

pA1
2 ))

∫ r2

r1

(x
1− 2pA1

1−pA1 )dx

In working out E(X3
n) we will achieve the result Θ(n). Note that it is not

possible to get a tighter result as expanding out the (1 + O( i
j
)) will result in an

error term which is also of order n. Note that this is the case since both i and

j are going to infinity we have i
j
→ 1 so that the error term tends to (1+O(1))

in the limit. Therefore it is not possible to work out the constant for n. Going

forward we focus only on obtaining a Θ(n) result for E(X3
n).

Let us consider
∫ r2

r1
(x

1− 2pA1
1−pA1 )dx in the above. If pA1 = 1

2
then 1 − 2pA1

1−pA1
= −1

we need to treat this as a separate case. If pA1 �= 1
2

then

∫ r2

r1

(x
1− 2pA1

1−pA1 )dx =
1 − pA1

2 − 4pA1

x
2−4pA1
1−pA1 |r2

r1
.
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We have that,

r1 = r(vi, n) − r(vj, n)

=

√
A2

π
n

pA1−1
2 i−

pA1
2 (1 + O((

i

j
)

pA1
2 )

and

r2 = r(vi, j + 1) + r(vj, j + 1)

=

√
A2

π
j

pA1−1
2 i−

pA1
2 (1 + O((

i

j
)

pA1
2 ))

Plugging this back into E(cn(vi, vj, n)) gives

E(cn(vi, vj, n)) = Θ((i
− (pA1)2

1−pA1 )(j−pA1)[(j
pA1−1

2 i−
pA1
2 )

2−4pA1
1−pA1 − (n

pA1−1
2 i−

pA1
2 )

2−4pA1
1−pA1 ])

= Θ(i−pA1j−pA1 [j2pA1−1 − n2pA1−1]).

If pA1 < 1
2

then j2pA1−1 > n2pA1−1. In this case we have,

E(X3
n) = Θ(

n−2∑
i=1

n−1∑
j=i+1

i−pA1j−pA1 [j2pA1−1 − n2pA1−1])

= Θ(
n−2∑
i=1

n−1∑
j=i+1

i−pA1jpA1−1)

= Θ(n)
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If pA1 > 1
2

then n2pA1−1 > j2pA1−1. In this case we have,

E(X3
n) = Θ(

n−2∑
i=1

n−1∑
j=i+1

i−pA1j−pA1 [j2pA1−1 − n2pA1−1])

= Θ(
n−2∑
i=1

n−1∑
j=i+1

i−pA1npA1−1)

= Θ(n)

The only case which remains is pA1 = 1
2
. For this case we have,

∫ r2

r1

x−1dx = ln(
r2

r1

)

= ln(

√
A2

π
j

−1
4 i−

1
4 (1 + O(( i

j
)

1
4 ))√

A2

π
n

−1
4 i−

1
4 (1 + O(( i

j
)

1
4 )

)

= ln((
n

j
)

1
4 (1 + O((

i

j
)

1
4 ))

=
1

4
ln(

n

j
) + O(1)

This gives E(c(n, vi, vj, n)) = Θ(i−
1
2 j−

1
2 (1+O(( i

j
)

1
4 ))(ln(n

j
)+O(1)) = Θ(i−

1
2 j−

1
2 ln(n

j
))

E(X3
n) = Θ(

n−2∑
i=1

n−1∑
j=i+1

i−
1
2 j−

1
2 ln(

n

j
))

= Θ(n)

The above follows by the use of Lemma 1.3.6 to approximate the sums using

integrals. Thus we have for 0 < pA1 < 1 we have E(X3
n) = Θ(n). Overall we

have E(Xn) = Θ(n).
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Next we count the number of 3-paths in the modified SPA model. There are three

possible ways in which a 3-path can form in the modified SPA model (and the SPA

model).

vi vj vk

P 1
3

vi vj vk

P 2
3

vi vj vk

P 3
3

To count the number of 3-paths in the modified SPA model we count the expected

number of P 1
3 ’s, P 2

3 ’s and P 3
3 ’s. For P 1

3 note that vk is a common in-neighbour of vi

and vj. In fact, counting the number of P 1
3 ’s follows an almost identical calculation as

counting the number of triangles in the modified SPA model and gives E(P 1
3 , Gn) =

Θ(n). To compute the number of induced copies of P 2
3 and P 3

3 , it will be necessary to

first compute the number of injective copies and then use Lemma 1.3.2 to determine

the number of induced copies.

Theorem 2.7.6 Let Gn = SPA∗(n, 2, p, A1, A1) with 0 < pA1 < 1 and let Xn =

ind(P3, Gn). Then,

E(Xn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Θ(n) if 0 < p < 1
2

2nln(n) + Θ(n) if p = 1
2

p−1
2p2(2p2−3p+1)

n2p + Θ(n) if 1
2

< p < 1

Proof Let Xn = ind(P3, Gn), X1
n = ind(P 1

3 , Gn), X2
n = ind(P 2

3 , Gn) and X3
n =

ind(P 3
3 , Gn). It is easy to see that Xn = X1

n + X2
n + X3

n.
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Case 1: X1
n The computation of X1

n is identical to the computation of E(ind(K3, Gn))

except that a factor of p corresponding to the probability of the event vj ∼ vi is

swapped with a factor of 1−p corresponding to the event vj � vi. Switching this

factor does not change any other details of the calculation from Theorem 2.7.5.

Since the rest of the calculation proceeds in an identical manner we conclude

that E(X1
n) = Θ(n).

Case 2: X2
n Recall Lemma 1.3.2 which states: let F1, F2, . . . Fm be all the graphs on

k vertices and consider any graph G. Then for any Fi we have

inj(Fi, G) =
m∑

j=1

Mijind(Fj, G)

where Mij = inj(Fi, Fj).

Using this we can write inj(P 2
3 , Gn) = ind(P 2

3 , Gn)+ind(T 1
3 , Gn)+3ind(T 2

3 , Gn)

where

vi

vj

vk

T 1
3

vi

vj

vk

T 2
3

From Theorem 2.7.5 we have E(ind(T 1
3 , Gn)) = Θ(n). We also have that

E(ind(T 2
3 , Gn)) = 0 since it is not possible for a directed edge to form from

a younger vertex to an older one (the directed edge from vk to vi is not possi-

ble. Therefore we can conclude that E(ind(P 2
3 , Gn)) = E(inj(P 2

3 , Gn)) + Θ(n).
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Counting the number of injective copies of P 2
3 is a simpler task than counting

the number of induced copies.

Let Xijk be the event that vertices vi, vj, vk for 1 ≤ i < j < k ≤ n form an

injective copy of P 2
3 . This is equivalent to the event that there is a directed

edge from vj to vi and from vk and vj. In the modified SPA model, edge

formations in different time steps are independent processes. Therefore we have

that E(Xijk = 1) = Pr(Xijk = 1) = Pr(vj ∼ vi)Pr(vk ∼ vj). There is an edge

from vj to vi with probability p if vj lands in vi’s area of influence. We have,

Pr(vj ∼ vi) = p(
A2(

j
i
)pA1 + A2

j
)

= pA2(
( j

i
)pA1 + 1

j
)

Similarly we have Pr(vk ∼ vj) = pA2(
( k

j
)pA1+1

k
). Therefore we have,

E(inj(P 2
3 , Gn)) =

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

E(Xijk)

=
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

(pA2)
2[i−pA1j−1kpA1−1 + i−pA1jpA1−1k−1

+ kpA1−1j−1−pA1 + j−1k−1]

Approximating each of these sums by integrals using Lemma 1.3.6 we can show

that E(inj(P 2
3 , Gn)) = Θ(n). Since E(ind(P3, G)) = E(inj(P3, Gn))+Θ(n), we

can conclude that E(X2
n) = Θ(n).

Case 3: X3
n The computation of E(X3

n) proceeds in an identical manner to the com-

putation of E(X2
n). From Lemma 1.3.2 we have that inj(P 3

3 , Gn) = ind(P 3
3 , Gn)+
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ind(K1
3 , Gn) + ind(K2

3 , Gn). Rearranging this gives E(X3
n) = E(inj(P 3

3 , Gn)) +

Θ(n). Let Xijk be the event that vertices vi, vj, vk for an injective copy of P 3
3 .

This is equivalent to the event that there is a directed edge from vj to vi and

from vk and vi. Therefore we have that E(Xijk = 1) = Pr(Xijk = 1) = Pr(vj ∼

vi)Pr(vk ∼ vi). This gives,

Pr(Xijk = 1) = pA2[
( j

i
)pA1 + 1

j
]pA2[

(k
i
)pA1 + 1

k
]

= (pA2)
2(i−2pA1jpA1−1kpA1−1 + i−pA1jpA1−1k−1 + i−pA1j−1kpA1−1

+ j−1k−1)

Continuing we have,

E(inj(P 3
3 , Gn)) = (pA2)

2

n−2∑
i=1

n−1∑
j=i+1

n∑
i=1

(i−2pA1jpA1−1kpA1−1 + i−pA1jpA1−1k−1

+ i−pA1j−1kpA1−1 + j−1k−1)

The last 3 of these 4 sums can be worked out to give an Θ(n) term. To work

out the first term
∑n−2

i=1

∑n−1
j=i+1

∑n
i=1 i−2pA1jpA1−1kpA1−1 we need to consider 3

possibilities for pA1: 0 < pA1 < 1
2
, pA1 = 1

2
and 1

2
< pA1 < 1.

If pA1 �= 1
2

then approximating the sum using Lemma 1.3.6 gives
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n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

i−2pA1jpA1−1kpA1−1 =
p − 1

2p2(2p2 − 3p + 1)
n2p +

2p2

2p2 − 3p + 1
n + O(np)

If 0 < pA1 < 1
2

then the n term is dominant and

n−2∑
i=1

n−1∑
j=i+1

n∑
i=1

i−2pA1jpA1−1kpA1−1 =
2p2

2p2 − 3p + 1
n + O(n2p).

If 1
2

< pA1 < 1 then the n2p term is dominant and

n−2∑
i=1

n−1∑
j=i+1

n∑
i=1

i−2pA1jpA1−1kpA1−1 =
p − 1

2p2(2p2 − 3p + 1)
n2p + O(n).

If pA1 = 1
2
, then by approximating the sums with integrals by using Lemma

1.3.6

n−2∑
i=1

n−1∑
j=i+1

n∑
i=1

i−1j−
1
2 k− 1

2 = 2nln(n) + O(n).

Combining all of this gives

E(inj(P 3
3 , Gn)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Θ(n) if 0 < p < 1
2

2nln(n) + Θ(n) if p = 1
2

p−1
2p2(2p2−3p+1)

n2p + Θ(n) if 1
2

< p < 1

It follows that E(X3
n) = E(inj(P 3

3 , Gn)) + Θ(n) that E(X3
n) has the same ex-

pression as E(inj(P 3
3 , Gn)) above.

Finally, computing E(Xn) = E(X1
n) + E(X2

n) + E(X3
n) gives the result of the

Theorem.
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To conclude our analysis of the SPA model, we include a lower bound for the

number of 4-cycles. To give a complete count for the number of 4 cycles, we need

to consider each of the 3 possible ways a 4-cycle can appear in a directed graph as

outlined in the proof of Theorem 2.4.8. Given the geometry and constantly shrinking

influence regions of the modified SPA model, counting 4 cycles in each of these cases

is difficult. Luckily, the techniques we have used in this section to count triangles

and 3-paths can be used to give a lower bound for one of these 4-cycles and hence

the number of 4-cycles in total.

The directed 4-cycle we will count to give our lower bound is C1
4 from the proof

of Theorem 2.4.8.

vk vj

vi vl

C1
4

In the C1
4 pictured above we have that vk and vl are common in-neighbours of vi

and vj. Now to count the number of C1
4 ’s we can use a similar common in-neighbour

argument using Theorem 2.7.4 that we used to count the number of triangles and 3-

paths in the modified SPA model. For our lower bound calculation we only consider

case ii from Theorem 2.7.4 where d(vi, vj) ≤ r(vi, n) − r(vj, n) and E(cn(vi, vj, n)) =

(1+ o(1))pA2

A1
(n

j
)pA1 . It is noted in [76], the if the number of common of in-neighbours

is large enough, then the number of common in-neighbours is concentrated around
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its expectation . For our asymptotic analysis, we can assume that this is the case so

in the following proof we will simply write cn(vi, vj, n) = pA2

A1
(n

j
)pA1 . Our method for

determining a lower bound for the number of C1
4 ’s will be to sum over all 4-sets of

vertices vi, vj, vk, vl with 1 ≤ i < j < k < l ≤ n with d(vi, vj) ≤ r(vi, n) − r(vj, n) no

edge between vi and vj and each pair of common neighbours vk and vl of vi and vj.

Theorem 2.7.7 Let Gn = SPA∗(n, 2, p, A1, A2) with 0 < pA1 < 1 and let Xn =

ind(C4, Gn). Then,

E(Xn) =

⎧⎪⎨
⎪⎩

Ω(n) if 0 < pA1 ≥ 2
3

Ω(n3p−1) if 2
3

< pA1 < 1

Proof Since a lower bound for the number of C1
4 ’s is also a lower bound for the

number of C4’s, we count Xn = ind(C1
4 , Gn). Let Xijkl be an indicator variable for

the events that vi, vj, vk, vl with 1 ≤ i < j < k < l ≤ n induce a C1
4 . Let Ykl be an

indicator variable for the event that vk and vl are common in-neighbours of vi and vj.

Let Zi,j be an indicator variable for the event that d(vi, vj) ≤ r(vi, n) − r(vj, n) and

vi � vj. Note that Xijkl ≥ YklZij as there are additional possibilities that vi, vj, vk, vl

can induce a C1
4 (see case iii) of Theorem 2.7.4.

Xn =
n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=k+1

Xijkl

≥
n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=k+1

YklZij

=
n−3∑
i=1

n−2∑
j=i+1

Zij

n−1∑
k=j+1

n∑
l=k+1

Ykl

Note that
∑n−1

k=j+1

∑n
l=k+1 Ykl =

(
cn(vi,vj ,n)

2

)
, the number of pairs of common in-

neighbours of vi and vj. When Zij = 1 we have d(vi, vj) ≤ r(vi, n) − r(vj, n) so from
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Theorem 2.7.4 that

n−1∑
k=j+1

n∑
l=k+1

Ykl =

(
cn(vi, vj, n)

2

)

=

(
(1 + o(1))pA2

A1
(n

j
)pA1

2

)

= (1 + o(1))
1

2
(
pA2

A1

)2(
n

j
)2pA1

Plugging this into the above and taking expectation gives

E(Xn) ≥
n−3∑
i=1

n−2∑
j=i+1

E(Zij)(1 + o(1))
1

2
(
pA2

A1

)2(
n

j
)2pA1

= (1 + o(1))
1

2
(
pA2

A1

)2

n−3∑
i=1

n−2∑
j=i+1

E(Zij)(
n

j
)2pA1 .

Since Zij is an indicator variable we have that E(Zij = 1) = Pr(Zij = 1). We can

write

Pr(Zij = 1) = Pr(d(vi, vj) ≤ r(vi, n) − r(vj, n) ∩ vi � vj)

= Pr(vi � vj|d(vi, vj) ≤ r(vi, n) − r(vj, n))Pr(d(vi, vj) ≤ r(vi, n) − r(vj, n))

= (1 − p)Pr(d(vi, vj) ≤ r(vi, n) − r(vj, n)).

Recall from the proof of Theorem 2.7.5 that Pr(d(vi, vj) ≤ r(vi, n) − r(vj, n)) =

A2n
pA1−1i−pA1 − 2A2n

pA1−1( 1
ij

)
pA1
2 + O(n−1i−

3pA1
2 j

pA1
2 ). Plugging all this back into

our expression we obtain
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E(Xn) ≥
n−3∑
i=1

n−2∑
j=i+1

(1 − p)(
pA2

A1

)2(A2n
pA1−1i−pA1 − 2A2n

pA1−1(
1

ij
)

pA1
2 + O(n−1i−

3pA1
2 j

pA1
2 ))

(
n

j
)2pA1

= Ω(n3pA1−1

n−3∑
i=1

n−2∑
j=i+1

i−pA1j−2pA1 − i−
pA1
2 j−

5pA1
2 )

= Ω(n3pA1−1

n−3∑
i=1

n−2∑
j=i+1

i−pA1j−2pA1)

We approximate the sum above using Lemma 1.3.6. In doing so, we have two

ranges for the solution. When p �= 1
2

we have,

E(Xn) = Ω(n + np + n3p−1)

When pA1 ≤ 2
3

then the dominate term is n and when pA1 > 2
3

then n3pA1−1 is

the dominate term. When pA1 = 1
2

then we can write,

E(Xn) = Ω(n + ln(n) +
√

n),

and n is the dominate term. Overall we have

E(Xn) =

⎧⎪⎨
⎪⎩

Ω(n) if 0 < pA1 ≥ 2
3

Ω(n3p−1) if 2
3

< pA1 < 1



Chapter 3

Model Validation for Social Networks using Alternating

Decision Trees

In this chapter, we perform a model-selection experiment with the purpose of deter-

mining which of our selected models is the most appropriate for data from Facebook.

Our approach is largely adopted from the work of Middendorf et al. [91] for vali-

dating models for protein-protein interaction networks via supervised classification

algorithms from machine learning. In our work, we modify the approach of Mid-

dendorf et al. and extend it to online social networks. Our work is different in 4

ways: (i) we use a different classification algorithm, (ii) we extend their approach to

much larger and denser graphs, (iii) we complement the use of graphlets by including

features based on global properties of the networks and (iv) we use a different set of

models. In a classification algorithm, a set of vector based training data from differ-

ent classes is learned by the classifier. A new instance of vector based data, called

test data, is evaluated by the classifier, and the class that the test data most likely

belongs to is selected. The goal of our experiment is to find which of our six selected

models is the most capable of replicating a real online social network. Finding the

network model most appropriate for online social networks provides insight into the

growth mechanism that is the most dominant in determining the structure of online

social networks. We consider models based on preferential attachment, copying and

embedding the nodes in a geometric space. A critical question we wish to answer

is: which of these mechanisms are the main drivers in the formation of the graphlet

structure in online social networks? It is easy to see how all three of these mechanisms

173



174

have some role in the formation of a social network.

Preferential Attachment: Popular individuals are more likely to exert a greater

influence in the network and thus attract more friends.

Copying: It is very common that social relationships are established by being intro-

duced to new individuals by someone who knows those individuals.

Geometric: Individuals who live closer are more likely to meet each other and be-

come friends than individuals who live further away. The geometric space need

not model physical distance between two people; it could also model a topic

space where individuals with similar interests are closer to one another in the

space than individuals with diverging interests.

In Section 3.2, we argue that our experiment clearly demonstrates that preferential

attachment is the most important of the three in determining graphlet structure in

online social networks.

Additionally in Section 3.2, we test the accuracy of our classifier on test data taken

from our selected models. To test our hypothesis that graphlet counts characterize the

structure of a network, we developed three versions of our model-selection method:

one based only on non-graphlet features, one based only on graphlet counts, and a

third based on all features together. We found that the classifier built on the graphlet

count features alone were just as accurate as the full feature set on test data taken

from our training models. We conclude from this that graphlet counts alone are

sufficient in characterizing our selected models. This conclusion is also supported by

our results in Chapter 2.

In Section 3.1 we provide a complete description of our experimental procedure

including the models, the testing data, the features selected and the classification

algorithm used. In Section 3.2 we give a detailed analysis of our results.
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3.1 Experimental Procedure and Implementation

Our model selection method follows three steps. First, we obtain the training data by

generating 1000 graphs according to each of our six selected models: the Preferential

Attachment Model (PA), the Copy Model (COPY), the Random Geometric Model

(GEO2D and GEO3D), and the Spatial Preferred Attachment Model (SPA2D and

SPA3D). We briefly remind the reader of the details of the models in Section 3.1.1

below. The parameters of the models are randomly sampled from a range such that

the graphs generated are similar in size and density to the test data. Specifically, we

generate the models so that they have the same number of vertices and are within 5%

of the number of edges as the test graph. To sample the parameters, we rearrange

the expected number of edge calculations we performed in Chapter 2. The restriction

of the sample range of the parameters is necessitated by the fact that the graphlet

counts depend heavily on the size and density of a graph, even for graphs generated

by the same model. For this reason, it is necessary to generate a new training set for

each test graph. This greatly increases the amount of time it takes to test different

Facebook graphs because the experiment needs to be replicated from scratch for each

new test graph. It is currently unclear whether there exists an adequate normalization

method, which would make it possible to compare graphlet counts for graphs of

different densities.

Next, we use the training data to build a multi-class alternating decision tree

(ADT). The details of the construction of the ADT are given in Section 3.1.3 below.

We represent the graphs using features that capture both the local structure of the

graph, through the graphlets, and the global structure. A description of the features

is given in Section 3.1.2 below.

Finally, we compute the feature vectors corresponding to on-line social network

data; in this case snapshots of Facebook. Evaluating this feature vector through the
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classifier, gives a score for each model corresponding to how well the model fits the test

data. Our experimental procedure is repeated for four different Facebook networks

taking from the following American universities : Princeton, American University,

MIT and Brown. We obtained this data from the data sets in [96]. We discuss the

results of these four experiments in Section 3.2.

3.1.1 Models

We have implemented six different graph models. Our choice of models was motivated

by a desire to test a wide range of models commonly proposed for social networks,

based on a number of different attachment mechanisms. Special attention was given

to spatial models, a class of models that is gaining support because of their ability

to model node attributes through spatial representation. Wherever more than one

variation of a model has been proposed in the literature, we have opted for the more

well known version.

All model-generation algorithms are written in Python using the graph-tool mod-

ule [2]. Our training set includes only undirected graphs without multiple edges.

Some of the models allow for multiple edges; if this occurs, we remove the multiple

copies. For all models under consideration, this is known to affect only a tiny amount

of edges. The SPA model and copy model are formulated to generate directed graphs;

we ignore the direction of the edges after generation.

We have already described the models we use in this experiment in Section 1.5.

We now give the exact details for each model as it was used in our experiment.

Preferential Attachment Model (PA).

We use the generalized PA model PA(n, d, α) from [59]. In our theoretical analysis

in Chapter 2, this model started with an initial graph G0 consisting of a single vertex

with d loops. In this experiment we begin with G0 = ER(100, p), where p is chosen so

that G0 has the same edge density as the Facebook graph being tested. To generate
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a graph with similar density as the test graph used, we sample d from a range which

guarantees that the PA graph generated has a number of edges within 5% of the test

graph. Since PA(n, d, α) always generates graphs with dn edges, this results in a

narrow bound form which we sample d. The parameter α is sampled uniformly from

the range [0, �d
2
�]. This range for α was selected so as to not obscure the preferential

attachment mechanism.

Copy Model (COPY).

We use a directed copy model with extra edge addition studied in [4, 32]. This

copy model is the directed version of Copy(n, p, d, Gn0) introduced in Section 1.5.3.

The copy model has two parameters: the copying probability p and the number of

extra edges d. We begin with an initial graph G0 which is a directed version of the

Erdős-Rényi Random Graph generated on 100 vertices so that G0 has the same edge

density as the selected test graph. The copying probability is sampled uniformly from

[0, 1] and d is selected so that the expected average degree of each vertex is equal to

the average degree of the test graph. If this results in a graph with more than 5%

of the number of edges as the test graph, then it is discarded and a new graph is

generated. The method for selecting the parameters for the Copy model differs from

the procedure used for the other models. This is necessary as the expected number of

edges in the Copy model does not appear to be concentrated around its expectation,

resulting in an unreliable use of the expected edge calculation in determining the

parameters for this model.

Random Geometric Model (GEO2D/GEO3D).

We use the two RGG’s Geo([0, 1]2, dtor, n, r, p) and Geo([0, 1]3, dtor, n, r, p) as po-

tential models for our Facebook graphs. From our previous description, this model

has two parameters p ∈ [0, 1] and r ∈ (0, 1). The parameter p is sampled uniformly

at random from [0, 1] and r is computed so that the number of edges is the graphs
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generated is within 5% of the number of edges in the test graph. We compute r by

rearranging the expected number of edges calculation and substituting in the known

values for p, n and the desired number of edges. We found that to obtain the desired

density, it was necessary to take a small value for the threshold r. Doing so results

in a large graph distance between vertices that are far apart in the metric space, and

thus resulting in a large average path length in the GEO model. This places the GEO

model at an immediate disadvantage, as it is well known that social networks, as well

as the other models, have a small average path length. To remedy this handicap,

we select a small number of pairs of vertices after the graph has been generated and

place an edge between each pair. In our experiments we select �ln(n)� pairs of vertices

where n is the number of vertices in the test graph. This addition of a small number

of random edges significantly lowers the average path length without significantly

affecting the other features such as graphlet counts and the degree distribution.

Spatial Preferential Attachment Model (SPA2D/SPA3D).

For the SPA model we consider two different versions that are placed in the same

metric spaces as in the GEO model. Recall that the SPA model has three parameters

p, A1 ∈ (0, 1] and A2 ≥ 0. The parameters p and A1 are selected uniformly at random

from their respective ranges and A2 is computed by rearranging the expected edge

calculation for the SPA model.

3.1.2 Features

We represent our graphs by 17 features in a vector representation. These features

include information about the global properties of the graphs, specifically the degree

distribution, the assortativity coefficient and the average path length between vertices.

In addition, we capture the local structure through the raw graphlet counts for the

connected subgraphs of size 3 and size 4. Below is a description of each of these

features.
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Degree Distribution Percentiles. The degree distribution is a favourite prop-

erty studied for most ”real world” networks. A distribution with a power law tail

is a distinguishing property of many such networks, including the friendship net-

work of Facebook [96]. The most logical feature to use here would be the coeffi-

cient of the power law degree distribution. Unfortunately, not all of our selected

models generate graphs with a power law degree distribution (e.g. random geomet-

ric models). Also, even if a model does generate a power law degree distribution,

it can be difficult to determine its power law coefficient. Instead, to measure the

spread of the degree distribution, we consider the percentiles of the distribution

formed by breaking it evenly into 8 different pieces. This corresponds to taking

the 12.5th, 25th, 37.5th, 50th, 62.5th, 75th and 87.5th percentiles. We call these

features deg1, deg2, deg3, deg4, deg5, deg6, and deg7 respectively. These percentiles are

determined through a simple code using the graph-tool module.

Assortativity Coefficient.

Recall that the assortativity coefficient r ∈ [−1, 1] is a measurement of how well

vertices of similar degree link to one another in the network. The assortativity coef-

ficient is computed using the graph-tool module.

Average Path Length. The small world property, implying a small average

distance between nodes, is another distinguishing aspect of social networks. It is

shown in [23] that online social networks have a small average path length. Here

we compute the average path length between nodes by selecting 100 random pairs

of nodes and calculating the length of the shortest path between each pair using a

breadth-first-search that is implemented in graph-tool.

Graphlets.

To characterize local structure, we include as features all the counts of connected

subgraphs of size 3 (two non-isomorphic graphs) and 4 (six non-isomorphic graphs.)
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These graphlets are depicted in Figure 1.1. Unfortunately, no algorithm is known

which computes the full counts for these subgraphs efficiently (though there are al-

gorithms to count triangles quickly [83, 120]). As a compromise, we use the sampling

algorithm of Wernicke [124] to sample the number of these graphlets. The advantage

of Wernicke’s algorithm is that it can be used to give an unbiased sample of a specified

portion of the subgraphs.

As input, Wernicke’s algorithm takes in a labeled graph and an integer k, the

size of the connected subgraphs to be counted. The algorithm generates a tree of

depth k by looping through each vertex and performing a depth first search on the k-

neighbourhoods of each vertex. Recall that the k-neighbourhood of a vertex is the set

of all vertices within graph distance k of the vertex. When the algorithm terminates,

a tree of depth k has been formed where the leaves of the tree correspond to all the

size k connected subgraphs of G.

Building the entire tree is extremely time consuming for the size of graphs we

are considering. Wernicke’s algorithm allows for the unbiased sampling of the size

k subgraphs by probabilistically skipping steps in the algorithm. Experiments per-

formed by Wernicke in [124] show that the sampling algorithm samples the correct

proportion. To supplement Wernicke’s analysis we investigate the effectiveness of the

sampling algorithm by testing it on a graph with 3000 vertices and 70270 edges (see

Table 3.1.2). You can see that there is good agreement between the real counts and

the estimates from Wernicke’s algorithm. In light of this almost perfect agreement

between sampling and exhaustive counts, we deem that a sampling rate of 0.01%

would be sufficient for our purposes.

For our experiments, we sample 1% of the size 3 graphlets and 0.01% of the size

4 graphlets. The counting of the graphlets is the most time consuming step of our

model-selection procedure. For the size and density of graphs we are considering,

it was not feasible to include subgraphs of size greater than 4. In [91], the authors
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% g1 g2 g3 g4 g5 g6 g7 g8
100 2323538 320097 18389736 65090655 22256380 3115254 4317267 434608
10 232335 32075 1837970 6508583 2227640 310958 431961 43176
1 23142 3243 184115 650031 222899 30905 43062 4378

0.1 2368 343 18341 65156 22381 3143 4281 453
0.01 224 33 1804 6524 2163 315 422 49

Table 3.1: Performance of Wernicke’s Algorithm on a graph with 3000 vertices and
70270 edges.

consider subgraphs up to size 7, but this is only possible because the graphs are much

smaller and sparser than those considered here. Inclusion of graphlets of larger size

will only be possible for graphs of the size and density considered here if new methods

are developed to compute or estimate graphlet counts which show a dramatic increase

in efficiency. However, our results show that the graphlets of size 3 and 4 are highly

effective in separating the models. Based on our results, we do not expect that the

inclusion of higher-order graphlets would lead to a significant improvement in the

accuracy of our model-selection method.

3.1.3 Classification Algorithm

To classify our data, we use the multi-class alternating decision tree (ADT) algorithm

LADTree of Holmes et al. [67]. ADTs are a class of boosted decision trees that

were introduced by Freund and Mason in [68]. Boosting [69] is a well established

classification technique which combines so called “weak classifiers” to form a single

powerful classifier. In successive steps, called boosting steps, weighted combinations

of the weak classifiers are applied to the training data and the weights are adjusted

in each step to improve the classification.

The first ADTs were built using the AdaBoost boosting algorithm [69]. The ADT

used here, LADTree, is built on the lesser known LogitBoost boosting algorithm

of Friedman, Hastie and Tibshirani [70]. Friedman et al. show in their work that



182

both boosting algorithms fit an additive logistic regression model. They argue that

LogitBoost is the more appropriate algorithm because it fits the regression model

using the more typical maximum likelihood minimization criteria, whereas AdaBoost

uses an exponential minimization criteria.

In Figure 3.1, we show a partial LADTree that was constructed during our exper-

iment. An ADT has two types of nodes, decision nodes (rectangles in Figure 3.1) and

prediction nodes (ellipses in Figure 3.1). Decision nodes contain a Boolean predicate

that corresponds to a threshold on one of the features in the feature vectors for the

training data. The prediction nodes contain real-valued scores, one for each of the

classes in the training set. In our case, we have six different classes or models so each

prediction node contains six scores.

The LADTree begins with a prediction node that has a score of zero for each of

the models. In each boosting iteration, a decision node is added to the tree along

with two prediction nodes as its children in the tree. The new decision node can be

added as a child to any existing prediction node in the tree. The placement of the

decision node and its Boolean predicate is the one that gives the best separation of the

training data. The exact criterion for this is provided by the LogitBoost algorithm

[70].

Once the LADTree has been formed, new instances, typically called the test data,

can be classified by the tree. For us, the test data is the feature vector for the

Facebook graph we wish to classify. The feature vector for the Facebook graph will

determine its flow through the tree. The test instance travels through all possible

paths it can reach in the tree, resulting in a classification score, which is the sum of

all prediction nodes, reached along the way. This results in six different scores, one for

each of the six different models Fj j = 1, 2, 3, 4, 5, 6. A positive score indicates a good

fit and a negative score indicates a bad fit. The model that obtains the highest score

is deemed to be the model that best describes the test data. The absolute values of
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PA: 0
GEO2D: 0
COPY: 0
SPA2D 0
GEO3D: 0
SPA3D: 0

S1 : assort < 0.02

Y

PA: 0.481
COPY: 0.481

GEO2D: -0.963
SPA2D 0.481

GEO3D: -0.963
SPA3D: 0.481

N

PA: -0.867
COPY: -0.867
GEO2D: 1.733
SPA2D -0.867
GEO3D: 1.733
SPA3D: -0.867

S5 : g6 < 4117.5

Y

PA: 0.019
COPY: 0.094
GEO2D: 0.01
SPA2D -0.244
GEO3D: -0.003
SPA3D: 0.125

N

PA: -0.602
COPY: 1.101

GEO2D: -0.903
SPA2D: 1.227
GEO3D: -0.424
SPA3D: -0.398

S12 : g8 < 21.5

Y N

PA: -0.739
COPY: 0.034
GEO2D: 1.272
SPA2D: 0.498
GEO3D: -0.849
SPA3D: -0.216

PA: -0.472
COPY: -0.585
GEO2D: 0.017
SPA2D: -0.355
GEO3D: 0.625
SPA3D: 0.769

S2 : assort < 0.006

Y N

PA: -0.739
COPY: 0.034
GEO2D: 1.272
SPA2D: 0.498
GEO3D: -0.849
SPA3D: -0.216

PA: -0.472
COPY: -0.585
GEO2D: 0.017
SPA2D: -0.355
GEO3D: 0.625
SPA3D: 0.769

Figure 3.1: Partial LADTree using the full feature vector with 200 boosting iterations.

the scores provide the level of confidence in the prediction. Thus, a large positive Fj

indicates that model j is a very good model for the test instance and a large negative

Fj indicates that model j is a very bad model for the test instance. The scores Fj

can be readily interpreted as class probabilities pj by the equation

pj =
eFj∑6
j=1 eFj

which results by inverting the additive logistic model that is fitted by the LADTree

algorithm [67].

The advantage of using ADTs is that they require no specific assumption about

the geometry of the input space for the features. Thus we are free to incorporate

any range of features such as degree distribution percentiles, average path length and

subgraph counts without considering any potential dependence amongst them. The
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importance of each feature is based on how well it separates the 6 different models.

We use the Weka software package for Java [1] to build all the LADTrees used in our

experiments.

3.2 Discussion of Experiment Results

We tested our approach on four different social network graphs taken from Mason

Porter’s Facebook100 data set [3]. Each graph in the data set corresponds to users at

different universities. For our test data we take: Princeton University which has 6596

vertices and 293329 edges, American University which has 6386 vertices and 217661

edges, MIT which has 6440 vertices and 251252 edges, and Brown University which

has 8600 vertices and 384525 edges. Note that if we were to express the number of

edges in these graphs as dn then the approximate values for d are: Princeton - d = 44,

American - d = 34, MIT - d = 39 and Brown - d = 45.

For each of these test graphs, our experiment procedure is as follows. First, we

generate a training set of 6000 graphs which are the of same size as the test graph, and

have edge density which differs by at most 5% from that of the test graph. In order

to test the effect of different features and a different number of boosting iterations,

we build 9 LADTree classifiers. The classifiers are built using 3 different types of

feature vectors; the full feature vector that incorporates all 17 features described in

Section 3.1.2, the graph feature vector that uses only the graphlet features and the

non-graph feature vector that uses only the non-graphlet based features. For each of

the feature vectors, we build a classifier using 50, 100 and 200 boosting iterations,

giving 9 classifiers in total for each experiment. Finally, we use the classifiers to

classify the Facebook graph. The model that obtains the best score is considered to

be the best fir for the test data.
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3.2.1 Testing the Classifier

Before performing our experiments on the actual Facebook data, it is important to

test the classifier to find out how we should interpret the results. To this end, we

generate an additional 100 graphs from each of the models, and apply the classifier

to this known data set. Since we know exactly which model these synthetic graphs

belong to, we can test whether or not our classifier can predict the correct model.

Moreover, this should establish an important baseline for the maximum and minimum

possible scores achievable by each model.

We also test the robustness of the classifier. To do this, we take the 600 synthetic

graphs and change a percentage of the edges by removing an edge from the graph

and replacing it with a new edge chosen uniformly at random. The goal is to see how

fast the classification accuracy deteriorates as a greater number of edges are changed.

Overall, we have 6 test data sets of 600 graphs each, with 0%, 5%, 10%, 15% , 20%

and 25% of the edges randomly changed. We generate the initial 600 graphs with

the same density as the Princeton network and classify them using the LADTree

classifiers we have generated for the Princeton data. To determine the importance

of the graphlet features, we consider the classifiers built using both the full feature

vector and the graph feature vector.

Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 8.96 ± 1.18 -3.91 ± 2.39 -4.16 ± 1.18 0.17 ± 1.69 -2.38 ± 1.25 1.32 ± 0.82

COPY -2.3 ± 0.34 7.02 ± 0.24 -2.19 ± 0.27 -0.19 ± 0.23 -3.2 ± 0.28 0.85 ± 0.27
GEO2D -6.78 ± 1.59 -7.82 ± 3.55 9.13 ± 2.89 2.65 ±2.42 3.57 ± 1.47 -0.76 ± 1.55
SPA2D -5.51 ± 2.5 -11 ± 3.86 2.89 ± 2.27 10.16 ± 3.05 -2.36 ± 2.04 5.81 ± 1.76
GEO3D -6.14 ± 1.31 -8.42 ± 3.18 3.58 ± 1.61 -0.73 ± 1.05 9.04 ± 2.94 2.67 ± 2.32
SPA3D -4.09 ± 2.48 -9.97 ± 4.54 0.03 ± 2.2 5.22 ± 2.06 -0.26 ± 2.79 9.07 ± 2.84

Table 3.2: Average value with standard deviation for full feature vector with 50
Boosting iterations

Consider the scores generated by the classifier for the unchanged synthetic graphs,

shown in Tables 3.2, 3.3, 3.4, and 3.5. As expected, the graphs are overwhelmingly
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Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 11.92 ± 0.89 -4.61 ± 1.25 -4.61 ± 1.93 2.39 ± 1.65 -5.11 ± 1.46 0.03 ± 1.03

COPY -5.5 ± 1.67 11.73 ± 0.80 -0.34 ± 1.11 1.37 ± 1.02 -8.25 ± 1.93 0.99 ± 1.4
GEO2D -10.83 ± 1.96 -10.64 ± 4.54 12.59 ± 3.19 4.07 ± 2.42 6.02 ± 1.91 -1.2 ± 1.84
SPA2D -8.08 ± 3.57 -13.61 ± 4.57 3.04 ± 2.88 13.79 ± 3.72 -2.38 ± 3.45 7.25 ± 1.99
GEO3D -10.72 ± 2.21 -12.55 ± 5.11 5.81 ± 2.30 1.56 ± 2.07 13.25 ± 3.79 2.66 ± 2.4
SPA3D -6.62 ± 3.79 -13.04 ± 5.68 -0.09 ± 2.97 6.94 ± 2.17 -0.45 ± 4.13 13.26 ± 4.05

Table 3.3: Average value with standard deviation for full feature vector with 100
Boosting iterations

Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 16.69 ± 1.5 -5.9 ± 1.55 -6.62 ± 2.75 2.42 ± 2.21 -8.90 ± 2.15 2.31 ± 1.66

COPY -8.2 ± 4.9 18.31 ± 0.8 -6.31 ± 1.61 1.95 ± 2.03 -9 ± 2.46 3.24 ± 2.05
GEO2D -16.79 ± 4.09 -18.23 ± 7.03 19.27 ± 3.01 5.48 ± 3.05 9.41 ± 3.44 0.86 ± 3.18
SPA2D -10.75 ± 5.6 -20.41 ± 6.61 5.46 ± 4.24 19.53 ± 4.40 -3.71 ± 5.34 9.88 ± 2.56
GEO3D -17.57 ± 4.34 -21.78 ± 8.46 8.92 ± 3.44 2.32 ± 2.96 20.5 ± 4.98 7.6 ± 4.12
SPA3D -8.73 ± 5.76 -20.74 ± 7.99 0.82 ± 4.55 9.59 ± 2.7 0.07 ± 5.94 18.99 ± 4.06

Table 3.4: Average value with standard deviation for full feature vector with 200
Boosting iterations

assigned to the class corresponding to the model that generated them. The scores

range roughly between -10 and 10 for 50 boosting iterations, -15 and 15 for 100

boosting iterations and -25 and 25 for 200 boosting iterations for both the full and

graph features. The performance of the classifier is consistent over the different

number of boosting iterations.

To determine the importance of the graphlet features, we compare the performance

of the classifiers built using the full feature vector with those built using only the graph

feature vector. Table 3.5 shows the performance on the synthetic graph when only the

graph feature vector is used. Almost all graphs are classified correctly. In comparing

Tables 3.5 and 3.3, we can observe that the test graphs receive similar scores regardless

of whether the full feature vector or the graph feature vector is used. In some cases,

using the graph feature vector produced higher scores for the geometric-based models

but not significantly higher. Thus we can conclude that graphlets alone are sufficient

to recognize the graph structure of the models under consideration.
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Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 10.36 ± 0.51 0.45 ± 0.44 -5.26 ± 0.72 -0.6 ± 1.02 -6.19 ± 0.78 1.24 ± 0.98

COPY 0.07 ± 0.95 9.71 ± 0.85 -5.27 ± 0.36 0.35 ± 1.16 -5.95 ± 0.64 1.1 ± 0.36
GEO2D -12.18 ± 3.11 -14.9 ± 4.77 13.86 ± 3.98 5.97 ± 3.11 6.53 ± 2.49 0.72 ± 1.85
SPA2D -11.71 ± 2.89 -13.74 ± 4.32 2.35 ± 2.55 15.41 ± 3.44 -0.78 ± 3.31 8.47 ± 2.27
GEO3D -13.21 ± 3.28 -15.36 ± 4.39 7.45 ± 1.86 3.27 ± 2.02 13.39 ± 2.84 4.46 ± 2.67
SPA3D -11.41 ± 3.34 -14.22 ± 4.61 -0.03 ± 2.32 9.06 ± 2.17 1.62 ± 3.56 14.99 ± 3.03

Table 3.5: Average value with standard deviation for graph feature vector with 100
Boosting iterations

Finally, we test the robustness of the classifier with respect to perturbations of

the graph structure. Tables 3.6 and 3.7 give the classification accuracy for each of

the 6 test data sets using the full feature vector and graph feature vector respectively.

The classification accuracy on the original unchanged test data is very high for both

the full and graph feature vectors. The classification accuracy is slightly but not

significantly higher when only the graph feature is used. When 5% of the edges

are changed, the classification accuracy for the full feature drops to just below 75%,

while for the graph feature vector, the accuracy is just below 80%. In this case, the

graph feature vector alone performs better than the full feature vector. For all other

percentages of edge changes, the difference between the two is not significant.

The conclusion of this experiment is that the graph features alone provide just as

much information as the full feature set. In fact, as is the case when 5% of the edge

were changed, including additional non-graph information can decrease the accuracy

of the classifier. When 10% of the edges are changed, both feature vectors give

classification accuracies around 65%, which is still a fair performance. When 15% of

the edges are changed, the accuracy for both feature vectors drops to around 55%. At

20% and 25%, the accuracy dips below 50%. The accuracy at this level is not good,

but there clearly still is information present in the link structure, since classifying the

graphs completely at random would give the correct classification less than 17% of

the time.
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Another interesting observation is that the overall classification accuracy does

not necessarily increase with the number of boosting iterations. It is the case that

increasing the number of boosting iterations improves the classification accuracy on

the unchanged data, but this is not necessarily the case for the changed data. For

most of the test data sets, the difference is not significant, but when 25% of the edges

are changed, the classification accuracy is about 3% better when only 50 boosting

iterations are performed as compared to 200 boosting iterations. We suspect that

increasing the number of boosting iterations leads to an over fitting of the perturbed

data.

Edge Changes Boosting Iterations
% 50 100 200
0 94.67 95.67 97.17
5 73.83 71.5 74.33
10 64 63.33 65.17
15 57.33 56.17 56.33
20 51.17 48.67 48.83
25 44.17 43 41.17

Table 3.6: Classification accuracy for full
feature

Edge Changes Boosting Iterations
% 50 100 200
0 94.83 96.67 97.83
5 78.67 79.83 79.67
10 64 63.5 63.67
15 56.17 55.67 54.8
20 49.33 48 48.17
25 44 40.5 40.67

Table 3.7: Classification accuracy for
graph feature

To find out exactly how the graphs are misclassified, we present in Table 3.8,

the complete classification results for the classifier trained with the graph feature

vector. Here we can see that the 3D models (GEO3D and SPA3D) are very robust

against the changing of edges while their 2D (GEO2D and SPA2D) counterparts are

not. Precisely, a large part of the misclassification of perturbed graphs is due to

classification of GEO2D and SPA2D as GEO3D and SPA3D respectively. Even with

the lowest level of perturbation of 5%, roughly half of the 2D models are classified as

their 3D counterparts. When 25% of the edges have been changed, only around 5%

of their 2D models are classified correctly, with most of the graphs being classified as

the 3D counterpart. Meanwhile, the 3D models maintain good classification accuracy
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even when 25% of the edges are changed.

Another interesting observation is that the COPY model is also somewhat robust

against the changing of edges. Even with 5% of the edges switched, all the COPY

graphs are classified correctly. The accuracy dips to around 95% when 10% of the

edges are changed. Even when 25% of the graph is changed, the classification accuracy

stays within 50%–70%. The PA model, on the other hand, is not robust against the

changing of edges. The classification accuracy quickly decreases as edge changes

start to accumulate. Interestingly, PA graphs are confused only with the copy model,

not with any geometric model. Note that PA graphs are never confused with SPA

models, even though both models incorporate the preferential attachment principle.

A reasonable explanation for this is that the SPA model generates too many triangles

and 4-cliques as compared to the PA model, and changing 25% of the edges is not

a sufficient enough change to alter this reality. The same reason would explain why

the PA model is never confused with the GEO models.

One purpose of testing the robustness of the classifier is to attempt to simulate

the behavior of the classifier on noisy data. One conclusion is that even if a little bit

of noise is introduced into the data, the 2D models are more likely to get classified

as a 3D model. The conclusion is that if unknown data is classified as a 3D model,

it is possible that the correct model should be the 2D model. We also can conclude

that using the graph feature vector may be more reliable than using the full feature

vector.

3.2.2 Classification of the Facebook Networks

After verifying the quality of the classifier, we now apply the classifiers to the data

sets for which they were designed. In Table 3.9, we present the classification scores

for each of the four data sets, for classifiers built using the full feature vector, graph

feature vector, and the non-graph feature vector. The highest score is in bold; when
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Change PA COPY GEO2D SPA2D GEO3D SPA3D Models

0%

100 0 0 0 0 0 PA
0 100 0 0 0 0 COPY
0 0 92 2 6 0 GEO2D
0 1 0 97 0 2 SPA2D
0 0 5 0 95 0 GEO3D
0 0 0 4 0 96 SPA3D

5%

88 2 0 0 0 10 PA
0 100 0 0 0 0 COPY
0 0 49 2 49 0 GEO2D
0 0 0 47 0 53 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 0 99 SPA3D

10%

78 14 0 0 0 8 PA
0 94 0 6 0 0 COPY
0 0 11 1 88 0 GEO2D
0 0 0 3 1 96 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 1 1 98 SPA3D

15%

51 45 0 0 0 4 PA
0 82 0 18 0 0 COPY
0 0 7 2 91 0 GEO2D
0 0 0 2 6 92 SPA2D
0 0 2 0 98 0 GEO3D
0 0 0 1 5 94 SPA3D

20%

24 76 0 0 0 0 PA
0 69 0 31 0 0 COPY
0 0 8 2 90 0 GEO2D
0 0 0 2 12 86 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 10 89 SPA3D

25%

2 98 0 0 0 0 PA
0 53 0 46 1 0 COPY
0 0 6 2 92 0 GEO2D
0 0 1 4 18 77 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 17 82 SPA3D

Table 3.8: Classification of perturbed graphs. Graph feature vector with 100 boosting
iterations.
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two scores are close both are in bold.

Classifier PA COPY GEO2D SPA2D GEO3D SPA3D

full Princeton -0.303 -14.551 4.599 11.287 -5.451 4.42
graph Princeton 6.699 -2.227 -3.914 3.085 -3.676 0.033
non-graph Princeton -0.858 -3.622 -7.447 8.022 -5.029 8.941
full American -0.414 -12.164 -0.183 8.307 -5.578 10.025
graph American 0.779 -10.639 0.381 5.834 -7.693 11.332
non-graph American -4.612 -2.442 -3.627 6.517 -3.348 7.512
full MIT 2.956 -12.512 2.715 13.528 -8.561 1.873
graphs MIT 4.097 -9.49 3.061 5.304 -2.91 -0.063
non-graph Brown -0.197 -3.58 -2.61 4.549 -1.606 3.44
full Brown 4.998 -15.163 -0.305 1.733 -6.161 14.897
graphs Brown 6.283 -0.085 -3.774 1.827 -3.771 -0.479
non-graph MIT 1.956 -7.305 -2.458 2.518 -2.901 8.192

Table 3.9: Scores for each data set, for each of the classifiers with 100 boosting
iterations

The first clear conclusion from the outcome of the experiments is that all sig-

nificantly high scores are for models that incorporate the preferential attachment

principle: PA, SPA2D and SPA3D. In most cases, both the SPA2D and SPA3D give

high positive scores. From our analysis of the classifier on perturbed graphs, we know

that misclassification between SPA2D and SPA3D is common. The only reasonable

conclusion is that the SPA model in general fits the data well. A different type of

analysis would need to be done to determine the dimension. The PA model gives

the highest score for two of the data sets, but only with the classifier that uses the

graph features. When testing our classifiers on synthetic graphs from our six models,

we concluded that graphlet features were at least as efficient as the full feature set

in distinguishing the models. For real data, the situation is clearly different. From

Table 3.9 we see that there can be a fairly large discrepancy between graph feature

and the full feature results. Since the full feature set is based on the most complete

set of features, it reasons we should base our final conclusion on the classifier built

using all the features. In this light, the SPA model clearly gives the best fit for the
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Facebook data.

Classification algorithms are built under the assumption that the test data actually

belongs to one of the classes the classifier is trained to distinguish. This assumption

is often not met in realistic applications, as is the case here, though it is common

practice to evaluate unknown data using a classification algorithm. With this in

mind, it is important for us to exercise caution when interpreting our results from the

Facebook data. To enhance our understanding of the results, we consider how each

feature contributes to the score for each model. Specifically, we analyze the features

that appear in the first layer of nodes (of depth 1) in the ADT as they are the most

influential in classifying the data. Furthermore, we consider how often each feature

is visited when the classifier is applied to the Facebook data. Combined with our

knowledge about the different models, and their typical behavior in regards to the

selected features, this analysis will provide a more detailed picture of the classification

results. Here we give an overall discussion of our conclusions from this analysis. A

precise analysis for each of the four experiments can be found in Appendix A. To

further aid our analysis, we generate box plots to visualize how well each feature

generated in the models matched the features generated in the Facebook graph.

Our first observation is that in every classifier built using the full feature vector,

the first node in the ADT corresponds to the assortativity coefficient. Therefore, the

assortativity coefficient is the most significant in separating the classes. In Figure 3.2,

we show the box-plot for the assortativity coefficient from the Princeton experiment.

We can see that the assortativity coefficient is significantly higher for the GEO

model than the rest of the models. This can also be explained theoretically. The GEO

model has a binomial degree distribution that implies that many vertices will have

similar degrees leading to a higher assortativity coefficient. Note that the assortativity

coefficient is not included in the graph feature vector. Since we concluded from

our analysis on synthetic graphs that the graph feature and full feature have the
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Figure 3.2: Box-plots representing the spread of the assortativity coefficient (left) and
the g6 graph feature (right) for the Princeton network.

same classification accuracy, we suspect that the assortativity coefficient is implicitly

contained in the graphlet counts.

The most important graph feature was g6, which corresponds to the 4-cycle. The

4-cycle feature tends to be the most important feature overall. It appears frequently

in the first layer of nodes in the ADT, and it is usually the feature that is most visited

by the Facebook data when it is applied to the classifier. In some cases, the outcome

of the classification can be deduced by only considering the 4-cycle. In most cases, the

SPA models were the models that were able to generate 4-cycle counts that were the

closest to the 4-cycle counts in the Facebook graphs. This can be seen in the boxplot

for the Princeton experiment in Figure 3.2. This is a major factor in explaining why

the SPA models performed so well in our experiments. Recall that this observation

coincides with the expected 4-cycle counts in the model in Chapter 2.

An important difference between the models is that the PA and COPY models

tend not to generate highly connected subgraphs whereas the GEO models do tend to

generate highly connected subgraphs. Conversely, the PA and COPY models generate
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many sparse subgraphs whereas the GEO models do not. By highly connected sub-

graphs we mean those that contains a triangle, namely: g2, g5, g7. Sparse subgraphs

are those without a triangle: g1, g3, g4. For some experiments, the ability of the PA

model to generate a number of 3-paths and 4-paths in almost perfect agreement with

the number present in the Facebook graphs resulted in the PA model receiving the

highest score when the graph feature vector was used. Specifically, this was the case

for the Princeton and Brown networks. Overall, the SPA model’s ability to gener-

ate a mixture of dense subgraphs and sparse subgraphs, explains the superior overall

performance of the SPA model.

A final interesting observation comes from comparing the experiments for the

Princeton and Brown networks. Though the Princeton network has 6596 vertices and

the Brown network has 8600 vertices, they have almost the same edge density. The

conclusions of the two experiments are similar and for the graph feature vector in

particular, they are almost identical. Moreover, the ADTs produced for each of the

networks are very similar. They have the exact same first layer of nodes for both

the full and graph feature vector. This suggests that training sets with graphs of the

same density generate similar ADTs. This indicates that the same classifier could be

used to classify test data that has comparable size and density. If the appropriate

normalization factor could be found for comparing graphlet counts from graphs of

different sizes but similar densities, then the building of the classifier would only have

to be done once. The same classifier could then be applied to suitably normalized

feature vectors of the data. Since the counting of the graphlets in the training data is

the most time consuming step of the experiment, such a normalization would greatly

increase efficiency.



Chapter 4

Discussions and Further Work

A significant conclusion of this thesis stems from the theoretical analysis in Chapter

2. In this chapter, we show that each complex network model has a unique profile in

terms of the graphlets they generate. This phenomena is also observed through the

experimental procedure performed in Chapter 3. The result in Theorem 2.1.2 provides

a relationship between the expected number of triangles and 3-paths and the power

law coefficient for graphs that have a degree distribution whose expectation follows

a power law. Furthermore, we show that even for models that have the same power

law degree distribution, the level of clustering is vastly different.

In Chapter 3 we argue that the preferential attachment mechanism is the most

important mechanism in the formation of a Facebook network. Moreover, we argue

that the SPA model provides the best fit to the Facebook data considered. This

occurs for two reasons: the SPA model is able to generate a number of 4-cycles which

provides the best fit to what is observed in the Facebook data, and the SPA model

provides a reasonable fit to all of the graphlets considered. To see why the 4-cycle

is an important graphlet in the classification algorithm we need to consider the box

plots shown in Figure 3.2. Looking at the spread of 4-cycles in each of the models, we

see that each model has a unique profile. Thus, when the classifier is learned, it must

distinguish each of the 6 different models from one another. Thus, in the ADT, the

4-cycle feature gets used in prediction nodes much more frequently than any other

feature. It is difficult to determine what the 4-cycle might mean in the context of a

social network. One possibility is that the edges that are not present in the 4-cycle

195
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represent previously existing friendships that turned sour.

The experimental procedure in Chapter 3 provides insight into improvements that

can be made in developing a new model for social networks. One possibility is to build

a model that provides a match to the graphlet structure observed in complex networks

as opposed to matching the common complex network properties. Another possibility

is to provide a slight adjustment to the SPA model. We observed that the SPA model

does a good job at providing a fair match to all of the graphlet features used. However,

it does tend to fall short of generating enough 3-paths and 4-paths. Recall that the

PA model was able to produce the right amount of 3-paths and 4-paths. To bridge

the gap for the SPA model we could allow for an additional d edges to be added to

each new vertex where the end points are selected preferentially according to degree.

Note that this step would ignore the geometry aspect of the model.

In Chapter 2, we tabulated results for the expected number of triangles, 3-paths

and 4-cycles in our selected models. For this analysis, we only computed the expected

value and did not provide any analysis on how far a typical observation tends to

deviate from the expectation. Through the computational analysis of these models in

Chapter 3, we suspect that many of these graphlet counts may be concentrated around

their expectations. An avenue of future work would be to prove mathematically that

this is indeed the case. Additionally, it would be interesting to study different random

graph models and compare the expected number of small subgraphs generated in these

models to our selected models. Specifically, for a graph with dn edges, we show in

Figure 2.1 that the maximum number of triangles is Θ(n
3
2 ), the maximum number of

3-paths is Θ(n2) and the maximum number of 4-cycles is Θ(n2). We have examples

from our models of graphs which generate Θ(n2) 3-paths and Θ(n2) 4-cycles, but we

do not have any graph models which generate Θ(n
3
2 ) triangles. The highest order

we obtain for the expected number of triangles is Θ(n). It would be interesting to

explore whether or not any other popular complex network models generate an order
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closer to the maximum.

In Chapter 3, we verified that classifiers built using graphlets were very accurate

at distinguishing graphs from our selected models. A potential avenue of further

analysis is to increase the number of models under consideration and evaluate the

classifier’s performance as the number of training models increases. Another future

research topic is to apply the model-selection procedure of Chapter 3 to different types

of complex networks with a different selection of models to see which one is the most

appropriate. As noted in Chapter 3, a new classifier, and as a result new training data,

needs to be generated for each new test graph with different size and density. If we

were able to determine an appropriate normalization so that graphlet counts in graphs

of different size and density could be compared, then we would only have to generate

one classifier. Unfortunately, the results of Chapter 2 do not point to the validity of

using any normalizing constant to compare graphlet counts amongst graphs with dn

edges. To illustrate this point, let’s consider 3 of our models: the original PA, the

pure copy model with p = 1
2

and the SPA model with 0 < pA1 < 1
2
. Let us attempt to

normalize the graphlet counts for the size 3 graphlets. Let’s suppose that we simply

use n as our normalizing constant. For the PA model we get normalized triangle and

3-path counts of Θ( ln(n)3

n
) and Θ(ln(n)) respectively. For the pure copy model we

have Θ(n− 1
4 ) and Θ(n

1
4 ) respectively. For the SPA model we have Θ(1) and Θ(1)

respectively. Now as n → ∞, the concentrations of triangles in the PA and the copy

model both go to zero even though the copy model asymptotically generates many

more triangles than the PA model. Our selection of n as the normalizing constant

has resulted in a loss of information about the different amounts of triangles in the

PA and copy models. The purpose of this normalizing constant is to allow for the

comparison of graphlets, not hinder it. Attempting a different normalization constant

in this case results in a similar loss information as n → ∞.

This unfortunately means that the entire procedure of generating the training
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data, counting the graphlets and training the classifier needs to be repeated for each

experiment, a process that is extremely time consuming. The only way we can improve

the efficiency of our procedure is to develop faster algorithms for counting graphlets.

Luckily, there does appear to be some head way in recent papers for algorithms that

will speed up graphlet counting [79, 66].
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Mat. Kutató Int. Közl, 5:17–61, 1960.

[61] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. SIGCOMM Comput. Commun. Rev., 29(4):251–262, 1999.

[62] K. Faust and S. Wasserman. Social network analysis: methods and applications.
Structural Analysis in the Social Sciences. Cambridge University Press, 1994.

[63] D. Fell and A. Wagner. The small world of metabolism. Nature Biotechnology,
18:1121–1122, 2000.

[64] D. Fell and A. Wagner. The small world inside large metabolic networks. Proc.
Roy. Soc. London Ser. B., 268:1803–1810, 2001.

[65] M. Fernández and G. Valiente. A graph distance metric combining maximum
common subgraph and minimum common supergraph. Pattern Recogn. Lett.,
22(6-7):753–758, 2001.

[66] F. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, and B. Raghavendra Rao.
Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci.,
78(3):698–706, 2012.

[67] E. Frank, M. Hall, G. Holmes, R. Kirkby, and B. Pfahringer. Multiclass al-
ternating decision trees. In Proceedings of the 13th European Conference on
Machine Learning, ECML ’02, pages 161–172, 2002.

[68] Y. Freund and L. Mason. The alternating decision tree learning algorithm.
In Proceedings of the Sixteenth International Conference on Machine Learning,
ICML ’99, pages 124–133, 1999.

[69] Y. Freunde and R. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. In Proceedings of the Second European
Conference on Computational Learning Theory, EuroCOLT ’95, pages 23–37,
1995.

[70] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a sta-
tistical view of boosting. Annals of Statistics, 28:2000, 1998.



204
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Appendix A

Discussion for Each Facebook Experiment

A.1 Princeton

To interpret our results we consider the information in Tables A.1, A.2, A.3, and A.4

as well as the box plots in Figure A.1. For the full features vector, we can see from

Table A.4, that the SPA models have the best performance. We argue that g6, which

corresponds to the 4-cycle, is the most influential feature in this case. Examining

Table A.2 indicates that this is the most frequently visited feature. This feature

also occurs frequently in the first layer of nodes so that it is a descriptive feature in

separating the models. Comparing the number of 4-cycles in the Princeton network

against the range of 4-cycle counts for each of the models in Figure A.1, we can see

that the count for the Princeton network only falls in the range of SPA2D and is very

close to falling into the SPA3D range. This is the main reason that SPA2D receives

the highest score. Suppose that the classification was to be done by considering the

4-cycle alone. Then by observing Figure A.1 one would conclude a ranking from

highest to lowest of SPA2D, SPA3D, GEO2D, PA, GEO3D, COPY which is precisely

the ranking that the classifier gives on the full feature vector.

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl g1 g2 g3 g4 g5 g6 g7 g8
50 full 1 1 0 0 0 0 1 1 3 0 2 1 2 4 9 1 3
100 full 1 1 0 0 0 0 1 1 3 1 3 1 2 5 12 3 3
200 full 3 1 0 0 0 0 2 1 3 1 6 1 5 6 21 4 5

Table A.1: Features visited for full feature classifier for the Princeton network

208
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Classifier g1 g2 g3 g4 g5 g6 g7 g8
50 graph 1 0 1 2 1 1 1 0
100 graph 2 1 1 2 1 5 1 0
200 graph 2 1 3 4 4 8 4 0

Table A.2: Features visited for graph feature classifier for Princeton network

Classifier deg1 deg2 deg3 deg4 deg5 deg6 deg7 assort apl
50 non-graph 0 0 0 1 0 1 1 5 6
100 non-graph 1 1 0 2 0 1 3 12 8
200 non-graph 1 1 1 2 2 2 3 18 12

Table A.3: Features visited for non-graph feature classifier for Princeton network

Since the 4-cycle was the most influential feature for the full feature vector classi-

fier, we might suspect that it should also be the most influential feature in the graph

feature classifier. While it remains an influential feature, we argue that g4, which

corresponds to the 4-path, is a more influential feature in this case. If the 4-cycle

had the same importance for the graph feature classifier as it did in the full feature

classifier, we would expect that the SPA models would receive the highest score in

this classifier. From Table A.4 we see that this is not the case: the PA model receives

the best score with the two SPA models coming in second and third. To understand

this, we need to consider which feature is most influential in determining the scores

for the graph feature vector. For 100 and 200 boosting iterations, Table A.2 indicates

that g6 is the most frequently visited feature. However, we must also consider which

features appear in the first layer of nodes in the ADT. In this case, for 50, 100 and

200 boosting iterations, only 3 nodes appear in the first layer of nodes and 2 of these

correspond to the 4-path feature. By observing the box plot in Figure A.1, you can

see that the 4-path count for the Princeton network corresponds almost exactly to the

median count for 4-paths in the PA model. Furthermore, the first node in the ADT



210

corresponds to a 4-path, which assigns a score of 3.611 for the PA model and -0.722

for the other models. This gives an advantage of 4.333 for the PA model from the first

node, which is close to the overall difference between the PA model and SPA models

in the final classification score. Thus, for the graph features, the 4-path appears to

be the most influential feature. In this light, we can see from Figure A.1, that the

GEO models have the worst match of the 4-path feature in the Princeton network,

which corresponds to the fact that the GEO models receive the lowest score in the

graph feature classifier.

Classifier PA COPY GEO2D SPA2D GEO3D SPA3D

50 full 0.232 -12.365 2.626 8.359 -3.958 5.106
100 full -0.303 -14.551 4.599 11.287 -5.451 4.42
200 full 1.681 -21.364 5.148 15.812 -10.426 9.152
50 graph 6.321 -0.891 -3.471 -0.025 -3.026 1.093
100 graph 6.699 -2.227 -3.914 3.085 -3.676 0.033
200 graph 9.377 -2.667 -3.255 3.805 -7.904 0.644
50 non-graph -0.728 -0.524 -3.379 2.549 -1.396 3.48
100 non-graph -0.858 -3.622 -7.447 8.022 -5.029 8.941
200 non-graph -2.97 -4.107 -12.995 9.87 -6.503 16.708

Table A.4: The scores for each model, for each classifier, for the Princeton network

The results for the non-graph feature vector can be easily understood by observing

Table A.3. We see that the assortativity and the average path length are the most

important features. By observing their box-plots in Figure A.1, you can see that the

SPA models match the average path length the best. The assortativity is matched

almost equally by the SPA models and the COPY model. Notice that PA model’s

range for the assortativity coefficient is the only one of the six models that is (almost)

below the assortativity of the Princeton network. In this case, the ADT is using this

feature to distinguish PA from the rest of the models. Therefore, an increasing number

of visits to assortativity feature in the ADT tend to give a negative score to PA and

a positive score for the other models. This explains why the score of PA is decreasing
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as the number of boosting iterations increase. The results for the non-graph feature

vector are consistent amongst all the experiments, so we will not explain the results

in detail for the other three Facebook experiments.
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Figure A.1: Box-plots representing the spread of the features for the Princeton net-
work.

A.2 American University

The conclusions for the American University network remain consistent with the

conclusion from the Princeton experiment, though there are some differences. It
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remains the case that the PA and the SPA models have the best performance, but

the ranking of the three models differ in some areas. Let’s discuss why this occurs.

Classifier PA COPY GEO2D SPA2D GEO3D SPA3D

50 full -0.702 -11.768 1.091 8.505 -4.532 7.398
100 full -0.414 -12.164 -0.183 8.307 -5.578 10.025
200 full -0.728 -18.426 -1.191 9.955 -7.246 17.625
50 graph 0.172 -7.908 2.271 3.269 -5.6 7.792
100 graph 0.779 -10.639 0.381 5.834 -7.693 11.332
200 graph 4.516 -16.02 -4.241 7.002 -8.925 17.656
50 non-graph 0.172 -7.908 2.271 3.269 -5.6 7.792
100 non-graph -4.612 -2.442 -3.627 6.517 -3.348 7.512
200 non-graph -7.279 -2.071 -5.395 8.249 -5.439 11.936

Table A.5: The scores for each model, for each classifier, for the American University
network

The main difference that occurs for the full feature vector in the American ex-

periment is that SPA3D is the best and SPA2D is second. However, recall from our

analysis on perturbed graphs, that misclassification between SPA2D and SPA3D does

occur frequently. Only the conclusion that the SPA model is a good fit is valid. As

well, the GEO2D model slips from 3rd place to 4th at 200 boosting iterations. Part of

the explanation for why SPA3D performs better at this level is that the 4-cycle (g6)

count of the American network falls within the range of SPA3D as well as SPA2D,

but in Princeton it only fell within the range of SPA2D. In fact, in the Princeton net-

work, the 4-cycle feature contributed a score of −5.3 to SPA3D while it contributed

a score of 1.895 for SPA3D in the American network. This difference almost com-

pletely accounts for the discrepancies in the scores between the two experiments. The

explanation for why GEO2D slips to 4th place at 200 boosting iterations can be un-

derstood by considering the feature g7. The feature g7 corresponds to the complete

graph minus an edge and is matched well by GEO2D. This feature is visited 4 times

in the Princeton classifier at 200 boosting iterations and is not visited at all in the

American network classifier at 200 boosting iterations. This should account for the
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slip in score that puts it in 4th place.

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl g1 g2 g3 g4 g5 g6 g7 g8
50 full 0 0 1 0 0 1 0 1 2 0 1 1 4 5 8 0 4
100 full 0 0 1 1 0 1 0 1 3 0 1 1 5 7 10 0 4
200 full 0 0 1 1 0 1 0 1 3 2 5 1 8 9 16 0 4

Table A.6: Features visited for full feature classifier for the American network

Classifier g1 g2 g3 g4 g5 g6 g7 g8
50 graph 1 0 0 3 4 5 1 4
100 graph 1 1 2 5 5 8 1 4
200 graph 3 1 3 8 6 12 2 5

Table A.7: Features visited for graph classifier for American network

Classifier deg1 deg2 deg3 deg4 deg5 deg6 deg7 assort apl
50 no-graph 1 0 2 1 0 0 1 8 9

100 non-graph 1 0 3 1 0 0 1 12 12
200 non-graph 1 0 3 2 0 2 2 17 13

Table A.8: Features visited for non-graph classifier for American network

The ranking is also different for the graph feature classifier. Instead of the ranking

being PA, SPA2D, SPA3D as it was in the Princeton network, it is SPA3D, SPA2D,

PA. Part of this difference can be explained because the American network visits

more decision nodes when it is put through the classifier than the Princeton network

visited when it was classified. Specifically the American network visits 40 nodes and

the Princeton network visits 26 nodes at the 200 boosting iteration level (see Tables

A.2 and A.7). Of these nodes, 26 correspond to either g6 or dense subgraphs while 14

correspond to sparse subgraphs. Recall that the SPA model provides the best overall

fit to all the graphlets. For this reason, and the fact that more features are visited

in this network than in the Princeton network, the influence of the g4 feature which

resulted in the top ranking of PA in the Princeton network is weakened. It is also
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important to note that there are 5 nodes in the first level of nodes in the ADT at 200

boosting iterations. Of these nodes, 2 correspond to g4 and 2 correspond to g6 with

the remaining node corresponding to g3. In the Princeton network, 2 out of 3 of the

nodes in the first layer corresponded to g4 and none of the nodes corresponded to g6.

Therefore, for the American network with the graph feature classifier, the g6 feature

is much more influential than the g4 which explains why the SPA model is ranked

above the PA model.

A.3 MIT

The results in this experiment are not completely consistent with the other exper-

iments. In particular, the GEO2D model finishes second for both the full feature

vector and the graph feature vector. It is still the case that COPY and GEO3D

occupy the last two positions in the rankings. To understand the results we consider

which features are the most influential in the classification.

Classifier PA COPY GEO2D SPA2D GEO3D SPA3D

50 full 1.23 -7.541 3.917 9.319 -6.482 -0.441
100 full 2.956 -12.512 2.715 13.528 -8.561 1.873
200 full 2.32 -13.795 2.737 17.881 -11.679 2.534
50 graph 5.53 -5.266 -1.368 3.719 -1.17 -1.441
100 graph 4.097 -9.49 3.061 5.304 -2.91 -0.063
200 graph 2.905 -12.759 3.962 10.004 -2.512 -1.603
50 non-graph 2.53 -5.236 -2.99 1.933 -2.732 6.497
100 non-graph 1.956 -7.305 -2.458 2.518 -2.901 8.192
200 non-graph 1.614 -8.182 -4.085 8.28 -8.158 10.537

Table A.9: The scores for each model, for each classifier, for the MIT network

For the full feature classifier, the most significant cause of the diverging results

for the MIT networks is the influence of the 4-cycle feature. In the first layer of

nodes of the ADT at 200 boosting iterations, there are 9 nodes and only one node

corresponds to the 4-cycle. Furthermore, by observing the box plot in Figure A.3,
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you see that the number of 4-cycles in the MIT network does not fall into the range

of any of the models, though it comes closest to SPA2D. This is abnormal as in all

other experiments the number of 4-cycles’s falls into the range of at least the SPA2D

model. In Table A.10, we see that the g6 feature is still the most visited. The good

performance of GEO2D could be due to the fact that not many of the sparse subgraphs

are visited. Of the 31 graph-based features visited in the full feature vector, only 6

correspond to sparse subgraphs.

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl g1 g2 g3 g4 g5 g6 g7 g8
50 full 0 1 0 0 0 0 1 1 2 0 0 1 1 1 6 3 2
100 full 1 1 0 0 0 0 1 1 2 1 2 1 1 2 9 4 3
200 full 1 1 0 0 0 0 2 2 2 1 3 1 2 4 12 5 3

Table A.10: Features visited for full feature classifier for the MIT network

Classifier g1 g2 g3 g4 g5 g6 g7 g8
50 graph 0 1 0 1 2 5 0 1
100 graph 1 4 0 1 2 7 0 2
200 graph 1 4 0 2 2 9 0 5

Table A.11: Features visited for graph classifier for MIT network

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl
50 non-graph 2 0 0 0 0 2 2 9 8
100 non-graph 2 0 0 0 1 2 3 12 12
200 non-graph 3 0 1 1 2 4 5 19 14

Table A.12: Features visited for non-graph classifier for MIT network

To understand the results for the graph feature classifier we only have to consider

the 4-path (g4) and 4-cycle (g6). At 50 boosting iterations, the PA model is the best

model but at 200 boosting iterations it is ranked 3rd. As explained for the Princeton

network, the first node in the ADT corresponds to g4, which gives an immediate

advantage of 4.333 points for the PA model. You can see by observing in Table A.11,



216

that the g4 feature is not visited very often. Also, not many of the sparse graphs

are visited, so the influence of sparse graphs greatly diminishes as boosting iterations

accumulate and more decision nodes are added to the tree. The 4-cycle feature

appears to be the most influential in determining the scores. Of the five nodes in the

first layer of the ADT at 200 boosting iterations, three correspond to g6, while the

other two correspond to g4 and g2. The GEO2D model performs so well because of

the emphasis on the denser subgraphs in determining the scores. Of the 23 nodes

visited by the American network at 200 boosting iterations, only 3 correspond to the

sparse subgraphs. Of these nodes, 9 of them correspond to g2 and g8 which represent

K3 and K4. You can see that GEO2D matches these features well by observing the

box plots in Figure A.3. For these features, you can see that SPA2D matches them

just as well as GEO2D. The American network counts for these features do fall into

the range for the 3D versions of these networks, but the fit is not as good as for the

2D versions. This explains why the 2D models are performing better.

A.4 Brown

The results for the Brown network are similar to the results we have already seen

for the Princeton and American networks. Interestingly, the results for the graph

feature classifier are almost the same as the results for the Princeton network. This

is interesting because both networks have almost the same density though the Brown

network has around 33% more vertices.

Let’s first consider the results of the full feature classifier. As we have been

seeing in many of the experiments, models incorporating the preferential attachment

mechanism are ranked in the top 3. The reasoning is as explained before. The

PA model finishes second because by observing Table A.14, you can see that the

sparse graph features are visited in higher proportions than was typical in the other

experiments. In particular, the 4-path (g4) feature, which greatly favours PA, is
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visited 6 times.

The most interesting result occurs for the graph feature classifier. The ranking

of the models is identical (except for an insignificant swap of the GEO models in

the final position), to what they were in the Princeton network. This is interesting

because both the Princeton and the Brown networks have the same edge density.

The explanation for the Princeton results holds here as well. In fact, if we consider

the ADT’s in both experiments, for both the full and graph feature vectors, the first

layer of nodes are exactly the same. This is promising to see because it indicates

that training sets with the same edge density might result in the same ADT’s, which

would greatly cut down on the amount of computational time. All that would be

needed is to determine an appropriate normalization for the graph features for two

graphs with a different number of vertices.
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Figure A.2: Box-plots representing the spread of the features for American network.



219

Model

0
.0

1
 g

2
 C

o
u

n
t

10000

20000

30000

40000

COPY GEO2D GEO3D MIT PA SPA2D SPA3D
Model

0.
01

 g
4 

C
ou

nt

50000

100000

150000

200000

250000

300000

350000

COPY GEO2D GEO3D MIT PA SPA2D SPA3D

Model

0.
00

01
 g

6 
co

un
t

1000

2000

3000

4000

5000

COPY GEO2D GEO3D MIT PA SPA2D SPA3D
Model

0.
00

01
 g

8 
co

un
t

0

1000

2000

3000

COPY GEO2D GEO3D MIT PA SPA2D SPA3D

Figure A.3: Box-plots representing the spread of the features for MIT network.

Classifier PA COPY GEO2D SPA2D GEO3D SPA3D

50 full 3.044 -8.622 1.0 0.245 -3.191 7.522
100 full 4.998 -15.163 -0.305 1.733 -6.161 14.897
200 full 7.085 -24.459 -1.228 4.841 -9.41 23.171
50 graph 5.114 -1.087 -2.336 1.052 -2.354 -0.388
100 graph 6.283 -0.085 -3.774 1.827 -3.771 -0.479
200 graph 8.672 -0.772 -6.304 3.668 -6.296 1.033
50 non-graph 0.302 -2.357 -2.063 2.335 -0.522 2.302
100 non-graph -0.197 -3.58 -2.61 4.549 -1.606 3.44
200 non-graph 1.858 -2.865 -10.064 10.21 -5.457 6.313

Table A.13: The scores for each model, for each classifier, for the Brown University
network
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Classifier d1 d2 d3 d4 d5 d6 d7 assort apl g1 g2 g3 g4 g5 g6 g7 g8
50 full 0 0 0 0 0 0 1 1 2 1 0 0 3 1 6 1 4
100 full 0 0 0 0 0 0 2 3 2 1 3 0 4 3 11 2 5
200 full 0 1 0 0 0 0 4 6 4 2 4 0 6 6 17 5 7

Table A.14: Features visited for full feature classifier for the Brown network

Classifier g1 g2 g3 g4 g5 g6 g7 g8
50 graph 0 0 0 2 1 1 0 0
100 graph 0 0 2 2 1 1 0 0
200 graph 0 0 3 4 1 3 0 0

Table A.15: Features visited for graph feature classifier for Brown network

Classifier d1 d2 d3 d4 d5 d6 d7 assort apl
50 non-graph 0 1 0 0 1 2 2 11 10
100 non-graph 0 1 0 0 2 2 3 15 11
200 non-graph 2 2 0 2 3 4 4 23 14

Table A.16: Features visited for non-graph feature classifier for Brown network
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Figure A.4: Box-plots representing the spread of the features for Brown network.



Appendix B

Copyright of Model Selection for Social Networks Using

Graphlets

The paper Model Selection for Social Networks Using Graphlets by Matt Hurshman,

Jeannette Janssen and Nauzer Kalyaniwalla appeared in Internet Mathematics, vol-

ume 8, number 4 in 2012 which is published by Taylor & Francis. Chapter 3 is

based on this paper. Authors of publications in Internet Mathematics are allowed

the following right as stated in Taylor & Francis’ position on Copyright and Author

Rights:

10. The right to include an article in a thesis or dissertation that is not

to be published commercially. provided that acknowledgement to prior

publication in the relevant Taylor & Francis journal is made explicit.

The full list of author rights can be found at

http://www.tandf.co.uk/journals/authorrights.pdf (March 1st, 2013)
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