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Abstract

The main goal of this thesis is to present cosmological perturbation theory (based

on the standard Friedmann cosmological model) in volume-preserving coordinates,

which then provides a suitable basis for studies in cosmological averaging. We review

perturbation theory to second order, allowing for averaging to second order in future

research. To solve the averaging problem we need a method of covariantly and gauge

invariantly averaging tensorial objects on a background manifold. This is a very dif-

ficult problem. However, the definition of an average takes on a particularly simple

form when written in a system of volume-preserving coordinates. Therefore, we de-

velop a three dimensional and a four dimensional volume-preserving coordinate gauge

in this thesis that can be used for averaging in cosmological perturbation theory.
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Chapter 1

Introduction

Cosmology is the study of the dynamics of the Universe on the largest of scales. A

cosmologist takes the view that the large-scale Universe is a complete, self-contained

system. The Universe is not a random clustering of matter arbitrarily distributed

throughout space; rather, its constituents, through gravitational interaction, have

created a self-contained, dynamical system that we can study. In cosmology, we often

take constituents to be galaxies. Compared to the size of the Universe, we consider

these galaxies to be extremely small.

Observations show that galaxies are distributed fairly uniformly as there are no

regions of the Universe that are either particularly dense nor particularly devoid of

galaxies. This has allowed researchers to assume that the galaxies at the present

time are spatially homogeneously distributed. The “Cosmological Principle” asserts

that the universe is spatially homogeneous everywhere and is also isotropic in every

orientation. The Universe, in other words, is the same at every point at a given time,

meaning that an observer would be unable distinguish one spatial direction from

another. Observations suggest on scales of 200 − 300 Mpc and larger, the Universe

appears to be homogeneous, see [98, 113].

The Wilkinson Microwave Anisotropy Probe (WMAP) was launched into space

by NASA to allow measurement of the Cosmic Microwave Background (CMB). The

CMB is radiation left over from the big bang at the beginning of the Universe. This

CMB radiation has a temperature of 2.7 K which has been measured to an accu-

racy of 20μK. These precise measurements show us that there are anisotropies and

inhomogeneities caused by an inhomogeneous distribution of radiation. Since the

standard cosmological model does not account for these inhomogeneities in the CMB

it is therefore necessary to study inhomogeneous models.

Also of interest are observations of Type Ia supernovae. These supernovae are

considered to be the “standard candles” for measuring the expansion of the Universe
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since they have similar spectral time series, light curve shapes, and absolute mag-

nitudes [94]. The furthest supernovae can be measured to be approximately seven

billion light years away. The light from these supernovae was affected by the expan-

sion of the Universe as it travelled through space. Therefore the light undergoes a

Doppler shift. Since the supernovae are moving away from us, the light is red-shifted,

meaning it has shifted towards longer wavelengths. As we view objects at greater

and greater distances, measurements of the amount of red shift of the light from very

distant objects indicate that the expansion of the Universe is accelerating.

The observations of anisotropies in the CMB from WMAP and the recent su-

pernovae Type 1a data are both unable to be predicted and fully explained using a

standard model without also introducing exotic fields into the model. Therefore, a

new model must be constructed to account for this behaviour within the system.

1.1 Perturbation Theory

The standard cosmological model used to date is the Friedmann-Lemâitre-Robertson-

Walker (FLRW) model. This model is based on an assumption that the Universe is

spatially homogeneous and isotropic. With this model we can evaluate the average

expansion of the large scale Universe following Einstein’s theory of general relativity

(GR) using Einstein’s field equations (EFE). Following Einstein’s theory and using

the FLRW model we have been able to describe the Universe from a very dense, hot,

radiation dominated state, to the current, cooler, lower density, matter dominated

state.

However, the FLRW model uses the assumption of spatial homogeneity which is

unable to describe the complex distribution of matter and energy that we observe in

the Universe around us. The aim of perturbation theory is to construct a model that

can better describe the actual spatial inhomogeneity and anisotropic distribution of

matter and energy. The FLRW model will be used as a background solution within

which we will study the inhomogeneous perturbations order by order.

In order to use the FLRW model as a background solution to describe the inhomo-

geneous distribution of matter and energy, we will be assigning a mapping between the

homogeneous background and the inhomogeneous perturbed spacetime. The FLRW

model has an obvious time slicing of a four-dimensional (3+1) spacetime. Since GR
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has no preferred set of coordinates, we must choose a coordinate system that will

assign a mapping between spacetime points in the inhomogeneous Universe and the

homogeneous background model. However, the process of decomposing variables into

perturbations and background is not a covariant procedure. Therefore, within GR we

are free to choose any coordinate system with which to make our gauge, but the very

process of constructing perturbative variables means that the gauge we choose will

necessarily produce quantities which may not be physically interpretable. Bardeen

was able to construct gauges while retaining physical interpretability by studying the

behaviour of quantities on hypersurfaces [3]. Bardeen showed that by fixing four de-

grees of freedom within the metric, we are able to reinstate covariance into the theory

and construct interpretable quantities [77]. The freedom to choose our coordinate

system is known as the gauge freedom, or gauge problem, in GR perturbation theory.

A better description of the gauge problem is presented in Chapter 5.

While addressing the gauge issue will be a large part of this thesis, the aim is to

also provide a full review of perturbation theory to be used in future research. In

particular, we must discuss how to construct a variety of gauge-invariant variables

so that we will have a variety of gauges to be used in different cosmological models.

The dynamical equations for general scalars, vectors, and tensor perturbations will

be reviewed. At linear order, the dynamical equations are relatively simple since at

linear order the scalar, vector, and tensor variables decouple from one another. At

second order, things become much more difficult. At second order the perturbations

involve terms which are quadratic in first order perturbations. Solving the linear

order equations in a particular coordinate gauge at first order analytically will be

possible, but doing so at second order is far more complicated. Solving the second

order equations will be the subject of future research as the second order solutions

may provide additional qualitative results.

1.2 Averaging in Cosmology

We have already briefly introduced an issue with the current standard cosmological

model; the Universe is not spatially homogeneous or isotropic on local scales. Cor-

recting the governing equations can be done theoretically by averaging the EFE [99].

Averaging the inhomogeneous spacetimes in Einstein’s GR can lead to very different
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dynamical behaviour from the FLRW background. The difference in the dynamical

behaviour is caused by the non-linearity of the Einstein tensor. Even if that metric

that best describes the Universe is the FLRW metric, we are not guaranteed that

the dynamical behaviour of the physical quantities will behave like FLRW quantities.

Corrections within the dynamics may arise in the form of an effective fluid known as

cosmological backreaction. The backreaction may have great effect on the dynamics

including the expansion rate of the Universe. Therefore, a solution to the averaging

problem is of great consequence in cosmology since the affect on the expansion rate

could greatly change how we observe the Universe; i.e., how we interpret Type 1a

supernovae distances. In order to solve the averaging problem we need a method

for covariantly (and gauge-invariantly) averaging tensorial objects on a background

manifold. Unfortunately, this is a very difficult problem.

While many different averaging schemes have been constructed, one technique of

particular importance to this thesis was developed by Gasperini, Marozzi, Nugier,

and Veneziano [39] in which they define a covariant and gauge-invariant formalism

for averaging objects on light-cones. This formalism can analyse the effects of inho-

mogeneities on objects on a light-like hypersurface and objects on a two-surface em-

bedded in a specific light-cone. However, in this averaging procedure it is uncertain

whether a true average over the whole past light-cone can be obtained since averaged

quantities are susceptible to inhomogeneities over the whole past-light cone. With

more detailed calculations using this technique [39], we may be able to provide a phys-

ical surface on which the true average can be calculated. Another averaging scheme

has been constructed in terms of bilocal operators which are covariant and linear.

The averaged object will have the same tensorial character as the non-averaged ob-

ject [24]. In any manifold with a volume n-form there exist locally volume-preserving

divergence-free operators, in which the bilocal operator takes the simplest possible

form, essentially identity maps. The definition of an average consequently takes on a

particularly simple form when written in a system of volume-preserving coordinates

(VPC). One selects a VPC coordinate system and uses the coordinate directions to

define the bilocal operators and therefore the bilocal operators are not unique and

are gauge dependent.
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1.2.1 Background

The cosmological backreaction in perturbation theory has typically been evaluated

in a specific coordinate system – synchronous coordinates. This coordinate system

is locked to the cold dark matter (CDM), so that the CDM comoves with it. Syn-

chronous gauge is constructed by using this synchronous coordinate system with gauge

conditions and is both numerically useful and convenient since the averages preserve

the number density of CDM perturbations; however, it is not necessarily the best

choice of coordinates theoretically [13]. Another approach would be to instead work

with flat gauge or longitudinal gauge, and an appropriate coordinate system. These

gauges take on a much more simplistic form than synchronous gauge for the purposes

of calculating the backreaction, since the spatial metric is purely diagonal. However,

they have their own drawbacks, chiefly, the power spectra of the perturbations is ex-

tremely poorly behaved on superhorizon scales and the perturbations are also made

problematic by the averaging scheme [13].

Past approaches to averaging within perturbation theory (see, e.g., Brown, Behrend,

and Malik [15]) have been based on the “Buchert approach” [22], which involves per-

forming a (3+1) split and defining a three-volume on the spatial hypersurface in which

one averages

〈A〉 = 1

VD

∫
A
√
hd3x (1.1)

where h is the metric determinant of the induced three-metric hij and VD is the

volume of our domain. The volume, and the averages, within these domains are then

dependent on the perturbations, which makes these calculations extremely tricky and

conceptually displeasing.

We can instead consider other coordinate (or gauge) choices in which to take the

averages. We can choose to work in a gauge that simplifies the numerical calculation

of the average. For example, a gauge could be chosen such that to second order the

effective energy density of the backreaction is of the form

ρeff ∝
∫

P (k)A(k)B∗(k)
dk

k
, (1.2)

where A(k) and B∗(k) are linear perturbations and P (k) is the primordial power
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spectra, typically assumed to arise from inflation, [14, 77]. In this form only quadratic

combinations of linear perturbations contribute and are achieved through the uniform

or flat curvature gauge. Averaging in this gauge, however, appears to be exceedingly

unwieldy.

1.3 Gauges and Volume-Preserving Coordinates

Different gauges used in perturbation theory to study the backreaction lead to an am-

biguity in the definition of the spatial volume which is, of course, of huge importance

to the averaging procedure. From previous studies, (see [15]), it also does not appear

that there is a gauge in which the backreaction terms take on a particularily simple

form. The definition of average is not mathematically well defined in all applications.

Therefore, to simplify our averaging procedure we shall work in a gauge with VPC.

In the flat gauge the spatial surfaces align with the surfaces of the FLRW back-

ground and the inhomogeneities are embedded in the choice of threading (the choice

of spatial coordinates on a given conformal time hypersurface) effectively removing

the curvature correction; see [15]. This gauge also reduces the metric determinant

for scalar perturbations to a constant comoving volume of a spatial domain, which

simplifies the averaging procedure [13].

The longitudinal gauge does not remove any of the specific individual correc-

tion terms; rather, the perturbation of the 3-metric is diagonalised, removing the

anisotropic stress terms and we choose the shift (Eq. (2.12)) to vanish to complete

the gauge. This vanishing shift causes the curvature correction to be considerably

simplified; see [27] and [40]. The longitudinal gauge also provides a clear interpreta-

tion of the gravitational potential and spatial curvature. These quantities also remain

small on all scales studied, see [15]. However, the longitudinal gauge is still quite com-

plex when studying the backreaction, and although it yields the simplest correction

term forms, it is not a natural gauge choice for introducing VPC.

There are two options which we will discuss in order to choose an appropriate

VPC gauge which we introduce briefly here and then rigorously define these gauges

in Chapter 7.

1.The 3D VPC Gauge
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We will take a gauge which is already known and use VPC in that gauge. Of particular

use will be a 3D gauge that uses the 3+1 foliation, which relies upon a non-covariant

(3+1) split, especially when restricting ourselves to the scalar perturbations. We

will choose to work in flat gauge even though it is a “comoving” volume-preserving

gauge rather than a volume preserving coordinate gauge. Despite the fact that it

is comoving, the flat gauge is appropriate since the volume element becomes simply

a3(η), which cancels out in the average [13]. This gauge can be easily adapted to

VPC.

2.The 4D VPC Gauge

The second option will require us to choose a 4D VPC system which is well motivated

on a theoretical level [13]. This 4D VPC system will be, by definition, well suited

for unimodular gravity, which we will be turning to in future research. The aim is to

average in a 4D region in a VPC gauge at linear and higher orders. Of course, once

we have developed the gauge and gauge transformation equations we will be able to

transform quantities from any gauge in the VPC gauge, average the quantity, and

then transform the quantities back into the original gauge for interpretation.

It deserves clarification that a choice of coordinates is different from a choice of

gauge. A gauge choice will construct the mapping between the FLRW background

and our “physical” perturbed surface. A gauge transformation will not change the

background model but will affect the way the points on the perturbed surface are

mapped to points on the background model. In GR we are free to use any coordinate

system so we can use appropriate coordinates for the problem at hand. The freedom

to make any coordinate choice on the other hand is an important feature arising from

the covariance of GR. However, there are gauges which are more natural to VPC.

When it comes to cosmology the gauge transformation selects the variables one will

be taking as “physical” – that is, it chooses the variables to be calculated. Performing

a coordinate transformation to enforce a unit metric determinant does not necessarily

change the gauge.
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1.4 Overview

In Chapter 2 through Chapter 4 we will discuss the generic equations needed for per-

turbation theory, following the thorough review of [77]. Chapter 5 will construct the

necessary gauge transformations while Chapter 6 will construct the gauge invariant

variables in the longitudinal, Chapter 6.1, and flat, Chapter 6.2, gauges. We will rig-

orously construct and discuss appropriate VPC gauges in Chapter 7 and how these

gauges will be used in cosmological averaging. Chapter 8 will look at some of the

dynamics of perturbation theory within the different types of perturbations. Finally

in Chapter 9 we will conclude this thesis with a discussion of the results and the

research prospects for the future.



Chapter 2

Perturbations in Cosmology

In Chapter 1 we discussed how the standard FLRW model is based on the assump-

tion that the Universe is spatially homogeneous and isotropic. This FLRW model

gives us an approximate description of the structure and dynamics of the observable

Universe. Therefore, a perturbed approach which describes the physical quantities to

be composed of background and perturbations is presumed to be valid.

Previous conventions have split the four dimensional FLRW spacetime into a

(3+1) decomposition; the same convention will be used here. This chapter will de-

fine arbitrary perturbations for tensorial quantities and then start decomposing the

vectors and tensors into “time” and “space” components on the spatial hypersurfaces.

For example, a comma is used to denote partial derivatives with respect to co-

moving spatial coordinates unless otherwise indicated; i.e.,

T,i ≡ ∂T

∂xi
. (2.1)

A prime is used to denote derivatives with respect to conformal time which is a

different convention to [77]. We mainly use the definitions and notation from Malik

and Wands [77].

2.1 Defining Perturbations

As we discussed in Chapter 1, we will be splitting quantities into a homogeneous

background and inhomogeneous perturbations

T(η, xi) = T0(η) + δT(η, xi) . (2.2)

where the subscript zero in this equation indicates the homogeneous background

quantities.

As we can see the background is time-dependent only and the inhomogeneous

perturbations are dependent on both space and time. We will also be interested

9
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in higher orders of perturbations which will be expressed as part of a power series

expansion of the inhomogeneous perturbation quantities

δT(η, xi) =
∞∑
n=1

εn

n!
Tn(η, x

i) , (2.3)

where the subscript n denotes the order of the perturbations and we include the small

parameter ε. In the following chapters we shall omit the ε in an effort to keep the

equations as simple as possible.

2.2 Decomposing Tensorial Quantities

The standard convention for arranging our 4 dimensional spacetime is to split them

using a 3+1 foliation of constant time. This 3+1 convention was first introduced by

Darmois in 1927 (see Ref. [41]) and popularised by Arnowitt, Deser and Misner [2]

(for conditions on the existence of the foliation see Ref. [109]).

2.2.1 Vectors

In order for us to use perturbation theory to its full potential we need to be able to

decompose all objects into constituent parts. Therefore, we seperate here an arbitrary

four vector, Uμ, into temporal and spatial parts,

Uμ =
[U0,U i

]
. (2.4)

Here we identify U0 as a scalar on spatial hypersurfaces. We can further decompose

the spatial part of the four-vector, U i, into a further scalar part U and a vector part

U i
vec,

U i ≡ δijU,j + U i
vec , (2.5)

where ∂U i
vec/∂x

i = 0. The designations scalar and vector refer back to Bardeen [3] as

they are defined by their transformation behaviour on spatial hypersurfaces of U and

U i
vec.

In an isotropic Universe, like the one used in our FLRW background, there are

no preferred directions. No preferred direction corresponds to there being no spatial

vector part at zeroth order. However, there can be a non-zero temporal part:

U0
0 	= 0 , U i

0 = 0 . (2.6)
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2.2.2 Tensors

A rank-two tensor can also be decomposed into time and spatial part, but a tensor

will also have combined time and space components.

We require the metric tensor, gμν , to be symmetric;

gμν ≡ gνμ . (2.7)

The symmetry of the metric tensor means the tensor has only ten independent com-

ponents in four dimensions. We split the metric tensor into a background and a

perturbed part first, using Eq. (2.2). It is useful to split the metric perturbation into

different parts namely scalar, vector or tensor according to their transformation prop-

erties on spatial hypersurfaces [3, 104]. Each of these components are then expanded

into first and higher order parts using Eq. (2.3).

First we can describe our background spacetime by a spatially flat FLRW back-

ground metric

ds2 = a2
[−dη2 + δijdx

idxj
]
, (2.8)

where η is conformal time and a = a(η) is the scale factor. The cosmic time, measured

by observers at fixed comoving spatial coordinates, xi, is given by t =
∫
a(η) dη.

The perturbed part of the metric tensor can be written as

δg00 = −2a2φ , (2.9)

δg0i = a2Bi , (2.10)

δgij = 2a2Cij . (2.11)

The 0i and the ij-components of the metric tensor can be further decomposed into

scalar, vector and tensor parts

Bi = B,i − Si , (2.12)

Cij = −ψ δij + E,ij + F(i,j) +
1

2
Hij , (2.13)

where φ, B, ψ and E are scalar metric perturbations, Si and Fi are vector metric

perturbations, and Hij is a tensor metric perturbation, which we will now define.
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The round brackets surrounding the indices of the spatial derivatives of the vector Fi

indicates symmetrization.

The scalar metric perturbation, φ, lapse function, ψ, and curvature perturbations

which make up the scalar shear, B and E, can be constructed from a scalar or scalar

derivatives or from background quantities. We should note that any three-vector

constructed from a scalar is curl-free; i.e., B,[ij] = 0. Vector perturbations, Si and

Fi, are divergence-free and the tensor perturbation, Hij, is a transverse and traceless

tensor. Therefore, the vectors and tensor perturbations follow

∂iSi = 0 , (2.14)

∂iFi = 0 , (2.15)

∂jHij = H j
ij, = 0 , (2.16)

H i
i = 0. (2.17)

When raising and lowering spatial indices of vector and tensor perturbations we

use the comoving background spatial metric, δij, so that, for instance, Hj
i ≡ δjkHik.

We split the metric perturbation into these three types because it is possible to

decouple the EFE at linear order; therefore we can solve each perturbation type

separately. At higher orders, n > 1, the perturbation types no longer decouple within

the governing equations [89].

With these different perturbation types we have four scalar functions, two spatial

vector valued functions with three components each, and a symmetric spatial tensor

with six components. These functions are subject to many constraints due to the

construction of these perturbation types. There are four constraints from Hij as

it is transverse and traceless and two constraints from Fi and Si as these vectors

are divergence-free. With these constraints we have constructed variables that leave

us with ten degrees of freedom. This is the same as the number of independent

components of the metric perturbation.

The choice of variables is not unique and we follow the notation of Mukhanov,

Feldman, and Brandenberger [86]. It will be useful to define explicitly the trace of

the perturbed spatial metric as

C = C i
i = −3ψ + ∂a∂

aE. (2.18)
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At first order the trace coincides with the perturbation of the determinant of the

spatial metric. Including terms up to second order we have

det (δij + 2Cij) = 1 + 2C + 2
(
C2 − CijC

ij
)

= 1− 6ψ + 2∂a∂
aE

+12ψ2 − 8ψ∂a∂
aE + 2(∂a∂

aE)2 − 2E,ijE
ij

, − 2Fi,jF
i j
,

−1

2
HijH

ij − 2E,ijH
ij − 2Fi,jH

ij . (2.19)

The metric perturbations in Eqs. (2.9–2.13) include all orders. The complete

metric tensor, up to and including second-order, is

g00 = −a2 (1 + 2φ1 + φ2) ,

g0i = a2
(
B1i +

1

2
B2i

)
,

gij = a2 [δij + 2C1ij + C2ij] , (2.20)

where the subscript numeral indicates the order of the perturbation. Also the first and

second order perturbations can be further split according to Eqs. (2.12) and (2.13).

The contravariant metric tensor follows from the constraint (to the required order),

gμν gνλ = δ λ
μ , (2.21)

which up to second-order gives

g00 = −a−2
[
1− 2φ1 − φ2 + 4φ1

2 − B1kB
k

1

]
,

g0i = a−2

[
B i

1 +
1

2
B i

2 − 2φ1B
i
1 − 2B1kC

ki
1

]
,

gij = a−2
[
δij − 2C ij

1 − C ij
2 + 4C ik

1 C j
1k − B i

1 B
j

1

]
. (2.22)



Chapter 3

Geometry of Hypersurface

In this chapter we consider the geometry of the foliation at linear order from [77]. A

summary of the second order results can be found in Appendix D.

3.1 Timelike Vector Fields

We are able to use the perturbed metric given in Section 2.2.2 to implicitly define a

unit time-like vector field orthogonal to constant η-hypersurfaces,

nμ ∝ ∂η

∂xμ
, (3.1)

subject to the constraint

nμnμ = −1 . (3.2)

This vector field coincides with the four-velocity of matter and the expansion of the

velocity field θ = 3H in the FLRW background, where H is the Hubble expansion

rate. The conformal Hubble parameter is defined as

H ≡ aH . (3.3)

We will use the the vector field nν to calculate geometrical quantities defined by the

perturbed metric tensor. It should be noted here that the vector field nμ does not

need to coincide to the four-velocity of matter fields at first order and beyond.

Up to and including second order, the covariant vector field is

nμ = −a

[
1 + φ1 +

1

2
φ2 +

1

2

(
B1kB

k
1 − φ2

1

)
,0

]
, (3.4)

and the contravariant vector field is

n0 =
1

a

[
1− φ1 − 1

2
φ2 +

3

2
φ2
1 −

1

2
B1kB

k
1

]
,

ni =
1

a

[
−
(
Bi

1 +
1

2
Bi

2

)
+ 2B1kC

ki
1 + φ1B

i
1

]
. (3.5)

14
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3.2 Geometrical Quantities

We can decompose the covariant derivative of a time-like unit vector field nμ as

follows [109]:

nμ;ν =
1

3
θPμν + σμν + ωμν − aμnν , (3.6)

where the spatial projection tensor Pμν , orthogonal to nμ, is given by

Pμν = gμν + nμnν . (3.7)

The overall expansion rate, the (trace-free and symmetric) shear, the (antisym-

metric) vorticity and the acceleration are

θ = nμ
;μ , (3.8)

σμν =
1

2
P α

μ P β
ν (nα;β + nβ;α)− 1

3
θPμν , (3.9)

ωμν =
1

2
P α

μ P β
ν (nα;β − nβ;α) , (3.10)

aμ = nμ;νn
ν . (3.11)

On spatial hypersurfaces the expansion, shear, vorticity and acceleration coincide

with their Newtonian counterparts in fluid dynamics [42, 102].

If we take the Lie derivative of the projection tensor we used in Eq. (3.7), Pμν ,

along the vector field nμ, we can express the extrinsic curvature of the hypersurface

embedded in the higher-dimensional spacetime [109, 26]. The extrinsic curvature of

the spatial hypersurfaces defined by nμ is thus given by

Kμν ≡ 1

2
£nPμν = P λ

ν nμ;λ =
1

3
θPμν + σμν . (3.12)

To first order, the intrinsic curvature of spatial hypersurfaces is

(3)R1 =
4

a2
∂a∂

aψ1 . (3.13)

The scalar part of the shear (3.9) up to first order is given by

σ1ij =

(
∂i∂j − 1

3
∂a∂

aδij

)
aσ1 , (3.14)
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where we define the shear potential

σ1 ≡ E ′
1 − B1 . (3.15)

The vector part and the tensor part are

σV
1ij = a

(
F ′
1(i,j) − B1(i,j)

)
, (3.16)

σT
1ij =

a

2
h′
1ij . (3.17)

To first order the acceleration is

ai = φ,i . (3.18)

The expansion rate up to first order is given by

θ1 =
3

a

[
H−Hφ − ψ′ +

1

3
∂a∂

aσ

]
. (3.19)

The overall expansion, up to second order is given by

θ2 =
1

a

[
3
a′

a
− 3

a′

a
φ1 + C k

1k

′ − B k
1k,

−3

2

a′

a

(
φ2 − 3φ1

2
)
+

1

2

(
C k

2k

′ − B k
2k,

)
+ φ1

(
B k

1k, − C k
1k

′)
−3

2

a′

a
B1kB

k
1 − 2Ckl

1 C ′
1kl + 2Ckl

1 B1l,k + 2Bl
1C

k
1lk, − Bk

1C
l
1 l,k

]
. (3.20)

The intrinsic spatial curvature, shear and acceleration of nμ are given up to second

order in Appendix D in a special case where ni ≡ 0.



Chapter 4

Energy-Momentum Tensor for Fluids

GR allows us to describe the geometry of spacetime since spacetime is affected by the

matter content of the Universe. The metric tensor is affected by the perturbations of

the matter content as described by the energy-momentum tensor. In this chapter we

will construct the energy-momentum tensor for a single fluid.

The four-velocity of matter, vμ, is defined by

vμ =
dxμ

dϑ
, (4.1)

where ϑ is the proper time comoving with the fluid, subject to the constraint

vμv
μ = −1 . (4.2)

The 4-velocity up to second order is given by

v0 = −a

[
1 + φ1 +

1

2
φ2 − 1

2
φ1

2 +
1

2
v1kv

k
1

]
,

vi = a

[
v1i +B1i +

1

2
(v2i +B2i)− φ1B1i + 2C1ikv

k
1

]
,

v0 = a−1

[
1− φ1 − 1

2
φ2 +

3

2
φ1

2 +
1

2
v1kv

k
1 + v1kB

k
1

]
,

vi = a−1

(
vi1 +

1

2
vi2

)
. (4.3)

The spatial part of the velocity can be split following Eq. (2.5) as

vi ≡ δijv,j + viv , (4.4)

where v is the scalar component and viv is the transverse vector component, ∂ivvi = 0.

4.1 Single Fluid

The energy-momentum tensor of a fluid with density, ρ, isotropic pressure, P and

4-velocity, vμ, as given by Eq. (4.3), is defined as

Tμν = (ρ+ P ) vμvν + Pgμν + πμν , (4.5)

17
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see [33, 35, 49, 102, 112]. The anisotropic stress tensor πμν is split into first and

second order parts as defined in Eq. (2.3),

πμν ≡ π1μν +
1

2
π2μν , (4.6)

and is subject to the constraints

πμνv
ν = 0 , πμ

μ = 0 . (4.7)

The anisotropic stress vanishes for a perfect fluid.

The anisotropic stress tensor decomposes into a trace-free scalar part, Π, a vector

part, Πi, and a tensor part, Πij, at each order according to

πij = a2
[
Π,ij − 1

3
∂a∂

aΠδij +
1

2
(Πi,j +Πj,i) + Πij

]
. (4.8)

The components for the stress energy tensor order by order starting with the back-

ground are

T 0
0 = −ρ0 , T 0

i = 0 , T i
j = δijP0 , (4.9)

at first order,

1δT 0
0 = −δρ1 , (4.10)

1δT 0
i = (ρ0 + P0) (v1i +B1i) , (4.11)

(1)δT i
j = δP1δ

i
j + a−2π i

(1) j , (4.12)

and at second order,

2δT 0
0 = −δρ2 − 2 (ρ0 + P0) v1k

(
v k
1 +B k

1

)
, (4.13)

2δT 0
i = (ρ0 + P0)

[
v2i +B2i + 4C1ikv

k
1 − 2φ1 (v1i + 2B1i)

]
+2 (δρ1 + δP1) (v1i +B1i) +

2

a2
(
Bk

1 + vk1
)
π1ik , (4.14)

2δT i
j = δP2 δ

i
j + a−2π i

2 j −
4

a2
C ik

1 π1jk + 2 (ρ0 + P0) v
i
1 (v1j +B1j) . (4.15)



Chapter 5

Gauge Transformations

Within this chapter we review how one transforms quantities from one gauge to

another. For a detailed review of the construction of gauge transformations see [3,

104, 85, 19, 74].

As was previously discussed in section 1.1, the gauge issue arises in perturbation

theory when discussing the gauge transformations. Any time we separate a system

into background and perturbations we inevitably break covariance [77]. The non-

covariance of the procedure causes a gauge dependence, but since the background is

fully covariant, the gauge dependence effects only the perturbations.

We retain as much covariance as possible by eliminating the degrees of freedom.

In Chapter 6 we show how the gauge dependencies can be made to cancel out by

constructing gauge-invariant variables, which means that the quantities will not lose

their qualitative behaviour when transforming from one gauge to another. We will

show here the transformation equations for scalar, vector, and tensor fields.

5.1 Active Approach to Gauge Transformations

The active approach to gauge transformations starts with the exponential map, which

allows us to write down how a tensor T transforms up to second order once the vector

field generator of the gauge transformation, ξμ, has been specified. The exponential

map is

T̃ = e£ξT , (5.1)

where £ξ denotes the Lie derivative with respect to ξλ defined as

£ξϕ = ξλϕ,λ, (5.2)

where ϕ is an arbitrary scalar field.

The vector field generating the transformation, ξλ, up to second order is

ξμ ≡ εξμ1 +
1

2
ε2ξμ2 +O(ε3) . (5.3)
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The exponential map can be expanded as

exp(£ξ) = 1 + ε£ξ1 +
1

2
ε2£2

ξ1
+

1

2
ε2£ξ2 + . . . (5.4)

where we keep terms up to O(ε2). Splitting the tensor T up to second order, as given

in Eq. (2.3), and collecting terms of like order in ε, we find that tensorial quantities

transform (see [85, 19]) at zero order as

T̃0 = T0 , (5.5)

at first order as

T̃1 = T1 + Lξ1T0 , (5.6)

and at second order as

T̃2 =
(
T2 + Lξ2T0 + L2

ξ1
T0 + 2Lξ1T1

)
. (5.7)

As can be seen in Eq.(5.5), the background is not affected by the transformation.

5.2 Four-Scalar Gauge Transformations

We will now apply the active approach by studying the simplest tensorial quantity,

the four-scalar.

From Eqs. (2.2) and (2.3) we get the perturbed energy density, an example of a

four-scalar, up to second order as

ρ = ρ0 + ρ1 +
1

2
ρ2 , (5.8)

where, as before, the subscript indicates the order of perturbation.

5.2.1 First Order

Before we can study the transformation behaviour of the perturbations at first order,

we split the generating vector ξμ1 into a scalar temporal part α1 and a spatial scalar

and vector part, β1 and γ i
1 . The generating vector field therefore becomes

ξμ1 =
(
α1, β

i
1, + γ i

1

)
, (5.9)
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where the vector part is divergence-free: ∂iγ
i

1 = 0.

Under a first-order transformation a four-scalar, such as the energy density, ρ,

transforms from Eqs. (5.5) and (5.2)

ρ̃1 = ρ1 + ρ′0α1 . (5.10)

Therefore, the first-order density perturbation is fully determined by the time slicing,

α1. For a general scalar φ, φ̃1 = φ1 + φ′
0α1 so φ̃1 is gauge-invariant if φ′

0 = 0.

5.2.2 Second Order

At second order we split the generating vector ξμ2 again into a scalar time and scalar

and vector spatial parts as

ξμ2 =
(
α2, β

i
2, + γ i

2

)
, (5.11)

where the vector part is divergence-free ∂iγ
i

2 = 0. We then find from Eqs. (5.7) and

(5.2) that a four scalar transforms as

ρ̃2 = ρ2 + ρ′0α2 + α1 (ρ
′′
0α1 + ρ′0α1

′ + 2ρ1
′)

+ (2ρ1 + ρ′0α1),k (β
k

1, + γ k
1 ) . (5.12)

Thus, at second order, the gauge transformation is fully determined once we have

specified the time-slicing at first and second order (α1 and α2) and have also specified

the threading to first order (β1 and γi
1).

5.3 Tensor Gauge Transformations

5.3.1 First Order

We can now calculate how the first order metric perturbations change under a gauge

transformation. The Lie derivative of a covariant tensor tμν with respect to the

generating vector field ξλ is given as

£ξtμν = tμν,λξ
λ + tμλξ

λ
, ν + tλνξ

λ
, μ . (5.13)

At first order, the metric perturbations transform according to Eq. (5.6).

The transformations for each individual metric function can be obtained from Eq.

(5.13) using the method from [77]. From the Lie derivative in Eq. (5.13) we can show

the transformation behaviour of C1ij as
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2C̃1ij = 2C1ij + 2Hα1δij + ξ1i,j + ξ1j,i . (5.14)

Following the method thoroughly discussed in [77] we can find the transformation

behaviour of the spatial metric functions. The transformations of the scalar metric

perturbations are

φ̃1 = φ1 +Hα1 + α′
1 , (5.15)

ψ̃1 = ψ1 −Hα1 , (5.16)

B̃1 = B1 − α1 + β′
1 , (5.17)

Ẽ1 = E1 + β1 , (5.18)

and the vector perturbations are

B̃1i = B1i + ξ′1i − α1,i , (5.19)

S̃ i
1 = S i

1 − γ i
1

′
, (5.20)

F̃ i
1 = F i

1 + γ i
1 . (5.21)

The first order tensor perturbation is found to be gauge-invariant,

h̃1ij = h1ij , (5.22)

by substituting Eqs. (5.15) to (5.21) into Eq. (5.14).

We note that the scalar shear potential, σ1 = E ′
1 − B1, defined in Eq. (3.15)

transforms as

σ̃1 = σ1 + α1 . (5.23)

5.3.2 Second Order

The metric tensor transforms at second order, from Eqs. (5.7) and (5.13), as

g̃2μν = g2μν + g0μν,λξ
λ
2 + g0μλξ

λ
2 ,ν + g0λνξ

λ
2 ,μ + 2

[
g1μν,λξ

λ
1 + g1μλξ

λ
1 ,ν + g1λνξ

λ
1 ,μ

]
+g0μν,λαξ

λ
1 ξ

α
1 + g0μν,λξ

λ
1 ,αξ

α
1 + 2

[
g0μλ,αξ

α
1 ξ

λ
1 ,ν + g0λν,αξ

α
1 ξ

λ
1 ,μ + g0λαξ

λ
1 ,μξ

α
1 ,ν

]
+g0μλ

(
ξλ1 ,ναξ

α
1 + ξλ1 ,αξ

α
1, ν

)
+ g0λν

(
ξλ1 ,μαξ

α
1 + ξλ1 ,αξ

α
1, μ

)
. (5.24)
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Following [77], we can again extract the perturbed spatial part of the metric, C2ij,

transformation at second order as

2C̃2ij = 2C2ij + 2Hα2δij + ξ2i,j + ξ2j,i + Xij , (5.25)

where Xij contains the terms quadratic in the first order perturbations defined below

in Eq. (5.30). By following the method in [77] we can extract the transformation

equations for each individual component. The scalar metric perturbations transform

as

ψ̃2 = ψ2 −Hα2 − 1

4
X k

k +
1

4
∇−2X ij

,ij , (5.26)

φ̃2 = φ2 +Hα2 + α2
′ + α1

[
α1

′′ + 5Hα1
′ +

(H′ + 2H2
)
α1 + 4Hφ1 + 2φ′

1

]
+2α1

′ (α1
′ + 2φ1) + ξ1k (α1

′ +Hα1 + 2φ1)
k
,

+ξ′1k
[
α k
1, − 2B1k − ξk1

′]
, (5.27)

Ẽ2 = E2 + β2 +
3

4
∇−2∇−2X ij

,ij −
1

4
∇−2X k

k , (5.28)

and

B̃2 = B2 − α2 + β′
2 +∇−2XB

k
,k , (5.29)

where Xij and XBi contains the terms quadratic in the first order perturbations. These

terms are defined as

Xij ≡ 2
[(

H2 +
a′′

a

)
α2
1 +H (

α1α
′
1 + α1,kξ

k
1

) ]
δij

+4
[
α1

(
C ′

1ij + 2HC1ij

)
+ C1ij,kξ

k
1 + C1ikξ

k
1 ,j + C1kjξ

k
1 ,i

]
+2 (B1iα1,j + B1jα1,i) + 4Hα1 (ξ1i,j + ξ1j,i)− 2α1,iα1,j + 2ξ1k,iξ

k
1 ,j

+α1

(
ξ′1i,j + ξ′1j,i

)
+ (ξ1i,jk + ξ1j,ik) ξ

k
1

+ξ1i,kξ
k

1 ,j + ξ1j,kξ
k

1 ,i + ξ′1iα1,j + ξ′1jα1,i , (5.30)

and

XBi ≡ 2
[
(2HB1i +B′

1i)α1 +B1i,kξ
k
1 − 2φ1α1,i +B1kξ

k
1, i +B1iα

′
1 + 2C1ikξ

k
1

′]
+4Hα1 (ξ

′
1i − α1,i) + α′

1 (ξ
′
1i − 3α1,i) + α1

(
ξ′′1i − α′

1,i

)
+ξk1

′
(ξ1i,k + 2ξ1k,i) + ξk1

(
ξ′1i,k − α1,ik

)− α1,kξ
k
1, i , (5.31)

where ∇−2 is the inverse Laplacian.
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The following vector perturbations are parts of the three-metric perturbation

rather than four-vectors and transform as

B̃2i = B2i + ξ′2i − α2,i + XBi , (5.32)

F̃2i = F2i + γ2i +∇−2X k
ik, −∇−2∇−2X kl

,kli , (5.33)

S̃2i = S2i − γ i
2

′ −XBi +∇−2XB
k
,ki . (5.34)

The tensor perturbation is not gauge invariant at second order as it is at first

order. Therefore, it transforms at second order as

h̃2ij = h2ij + Xij +
1

2

(∇−2X kl
,kl −X k

k

)
δij +

1

2
∇−2∇−2X kl

,klij

+
1

2
∇−2X k

k,ij −∇−2
(X k

ik, j + X k
jk, i

)
. (5.35)

5.4 Four-Vector Gauge Transformations

To examine the transformation properties of four-vectors we will use the unit four-

velocity vμ, which we defined in Eq. (4.3).

5.4.1 First Order

To define the transformation of a four-vector to first order we use Eq. (5.5) and the

definition of the Lie derivative. The Lie derivative of a covariant vector vμ with

respect to the generating vector field ξλ is defined as

£ξvμ = vμ,αξ
α + vαξ

α
, μ . (5.36)

Now we can explicitly write the four-vector transformation as

δ̃U1μ = δU1μ + U ′
(0)μα1 + U(0)λξ

λ
1,μ , (5.37)

where we used the fact that in a FLRW spacetime, background quantities are time

dependent only.

For the specific example of the four-velocity, defined in Eq. (4.3), we find

ṽ1i + B̃1i = v1i +B1i − α1,i . (5.38)
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In addition, using, the decompositions of vectors given in Chapter (2.2.1), we get the

first order transformations for the scalar part and the vector part are respectively

ṽ1 = v1 − β′
1 , (5.39)

ṽivec1 = vivec1 − γ i
1

′
. (5.40)

5.4.2 Second Order

At second order we find that a four-vector transforms, using Eqs. (5.7) and (5.36), as

Ũ2μ = U2μ + U ′
(0)μα2 + U(0)0α2,μ + U ′′

(0)μα
2
1 + U ′

(0)μα1,λξ
λ
1 (5.41)

+2U ′
(0)0α1α1,μ + U(0)0

(
ξλ1α1,μλ + α1,λξ

λ
1,μ

)
+ 2

(
δU1μ,λξ

λ
1 + δU1λξ

λ
1,μ

)
,

where, as before, we used U(0)μ ≡ U(0)μ(η) and U(0)i = 0 for the background. Brackets

were used in Eq. (5.41) to help with the identification of the order of the quantites

and will only be used when the subscripts become overly cluttered.

At second order we have components within quantities which are combined scalar

and vector parts. Therefore the transformations have to account for these terms. The

four-velocity, Eq. (4.3), transforms as

ṽ2i = v2i − ξ′2i + Xvi , (5.42)

where Xvi contains the terms quadratic in the first order perturbations. Xvi is given

by

Xvi ≡ ξ′1i (2φ1 + α′
1 + 2Hα1)− α1ξ

′′
1i

−ξk1ξ
′
1i,k + ξk′1 ξ1i,k − 2α1 (v

′
1i +Hv1i) + 2v1i,kξ

k
1 − 2vk1ξ1i,k . (5.43)

Using Eq. (5.32), we have already substituted for the transformation of the metric

perturbation B2i. To get the transformation at second order for the velocity we

decompose the second order transformation, Eq. (5.42), into scalar and vector parts

ṽ2 = v2 − β′
2 +∇−2Xv

k
,k , (5.44)

˜vivec(2) = vivec(2) − γ i
2

′
+ Xvi −∇−2Xv

k
,ki . (5.45)



Chapter 6

Gauge-Invariant Variables

As we briefly discussed at the beginning of Chapter 5, the splitting of the quantities

into background and perturbation is not a covariant procedure. The inevitable break

in covariance is because the choice of gauge gives each quantity its qualitative be-

haviour. In order to have covariance of the quantities under gauge transformations

we need to cancel out any gauge dependencies in the quantities. By forming gauge-

invariant variables we can once again establish covariance. These gauge-invariant

variables were first introduced and studied by Bardeen [3].

The gauge-invariant variables are formed by studying the degrees of freedom. The

metric itself has ten degrees of freedom, of which six are contained in the perturbative

terms. The six degrees of freedom within the perturbations are: two scalar freedoms

which form under arbitrary coordinates, two more degrees of freedom come from the

gradient and divergenceless vector perturbation modes, and the last two degrees of

freedom are in the polarisations of the tensor perturbations. That leaves four degrees

of freedom in the metric to be fixed in order to ensure that the results are still

physically interpretable. Since the observations do not depend on the gauge choice,

this decision to fix the last four degrees of freedom is known as the gauge issue in

perturbation theory.

Here we must state that gauge-invariance is different than gauge independence. In

Chapter 5.3 the first order tensor metric perturbation, h1ij, is gauge independent. On

the other hand, the scalar curvature perturbation, ψ1, is very different under different

time-slicing, making it dependent upon the choice of gauge.

As when we constructed the gauge transformation equations, at first order the

equations are simple since all the terms decouple. However, at second order, due

to the quadratic terms of first order perturbations, the gauge-invariant variables are

much more complicated to construct. However, once we do choose a gauge, we will

follow that choice throughout all orders.

26
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6.1 Longitudinal Gauge

6.1.1 First Order

By studying the transformations in Eqs. (5.15–5.18), Bardeen [3] was able to con-

struct quantities that are explicitly invariant under gauge transformations. At linear

order we take the generating vector field’s temporal component to be on spatial hy-

persurfaces with vanishing shear. We find from Eqs. (5.17),(5.18) and (3.15) that the

shear scalar transforms as σ̃1 = σ1 + α1 = 0. This transformation implies that we

should perform a transformation starting with arbitrary coordinates so that

α1� = −σ1 = B1 − E ′
1 (6.1)

where the � denotes the value in the longitudinal gauge. If we make Ẽ1� = 0, which

requires from Eq. (5.18)

β1� = −E1 , (6.2)

we now have a fully specified generating vector for the scalar perturbation quantities.

The last two scalar metric perturbations, φ1 and ψ1, come from Eqs. (5.15) and

(5.16) as

φ̃1� = φ1 +H(B1 − E ′
1) + (B1 − E ′

1)
′ , (6.3)

ψ̃1� = ψ1 −H (B1 − E ′
1) , (6.4)

These are the Bardeen potentials denoted by ΦAQ
0 and −ΦHQ

0, respectively, in

Bardeen’s notation [3]. They also coincide with the scalar metric perturbations in

[86].

The extension to include vector and tensor metric perturbations is called the

Poisson gauge [9, 19, 23, 77]. By fixing the spatial component of the generating

vector field to be zero, S̃i
1 = 0, and using Eq. (5.20), we get a fixed vector part of the

spatial gauge transformation

γi
1l =

∫
Si
1dη + Ĉi

1(x
j), (6.5)

where Ĉi
1 is an arbitrary three-vector dependent on the choice of spatial coordinates

on the hypersurface. The last gauge invariant vector metric perturbation in Poisson
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gauge is

F̃ i
1l = F i′

1 +

∫
Si
1dη + Ĉi

1(x
j). (6.6)

The EFE for the Poisson gauge can be found in Appendix (A).

6.1.2 Second Order

We can extend the longitudinal, or Poisson, gauge to higher orders using the same

principle for constructing gauge invariant variables in first order. We choose the

specific vector field ξμ that generates our transformations, Eq. (5.1), from an arbitrary

gauge choice [75, 87].

In Chapter (6.1.1) we specified the Poisson gauge to fix α1 (Eq. 6.1), β1 (Eq. 6.2),

and γ1i (Eq. 6.5). Now, we can specify Xij from Eq. (5.30).

We will use the same gauge conditions as first order Ẽ2� = 0, so the spatial part

of the scalar gauge is fixed using Eq. (5.28), to get

β2� = −E2 − 3

4
∇−2∇−2X ij

,ij +
1

4
∇−2X k

k . (6.7)

Requiring that the perturbed part of the shift vector is zero, B̃2� = 0, sets the

temporal gauge using Eq. (5.29). If we also set the vector part as zero, F i
2 = 0, using

Eq. (5.33), then we can specify the vector part of the spatial gauge, γi
2�, up to a

constant of integration.

The gauge invariant definition of Φ, Ψ and other perturbations at second order

can now be found using these gauge transformations in Eq. (5.27) and (5.26). The

results are

φ̃2� = φ2 +Hα2� + α2�
′ + α1�

[
α1�

′′ + 5Hα1�
′ +

(H′ + 2H2
)
α1� + 4Hφ1 + 2φ′

1

]
+2α1�

′ (α1�
′ + 2φ1) + ξ1�k (α1�

′ +Hα1� + 2φ1)
k
,

+ξ′1�k
[
α k
1�, − 2B1k − ξk1�

′]
, (6.8)

ψ̃2� = ψ2 −Hα2� − 1

4
X k

�k +
1

4
∇−2X ij

� ,ij , (6.9)

where X�ij denotes the quadratic first order terms in Eq. (5.30) using the longitudinal

gauge transforms α1� and ξ�i.

The tensor metric perturbation at second order is independent of the second order

gauge transformations α2 and ξ2i. Yet, the second order tensor metric perturbation
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is dependent on first order variables, so the second order tensor is dependent on the

first order choice of gauge, α1 and ξ1i. Therefore, our first order gauge choice will

determine our second order tensor gauge invariant definitions. Recent work on the

second order tensor mode in the Poisson gauge has been undertaken in [82, 88, 1, 5, 4].

By including the tracefree and transverse tensor part of the second order gauge

transformation along with Eq. (5.35) we get our gauge invariant definition for the

tensor metric perturbation in the Poisson gauge

h̃2�ij = h2ij + X�ij +
1

2

(∇−2X �kl
,kl −X k

�k

)
δij +

1

2
∇−2∇−2X �kl

,klij

+
1

2
∇−2X k

�k,ij −∇−2
(X k

�ik, j + X k
�jk, i

)
. (6.10)

6.2 Spatially Flat Gauge

6.2.1 First Order

The spatially flat or uniform curvature gauge [49, 44, 45, 47, 103] is a gauge choice

in which the metric is left unperturbed by scalar and vector perturbations. This

condition is satisfied by setting ψ̃flat = Ẽflat = 0 and F̃flati = 0. We can now use

Eqs. (5.16), (5.18) and (5.21) to construct our transformation equations (5.9) as

αflat =
ψ

H , βflat = −E , γi
flat = −F i . (6.11)

The last two scalar degrees of freedom to be made gauge invariant are from

Eqs. (5.15) and (5.17), which gives

φ̃flat = φ+ ψ +

(
ψ

H
)′

, (6.12)

B̃flat = B − E ′ − ψ

H . (6.13)

From Eqs. (5.20) we have the definition of the gauge invariant vector as

S̃i
flat = Si + F,i . (6.14)

The density perturbation, a scalar quantity, has a gauge invariant definition from

Eq. (5.10),

˜δρflat = δρ+ ρ′0
ψ

H . (6.15)
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The shear perturbation is given by σ̃flat = −B̃flat. Gauge-invariant quantities, such

as B̃flat or ψ̃l are proportional to the displacement between two different choices of

spatial hypersurface,

B̃flat = − ψ̃�

H = αflat − α� , (6.16)

which would vanish for a homogeneous cosmology.

6.2.2 Second Order

The second order equations for the spatially flat gauge have ψ̃ = Ẽ = F̃i = 0 for both

first and second order. First and second order variables will be seperately denoted by

a subscript “1” and “2” respectively. Using Eq. (5.26) we have the gauge condition

that ψ̃2 = 0 at second order, allowing us to get

α2flat =
ψ2

H +
1

4H
[∇−2X ij

flat,ij −X k
flatk

]
, (6.17)

where we have Xflatij from Eq. (5.30) using the first order gauge generators given

above, as

Xflatij = 2

[
ψ1

(
ψ′
1

H + 2ψ1

)
+ ψ1,kξ

k
1flat

]
δij +

4

Hψ1

(
C ′

1ij + 2HC1ij

)
+4C1ij,kξ

k
1flat + (4C1ik + ξ1flati,k) ξ

k
1flat,j + (4C1jk + ξ1flatj,k) ξ

k
1flat,i

+
1

H
[
ψ1,i

(
2B1j + ξ′1flatj

)
+ ψ1,j (2B1i + ξ′1flati)

]
− 2

H2
ψ1,iψ1,j

+
2

Hψ1

(
ξ′1flat(i,j) + 4Hξ1flat(i,j)

)
+ 2ξk1flatξ1flat(i,j)k + 2ξ1flatk,iξ

k
1flat,j ,

(6.18)

where we define

ξ1flati = − (E1,i + F1i) . (6.19)

The trace of Eq. (6.18) is then

X k
flatk = 6

[
ψ1

(
ψ′
1

H + 2ψ1

)
+ ψ1,kξ

k
1flat

]
+

4

Hψ1

(
Ck′

1 k + 2HCk
1 k

)
+4Ck

1 k,lξ
l
1flat + 4

(
2Ckl

1 + ξk l
1flat,

)
ξ1flat(k,l) − 2∂a∂

aE1,kξ
k
1flat (6.20)

+
2

H
(
2B1k + ξ′1flatk −

1

Hψ1,k

)
ψ k
1, −

2

H (ψ1∂a∂
aE ′

1 + 4H∂a∂
aE1) .
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The equation for the second order tensor perturbation in the flat gauge is

h̃2flatij = h2ij + Xflatij +
1

2

(∇−2X kl
flat,kl −X k

flatk

)
δij +

1

2
∇−2∇−2X kl

flat,klij

+
1

2
∇−2X k

flatk,ij −∇−2
(X k

flatik,j + X k
flatjk,i

)
. (6.21)



Chapter 7

Volume-Preserving Coordinate Gauges and Spatial

Averaging

7.1 Background

As was previously discussed in Chapter 1.2.1, synchronous and longitudinal gauges

have typically been used for evaluating the cosmological backreaction. Synchronous

gauge is able to provide useful numeric evaluations of the backreaction, but theo-

retically it is not very useful. Using the synchronous gauge, the volume domain is

defined comoving with the CDM. This chosen volume will preserve the number of

particles within the domain but the volume itself will be constantly changing, mak-

ing the average calculation very difficult. As such, the volume-preserving coordinate

(VPC) gauge will be developed as it is well motivated theoretically for averaging in

cosmology.

There are two different VPC gauges that will be developed in this Chapter. The

first is a 3D VPC gauge which will be developed from flat or uniform curvature gauge.

The reason for this construction is because flat gauge will be of particular use when

we restrict ourselves to averaging scalar perturbations. The second VPC gauge that

will be developed will be a 4D VPC gauge. This 4D VPC gauge is motivated on

a theoretical level since it will be, by definition, well suited for unimodular gravity.

Future research will seek to use a 4D VPC gauge to average a 4D region in a VPC

system.

7.2 3D Flat Gauge and Volume-Preserving Coordinates

We choose to work in uniform curvature or flat gauge to develop our 3D VPC. Since

the tensor perturbations are gauge-invariant we cannot simply pick a gauge which is

volume-preserving in general. However, since linear tensor perturbations are subdom-

inant to the scalar perturbations in the standard model of cosmology, it is reasonable

32
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to assume that the tensor perturbations are negligible since we will be restricting

ourselves to linear order and we will shortly show that tensor perturbations only con-

tribute at higher orders. Flat gauge is not volume-preserving, per se. Rather, it is a

comoving volume-preserving gauge. The volume element becomes simply a3(η), and

these factors cancel in the average. Therefore, in principle, we can formally adapt it

to a VPC.

We shall refer to this generalisation of the flat gauge calculation, restricting our-

selves to scalar perturbations, as a 3D VPC gauge.

7.2.1 3D Flat Gauge

From Eq. (2.20) we know that a gauge-unfixed, flat, perturbed FLRW metric line

element is

ds2 = a2(η)
(−(1 + 2φ1)dη

2 + 2Bidηdx
i + (δij + 2Cij) dx

idxj
)
. (7.1)

In the (3+1) split the spatial three-metric is hij = a2 (δij + 2Cij) [15]. This formalism

identifies the coordinates for the (3+1) slicing in which the gauge of the system is

solved. Simplifying the average then requires enforcing

√
h = f(η) (7.2)

for some function f(η). The metric determinant to second-order is

h = a6
(
1 + 2C + 2

(
C2 − C ijCij

))
. (7.3)

From this determinant it is immediately clear that to simplify the domain volume

such that the average is not affected by the perturbations, we require

Cij = 0. (7.4)

Remembering that from Eq. (2.13)

Cij = −ψδij + ∂i∂jE + F(i,j) +
1

2
Hij, (7.5)

we can therefore choose ψ = E = Fi = 0. This exhausts the two scalar and two

vector degrees of freedom (which leaves us with a lapse function, a scalar shift and a
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vector shift). To reduce our gauge transformations into flat gauge we use Eq. (5.13)

and Eq.’s (5.15) to (5.22) to show that

ψflat = 0 → α =
ψ

H , (7.6)

Eflat = 0 → β = −E, (7.7)

φflat = φ+ ψ +
1

H(ψ̇ − Ḣ
Hψ), (7.8)

Bflat = B − Ė − ψ

H , (7.9)

and

F flat
i = 0 → γi = −Fi → Sflat

i = Si − Fi. (7.10)

Unfortunately, it is impossible to remove the tensor perturbations through a gauge

transformation, and we will be forced to accept

h = a6(η)
(
1− 2H ijHij

)
. (7.11)

However, in cosmology, the tensor perturbations are suppressed compared to the

scalar perturbations. The ratio of tensor perturbations to scalar perturbations im-

mediately after inflation is quantified by a parameter r. Whether you believe in an

inflationary epoch or not is irrelevant; the observed r is a phenomenological parame-

ter quantifying the power of tensor perturbations compared to scalars. Currently the

bounds are r � 0.1, so it is generally safe to neglect the tensor perturbations. Also,

the corrections that will arise from an average of the tensors will be second order and

therefore a linear VPC is sufficient for this thesis.

Neglecting tensor perturbations, flat gauge gives us an integral within a domain,

I =

∫
D
A(x)

√
h(x)d3x = a3(η)

∫
D
A(x)d3x. (7.12)

Clearly, the volume VD = a3(η)
∫
D d3x, and the average is

〈A〉 =
∫
D A(x)d3x∫

D d3x
, (7.13)

where x = xi. In any other gauge, VD will contain additional perturbations and make

the average non-trivially time dependent.
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7.2.2 3D Volume-Preserving Coordinates

Within a flat gauge and removing the tensor perturbations, we can find a time depen-

dent coordinate transformation that would set h = 1. By setting the spatial 3-metric

determinant to unity, the volume of the average will simplify to VD =
∫
D d3x which is

not time dependent, therefore, V̇D = 0, meaning we have a volume preserving domain

to average.

However, we still need to create a coordinate system for our volume preserving

domain. By setting the condition that
√−g = 1 we solve for our new volume-

preserving time coordinate change as

τ =

∫
a4(ξ)dξ. (7.14)

In practice, we are now free to perform the calculation in any gauge, then trans-

form the results into a form with unit determinant, use VPC for averaging, and then

convert the results back to our original gauge. However, since the 3D VPC is a “co-

moving” VPC and not a true VPC, this gauge will be useful for averaging scalars. A

4D VPC will be more appropriate for future averaging research.

7.3 Paranjape’s 4D Volume-Vreserving Coordinates

4D VPC’s are much more general. One of the major benefits of these coordinates

is that the use of VPC clarifies the separation between a gauge choice – where the

perturbation equations are solved – and a coordinate choice.

An integral across an arbitrary four-volume is

I =

∫
A(x)

√−gd4x. (7.15)

A volume-preserving gauge is then equivalent to choosing a coordinate system where

the metric determinant is equal to unity, (i.e, g = −1). It is always possible to cast

a metric into such a form.

We can study a field theory explicitly with this restriction on the metric built

in, called Unimodular Gravity. Unimodular gravity is only invariant under volume-

preserving diffeomorphisms and is perhaps a natural theory within which to do aver-

aging [25] since covariance can always be reinstated back into the theory. Unimodular
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gravity was initially formulated by Einstein [32] in order to eliminate problems with

the interpretation of the cosmological constant. More recently, unimodular gravity

has been employed to try to explain observational phenomena without introducing

exotic fields (i.e. dark energy or quintessence) into the theory, [25].

7.3.1 Volume-Preserving Gauge to Linear Order

In his PhD thesis [92], Paranjape defines a volume-preserving gauge to linear order.

The metric determinant of a linearly-perturbed FLRW universe with line element

ds2 = a2(η)
(−(1 + 2φ)dη2 + (δij + 2Cij) dx

idxj
)

(7.16)

is

g = −a8
(
1 + 2φ− 6ψ + 2∂i∂iE

)
. (7.17)

Paranjape set up what he terms a volume preserving gauge in a manner very

similar to the 3D approach in Chapter 7.1: he declared that he wanted a comoving

VP gauge and proceeded to enforce the gauge condition

φ = 3ψ − ∂i∂iE. (7.18)

We should state here that Paranjape used a different definition of ψ̃ = ψ + ∂i∂
iE

so that his spatial metric was formed in a way that the extra components of the

spatial metric are traceless and transverse; i.e. ∂iE = δijEij = 0. With this choice of

gauge, the average of a linear or quadratic perturbation A(x) becomes

〈A〉 = 1

V

∫
a4(η)A(x)d4x, (7.19)

with any corrections coming in at higher orders. The condition (7.18) can be fixed

employing only one of our two scalar gauge freedoms. A VPC can then be established

through a redefinition of the time coordinate. We know from [92] that the average of

the temporal component of the metric is

〈gtt〉 = 〈−1

h
〉 = −f 2(t). (7.20)

Therefore, since f 2(t) is a function of time, the following VPC coordinate change can

be established as
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f 2(t) = 〈1
h
〉 = 1

〈h〉 =
1

a6
. (7.21)

This VPC leaves Paranjape with a metric similar to a FLRW metric in a volume-

preserving gauge,

ds2 = − dt2

a6(t)
+ a2(t)δijdx

idxj (7.22)

from which he can calculate the averaged EFE. Paranjape used Zalaletdinov’s theory

of Macroscopic Gravity [114] to posit the answer of the FLRW metric from averaging.

7.3.2 Paranjape’s Metric and Gauge Restrictions

In this section we will apply Paranjape’s gauge restrictions to the general metric and

then change the general metric into our perturbative variables in order to form a VPC

transformation in perturbation theory. In general the metric is

ds2 = a2(t)
(−(N2 − hijN

iN j)dt2 + 2(hijN
j)dtdxi + (hij) dx

idxj
)
, (7.23)

where the (N2 − hijN
iN j) is the lapse, (hijN

iNj) is the shift, and hij is the spatial

three metric. The determinant of this metric is

g = h(−(N2 − hijN
iN j)−NihijNj) = −N2h = −1. (7.24)

In his thesis, Paranjape used two gauge restrictions in order to try to make his

averaging equations easier to use. One gauge restriction, of course, is from the coordi-

nate system of a volume preserving system. By definition this gives us the restriction

of

g = −1, (7.25)

which gives the constraint

N =
1√
h
. (7.26)

For convenience, Paranjape set the shift of the metric to zero

Ni = N i = 0, (7.27)
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where we can of course raise and lower indices using the 3-metric so hijN
i = Nj.

From these restrictions we can generate some equations to allow us to find coordinate

restrictions for a VPC system.

Under a coordinate change, Ñi → Ni, by setting the shift to be zero we have a

gauge restriction. For convenience, we are going to relabel the lapse function so that

(N2 − hijN
iN j) ≡ A2, making the general Paranjape metric

ds2 = a2(t)
(−(A2)dt2 + 2(hijN

iNj)dtdx
i + (hij) dx

idxj
)
. (7.28)

In this form we can look at the general coordinate transformation equations for

each term of the metric easily. Under a general coordinate transformation the lapse

would transform as

−Ã2 = −A2

(
dt

d̃t

)2

+ 2hkiN
k

(
dxi

d̃t

dt

d̃t

)
+ hkm

(
dxk

d̃t

dxm

d̃t

)
, (7.29)

the shift would transform as

Ñi = −A2

(
dt

d̃t

dt

d̃xi

)
+ 2hkiN

k

(
dxi

d̃xi

dt

d̃t

)
+ hkm

(
dxk

d̃xi

dxm

d̃xj

)
, (7.30)

and the spatial metric would transform as

h̃ij = −A2

(
dt

d̃xi

dt

d̃xj

)
+ 2hkiN

k

(
dxi

d̃xi

dt

d̃xj

)
+ hkm

(
dxk

d̃xi

dxm

d̃xj

)
. (7.31)

Applying the constraint of a unit determinant, Eqn. (7.26), and a zero shift, Eqn.

(7.27), to the three coordinate transformations Eqns. (7.31), (7.29), and (7.30), we

get an equation for our coordinate restrictions. The equation we will be looking at

in order to find our VPC coordinates is

1

h

dt

d̃t

dt

d̃xa
= hcd

dxc

d̃t

dxd

d̃xa
. (7.32)

7.3.3 Discussion of Paranjape

There have been many different averaging procedures introduced (e.g, [90], [37], [48],

[11]). All of these procedures have the same goal of defining and interpreting an aver-

aging procedure. The Buchert [22] approach to averaging scalars and the Zalaletdinov

[114] fully covariant tensor averaging approach are the most widely used averaging
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operations to date. It is hoped that unimodular gravity will provide an alternative

approach to these procedures, and this will be pursued in future research.

In Paranjape’s thesis two main approaches to averaging were discussed. First,

the 3D method developed by Buchert [22] and, second, a 4D method developed by

Zalaletdinov [114]. Buchert defines an average in a model with a pressureless dust

matter source (e.g., Lemâitre-Tolman-Bondi or LTB solution [12], [57], [106]) with

the assumption that the dust is irrotational and the four-velocity is orthogonal to the

3D spatial surfaces. The metric can be written in terms of synchronous and comoving

coordinates, but we can only average the scalar quantities of the EFE’s. Zalaletdinov’s

averaging procedure, on the other hand, is able to average all of Einstein’s equations

and can even average tensorial quantities by introducing additional mathematical

structure into the averaging procedure.

In his thesis, Paranjape proceeds by taking a spatial limit of the Zalaletdinov

equations in order to construct scalar equations that can be compared to Buchert’s

averaged scalar equations. Paranjape finds that the structure of the correction terms

in each averaging approach is very similar after the spatial limit is applied. Therefore,

Paranjape is able to reference an inhomogeneous spacetime whose average leads to the

FLRW dynamics. This comparison is crucial since, in modern cosmology, the current

observations of the cosmos come from observing the inhomogeneities around us, while

ignoring how the inhomogeneities evolve when solving the averaged dynamics. In

other words, we do not know what inhomogeneities lead to averaged homogeneous

dynamics, if any. In this thesis, our concern is primarily with the explicit definition

and dynamics of the VPC and therefore we will not be pursuing a spatial limit. Yet,

it is easily seen that a rigorous and more conservative approach to defining quantities

before and after averaging is of great importance to the credibility of the theory of

cosmological averaging.

Paranjape also performed an ensemble average in his thesis. In ensemble averaging

one takes a direct mean across an infinite number of realisations of a system, through

which an average value can be constructed. The domain of the ensemble average is

never explicitly defined. Once the system from which the average is to be calculated

has been determined, we simply generate an infinite number of realizations (copies)

of the system to find its average. This type of ensemble averaging comes out of
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techniques in statistical mechanics and is different from a volume average. In a

volume average one simply takes the average across the volume in question. The

domain of a volume average is usually taken to be larger then 30 Mpc ([59, 107]).

Linear cosmological averages are not valid for scales less then 20 Mpc because non-

linear effects are more significant on smaller scales. Also, homogeneity is considered

to be valid for domains larger then 150 Mpc (see [113]). Therefore, most volume

averages use a domain close to the Hubble volume. While at small volumes ensemble

and volume averaging will produce very different results, at very large volumes (i.e.,

close to the Hubble volume) the theory of ergodicity applies [91]. According to this

theory, the time average of a system’s properties is equal to the average over the entire

space once the system’s dynamics have relaxed. It is assumed in current cosmological

observations that once a sufficiently large domain has been selected (of the order of

the Hubble volume), the ensemble and volume averages will produce essentially the

same results. The benefit of performing an ensemble average of linear perturbations,

and Paranjape only averages first order perturbations, is that the ensemble average is

vanishing by definition. This ensures that the averaged objects produce FLRW-like

quantities.

However, in this thesis we have also discussed second order perturbations. We

can always define a coordinate system in which some of the second order terms are

defined as a product of the first order terms. In such a coordinate system, the ensemble

average is non-vanishing. In particular, at second order

V =

∫
a4(η)

(
1 + 2φ+ 2C + 2

(
C2 − C ijCij

)
+ 4φC

)
d4x 	= const. (7.33)

For these reasons we are going to follow Paranjape’s method for fixing a 4D VPC

but we will construct a fully fixed 4D VPC in Chapter 7.4. It is vital for future

research that the 4D VPC system developed, if extended to second order, would

balance these additional terms within the determinant (employing only two scalar

and two vector gauge freedoms) to preserve a comoving unit determinant and make

it easier to calculate the average to second order.
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7.4 Linear 4D Volume-Preserving Coordinate System

The aim of this section is to follow a similar procedure to Paranjape and recast a

linear procedure to construct a VPC. This VPC procedure will hold in 4D rather

than just 3D as in Section 7.2.2. With the gauge and coordinate restrictions from the

general Paranjape metric formulated in Section 7.3.2, we need to see what happens

when the same metric is perturbed to linear order. We would also like to perturb the

Paranjape metric in order to write out the gauge restrictions in our original pertur-

bation variables that were introduced in Chapter 2. We start in a gauge independent

metric

ds2 = a2(t)
(−(1 + 2φ)dt2 + 2Bidtdx

i + hijdx
idxj

)
, (7.34)

where the spatial component is hij =
(
δij(1− 2ψ) + ∂i∂iE + F(i,j) +

1
2
Hij

)
. The de-

terminant of this metric is

g = −a8
(
1 + 2φ− 6ψ + 2∂i∂iE

)
. (7.35)

The gauge restriction Eq. (7.26) can be written as
√−g = N

√
h and of course we

set the shift to zero Bi = 0. Now, we can define all the new variables as

N2 = a2 (1 + 2φ) , (7.36)

Ni = a2∂iBi. (7.37)

Taking the determinant of hij we have

h = a6(1− 6ψ + 2∂i∂iE). (7.38)

Using the gauge restriction and the determinant from Eq. (7.35) we get

√−g = N
√
h = a4

(
1 + φ− 3ψ + ∂i∂iE

)
. (7.39)

By studying this determinant we can see that our VPC gauge will have the con-

dition

φ− 3ψ + ∂i∂iE = 0. (7.40)
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We will construct the VPC gauge out of this condition by using the gauge transfor-

mations from Eq’s (5.15), (5.16) and (5.18). Using these three gauge transformation

equations and our gauge condition, Eq. (7.40), we get

φV − 3ψV + 2∂i∂
iEV = φ+ α̇ +Hα− 3ψ + 3Hα + ∂a∂

aE + ∂a∂
aβ

= 0. (7.41)

Equating the gauge condition, Eq. (7.40) with Eq. (7.41) we obtain

α̇ + 4Hα + ∂a∂
aβ = −φ+ 3ψ − ∂a∂

aE. (7.42)

The derivatives in Eq. (7.42) are defined everywhere and we have a degree of freedom

to make a gauge choice in order to make things easier to solve. The easiest gauge

appears to be

ψV = 0, (7.43)

which we will choose to use for our 4D VPC. However, it should be stated that we

could have chosen E = 0 or set the density to zero, δ = 0, in order to solve for α and

β algebraically.

Using these conditions along with our gauge transformations we can solve for α, β,

γi in order to be able to transform into our 4D VPC from any other gauge. Starting

with the gauge transformation Eq. (5.16) and using the gauge condition from Eq.

(7.43) we find that

α =
ψ

H . (7.44)

We can substitute α back into Eq. (7.42) to find β for our gauge transformation as

∂a∂
aβ = −

(
ψ + φ+ ∂a∂

aE +

(
ψ

H
)′)

. (7.45)

With our definitions of α and β, we can now solve for the variables that we need

to make sure that the gauge is volume preserving

φV = φ+
ψ̇

H − Ḣ
H2

ψ + ψ, (7.46)

ψV = ψ − ψ = 0, (7.47)

∂a∂
aEV = −ψ − φ− d

dη

(
ψ

H
)
. (7.48)
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Now that we have the variables for the 4D VPC explicitly defined, we can substi-

tute the φV , ψV , and ∂a∂
aEV into our gauge condition, Eq. (7.40), to show

φV − 3ψV + ∂a∂
aEV = φ+ ψ +

ψ̇

H − φ− ψ − ψ̇

H = 0, (7.49)

meaning that the variables defined satisfy our condition for volume preservation.

Since the gauge condition is satisfied we can now show the rest of our gauge

transformation equations for the shift, density and velocity respectively as:

∂a∂
aBV = −∂a∂

aψ

H − d

dη

(
ψ + φ+ ∂a∂

aEV +
d

dη

(
ψ

H
))

, (7.50)

δV = δ − 3(1 + w)ψ, (7.51)

∂a∂
avV = ∂a∂

av +
d

dη

(
ψ + φ+

d

dη

(
ψ

H
))

. (7.52)

Remember that our general metric is

ds2 = a2(η)
(
−(1 + 2φ̃)dη2 + h̃ijdx

idxj
)
. (7.53)

This metric has a determinant of
√−gV = a4(η). We want the metric to be volume

preserving,
√−gV = 1, which requires us to set a new time coordinate along with our

gauge conditions. We define this time coordinate as

σ2

a6
= a2dη2 (7.54)

which we can rearrange and integrate to solve for our new time coordinate:

σ =

∫
1

a4
dt. (7.55)

This gives us a final metric

ds2 =
−(1− 2∂a∂

aEV )

a6(σ)
dσ2 + a2(σ)(δij + 2∂i∂

iEV +
1

2
HV

ij )dx
idxj. (7.56)

which gives us a determinant of

−gV =
1

a6
(1− 2∂a∂

aEV )a
6(1 + 2∂a∂

aEV ) = 1. (7.57)
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7.4.1 A 4D Averaging Domain

When we perform averages we need to specify the averaging domain. In 3D this is

entirely arbitrary, and distinctly non-covariant. In 4D, however, we could utilize the

causal structure of spacetime to give us a one-parameter averaging domain. If we let

the averaging radius be a proper time τ , then an averaging domain can be defined

around an event E by the future and past light cones. To average across past history,

one would extend along the past light cone an interval τ . To perform a spacelike

average, one would extend along spacelike geodesics an interval τ . An average could

be taken around the entire event by extending along past-oriented timelike geodesics,

spacelike geodesics and future-oriented timelike geodesics up to an interval τ .



Chapter 8

Dynamics

With the construction of the VPC gauges in Chapter 7, we want to introduce the EFE

in this chapter which will allow us to view some key properties of the perturbative

quantities within the VPC gauges. Solutions will be shown in longitudinal gauge and

then transformed into spatially flat gauge, using a standard gauge transformation.

From the flat gauge, a coordinate system has been defined to transform the solutions

into the 3D VPC gauge. The solutions in longitudinal gauge will be transformed

directly into the 4D VPC gauge without the intermediary transformation into the

spatially flat gauge.

The connection coefficients for the construction of the Einstein tensor up to and

including second order perturbations for scalars, vectors, and tensors is given in [77].

The theory of GR gives us the EFE which relate the geometry of spacetime with

the local energy momentum

Gμν = 8πGTμν , (8.1)

where G is the universal gravitational constant.

Our coordinate system is defined by EFE components that are tangent and or-

thogonal to the time-like four-vector field nμ defined in Eq. (3.5). The definition of

the coordinate system will provide us with constraint equations for the metric per-

turbations known as the energy and momentum constraint equations. The Bianchi

identities, ∇μG
μ
ν = 0, imply local energy and momentum conservation

∇μT
μν = 0 . (8.2)

Within this chapter, there is a change in the time coordinate. We will therefore

define a prime, for instance φ′, to indicate a derivative with respect to the time

coordinate, η.

45
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8.1 Background

From the EFE (8.1) we have the Friedmann constraint and the evolution equations

for the background FLRW model:

H2 =
8πG

3
a2ρ , (8.3)

H′ = −4πG

3
a2 (ρ+ 3P ) , (8.4)

while the energy momentum conservation forms our continuity equation

ρ′ = −3H (ρ+ P ) , (8.5)

where ρ and P are the total energy density and the total pressure, η, using the scale

factor a, we can form the conformal Hubble parameter, H ≡ a′/a.

8.1.1 Background Matter and Radiation Solutions

Assuming the equation of state equation P = wρ, we can solve Eq.(8.5). We will

express the continuity equation with the equation of state as

ρ′ + 3H(1 + w)ρ = 0. (8.6)

For a matter dominated universe we know that w = 0, which gives

ρ′m + 3Hρm = 0. (8.7)

Solving this differential equation for ρ gives us

ρm =
ρ0m
a3m(η)

(8.8)

where we have normalised the solution such that a0 = 1 and the subscript “m” is for

the matter domination epoch. Using this solution for ρm along with the Friedmann

equation, Eq. (8.3), will allows us to solve for the scale factor, am(η), for the matter

dominated model. We use Eq. (8.3) and (8.8) to show

a−1/2
m da =

√
Cdη (8.9)
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where we set C = 8πGρ0m
3

and ρ0m is a constant. Integrating we find that

am(η) =

(
η

η0

)2

. (8.10)

For a radiation dominated universe, we again start with Eq. (8.6) and set w = 1/3

to get

ρ′ + 4Hρ = 0. (8.11)

Solving this differential equation for ρ gives us

ρr =
C0

a4r(η)
(8.12)

where C0 is a constant and the subscript ”r” is for the radiation dominated epoch.

We can use the Friedmann equation to solve for the constant C0 in terms of ρ0r to

get

ρr =
ρ0r
a4r(η)

. (8.13)

However, we need to consider the period in which the Universe is changing from

a radiation dominated epoch into a matter dominated epoch. This period is called

the time of equality. We can solve for the density at equality which we consider a

constant,

ρeq =
C1

a4eq(η)
. (8.14)

The subscript “eq” stands for the value of the scale factor at the point of equality

between the matter dominated and radiation dominated epochs.

Solving for the constant from integration we find that ρ evolves as

ρr = ρeq

(
aeq(η)

a(η)

)4

, (8.15)

Using Eq.’s (8.15), (8.8) and the Friedmann equation, Eq. (8.3), we can solve for the

scale factor, a(η), for the radiation model:

d

dη
a(η) = D (8.16)

where the D = 8πGρ0r
3

. We integrate this equation and normalise the scale factor to

get

ar(η) = aeq(η)

(
η

ηeq

)
. (8.17)
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The time at which equality happens, ηeq, is considered to be constant since the

equality happens at a particular time. At the time of equality we know that

ρm(ηeq) = ρr(ηeq), (8.18)

which gives us
ρ0m
a3eq

=
ρ0r
a4eq

. (8.19)

We can solve for the size of the scale factor at the time of equality as

aeq(η) =
ρ0r
ρ0m

. (8.20)

We also know that

ρ0r
h2

= Ωr, (8.21)

ρ0m
h2

= Ωm, (8.22)

and we can find the exact values for Ωr = 4.17× 10−5 and Ωm = 0.273 from [14] and

[52] and h = 0.704 = H0

100km/sec/Mpc
where H0 is the Hubble constant. These values

produce a scale factor at the time of equality of

aeq(ηeq) =
Ωr

Ωm

≈ 3.096× 10−4 =
1

3200
. (8.23)

This value of our scale factor at the time of equality is confirmed by the current 7-

year WMAP data from [52]. We are therefore left with a scale factor for the radiation

dominated epoch which evolves as a(η) ∝ η.

8.2 Einstein Field Equations

In this section we are going to construct the first order scalar, vector and tensor

perturbation equations from the EFE.

8.2.1 First Order Scalar Perturbations

We can obtain the scalar metric perturbations in an arbitrary gauge via the matter

perturbations from the first-order energy and momentum constraints [49, 86]

3H (ψ′ +Hφ)− ∂a∂
a [ψ +Hσ] = −4πGa2δρ, (8.24)

ψ′ +Hφ = −4πGa2(ρ+ P )V (8.25)
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where the total covariant velocity perturbation is given by

V ≡ v +B , (8.26)

where v is the total scalar velocity potential as defined in Eq. (4.4).

At first order, the perturbed EFE also gives us two scalar metric perturbation

evolution equations

ψ′′ + 2Hψ′ +Hφ′ +
(
2H′ +H2

)
φ = 4πGa2

(
δP +

2

3
∂a∂

aΠ

)
, (8.27)

σ′ + 2Hσ + ψ − φ = 8πGa2Π , (8.28)

where Π is the scalar part of the (tracefree) anisotropic stress, defined in Eq. (4.8).

We restate the equation for the shear potential from Eq. (3.15) as

σ ≡ E ′ − B . (8.29)

8.2.2 First Order Vector Perturbations

The divergence-free part of the three-momentum [see Eqs. (2.12), (4.4) and (4.11)]

δqi = (ρ+ P )(vveci − Si) , (8.30)

is constrained by the momentum conservation equation,

δq′i + 4Hδqi = −∂a∂
aΠi . (8.31)

The vector part of the anisotropic stress, Eq. (4.8), is given by a2∂(iΠj). A gauge-

invariant vector metric perturbation is directly related to the divergence-free part of

the momentum through the constraint equation

∂a∂
a (F ′

i + Si) = −16πGa2δqi . (8.32)

8.2.3 First Order Tensor Perturbations

The tensor perturbations have no constraint equation. The spatial part of the EFE

yields

h′′
ij + 2Hh′

ij − ∂a∂
ahij = 8πGa2Πij , (8.33)

where Πij is the transverse and tracefree component of the anisotropic stress Eq.

(4.8).
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8.2.4 Energy and Momentum Conservation

Energy-momentum conservation gives evolution equations for the perturbed energy

and momentum:

δρ′ + 3H (δρ+ δP )− 3 (ρ+ P )ψ′ + (ρ+ P )∂a∂
a (V + σ) = 0 , (8.34)

V ′ + (1− 3c2s )HV + φ+
1

ρ+ P

(
δP +

2

3
∂a∂

aΠ

)
= 0 , (8.35)

where c2s is the adiabatic speed of sound, defined as

c2s ≡
P ′

ρ′
. (8.36)

8.2.5 Longitudinal Gauge EFE and Gauge Transformations

In this section we are going to express the first order metric in longitudinal gauge.

Since we will be including tensor perturbations, this gauge is technically called the

Poisson gauge. For more on the Poisson gauge see Appendix A. By setting E� =

B� = S�
i = 0, where the super and subscript “�” stands for the longitudinal gauge,

we can construct the scalar quantities to resemble Newtonian gravity (and, of course,

we also remove the shift). This produces the metric:

ds2 = a2(η)
(−(1 + 2φ�)dη

2 + (δij(1− 2ψ�) + 2∂iF
�
j +H�

ij)dx
idxj

)
. (8.37)

The EFE for the longitudinal gauge are

3H (ψ′
� +Hφ�)− ∂a∂

aψ� = −4πGa2δρ�, (8.38)

ψ′
� +Hφ� = −4πGa2(ρ� + P�)v�, (8.39)

Eq. (8.28) is the evolution equation for the scalar shear in a general gauge. In

the longitudinal gauge, however, Eq. (8.28) becomes a constraint equation for the

gauge-invariant perturbations φ and ψ,

ψ� − φ� = 8πGa2Π . (8.40)

This allows us to have the constraint ψ� = φ� when we set the anisotropic stress to

zero as in the context of a perfect fluid.
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Eq. (8.27) can then provide a second-order evolution equation for the metric

perturbation in the longitudinal gauge driven by isotropic pressure:

ψ′′
� + 3Hψ′

� +
(
2H′ +H2

)
ψ� = 4πGa2δP� . (8.41)

To produce our gauge transformations from an arbitrary gauge we must use Eq.

(5.13) and Eq.’s (5.15) to (5.22) giving

φ� = φ+ (B′ − E ′′) +
a′

a
(B − E ′), (8.42)

ψ� = ψ − a′

a
(B − E ′), (8.43)

B� = 0 → α = B − E ′, (8.44)

E� = 0 → β = −E, (8.45)

σ�
i = 0 → γ′

i = −σi → γi = −
∫

σidη + Ci(x), (8.46)

F �
i = Fi −

∫
σidη + Ci(x). (8.47)

8.3 Matter and Radiation Solutions

In this section we will introduce the general matter and radiation solutions. The

solutions are presented first in the longitudinal gauge from [27] and then transformed

into a VPC gauge followed by a discussion of the results at the end of the chapter.

8.3.1 Solutions in the Longitudinal Gauge

We shall first discuss the matter solutions in the longitudinal gauge. The matter is

assumed to have w = c2s = p = 0 and Π = 0, which implies φ� = ψ� from Eq. (8.39).

We use the scale factor from Eq. (8.10) so that H = 2
η
. Eq. (8.41) becomes

φ′′
� + 3Hφ′

� +
(
2H′ +H2

)
φ� = 0. (8.48)

With the conformal Hubble parameter, H, we know that 2H′ +H2 = 0 to make our

dynamical equation

φ′′
� +

6

η
φ′
� = 0. (8.49)
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The general solution of this equation is

φ� = φ2 +
φ1

k2η2
, (8.50)

where φ2 and φ1 are constants. For times where η approaches zero the matter solution

is unbounded. We set φ1 = 0, making the bounded matter solution

φ� = φ2. (8.51)

Next we move to the radiation solution in longitudinal gauge. The radiation

dominated epoch has w = c2s = p = 1
3
and Π = 0 which implies φ� = ψ�. We use the

scale factor from Eq. (8.17) so that H = 1
η
. We can now use Eq. (8.38) which gives

us a second order differential equation

η2φ′′
� + 4ηφ′

� +
1

3
k2η2φ� = 0. (8.52)

The solution of this differential equation, [13], is

φ� = φ3

(√
3 sin( kη√

3
)− kη cos( kη√

3
)

k3η3

)
+ φ4

(√
3 cos( kη√

3
) + kη sin( kη√

3
)

k3η3

)
, (8.53)

where φ3 and φ4 are constants. If we substitute k = x
η
and expand the solution as a

power series for sine and cosine we get

φ� =
φ4

√
3

x3
+

φ4

√
3

6x
− φ3

9
− φ4x

√
3

72
+

φ3x
2

270
, (8.54)

which we have truncated to first order. When η or kη go to zero, such as at a time

close to the Big Bang, most of these terms are unbounded. Therefore, some of the

modes of inhomogeneous effects would grow much too large. We therefore must bound

the radiation solution, Eq. (8.54), since the perturbations were initialized at an early

time where η � 1. During this period the two modes of perturbations φ3 and φ4 will

be comparable and therefore φ4 < φ3 and so we can neglect φ4 from now on to get a

super-horizon solution of

φ� = −φ3

9
. (8.55)

However, for future use we state the full scale solution

φ� = φ3

(√
3 sin( kη√

3
)− kη cos( kη√

3
)

k3η3

)
. (8.56)
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We can now also express the velocity solutions in longitudinal gauge using Eq.

(8.39)

v� =
−2 (φ′

� +Hφ�)

3H2(1 + w)
(8.57)

which for matter, with w = 0 and H = 2
η
, becomes

v� =
−φ�η

3
=

−φ2η

3
. (8.58)

For radiation with w = 1
3
and H = 1

η
, we find the velocity to be

v� = −η2

2

(
φ′
� +

φ�

η

)
. (8.59)

Using the super-horizon scale solution, Eq. (8.55) gives the velocity as

v� =
φ3η

18
(8.60)

and the solution on all scales using Eq. (8.56) is

v� =

(
−φ3η

2

)(√
3 sin( kη√

3
)k2η2 + 6 cos( kη√

3
)kη − 6

√
3 sin( kη√

3
)

k3η4

)2

. (8.61)

The density solution for longitudinal gauge using Eq. (8.38) is

δ� = −2φ� − 2φ′
�

H − k2φ�

3H (8.62)

which for matter becomes

δ� = −2φ2 − k2η2φ0

6
. (8.63)

For radiation the super-horizon scale solution is

δ� =
2φ3

9
+

2k2η2φ3

27
(8.64)

and the solution on all scales is

δ� =
−2φ3

3k3η3

[
− 6

√
3 sin

(
kη√
3

)
+ 6kη cos

(
kη√
3

)

+2
√
3k2η2 sin

(
kη√
3

)
− k3η3 cos

(
kη√
3

)]
. (8.65)
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8.4 VPC Solutions

Within this section we are going to transform the longitudinal gauge matter and

radiation solutions into our VPC gauges. As demonstrated in Chapter 7 we have

a 3D and 4D VPC gauge. Discussion of these findings will be detailed in Section

8.5. These findings show that these gauges will be useful in further work involving

cosmological averaging and unimodular gravity.

8.4.1 3D VPC Solutions

In Section 7.2, the 3D VPC gauge was constructed. Before we solve the matter and

radiation systems, we must first define the gauge transformations for our 3D VPC

gauge using Eq. (5.13) and Eqs. (5.15) to (5.22). These equations show that the 3D

VPC gauge has the same gauge restrictions as the spatially flat gauge:

ψV = EV = F V
i = 0 (8.66)

where the superscript or subscript “V” stands for the VPC gauge. Since these are the

same gauge conditions as spatially flat gauge, we can use the gauge transformation

equations for the spatially flat gauge, from Section 6.2, to transform the longitudinal

solutions into the 3D VPC.

Solving the gauge transformation equations gives us the generating vector field,

defined in Eq. (5.9) to transform into our 3D VPC as

α =
ψ�

H , β,i = 0 , γi = −F i
� .

Now that we have our generating vector field we can transform the matter and radi-

ation solutions from longitudinal gauge in Section 8.3.1 into our 3D VPC.

First we will transform the matter solution to find our lapse, φV , our velocity, vV ,

and our density quantity, σV . Remember that our matter solution for φ� from Eq.

(8.51) is

φ� = φ2, (8.67)
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where the subscript “�” stands for the longitudinal gauge and φ2 is a constant. Sub-

stituting this solution for φ� into the gauge transformation Eq. (5.15) we find that

φV =
5φ2

2
. (8.68)

For the velocity the transformation equation, Eq. (5.39), gives our new velocity as

vV = v� =
−φ2η

3
. (8.69)

We will use Eq. (5.10) to transform our energy density as

δV = −φV

(
5 +

k2

3H
)

= −5φ2 − k2ηφ2

6
. (8.70)

We follow the same general gauge transformations to solve for our lapse, φV , our

velocity, vV , and our density quantity, σV for our radiation solution. As before we

start with Eq. (5.15) to find in radiation the super-horizon scale solution is

φV = −3φ� =
φ3

3
, (8.71)

and for all scales using Eq. (8.56) we get

φV = −3φ3

(√
3 sin( kη√

3
)− kη cos( kη√

3
)

k3η3

)
. (8.72)

Using Eq. (5.39) and our longitudinal radiation solution from Eq. (8.57), we find the

super-horizon scale solution for our velocity in radiation is

vV =
ηφ3

18
, (8.73)

and for all scales using Eq. (8.56) we find the velocity is

vV =

(
−φ3η

2

)(√
3 sin( kη√

3
)k2η2 + 6 cos( kη√

3
)kη − 6

√
3 sin( kη√

3
)

k3η4

)2

. (8.74)

Finally we solve for our energy density solution for radiation using the transforma-

tion for the density, Eq. (5.10), and our longitudinal radiation solution, Eq. (8.62),

to find

δV =
5φ3

9
+

k2ηφ3

27
(8.75)
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and for all scales using Eq. (8.56) we get

δV =
−φ3

3k2η2

[
− 3

√
3 sin

(
kη√
3

)
+ 3kη cos

(
kη√
3

)

+
√
3k2η sin

(
kη√
3

)
− k3η2 cos

(
kη√
3

)
+ 2

√
3k2η2 sin

(
kη√
3

)]
. (8.76)

Of course we must also do a coordinate transformation from our current time coor-

dinate into our VPC system using Eq. (7.14). For the matter dominated epoch our

new time coordinate is defined as

η =
(
9η80τ

) 1
9 . (8.77)

Using our new time coordinate we can find the velocity and density respectively as

vV =
−φ2

3

(
9η80τ

) 1
9 (8.78)

δV = −5φ0 − k2 (9η80τ)
1
9 φ0

6
. (8.79)

Eq. (7.14) gives our new time coordinate for the radiation dominated epoch as

η =
(
5η4eqτ

) 1
5 . (8.80)

which will make the super-horizon radiation solutions for velocity and density

vV =

(
5η4eqτ

) 1
5 φ3

18
(8.81)

δV =
5φ3

9
+

k2
(
5η4eqτ

) 1
5 φ3

27
. (8.82)

The full scale solutions for φV , vV and δV in our new time coordinate are

φV = −3φ3

⎛⎜⎜⎜⎜⎝
√
3 sin

(
k(5η4eqτ)

1
5

√
3

)
− k

(
5η4eqτ

) 1
5 cos

(
k(5η4eqτ)

1
5

√
3

)
k3
(
5η4eqτ

) 3
5

⎞⎟⎟⎟⎟⎠ , (8.83)
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vV =

⎛⎝−φ3

(
5η4eqτ

) 1
5

2

⎞⎠[√
3 sin(

k(5η4eqτ)
1
5

√
3

)k2
(
5η4eqτ

) 2
5

k3
(
5η4eqτ

) 4
5

+
6 cos(

k(5η4eqτ)
1
5

√
3

)kη − 6
√
3 sin(

k(5η4eqτ)
1
5

√
3

)

k3
(
5η4eqτ

) 4
5

]2

, (8.84)

δV =
−φ3

3k2
(
5η4eqτ

) 2
5

[
− 3

√
3 sin

⎛⎝k
(
5η4eqτ

) 1
5

√
3

⎞⎠+ 3k
(
5η4eqτ

) 1
5 cos

⎛⎝k
(
5η4eqτ

) 1
5

√
3

⎞⎠
+
√
3k2

(
5η4eqτ

) 1
5 sin

⎛⎝k
(
5η4eqτ

) 1
5

√
3

⎞⎠− k3
(
5η4eqτ

) 2
5 cos

⎛⎝k
(
5η4eqτ

) 1
5

√
3

⎞⎠
+ 2

√
3k2

(
5η4eqτ

) 2
5 sin

⎛⎝k
(
5η4eqτ

) 1
5

√
3

⎞⎠]
. (8.85)

8.4.2 4D VPC Solutions

For this section of Chapter 8, we will be using the previously constructed 4D VPC

from Section 7.3. We will first show the gauge transformation equations that we need

to transform any other gauge into our 4D VPC gauge are

φV = φ� +
ψ′
�

H − H
(H′)2

ψ� + ψ�, (8.86)

−k2vV = −k2v� +
d

dη

(
ψ� + φ� +

d

dη

(
ψ�

H
))

, (8.87)

δV = δ� − 3(1 + 3w)ψ�, (8.88)

−k2BV =
k2ψ�

H − d

dη

(
ψ� + φ� +

d

dη

(
ψ�

H
))

, (8.89)

−k2EV = −ψ� − φ� − d

dη

(
ψ�

H
)
. (8.90)

For our matter solution remember that we have w = c2s = Π = 0 and H = 2
η
which

implies φ� = ψ�. Using these conditions we can transform our matter solution from

longitudinal gauge into our 4D VPC gauge.

Using the longitudinal gauge matter solutions and the transformation equations

for our 4D VPC gauge we find that
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φV = φ2

(
2− η3

2

)
, (8.91)

vV = −ηφ2

3
, (8.92)

δV = φ2

(
2

k2
+

η2

6
− 3

)
, (8.93)

BV = −ηφ2

2
, (8.94)

EV =
5φ2

2k2
. (8.95)

For our radiation solution we have w = c2s = 1
3
, Π = 0 and H = 1

η
, which

implies φ� = ψ�. We can transform our longitudinal gauge radiation solutions, Eq.’s

(8.55) and (8.56), into our 4D VPC gauge using Eq.’s (8.86) to (8.90). The full scale

solutions using Eq. (8.56) are

φV = φ3

3k3η3

[
− 3

√
3 sin

(
kη√
3

)
+ 3kη cos

(
kη√
3

)
+ 3

√
3η sin

(
kη√
3

)
−3kη2 cos

(
kη√
3

)
+
√
3k2η2 sin

(
kη√
3

)]
(8.96)

vV = −1
6η7k6

[
9k4η4 − 9k4η4 cos

(
kη√
3

)2

− 108k2η2 + 216k2η2 cos
(

kη√
3

)2

+36
√
3k3η3 sin

(
kη√
3

)
cos

(
kη√
3

)
+ 324− 324 cos

(
kη√
3

)2

−216
√
3kη sin

(
kη√
3

)
cos

(
kη√
3

)
− 2

√
3k3η5 sin

(
kη√
3

)
+2k4η6 cos

(
kη√
3

)]
(8.97)

δV = 2φ3

3k5η3

[
− 6

√
3 sin

(
kη√
3

)
+ 6kη cos

(
kη√
3

)
+ 2

√
3k2η2 sin

(
kη√
3

)
−k3η3 cos

(
kη√
3

)
+ 4

√
3 sin

(
kη√
3

)
− kη cos

(
kη√
3

)]
(8.98)



59

BV =
−4φ3

(√
3 sin

(
kη

√
3

3

)
− cos

(√
3kη
3

)
kη
)

3k3η2
(8.99)

EV =
φ3

√
3 sin

(
kη

√
3

3

)
3k3η

. (8.100)

Using the bounded radiation solution, Eq. (8.55), we find the super-horizon scale

solutions for radiation are

φV = −(2 + η)φ3

9
, vV =

ηφ3

18

δV =

(−1

k2

)(
2φ3

9
+

2k2η2φ3

27

)
− 4φ3

9

BV =
−φ3

9
, EV =

−φ3

3k2
.

(8.101)

For our 4D VPC we also have a time coordinate change which was defined in Eq.

(7.55). For our matter solution we find that our new time coordinate is

η =

(−η80
7σ

) 1
7

. (8.102)

For our matter solutions φV , vV , δV and BV are time dependent so these transform

into

φV = φ2

(
2− (−η80)

3
7

2(7σ)
3
7

)
, (8.103)

vV = −φ2(−η80)
1
7

3(7σ)
1
7

, (8.104)

δV = φ2

(
2

k2
+

(−η80)
2
7

6(7σ)
2
7

− 3

)
, (8.105)

BV =
(η80)

1
7 φ2

2 (7σ)
2
7

. (8.106)



60

We will use Eq. (7.55) to also transform our radiation solutions using the new

time coordinate. The new time coordinate for radiation is defined as

η = −
(
η4eq
3σ

) 1
3

. (8.107)

Finally we express our 4D VPC radiation solutions in this new time coordinate

system. First we show the super-horizon radiation solutions with the time coordinate

transformation. The lapse, velocity and density quantities are the only super-horizon

solutions that are time dependent

φV = φ3

((
η4eq
37σ

) 1
3

− 2

9

)
, (8.108)

vV = −
(
η4eq
3σ

) 1
3 φ3

18
(8.109)

δV = −
(
φ3

k2

)(
2

9
+

2k2(−η4eq)
2
3

27(3σ)
2
3

)
− 4φ3

9
. (8.110)

The full scale radiation solutions using our volume-preserving time coordinate are

φV = φ3(3σ)
3k3(−η4eq)

[
− 3

√
3 sin

(
k(−η4eq)

1
3

√
3(3σ)

1
3

)
+ 3k(−η4eq)

1
3 cos

(
k(−η4eq)

1
3

√
3(3σ)

1
3

)
+3

√
3(−η4eq)

1
3 sin

(
k(−η4eq)

1
3

√
3(3σ)

1
3

)
− 3k

(−η4eq
3σ

) 2
3
cos

(
k(−η4eq)

1
3

√
3(3σ)

1
3

)
+
√
3k2

(−η4eq
3σ

) 2
3
sin

(
k(−η4eq)

1
3

√
3(3σ)

1
3

)]
, (8.111)
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vV = −(3σ)
7
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3 k6
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√
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√
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1
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−216

√
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(
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1
3

√
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1
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√
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1
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, (8.112)

δV = −2(3σ)φ3

3k5(η4eq)

[
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√
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(
k(−η4eq)

1
3

√
3(3σ)

1
3

)
+ 6k
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3
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√
3(3σ)

1
3

)
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√
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√
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3

√
3(3σ)

1
3
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√
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− k
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) 1
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1
3

√
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1
3
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, (8.113)

BV =
−4(−3σ)

2
3

3k3(η4eq)

[
φ3

[√
3 sin

⎛⎝k
(−η4eq

) 1
3
√
3

3 (3σ)
1
3

⎞⎠
− cos

⎛⎝k
(−η4eq

) 1
3
√
3

3 (3σ)
1
3

⎞⎠ k

(−η4eq
3σ

) 1
3
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, (8.114)

EV =

φ3 (3σ)
1
3
√
3 sin

(
k(−η4eq)

1
3
√
3

3(3σ)
1
3

)
3k3

(−η4eq
) 1

3

. (8.115)

8.5 Discussion

Within Chapter 8 we used the fully developed VPC gauges from Chapter 7 and solved

for the matter and radiation dynamical solutions. These gauges were developed in a
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particular way to try to address some of the issues with perturbative gauges used in

cosmological averaging. As discussed at the beginning of Chapter 7, the synchronous

gauge is the most practical gauge for using numerics to quantitatively evaluate the

backreaction, but the synchronous gauge does not have a constant volume and so

averaging in this gauge is not rigorously defined.

We developed the 3D VPC gauge from the flat gauge. The flat gauge allowed us to

construct a VPC gauge since the flat gauge leaves the scalar and vector components

of the three-metric unperturbed and we assume that the size of the tensor perturba-

tions is so small that the tensor perturbations can be neglected. Applying a proper

time coordinate transformation, Eq. (7.14), to the flat gauge to make the metric de-

terminant unity, transforms the flat gauge into a 3D VPC gauge. In practice, the 3D

VPC gauge gives us a volume which is not time dependent, VD =
∫
D d3x; therefore,

the volume is constant for all times, V̇D = 0. The 3D VPC gauge will be particularly

useful in Buchert’s approach to scalar averaging [22]. The 4D VPC gauge is different

from the 3D VPC gauge. The 4D VPC gauge can be used for averaging all objects

of interest within Zalaletdinov’s procedure of averaging [114]. The 4D VPC gauge is

a true, well defined, VPC gauge that is theoretically motivated and may be the best

gauge in which to evaluate averages.

However, there is a limitation to the 3D VPC gauge within the averaging regime.

The 3D VPC gauge can be extended to second order; all the formalism for this ex-

tension is provided within this thesis or from [23]. However, the 3D VPC gauge,

extended to second order will no longer be volume-preserving since the tensor per-

turbations will no longer be negligible at this order. At second order some of the

second order perturbations will be a product of first order perturbations, meaning

the perturbative quantities will be coupled together. The second order perturbations

will no longer be (comoving) volume-preserving, meaning that the volume over which

the average would be taken would not be constant. The 4D VPC gauge, on the other

hand, which does account for all perturbative quantities, including tensors, can be

extended to second order and no matter the order at which we truncate the pertur-

bative quantities, the 4D VPC metric will retain its volume preserving characteristic

by definition. Therefore, an extension of the 4D VPC gauge to second order and the

subsequent averaging should be analysed. The benefit of this second order extension
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of the 4D VPC gauge is that the higher the order of the perturbations, the better

the approximation the model takes of the Universe’s true dynamics. While the me-

chanics of extending these gauges to second order is reviewed in this thesis, following

[77], this extension is still quite a difficult and technical issue. For the purpose of

this thesis and the subsequent research in cosmological averaging using these gauges,

development of the linear order equations is sufficient.

Within Chapter 8 we have fully expressed the solutions to the EFE for the longi-

tudinal gauge according to [27]. We used the gauge transformations for the 3D VPC

gauge, Eq.’s (5.15), (5.39), (5.10) and the 4D VPC gauge transformations, Eq.’s (8.86)

to (8.90), to convert the longitudinal gauge EFE and solutions into volume-preserving

gauges and then the time coordinate transformations fully specified the transforma-

tion into the VPC gauges. The results in the VPC gauges were consistent with the

longitudinal gauge solutions except for the 4D VPC lapse function solutions. The

lapse has been constructed to qualitatively show the time dilation between proper

time and the coordinate time. In the Newtonian gauge, the lapse function acts as a

Newtonian potential, or Bardeen potentials Eq.’s (6.3) and (6.4), since the foliation

of surfaces has been chosen to be constant. The VPC gauges, however, have a more

complicated time-slicing and therefore have time dependence within the lapse func-

tion. This time dependence means that the lapse is no longer a Newtonian potential

but this is not unusual. The 4D VPC time dilation, while small, will grow rapidly

(see the matter domination solution Eq. (8.91)). However, with the explicit η3 term

appearing within the lapse function, we can see that perturbation theory will break

down since the perturbations will grow very large and eventually distort the VPC

construction. Further study into the possible long term dynamics of the VPC gauge

should be studied since if perturbation theory breaks down in one well defined gauge

then it will break down in all well defined gauges [13]. Note that all of the other

quantities besides the lapse in the VPC gauges have the same qualitative behaviour

as in the longitudinal gauge.

With the rigorous description of the gauge transformations, the EFE and their

solutions in the 3D and 4D VPC gauges, the VPC gauges are now ready to be used

for future research including averaging in cosmology and applications of unimodular

gravity.
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Conclusions

Chapter 1 of this thesis introduced the possibility that within the standard FLRW

cosmological model there is a potential discrepancy between what is currently being

observed in our Universe and the physics that defines those observations. Of partic-

ular interest for this thesis is the supernovae Type 1a data showing an accelerating

Universal expansion rate and the WMAP observations showing the distribution of

CMB radiation. The introduction of exotic fields, which have yet to be explicitly

observed, to try to account for these discrepancies leaves us with a theory that seems

to be incomplete. The main goal of this thesis was to use perturbation theory to

introduce a gauge in which averaging could be done more rigorously, namely a VPC

gauge.

In Chapter 7 we were able to introduce two volume-preserving coordinate gauges

and in Chapter 8 we displayed gauge transformations between these gauges and an

arbitrary gauge. The longitudinal gauge solutions were transformed into the VPC

gauges and these solutions were shown to have the same qualitative behaviour as the

longitudinal gauge solutions except, of course, for the lapse function as discussed in

Section 8.5. The lapse in the longitudinal gauge has been constructed to behave as a

Newtonian Potential and the variables for this are known as the Bardeen Potentials

Eq.’s (6.3) and (6.4). However, in our 4D VPC guage it can be seen that the lapse

function is time dependent, Eq. (8.91). The time dependency of the lapse function

means that the lapse is no longer a Newtonian potential, but this is not unusual in

gauges which use complicated and different time-slicing. The 4D VPC time dilation,

while small, will grow rapidly and the VP characteristic of the VPC guage will begin

to distort and break the gauge. Further study of the possible long term dynamics of

the VPC gauge should be considered since if perturbation theory breaks down in one

well defined gauge then it will break down in all well defined gauges [13]. Note that all

of the other quantities besides the lapse in the VPC gauges have the same qualitative

64
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behaviour as in the longitudinal gauge. The 3D and 4D VPC gauges developed are

viable for use in cosmological averaging within perturbation theory.

In Section 7.3.3, we discussed how Buchert developed an averaging procedure

using a (3+1) foliation, which is used primarily for averaging scalar quantities. A

scalar averaging procedure can be used to test the size of the backreaction and in-

homogeneous effects on quantities using the 3D VPC gauge. The 3D VPC gauge is

best suited for the Buchert approach to averaging. The averaging procedure devel-

oped by Zalaletdinov [114], which is fully covariant and can be used to average any

object, should be used with the 4D VPC gauge. The 4D VPC gauge ensures that
√−g = 1 (within Eq. (7.15)) making the averaging calculation rigorous and much

easier to compute. When these perturbative quantities are averaged, it is hoped that

the averaged objects will have a backreaction of a size to account for the observational

discrepancies. The averaged objects will retain the correct qualitative behaviour since

the averaging is done in a suitable gauge. It is anticipated that the size of the backre-

action from inhomogeneous effects on the Universal dynamics after averaging, when

done rigorously, are of a size that will stimulate further analysis using these gauges

to higher orders.

Indeed, as an application, in [16] volume-preserving uniform curvature and uni-

form density gauges (VPG’s) in perturbation theory were analysed using spatial av-

eraging to second order. The VPC gauge formalisms within this thesis will allow an

easy transformation of the gauge specific quantities into the VPC system constructed

here, facilitate the calculation of the average of any object and transformation of the

averaged objects back into the original gauge for interpretation and comparison of

effects. The hope is that the 3D and 4D VPC gauges will give more reliable estimates

of the size of the backreaction. While the average may provide a proper backreaction

size, the VPC gauge was only developed to linear order within this thesis. In the fu-

ture, development of the VPC to second order is desirable in order to further analyse

the average of any object.



Appendix A

Poisson Gauge

In this appendix we present the second order equations in the Poisson gauge, see [23].

The gauge is defined by Ẽ = 0 = B̃, and then φ̃ = Φ and ψ̃ = Ψ. In the absence of

anisotropic stress, as is the case for this work, Ψ1 = Φ1 (though note that this does

not hold true for the second order variables Φ2 and Ψ2). Note also that, in this gauge,

V = v.

Energy conservation then becomes

ρ2
′ + 3H(ρ2 + P2) + (ρ0 + P0)

(
∂a∂

av2 − 3Ψ′
2

)
+ 2(ρ1 + P1),iv1

i

+ 2(ρ1 + P1)
(
∂a∂

av1 − 3Φ′
1

)
+ 2(ρ0 + P0)

[
2(v′1,i + 4Hv1,i)v1,

i

+ 3Φ1Φ
′
1 + ∂a∂

av1Φ1 − v1,
iΦ1,i

]
= 0 , (A.1)

while the momentum conservation equation is[
(ρ0 + P0)v2,i

]′
+ (ρ0 + P0)

(
Φ2 + 4Hv2

)
,i
+ δP2,i + 2

[
v1,i(ρ1 + P1)

]′
+ 2(ρ1 + P1)

(
Φ1 + 4Hv1

)
,i
− 6(ρ0 + P0)

′Φ1v1,i

+ 2(ρ0 + P0)
[
v1,i

(
∂a∂

av1 − 3Φ′
1

)
+ v1,

jv1,ij − Φ1

(
v′1 + 2Φ1 + 4Hv1

)
,i

− 2
(
Φ1v1,i

)′
− 8HΦ1v1,i

]
= 0 . (A.2)

Then, the EFE are

3H(Ψ′
2 +HΦ2)− ∂a∂

aΨ2 − 3Φ′
1Φ

′
1 − 3Φ1,

iΦ1,i − 8∂a∂
aΦ1Φ1 − 12H2Φ2

1

= −4πGa2
(
2(ρ0 + P0)v1

kv1k + ρ2

)
, (A.3)

Ψ′
2,i +HΦ2,i + 4(Φ1,iΦ)

′ − Φ1,i(8HΦ1 + 2Φ′
1)− 4Φ′

1,iΦ1

= −4πGa2
[
(ρ0 + P0)(v2i − 6Φ1v1i) + 2(ρ1 + P1)v1i

]
, (A.4)
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and

Ψ′′
2 +H(2Ψ2 + Φ2)

′ +
1

3
∂a∂

a(Φ2 −Ψ2) +
(2a′′

a
−H2

)
Φ2

+ 4Φ2
1

(
H2 − 2a′′

a

)
− 2Φ1,

iΦ1,i − 8HΦ1Φ
′
1 −

8

3
∂a∂

aΦ1Φ1 − 3(Φ′
1)

2

= 4πGa2
(
P2 +

2

3
(ρ0 + P0)v1

iv1i

)
. (A.5)

For completeness, we present the fourth field equation, obtained by applying the

operator ∂i∂
j to the i− j component of the EFE, Eq. (C.3):

Ψ′′
2 +H(2Ψ′

2 + Φ′
2) +

(2a′′
a

−H2
)
Φ2 = 4πGa2δP2 + 8πGa2(ρ0 + P0)∇−2∂i∂

j(v1
iv1j)

−∇−2
{
2Φ1,kΦ1,

k ′ + 4Φ1,
i
jΦ1,i

j − ∂a∂
a
[
Φ1 + Φ′′

1 + 2Φ2
1

(
H2 − 2a′′

a

)]
+ Φ′

1

(
4∇4Φ′

1 − 3∂a∂
aΦ′

1 + 2H∂a∂
aΦ1

)}
, (A.6)

where∇−2 is the inverse Laplacian operator. Finally, combining Eqs. (A.5) and (A.6),

we obtain

∂a∂
a(Ψ2 − Φ2) = 24πGa2(ρ0 + P0)

[
vi1v1i −∇−2

(
∂i∂

j(vivj)
)]

+ 12Φ2
1

(
H2 − 2a′′

a

)
− 18HΦ1Φ

′
1 − 3∇−2

{
2Φ1,k

′Φ1,
k ′ + 4Φ1,

i
jΦ1,i

j + Φ′
1(4∇4Φ′

1 − 3∂a∂
aΦ′

1 + 2H∂a∂
aΦ1)

}
− 6Φ1,iΦ1,

i + Φ1Φ
′′
1 + (Φ′

1)
2 + 2Φ2

1

(
H2 − 2a′′

a

)
. (A.7)

which is the second order analogue of the equation which, at first order, tells us that

the two Newtonian potentials are identical in the absence of anisotropic stress.



Appendix B

Synchronous Gauge

The synchronous gauge was introduced by Lifshitz in [61](see also Ref. [53]). This

gauge was introduced by studying the symmetry arguments in order to eliminate

unphysical gauge modes. The gauge conditions for synchronous gauge are defined as

φ̃ = B̃i = 0. These gauge conditions are so that the proper time of observers at fixed

spatial coordinates conincides with cosmic time in the FLRW background model,

restricting the perturbations to the spatial part of the metric leaving the temporal

part unperturbed. This simplifies dynamical equations as the time derivatives can be

directly related to proper time derivatives. Synchronous gauge is very popular for use

in numerical studies and used in many Boltzmann solvers such as CMBFAST [100].

It is also discussed in detail and compared to the longituidinal gauge in [69].

The gauge condition at first order is φ̃1 = B̃1i = 0, which from Eqs. (5.15) and

(5.17) gives

α1syn = −1

a

(∫
aφ1dη − C1(xi)

)
, (B.1)

β1syn =

∫
(α1syn − B1) dη + Ĉ1(xi) , (B.2)

γi
1syn =

∫
Si
1dη + Ĉi

1(x
i) . (B.3)

These transformations equations do not determine the time-slicing definitively since

we are left with two arbitrary scalar functions of the spatial coordinates, C1 and Ĉ1.
Note that C1 affects scalar perturbations on spatial hypersurfaces. We are left with

two non-zero geometrical scalar perturbations,

˜ψ1syn = ψ1 +
H
a

(∫
aφ1dη − C(xi)

)
, (B.4)

σ̃1syn = σ1 + α1syn − B1 , (B.5)
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and the matter variables are

˜δρ1syn = δρ1 − ρ′0
a

(∫
aφ1dη − C(xi)

)
, (B.6)

ṽ1syn = v1 +B1 − α1syn . (B.7)

Thus it is not possible to define gauge-invariant quantities in general using this gauge

condition [79].

To remove the symmetry ambiguity, we can follow Ref. [21] and choose the initial

velocity of cold dark matter to be zero, ṽ1cdm ≡ 0, which fixes the residual gauge

freedom

C1(x) = a(v1cdm +B1) . (B.8)

Note that for pressureless matter, momentum conservation equation ensures that

a(v1cdm +B1) is a constant.



Appendix C

Second Order Governing Equations

We can extend the governing equations presented in this thesis to beyond linear order

by simply not truncating the expansion of each variable after the first term. Doing so,

we obtain equations with similar structure to those at linear order, however with new

couplings between different type of perturbation. In fact, these couplings will turn

out to be the reason for the qualitative difference between the linear and higher order

theories. In this chapter, we will present the full second order equations for scalar,

vector and tensor perturbations in a gauge dependent format. For a full discussion

and decomposition of higher order perturbation terms see [23].

The EFE give the (0− 0) component

∂a∂
aCj

2j − C2ij,
ij + 2H(−C i′

2 i +Bi
2,i + 3Hφ2) + 2Cj

1j,i(
1

2
Ck

1 k,
i − 2C ik

1 ,k)

+ 2Bi
1

[
Cj′

1 j,i − C
′
1ij,

j +
1

2

(
∂a∂

aB1i − B1j,i
j
)
+ 2H (

C1j
j,i − 2C1ij,

j − φ1,i

) ]
+ 4C ij

1

[
2C1jk,i

k − Ck
1 k,ij − ∂a∂

aC1ij + 2H(C
′
1ij − B1i,j)

]
+ 2C1jk,i(C

ik
1 ,

j − 3

2
Cjk

1 ,
i)

+ 2C i′
1 i(B1j,

j − 1

2
Cj′

1 j + 4Hφ) + 4C ij
1 ,iC1jk,

k + 2C
′
1ij(

1

2
C ij′

1 − Bj
1 ,
i)

+
1

2
B1j,i(B

i
1,
j +Bj

1 ,
i)− 6H2(4φ2

1 − B1iB
i
1)− Bi

1,iB1j,
j − 8HBi

1,iφ1

= −8πGa2
[
2(ρ0 + P0)V

k
1 v1k + ρ2

]
, (C.1)
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and the (0− i) component

Ck
2

′
k,i − C

′
2ik,

k − 1

2

(
B2k,i

k − ∂a∂
aB2i

)− 2Hφ2,i + 16Hφ1,iφ1 − 2Cj′
1 jφ1,i

+ 2C
′
1ij

(
2Ckj

1 ,k − Ck
1 k,

j + φ1,
j
)
+ 4Ckj

1

[
C

′
1ik,j − C

′
1jk,i +

1

2
(B1k,ij − B1i,kj)

]
+ 2Bj

1

(
C1kj,i

k − Ck
1 k,ij + C1ik,k

j − ∂a∂
aC1ij − 2HB1j,i

)− (
B1i,j +B1j,i

)
φ1,

j

+ 2 (B1i,j − B1j,i)

(
1

2
Ck

1 k,
j − Cjk

1 ,k

)
− 2C1ik,j

(
Bk

1 ,
j − Bj

1 ,
k
)
+ 2Bj

1 ,jφ1,i

+ 2φ1

[
B1j,i

j − ∂a∂
aB1i + 2

(
C

′
1ij,

j − C1j′
j,i

)]
− 2Ckj′

1 Ckj,i

= 16πG
[1
2
V2i − φ1(V1i +B1i) + 2C1ikv

k
1 + (ρ1 + P1)V1i

]
, (C.2)

and the full (i− j) component

Ci′′
2 j+2HCi

2

′
j− 1

2
(Bi′

2 ,j+B2j,
i′ )−Cl

2l,j
i+Ci

2l,j
l−∂a∂aCi

2j+C2jl,
il−φ2,

i
j−H(Bi

2,j+B2j,
i)

+δij

{
2
(

2a′′
a

−H2
)
φ2+2H

(
Bk

2 ,k−Ck′
2 k+φ

′
2

)
+Bk′

2 k−Ckl
2 ,kl−Ck′′

2 k+∂a∂a(φ2+Cl
2l)
}

+Bk
1

[
C1jk,

i′+Ci′
1 k,j−2Ci′

1 j,k+2H(C1jk,
i+Ci

1k,j−Ci
1j,k)+

1
2(B1j,

i
k+Bi

1,jk−2B1k,
i
j)
]

+(Ck
1

′
k−φ

′
1−Bk

1 ,k)(C
i
1

′
j− 1

2(Bi
1,j+B1j,

i))+Cik′
1

(
B1j,k−2C

′
1kj

)
+C

′
1kjB

i
1,

k+φ1,
iφ1,j

+(Bk′
1 −2Ckl

1 ,l+Cl
1l,

k+φ1,
k)(C1jk,

i+Ci
1k,j−Ci

1j,k)+
1
2
Bi

1(B1k,j
k−∂a∂aB1j+4Hφ1,j−2Ck′

1 k,j+2C
′
1kj,

k)

+2Cik
1

[
1
2

(
B

′
1j,k+B

′
1k,j

)
−C

′′
1kj+φ1,jk−C1kl,j

l−C1jl,k
l+∂a∂aC1kj+Cl

1l,jk+H
(
B1j,k+B1k,j−2C

′
1kj

)]
− 1

2(B1k,
iBk

1 ,j+B1j,
kBi

1,k)+φ1

[
(B1j,

i′+Bi
1

′
,j+2φ1,

i
j+2H(B1j,

i+Bi
1,j)−2Ci

1

′′
j −4HCi

1

′
j

]
+2(Ci

1k,lC
k
1 j,

l−Cl
1j,

kCi
1k,l+Ckl

1 ,jC1kl,
i)+2Ckl

1

[
C1kl,j

i−C1jl,
i
k−Ci

1l,jk+Ci
1j,kl

]
+δij

{(
H2− 2a′′

a

)
(4φ2

1−B1kB
k
1 )+2φ1

[
Ck′′

1 k−Bk′
1 k−∂a∂aφ1+2H(Ck′

1 k−2φ1
′−Bk

1 ,k)

]
+Bk

1

[
2Cl′

1 l,k−2C
′
1kl,

l+∂a∂aB1k−B1l,k
l+2H(B

′
1k−φ1,k−2Cl

1k,l+Cl
1l,k)

]
+Ckl′

1

(
3
2
C

′
1kl−B1l,k

)

+2Ckl
1

[
C

′′
1kl−∂a∂aC1kl+2HC

′
1kl+2C1lm,k

m−Cm
1 m,kl−2HB1l,k−B

′
1l,k−φ1,kl

]
+2Bk′

1 (Cl
1l,k−C1kl,

l)

+C1
k′

k

(
Bl

1,l− 1
2
Cl′

1 l

)
+2Ckl

1 ,kC1lm,
m+C1lm,k(Ckm

1 ,
l− 3

2
Clm

1 ,
k)−Cl

1l,k(2Ck
1m,

m− 1
2
Cm

1 m,
k)

+φ1
′(

C1
k′

k−Bk
1 ,k

)
− 1

4(2Bk
1 ,kB1l,

l−B1l,kB
k
1 ,

l−3Bl
1,kB1l,

k)+φ1,k(C1
l
l,
k−2C1

lk
,l−φ1,

k)
}

=8πGa2

{
δP2δij+2(ρ0+P0)v1i(v1j+B1j)

}
. (C.3)

The equations for scalar perturbations only in a gauge dependent form are then

obtained by substituting Cij = −ψδij + E,ij and Bi = B,i, at both first and second
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order, into the above [23]. The energy conservation equation then becomes

ρ2
′ + 3H(ρ2 + P2) + (ρ0 + P0)

(
∂a∂

a(E2
′ + v2)− 3ψ2

′
)
+ 2(ρ1 + P1),iv1

i

+ 2(ρ1 + P1)
(
∂a∂

a(E1
′ + v1)− 3ψ1

′
)
+ 2(ρ0 + P0)

[
(V ′

1,i + 4Hv1,i)(V1,i + v1,i)

+ 3ψ1ψ1
′ + ∂a∂

av1φ1 − (ψ1∂a∂
aE)′ + E ′

1,ijE1,
ij + v1,

i(2φ1,i − 3ψ1,i + ∂a∂
aE1,i)

]
= 0 ,

(C.4)

while the momentum conservation equation is[
(ρ0 + P0)V1,i

]′
+ (ρ0 + P0)

(
φ2 + 4HV2

)
,i
+ δP2,i + 2

[
V1,i(ρ1 + P1)

]′
+ 2(ρ1 + P1)

(
φ1 + 4HV1

)
,i
− 2(ρ0 + P0)

′
[
(V1 +B1),iφ1 − 2(E1,ijv1,

j − ψ1v1,i)
]

+ 2(ρ0 + P0)
[
V1,i

(
∂a∂

a(E1
′ + v1)− 3ψ1

′
)
− B1,i(φ1

′ + 8Hφ1) + v1,
j(v1,ij + 8HE1,ij)

+ 2
(
v1,

jE1,ij − ψ1v1,i

)′
− φ1

(
(V1 +B1)

′ + 2φ1 + 4Hv1

)
,1
− 8Hψ1v1,i

]
= 0 . (C.5)

Turning now to the EFE, the energy constraint is

3H(ψ2
′ +Hφ2) + ∂a∂

a
(
H(B2 − E2

′)− ψ2

)
+ ∂a∂

aB1

(
∂a∂

a(E1
′ − 1

2
B1)− 2ψ1

′
)

+B1,i

(
H(3HB1,

i − 2∂a∂
aE1,

i − 2(ψ1 + φ1),
i)− 2ψ1,

i′
)
+ 2E1,

ij(ψ1 − 2HB1),ij

+ 4H(ψ1 − φ1)
(
3ψ1

′ − ∂a∂
a(E1

′ − B1)
)
+ E1,

ij ′
(
4HE1 +

1

2
E1

′ − B1

)
,ij

+ ψ1
′
(
2∂a∂

a(E1
′ − 2HE1)− 3ψ1

′)
)
+ ψ1,

i(2∂a∂
aE1 − 3ψ1),i + 2∂a∂

aψ1(∂a∂
aE1 − 4ψ1)

− 12H2φ1
2 +

1

2

(
B1,ijB1,

ij + ∂a∂
aE1,j∂a∂

aE1,
j − E1,ijkE1,

ijk − ∂a∂
aE1

′∂a∂aE1
′
)

= −4πGa2
(
2(ρ0 + P0)V1,

kv1,k + ρ2

)
, (C.6)

and the momentum constraint

ψ2
′
,i +Hφ2,i − E1

′
,ij(ψ1 + φ1 + ∂a∂

aE1),
j +B1,ij(2HB1 + φ1),

j

−
[
ψ1,i(∂a∂

aE1 − 4ψ1)
]′
− φ1,i

(
8Hφ1 + 2ψ1

′ + ∂a∂
a(E1

′ − B1)
)

− B1,jψ1,i
j + 2ψ1,

j ′E1,ij + E1,jk
′E1,i

jk − ψ1
′
,i(∂a∂

aE1 + 4φ1)− ∂a∂
aψ1B1,i

= −4πGa2
[
(ρ0 + P0)

(
V2,i − 2φ1(V1 +B1),i − 4(ψ1v,i − E1,ikv1,

k)
)

+ 2(ρ1 + P1)V1,i

]
, (C.7)
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while, from the trace of the i− j component, we obtain

3H(2ψ2 + φ2)
′ + ∂a∂

a(E2
′′ + 2E2

′ + 2ψ2 − B2
′ − φ2 + 2HB2)− 3φ2

(
H2 − 2

a′′

a

)
+ 3ψ2

′′

+ (ψ1 − φ1)
(
12(ψ1

′′ + 2Hψ1
′) + 4∂a∂

a(φ1 + (B1 − E1)
′) + 8H∂a∂

a(B1 − E1
′)
)

+ E1,
ij
(
8H(E1

′ − B1),ij + 2ψ1,ij − 4φ1,ij − 4B1
′
,ij

)
+ E1,

ij
(5
2
E1

′
,ij − B1,ij

)
+ 2∂a∂

aE1
′
(
4φ1

′ − ∂a∂
a(E1

′ − 2B1)
)
+ ∂a∂

aE1,
i
(
∂a∂

aE1,i + 2φ1,i − 4HB1,i − 2B1
′
,i

)
+ ψ1,

i
(
2∂a∂

aE1,i − 4HB1,i − 2(ψ1 + φ1),i − 2B1
′
,i

)
− 2φ1

′(∂a∂aB1 + 12Hφ1)

− 2φ1,iφ1,
i + 2∂a∂

aψ1(∂a∂
aE1 − 4ψ1) + ψ1

′
(
3ψ1

′ − 6φ1
′ − 8H∂a∂

aE1 − 2∂a∂
a(E1

′ +B1)
)

+ 2B1,
i
(
H(3B1

′ − 2φ1)− 3ψ1
′
)
,i
+

1

2

(
B1,ijB1,

ij − E1,ijkE1,
ijk − ∂a∂

aB1∂a∂
aB1

)
+ 4(E1,

ijE1
′′
,ij − ψ1

′′∂a∂aE1) + 3
(
H2 − 2

a′′

a

)(
4φ1

2 − B1,iB1,
i
)

= 4πGa2
(
3P2 + 2(ρ0 + P0)v1,

iV1,i

)
. (C.8)



Appendix D

Geometry of Spatial Hypersurfaces

D.1 Components at Second Order of Shear, Expansion, and

Acceleration

The calculation of the shear, defined in Eq. (3.9), simplifies in case of the unit normal

vector field nμ, that is for ni ≡ 0,

σij = −n0Γ
0
ij −

1

3
θ gij , (D.1)

which gives (including vectors and tensors) at second order

δσ00 = 0 , (D.2)

δσ0i = 2a
[
Bk

1

(
C ′

1ik − B1(1,k)

)− 1

3
B1i

(
C ′ k

1k − B k
1k,

) ]
, (D.3)

δσij = a
[
C ′

2ij − B2(i,j) + 2Bk
1 (C1ki,j + C1kj,i − C1ij,k) + 2φ1

(
B1(i,j) − C ′

1ij

)
−4

3
C1ij

(
C ′ k

1k − B k
1k,

)
+

1

3
δij

{
− C ′ k

2k +B k
2k, + 2φ1

(
C ′ k

1k − B k
1k,

)
+4Ckl

1 (C ′
1kl − B1k,l)− 2Bl

1

(
2C k

1lk, − C k
1 k,l

)}]
. (D.4)

The expansion is given from Eq. (3.8) at second order

δθ2 =
1

a

[
−3

a′

a

(
φ2 − 3φ1

2
)
+
(
C k

2k

′ − B k
2k,

)
+ 2φ1

(
B k

1k, − C k
1k

′)
−3

a′

a
B1kB

k
1 − 4Ckl

1 C ′
1kl + 4Ckl

1 B1l,k + 4Bl
1C

k
1lk, − 2Bk

1C
l
1 l,k

]
.

(D.5)

The acceleration is given from Eq. (3.11) at second order as

a0 = 2Bk
1φ1,k , ai =

[
φ2,i +

(
B1kB

k
1 − 2φ1

2
)
,i

]
. (D.6)
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D.2 Curvature of Spatial Three-Hypersurfaces at Second Order

The intrinsic curvature of spatial three-hypersurfaces is given at second order, respec-

tively, by

δ(3)R2 =
1

a2

[
4∂a∂

aψ2 − 4C m
1km, C

kn
1 ,n + 3C k

1mn,C
mn
1 ,k − Ck

1 k,nC
m n
1 m,

+4Cmn
1

(
C k

1mn, k + Ck
1 k,mn − C k

1mk,n − C k
1kn,m

)
+2

(
Ck

1 k,jC
jn
1 ,n + C j

1jk,C
m k
1 m, − Ck

1 n,mC
mn
1 ,k

)
, (D.7)

where we used

2
(
Cmn

,mn − Cm k
m, k

)
= 4∂a∂

aψ . (D.8)
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[57] G. Lemâitre, Ann. Soc. Sci. Brux., A 53, 51, (1933) (in French), G. Lemâitre,
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