

ATTAINING UNIFORMITY IN USER INTERFACES ACROSS

MOBILE PLATFORMS - A DEVELOPER'S PERSPECTIVE

by

Deepak Karthikeyan Rajendran

Submitted in partial fulfilment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

November 2012

© Copyright by Deepak Karthikeyan Rajendran, 2012

ii

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “ATTAINING UNIFORMITY IN USER

INTERFACES ACROSS MOBILE PLATFORMS - A DEVELOPER'S PERSPECTIVE” by

Deepak Karthikeyan Rajendran in partial fulfilment of the requirements for the degree of

Master of Computer Science.

Dated: 19-Nov-2012

Supervisor:

Co-supervisor:

Reader:

iii

DALHOUSIE UNIVERSITY

 DATE: 19-Nov-2012

AUTHOR:

Deepak Karthikeyan Rajendran

TITLE: ATTAINING UNIFORMITY IN USER INTERFACES ACROSS
MOBILE PLATFORMS – A DEVELOPER’S PERSPECTIVE

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: MCSc CONVOCATION: May YEAR: 2013

Permission is herewith granted to Dalhousie University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon the request of
individuals or institutions. I understand that my thesis will be electronically available to
the public.

The author reserves other publication rights and neither the thesis or extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than the brief excerpts requiring only proper
acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

 Signature of Author

iv

TABLE OF CONTENTS
LIST OF TABLES .. vi

LIST OF FIGURES ... vii

ABSTRACT .. ix

LIST OF ABBREVIATIONS USED .. x

ACKNOWLEDGEMENTS .. xi

CHAPTER 1: INTRODUCTION .. 1

1.1 Cross-Platform Mobile Application Development .. 2

1.2 Research Problem .. 2

1.3 Objective .. 3

1.4 Overview .. 4

CHAPTER 2 : BACKGROUND ... 5

2.1 Evolution of Mobile Platforms .. 5

2.2 Smartphone Platforms Overview ... 6

2.2.1 Android ... 6

2.2.2 BlackBerry OS .. 6

2.2.3 Windows Phone .. 7

2.2.4 iOS (iPhone) .. 7

2.3 Mobile Application Development Techniques .. 8

2.3.1 Native Mobile Application Development ... 9

2.3.2 Web-based Mobile Application .. 12

2.3.3 Hybrid Mobile Application ... 15

CHAPTER 3 : LITERATURE REVIEW .. 20

3.1 Porting The Application ... 20

3.2 Unified Design process by analysing iOS and Android Platforms 21

3.3 Cross-compiling Android Application to iPhone ... 23

v

3.4 Methods in Cross-compilation ... 24

3.5 Complexities in Cross-compilation .. 25

3.6 Summary .. 26

CHAPTER 4 : METHODOLOGY .. 28

CHAPTER 5 : IMPLEMENTATION .. 35

5.1 Cross-compiling Android to BlackBerry Applications .. 35

5.2 Native API Bridging .. 36

5.2.1 Commonalities of the User Interfaces in Android and BlackBerry Platforms 38

5.2.2 Reuse of Application Logic Code ... 39

5.3 Unified Approach for Cross-compilation... 40

5.4 Hybrid Application Development Approach as an alternative solution 41

5.5 Comparison of Application developed in Android and Windows Phone 41

5.5.1 Why Android and Windows Phone 7? – Platform choices ... 42

5.5.2 Application Framework Differences ... 42

5.5.3 Operating System differences ... 44

5.6 Developer’s role in Application Development .. 44

5.6.1 How the differences in UIs affect Developers? .. 52

5.7 Hybrid Mobile Application Technique .. 56

5.7.1 Uniformity in UIs using Hybrid Approach ... 56

5.7.2 Unified Interfaces with Native Platform features ... 64

5.7.3 Programming constraints and Structure .. 65

5.7.4 No differences in Interfaces .. 66

CHAPTER 6 : EVALUATION ... 67

CHAPTER 7 : DISCUSSION .. 77

CHAPTER 8 : CONCLUSION .. 78

REFERENCES .. 79

vi

LIST OF TABLES

Table 5-1 Differences between Android and Windows Phone 7 feature 43

Table 6-1 : Characterization of development effort ... 67

Table 6-2 : Supporting features for enhancing user experience ... 71

Table 6-3 : Evaluation of essential aspects in app development .. 72

vii

LIST OF FIGURES

Figure 2-1 : Pictorial Illustration of Native Application Development ... 10

Figure 2-2 : Interaction of Mobile Web App ... 13

Figure 2-3 : Hybrid Mobile Application Development Mechanism .. 16

Figure 2-4 : Architecture of Hybrid Mobile Application Approach [11] 18

Figure 4-1 : Architectural Overview of Proposed Approach .. 34

Figure 5-1 : Opening screen of Flames Game in Android ... 37

Figure 5-2 : Opening Screen of Flames Game in BlackBerry ... 38

Figure 5-3 : Opening Screen (Android) ... 46

Figure 5-4 : Opening Screen (Windows Phone) .. 47

Figure 5-5 : Geolocation Screen in Android .. 48

Figure 5-6 : Geolocation Screen in Windows Phone ... 49

Figure 5-7 : Conversion Screen in Android ... 50

Figure 5-8 : Conversion Screen in Windows Phone .. 51

Figure 5-9 : Currency Conversion Screen in Windows Phone 7 ... 52

Figure 5-10 : Currency List in Windows Phone 7 ... 53

Figure 5-11 : Currency Conversion Screen in Android ... 54

Figure 5-12 : Currency list in Android ... 55

Figure 5-13 : Opening Screen in Android .. 58

Figure 5-14 : Opening Screen in Windows Phone .. 59

Figure 5-15 : Geolocation Screen in Android .. 60

Figure 5-16 : Geolocation Screen in Windows Phone ... 61

Figure 5-17 : Conversion Screen in Android ... 62

Figure 5-18 : Conversion Screen in Windows Phone .. 63

Figure 5-19 : Currency Listing in Android (Hybrid Approach)... 64

Figure 5-20 : Currency Listing in Windows Phone (Hybrid Approach) .. 65

Figure 6-1 : Currency Listing in Android (Hybrid Approach)... 69

Figure 6-2 : Currency List in Android (Native Version) ... 70

Figure 6-3 : Currency Listing in Windows Phone (Hybrid) .. 70

Figure 6-4 : Currency List in Windows Phone 7 ... 71

viii

Figure 6-5 : Developer Intent Index for 2011 and 2012 [30] ... 74

Figure 6-6 : Number of apps released per quarter by app type [31] .. 75

Figure 6-7 : Developer barometer by platform [30] ... 76

ix

ABSTRACT

Mobile Application Development encompasses disparate facets such as architectural
design, development and deployment, integration with existing web applications and
business issues. Cross-platform mobile application development is one of the significant
emerging areas in Mobile Application Development. Cross-platform technique can be
approached by two ways: Cross-compilation for each mobile platform and porting a
single code base to multiple platforms by leveraging platform oriented capabilities.
Cross-compilation can have significant deployment implications, constraining
functionality to be delivered through Application Programming Interfaces. Hybrid
Mobile Application technique, written with web technologies, is one of the alternatives
for porting an application to multiple platforms by utilizing the device’s browser engine.
Even though applications are deployed across platforms using hybrid approach, user
interfaces lack consistency across platforms. In order to provide unified user interfaces
across platforms, this thesis work proposes a solution of a hybrid mobile application
approach by combining two cross-platform mobile application frameworks. Issues and
elucidations are technically delineated in developer’s perspective.

x

LIST OF ABBREVIATIONS USED
SDK - Software Development Kit

API - Application Programming Interface

IDE - Integrated Development Environment

HTML - HyperText Markup Language

CSS - Cascading Style Sheet

XML - Extensible Markup Language

XSL - Extensible Stylesheet Language

XAML - Extensible Application Markup Language

MWI - Mobile Web Initiative

COM - Component Object Model

MIDP - Mobile Information Device Profile

CLR - Common Language Runtime

JVM - Java Virtual Machine

xi

ACKNOWLEDGEMENTS
Working on the Master’s Thesis has been a wonderful and often innovative experience. I

am deeply grateful to my Professors Dr. Morven Gentleman, Dr. Vlado Keselj. You have

been patient and encouraging in times of new concepts and methods. I am very thankful

to Dr. Morven Gentleman for his valuable suggestions and his influential ideas to select

and to approach compelling research problems. You have listened to my ideas and

discussions with you frequently led to key insights. Furthermore, I am very grateful to my

Reader Dr. Srinivas Sampalli, for insightful comments both in my course works and in

this thesis, for his support, and for many motivational thoughts.

I am indebted to my friends for making the time working on my Master’s degree an

unforgettable experience. I thank Mr. Bharatram Raghuraman for his concern and advices

to balance research interests and personal pursuits.

Mrs. Shanthi Rajendran, my beloved mother, who has been my everything and she has

given me an infinite support. I dedicate my work to her. Thank you with all my heart.

1

CHAPTER 1: INTRODUCTION
Smartphones are considered as mini personal computers and they are capable of

performing multiple operations simultaneously. A very high demand for mobile

applications by businesses and consumers has significantly increased the technical

requirements of smartphones. Business is gradually transferring to a higher level in

smartphones. Smartphone platforms are hugely market-driven and based upon the

characteristics and requirements of mobile applications.

Mobile Application development has a broad prospect due to the rapid development of

smartphone market. There are various mobile platforms existing today and each platform

has its own uniqueness in delivering excellence to users. There are two types of mobile

application development: Native Mobile Application Development and Mobile Web

Application Development. Native applications are developed using the software

development kits, development languages and Application Programming Interfaces

(API’s) provided by mobile Operating System manufacturers such as Apple, Android,

BlackBerry, Windows Phone, etc. [1]. Native applications are the applications which are

created by native application development method that will be installed and operated on

the mobile device. Mobile web applications are developed using web development

languages (HTML 5, CSS and JavaScript) that operate in the browser of the mobile

device. More specifically, Web application is a collection of web pages distributed over

HTTP (Hypertext Transfer Protocol) which use server-side processing. Web app

development is distinct as the apps encompass locally executable components of

interactivity and determined state.

Application development in Smartphone platforms brings both opportunities and

challenges to software developers. Many apps are distributed free by businesses as a

channel for them to interact with their customers, whatever smartphone platform their

customers choose to use (e.g. CIBC, NY Times). Moreover, since that platform may

change over time, cross-platform capability provides the best insulation against their

customers being disrupted by platform change. This has impacted a high increase for

interest in the mobile application development services. With the possibility of improving

2

proficiency in every smartphone platform, many developers are increasingly considering

cross-platform mobile application development.

1.1 Cross-Platform Mobile Application Development
According to Linux Information Project [2], the term ‘Cross-platform’ can be defined as

“the ability of software to operate on more than one platform with identical (or almost

identical) functionality”. This approach is purely based on “Write once and run

anywhere” slogan created by Sun Microsystems to illustrate the cross-platform benefits.

A cross-platform application should run in more than one or many platforms and it is

essential that developers can reuse as much of the same code on as many devices as

possible. This would immensely reduce the extent of work required to make an

application run on different platforms, which provides brand recognition across platforms

and reduces cost. Cross-platform mobile application development has become a

quintessential part of mobile application development in recent times, taking into

consideration the time, money and resources needed to be allotted for developing an

application.

1.2 Research Problem
In order to deploy the same application in more than one platform, Native mobile

application development demands the knowledge of different programming languages

and Software Development Kits of respective platforms. For example, if an application

needs to be deployed in Android, Windows Phone 7 and iOS platform, then the

developers should know the programming languages (Java for Android, Objective C for

iOS and C# for Windows Phone 7) and platform knowledge of each mobile platform.

Mainly, the application should be developed separately in both the platforms. Portability

is the usage of the same software in different environments and it is the key for cost

reduction in development. From a mobile application developer’s perspective, difference

in programming languages used for developing applications across different platforms

and consequently the differences in syntax of these programming languages have led to

look for ways to port applications from one platform to another rather than develop

applications individually for different platforms. Standard portability technology of the

1970s and 1980s found that a program is portable to the extent that it can be moved to a

3

new computing environment with much less effort than would be required to write it

from scratch [3].

Due to the increased competition among various popular smartphone companies,

alternative forms of mobile application development have been introduced. Web-based

and Hybrid mobile application development approaches are the two most popular

methods in the current trend. Web-based application is developed through Web languages

such as HTML 5 (Hyper Text Markup language), CSS (Cascading Style Sheet) and

JavaScript. It is released through internet rather than releasing in app store. It is

constrained to the mobile browser and has partial access to device features. Moreover,

Web applications fail to perform offline as internet access is required. Considering the

drawbacks in both Native and Web-based application development, the next alternative to

address the issues is Hybrid Mobile Application Development. As the name mentions, it

is the combination of Native and Web-based Mobile app development approach.

Applications developed with a hybrid concept are developed using Web languages and

able to access native device features. Applications can be ported to different platforms

and also be released in app stores. Developers have been trained to think that more

features equate to better applications, but on mobile devices, that is simply not true. Even

from the user’s point of view, more features mean a higher learning cost. In the aspect of

native platforms, developers have to undergo an in-depth study of each platform’s

components. Even with Hybrid app development, a user interface (UI) component in one

platform may work differently in another platform. For example, a button interface in

Android platform may be misplaced in BlackBerry platform. Although the Hybrid

concept has many advantages, the user interfaces are not unified when it is deployed

across platforms.

1.3 Objective
To provide a unified user interface for applications across platforms developed using

hybrid mobile application development method and consequently ported to other

platforms. However, porting an application in various platforms can be achieved by

hybrid mobile development technique. Whereas, UIs need consistency for multi-

4

platforms. Therefore, the solution can be derived by combining two hybrid mobile app

techniques (Cross-platform application framework and UI framework).

1.4 Overview
Chapter 2 explains the background concepts and facts of mobile platforms and mobile

application development. Required facts and specifics that are required for the thesis

work are clearly described in this chapter. Cross-compiling two different mobile

platforms is one of the emerging approaches of mobile app developments. Chapter 3

(Literature survey) exemplifies the critical analysis of cross-compilation approaches and

also explained the importance of UIs across platforms. Methodology chapter speaks

about the techniques involved in this thesis work. Methods which are used to attain

uniform user interfaces across mobile platforms are discussed in detail. Chapter 5 is the

implementation part that delineates the solution by developing a sample mobile

application (Currency conversion) in Android and Windows Phone platforms. Firstly, the

sample application is developed natively in Android and then in Windows Phone

platform. This method helped to identify the platform differences and to understand how

UIs vary across platforms. Secondly, the sample application is developed using hybrid

mobile application development techniques. Chapter 6 describes the evaluation part of

the thesis work. Characteristics of development effort in both native and hybrid

approaches are evaluated in developer’s perspective. Conclusion chapter describes the

future aspects of the research work.

5

CHAPTER 2 : BACKGROUND

2.1 Evolution of Mobile Platforms
Mobile platforms were highly influenced after the invention of Apple’s first Personal

Digital Assistant (Newton Platform) in 1987. It did not behave like a smartphone, and

some of its functionality, such as handwriting recognition, has not been copied. Other

PDAs preceded the Newton, such as the Psion, first Palm Pilot, the Craig translators, or

the HP OmniGo device. Due to the impact of Newton, its models of Newton Script OO

programming have not been taken up. Then, the first generation mobile platforms entered

the market place by late 1990’s. Palm OS, Symbian, Windows Mobile (ancestor of

Windows Phone) and BlackBerry OS were the leading platforms at that time [3].

Qualcomm was the dominant OS for mobile phones prior to smartphones. Symbian, as a

first-generation smartphone OS, accomplished huge success and consisted of three

frameworks such as S60, UIQ and MOAPS. These frameworks were used in Nokia and

Ericsson and they played a major role in software market.

The second generation (2G) mobile phones are mainly used for making voice calls and

using message services. Individual phone users did not install apps, but Nokia and

independent software houses sold apps to carriers. In early 2000s, multimedia features

such as music, pictures and video were introduced, as well as the usage of internet. GPRS

(General Packet Radio Service) offered by GSM (Global System for Mobile

Communication) network providers delivered packet oriented internet service [4].

There were many limitations in the usage of internet at that time. Screen resolution and

screen size (initial 40 by 16 char) were the biggest issues. High cost for services was one

among the limitations. Another vital issue was limited RAM capability. A typical

Qualcomm or Symbian phone had 1 Mbyte RAM, and early Windows Mobile phones 64

Mbytes RAM. Currently, the minimum requirement of Windows Phone 7 device is 256

MB of RAM with at least 4GB of flash memory. Battery lifetime was also an issue.

Smartphone foundation was laid after 2002 under the third generation (3G) mobile

networking. 3G phones made high speed internet possible and it offered new innovative

services like streaming video or VOIP-calls (Voice over Internet Protocol – calls) [4].

6

Momentarily, Smartphones became personal computers for users that included a wide

range of attractive software applications. In fourth generation (4G) mobile phones

(successor of third generation mobile phones) ultra-broadband internet access and high

mobility communication were made available.

2.2 Smartphone Platforms Overview
Mobile Devices are available abundantly and many new options are being introduced in

the tremendously growing market. During the early days of mobile phones, mobile

devices were mostly hardware driven but now it is entering the hugely dominant software

age. Major smartphones operating system which are popular among users are discussed

below.

2.2.1 Android

The Android operating system is an open source platform and released under the open

source Apache license built on Linux kernel. Android applications are written in Java.

Other development tools are available encompassing a Native Development Kit for

applications or extensions in C or C++. Java classes are recompiled into dalvik byte code

and are operated on dalvik virtual machine. The most generally used and recommended

IDE (Integrated Development Environment) is Eclipse with Android Development Tools

plug-in. The plug-in offers complete featured development environment that is integrated

with the emulator. Emulator allows the developers to connect with the different versions

of Android platform with ease and also provides debugging capabilities. There are other

command-line tools, if a developer does not prefer Eclipse [5].

2.2.2 BlackBerry OS

The BlackBerry OS is a product of Research in Motion (RIM) and it became the standard

phone for business professionals and executives in Europe and US. BlackBerry platform

supports two different ways of developing applications. Applications can be developed

by BlackBerry web development and Java application development. The first one is the

newest one in which the applications are developed using the widgets. Widgets are small,

distinct, standalone web applications that use HTML (Hyper Text Markup Language),

CSS (Cascading Style Sheet) and JavaScript. Java application development is the

standard way in which BlackBerry apps are developed in Java using MIDP 2.0 (Mobile

7

Information Device Profile) and RIM’s proprietary APIs [5]. Developers need to have

experience with Java programming to use this development method. Similar to Android

platform, BlackBerry website offers extensive documentation and training videos.

2.2.3 Windows Phone

Windows Phone 7 OS is based on a variant of Microsoft Embedded OS and Windows CE

6 (Windows Embedded Compact) which provides 32-bit kernel. Windows Phone 7 OS is

built on top of the CE kernel with additional specific system services and application

framework for mobile phones [6]. The runtime for Windows Phone 7 is .NET Framework

CLR (Common Language Runtime). Windows phone platform uses XAML (Extensible

Application Markup Language) for user interface description and .NET languages (C#

and VB .NET plus 90 others) for application logic. Currently, development pattern looks

quite similar to Android as the concentration is on XAML for user interfaces and .NET

languages for application logic. The IDE for Windows Phone is Microsoft Visual Studio

IDE. In Windows Phone 7, developers are not allowed to write native code; only

managed code is allowed. Managed code is every bit as much “native” for Windows CE

as Java byte code is for a JVM. It is not “native” only in the sense that arbitrary machine

language constructs for the physical processor might not satisfy the runtime style

conventions required for the code to be “managed”. It is straightforward to write machine

language that satisfies the CLR conventions. Only subcategories of the general Silverlight

APIs and XNA (set of tools with runtime environment) APIs are supported on Windows

Phone 7 [6]. Phone makers can write native code into the system and use it in their

applications by using COM (Component Object Model). Microsoft offers a special SDK

(Software Development Kit) so that the phone makers can develop native COM DLLs

with a partial set of native Windows CE (Windows Embedded Compact) APIs and use

them in their applications. But developers do not have access to special SDKs. The

operating system of Windows Phone 7 kernel is Windows CE 6.

2.2.4 iOS (iPhone)

The iPhone is a line of smartphones designed and promoted by Apple Inc. iOS is a

mobile operating system for Apple products (iPhone, iPod Touch and iPad). To develop

for iPhone or its products, developers need to have an Intel-based Macintosh computer

8

running OS X v10.5.7 or other supportive versions and need to install latest version of the

iPhone SDK. They also have to validate the latest version of device’s operating system.

For mobile application development, iPhone SDK has certain tools such as Xcode IDE

(Integrated Development Environment), iPhone simulator, and a collection of additional

tools for developing applications for iPhone and Mac OS X [5]. The preferred language

in Xcode is Objective-C. The Xcode IDE, for its backend, has an improved GNU

compiler and debugger. The Xcode set consists of two important components. They are

Interface Builder and Instruments. Using Interface Builder developers can create user

interfaces for Mac and iPhone applications. Instruments offer a comprehensive analysis

of developer’s application runtime performance and memory usage. This feature is

efficiently helpful in finding memory leaks and blockages to enrich the user experience

[5].

2.3 Mobile Application Development Techniques
Mobile phones have become a crucial technology for communication and interaction

among customers, associates, employees and communities. Being targeted on a native

device alone, in early mobile development days, developers had to choose the right

platforms to support their application [1]. Choices were available in platform selection

and the development method was native. Due to the expansion of mobile usage and

extensive technology, advanced development methods have been introduced. There are

three popular mobile application development methods.

1) Native Mobile Application Development

2) Mobile-Web Application Development

3) Hybrid Mobile Application Development

In brief, Native applications are the applications which run locally on the mobile device

with the respective platform’s programming language [1] and access to the local OS and

support framework. Mobile-Web apps are written with web languages (HTML, CSS,

JavaScript and other scripting languages) which run within the specific mobile device’s

browser. Mobile-Web apps may or may not actually make use of servers running

elsewhere across the Web. Hybrid Mobile Application method is the combination of

9

Native and Web based Mobile application techniques and runs locally on the mobile

device’s browsers.

2.3.1 Native Mobile Application Development

Native application development has traditionally been the most popular choice for

developers. Major Smartphone platforms which are all explained above have their own

uniqueness in delivering applications. Mobile applications can be classified into two

types. They are native application and web application. Web applications are developed

using HTML, JavaScript and CSS and they contain web pages enhanced for mobile

devices. They cannot be used in off-line mode. Native applications are developed

specifically for the respective mobile devices [6] and they operate on the device itself.

They can be used during “airplane mode” when the radio transmitting and receiving

facilities are shut off. Any application which resides within the phone is able to access

phone’s features such as camera, accelerometer, compass etc. Following is the pictorial

depiction of native application development.

10

Figure 2-1 : Pictorial Illustration of Native Application Development

Application source code is a sequence of instructions written using any programming

language. For iOS, Objective C is used as a programming language and for

BlackBerryOS, Java is used as a programming language. A compiler is a set of programs

that converts the source code from a high-level programming language to a lower level

language (machine code or Virtual Machine instruction language). Each smartphone has

Software Development Kit which is typically a set of software development tools that

11

involves for the creation and execution of application. Even more important, it comprises

a library or base framework. After execution, the application is packaged and distributed.

Application packaging is the process of systematizing the deployment of software

(application) with a predefined set of properties. This operation is not applicable to apps

that accept third-party plug-ins. Packaged application is then distributed to the application

store of the respective platform. Application store is a digital application distribution

platform for smartphones. The service allows users to surf and download the deployed

applications.

Due to the various programming languages and devices, it is almost impossible to write a

single version of portable mobile application code that runs on different mobile devices.

This issue increases the production effort in almost the entire software life cycle – driving

up the cost, lengthening the time to market, and narrowing the target market [7]. User

interfaces plays an essential and significant role in mobile applications. Developers take

special care in designing the user interfaces. Most native platforms have wonderful

abstractions in common-user interface controls and experiences. No two platforms have

the same user-interface patterns, let alone APIs to represent and access them [8].

When the native code is compiled, it is faster typically 1 to 2 orders of magnitude than

interpreted languages such as JavaScript and JRuby (Java implementation of Ruby) [8].

Following are the main advantages of native application development [1].

Device integration: Mobile device capabilities like camera, accelerometer and network

communications can be fully exploited and developers have complete authorization in

controlling these services.

Performance: There is one less layer between the code and its kernel. As a result, the

load times and execution speed of native mobile applications are fast.

Offline capability: Native development permits access to local storage device for offline

storage capability and allows developers greater comfort in developing modified storage

synchronization.

12

Application market integration: Developers can submit the binary distribution file to

the application market. Mobile app market provides distribution and monetization of

mobile application.

Native application development is still best in its own way. But in the aspect of cross-

platform development, it has several drawbacks.

Profound platform knowledge: If any application is developed in two or more

platforms, developers need to have knowledge of each platform’s APIs and programming

languages. Developers may not be familiar with two or more programming languages (for

example, Objective C for Apple mobile apps, Java for Android and C# for Windows

Phone 7). These factors lead to increase in development cost, time and effort. Ultimately,

these combined issues become barriers for developers and organizations.

Limitations in portability: A code developed for one platform could not be easily ported

to another platform. This is the fact that the existing code influences any platform specific

capabilities. User interfaces vary among platforms. For example, push notification used

by Android is not the same as Windows Phone 7. Developers have to write separate code

for each platform to support necessary features.

2.3.2 Web-based Mobile Application

Mobile web access is the web-browser based access to an application using a mobile

device connected to a wireless network. In early days, users accessed web through fixed

landline connection with desktop. Web has emerged as a next generation of Internet-

based services with intent to make the web a platform. The main reason is that the web

has become a significant medium for users to collaborate and share information online by

binding collective intelligence [9]. Due to the massive availability of information on web

and rapid growth of mobile devices, the drift of accessing web-based services has been

transferring from desktop computers towards wireless mobile devices. The enhancement

and augmentation to mobile computing and its fundamental structure to access the

advanced components of web are known as Mobile Web 2.0 or Mobile 2.0. Mobile 2.0

influences certain services greatly such as accessing web services and integrating their

features on mobile platform. It provides rich user experience and it concentrates on

13

connecting the strength and competencies of the application supported by web 2.0 or

Mobile 2.0 and expand them to the mobile platform [10].

Despite the technical specification differences present between iOS, Android, BlackBerry

and Windows Phone 7, one great commonality is the standards-compliment web

browsers which have been inclusively included in the mobile devices by default [12]. It is

highly possible to access the browser from native code. Mobile web apps are simply web

pages and users can access them on their mobile device, using the device’s standard web

browser. Web applications are mostly comprised of HTML, CSS and JavaScript. To

create a successful user interface, there is complete utilization of HTML and CSS by

WebView and browsers with different levels of proficiency. Following figure interprets

diagrammatically the operation of Mobile Web App.

Figure 2-2 : Interaction of Mobile Web App

Web application is developed in the web browser and it interacts with the rendering

engine. WebKit is a layout engine (also known as rendering engine) that provides a set of

classes to display visual web information and other information like audio or music and

video. It implements certain functions such as directing users through links, handling a

14

back-forward list, history management, etc. WebKit is common for Android, iOS,

BlackBerry Tablet OS and WebOs operating System. Windows Phone 7 uses Internet

Explorer. Rendering engine renders the web pages to the application and display the

content. There are specific sets of APIs to interact with mobile platform system services.

The highlight of web based applications is that it can operate across multiple platforms

and it can influence web tools and techniques to a good level. In terms of security, the

facts are saved in the servers which are in a different (separate) location. Cloud security is

a big problem and losing information is not the concern. Web application does not need

to have application distribution like application store as it is available through browser

and most application stores deliver that way too. The issue is that not all vendors are

prepared to give their products away free, and if those products have to be purchased

from a special website, that website is in effect an app store.

2.3.2.1 Pros and Cons of Web-based Application

Due to the innovative advent of HTML5 combined with enhancements in JavaScript,

mobile web development got huge reception. This has brought many advantages to the

growing development of mobile web practice and mobile web development. W3C is

creating the best practices and technologies with MWI (Mobile Web Initiative) and

HTML5. Following are the advantages of Mobile Web application development [11].

 Web development skills are enough to create a web application as the application

development demands web languages. It is quicker to develop a web app than a

native app as the web application demands the knowledge of web languages. No

in-depth study on platform’s SDK and APIs are required.

 Web standards, specifically HTML5 and JavaScript bring the benefit of the slogan

“Write once run anywhere” and the application can operate on native mobile

platforms through device’s browser.

 Mobile web development does not depend on any proprietary SDK licence

agreements or any other resources. Web applications can be created by using any

text editors.

15

Following are the limitations of Mobile web development.

 Due to the limited competence of HTML5, applications cannot access the native

device features completely. The reason is that the application runs within the web

browser and has restrictions in accessing the device APIs [11].

 Applications cannot provide a complete support for data-intensive calculations.

With an adequately fast Internet connection, data-intensive processing can be

moved from client-to server-side devices [12]. Therefore, web apps demand a

continuous Internet connection and there are applications which operate in offline

mode but with certain restrictions.

 Response time is one of the essential parts of the UI interaction: Slow response

from the user can be evidence of user confusion, prompting for extra wizards and

help. Not only do the web protocols ignore time, transmission times across the

web are unpredictable. Compared to native applications, mobile web applications

are likely to have web-security threats.

 Web app development cannot provide support for applications which have 3D

features, intense graphics, complex UIs and advanced animated games. It is hard

to expect the performance to be similar to native application.

2.3.3 Hybrid Mobile Application

Hybrid mobile application development approach is a mixture of Native and Web-based

approach. Native applications are specifically and technically designed to run on a

device’s operating system. They are coded with a specific programming language and

they are fast, reliable, and robust but are attached to a mobile platform. Developers have

to replicate them using the appropriate programming languages in order to target various

mobile platforms. Portability across time, i.e. language and OS revisions, has always been

a big aspect of portability. HTML, XML and JavaScript versions favors portability as

these languages are common in web browsers. At this juncture, alternative development

of mobile applications influences the developers. One of the alternative approaches is

hybrid application development. The native part of the application uses the operating

system APIs to produce an embedded HTML rendering engine that assists as a bridge

16

between the browser and the device APIs. This bridge authorizes the hybrid app to

manage the features of modern devices [13].

Once a web app is created, developer wraps that application in native package using

hybrid mobile app tools. A hybrid tool performs this operation by running an embedded

version of the WebKit browser inside the native package. This is a standard method for

hybrid approach [14, 15]. Both hybrid apps and web apps depend on the web browser

layout engine and it helps to run the application. HTML, CSS and JavaScript are the

dominant languages used in web development. They are considered as powerful and

significant web technologies. Following is the diagrammatic illustration of working of

hybrid application structure. A hybrid application starts the development with web

languages and the application ends up as a native application.

Figure 2-3 : Hybrid Mobile Application Development Mechanism

Applications are written using the web languages (HTML, JavaScript and CSS).

Developers can use the development environments that native application developers use.

For iPhone, developers use Xcode environment and for Android, developers use Eclipse

environment. Any hybrid framework embeds the WebKit browser engine (a native

17

application) and it exploits this embedded browser to operate the application code written

in web languages. The embedded browser engine is identical as the one which is used for

mobile Safari and Android browser. Therefore, the code environment is same as for

mobile web applications but differs in the final stage of implementation. Hybrid

applications are deployed natively [14].

Being an essential component of native platform, WebView has the ability to deliver web

pages and it provides the connection (communication) from JavaScript to native code and

native code to JavaScript. WebView component cannot directly provide an interface to

access the device. For example, if a hybrid application prefers to access the device

features such as camera, accelerometer, contacts, etc. then an additional code is

absolutely required to support the application. By implementing this functionality, any of

the mobile SDK’s function can be bridged to JavaScript world. It is evident that both

hybrid and native approaches result in native applications with comparable performance

and capabilities. The hybrid approach combines (strengthens) development and testing

into one modernized project. With the recent introduction of rapid mobile processors and

enhanced mobile browser HTML5 support, hybrid mobile development (part web-based

and part native) is influencing many developers with increasing adoption and acceptance

[1].

2.3.3.1 Architecture of Hybrid Mobile Application Development Approach

In today’s web development, most of the cross-platform development frameworks are

influenced by three techniques of rapid application development [11]. Firstly, layout

with web standards (mark-up) that is using HTML, CSS, secondly, using identifying

the screen layouts of the visual condition (simulator, device API wrapper). The third

one is integrating dynamic languages. Diagram shown below is the pictorial delineation

of Hybrid mobile application development architecture.

18

Figure 2-4 : Architecture of Hybrid Mobile Application Approach [11]

WebView is the native platform component having the ability to render web pages which

connects JavaScript to native code and vice a versa. Device API wrapper wraps the

WebView with a container. This container provides the access to APIs available on a

device. In detail, any of the SDK’s function can be bridged to JavaScript domain. Device

independent APIs written in JavaScript are able to access native device components. A

hybrid tool requires the SDK of that platform to be installed.

Apparently, hybrid approach enables the developer to utilize popular web development

standards and allows extending the native device capability into the mobile web browser.

Following are the benefits of Hybrid development approach [1].

1) Attaining benefits as native development - It is highly possible to achieve the

benefits that native features have such as device integration, push notification, application

market incorporation, offline access and synchronization. Better user experience is also a

19

possibility. Developers are not expected to have in-depth knowledge of any native

platforms.

2) Combining web and native development - HTML, CSS and JavaScript, the

dominant languages of web, offer extensive adoption and easy portability. These features

greatly help in achieving cross-platform mobile applications. These languages brought

both the web and native development techniques together.

3) Influence of HTML 5 in Hybrid Approach – Currently, due to the demand for cross-

platform applications, HTML 5 is becoming a standard as it has more promising features

for cross-platform development. It delivers better user interaction and capabilities with

the web browser, rich support, geolocation, media playback, web application cache and

web connected interactions.

The commitment to HTML 5 by popular smartphone companies is high. The strategic

considerations of HTML 5 in the enterprise have been increasing rapidly. Active HTML

5 standardization efforts are storage, user interfaces, data semantics and media. Libraries

(Cakejs, Highchart JS), frameworks (PhoneGap, Titanium) and tools (Eclipse, Mobl,

Google Chrome) are highly exploiting HTML 5 to achieve cross-platform technique.

The main disadvantage of hybrid development could be slower browser performance.

Due to an addition of another rendering layer by the browser, the performance may be

slower than native applications. Obviously, it is difficult to implement apps with high

definition graphics, 2D (two-Dimensional) animations and more specifically heavy

weight applications. Conversely, these performance issues are being addressed through

improvements in mobile device processors and mainly JavaScript engines [16]. There are

many successful applications developed with the hybrid approach. Some of the successful

applications in different mobile platform editions are ‘Facebook’, ‘Bank of America’,

‘Lotte card’ (South Korea), etc. Lotte card, one of the South Korea’s major credit card

companies, developed a complex app that runs on different major mobile platforms

through their browsers. Hybrid apps cannot guarantee unified user interfaces across

platforms. Web layouts and designs do not operate well on mobile devices. Navigation is

not easy and varies from difficult to unfeasible operation. User interfaces and application

flow do not completely perform well on a range of device sophistication [10].

20

CHAPTER 3 : LITERATURE REVIEW

3.1 Porting The Application
When developing a mobile application across platforms, one essential element that by

today’s standard is hard to avoid is portability. In 1965, Dr. Morven Gentleman coined

the term portability. According to Dr. Morven Gentleman, a program is defined to be

portable if the cost of moving that program to a new environment is significantly less

than would be the cost of implementing it afresh for that environment [17]. When an

attempt is made to move an existing implementation on one platform to another platform,

developers have to meet certain restrictions based on how the application behaves on the

original platform. In mobile platforms, the restrictions impact on APIs, platform-specific

components, programming languages, SDKs, etc. Interestingly, there are many tools

available which may make the porting process easier but may affect the choice of the

appropriate solution.

APIs are the set of methods that the operating system exposes to applications. APIs are

one of the reasons for portability issues. The most general approach for cross-platform

development is identifying a common denominator and then implementing an API that

uses this common denominator and attaches to it. Each mobile platform has a different

API structure and so it is hard to write a portable code. Creation of wrapper classes would

make a difference. There are several techniques for developing cross-platform

applications. Cross-compilation, interpretation and web technologies are some of the

choices [18]. Portability has an important role in these techniques.

One of the suggested practices for cross-platform development is to develop templates

with abstract classes, that various projects written in the same programming language can

reuse [19]. Product-line architecture helps developers in mobile app development by

facilitating software reuse. Commonalities and Variabilities are the important analysis in

product-line architecture. Commonalities explain the attributes that recur across all

members of the product family. Variabilities explain the attributes specific to some but

not all members of the product family. It is hard to manually retarget mobile applications

using product-line components, when accumulating reusable software components into

21

an application for a mobile platform. This is because of large number of mobile

platforms, various SDKs and APIs, limited device capabilities, complex-product line

constraints and the rapid development rate of new devices. Question that arise with

respect to reuse is:

 How can programming language dependent code be reused between

different mobile development platforms?

In Chapter 5, the above question is answered by developing a sample application in

Android and BlackBerry to delineate the application logic reuse. Mixed language APIs is

how most OS have handled this for many decades. Each language system has its own

names, procedures, function calls, etc. Developers cannot connect the different program

parts together, if the translation between different naming conventions is not properly

implemented. Linker errors with unresolved symbols may occur. It would be difficult to

reuse Android’s code for iPhone application as they have different programming

languages. If the programming languages are same, comparisons of programming code

between different platforms could have been used to a larger extent.

Web languages help the code reuse in general across various platforms. Native wrapper

classes can be created by writing a web application that can be converted into a stand-

alone application for each platform.

3.2 Unified Design process by analysing iOS and Android Platforms
In order to achieve the cross-platform solution, an interpretive approach was carried out

by Christian G. Acord and Corey C. Purphy [19]. They developed the approach based

upon Model, View and Controller architecture and they have created a design process

with a sample application that the developers can create a single set of design forms

which may be implemented on either the Android or the iOS platform. In that journal

[20], common design concepts such as screens and stacks, horizontal and composite

navigation have been described based on MVC design pattern. To produce platform

specific look-and-feel, the authors isolated the UI design phase by reducing the

interaction between Models and View. On the one side, this idea acts as an advantage.

Developers can see the similarity between the Android Activity class / XML layout and

22

iOS ViewController class / nib file combo. But on the other side, this may affect the

controller’s operation. Controllers have a major role in connecting the MVC pattern

together and communicating between Model and View objects. For example, Buttons

interface are associated to specific methods in the controllers and when a user clicks a

button in an application, the equivalent method in controller reacts respectively.

Therefore, the isolation of model and view may affect the design pattern in both

platforms. In addition to these design issues, developers have to perform platform

oriented language translations for each platform. Due to the language and implementation

differences in platforms, there are alterations in the application at the screen level (View

design pattern). Christian G. Acord and Corey C.Purphy [19] suggested that the design

process will help the developers in reducing the design procedure when developing

applications across platforms. Of course their design process explained identification of

tasks, requirements, navigation structure and classes which are needed for the unified

design. Also, a reasonable analysis of deploying MVC architecture pattern in both iOS

and Android has been provided but the achievement of cross-platform compatibility is

questionable. Few questions have not been answered or described in the research paper

[19]:

1) How will the programming language differences affect the design process?

2) What are all the implementation differences?

3) How did the APIs (for accessing system functionality) differ considerably?

The authors could have used web application technique or hybrid approach for their

analysis. Web and Hybrid approach seems better for unified design because of the

JavaScript abstraction layer over native APIs. When the native wrapper is compiled

through web languages and their resources, the interop layer connects the JavaScript APIs

with the platform specific APIs. Titanium tool is capable of providing platform specific

UIs as they provide huge native UI support for Android and iPhone platforms.

Christian G. Acord and Corey C. Purphy [19] described that their design process greatly

reduces the inherent differences between the platforms. The suggestion of design patterns

are independent but leave exclusions. While the iOS and Android platforms overlay in

some UI requirements, there are some exceptions. One of the major exceptions is

23

application’s navigation. Various navigation features such as horizontal, stack and

composite navigation have been addressed in the research. Unified design with the

navigation may not work with applications demanding intense UI controls. Android has a

physical back button and the bottom of the screen is filled with the actual content and

overlaid with the hardware menu. In iOS, menus and navigation are separated in two

parts. Navigation components (back, ok, cancel and title) are at the top of the screen. To

switch between views, tab bar is at the bottom. This is just one of the differences in the

UI design level. This research paper [20] has not scrutinized how the design process will

be applicable to other mobile platforms and what are the other design implications and

issues may affect the portability.

3.3 Cross-compiling Android Application to iPhone
Cross-compilation helps the developers to deploy their application on multiple platforms.

A cross compiler is a compiler that operates on one platform to generate code for a

second platform. Since compilation is never done on the mobile device itself, all mobile

development uses cross-compilation. Cross compiler tools are used to generate

executable tasks for multiple platforms. But porting the applications to disparate

platforms incurs high overhead due to their difference in programming models.

 XMLVM, a byte code level cross-compiler has been introduced to overcome the

complexities of different programming languages used by various smartphones [21]. In

order to reduce the porting effort, XMLVM tool cross-compiles Android applications to

iPhone and Palm Pre. This tool demands complex porting efforts. It is mainly because the

technique involves certain intricate steps. First, the cross-compiler does Java to Objective

C conversion and converts from Java byte code to an intermediate XML form. Then the

XML form is passed through an XSL sheet to produce Objective C. Of course issues

occur in a way of providing access. Objective C library has to deliver access to every

iPhone SDK function and components that the developers want and so far, many

components were not mapped or implemented. In technical terms, ‘System.arraycopy()’

is not implemented yet. This function is under ‘java.lang.System’ library used to copy

one array to another. The other issue could be array references which are never null

(developers cannot use a null check on ‘int []’).

24

The byte code instructions which are generated by the Java compiler are represented

through suitable XML (Extensible Markup Language) tags [21]. A. Puder and I. Yoon

[21] suggest that XML favors developers by allowing them to create their own set of tags

at their own pace. This fact is agreeable. There are also other factors to be considered

when developing applications using XML [22]. Technically, XML needs an application

processing system and this could be a drawback. There are no browsers which can read

XML but not HTML. API bridging is implemented by mapping compatibility libraries of

respective smartphones. XMLVM tool does not offer complete operation for the API

mapping. The tool nearly bridges 5% of the API.

3.4 Methods in Cross-compilation
Cross-compilation allows developers to use two different approaches. One is statistically

linking wrapper libraries, which may result in increase of application size. The other is to

use Application Programming Interface mapping or API bridging. The cross-compilation

technique has the advantage of running an application in native device itself. For rapid

prototyping change across the business logic and the user interface and for the

development of cross-platform applications, a code generation tool ‘Kamili’ was

implemented [23]. The platform choices for this research are iOS and Windows Phone 7.

This research analysis presents an interesting concept of an automatic user interface

generation which is carried out through an architectural pattern called Naked objects.

‘Naked objects’ is equivalent to the Model-View-Controller pattern and the main goal is

that it separates the module of the program. Unified design process [20] which is

discussed above has an idea of separating model and view layer but the authors Christian

G. Acord and Corey C. Purphy have only used MVC pattern in a design perspective for

their analysis. Unlike the unified design process, the authors Lars Maaloe and Martin

Wiboe [23] compared the data management of MVC pattern and the naked object pattern.

By using Kamili tool, developers can develop applications in an object oriented style and

deploy the application objects by having a code-generator output platform-specific code.

This tool benefits developers as it is a rapid development process but certain UI objects

need to be supported. Components such as windows, tabs, date-pickers etc. could not be

supported with this tool. Moreover, the authors Lars Maaloe and Martin Wiboe described

their tool with simple prototypes. It would have been interesting if they have explained

25

UI considerations and device specific functionalities in detail. The unsupported features

can be strengthened by extending the naked objects implementation. One of the better

ways to enhance this tool is by providing a comfortable abstraction across platforms.

While compiling for a specific platform, UI markup would be translated to platform-

specific UI code. The tool ‘Kamili’ requires significant effort because every single-

functionality should be recognized and wrapped into a native abstraction.

3.5 Complexities in Cross-compilation
Cross-compilation is complex because it affects compiler designs and low-level

optimization [18]. Low-level optimizations involve in building objects that are not visible

at the source level. Low-level optimization is important because they are away from the

reach of the user. It also helps in producing substantial performance improvements and

supports platform specific elements. MonoTouch and Mono are the good examples of

cross-compilation tools. But for Android, compilation is not supported fully due to

platform specific UI. In MonoTouch, the UI is developed in Apple’s own software which

in turn creates a XML file (.xib format). In Mono for Android, the UI is created in a XML

file (.axml format) which prevents the same Mono application from running on both

platforms. The cross-compilation method provides best performance, if accomplished in a

correct way. The outcome of cross-compilation is a real native application. Native

applications are faster and they are defined from their own proprietary APIs. API is the

set of techniques which the operating system represents to applications. APIs hugely

differ across platforms and for Android and iPhone, each platform has a complete set of

API levels. Android and iPhone’s Cocoa Touch contains more than thousands of methods

and demands immense effort in research and implementing complete API bridging. A.

Puder and I. Yoon [24] stated that their tool did not provide completeness for API

mapping. This may be because of isolating dependencies in APIs. Components in a

mobile platform require lots of conversion to work on other platforms. For example,

functionalities that are usually varied between platforms could be file handling, media

management, etc. XLMVM needs more enhancements (API bridging, strong adaptation

layer) and it needs a larger community to start contributing to the framework. Therefore,

like developing native application and replicating the same in different platforms, cross-

26

compilation consumes time. Cross-compilation technique also requires the developers to

put in significant amount of work to deploy an application across platforms.

With the introduction of new versions of operating systems once every 4 months, the

design patterns may not remain unchanged. If developers use the above approaches

(unified design process and Kamili tool) [20, 23], they have to concentrate on certain

patterns that consume time. As the unified design process [20] emphasizes the benefits of

consistent design across platforms, it may not be beneficial to a larger extent. As the

approach developed for mobile applications, the MVC pattern has to be applied to each

screen in an application. Obviously, developers need to recognize and design specific

components required for the application. Then the developers have to concentrate on the

particulars of each individual class or component. Moreover, programming language

differences may not help to attain similar functionality between platforms.

3.6 Summary
Portability has a variety of solutions and when moving a program to a new environment it

is important to choose a method or technique that fits the solution and requirement.

Cross-compilation of Android applications to iPhone applications were carried out by two

methods [23, 24]. From these interesting techniques, cross-compiled applications seem as

the finest solution in some cases, but not suitable for applications which demand

extensive device-based functionality and consistent UIs. Specific functions that are

provided by Android, may not be available in iOS. This could be the one of the reasons

for features missing in the cross compilers today, especially the tool XMLVM (only 5%

of APIs has been integrated). The range of technical approaches which are discussed

above suggests that these techniques fundamentally adding innovative ways to improve

cross-platform application development. It was found that these native cross-compilation

techniques [20, 23, 24] help to deploy portable application across platforms but not to a

greater extent.

One of the possibilities of creating applications across platforms is the hybrid application

development approach. Most hybrid tools use web languages (HTML and JavaScript) to

develop multi-platform applications. The reason could be the tools are having their own

modules/libraries which try to bridge native platform libraries with one to one operation.

27

Hybrid tools have the facility to wrap web applications into a native application, meaning

developers can develop an app with web functionality that can be converted to and

delivered as a native application in addition to the web form. The cross-compilation

techniques which are discussed above have not discussed the user interface functions in

detail. UIs are the one of the vital factors in a mobile application and it is seriously

considered in case of multi-platform application. This is one of the reasons influenced to

investigate on providing consistent user interfaces on different mobile platforms.

Following chapters will clearly present the idea on attaining unified user interfaces.

28

CHAPTER 4 : METHODOLOGY
There are two approaches carried out in this thesis work. They are cross-compilation of

two native mobile platforms and hybrid mobile app development method. By

understanding the significance of native mobile application development, achieving

cross-platform technique is approached natively i.e. by trying to cross-compile two

different native platforms.

Android and BlackBerry platforms have been selected for cross-compilation. The reason

for choosing these two platforms is the set of common factors in both the platforms.

Already, Android applications are cross-compiled to iPhone and Palm pre [21] and

therefore, BlackBerry platform has been chosen. BlackBerry and Android use Java as

their development language and so, one might see similarities in user interface

functionalities and APIs. Due to the identical programming language (Java), developers

can reduce the development effort by reusing the application logic. The differences would

be in interactive UI, APIs, Operating System and application framework. Therefore,

through cross-compilation technique, it is possible to cross-compile two platforms’ APIs.

A practical exploration would be very useful for the cross-compilation analysis.

A small word game application is developed first in Android and the same application is

replicated later in BlackBerry. This practical investigation helps to identify

commonalities of user interfaces in two platforms, identical APIs, chances for API

mapping and linking compatibility libraries of two respective platforms. The application

logic from Android application is used with minor changes in BlackBerry application.

Minor changes are due to platform oriented API components. Concentration should be

directed towards identifying suitable user interfaces and other functionalities in

BlackBerry platform. Unlike Android, BlackBerry platform is not an open source

platform and layers in BlackBerry are limited to perform cross-compilation. The idea is

to implement an adaptation layer on top of BlackBerry layer and the interface between

BlackBerry layer and adaptation layer seems unlikely. Due to this issue, cross-

compilation is highly difficult to map all the API features. Immense determination is

required for developers and looking for an alternative seemed a good idea.

29

Other Choices in the Mobile App Development

Mobile web application method looked viable. Even though web applications provide

satisfactory portability, implementing user interfaces across platforms remain an issue. UI

widgets which perfectly fit in one mobile platform should also be acceptable in other

platforms. Moreover, there is no comprehensive support for accessing native device

features and web applications cannot be integrated in app stores. Considering the issues

in Mobile web development technique, another alternative is expected.

‘Proprietary middleware and clients’, a pre-built service, is another way of developing

mobile apps [16]. There are some free online tools which allow developers to create

mobile applications through a web interface by choosing pre-built modules. There is no

need of coding and this method is simpler than other mobile app development

methodologies. A specific pre-built service tool has categories that have different pre-

built modules. Apparently, this methodology has limitations in providing advanced

features. Although this method allows creating applications with ease, the weakness is

that the functionality and design are limited.

After an analysis of cross-compilation and web-based mobile app technique, it is found

that the limitations in those techniques do not help to attain consistent UIs across

platforms. Therefore, practical investigation has been made under hybrid approach.

Hybrid tools such as PhoneGap and Titanium aid the developers in cross-platform

development. However there remain differences in the functionality, appearance and

operation of applications. Hence, there is a need to look at mobile application

development at its grass-root level. PhoneGap and Titanium fall under Hybrid application

development techniques. Hybrid application technique is chosen as an alternative solution

and PhoneGap (cross-platform application framework) is used for practical analysis.

PhoneGap is now called as Apache Cordova, an open-source mobile development

framework. It enables developers to develop mobile applications using HTML5,

JavaScript and CSS3. The resulting application is hybrid (neither truly native nor purely

web based). To demonstrate the issues more technically, a native application (Currency

Conversion app) is developed in Android platform. The application is later replicated in

Windows Phone 7 platform. This comparison is implemented to recognize the variances

of UIs and its functionalities in two different platforms. Moreover, developer’s

30

perspective in mobile app development is showcased. This research’s main aim is to

facilitate the application development across platforms for developers by attaining unified

user interfaces across platforms, thereby achieving cross-platform app development

features. Detailed practical implementation is discussed in the next chapter.

Sample Application for Practical Investigation

This research work is carried out based on developer’s standpoint. To demonstrate the UI

and functionality differences, a sample application (Currency Conversion) has been

developed. This application covered important aspects required for this research work

such as UI features, web content and native device feature access. The app uses the web

for currency feeds i.e. to retrieve the currency rates from the web (Google finance

service). Google Calculator API is used for the conversion and finance elements

references are used to retrieve the currency rates. “Convert” function has been created

and Google calculator URL is used to retrieve the currency rates. Using “Geolocation”

provides the location information for the device. Most Smartphones are GPS-enabled and

are able to receive signal from several satellites in space that help triangulate the exact

position of an individual. The base currency is set based upon user’s current location. For

example, if a user is in Australia, the base currency is automatically set to Australian

Dollar. This feature is added to delineate that the application can access a native device

feature.

Developing the Application Natively using Android and Windows Phone 7

In the native development phase, Android and Windows Phone 7 are used as target

platforms. Android development tools such as Android SDK, ADT plug-ins, Dalvik

virtual machine and resource editors are used for the application development. ADT is a

set of components which extend the Eclipse Integrated Development Environment and

allow certain functionalities such as create, compile, debug and deploy Android

applications from the Eclipse IDE. Resource editors are mainly used for creating specific

UIs required in the Currency Conversion application. Developers can also manually write

code for designing user interfaces. To make the development easier, resource files (e.g.

layout files) are involved in the development. These files technically helped to switch

between the XML representation of the file and a richer user interface through tabs on the

bottom of the editor. Therefore, XML layouts are used as a front end to design the UIs.

31

For accessing the location of a user, “android.webkit.GeolocationPermissions” is used to

manage permissions for the WebView’s geolocation JavaScript API. Callback parameter

“ValueCallback” is used to get the feedback of the request. The result will be invoked

asynchrounously with a set of strings containing the origins for which Geolocation

permissions are stored.

After developing the application in Android platform, the application is replicated in

Windows phone 7. The IDE used for this platform is Microsoft Visual Studio 2010

express. The required resources for Windows Phone app development are Windows

Phone 7.1 software development kit, Silverlight tool and Microsoft Internet Information

Services (IIS) 7.0. In Visual Studio Express IDE, necessary features such as unit testing

and other UI tools are not available. So, another Silver tool kit version is used to support

the development. Other than a usual default emulator attached with SDK toolkit,

Windows Phone 7 series emulator is employed specifically. This is integrated with Visual

Studio Express tightly so a developer can deploy the app in action instantly (less loading

time) and debug it with any other VS project. There are two distinct approaches can be

used to create any application in Windows Phone. They are Silverlight for Windows

Phone and XNA framework. Additonally, Silverlight toolkit 5 version is utilized as it has

extended platform technologies from the web, desktop and console to the phone giving

developers a broader application development experience. Silverlight approach has

chosen to develop a sample application as the development closely resemble Android’s

development pattern. A Silverlight application combines XAML to design the user

interface and code written in a .NET framework language (C#) to control the

application’s logic. For native device access (Geolocation), “GeoCoordinateWatcher”

class which reveals the location of a user has been used. This calss mainly represents a

locatin expressed as a geographic coordinate.

Developing the Application with Hybrid Technologies

Problems faced in native application development have been resolved in hybrid

application development by demonstrating the practical investigation.

After implementing the Currency Conversion application natively in Android and

Windows Phone 7 platforms, the same application is implemented in those mobile

platforms using hybrid approach. User interfaces and application logic are developed

32

using jQuery Mobile. PhoneGap is used for accessing native device features and mainly

porting the application in different mobile platforms.

Software development kits of Android and Windows Phone are already installed when

the application was first developed natively. Hybrid application framework alone is not

able to achieve uniformity in user interfaces. PhoneGap tool is new and it lacks in pre-

built UI widgets, transitions, standard controls, etc. Due to the shortage of interactive UI

widgets, developers probably need to spend more time to focus on user interfaces. Cross-

platform UI framework provides highly interactive widgets and functionalities across

platforms. Tools such as Sencha Touch, IQ Touch or similar tools with pre-built UI

elements provide great support for the app development. Therefore, cross-platform

application framework can be combined with cross-platform UI framework (jQuery

Mobile) to produce effective cross-platform applications. jQuery Mobile is the extension

or additional plugin of jQuery framework. It is built on the jQuery JavaScript library.

jQuery mobile supports many smartphones by providing restyled UI controls and

animations and claims a small file size. It offers same user experience regardless of

device. This method seems to be a possible solution and it has been implemented by

developing currency conversion application in Android and Windows Phone 7 (two

different platforms in hybrid approach).

PhoneGap (now called as Cordova) is downloaded and the contents of PhoneGap are

extracted. A path has been set to connect Android SDK platform-tools and tools directory

of PhoneGap. Eclipse has been used as an IDE for Android platform. The contents

(libraries) of PhoneGap and jQuery Mobile should be added. A folder named “www” has

been created and components related to html/css/js resources are included. A html file

called “index.html” is created and the entire code is being written in that html file. In the

IDE of Android platform the contents and libraries of PhoneGap (Cross-platform

application framework) and jQuery Mobile (Cross-platform UI framework) are added. As

both of the hybrid technologies share the common scripting languages, integrating the

components of two frameworks are highly possible. The location tracking functionality is

implemented using “W3C Geolocation API” offered by PhoneGap. The method

“geolocation.getCurrentPosition” (asynchronous function) used for returning device’s

current position when a change in position has been detected. The JavaScript APIs

33

associated with the PhoneGap framework connects to the JavaScript APIs in the native

device. When the device has retrieved a new location, the “geolocationSuccess” callback

is invoked. Incase of any error, “geolocationError”callback is invoked and both the

success and error callback functions are invoked using “positionError” object. The

reason for choosing jQuery Mobile is that it is compatible with all major mobile

platforms as well as all major desktop browsers. In the body of html file (index.html),

there are attributes such as header, footer and contents. The features gave a great

advantage in structuring the application. No specific pattern or order is maintained during

development. The code can be arranged according to the developer’s ease. More pages

have been created and for each page, separate ids are used (e.g. href=”#firstpage”,

href=”#secondpage”). The html file contained more than one page and it is mecessary to

load one file including multiple pages. Therefore, one page can connect to another page

within the same file.

Following described is the pictorial representation of proposed architecture. There are

two phases involved in the development.

34

Figure 4-1 : Architectural Overview of Proposed Approach

35

CHAPTER 5 : IMPLEMENTATION

5.1 Cross-compiling Android to BlackBerry Applications
Native applications are faster than web based applications as the native applications are

defined from their own exclusive APIs. Android application is written in Java and avails

specific APIs of Android platform. A cross-compiler tool can be used to bridge two

platforms’ APIs. To surmount the heterogeneity of different programming models used

by different smartphones, a cross-compiler could be used. Cross-compilation can be

achieved by analyzing equivalent classes and methods in both APIs of Android and

Blackberry and performing a workable mapping between the APIs. Compatibility

libraries map the APIs between smartphones [24]. To perform this mapping, developers

should perform an in-depth analysis and familiarize themselves with one platform. Once

they are familiar with API mapping in Android platform, Android apps can then be cross-

compiled to other smartphone platforms. Android platform is designed to adapt to

multiple mobile systems and is not confined only to smartphones. Android has the ability

of adapting to other devices with ease as the Android APIs allow developers to explore

the device’s abilities. Moreover, Android is an open source platform under permissive

license and has well documented SDKs suitable for developers ranging from novice to

experts.

Application developers require their applications to be available on many platforms and

would also want to increase the prospective of application distribution. As Android is an

open source platform, the possibilities for detailed investigation and technical

modifications are much higher when compared to other platforms.

Android’s architecture is comprised of five layers namely (from the bottom level) OS

layer (Linux kernel), Compatible Libraries, DalVik Virtual Machine, Application

Framework and Applications [25]. Cross-compiling deals with mapping Application

Programming Interfaces between the two platforms. The idea here is to link together the

Android compatible libraries and Blackberry compatible libraries. Developers need to be

aware of the skill set required for Android platform and only one code base has to be

maintained.

36

5.2 Native API Bridging
An application which uses API 1 (Android) should make use of API 2 (BlackBerry) and

that is the aim of mapping APIs. In this case, the idea is deploying application across

platforms using native application development. Therefore, an Android application that

uses the Android API should use the BlackBerry API instead. There are two ways to

accomplish this:

First method is the alteration of application at API level i.e. the Android API should make

use of BlackBerry API. More specifically, rather than instantiating the class

android.widget.TextView (text field widget of Android), the class

device.api.ui.component.TextField (text field widget of BlackBerry) should be

instantiated. Developers need to perform a profound analysis of the method by which the

application uses the BlackBerry API, instead of using Android API. Changing the

Android app to directly make use of a different API is a complex task. Another way of

accomplishing Cross-compilation is by linking compatible libraries of Android and

BlackBerry.

User interface is one of the most important aspects in building an application. It defines

the interaction between user and application. There are some similarities between

Android and BlackBerry platform as the applications are developed using Java and

Eclipse plug-ins [6]. It is highly difficult to expect the same or even identical user-

interface hypothesises and APIs. For example, the push notification interface in Android

allows users to clearly see the event notifications and details about the notifications which

are displayed on the top. In BlackBerry, number of notifications is displayed but users

cannot read the details about the events. In this issue, web platform is reliable but the

number of SDK controls is limited. User experience is strongly motivated by user

interfaces. It impacts more when any applications are developed across platforms. There

are features such as screen resolution, pixel density, color depth, touchscreen, trackball

and camera that the developers should be keenly concerned about while developing for

multiple platforms. These features should be deemed important by the developers as they

determine fundamental operations in any device. The combined effect of these features

hugely impacts the appearance of an application. Even if one particular combination fails,

user interaction is badly affected.

37

To understand the similarities between the Application Programming Interfaces in

Android and BlackBerry platform, a word game application named Flames with a simple

interface is created. The ‘play’ button directs the user to the next page. Users can enter

two names (male and female) and the two given names are compared. Identical letters are

removed and non-identical letters are counted. After some internal calculations,

application displays the relationship status of given two names. ‘What is Flames?’ is the

description of the game. An Android version of the game developed using Android

emulator is shown in Figure 5-1.

Figure 5-1 : Opening screen of Flames Game in Android

A similar application created for the Blackberry platform using Blackberry emulator

with a similar interface is shown in Figure 5-2.

38

Figure 5-2 : Opening Screen of Flames Game in BlackBerry

5.2.1 Commonalities of the User Interfaces in Android and BlackBerry Platforms

Blackberry uses ‘UI application’ class and Android uses ‘Activity’ class. As both

Android and Blackberry uses Java, classes are extended from ‘Activity’ and ‘UI

application’.

39

An activity is a core component of the Android Platform. Each activity represents a task

that an application can accomplish [4]. Activity involves displaying a layout, playing

music and launching several events. A UI application is a core component of the

Blackberry Platform and it upholds a stack of Screen objects. It involves in displaying a

screen (same as Android) and only the screen on the top of the stack receives input

events.

‘Linear Layout’ is an activity in Android that displays screen components in a linear

direction, either horizontally or vertically. In most Android applications, UIs are defined

using formatted XML (Extensible Markup Language) files called layouts [12]. There are

two ways to configure layout resources. One is by using XML and next the user can even

create interfaces without XML.

There are more commonalities between the interfaces which are required for creating

Buttons, Dialog windows, Label fields, etc. in both the platforms. Following table

illustrates the similarities between the interfaces in both the platforms.

Table.1 UI similarities between Android and BlackBerry

There are two interfaces for triggering buttons namely ‘FieldChangeListener’

(Blackberry) and ‘OnClickListener’ (Android). These interfaces are responsible for click

events. Coding in Android can also be done using XML. To show the similarities

between Android and Blackberry, XML for Android is not used above.

5.2.2 Reuse of Application Logic Code

Similarities in the user interfaces of both Android and BlackBerry are described in the

next section. Application logic is used to describe the functional algorithm that manages

ANDROID (Interfaces) BLACKBERRY (Interfaces)

TextView flames; LabelField flames;

Button play, aboutflames, exit; ButtonField play, aboutflames, exit;

Dialog about; Dialog about;

40

information exchange between application and a user interface. Application logic looked

almost same in both the platforms and after developing in Android, the application logic

is reused with minor changes in the BlackBerry platform. Specifically, ‘calc ()’ function

used in the application receives two different names from the user and compares the

given names. This is implemented by comparing each letter in the given two names and

the function removes the identical letters in both the names (input). Finally, the output

would be the remainder of letters which are not identical in both the names (inputs).

Since the same programming language is used for development in both the platforms,

functions and procedures with minor changes have been reused in another platform.

Therefore, for applications involving complex UIs and intensive operations, developers

can create internal abstractions so that definite portions of their program can be reused.

They can also create custom libraries for their own use.

5.3 Unified Approach for Cross-compilation
Both Android and BlackBerry environments are frameworks layered on top of Linux

Kernel. Layers of Android have much richer functionality but also make it more complex

to deliver the functionality. Despite the fact that both Android and BlackBerry use the

same programming language (Java) for application development, their applications are

difficult to port because of differences in hardware, Software Development Kits and

Application Programming Interfaces. The solution is to provide an adaptation layer on

top of the native framework so that portable applications can run on the other platform as

well as on its native platform. The adaptation layer systematizes platform specific code

which implements the abstract interface by using a specific programming technique.

Adaptation layer should deliver support for proficiently mapping the entities between the

abstract interface and native APIs [26]. Applications can be modified to operating

conditions by the interference of an adaptation layer that is flawlessly inserted between

the application and the operating system. Specifically, providing a thick layer on the

BlackBerry platform to support apps designed to operate on Android.

If Android applications are cross-compiled to BlackBerry applications, the insertion

between the adaptation layer and BlackBerry layer seems nearly impossible because the

native framework of Blackberry is very limited. Profound analysis on mobile platforms is

41

required for mapping a considerable amount of APIs between the two platforms.

Moreover, developers have to look up for equivalent classes and methods for cross-

compilation and not all the APIs of one platform (Android) match with another platform

(BlackBerry). Difference in APIs would lead to complexities when porting applications

across platforms. Moreover, BlackBerry platform is not an open source platform like

Android. License and other company policies act as barriers in mobile application

development for developers. Therefore, an alternative solution to address cross-platform

application development is certainly required.

5.4 Hybrid Application Development Approach as an alternative solution
Hybrid development technique is chosen because both the hybrid and native approaches

have comparable performances and competences. The significant advantage of hybrid

technique is that it is designed in a way to support the development of mobile

applications that are written as embedded dynamic websites. They utilize native phone

components and serve as a reliable and simple development approach for developers.

5.5 Comparison of Application developed in Android and Windows Phone
In order to identify the differences in platforms, user interfaces and functionalities,

currency conversion application is developed in Android and Windows Phone 7. This

practical analysis helped to recognize issues faced during development. UI is defined

using XML format and during runtime, the UI is loaded by ‘onCreate()’ event handler in

Activity class. During each compilation, every element in the XML file is compiled into

its equivalent Android GUI class, with attributes represented by methods. The Android

system then creates the UI of the Activity when it is loaded.

Windows Phone 7 applications are based on a Silverlight page model where the screen

navigation is forwarded through different pages of content via links and backward using

the Back button. The Back button goes back or exits the application (automatically

remains on the back stack). In some applications in Windows Phone, if a user navigates

to 5th page of app and wants to close/exit the application, then he/she needs to navigate

back to first page and then exit the application. This operation allows users to perform

more actions. In Android, users can exit from any application, no matter which page the

user is in, exiting the application from the page is possible. But in Windows Phone, the

42

page navigation model allows developers to explicitly add links to other pages within the

application. This is similar to the operation of web browser displaying and navigating

web page history.

5.5.1 Why Android and Windows Phone 7? – Platform choices

Developers have to put in substantial efforts while developing the same application in

two different platforms. Android and BlackBerry could have been chosen to develop this

application but both platforms use Java as their programming language even though both

platforms differ in operating system and application framework. Earlier, a small word

game was developed in both platforms. There were some differences in APIs and

application structure but the application logic code of Android was reused (almost) in

BlackBerry. Developers observed that the BlackBerry development is time consuming

and developing advanced UIs are not simple [27]. This may be the reason for the less

number of BlackBerry applications in the application market. Developers cannot make

use of enhancements made to Java such as ‘java.util.ArrayList’ and ‘java.util.HashMap’

which are not available. BlackBerry API has less advanced components than Android or

Windows Phone 7. Therefore with the available resources in BlackBerry, users have to

accept an interface that looks less polished than Android or any other smartphone

platforms [27]. Microsoft allows developers to explore more in Windows Phone 7 and it

has well enhanced SDK documentation.

Things are not as pretty when it comes to two completely different mobile platforms.

Both Android and Windows Phone 7 use different operating systems, application

framework, components/objects and mainly programming languages. While developing

for Android and BlackBerry, detailed analysis was performed about those platforms’

design architecture, Software Development Kits and APIs. When it comes to Android and

Win7 Phone, they are different in many aspects including the programming language.

5.5.2 Application Framework Differences

Application Framework plays a significant role in each mobile platform. It comprises of

many essential components. The differences between the application frameworks of these

two mobile platforms are critical to cross-platform application development. Table 5.1

shows the differences in application frameworks.

43

Table 5-1 Differences between Android and Windows Phone 7 feature

Android uses an XML based layout to describe the user interface. Developer should

concentrate on the order of arranging user interface elements as the UI description is

hierarchically organized. In this application, every component (buttons, text boxes, text

views) is arranged hierarchically in a layout type. During runtime the layout is loaded by

the Android class that it was built for. Windows Phone platform uses XAML (Extensible

Application Markup Language) for user interface description and .NET languages (C#

and VB .NET) for application logic. Development pattern looks quite similar to Android

as the app development’s concentration is on XAML and .NET concurrently. Android

uses an XML based layout to describe the user interface. Developer should concentrate

on the order of arranging user interface elements as the UI description is hierarchically

organized. In this application, every component (buttons, text boxes, text views) is

arranged hierarchically in a layout type. During runtime the layout is loaded by the

 ELEMENTS ANDROID WINDOWS PHONE

1 Application
Frameworks

Android Framework Microsoft Silverlight and XNA

2 Programming
languages

Java .NET languages (C# and Visual
Basic .NET)[MS lists dozens,
some claim 90+]

3 Software
Development Kit

Android SDK available
in Windows, Linux and
Mac OS X

Windows Phone SDK available
on Windows 7

4 Integrated
Development
Environment

Eclipse (with ADT plug-
in)

Visual Studio 2010 Express

5 User Interface
Definition

Extensible Markup
Language with Widgets
and Layouts

Extensible Application Markup
Language

6 User Interface Event
Mechanism

Event listeners in View
classes

Event handlers in Common
Language Runtime

44

Android class that it was built for. Windows phone platform uses XAML (Extensible

Application Markup Language) for user interface description and .NET languages (C#

and VB .NET) for application logic.

5.5.3 Operating System differences

At the core (bottom layer) of Android device software is the Linux kernel. The drivers

and the hardware abstraction layer modules are all Linux-based. On top of the Linux

Kernel are the Dalvik Virtual machine and its runtime environment along with native

libraries. Application Framework comprises the major portion of the application and it

consists of Java services, APIs and libraries. On top of these component layers is the

application [1]. Two application development practices can be found on Android: Java

applications that run entirely in the Dalvik virtual machine and Java applications that use

Java Native Invocation to call into native libraries on the system.

The operating system of Windows Phone kernel is Windows CE 6 or 7. Microsoft offers

a special SDK so that the phone makers can develop native COM DLLs with a limited set

of native Windows CE (Windows Embedded Compact) APIs and use them in their

applications. But developers do not have access to special SDKs. In Windows Phone,

developers are not allowed to write native code; only managed code is allowed. Only

subsets of the general Silverlight APIs and XNA APIs are supported on Windows

Phone[1]. Phone makers can insert native code into the system and use it in their

applications by using COM (Component Object Model).

5.6 Developer’s role in Application Development
After identifying different mobile platforms, developer’s role is very crucial in app

development. Developers/designers should completely understand the constraints.

Developers have been trained to think that more features equate to better applications, but

on mobile devices, that is simply not true. As Android and Windows Phone are

completely different in their architecture, developers familiar with Android development

take more time to understand the Windows Phone 7 platform development. While

developing apps for a platform, the developers become familiar with a set of

functionalities and user interface objects that are native to the platform. When the

developers try to develop the same app on a different platform, it is quite natural of the

45

developers to expect similar, if not the same set of functionalities and user interface

objects on that platform. Mostly, this is not the case. For example, Android has an “Exit”

function but Windows Phone uses physical “Back” button to exit any application.

Developers would get stuck a little in these cases.

Ultimately, developers need to know each platform’s programming language and

application interfaces in order to deliver an effective application. Incomplete applications

or applications with bugs affect user’s experience greatly.

Implementing a mobile application begins with conception and design. A sample

application has been developed for this research work’s practical investigation. This

application performs currency conversion, a popular functionality among many mobile

phone users. Every mobile platform has its own perspective of user experience.

Developing the same application in two different mobile platforms allows identifying the

differences in user interfaces and its functionalities. For a concrete analysis, the

application has been first developed on Android and then on Windows Phone 7.

Opening Screen is an Activity and it should be included in Android Manifest XML from

which a XML class is compiled into Android GUI class. An Android version of the

application is shown in Figure 5-3.

46

Figure 5-3 : Opening Screen (Android)

In Windows Phone, the core elements of an application include a top-level container

control called a frame that displays the pages. Only one frame is allowed per application,

but there is no limit to the number of pages. Windows Phone 7 version of the app is

shown in Figure 5-4.

47

Figure 5-4 : Opening Screen (Windows Phone)

It is clear from Figure 5-4 that “Geolocation” activity and “exit” activity are not present

in Windows Phone. Windows Phone has sliding motion feature and if the user slides the

current screen to the left or touches on “GE” the second screen will appear.

Figure 5-5 shows the “Geolocation” Screen of Android.

48

Figure 5-5 : Geolocation Screen in Android

User can get back to the main screen by sliding to the right from “Geolocation” screen.

Windows Phone has this design pattern to facilitate navigation. Therefore, there is no

need for “Main Menu” button which is present in Android. Android has a “Geolocation”

button for navigation. Figure 5-6 shows the geolocation screen of Windows Phone 7.

 This sliding operation is not present in Android. Transition Element is an abstract class

that has the abstract method “GetTransition” class, which takes UI elements and displays

a new page. “Slide Transition” is one among the Transition Elements. It provides a mode

property that lets the developers to select the transition type and in this screen, the

transition type is “Slide transition” i.e. the page appears by sliding from the first page.

49

Figure 5-6 : Geolocation Screen in Windows Phone

Now, taking a look at the “Conversion” screen, one can notice that there is a difference

between the UIs. The drop-down list box feature that is present in Android is not

available on Windows Phone. Figure 5-7 shows the “Conversion” screen of Android app.

50

Figure 5-7 : Conversion Screen in Android

51

Figure 5-8 : Conversion Screen in Windows Phone

Android uses “spinner class” for drop-down list box which can be easily identified by the

developers. Windows Phone does not provide drop-down list box. “List picker” tool is

used to create menus/lists (currencies). “List picker” is one of the new components

introduced recently which is an equivalent of the Windows Phone ComboBox control.

52

5.6.1 How the differences in UIs affect Developers?

From the developers’ perspective, developing the same application in different platforms

involves more time and learning new programming languages. Developers’ concentration

on user interfaces requires additional attention as the development is not limited to one

platform.

1) As mentioned in Figure 5-3 and Figure 5-4, the slide transition feature (for

Geolocation) in Windows Phone 7 is different from the feature/operation in

Android. Instead of slide transition, Android has “Geolocation” button and it

takes the user to the geolocation screen.

2) In Windows Phone 7 app, it is easy to go back to the main menu by simply

sliding towards left. This eliminates the need of placing “Main Menu” button

which is found on Android “Geolocation” screen.

3) In Windows Phone 7, “List Picker” component shows the selected item from a

list and allows the user to pick from a list. This component is not present in

the IDE’s toolkit. It has to be added internally from another Microsoft

Silverlight Toolkit. Figure 5-9 shows the list boxes and text boxes in

Windows phone 7. One can easily notice that these list boxes are quite

indistinguishable from a normal text box.

Figure 5-9 : Currency Conversion Screen in Windows Phone 7

53

As soon as the user taps on currency, the items (currencies) are displayed in a separate

page. Figure 5-10 shows the list of currencies.

Figure 5-10 : Currency List in Windows Phone 7

1) During development, this functionality may consume more time in

implementation than Android due to the addition of a component in the

toolbar and also in the XAML code as the elements are displayed in a separate

page.

2) In Android, due to the availability of “Spinner” function, it is easy to identify

the list box for displaying currency. There is clear distinction between a list

box and a text box, as can be seen from Figure 5-11.

54

Figure 5-11 : Currency Conversion Screen in Android

3) Unlike Windows Phone, the list items (currencies) are not displayed in a

separate page. As soon as the user taps on currency, a pop-up window as

shown in Figure 5-12 is displayed.

55

Figure 5-12 : Currency list in Android

This layout is easier than the interface developed in Windows Phone. The application has

the same functionality but differs in user interfaces. As the application under

consideration happened to be a light weight application, the difference in the interfaces

may appear to be trivial but the same cannot be said of an application that utilises more

features and is developed natively.

Therefore, from this practical analysis, one can conclude that developing same

application in two different platforms consumes more time. To develop this application,

two markup languages such as XML and XAML and two programming languages such

as Java and .NET must be used. Moreover, there is a requirement to learn the APIs and

SDK components in both Android and Windows Phone platforms. Overall, developing

and distributing application across different devices using native application development

technology have issues such as multiple languages support, multiple code bases, multiple

maintenance (which is uneconomical for Enterprises) and user interface differences.

Issues regarding user interfaces are showcased through above pictorial illustrations.

56

5.7 Hybrid Mobile Application Technique
Applications developed using hybrid concept are native applications that use web

technologies in the place of programming languages like Java, Objective C and C#. In

other words, hybrid apps are web-based apps that are built into native applications, so

they can exploit the benefits of both native and web-based features.

Instead of learning multiple programming languages, SDKs, and IDEs, in hybrid

approach, developers should know web technologies (HTML, JavaScript and CSS).

Unlike the other alternative mobile application development techniques which are

dependent on browsers (with limited functionality), hybrid approach provides developers

better control over application design. Mainly, allowing access to device features. These

benefits make it possible to develop multiplatform applications from a single code and

still have performance and availability comparable to that of native applications [28].

PhoneGap, Rhodes and Titanium are the popular Hybrid mobile app tools in the current

software market.

Application can be developed across platforms and can be ported too. Although hybrid

tool helps in porting, accessing native features and developing application logic, for any

application that needs appealing UIs (developed with themes), hybrid tools fall short of

expectations.

 Hence, user interfaces remain an essential issue in hybrid approach. UIs are vital in any

application as they play a significant role in user experience.

5.7.1 Uniformity in UIs using Hybrid Approach

After developing “Currency Conversion” application in native platforms such as Android

and Windows Phone 7, later the same app has been replicated in two platforms (Android

and Windows Phone 7) but with Hybrid Mobile Application Approach. Reason for

developing this application is that this app utilizes a certain native feature. It is the

combination of both native and web application. Using PhoneGap (Hybrid tool), a native

feature (GPS to get the location) is accessed through JavaScript APIs and current location

is acquired. Automatically, the base currency (currency 1) is set according to the device’s

current location.

57

As discussed earlier, while developing any mobile application across platforms using

cross-platform application frameworks, the user interfaces and functionalities are not

unified completely. Mainly, user interfaces remain an essential issue across platforms.

With Cross-platform UI application framework, it is possible to provide unified user

interface across smartphone platforms.

The solution is to combine the Cross-platform Application framework and Cross-

platform UI framework. By combining these two frameworks, unified user interfaces can

be achieved. HTML is used for designing user interfaces, JavaScript APIs are used for

accessing native device features, and CSS for styles and themes.

This approach is based on “write once run everywhere” concept. Single code has to be

written and it is possible to use the same code for deploying the application in different

platforms.

Here, the same code has been used for Android and Windows Phone 7. Issues which are

discussed above are resolved through this approach. Figures 5-13 through 5-18 are the

snapshots of the application deployed in two different platforms with same code. Also,

UIs look same and the interfaces are significantly similar though the applications have

been developed for different platforms.

58

Figure 5-13 : Opening Screen in Android

59

Figure 5-14 : Opening Screen in Windows Phone

60

Figure 5-15 : Geolocation Screen in Android

61

Figure 5-16 : Geolocation Screen in Windows Phone

62

Figure 5-17 : Conversion Screen in Android

63

Figure 5-18 : Conversion Screen in Windows Phone

One can notice from Figure 5-18 that a drop-down list box is provided on Windows

Phone 7. Earlier in the native app deployment of Windows Phone 7, “List picker”

component was used for listing currencies. That component was added from Silver light

toolkit. In this hybrid approach, no component has been added from an external source

and yet a unified interface has been provided.

64

5.7.2 Unified Interfaces with Native Platform features

Although the application is developed with web technologies (HTML, CSS and

JavaScript), platform’s native interface features can still be accessed. This is evident from

Figure 5-19.

Figure 5-19 : Currency Listing in Android (Hybrid Approach)

One can notice the similarity in interface between the native app developed for Android

and the hybrid app developed for Android through the pop-up window that opens up to

display the list of currencies. This conforms that the native feature of Android platform

can still be utilized through a hybrid app.

Figure 5-20 shows the list of currencies on Windows Phone 7. This opens up on a

separate screen, as was already seen on the native app developed and ported to Windows

Phone 7. The native rendering of elements are still maintained in the app.

65

Figure 5-20 : Currency Listing in Windows Phone (Hybrid Approach)

5.7.3 Programming constraints and Structure

In Android, XML was used as front end for user interfaces and Java along with Android

APIs was used as back end for application logic. In Windows Phone XAML (front end)

and .NET (back end) were used to create a native application. Markup classes were

created for each screen to define the UIs. This looked a little fuzzy and it was complex to

look up if an error had occurred in any of the class files. If a page (Screen) is created,

markup (XML and XAML) classes were followed by Java and .NET classes in Android

and Windows Phone 7 respectively. Hence, simultaneous concentration is needed on both

sources. Mainly, developers should know XML, XAML, Java, .NET and Platforms’ APIs

to design an application. These factors increase development effort.

In the hybrid approach, combined functionality of cross-platform application framework

and cross-platform UI framework provided unified interfaces. Programming constraints

are limited and do not impact as much as in the native platforms. Developers should

know the web technologies (HTML, CSS and JavaScript). Unlike, native platforms, in

hybrid approach; pattern-specific programming is not required. Currency conversion

(hybrid approach) was developed with ease as it did not involve pattern-specific

programming structure. This is a great advantage of using web languages.

66

5.7.4 No differences in Interfaces

There are differences in UIs while developed natively. In Android, “Geolocation” button

was required but in Windows Phone 7 it was not required. Slide functionality was used

instead of having a button that linked to another page. But the interfaces were not

identical in both platforms. With Hybrid apps, the UIs were identical in both platforms.

Even though both platforms have different APIs, different programming languages and

design architecture, hybrid approach correctly produces the platform oriented interface

features (currency listing feature). Through geolocation feature, it is evident that hybrid

approach can access native device features.

Hence, by the combined operation of cross-platform application framework and cross-

platform UI framework, developers could effectively produce unified user interfaces

across platforms. This approach would be greatly useful from the developers’

perspective. As hybrid applications run in native mobile browser, performance cannot be

expected to be as good as that of native platform’s performance. Still, hybrid application

offers commendable performance due to the advancements in mobile browsers and highly

configured processors. But if it comes to heavy weight applications and 3d graphics

applications, hybrid approach needs to be enhanced.

 Hybrid tool like PhoneGap is pretty new and it is steadily evolving. It will have better

functionality support for each individual OS and with jQuery Mobile; it will be highly

feasible to develop efficient cross-platform applications in the near future.

67

CHAPTER 6 : EVALUATION
Hybrid technique is one of the ways to address cross-platform application development.

The evaluation for this research work is based on developer’s viewpoint. It is not feasible

to measure the app development by usage of lines of code in the development or any

mathematical analysis. There could be some differences between a novice programmer

and an expert programmer in the aspect of coding knowledge, skill levels and expertise.

Solutions given by an expert developer would definitely vary with a junior developer.

Therefore, the evaluation can assessed based upon the development effort and mainly the

features/elements which provide good support to improve user experience with hybrid

approach. Characterization of development effort and supporting features for enhancing

user experience have been evaluated in the following section.

A thorough analysis of hybrid technique led to a practical investigation and it greatly

helped in recognizing the issues. However, there are complexities that increase the

development effort. The development effort for each method (Native and Hybrid) and for

the two platforms (Android and Windows Phone 7) has been characterized in Table 6.1,

based on the following functions performed during development.

Table 6-1 : Characterization of development effort

Development
elements

Android Windows Phone 7 Hybrid (PhoneGap+
jQuery) technique
for Android and
Windows Phone 7

Installation Eclipse, JDK,
Android SDK
and Plug-ins

Microsoft Visual
Studio, Windows
Phone 7 SDK and
Silverlight toolkit

Android SDK,
Windows Phone SDK,
Eclipse, Microsoft
Visual Studio,
PhoneGap and jQuery
Mobile

Designing User
Interfaces

XML is used XAML is used HTML5 and CSS3
using jQuery Mobile
wrapper

Ex: Drop-down
list box feature

Spinner class
which is
already

‘Listpicker’ tool
was added
internally from

Drop-down list box is
designed using
HTML5 in jQuery

68

In Android, Spinner class provides an easy way to select one value from a set. Spinner

class adds a semi-transparent overlap over a DOM element with a spinning AJAX icon.

When developing this same feature for Windows Phone, apparently, it was assumed that

a class similar to ‘Spinner’ will be available in Windows Phone 7. But, it was found that

Windows Phone 7 did not have a drop-down list box similar to Android’s Spinner class.

Instead, ‘List picker’ tool was used to create drop-down menus in WP7. ‘List picker’ is

one of the new components introduced recently and it is a dependency property of type

‘ListPickerMode’. It was internally uploaded from another Silverlight tool as it was not

included in the MS Visual Studio IDE. Here, a comparative analysis cannot be performed

between ‘Spinner’ class and ‘List picker’ tool since each solution is native to the

platform. Developers who are familiar with Spinner class and who use it frequently to

design a drop-down box in Android may find it cumbersome to do the extra work

required to design a drop-down box in Windows Phone 7. It would help the developers if

a pre-defined class similar to ‘Spinner’ class is provided in Windows Phone 7.

For the Hybrid version of the application, ‘Drop-down list’ interface is created in

HTML5 using jQuery Mobile for both Android and Windows Phone 7. The code, once

developed in Android is simply ported to Windows Phone 7.

PhoneGap lacks support for interactive UI widgets, design patterns and development

tools [29]. Hence, it was understood that the hybrid tool alone would not help attain

uniformity in UIs across platforms. The solution should couple hybrid development

technique and uniform UI. Ultimately, cross-platform application framework and cross-

platform UI framework are combined to produce unified user interfaces for hybrid

applications. Cross-platform UI framework provides interactive UIs with customization

present in
Android SDK

silver light tool kit mobile

Development From scratch From scratch Single code base

Application

Logic

Java C# and VB.NET HTML5. JavaScript is
used for accessing
native device features

69

and branding across platforms. Though unified user interfaces are implemented across

platforms, certain users may feel uncomfortable with the developer’s unified user

interface and may feel the absence of native look-and-feel local to the development

platform. In specific, Android users and Windows Phone 7 users would expect the UIs to

have their own native look-and-feel respectively. In the practical assessment carried out

in this work, this issue has been addressed to a small extent. Although the application's

interfaces were developed using jQuery Mobile (wrapper with HTML, CSS and

JavaScript), some of the platform’s native interface features had been utilised. Figure 6-1

and Figure 6-2 show the currency list (list of available currencies) which looks like the

interfaces in native platforms (Figure 6-3 and Figure 6-4) and at the same time, the user

interfaces generated by the hybrid frameworks are comparable in look and feel to native

applications.

Figure 6-1 : Currency Listing in Android (Hybrid Approach)

70

Figure 6-2 : Currency List in Android (Native Version)

Figure 6-3 : Currency Listing in Windows Phone (Hybrid)

71

Figure 6-4 : Currency List in Windows Phone 7

PhoneGap and jQuery Mobile do not have a wide-range of Application Programming

Interfaces but they seem more stable and support many mobile platforms with unified

user interfaces. In order to produce native look-and-feel in cross-platform applications, a

hybrid tool should have well-enhanced Software Development Kit and integrated native

platform APIs. Table 6.2 shows important features which would help to attain native

look-and-feel and thereby, enrich the user experience.

Table 6-2 : Supporting features for enhancing user experience

Features Description

Native UI Support This feature is responsible for native user-
interface components and interaction inside
a hybrid tool framework. It should be
enhanced in a way to provide a native
experience along with native performance
by compiling JavaScript code into their
native counterparts as part of the build
process.

Native code support It is a feature which permits extending the

built-in functionality by creating extension

72

libraries in platform’s native programming

language and using the module/library with

the framework’s non-native code

Device API support Framework should have strong API support
which utilize native user interfaces and
platform APIs to access native UI
components such as navigation bars,
menus, dialog boxes, etc.

Although native apps gain benefits from an optimal integration into the respective mobile

operating system and good developer support, the practical analysis showed that the

hybrid approaches are workable alternative. Hybrid approach is fully suitable when

mobile apps have to be developed for multiple platforms under tight budgets with small

developer teams. Following table is the outcome of an evaluation of some significant

aspects in the development.

Table 6-3 : Evaluation of essential aspects in app development

 Native Development
(Android, Windows Phone
and BlackBerry)

Hybrid Technique
(PhoneGap + jQuery
Mobile)

Ease of Development Getting-started guidelines
support beginners, Google
regularly circulates blog
spots and developers can
resort to the active
community. Programmers
need to acquire additional
knowledge about the mobile
operating systems.

PhoneGap’s documentation
is clearly structured and
provides more examples.
But in jQuery Mobile,
examples are not adequate
although it presents all
elements and design
options.

Maintainability As they use object oriented
constructs and separate the
code into classes, native
apps are easy to maintain
though they appear to be
more heavyweight than
apps developed in scripting
languages. As these
operating systems use
different APIs and

Hybrid apps do not need
more lines of code than
native apps. The source
code is short and clearly
structured. This guarantees
the ease in maintainence.

73

components, additional
concentration is required for
each platforms.

Long-term feasibility The aspect of future of the
smartphone market seems
that these operating systems
will remain to be popular.
Technical communities,
regular bug-fixes and
updates aid developers in a
huge way. Knowledge of
different programming
languages could be a
technical burden.

As PhoneGap and jQuery
Mobile are comparatively
young projects, it is hard to
estimate. But the
frameworks are steadily
enhancing and evolving as
there are increasing
communities for bug fixing
and technical updates.

Scalability Programming logic and
GUI can be easily isolated
from each other. Each view
of an app can be developed
on its own. Object-oriented
concepts make the
development teams to scale
even better than other
frameworks.

Apps can be eaily divided
into a large number of small
files that fit into the overall
design. These frameworks
support modularization
well.

Speed and cost of
development

An application need to be
repeatedly developed for
every platform, costs of
development (obviously)
are much higher than cross-
platform approaches. Native
development requires huge
degree of specific
knowledge and experience.

Comparing to other native
and web frameworks, these
tools take the shortest
amount of time and
development features are
technically mature and the
design of UI can be carried
out fast and cost-efficient.

ROI (Return on Investment) is one of the prevalent evaluation metrics used in business

analysis. Code-building-effort impacts the ROI. ROI is typically discussed by developers

responsible for developing and delivering applications extensively. The elements which

help to achieve efficient solutions are fast development cycles with minimal resources,

minimizing code duplication and maximizing code reusability, better and cheaper ways

for distribution and deployment. These factors support the areas such as fragmentation,

browser capabilities and unified distribution. jQuery Mobile helps in providing consistent

hybrid application development and user experience across platforms [30].

74

A survey was conducted on a developer intent index for 2011 and 2012. The survey

represented the percentage of developers aiming to use major mobile platforms.

Figure 6-5 : Developer Intent Index for 2011 and 2012 [30]

It is interesting to note that hybrid development is gaining the attention of developers.

The decisive factors that aided the developers in choosing a platform were ‘Largely

installed base of devices – 54%’, Low cost development’ – 43 %, ‘Familiar development

environment’ – 31% and ‘proper documentation and technical support’ – 30% [31]. From

Figure 6-5, iOS topped the chart by 28 % and faced a slight increase in 2012. Hybrid app

development has a substantial increase in 2012 and it seems that the developers are

paying attention towards hybrid technique.

75

Figure 6-6 : Number of apps released per quarter by app type [31]

Figure 6-6 shows the number of applications released per quarter and reflects the

growing trend of applications. Increasing number of users require mobile web versions

of their applications than they require native apps [30]. After 4th quarter of 2010, the

curve grows steadily for hybrid applications. Table 4 shows the developer ratings of

their primary platform. Mainly the survey shows how developers identify major

platforms in terms of user reach, revenue generation, cost of development and few

other factors [31, 33].

76

Figure 6-7 : Developer barometer by platform [30]

Mobile web is perceived positively when it comes to ease of coding and ability to reach

the users. In the perspective capabilities such as graphics and transformation,

performance, connectivity and storage, the mobile web browser is facing rapid

advancements [30]. This research’s main objective is based on the developer’s

perspective of attaining uniformity in UIs and revealing the difficulties experienced

during development.

77

CHAPTER 7 : DISCUSSION
Moreover, the solution of attaining UIs has been achieved using a single sample web-

based application. Questions have been raised on certain aspects after developing the

application.

 How the UIs differ among platforms when an application demands highly

interactive graphic features?

 How will the programming language differences impact the design and

implementation process for various levels of mobile applications?

 How did the APIs (for accessing system functionality) and performance differ

considerably across platforms?

There are at least two other important objectives that should be considered. They are:

enhancement of user experience and performance. User experience emphasises

experiential, meaningful and valuable aspects of user interaction with the application. In

specific, it deals with the user’s perceptions. However, there is a consequential necessity

to look at user interface design from the user’s point of view (e.g. error proneness).

Therefore, the future work would be carried out broadly on performance and integration

of native APIs with hybrid tool’s SDK in order to enrich user experience. Furthermore,

substantial improvements can be made by continuing this research work. Future research

topics include

 Following the progress in mobile development frameworks and re-

examining/reassessing existing technology as the platforms evolve

 Scrutinizing how essential device-specific functions might become available

through standardized APIs

 Organizing to provide decision opinions based on companies’ requirements for

app developers

78

CHAPTER 8 : CONCLUSION
The mobile application development techniques delivered immense knowledge after an

in-depth analysis in mobile application development area. Major smartphone platforms

such as Android, BlackBerry and Windows Phone 7 are studied and used for this

research’s practical examination.

This research’s primary goal is to merge cross-platform application framework and cross-

platform UI framework to produce consistent or unified user interfaces across platforms.

The objective has been achieved by demonstrating a sample application in two different

platforms. The sample application could have been deployed and examined with Apple’s

iOS. One of the leading smartphone operating systems in the current market is iOS from

Apple (previously iPhone OS). Practical investigation on iOS has not included in this

research work even though it has numerous interesting functionalities. One of the main

reasons is hardware selection. iOS’s development tools such as Xcode, iOS simulator,

instruments and interface builder demand Mac operating system. The practical

assessment for this research work has been carried out in Windows 7 operating system.

Apple has certain restrictions and policy guidelines in the development process where

developers are charged and enrolled for application development. The other objectives to

be considered are performance and user experience.

The web browser has been rapidly progressing from a renderer of simple html into a

runtime environment capable of delivering rich interactive applications across platforms.

HTML 5 has been paying a huge contribution towards cross-platform application

development and it has strong future perspectives. Browser development is mainly

focused around the advent of HTML5 standard [34, 35]. There are many new features of

HTML 5 that have been enhanced for improving the user interaction. Some of the

improved design specifications include offline storage capability of web content, canvas

element, server interaction and others [34, 36]. Inclusion of canvas element makes

drawing and animating graphics considerably quicker. Innovative and advanced

developments are expected in HTML in near future.

79

REFERENCES
[1] C. McGuirk, T. Pekala, J. Petrin and E. Renardi, “Choosing the Right Mobile

Development Method,” Available: http://www.rdacorp.com/thought-

leadership/custom-application-development/choosing-the-right-mobile-

development-method/, [Accessed: 23 February 2012]

[2] “The Linux Information Project (LINFO)”, Available: http://www.linfo.org/cross-

platform.html, December 2005, [Accessed: 24 April 2012]

[3] S.C. Johnson, D.M. Ritchie. (1978, Aug) “Portability of C Programs and the

UNIX System,” The Bell System Technical Journal, Vol. 57, No. 6, Part 2

[4] S. Helal, R. Bose and W. Li, “Mobile Platforms and Development

Environments,” Morgan and Claypool Publishers, February 2012

[5] T. Paananen, “Smartphone Cross-platform Frameworks,” Jamk University of

Applied Sciences, April 2011

[6] S. Allen, V. Graupera, and L. Lundrigan (2010, Sep) “Pro Smartphone Cross-

platform Development – iPhone, BlackBerry, Windows Mobile, and Android

Development and Distribution,” Apress Berkely, CA, USA, 2010.

[7] D. Sambasivan, J. N. Udayakumar. S, Gupta. R , “Generic Framework for Mobile

Application Development,” Internet (AH-ICI), 2011 Second Asian Himalayas

International Conference), November 2011

[8] D. Gavalas and D. Economou, “Development Platforms for Mobile Applications:

Status and Trends,” University of the Aegean, Volume: 28, January 2009, pp. 77-

86

[9] A.Charland and B. Leroux, “Mobile Application Development: Web vs. Native,”,

Mobile Computing, Communications of the ACM, Volume: 54, No.5, May 2011

[10] H. Nagar, B.L. Lim, “Mobile Computing With Web 2.0: Current State-Of-The-

Art, Issues and Challenges,” Illinois State University, Volume: IX, No.2, 2008

[11] Z. Hussain and S. Torma, “Loose Coupling Between Services – Mobile Web and

Event-based Interaction,” Aalto University, School of Science, Version 1.0,

December 2011

[12] D. Na, “The What, Why, and How of Mobile Applications,” Sigma, Noblis,

Volume 11 Number 1, October 2011, pp. 20 – 26.

80

[13] Worklight, “HTML5, Hybrid or Native Mobile App Development,” White paper,

Available: http://123seminarsonly.com/Seminar-Reports/024/65749185-HTML5-

Hybrid-or-Native-Mobile-App-Development.pdf, [Accessed: 15 February 2012]

[14] R. Rodger, “Beginning Mobile Application Development in the Cloud,”

Published by John Wiley & Sons, Inc, 2012

[15] C. Kaiser, “How to Develop Mobile Applications with Web-technologies,”

University of Fribourg Suisse, May 2011

[16] A. M. Christ, “Bridging the Mobile App Gap,” Sigma, Noblis, Volume 11

Number 1, October 2011, pp. 27 – 32.

[17] W. M. Gentleman, “Portability and other source management problems,”

Problems and Methodologies in Mathematical Software Production, University of

Waterloo, 1982, pp. 152 – 185

[18] S. Debray, “Abstract Interpretation and Low-Level Code Optimization,”

University of Arizona, 1995

[19] R. E. Johnson, V. F. Russo, “Reusing Object-Oriented Designs,” Purdue

University, May 1991

[20] C. G. Acord and C. C. Murphy, “Cross-platform Mobile Application

Development: A Pattern-based Approach,” Naval Postgraduate School, March

2012

[21] A. Puder, “XMLVM: A Smartphone Cross-Compilation Framework”,

SanFransico University, 2010

[22] A. Toth, G. Nemeth, “Creating XML Based Scalable Multimodal Interfaces for

Mobile Devices,” Mobile and Wireless Communications Summit, July 2007

[23] L. Maaloe, M. Wiboe, “Kamili – A Platform Independent Framework for

Application Development for Smart Phones,” Kongens Lyngby, 2011

[24] A. Puder and I. Yoon, “Smartphone Cross-Compilation Framework for

Multiplayer Online Games,” San Francisco State University, 2010

[25] Z. Zhou, R. Zhu, “Windows Phone 7 Programming for Android and iOS

Developers,” 2011

[26] W. Blochinger and W. Kuchlin, “Cross-Platform Development of High

Performance Applications Using Generic Programming,” University of Tubingen

81

[27] Z. Kurmas, “Atomic Spin – Atomic Object’s Blog on Software Design and

Development”, Available: http://spin.atomicobject.com/2010/11/22/the-cost-of-

building-blackberry-apps/, November 2010, [Accessed: 11 July 2012]

[28] R. Godwin-Jones, “Emerging Technologies: Mobile Apps for Language

Learning,” Language Learning & Technology, Volume 15, Number 2, June 2011,

pp. 2-11.

[29] G. Hartmann, G. Stead, A. DeGani, “Cross-platform Mobile Development”,

Mobile Learning Environment, March 2011

[30] C. Enrique Ortiz, “Mobility in 2011: Mobile Apps, Webapps and Tipping Points,”

March 2011. Available :

http://weblog.cenriqueortiz.com/mobility/2011/03/08/mobility-in-2011-mobile-

app-vs-webapps-and-tipping-points/, [Accessed: 12 July 2012]

[31] A. Avram, “Mobile Platforms: What is the Developer Mindshare, Intentshare,

App-building Costs and Revenue?” Available:

http://www.infoq.com/news/2012/06/Developer-Economics-2012, June 2012,

[Accessed: 12 July 2012]

[32] M. Brown, “Where Does your App Rank? U Test AppGrader,” Available:

http://www.mobileapptesting.com/tag/utest/, March 2012, [Accessed: 13 July

2012]

[33] O.J, Turau. (2012, Sept) ”Cross-Platform Development Tools for Smartphone

Applications,” Hamburg University of Technology, Computer – Journals and

Magazines, Volume 45.

[34] T. Melamed and B. Clayton, “A comparative Evaluation of HTML5 as a

Pervasive Media Platform,” Hewlett-Packard Labs Europe, Bristol, UK, 2010, pp.

307-325

[35] F. Jiang, Z. Feng, L. Luo, “xFace – A Lightweight Web Application Engine on

Multiple Mobile Platforms,” 2010 10th IEEE International Conference on

Computer and Information Technology, 2010

[36] P. Smutny, “Mobile development tools and cross-platform solutions,” Carpathian

Control Conference (ICCC), 2012 13th International, Technical university of

Ostrava, 2012

