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ABSTRACT

It is possible that the maximum likelihood method can give an inconsistent result when

the DNA sequences are generated under a tree topology which is in the Felsentein Zone

and analyzed with a misspecified model. Therefore, it is important to select a good

substitution model. This thesis first explores the effects of different degrees and types of

model misspecification on the maximum likelihood estimates. The results are presented

for tree selection and branch length estimates based on simulated data sets. Next, two

Pearson’s goodness-of-fit tests are developed based on binning of site patterns. These

two tests are used for testing the adequacy of substitution models and their performances

are studied on both simulated data sets and empirical data.

ix



LIST OF ABBREVIATIONS AND
SYMBOLS USED

Roman symbol Description

a short branch 1

b long branch 1

c short branch 3

d long branch 2

e internal branch

f frequency of nucleotide character

m number of taxa

n DNA sequence length

r exchangeability in rate matrix

t branch length

F frequency of nucleotide character

in bootstrap DNA sequence

D discrete rate

H0 null hypothesis of statistical test

I invariate rate

N frequency of the ML tree

K number of clusters

Q rate matrix

R rejection rates of hypothesis

LBA long branch attraction

ML(E) maximum likelihood (estimates)

EL expected log likelihood

MSEO misspecification of exchangeability only

MSFO misspecification of frequency only

MSRO misspecification of rate only

JC69 Jukes-Cantor model

F81 Felsenstein 1981 model

x



Roman symbol Description

EF equal equilibrium frequency model

HKY Hasegawa, Kishino and Yano model

GTR generalized time-reversible model

GC Goldman-Cox test

SSE sum of square error

LRT likelihood ratio test

Greek symbol Description

Γ among site rate variation

λ constant rate of JC69

κ transition/transversion ratio

π equilibrium frequency of nucleotide character

τ tree topology

xi



ACKNOWLEDGEMENTS

I am extremly grateful to Dr. Hong Gu and Dr. Joseph Bielawski for their supervision on

this thesis. I deeply appreciate for their helpful suggestions and many times of reviews

on this thesis.

Special thanks go to Dr. Toby Kenney for his insightful discussions on the methodologies

developed in this thesis.

I would like to thank Dr. Edward Susko and Dr. Toby Kenney for being the read-

ers of this thesis.

Thanks to my friend, LinYun Ye and Joseph Mingrone for their computer software

supports and Stuart Carson for his suggestion of modifications for this thesis.

This thesis would not have been finished without my girl friend CuiCui Wang’s positive

support.

xii



CHAPTER 1

INTRODUCTION

In biology, phylogenetics is the formal name for the study for relationships between a

set of various organisms. Cavalli-Sforza and Edwards (1967) indicated the phylogeny

problem was actually a statistical inference problem. A phylogenetic tree is the structure

to demonstrate the evolutionary history of life and it can be estimated from data having

incomplete information (DNA sequences data) by using tree reconstruction methods.

There are various models of nucleotide substitution developed so far (Felsenstein

2004). However, due to the limitation of the information provided by some data and

because statistical uncertainty is unavoidable, the estimated phylogenetic tree might not

represent the true history of evolution. The tree reconstruction method can converge to a

wrong phylogenetic tree if model assumptions are incorrect. This thesis first addresses

the effect of model misspecification on one well known phylogenetic error, i.e., long

branch attraction (Felsenstein 1978), by using simulation studies; then proposes and

examines the performance of two goodness-of-fit tests for phylogenetic models of DNA

sequences.

1.1 Phylogenetic tree and DNA sequence data

1.1.1 Phylogenetic tree

A phylogenetic tree contains (inner or external) nodes and branches. An m taxa

phylogenetic tree is the representation of relationships among the m descendants (external

nodes or tips) and unknown common ancestors (inner nodes). The branches are the

connections between nodes. A topology refers to a branch order whereas a phylogenetic

tree refers to both a branching order and a set of specified branch lengths. In general,

1
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any tree topology can be rooted or unrooted (Fig 1.1). The total number of possible m

taxa rooted tree topologies is:

1 3 5 · · · (2m− 3) = [(2m− 3)!]/[2(m−2)(m− 2)!]

Thus, the total number of possible tree topologies increases geometrically as m increases.

For the unrooted tree topologies, the total number of possible m taxa unrooted tree

topologies is:

(2m− 5)(2m− 7) · · · 5 3 1 = [(2m− 5)!]/[(2(m−3)(m− 3)!)]

A tree topology can be represented graphically by drawing in a two-dimensional space

or by plain text. For example, we can represent the tree topology in Fig 1.1 (a) in plain

text as ((a,b),(c,d)). The text system makes different tree topologies easily distinguished

and is more convenient for the computer-based research.

(a) Rooted Tree (b) Unrooted Tree

Figure 1.1: 4 taxa tree topology
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1.1.2 DNA sequence data

A DNA sequence consists of 4 different nucleotide characters: adenine (A) and

guanine (G) (Purines), cytosine (C) and thymine (T) (Pyrimidines). DNA sequence data

typically include aligned DNA sequences. Each position of an alignment is called a site

and a site pattern is the nucleotide characters in a particular site. Table 1.1 is an example

of aligned DNA sequences with 4 taxa. The 1st site pattern is ACAA, and the second

site pattern is AAAA.

1 2 3 4 5 6 7 8 9 10
a A A T C G T C G T A
b C A T C G A C G G A
c A A T C G T C G T C
d A A T C G C C G T A

Table 1.1: Aligned DNA sequences with 4 taxa

The evolution of species can be considered as the consequence of the substitution

of nucleotide characters in the DNA sequences of their ancestors. There are various

continuous-time-Markov-process based statistical models for describing the changes of

nucleotide characters among gene sequences.

1.2 Substitutions and relevant statistical models

1.2.1 Substitution matrix for evolution

For aligned DNA sequences, we assume the substitutions on each site are independent

based on the same probabilistic model. If we start with a nucleotide character, say i,

there are 4 possible changes: No change and the other three are the changes from i to

other three nucleotide characters. Since i can be one of A, C, G, T, hence, there are 4× 4

= 16 different ways of changes in total. A change is called a transition if it occurs within

either pyrimidine or purine categories and is called a transversion if it occurs between

a pyrimidine and a purine. Given that a change between nucleotide characters i and j

occurs in a time interval t, the sum of probabilities of all possible changes equals to 1:

A,C,G,T∑
j

pij(t) = 1 (1.1)
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Based on the equation (1.1), the substitution matrix is defined as:

T C A G
T pTT (t) pTC(t) pTA(t) pTG(t)
C pCT (t) pCC(t) pCA(t) pCG(t)
A pAT (t) pAC(t) pAA(t) pAG(t)
G pGT (t) pGC(t) pGA(t) pGG(t)

Table 1.2: Substitution matrix

Note that the summation of each row equals to 1.

1.2.2 Substitution rate matrix

Most molecular evolution models assume that a continuous-time Markov model along

edges applies, which gives rise to the substitution matrix. The substitution matrix

is in turn determined by the rate matrix, Q, for the process which is defined as the

rate of change between nucleotide characters in an instant time dt is demonstrated in

Table 1.3. If reversibility is assumed, the entries qij of matrix Q can be expressed by

product of equilibrium frequencies of nucleotide characters π = {πA, πC , πG, πT} and

exchangeability r = {r1, r2, r3, r4, r5, r6} (Table 1.4). The matrix Q of a substitution

model depends on the particular settings of elements in π and R. In this thesis, I will

employ four substitution models, JC69, F81, HKY and GTR, for studies.

T C A G
T - qTC qTA qTG
C qCT - qCA qCG
A qAT qAC - qAG
G qGT qGC qGA -

Table 1.3: A typical rate matrix Q
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T C A G
T - r1πC r2πA r3πG
C r1πT - r4πA r5πG
A r2πT r3πC - r6πG
G r4πT r5πC r6πA -

Table 1.4: Q matrix used for modelling substitution

1.2.3 Substitution models
1.2.3.1 JC69 model

The JC69 (Jukes and Cantor 1969) is the simplest substitution model in phylogenetics

because it assumes the exchangeabilities and character frequencies are all constant. Thus,

the matrix Q is:

T C A G
T - λ λ λ
C λ - λ λ
A λ λ - λ
G λ λ λ -

Table 1.5: Q matrix of JC69

1.2.3.2 F81 model

The F81 (Felsenstein 1981) model is an extension of JC69, where the exchangeabil-

ities are assumed to be 1 and character frequencies of A, C, G, T are not restricted

(πA, πC , πG, πT ). Thus, the entries of matrix Q depends on the base frequencies (Table

1.6)

T C A G
T - πC πA πG
C πT - πA πG
A πT πC - πG
G πT πC πA -

Table 1.6: Q matrix of F81
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1.2.3.3 HKY model

The HKY (Hasegawa, Kishino and Yano 1985) model assumes the character frequencies

are not restricted and the Q matrix depend on both character frequencies and transition-

transversion ratio, denoted as κ. Hence, the Q matrix is:

T C A G
T - κπC πA πG
C κπT - πA πG
A πT πC - κπG
G πT πC κπA -

Table 1.7: Q matrix of HKY85

1.2.3.4 GTR (Generalized time-reversible) model

The GTR model (Lanave et al. 1984) is the most general DNA substitution model in

phylogenetics. The GTR model depends on the character frequencies and the exchange-

abilities, that is, they are fully defined by the model. Hence, the Q matrix is the form

in Table 1.4 and it allows free parameters π = (πT , πC , πA, πG) and exchangeability

parameters (r1, r2, r3, r4, r5, r6) with rf = 1 fixed.

1.3 Tree reconstruction method: maximum likelihood
(ML)

Given a substitution model and DNA sequence data, the maximum likelihood method can

be employed for reconstructing the tree and estimating the branch lengths . Felsenstein

(1981) presented the pruning algorithm to efficiently compute the likelihood function

for a fixed set of sequences. Given aligned DNA sequences with n sites, substitution

model and a tree topology τ , we want to estimate the branch lengths t (Fig 1.2) and

the parameters in the substitution model. The transition probability of change from

state i to state j on a branch of length t is denoted by pij(t). Felsentein (1981) used two

assumptions for calculating the likelihood (i) evolution in different sites is independent,

and (ii) evolution in different lineages is conditionally independent, given their ancestral

data.. The likelihood is calculated site by site. The general form of the likelihood (L)

can be expressed by following:
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L = p(X|Θ, τ) =
∏

i p(Xi|Θ, τ)

where Xi are the data at the ith site and Θ is a vector containing all branch lengths and

parameters of the substitution model.

To demonstrate the likelihood calculation on a single site, I use the first site of Table

1.1 on the tips of a tree topology in Figure 1.2. The inner nodes e, g, f in Figure 1.2

are unknown ancestors. Based on the transition probability pij(ti) between nodes, the

calculation of likelihood on this site is the summation over all possible states for the

inner nodes:

L1 =
∑

e

∑
g

∑
f πgpge(t1)pgf (t2)peA(t3)peC(t4)pfA(t5)pfA(t6)

e, g, f ∈ {A,C,G, T}

Figure 1.2: Tree for likelihood calculation, t = (t1, t2, · · · , t6)

Felsenstein (1981) gave an efficient algorithm for calculating this summation which

would otherwise be prohibitive.

The likelihood of the observed DNA sequences in Table 1.1 is the product of the Li’s:

L =
∏10

i=1 L
i

Thus, the log likelihood score is the natural logarithm of L:

l = log(L) = log(
∏10

i=1 L
i) =

∑10
i=1 log(Li)

Given a set of candidate tree topologies, the ML tree is the tree with highest likelihood

score and it gives the highest probability of the data being observed. In phylogenetics,
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the maximum likelihood approach sometimes cannot provide the correct estimate of tree

when the true tree is in a relatively extreme case.

1.4 LBA phenomenon

If a tree has each of long terminal branches join with one of short branches and the

branch between inner nodes is also relatively short, then, this kind of tree is referred to

as a “hard tree” (Fig 1.3 (a)). The estimated tree based on data generated under a hard

tree can mislead to a tree with the long branches grouping together, which is referred

to as the LBA tree (Fig 1.3 (b)). This type of phylogenetic error is referred to as the

long branch attraction (LBA), and the set of such hard tree topologies is known as the

Felsenstein Zone. Bergsten (2005) reviewed several strategies to overcome the LBA

issue: for example, by adding taxa to break up long branches, by improving evolutionary

model or removal of fast-evolving species or genes.

(a) True tree (Hard) (b) LBA tree

Figure 1.3: Hard tree and LBA tree

In some simulation studies, the LBA phenomenon is not the only type of estimation

bias under the ML method. Sometimes a type of bias called the long-branch-repel (Susko

2011) can occur under ML. However, this thesis will only focus on the LBA effect.

1.5 Summary of the thesis

This thesis explores the effects of misspecification and provides a goodness-of-fit test of

substitution models. For both easy (a tree not in the Felsenstein Zone) and hard trees,

Chapter 2 investigates the effects of the model misspecification based on simulation
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studies. Both maximum likelihood and the expected log likelihood are employed in this

chapter. Chapter 3 first discusses the model selection criteria and statistical tests used in

phylogenetics. Then, two goodness-of-fit tests for testing the adequacy of substitution

models are introduced. The sizes and powers of the proposed tests are demonstrated

by simulation studies, which contain both small number and large number of taxa. In

addition, some empirical data analyses are also included, and comparisons are made

between the newly proposed test and the existing model test. Chapter 4 concludes the

thesis.



CHAPTER 2

A SIMULATION STUDY OF THE
EFFECT OF MODEL
MISSPECIFICATION IN
PHYLOGENETICS.

The ML method is a consistent method and it has been introduced for inferring phylogeny

(Edwards and Cavalli-Sforza 1964, Felsenstein 1981). However, when the true tree is a

hard tree (Fig 1.3 (a)) and the data are analyzed by a misspecified model, the maximum

likelihood estimates (MLE) can be inaccurate estimates of the phylogenetic tree (Bruno

and Halpern 1999, Brandon and Paul 1995, Heulsenbeck 1995).

The objective of this chapter is to employ simulation to investigate the measurable

consequences of models with and without misspecification in inferring phylogenetics.

To achieve this, a series of simulation studies are designed to target both 4 taxa easy and

hard tree topologies. The hard tree is a known source that can result in phylogenetic

error (see Chapter 1) and is known to depend on the level of model misspecification.

Furthermore, another effect of model misspecification is investigated via the branch

length estimates.

According to Kullback-Leibler information (Kullback and Leibler 1951), it is the

expected log likelihood (EL) that should be maximized. The ML is a good approximation

to the EL, thus, the EL can better reflect the results of ML method. In this chapter, I will

use simulation to investigate the effect of different degrees of model misspecification

on ML method for tree selection. Since the EL is also available, it will be used as a

reference for the ML.

10
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2.1 A review of Kullback-Leibler information

The Kullback-Leibler (KL) information is used for measuring the closeness of two

probability distributions, and it serves as the basis of model selection criteria. Suppose

a random variable z follows density function fθ(z) and the density function gθ̂(z) is

an approximation to density fθ(z). The KL information, I(θ; θ̂), is used to measure

closeness of fθ(z) and gθ̂(z). The best model for approximating fθ(z) must have smallest

KL information:

I(θ; θ̂) =

∫
fθ(z) log fθ(z)dz−

∫
fθ(z) log gθ̂(z)dz (2.1)

= S(θ; θ)− S(θ; θ̂) (2.2)

S(θ; θ) is a constant given fθ(z), thus, S(θ; θ̂) can be used to determine the goodness

of fit of gθ̂(z). Then, to minimize KL information, we only need to maximize S(θ; θ̂).

S(θ; θ̂) is referred to as the expected log likelihood. we can further express the second

term of the right-hand side of equation (2.1) as:

∫
fθ(z) log gθ̂(z)dz =

∫
log gθ̂(z)dF (z)

Suppose data x = (x1, x2, x3, · · · , xn) are generated from an unknown distribution

F(x), and the maximum likelihood estimates θ̂ (MLE) can be estimated from x. We can

simply estimate the expected log likelihood by the average log likelihood:

Ŝ(θ, θ̂) =
1

n

∑
log gθ̂(xi) (2.3)

For a given substitution model, sequence data and a tree (τ ) having m tips, the MLE

can be easily computed. The number of unique site patterns is derived from all possible

combinations of nucleotides (A, C, G, T) and is easily computed as N = 4m. The matrix

of unique site patterns (X) is N by m, such that each row contains one of the set of

possible site patterns. We denote the probabilities of all n site patterns under the true

tree and true substitution model as p∗1, p
∗
2, · · · , p∗N .

If both the true probabilities (p∗’s) of site patterns in X, and their probabilities under

the MLE (p(Xj|θ̂, τ), j = 1, 2, · · · , N ) for a given model are available, then the EL for
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this model can be computed as below:

EL =
N∑
j=1

p∗j log(p(Xj|θ̂, τ)) (2.4)

The true probabilities p∗’s are easily obtained by computing the exact probability of each

site pattern given the true values of the parameters of the generating model and the true

tree.

2.2 Simulation design

The design is comprehensive in covering the effects of three types of variables: (1)

tree topologies with an associated set of branch lengths, (2) substitution models, and

(3) sequence lengths. Because the true tree and the true generating model are known

for each data set within the simulation study, it is possible to use the EL criterion as a

reference of the ML criterion in tree selection.

A diagram of the simulation study is shown in Figure 2.1. I simulate and analyze

sequence data under different scenarios, which are represented as format “generating

model - analytical model”. In general, the generating models are GTR, equal-equilibrium-

frequency model (EF, nucleotide frequencies are each 0.25 and exchange abilities are

free), and F81. The scenarios in this figure are GTR-JC69, GTR-EF, GTR-F81, F81-JC69

and EF-JC69, which represent different degrees of model misspecification.

In the generating models shown in Figure 2.1, all sites of the sequences are assumed

to have evolved under the same rate (“equal rates” scenario), which is an unrealistic

assumption for real data. Hence, I also generate sequences under GTR model but with

the addition of discrete among site rate variation (ASRV), and this scenario is denoted as

GTR+D. To simulate sequences under GTR+D model, for each data set, half the sites

are simulated under one rate and the other half are simulated under another rate. The

second rate for the heavy case is ten times the first rate and for the light case is twice the

first rate.

The parameters of the GTR model are set to equal to the estimates from the globin-

pseudogenes data (Yang 1994, Fig.1): π̂T = 0.308, π̂C = 0.185, π̂A = 0.308, π̂G =

0.199; r̂1 = 0.987, r̂2 = 0.11, r̂3 = 0.218, r̂4 = 0.243, r̂5 = 0.395. These estimates of

exchangeabilities and equilibrium frequencies are also used for simulation under the EF
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Figure 2.1: A diagram of simulation study

and the F81 model respectively.

The tree topologies for simulation contain easy and hard tree (Fig 2.2). Fig 2.2 (a)

is the easy generating tree, the branch lengths are all set to 0.1. Fig 2.2 (b) is the hard

generating tree, the short and long branch lengths are set to 0.01 and 0.7 respectively.

Sequence lengths are 300, 500, and 1000 (and some scenarios contain 5000 or 10000)

respectively. Based on these settings, INDELible1.03 (Fletcher and Yang 2009) is used

to generate 1000 replicates.

(a) Easy tree (b) Hard tree

Figure 2.2: Trees used for simulation
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2.2.1 Notations

Let τ1, τ2 and τ3 denote the 3 possible 4 taxa tree topologies, where τ1 = τ ∗ is the true

tree. In the scenarios based on the hard tree, τ2 is also referred as the LBA tree, and is

denoted as τL2 . The frequencies that the ML tree is tree τ1, τ2 (τL2 ), τ3 are denoted as N1,

N2 (NL
2 ), and N3 respectively.

2.3 Simulation study on data generated under easy tree

In this section, the experiment targets data that are generated under an easy tree and

analyzed by either correct or incorrect (misspecified) models. In general, the scenarios

contain GTR-GTR, JC69-JC69, GTR-JC69 and the heavy case of GTR+D-GTR. The

GTR-JC69 has the highest degree of model misspecification because the GTR model is

the most complicated generating model and the JC69 is the simplest analytical model.

For the misspecification of ASRV, only the heavy case is selected for this study, since

the heavy case is considered a higher degree of model misspecification than the easy

case. The results of ML and EL for tree selection are below:

Scenarios
Sequence
Length Tree GTR-GTR JC69-JC69 GTR-JC69 GTR+D(heavy)-GTR

300
τ1 1000 1000 1000 1000
τ2 0 0 0 0
τ3 0 0 0 0

500
τ1 1000 1000 1000 1000
τ2 0 0 0 0
τ3 0 0 0 0

1000
τ1 1000 1000 1000 1000
τ2 0 0 0 0
τ3 0 0 0 0

Table 2.1: Frequencies of estimated tree in 4 scenarios based on ML(EL) and easy
simulation tree

The results (Table 2.1) show that the ML method converges to the correct tree (τ1),

even when the analytical model is different from the generating model. The N1 is always

1000 for all scenarios and all sequence lengths. Hence, ML is a consistent method for

data generated under an easy tree. The EL gives the same results as ML in all cases.
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Thus, when the data are generated under the easy tree, ML is equivalent to EL for tree

selection.

2.4 Simulation study on data generated under hard
tree

In this section, data are generated under the hard tree, and analyzed under both correct

and misspecified models.

For the cases with model misspecification, I start with the highest degree of model

misspecification case, GTR-JC69, from which I can definitely observe LBA effect. I

then explore the impact of reduced degree of model misspecification through different

restrictions on the parameters of the substitution model. The scenarios contain: (1)

GTR-F81, (2) F81-JC69, (3) GTR-EF, and (4) EF-JC69. These scenarios have reduced

degree of model misspecification through the use of the two intermediate models (F81,

EF) (Fig 2.1). In addition, both heavy and light cases of the GTR+D-GTR are also

included for comparison.

Among the scenarios above, another interesting question is whether the LBA effect

only impacts the estimate of topology. To investigate this problem, for those data whose

tree topologies are correctly estimated, the branch length estimates are compared with

the true branch lengths.

2.4.1 The performance of ML and EL in tree selection without model
misspecification

The results that the data are generated using a hard tree and analyzed without model

misspecification are shown in Table 2.2. The performance of the ML is not as good as

for the data simulated under the easy tree. In the GTR-GTR case, when the sequence

length is 300, N1 is 568 whereas NL
2 is 269 and N3 is 163. N1 increases to 676 and

794 as the sequence length increases to 500 and 1000 respectively. In the JC69-JC69,

N1 increases from 586 to 807 when the sequence length increases from 300 to 1000.

The results are clearer under the EL. Under the GTR-GTR, N1 is 811 under EL and it

increases to 919 when the sequence length increases to 1000. In the JC69-JC69, N1 is

831, 889 and 935 when the sequence length is 300, 500 and 1000 respectively. Hence,

ML can also converges to the true tree as the sequence length becomes longer if the
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analytical model is correct.

Scenarios Based on ML Scenarios Based on EL
Sequence
Length Tree GTR-GTR JC69-JC69 GTR-GTR JC69-JC69

300
τ1 568 586 811 831
τL2 269 250 85 69
τ3 163 161 104 100

500
τ1 676 645 857 889
τL2 207 224 73 49
τ3 117 130 70 62

1000
τ1 794 807 919 935
τL2 125 115 54 30
τ3 81 78 27 35

Table 2.2: Frequencis of trees estimated based on ML, EL and hard tree in 1000
simulations

2.4.2 The performance of ML and EL in tree selection with model
misspecification

In this section, the simulation studies are based on the sequence data which are

simulated under the hard tree and analyzed under misspecified model, hence, there is a

very strong possibility that results could be led to the LBA phenomenon. The negative

impact on phylogenetic inference is easily observed in a scenario with “heavy” model

misspecification, i.e. GTR-JC69. For different sequence lengths in GTR-JC69, the

ML tree is most often τL2 , which is the LBA tree. This result confirms the classic LBA

estimation error. ML is converging to the LBA tree as sequence length increases from

300 to 1000 (Table 2.3). Note that model misspecification is considered “heavy” here

because both the DNA exchangeability parameters and the equilibrium frequencies are

misspecified.

The performance of EL in the GTR-JC69 indicates that EL converges to the LBA tree

at a faster rate than ML as sequence length increases. In the GTR-JC69, NL
2 under EL

increases from 724 to 898 as sequence length increases from 300 to 1000. This supports

the notion that GTR-JC69 is the case with the most serious model misspecification.

For both scenarios with misspecification of exchangeabilities only (MSEO: GTR-F81

and EF-JC69), ML is converging to the LBA tree as sequence length increases, but not

as quickly as in GTR-JC69 (Table 2.4). In GTR-F81, NL
2 under ML is 546, 592, and 620
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Sequence Lengths
300 500 1000

Scenario Method τ1 τL2 τ3 τ1 τL2 τ3 τ1 τL2 τ3

GTR-JC69
ML 287 626 85 307 640 53 312 666 22
EL 260 724 16 152 844 4 100 898 2

Table 2.3: Frequencies of trees estimated in 1000 simulations based on ML and EL and
hard tree

when sequence lengths are 300, 500, and 1000 respectively. Convergence to the LBA tree

is slower compared to GTR-JC69, because the degree of model misspecification is lower.

Interestingly, in GTR-F81, N1 values are similar for the sequence lengths 300, 500, and

1000 (346, 345, 352, respectively). Although ML also converges to the LBA tree under

EF-JC69, the rate is even slower than under GTR-F81. Indeed, it is difficult to draw

a firm conclusion for this case from sequences of 1000 sites, so additional simulation

is carried out for 5000 sites. This last simulation shows the LBA artifact, as NL
2 is

551, and N1 is 448. These results highlight the interaction between exchangeabilities

and frequencies with respect to the convergence to the LBA tree; when equilibrium

frequencies are unequal (as is typically the case with real data), the inadequate modeling

of exchangeabilities has a bigger impact on the convergence rate to the LBA tree.

Sequence Lengths
300 500 1000 5000

MSEO Scenarios τ1 τL2 τ3 τ1 τL2 τ3 τ1 τL2 τ3 τ1 τL2 τ3

GTR-F81 346 546 108 345 592 63 352 620 28 NA NA NA
EF-JC69 416 459 125 421 499 80 469 493 38 448 551 1

Table 2.4: Frequencies of tree estimated in 1000 simulations based on ML and hard tree

The EL better presents the LBA effect for these two cases as sequence length increases

(Table 2.5). In the GTR-F81 case, NL
2 under EL increases from 628 to 904 as sequence

length increases from 300 to 1000. In the EF-JC69 case, the results of EL demonstrate

that NL
2 under EL increases from 434 to 645 as sequence length increases from 300 to
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1000.

Sequence Lengths
300 500 1000

MSEO Scenarios τ1 τL2 τ3 τ1 τL2 τ3 τ1 τL2 τ3

GTR-F81 337 628 35 242 749 9 96 904 0
EF-JC69 511 434 55 473 503 24 354 645 1

Table 2.5: Frequencies of trees estimated in 1000 simulations based on EL and hard tree

For those cases with misspecification of frequencies only (MSFO), convergence to

the LBA tree under ML is very slow (GTR-EF) or non-existent (F81-JC69) (Table

2.6). Under GTR-EF, N1 under ML is 461, 528, and 505 when sequence length is

300, 500, and 1000 respectively. Only after increasing sequence length to 10000 dose

the ML begin to clearly favor the LBA tree since N2 is 627. The EL provides clearer

results, as sequence length increases, NL
2 under EL increases from 214 to 369 while

N1 under EL decreases from 559 to 319 (Table 2.7). This pattern indicates that EL

favors τL2 and will converge to τL2 eventually. These results are different for F81-JC69

case. In the F81-JC69, N1 under ML is most frequent (535) when sequence length

is just 300, and this number increases to 723 when sequence length is 1000. Under

the EL, N1 is 817, 843, 915 as sequence length increases from 300 to 1000. Both

the ML and EL of F81-JC69 confirm that there was no LBA in this case. The reason

for this difference is the exchangeabilities are different under the GTR and EF models

(r1 = 0.987, r2 = 0.11, r3 = 0.218, r4 = 0.243, r5 = 0.395, r6 = 1), whereas under the

F81 and JC69 models, the exchangeabilities are all equal to 1. For both of the generating

models (GTR and F81), the true frequencies are 0.308, 0.185, 0.308 and 0.199; they are

misspecified in the analytical models (EF and JC69) by setting all of them equal to 0.25.

The degree of misspecification is relatively mild (i.e., 0.25 is not very different from any

of the true values). The lack of LBA effect in the F81-JC69 case, and its occurrence

in the GTR-EF case, suggests that the impact of frequency misspecification is context

dependent.

The misspecification of among site rate variation (MSRO) is investigated for both a

heavy case and a light case, according to the ratios of the tree lengths for two categories
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Sequence Lengths
300 500 1000 10000

MSFO Scenarios τ1 τL2 τ3 τ1 τL2 τ3 τ1 τL2 τ3 τ1 τL2 τ3

GTR-EF 461 282 157 528 256 134 505 277 107 221 627 2

F81-JC69 535 315 149 648 242 107 723 218 59 NA NA NA

Table 2.6: Frequencies of tree estimated in 1000 simulations based on ML and hard tree

Sequence Lengths
300 500 1000

MSFO Scenarios τ1 τL2 τ3 τ1 τL2 τ3 τ1 τL2 τ3

GTR-EF 559 214 227 467 284 249 319 369 312

F81-JC69 817 95 88 843 94 63 915 61 24

Table 2.7: Frequencies of tree estimated in 1000 simulations based on EL and hard tree

of sites within a sequence (heavy case: 1:10, light case: 1:2) (Table 2.8). Under the light

case, the results demonstrate that N1 is the largest and the misspecification of rate does

not impact the tree selection. Specifically, N1 under ML is 480, 524, 571 when sequence

length is 300, 500, and 1000 respectively. Results for the heavy case are the opposite of

those for the light case in that there is an LBA effect. When sequence length is 300, NL
2

for ML is the largest (691), which is the LBA tree. This number increases to 774 and

853 respectively when the sequence length increases to 500 and 1000. Thus, incorrect

modeling of among site rate variation can contribute to LBA when rate differences

among sites are large enough.

The results under EL make the above points clearer (Table 2.9). In the light case (LBA

absent), N1 under EL is 716, 769 and 882 for the data with sequence length of 300, 500

and 1000 respectively. For the heavy case (LBA present), NL
2 under EL is 835, 928, 996

for the data with sequence length of 300, 500, and 1000 respectively.

Thus LBA effect can impact the tree selection when the sequences are generated under

a hard tree and analyzed with misspecified models and the percentage of LBA effect
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Sequence Lengths
300 500 1000

MSRO Scenarios τ1 τL2 τ3 τ1 τL2 τ3 τ1 τL2 τ3

GTR+D(light)-GTR 480 431 89 524 407 69 571 394 35

GTR+D(heavy)-GTR 241 691 68 189 774 37 140 853 7

Table 2.8: Frequencies of tree estimated in 1000 simulations based on ML and hard tree

Sequence Lengths
300 500 1000

MSRO Scenarios τ1 τL2 τ3 τ1 τL2 τ3 τ1 τL2 τ3

GTR+D(light)-GTR 716 153 131 769 131 100 882 64 54

GTR+D(heavy)-GTR 151 835 14 69 928 3 4 996 0

Table 2.9: Frequencies of tree estimated in 1000 simulations based on EL and hard tree

depends on the details of how the analytical model is misspecified. In next section, the

effect of model misspecification on the parameter estimates will be investigated.

2.4.3 Branch length estimates are impacted by model misspecifica-
tion

This section investigates the effect of model misspecifications other than those already

documented for the tree. To do this I investigate branch lengths estimated for the true

tree (i.e., where there is no LBA artifact). The ML estimates of branch-lengths are

presented in box-plots where the short branches are denoted as a, c, and e and the long

branches are denoted as b and d. To completely remove the impact of LBA, the results

for these plots are restricted only to those replicates where ML correctly selected τ1 as

the ML tree despite the misspecification of the analytical model. The reason that I only

consider these results is because the optimized branch length parameters on τ1 can be

compared with the true parameters (i.e., branch length parameters of the true tree). In

this sense, these plots demonstrate the departure of the branch estimates from the true

values, and I expect to see some relationship between the branch length estimates and
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model misspecification.

In the MSEO (Fig 2.3) and GTR-JC69 (Fig 2.4) cases, the median of the estimates

of the longest branch are lower than the true value, indicating a tendency towards

underestimation of this type of branch. The true values are out of the “box”, which

means they are over the third quartile; this indicates that even when the tree is correct,

the effect of model misspecification can be substantial. For the short branch estimates,

branch a and c are also underestimated, but branch e (internal branch) is over-estimated.

When the sequence length increases to 1000, the estimates of branch lengths do not

improve; the estimates still depart from the true values. However, the number of outliers

is reduced for most branches.

Recall that the LBA-inconsistency is absent from the F81-JC69 case. Hence, it is not

surprising that the branch length estimates for τ1 are better than in the MSFO cases (Fig

2.5). Specifically, the long-branch estimates are close to the true values, and the short

branch estimates all lie in the “box” (Fig 2.5 (a)). When the sequence length increases

to 1000, estimates under the F81-JC69 case further improve (Fig 2.5 (b)) with all of

the branch estimates close to the true values. Interestingly, the long-branch estimates

under GTR-EF (Fig 2.5 (d)) with sequence length of 1000 have a similar appearance to

F81-JC69, but the short branch estimates are different because some of them are out of

the “box” under GTR-EF (Fig 2.5 (d)). When the sequence length increases to 10000,

even the long-branch estimates begin to depart from the true values, and the estimates

of short branches exhibit much larger divergence (Fig 2.5 (e)). These results indicate

that negative effects of model misspecification are not restricted to just the tree, as the

estimates of branch lengths under the true tree are unsatisfactory.
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(d) EF-JC length=1000 (469 trees)

Figure 2.3: Branch estimates of MSEO, the dash lines represent the true branch lengths
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(b) GTR-JC69 length=1000 (312 trees)

Figure 2.4: Branch estimates of GTR-JC69, the dash lines represent true branch lengths

Branch estimates are also investigated for both light and heavy cases of MSRO. Recall

that the ML under light MSRO does not converge to the LBA tree. Hence, the box-plots

(Fig 2.6) indicate that the branch lengths are somewhat well estimated, because the

true value lines do not depart away from the “box” too much when sequence lengths

are 300 as well as 1000. For heavy MSRO (Fig 2.7), where the ML converges to the

LBA tree, the box-plots are different. When the sequence length is 300, the true value

of the long-branch is far from the “box”, with most of long branches being seriously

underestimated. When the sequence length is 1000, estimates of long branches are even

worse, because there is absolutely no overlap between the estimates and the true values.

The short branch estimates are not as impacted as the long branch; in general, they do not

depart from the true values except the internal branch, e. Taken together with previous

results, this investigation indicates that the misspecification of any aspect of the model

(exchangeabilities, frequencies, or rates among sites) can have impact beyond the tree.

2.5 Conclusion

Both the ML and the EL perform very well for the data generated from an easy tree,

which is the easy estimation problem, regardless of the analytical model. For the data
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(e) GTR-EF length=10000 (221 trees)

Figure 2.5: Branch estimate of MSFO, the dash lines represent the true branch lengths
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Figure 2.6: Branch Estimate of GTR+D(light)-GTR, dash lines represent true branch
lengths
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Figure 2.7: Branch Estimate of GTR+D(heavy)-GTR, the dash lines represent the true
branch lengths
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generated under hard tree, ML can converge to the true tree if the analytical model is

correct. But if the sequence length is insufficient, the ML does not necessarily estimate

the true tree due to the large variance of the estimate. In this case, as a reference of

ML, the EL can better confirm the direction of convergence even for the data with short

sequence length. For the data generated under hard tree and analyzed with misspecified

models, the ML trees converge to the LBA tree except in some cases with relatively

slight misspecification (light MSRO case and F81-JC69). For the cases with mild model

misspecification (GTR-EF, EF-JC69), ML cannot give a clear conclusion unless an

extremely long data sequence is available. In every case, EL always gives a much more

clear conclusion than ML. The impact of model misspecification is not only on the

estimate of the tree. Within the LBA scenarios, even when the ML tree is the true tree,

the branch length are often very biased.

From these simulations, I find the ML cannot correctly estimate the true tree in the

cases of model misspecification for data generated under hard tree. Thus it is necessary

to select an adequate model for analysis. I will look into the model adequacy tests in the

next chapter.



CHAPTER 3

GOODNESS-OF-FIT TESTS FOR
ADEQUACY OF DNA SUBSTITUTION
MODELS

It is important to select an adequate substitution model since an inadequate model can

negatively impact phylogenetic inference. There are several methods which are based on

information theory criteria and statistical tests already developed for this purpose. Posada

and Crandall (1998) have developed software to test the adequacy of a substitution model

by using method based on ML score. Waddell et al. (2008) presented the statistical test

based on binning site patterns and maximum likelihood ratio test. In this chapter, two

more novel methods based on binning of site patterns and Pearson’s χ2 goodness-of-fit

test will be developed for testing the adequacy of substitution models.

3.1 A review of model selection criteria in
phylogenetics

There are several formal criteria that have been employed for model selection in the

phylogenetic context. Sullivan and Joyce (2005) summarized 4 criteria: hierarchical

likelihood ratio test (hLRT), Akaike’s information criterion (AIC), Bayesian model

selection (BIC) and the decision theory (DT). All of these methods select the best model

from a set of candidate models. Thus, the relatively better model is selected. A well

selected set of candidate models is necessary for these methods, but this requirement is

difficult to meet in reality.

Goldman (1993) developed a method for testing the adequacy of a phylogenetic model

27
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based on Cox text and Monte-Carlo simulation, referred to as the Goldman-Cox test (GC

test). In the context of phylogenetics, the sequence data contain both the information

provided by the tree and the substitution model. The null hypothesis of the GC test is

composite:

H0: (a) the sequences are related by an unknown phylogenetic “tree” structure

(b) the sites of sequences have evolved independently, according to the specific

model.

Thus, a desired alternative hypothesis is to assess both (a) and (b) in the null hypoth-

esis. Goldman (1993) considered an unrestricted alternative hypothesis, that the sites

are independently and identically distributed and the probability that each site exhibits a

particular pattern s is p(s). Let S be a set that contains 4m site patterns under an m taxa

tree and n is the length of DNA sequences, then the alternative hypothesis is:

Ha: probability of site i exhibits pattern s ∈ S is p(s), ∀ i=1,2 · · · n.

For a given sequence data, the test statistic of the LRT based on the null and the alternative

hypotheses is:

δ̂D = l̂a − l̂0 (3.1)

where l̂0 is the maximum log likelihood of the sequence data under H0. Let ns denote

the number of sites exhibiting the site pattern s, then, the likelihood function under Ha

is:

La =
∏

s∈S p(s)
ns

The maximum likelihood estimate (MLE) for p(s) is then:

p̂(s) =
ns
n

The maximized log likelihood under Ha is simply:
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l̂a = log[
∏
s∈S

(
ns
n

)ns ]

=
∑
s∈S

nslog(ns)− nlog(n)

In principle, the likelihood ratio statistic has an approximate χ2 distribution with

degrees of freedom equal to the number of patterns minus the number of estimated

parameters in the model. In practice, because the number of possible patterns is usually

large, this approximation does not work well. To assess the null hypothesis, Goldman

employed a parametric bootstrap to simulate a set of sequences based on the MLEs of

the original data under the null hypothesis. For each simulated data set, the test statistic

is calculated according to equation (3.1) and they form the null distribution. The δ̂D is

then compared to the null distribution. If δ̂D is larger than the 95th percentile in the null

distribution, then H0 is rejected at 5% level.

Ripplinger and Sullivan (2010) compared the simplest models, which are not rejected

by the GC test and the Bayesian posterior predictive simulations (PPS) for testing the

adequacy of various substitution models, with the models selected by model selection

criteria (hLRT AIC, BIC, DT). These studies were based on empirical data and simula-

tions. The results demonstrated that the GC test and the PPS normally selected simpler

models than those selected by model selection criteria. The PPS failed to reject the

simpler models selected by the GC test and the GC test mostly failed to reject the simple

models incorporating among site variation, such as JC+I + Γ. The model selection

criteria only select the relatively better models from the alternative models. The GC test

employed the multinomial distribution of site patterns, which is more general than any

substitution models. Thus, it can be used as a goodness-of-fit test between a model and

the sequence data. However, the parametric bootstrap employed by the GC test makes

this test computationally expensive, especially for large number of taxa.

3.2 Pearson’s χ2 test

As a goodness-of-fit test, the Pearson’s χ2 test compares the observed frequency distri-

bution and the expected frequency distribution under the null hypothesis for categorical
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data. The test statistic is:

χ2
o =

K∑
i

(Oi − Ei)2

Ei
(3.2)

where the Oi and Ei are the observed frequency and the expected frequency of ith

category and the K is the number of categories. The test statistic follows the χ2

distribution with degree of freedom K − 1.

Goldman (1993) indicated that the Pearson’s χ2 test can not be used in the context of

phylogentics because the size of each category, which is referred to as each pattern, in

goodness-of-fit test is required to be at least five or the sample size should be at least

four or five times the number of categories. These requirements are difficult to meet in

phylogenetics because some patterns appear very rarely under particular models and the

number of site patterns will increase rapidly as the number of taxa increases.

In this Chapter, two goodness-of-fit tests are developed to overcome these issues

by binning site patterns. The first test bins the site patterns based on their supports to

different tree topologies and the second test bins the site patterns based on their character

frequencies. After binning the site patterns, the sequence data are rearranged into several

bins and the bins serve as the categories in a multinomial distribution. Thus, the χ2

distribution can be used since the aforementioned conditions no longer exist. These

two tests are applied in two different situations. The size and power of the tests are

demonstrated by simulation.

3.3 A goodness-of-fit test for testing both the tree and
the substitution model

This section will demonstrate a site pattern binning method using an example of 4 taxa

tree, to test:

Hj
0 : (a) the tree τj is true, (b) the analytical model M is the true model.

Note that the null hypothesis is indexed by the jth tree, the assumption being the

substitution model is the same for each tree being tested.
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3.3.1 Binning method

Based on parsimony (Edwards and Cavalli-Sforza 1963), a site pattern with the smallest

number of changes under tree τ has the maximum parsimony score and it supports the τ .

For 4 species, there are 256 different site patterns in total that could be possibly observed

among the n sites. The binning of 256 site patterns is based on their support for different

tree topologies with the support calculated by parsimony:

Binning procedures

• Non-informative bin: This bin includes the constant pattern xxxx (e.g., AAAA), or

the singleton patterns xxxy, xxyx, xyxx and yxxx (e.g., GCCC, AAAT, CCTC,· · · )
and the patterns contain 4 different nucleotide characters. None of these sites

contain signal for any tree, under parsimony, thus give the same support to any

tree .

• Informative bins: Some patterns contain strong signals for the history of sub-

stitution that correspond to a particular tree . For example, pattern xxyy (e.g.,

AACC, AAGG, CCTT, · · · ) strongly supports tree (1,2),(3,4). The xxyy can be

the consequence of only one substitution between the inner node 5 and 6 (Fig 3.1).

Hence, these patterns are binned to the same bin. Similarly, the patterns xyxy and

xyyx are binned into two other bins since they strongly support trees (1,3),(2,4)

and (1,4),(2,3) respectively.

• Semi-informative bins: Site patterns, xxyz (e.g., AACT) and yzxx (e.g., GACC)

support tree (1,2),(3,4), but less strongly, Since it needs more than one substitution

from the inner node to the tips (Fig 3.2). Hence, these are binned into the same

bin. Similarly, the site patterns xyxz, yxzx are binned to the same bin and the site

patterns xyzx, zxxy are binned to the same bin.

Thus, there are 7 bins in total:

(1) XXYY

(2) XYXY

(3) XYYX

(4) XXYZ, YZXX

(5) XYXZ, YXZX
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Figure 3.1: One substitution A→ C

Figure 3.2: Two substitutions assuming both inner nodes are A

(6) XYZX, YXXZ

(7) Constant + singleton patterns+XYZW

Since the definition of bins is based on the site support to different topologies, the

frequency distribution over these bins should be more sensitive to the tree than the

substitution model in the null hypothesis.

Based on the bins defined above, I calculate the test statistic in (3.2) and perform the

goodness-of-fit test according to the following procedure:

1. Compute the observed count of each bin Oi from the sequence data.

2. Compute the MLE for the model parameters (branch lengths and substitution

model parameters) under the null hypotheses.

3. Calculate the expected probability of the 256 site patterns using the MLE in step 2.

4. Compute the expected probability of the ith bin Pi as sum of the expected proba-

bilities of all the site patterns in the bin.
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5. The expected count of the ith bin is Ei = nPi, where n is the sequence length.

6. The goodness-of-fit test statistics X2
o can be easily obtained:

X2
o =

7∑
i=1

(Oi − nPi)2

nPi

7. Compare to χ2 distribution with df = 6 to conclude the test.

The steps 2-7 are repeated for each tree τ1, τ2, and τ3.

3.3.2 Simulation design

200 data sets are simulated with sequence lengths equal to 300, 500, 1000, and 10000

for each combination of generating model and tree . The generating models include

GTR and GTR+D. The tree topologies include an easy tree and a hard tree (Fig

2.2). The parameters of the GTR model are: πT = 0.308, πC = 0.185, πA = 0.308,

πG = 0.199; r1 = 0.987, r2 = 0.11, r3 = 0.218, r4 = 0.243, r5 = 0.395, r6 = 1. The

GTR+D contains both heavy and light scenarios. The second rate for the heavy case

is ten times the first rate and for the light case is twice the first rate. INDELible1.03

is used for simulation. The scenarios in this simulation study contain the cases with

different degrees of model misspecification: GTR-GTR, GTR-JC69, GTR-HKY, GTR-

F81, GTR+D-GTR.

3.3.3 Analysis results
3.3.3.1 The size and power of the test when the true tree is easy

The results of the statistical test when true tree is an easy tree depend on different

combinations of the models used for simulation and analysis. In the scenarios without

model misspecification, referred to as the GTR-GTR in Table 3.1, the test is actually

testing for the tree . The results for different sequence lengths (300, 500, 1000, 10000)

are similar. The rejection rates under the null hypothesis H2
0 and H3

0 (the tree in the null

hypothesis is wrong) for different sequence lengths are all 100%. This indicates that

when the null model is correct, the hypotheses of wrong trees can be rejected. The size

of the test can be obtained when both the tree and model in null hypothesis are correct.

They are around 5% and are satisfactory.
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Scenarios
Seqence Lengths Hypothesis GTR-GTR GTR-JC69 GTR-F81

300
H1

0 6% 17% 14%
H2

0 100% 100% 100%
H3

0 100% 100% 100%

500
H1

0 5% 22% 19%
H2

0 100% 100% 100%
H3

0 100% 100% 100%

1000
H1

0 5.5% 42.5% 33.5%
H2

0 100% 100% 100%
H3

0 100% 100% 100%

10000
H1

0 5% 100% 100%
H2

0 100% 100% 100%
H3

0 100% 100% 100%

Table 3.1: Rejection rates for each hypothesis in 3 analysis model scenarios when true
tree is an easy tree

For the GTR-JC69 (Table 3.1), which has a high degree of model misspecification, the

rejection rates under the H2
0 and H3

0 are also 100% regardless of sequence lengths. The

power of the test when the tree is true but the substitution model is wrong is relatively

low when the sequence length is small. When the sequence length is sufficiently long,

the power can be 100%. This indicates that when the null model is wrong, the parameters

of the substitution model are estimated incorrectly. And the expected count of each bin

can be impacted based on the poor estimates. For a mild model misspecification case,

which is referred to as GTR-F81 (see Chapter 2) (Table 3.1), the rejection rates under

H1
0 with the sequence lengths less than 10000 (14%, 19%, 33.5%) are smaller than the

corresponding GTR-JC69 cases for 17%, 22%, 42.5%. This is not surprising because

the F81 model has more flexibility than JC69. Thus when the tree is true under the null

hypothesis, which is actually to test model, the rejection rate is smaller.

When the generating tree is easy, Table 3.2 are the results of cases that either light

or heavy among site variation and the null model is fixed as GTR. For both cases, the

rejection rates under H2
0 and H3

0 easily reach 100%. Under H1
0 , where the tree is true,

the rejection rates of light cases are 11%, 17.5% 27.5% and they are smaller than heavy

case. This is because the model of light case is closer to the GTR than the heavy case.

When the sequence lengths are 10000, The rejection rates reach 100% under H1
0 for both

cases.
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Scenarios
Sequence Lengths Hypothesis GTR+D(heavy)-GTR GTR+D(light)-GTR

H1
0 27% 11%

300 H2
0 99% 99%

H3
0 98.5% 99.5%

H1
0 28.5% 17.5%

500 H2
0 99% 100%

H3
0 100% 100%

H1
0 32.5% 27.5%

1000 H2
0 100% 100%

H3
0 100% 100%

H1
0 100% 100%

10000 H2
0 100% 100%

H3
0 100% 100%

Table 3.2: Rejection rates of each hypothesis in 2 scenarios based on easy simulation
tree

3.3.3.2 The size and power of the test when the true tree is hard

Table 3.3 includes the results of 4 different scenarios: GTR-GTR, GTR-JC69, GTR-F81,

GTR-HKY. For GTR-GTR, when the sequence lengths are less than 10000, the rejection

rates under H2
0 and H3

0 are lower than the case where the true tree is easy tree. But

they increase significantly as the sequence length becomes longer. The reason is when

the generating tree is hard, it can impact the MLE of parameters and thus the expected

probability of site patterns for the short sequence data. The sizes are all around 5% (6%,

5.5%, 5.5% and 4.5%) for any sequence lengths. The results demonstrate that when the

true tree is hard, the power is lacking to reject the wrong tree topologies for the data with

a relatively short sequence length.

The model misspecification scenarios include GTR-JC69, GTR-F81 and GTR-HKY.

In the GTR-JC69 and the GTR-F81 cases where the LBA exists, the rejection rates under

H2
0 , where the null tree is a LBA tree, are lower than those under the H1

0 and the H3
0 .

Because when the generating tree is hard and the null model is wrong, the estimated tree

converges to be LBA tree. Hence, the H2
0 is harder to reject. As the sequence length

increases, the rejection rates under H2
0 rise significantly. In the GTR-JC69 case, the

rejection rate under H2
0 is larger than that in the GTR-F81 since the degree of model

misspecification is higher.

In the GTR-HKY, the degree of model misspecification is the smallest because the
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GTR and HKY models are two similar substitution models. When the sequence length

is less than 10000, the rejection rates of H1
0 , H2

0 and H3
0 are very close to those in the

GTR-GTR. When the sequence length increases to 10000, the rejection rates under each

hypothesis significantly increase (20%, 84%, 81%). Thus, it will approach 100% if the

sequence length is long enough.

Scenarios
Sequence Lengths Hypothesis GTR-GTR GTR-JC69 GTR-F81 GTR-HKY

H1
0 6% 25.5% 17.5% 6%

300 H2
0 9% 21% 16% 9%

H3
0 9.5% 35.5% 24% 9%

H1
0 5.5% 37.5% 29% 5.5%

500 H2
0 11% 26% 22% 10.5%

H3
0 12.5% 47% 32.5% 14%

H1
0 5.5% 67% 46% 7%

1000 H2
0 15% 46% 39.5% 15.5%

H3
0 16% 78.5% 65% 16%

H1
0 4.5% 100% 100% 20%

10000 H2
0 100% 100% 100% 84%

H3
0 100% 100% 100% 81%

Table 3.3: Rejection rates for each hypothesis in 4 analysis model scenarios when the
true tree is hard tree

The results of the misspecification of heavy and light d are different (Table 3.4). Under

the heavy case, when the null model is wrong and generating tree is hard, the LBA exists.

The rejection rates under H2
0 (null tree is the LBA tree) are lower than the H1

0 and the

H3
0 . In the light case, where the LBA is absent, the rejection rates are smaller than those

in the heavy case. This indicates that the GTR model with light case of among site

variation has less degree of model misspecification. The rejection rates eventually reach

100% when the sequence length increases to 10000 for both cases.

For some cases with model misspecification under hard tree, the rejection rates

presented above give the power of this test as average over simulated data sets. Note that

the number of the hypotheses which are rejected differ among individual data. Thus,

this test may not provide an informative result when only one of the hypothesis (H1
0 ,

H2
0 , H3

0 ) is rejeted. Hence, it is helpful to investigate how often all three (or only one)

hypotheses are rejected within the simulation study. Now, I denote the rejection rate that

only one hypothesis is rejected as R1 and thus the R2 and R3 represent the rejection rate



November 15, 2012 37

Scenarios
Sequence Length Hypothesis GTR+D(heavy)-GTR GTR+D(light)-GTR

H1
0 63% 32%

300 H2
0 62% 37%

H3
0 68.5% 27.5%

H1
0 77% 32.5%

500 H2
0 73.5% 43.5%

H3
0 82% 41%

H1
0 90% 29.5%

1000 H2
0 82% 55%

H3
0 94% 41.5%

H1
0 100% 100%

10000 H2
0 100% 100%

H3
0 100% 100%

Table 3.4: Rejection rates for each hypothesis in 2 analysis model scenarios when the
true tree is hard tree

that two and three hypotheses are rejected. Some of the scenarios in the simulation study

are used to present the results.

In GTR-F81 case, the rejection rates are R1 = 9%, R2=11% and R3=10% when the

sequence length is 300. When the sequence length increases to 1000, the rejection rates

are R1 = 13%, R2=23.5% and R3=27%. In GTR-JC69 case, the rejection rates are R1 =

11%,R2=15% andR3=13% when the sequence length is 300 whereas when the sequence

length increases to 1000, the rejection rates are R1 = 11%, R2=24% and R3=38.5%. In

the GTR+D(heavy)-GTR case, the rejection rates are R1 = 2%, R2=5% and R3=46.5%

when the sequence length is 300. When the sequence length increases to 1000, the

rejection rates are R1 = 3%, R2=6.5% and R3=78%. Hence, for the GTR+D(heavy)-

GTR case, most of the cases the test could either reject all three trees or none of them.

This is good, because rejecting only two of the trees could be misleading, suggesting

that the other tree is the true tree.

3.3.4 Discussion

The goodness-of-fit test can reject combination of a wrong tree and a null model if the

null model is the generating model with reasonable power for long sequences. The sizes

of the test are at the nominal level for all different sequence lengths. When the null

model is also wrong, the goodness-of-fit test has higher power to reject all combinations

of wrong trees and wrong substitution models.
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Another issue is that the test has to be performed for each possible tree , This require-

ment is difficult to meet if the number of taxa is large, then the number of possible tree

topologies increase rapidly. A possible approach is to select a subset of the most possible

tree topologies and cluster the site patterns according to the parsimony scores of each

site pattern for this subset of tree topologies. I will not discuss the details for large taxa

cases in this thesis.

In next section, another binning method will be developed which is unrestricted by

tree topologies.

3.4 A goodness-of-fit test for substitution models

In this section, another way of binning site patterns will be developed so that Pearson’s

χ2 test can be used for testing the substitution models. The null hypothesis is now:

H0: The substitution model M is the true model.

The site patterns of the characters can be numerically summarized and cluster the site

patterns using these numbers. This provides a better way for clustering analysis. One

important factor in the substitution model is the equilibrium frequency of the nucleotide

characters, π = (πA, πC , πG, πT ). The clustering of sites is based on the frequency

summary statistics for each site. Thus for example, sites, (A, C, C, A), (C, A, C, A), (A,

C, A, C) etc. will have the same summary statistics, and will be clustered together. A 4

taxa tree is used to demonstrate the method by binning the sites with equal frequency

statistics together. The results of the goodness-of-fit tests will be presented using few

simple scenarios and I will compare the size and power of the tests with LRT. This

method is the developed to the large number of taxa cases. Finally, I will employ this

method to analyze several real data sets.

3.4.1 Equal frequency binning for a 4 taxa tree

For a 4 taxa tree, there are 256 different site patterns. These site patterns are first

classified into 5 different types according to the proportions of nucleotide characters.

For example, sites XXYY and XYYX are the same type, because the proportions of X

and Y are both 1
2
, and sites XXXY, XXYX are the same type because the proportions of

X, Y are 3
4

and 1
4

respectively. Thus, there are 5 types of site patterns in total.
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• Type 1: XXXX;

• Type 2: XXYY, XYYX, XYXY;

• Type 3: XXXY, XYXX, XXYX, YXXX;

• Type 4: XXYZ, XYZX, YZXX, XYXZ, ZXYX, ZXXY;

• Type 5: XYZW.

Each type of site patterns contains different number of bins depending on which nu-

cleotide characters occupying X, Y, Z, and W. Thus, for each type, the number of bins

are calculated as:

Type 1: X ∈ {A,C,G, T};
(
4
1

)
= 4;

Type 2: X, Y ∈ {A,C,G, T}, X 6= Y ; X, Y symmetric in the patterns;
(
4
2

)
= 6;

Type 3: X, Y ∈ {A,C,G, T}, X 6= Y ;
(
4
2

)
× 2 = 12;

Type 4: X, Y, Z ∈ {A,C,G, T}, X 6= Y 6= Z; Y, Z symmetric in the patterns;
(
4
1

)(
3
2

)
=

12;

Type 5: X, Y, Z,W ∈ {A,C,G, T}, X 6= Y 6= Z 6= W ;
(
4
4

)
= 1;

Thus, there are 35 bins in total. With binning described above, the goodness-of-fit test

procedure follows:

1. Calculate Oi as the observed count of the ith bin.

2. Compute the ML tree and MLE of parameters under the null model.

3. Calculate the expected probabilities of site patterns based on ML tree and MLE of

model parameters.

4. Calculate expected probabilities, Pi, for each bin.

5. Calculate Ei = nPi, where n is the sequence length.

6. The test statistic:

X2
o =

35∑
i=1

(Oi − nPi)2

nPi

is compared to a χ2 distribution with df = 34.
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3.4.1.1 Simulation Design

200 data sets are simulated with sequence length 500 under the GTR, EF and EF+D

models respectively. The parameters of GTR model are: πT = 0.308, πC = 0.185, πA =

0.308, πG = 0.199; r1 = 0.987, r2 = 0.11, r3 = 0.218, r4 = 0.243, r5 = 0.395, r6 = 1.

The exchangeabilities of the EF model are the same as that of GTR model but equal

frequencies πT = πC = πA = πG = 0.25 are assumed. The ratio of the branch lengths

for generating each half of single sequence for the EF+D is 1:10. INDELible1.03 is used

for simulation.

In this simulation study, only the easy tree (shown in Fig 2.2 (a)) is used for simulation.

Thus, the ML trees are the true tree. The simulation analysis scenarios in this section

contain the EF-EF, GTR-EF, EF-JC69, GTR-JC69, and the EF+D-EF. The power of

the test could vary depending on the degree of model misspecification. The likelihood

ratio test (LRT) can only be used for comparisons of two nested models, thus I will use a

large (e.g., GTR) alternative model for LRT. LRT is known to be the most efficient. As a

reference, I will compare the power of this test to the LRT.

3.4.1.2 The size and power of the test

Table 3.5 lists the result of the goodness-of-fit test for each scenario. In the EF-EF, the

goodness of fit test has 5.5% rejection rate, thus the size of the test is satisfactory. For

the other cases with misspecification of the models (GTR-EF, EF-JC69, GTR-JC69), the

rejection rates are all approximately 100%. Hence, the power is also satisfactory. For the

case EF+D-EF, the rejection rate is 31%, the power of this test under this case is not as

high as the other cases with model misspecification. Thus, this test is not very sensitive

to the misspecification of the ASRV.

Scenarios
EF-EF GTR-EF EF-JC69 GTR-JC69 EF+D-EF
5.5% 98% 100% 100% 31%

Table 3.5: The rejection rates of goodness-of-fit test for 4 scenarios

The results of LRT are used as reference and they are demonstrated in Table 3.6. The

null models are EF and JC69. Since the EF and JC69 are both nested within the GTR

model, the alternative models for LRT are chosen as the GTR model. The size of this

test is 4.5%, which is slightly smaller than this test. For other cases, the rejection rates
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are all 100%. When the true model is EF+D and EF is the null model, the rejection rate

is 30.5% with the true model chosen as the alternative model.

Scenarios
Generating Model EF GTR EF GTR EF+D

Null Model EF EF JC69 JC69 EF
Alternative Model GTR GTR GTR GTR EF+D

4.5% 100% 100% 100% 30.5%

Table 3.6: The rejection rates of LRT for the null models in 4 scenarios

In this simulation study, the scenarios contain different degrees of model misspecifica-

tion. Size and power under the goodness-of-fit test are satisfactory for most cases in the

simulation studies and they are similar to the LRT. Thus, this test seems to be a good tool

for testing the adequacy of the model. One issue is that even though the binning method

is simple with 4 taxa data, when the number of taxa increases, the binning method

becomes difficult to apply because the number of site patterns increases rapidly. To deal

with this issue, another binning procedure based on the same idea for the sequence with

a larger number of taxa is developed.

3.4.2 Frequency based binning model test for large number of taxa

When the number of taxa m is large, there are, in theory, 4m different site patterns.

Binning based on exact equal frequency vectors is not practical for large m values.

The idea is then extended such that sites with similar frequency vectors will be binned

together. The K-means clustering method is used due to its simplicity.

In data mining, K-means clustering is a simple approach for clustering the observed

(vector valued) data into different clusters according to their similarity, often measured

by the Euclidian distance. Since the site patterns are all summarized by numerical values,

it is easily to cluster these frequency vectors using any standard clustering method.

3.4.2.1 Binning Procedures

1. Summarize each site pattern into frequency vector fi = (fAi, fCi, fGi, fT i), i =

1, 2, · · · , n and create an n× 4 matrix:
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F =


fA1 fC1 fG1 fT1

fA2 fC2 fG2 fT2
...

...
...

...

fAn fCn fGn fTn


where each row contains the frequencies of observed nucleotides for the corre-

sponding site.

2. The K-means clustering approach is used for binning the rows in matrix F into K

bins.

3. For j = 1, 2, · · · , K, denote the center of jth bin as Cj . Calculate the observed

frequency for jth bin, Oj , as the counts of all sites assigned to jth bin.

4. Compute the ML tree and the MLE for all parameters.

5. Parametric bootstrap is used to simulate an extremely long (M sites) DNA sequence

data X∗ based on the ML tree and the MLE of model parameters.

6. From sequence data X∗, calculate the M × 4 frequency matrix F ∗, where each row

contains the frequencies of nucleotide characters of each site:

F ∗ =


f ∗A1 f ∗C1 f ∗G1 f ∗T1

f ∗A2 f ∗C2 f ∗G2 f ∗T2
...

...
...

...

f ∗AM f ∗CM f ∗GM f ∗TM


7. Cluster the rows in F ∗ to K clusters by comparing the Euclidian distance of each

row to the K centers calculated in step 3 (C1, C2, · · · , CK) and assigning the row

to the cluster with the smallest Euclidian distance. Denote the number of rows

assigned to the jth bin as Sj . Then, the expected size of the jth bin Ej , can be

calculated as:

Ej =
nSj
M

where n is the sequence length in the observed data set.
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8. The test statistic is:

X2
o =

n∑
j=1

(Oj − Ej)2

Ej

Under H0, X2
o follows the χ2 distribution with df = K − 1

3.4.2.2 Simulation design

In this simulation, two 10 taxa tree topologies, which are referred to as symmetric

and asymmetric trees respectively, are used for generating DNA sequences. Figure 3.3

(a) is a symmetric 10 taxa tree and (b) is an asymmetric 10 taxa tree with specified

branch lengths. A symmetric tree can be called an easy estimation problem whereas

the asymmetric tree is called a “harder estimation problem”, where the ratio of correct

estimation tree to incorrect estimation tree is 3:1. For each of the two tree topologies, I

employed models GTR, F81, and GTR+D to simulate data. 200 data sets with sequence

length fixed at 500 are simulated for each scenario. INDELible1.03 is used for simulation.

The following generating and analysis model pairs are used to find both the size and

power of the test.

There are 6 different scenarios: (1) GTR-GTR (No model misspecification), (2) GTR-

F81, (3) F81-JC69, (4) GTR-HKY, (5) GTR+D(heavy)-GTR (6) GTR-JC69. The results

in terms of the rejection rates at 5% significance level among the 200 data are presented

below.

(a) Symmetric Tree (b) Asymmetric Tree

Figure 3.3: 10 taxa simulation trees

3.4.2.3 Analysis results

In the cluster analysis of the data, an optimal K can be decided by some algorithm and

data together. However, this may result in different K values for different data sets in the
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simulation. For simplicity, I fix K to 7, 30, and 70 in the following analysis. It can be

observed from the analysis results that the test is not very sensitive to the K values in

most cases.

3.4.2.4 Results for symmetric tree

The results of GTR-GTR case demonstrate that the size of the test are 0.5%, 0%, 0%

when K is 7, 30 and 70 (Table 3.7). For the GTR-JC69 case, the model misspecification

is the highest, the rejection rates are all 100% for any value of K. Under the GTR-F81,

the rejection rates are 100%, 99% and 100% when K is 7, 30, and 70 respectively. There

are similar results for the F81-JC69 case, which has the rejection rates 100%, 99.5% and

98% when K=7, 30, and 70, respectively. Under GTR-HKY, the rejection rates are 20%,

43% and 34%, which are not very high since the GTR-HKY has the smallest degree of

model misspecification. But when K value is selected to be 30 and 70, the rejection rates

are significantly higher than for K = 7. For the GTR+D - GTR case, the rejection rates

are 20%, 69% and 93%, which also increase as K becomes larger. In most simulation

cases, this test has enough power to reject the wrong models.

Scenarios
GTR-GTR GTR-JC GTR-HKY GTR-F81 F81-JC GTR+D-GTR

K=7 0.5% 100% 20% 100% 100% 20%
K=30 0% 100% 43% 99% 99.5% 69%
K=70 0% 100% 34% 100% 98% 93%

Table 3.7: Rejection rates of each hypothesis in 6 scenarios based on 10 taxa symmetric
tree for three K values

3.4.2.5 Results for asymmetric tree

For simulations based on the asymmetric tree, the results are similar to the results under

the symmetric tree (Table 3.8). In the GTR-GTR case, the rejection rates are 0%, 0%

and 1% when K = 7, 30 and 70. Thus, the sizes of the test are all good regardless of the

value of K. In case of misspecification of the substitution model, the test has enough

power to reject the wrong models. In the F81-JC69 case, the rejection rates are 100%,

100% and 99.5% and 100%, 99% and 100% for the GTR-F81 case, when K = 7, 30

and 70. In the GTR-JC69 case, the rejection rates are always 100% regardless of the K

values. In the GTR+D-GTR case, the rejection rates depend on the K values. When K =
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7, the rejection rate is 19% and it increases to 93% and 100% when K = 30 and K=70

respectively. For the GTR-HKY, the rejection rates demonstrate that HKY model is hard

to reject. The rejection rates are 10.5%, 45% and 52.5% for K =7, 30 and 70 respectively.

Again, the rejection rates in GTR-HKY case depend on the K values, but the power is

lower comparing to other model misspecification cases. Hence, for the DNA sequences

generated under asymmetric tree, the results are similar to that of symmetric tree.

Scenarios
GTR-GTR GTR-JC GTR-HKY GTR-F81 F81-JC GTR+D-GTR

K=7 0% 100% 10.5% 100% 100% 19%
K=30 0% 100% 45% 99% 100% 93%
K=70 1% 100% 52.5% 100% 99.5% 100%

Table 3.8: Rejection rates in 6 scenarios based on 10 taxa asymmetric tree for three K
values

In summary, the proposed test with binning based on frequencies has good power for

both the symmetric and the asymmetric trees when the substitution model is misspecified,

and it can be used for a tree with larger number of taxa. For some cases, an appropriate

K value should be determined in order to draw the correct conclusion.

3.4.2.6 Discussion

Based on the simulation study, the goodness-of-fit test has satisfactory size and enough

power to reject the wrong models in different scenarios. The power of the goodness-

of-fit test based on K-means clustering on the site frequency vectors is promising.

The procedure of binning the site patterns is simple and thus can be easily applied.

Comparing with LRT based model adequacy tests, the model assumptions are simpler

because the LRT test requires both appropriate null and alternative models. Jeniffer and

Sullivan (2010) have examined the GC test for many empirical data. I will employ the

goodness-of-fit test for 3 empirical data in the next section.

3.5 Empirical data analysis

3.5.1 Data collection and the hypothesis test

The three empirical data sets are selected among 25 empirical data in Ripplinger and

Sullivan (2010). The matrix ID of these data sets are M1000, M780 and M2309. Jeniffer
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and Sullivan (2010) and Goldman (1993) pointed out that the GC test failed to reject

the JC+I + Γ for many empirical data, where “I” represents the proportion of invariant

sites, and the Γ represents the among site variation rate. Here, I will apply this test on

the same type of models which incorporate with I + Γ. The null hypotheses for each of

the data sets are:

H01: The JC+I + Γ is the true model;

H02: The F81+I + Γ is the true model;

H03: The HKY+I + Γ is the true model;

H04: The GTR+I + Γ is the true model;

For each data, the optimal K can be different. Peeples (2011) reviewed the solutions

for choosing optimal K in clustering analysis. Here, I will use the most common solution

as follows: to choose an optimal K, I compare the Sum of Squared Errors (SSE) for

different K values. The SSE for each cluster is defined as the sum of squared distances

between each element of a cluster with the centre of this cluster. Thus, as a global

measurement of errors, SSE is the sum of SSE’s over all clusters. As K increases, the

SSE will decrease since the sizes of the clusters are smaller. Then I can create a plot of

SSE against sequential K values. The optimal K is the elbow point at which the reduction

of SSE becomes slow dramatically.

In this analysis, I will examine the p-values of the test under the optimal K as well as

some other K values which are close to the optimal K.

A DNA sequence data set with 100000 sites are simulated based on parametric

bootstrap procedure under each hypothesis. The p-values of the GC test for each data

have been provided in the supplementary material of the Jennifer and Sullivan (2010)

and are recorded here to compared with the p-values of this test.

3.5.2 Results of empirical data analysis
3.5.2.1 DATA 1: M1000

The M1000 (Cox, Huynh, and Stone 1995) consists of 10 taxa and the sequence length is

817. The plot of SSE against K is shown in Fig 3.4: The optimal K is 4 and I will also

include K=5,6,7,8,9. The p-values for K equals to 4 to 9 are listed in Table 3.9. Under

H01, all of the p-values are less than 0.01 regardless of K values. Under H02, only when
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Figure 3.4: Plot of SSE against K for M1000

Hypothesis
H01 H02 H03 H04

GC Test 0.01 0.04 0.24 0.1

Goodness-of-Fit Test

K=4 p<0.01 0.76 0.77 0.84
K=5 p<0.01 0.82 0.85 0.95
K=6 p<0.01 0.91 0.87 0.96
K=7 p<0.01 0.79 0.82 0.89
K=8 p<0.01 0.67 0.79 0.87
K=9 p<0.01 p<0.01 0.86 0.88

Table 3.9: p-values of GC and goodness-of-fit test under each hypothesis for M1000
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K=9, the p-values is less than 0.01. Thus, I can still draw conclusion that H02 is rejected.

Under H03 and H24, the p-values are large regardless of K. The p-values of the GC test

(Table 3.9) show that H01 and H02 can also be rejected. Thus, the goodness-of-fit test

and GC test can reach the same conclusion for this data.

3.5.2.2 DATA 2: M780

The M780 (Leander and Porter 2000) consists of 10 taxa and the sequence length is 199.

The plot of SSE against K is shown in Figure 3.5. The optimal K is 6. The p-values
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Figure 3.5: Plot of SSE against K for M780

under H01 are all smaller than 0.01. But for other hypotheses, the p-values are all greater

than 0.1, thus I can only reject the H01 for this data.

The p-values of the GC test (Table 3.10) show that all of p-values are greater than 0.1,

thus GC test fails to reject the H01.

3.5.2.3 DATA 3: M2309

The M2309 (Brandli, Handley, Vogel and Perrin 2005) consists of 11 taxa and the

sequence length is 374. The plot of SSE against K is shown in Figure 3.6.

The optimal K is 7, I also examine K=8, 9, 10 in the results. Under H01, all of

the p-values are less than 0.01. Under H02, only when K=10, the p-value is small

enough to reject the hypothesis. Under H03, when K=8, the p-value is 0.06, where the
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Hypothesis
H01 H02 H03 H04

GC Test 0.84 0.85 0.85 0.85

Goodness-of-Fit Test
K=6 p<0.01 0.35 0.57 0.43
K=7 p<0.01 0.32 0.47 0.39
K=8 p<0.01 0.24 0.33 0.31

Table 3.10: p-values of GC test and goodness-of-fit test under each hypothesis for M780
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Figure 3.6: Plot of SSE against K for M2309
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hypothesis can be marginally rejected. Thus, by adjusting K, I can reject H01, H02 and

H03 marginally.

The p-values of the GC test are all less than 0.01 except H04. Hence, the results of

GC test are similar to the goodness-of-fit test.

Hypothesis
H01 H02 H03 H04

GC Test p<0.01 p<0.01 p<0.01 0.16

Goodness-of-Fit Test

K=7 p<0.01 0.71 0.32 0.89
K=8 p<0.01 0.51 0.06 0.25
K=9 p<0.01 0.12 0.14 0.14

K=10 p<0.01 0.04 0.18 0.36

Table 3.11: p-values of GC and goodness-of-fit test under each hypothesis for M2309

3.6 Conclusion

In this chapter, I explored the performance of two binning methods for Pearson’s

goodness-of-fit test. The hypothesis based on the first method consists of the assumption

of tree and substitution model. Under the easy 4 taxa tree, this method presents the

power to reject the wrong tree when the null model is correct. For any case with model

misspecification, the power is not satisfied when the sequence length is insufficient. For

the data generated under the hard tree case, the power is generally less than those in easy

tree. For any cases with model misspecification, the rejection rates under each tree reach

100% only when the sequence length is 10000. In general, this approach has limited

power. If the number of taxa is large, it is difficult to use this binning method.

Based on the second binning method, the goodness-of-fit test can be applied for

sequence with larger number of taxa to test the substitution model. The results of this test

show that the power significantly increases for most cases in simulation. For real data

analysis, the results of analysis of M1000 is consistent with the GC test. For the M780,

the test has more power than the GC test because GC test fails to reject the JC+I + Γ

model which can be rejected by this test. For M2309, this test can marginally reject the

HKY+I + Γ model and it is close to the conclusion drawn by GC test. However, the this

test require the MLE under the ML tree, hence, it may also sensitive to the tree (when

the ML the tree is extremely wrong, it can impact on the results).



CHAPTER 4

CONCLUSION AND FUTURE WORKS

4.1 Conclusion

The ML method provides consistent results for the data generated from an easy tree,

regardless of the analytical model. For the data generated under a hard tree, the results

can also converge to the true tree if the analytical model is correct. However, for the data

generated under a hard tree and analyzed with misspecified models, the results generally

converge to the LBA tree except in some special cases when models are only slightly

misspecified. As a reference of the ML method, the EL method sometimes can better

demonstrate these results. Within the LBA scenarios, even when the ML tree is the true

tree, the branch length estimates are often very biased.

I developed two methods based on Pearson’s goodness-of-fit test for testing the

adequacy of substitution models. The basic ideas for these two tests are both to make

Pearson’s goodness-of-fit test applicable through binning the site patterns. Two different

binning methods have been developed in this thesis: (1) binning depending on the tree in

the null hypothesis and (2) binning based on the frequencies of the nucleotide characters

of each site. The first test has acceptable size but limited power for shorter sequence

lengths.

Based on the second binning method, the test can be easily applied to the data with

large number of taxa. This test has both satisfactory sizes and powers in most simulation

scenarios for the sequences with either low or high number of taxa. In the empirical data

analysis, this test was compared to the GC test, and the results show that it has similar or

larger power to reject the null models.

51
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4.2 Future work

The second test has shown to be a simple and powerful model adequacy test. The K

value in this test is directly related to the power of the test. In future work, better methods

to choose the optimal K value to maximize the power of the test should be developed.

Some explanations about the high power of this test should be explored so that this

test can be better accepted and applied. The sensitivity of the test to the tree topology

should also be investigated. The design of the test should make it relatively robust to

misspecification of topology. However this should be confirmed by simulation studies.



BIBLIOGRAPHY

[1] J. Bergsten. 2005. “A review of long-branch attraction.” Cladistics 21:163-193.

[2] L. Brandli, L. J. Handley, P. Vogel and N. Perrin. 2005. “Evolutionary history of the
greater white-toothed shrew (Crocidura russula) inferred from analysis of mtDNA,
Y and X chromosome markers.” Mol. Phylogenet. Evol. 37:832-844.

[3] W. J. Bruno and A. L. Halpern. 1999. “Topological bias and inconsistency of
maximum likelihood using wrong models.” Mol. Biol. Evol, 16:564-566.

[4] L. L. Cavalli-Sforza and A. W. F. Edwards. 1967. “Phylogenetic analysis: Models
and estimation procedures.” Evolution 32:550-570.

[5] P. Cox, K. Huynh and B. Stone. 1995. “Evolution and systematics of the Pan-
danaceae.” In: Rudall P., Cribb P., Cutler D., & Humphries C., eds. Monocotyledons:
systematics and evolution. pp. 663-684. Kew, Royal Botanic Gardens.

[6] A. W. F. Edwards and L. L. Cavalli-Sforza. 1963. “The reconstruction of evo-
lution.”Annals of Human Genetics 27: 105-106 (also published in Heredity 18:
553).

[7] A. W. F. Edwards and L. L. Cavalli-Sforza. 1964. “Reconstruction of evolutionary
trees.” pp. 67-76 in Phenetic and Phylogenetic Classification, ed. V. H. Heywood
and J. McNeill. Systematics Association Publ. No.6, London.

[8] J. Felsenstein. 1978. “Cases in which parsimony or compatibility methods will be
positively misleading.” Syst. Zool. 27:401410.

[9] J. Felsenstein. 1981. “Evolutionary trees frome DNA sequences: Maximum likeli-
hood approach.” Journal of Molecular Evolution 17: 368-376.

[10] J. Felsenstein. 2004. Inferring Phylogeny. Sinauer.

[11] W. Fletcher and Z. H. Yang. 2009. “INDELible: A flexible simulator of biological
sequence evolution.” Mol. Biol. Evol 26 (8): 1879-1888.

[12] N. Goldman. 1993. “Statistical tests of models of DNA substitution.” J. Mol. Evol.
36:18298.

[13] M. Hasegawa, H. Kishino and T. Yano. 1985. “Dating of human-ape splitting by a
molecular clock of mitochondrial DNA.” J. Mol. Evol 22: 160-174.

[14] J. Huelsenbeck. 1995. “Performance of phylogenetic methods in simulation.” Syst.
Biol. 44(1): 17-48.

53



November 15, 2012 54

[15] T. H. Jukes and C. R. Cantor. 1969. “Evolution of protein molecules.” pp. 21-132
in Mammalian Protein Metabolism, Vol. III, ed. M. N. Munro. Academic Press,
New York.

[16] S. Kullback and R. A. Leibler. 1951. “On information and sufficiency.” Ann. Math.
Statist. 22, 79-86.

[17] C. Lanave, G. Preparata, C. Saccon and G. Serio. 1984. “A new method for
calculating evolutionary substitution rates.” Journal. Mol. Evol 20: 86-93.

[18] C. A. Leander and D. Porter. 2000. “The Labyrinthulomycota is comprised of three
distinct lineages.” Mycologia 93:459-464.

[19] M. A. Peeples. 2011. “R Script for K-Means Cluster Analysis.” [online]. Available:
http://www.mattpeeples.net/kmeans.html.

[20] D. Posada and K. A. Crandall. 1998. “ModelTest: testing the model of DNA
substitution.” Bioinformatics 14(9): 817-818.

[21] J. Ripplinger and J. Sullivan. 2010. “Assessment of Substitution Model Adequacy
Using Frequentist and Bayesian Methods.” Mol. Biol. Evol., 27 (12):2790-2803.

[22] J. Sullivan and P. Joyce. 2005. “Model Selection In Phylogenetics.” Annu. Rev.
Ecol. Evol. Syst., 2005. 36: 445 - 66.

[23] E. Susko. 2011. “Large sample approximations of probabilities of correct evolu-
tionary tree estimation and biases of maximum likelihood estimation.” Statistical
Applications in Genetics and Molecular Biology 10(1), Article 10.

[24] P. J. Waddell, R. Ota and D. Penny. 2008. “Measuring Fit of Sequence Data to
Phylogenetic Model: Gain of Power using Marginal Tests.” Mol. Biol. Evol. 22:
395.

[25] Z. H. Yang. 1994. “Estimating the Pattern of Nucleotide Substitution.” J. Mol. Evol.
39: 105-111.


