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Abstract

This thesis consists of two parts. In the first part, which is expository, abstract theory

of one-parameter operator is studied semi-groups. We develop in detail the necessary

Banach space and Banach algebra theories of integration, differentiation, and series,

and then give a careful rigorous proof of the exponential function characterization of

continuous one-parameter operator semigroups. In the second part, which is applied

and has new result, we discuss some related topics in dynamical systems. In general

the linearizations give a reliable description of the non-linear orbits near the equi-

librium points (the Hartman-Grobman theorem), thus illustrating the importance of

linear semigroups. The aim of qualitative analysis of differential equations (DE) is to

understand the qualitative behaviour (such as, for example, the long-term behaviour

as t → ∞) of typical solutions of the DE. The flow in the direction of increasing

time defines a semigroup. As an application we study Einstein-Aether Cosmological

models using dynamical systems theory.
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Chapter 1

Introduction

A dynamical system is a collection of mappings Tt : X → X on a space X indexed

by the time parameter t ≥ 0 and satisfying⎧⎨
⎩Tt1 ◦ Tt2 = Tt1+t2

T0 = the identity map

Because [0,∞) is a semigroup under addition (i.e., addition is associative), and

these conditions define a homomorphism of [0,∞) with mappings on X , then math-

ematically {Tt} is called a one-parameter semigroup on X . The simplest example is

the exponential function eta for a ∈ C; defining Tt : C → C by

Tt(z) = eta z for z ∈ C,

then {Tt} is a one-parameter operator semigroup on C. It is a familiar fact that

f(t) = eta is the unique solution to the initial value problem⎧⎨
⎩f ′(t) = a.f(t)

f(0) = 1.

Furthermore, any continuous function f satisfying⎧⎨
⎩f(t1)f(t2) = f(t1 + t2)

f(0) = 1

must be differentiable and satisfy the above initial value problem for some a ∈ C, and

therefore must be of the form eta. This exponential function characterization of the

one-parameter operator semigroup on C generalizes perfectly to hold in the abstract

setting where X is a Banach space, the mappings Tt are bounded linear operators

1



2

on X , and t → Tt is continuous with respect to the operator norm. In the first part

of this thesis we develop in detail the necessary Banach space and Banach algebra

theories of integration, differentiation, and series, and then give a careful rigorous

proof of this characterization. Selection for three books [1–3] are used for developing

this theory.

In the second part we discuss some related topics in dynamical systems, and

present an application. The aim of qualitative analysis of differential equations (DE)

is to understand the qualitative behaviour (such as, for example, the long-term be-

haviour as t → ∞) of typical solutions of the DE. As a physical system evolves in

time, the state vector can be thought of as a moving point in state space, its mo-

tion being determined by a flow. The flow of a DE partitions the state space Rn into

subsets called orbits. The flow in the direction of increasing time defines a semigroup.

The study of exceptional solutions, such as equilibrium solutions, and their sta-

bility, is of importance. In general the linearizations give a reliable description of the

non-linear orbits near the equilibrium points (the Hartman-Grobman theorem), thus

illustrating the importance of linear semigroups.

In cosmology the Universe on the largest scales is studied dynamically. Therefore,

the qualitative features of such models can be studied using dynamical systems theory.

As an application we study Einstein-Aether Cosmological models. We establish the

governing evolution equations (of a class of spatially anisotropic cosmological models

in Einstein-Aether theory that include curvature and shear) as an autonomous system

of first order differential equations in terms of expansion normalized variables. We

study the stability of equilibrium points and we conclude that there always exists a

range of values of the parameters of the model for which there exists an inflationary

future attractor.



Chapter 2

Preliminaries

2.1 Banach Space

We assume familiarity with the basic theory of Banach spaces outlined in this section.

2.1.1 Definition

Let X be a (real or complex) vector space. A norm on X is a map ||.|| : X → [0,∞)

satisfying the following properties for all x, y ∈ X , and t ∈ C

(i) Non-degeneracy: ||x|| = 0 ⇔ x = 0

(ii) Scaling: ||tx|| = |t| ||x||

(iii) Triangle inequality: ||x+ y|| ≤ ||x||+ ||y||

A vector space (X , ||.||) endowed with a norm is called a normed vector space. A

normed vector space (X , ||.||) is always a metric space, with the norm metric d given

by

d(x, y) = ||x− y||

We therefore have all metric space notions, such as Cauchy and convergent sequences,

continuous functions, e.t.c. A Banach space is a complete normed vector space; that

is, a normed vector space (X , ||.||) in which every Cauchy sequence converges.

2.1.2 Bounded Linear Maps

A linear map T : X → Y between normed vector spaces X and Y is bounded if there

exists C > 0 such that

||Tx||Y ≤ C||x||X , ∀x ∈ X .

3



4

The bounded linear maps form a vector space L(X ,Y) under point-wise addition and

scalar multiplication. The following assertions are equivalent:

(i) T is bounded.

(ii) T is continuous.

(iii) T is continuous at one point.

Given a bounded linear map T : X → Y , we set

||T || = inf{C : ||Tx|| ≤ C||x|| for all x} .

Then

||T || = sup{||Tx|| : ||x|| = 1} = sup

{ ||Tx||
||x|| : x �= 0

}
.

This defines a norm on the space L(X ,Y) of all bounded linear maps from X to Y .

Note that, L(X ,Y) is a Banach space if Y is a Banach space. We write L(X ) for

L(X ,X ) and call elements T ∈ L(X ) bounded operators on X .

2.1.3 Invertible Operators

Let X be a Banach space. If T ∈ L(X ) is one-to-one and onto, then the inverse T−1

is also bounded, and T is called invertible. The invertible operators form an open

subset of L(X ).

2.1.4 Dual Space

Moreover, if X is a normed vector space, the space L(X ,C) of bounded linear func-

tional on X is called the dual space of X and denoted by X ∗.

The Complex Hahn-Banach Theorem: Let X be a complex vector space, Z a

subspace of X , and k a semi norm on X (that is, a norm which does not necessarily

satisfy non-degeneracy). Also, let f be a complex linear functional on Z such that

|f(x)| ≤ k(x) for all x ∈ Z. Then there exists a complex linear functional F on X
such that |F (x)| ≤ k(x) for all x ∈ X and F |Z = f .

A consequence of this theorem which we will use later is as follows.
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Corollary: Let X be a normed vector space. Then, the bounded linear functional

on X separates points.

Proof. Let x, y ∈ X be distinct points and z = x − y. We have, z �= 0 and hence

a = ||z|| �= 0. Then by applying the Hahn Banach theorem with k = ||.|| , Z = Cz =

{λz : λ ∈ C} and define the map as follows:

f : Z → C

f(λz) = λa.

For λ1z, λ2z ∈ Z, and t ∈ C we have

f(λ1z + tλ2z) = f((λ1 + tλ2)z) = (λ1 + tλ2)a = λ1a+ tλ2a = f(λ1z) + tf(λ2z),

so f is a complex linear functional on Z. f satisfies

|f(λz)| = |λa| = |λ|a = |λ|||z|| = ||λz|| = k(λz),

and hence

|f(λz)| ≤ k(λz).

By the Hahn Banach therorem, there exists a complex linear functional F on X such

that |F (z)| ≤ ||z|| ∀z ∈ X and F |Z = f . Thus F ∈ X ∗. Since f(z) = ||z|| �= 0, then

f(x)− f(y) = f(x− y) �= 0,

which implies f(x) �= f(y), as required.

2.1.5 Series

Given a sequence {xn} in a Banach space, we can construct a new sequence of partial

sums {
n∑

j=0

xj

}
: x0 , x0 + x1 , x0 + x1 + x2 , . . .

If this sequence converges, we say the series
∑∞

n=0 xn converges, and set

∞∑
n=0

xn = lim
n→∞

n∑
j=0

xj.
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The index can always be shifted: if a series
∑∞

n=0 xn converges, then for all k

∞∑
n=0

xn =
∞∑
n=k

xn−k .

Note that if A : X → X is a bounded linear map and
∑∞

n=0 xn converges, then by

linearity

A

(
n∑

j=0

xj

)
=

n∑
j=0

Axj,

and by continuity

lim
n→∞

A

(
n∑

j=0

xj

)
= A

(
lim
n→∞

n∑
j=0

xj

)
.

Therefore,
∑∞

n=0 Axn converges, and

∞∑
n=0

Axn = A

( ∞∑
n=0

xn

)
. (2.1)

A series
∑∞

n=0 xn is said to converge absolutely if the series
∑∞

n=0 ||xn|| converges. The
concept of absolute convergence gives a criterion for completeness: a normed vector

space is a Banach space if and only if every absolutely convergent series converges.

In a Banach space, if a series
∑∞

n=0 xn converges absolutely, then∣∣∣∣∣
∣∣∣∣∣

∞∑
n=0

xn

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
n=0

||xn|| .

2.2 Continuity and Derivatives in Banach Space

We will consider a function f : R → X defined on an interval (a,b).

Definitions

(i) f is weakly differentiable at t = t0 with weak derivative f ′(t0) ∈ X if

lim
t→t0

f(t)− f(t0)

t− t0
= f ′(t0)

with respect to the weak topology on X . That is,

lim
t→t0

h

(
f(t)− f(t0))

t− t0

)
= h(f ′(t0)) ∀h ∈ X ∗.
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For each h ∈ X ∗, by linearity we have

h

(
f(t)− f(t0)

t− t0

)
=

h(f(t))− h(f(t0)))

t− t0
,

so weak differentiability means that each h ◦ f : R → C is differentiable at t0

with derivative h′(f(t0)).

(ii) f is strongly differentiable at t = t0 with strong derivative f ′(t0) ∈ X if

lim
t→t0

f(t)− f(t0)

t− t0
= f ′(t0)

with respect to the norm topology on X . That is,

lim
t→t0

∣∣∣∣
∣∣∣∣f(t)− f(t0)

t− t0
− f ′(t0)

∣∣∣∣
∣∣∣∣ = 0 .

Note that strong differentiability at t0 implies weak differentiability, with the same

derivative. To see this, suppose f is strongly differentiable at t0, and let h ∈ X ∗.

Then

lim
t→t0

f(t)− f(t0)

t− t0
= f ′(t0)

and by continuity we have that

lim
t→t0

h

(
f(t)− f(t0))

t− t0

)
= h(f ′(t0)) .

Continuity and Differentiability

Proposition 1. If f is (strongly) differentiable at t0, then f is continuous at t0.

Proof. Since f is differentiable at t0, there exists r > 0 such that

0 < |t− t0| < r =⇒
∣∣∣∣
∣∣∣∣f(t)− f(t0)

t− t0
− f ′(t0)

∣∣∣∣
∣∣∣∣ < 1.

Hence ∣∣∣∣
∣∣∣∣f(t)− f(t0)

t− t0

∣∣∣∣
∣∣∣∣− ||f ′(t0)|| ≤

∣∣∣∣
∣∣∣∣f(t)− f(t0)

t− t0
− f ′(t0)

∣∣∣∣
∣∣∣∣ < 1.

Therefore ∣∣∣∣
∣∣∣∣f(t)− f(t0)

t− t0

∣∣∣∣
∣∣∣∣ < ||f ′(t0)||+ 1,
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and so

||f(t)− f(t0)|| < (||f ′(t0)||+ 1)|t− t0|.

Let ε > 0 and take δ < min(r, ε
||f ′(t0)||+1

). Then for 0 < |t− t0| < δ,

||f(t)− f(t0)|| < (||f ′(t0)||+ 1)|t− t0| < (||f ′(t0)||+ 1)
ε

||f ′(t0)||+ 1
= ε.

Zero Derivative

Theorem 2. If the weak derivative of f is equal to zero everywhere in (a, b), then f

is constant on (a, b).

Proof. We fix any t0 ∈ (a, b) and let t ∈ (a, b). For each h ∈ X ∗, the function

h ◦ f : R → C has derivative h(0) = 0 on (a, b). Hence, each h ◦ f is a constant

function on (a, b). Thus

h(f(t0)) = h(f(t)).

Since this holds for all h ∈ X ∗, Corollary (2.1.4) implies

f(t0) = f(t),

which finishes the proof.

2.3 Riemann Integral in Banach Space

2.3.1 Tagged Partitions

Definitions

(1) A partition P of an interval [a,b] is a finite ordered set of numbers {t0, t1, · · · , tn}
such that a = t0 < · · · < tn = b. The mesh of the interval, denoted by |P |, is the
length of its longest subinterval

|P | = n
max
i=1

(ti − ti−1).
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(2) A tagged partition π of an interval [a,b] is a partition (P : a = t0 < · · · < tn = b)

together with a set of points τ = {τ1, · · · , τn} such that

τi ∈ [ti−1, ti] for each i = 1, ..., n.

Note that we define the mesh of π simply to be the mesh of P : |π| = |P |.

(3) If P denotes the collection of all tagged partitions of [a, b], and X is a Banach

space and 	 ∈ X , then for any function g : P −→ X we define the limit

lim
|π|→0

g(π) = 	

to mean that given ε > 0 , there exists δ > 0 such that for all π ∈ P we have

|π| < δ =⇒ ||g(π)− 	|| < ε.

Note that if the limit 	 exists, then it is unique.

(4) With notation as in (3) above, the completeness of X gives us the following

Cauchy criterion: lim|π|→0 g(π) exists if and only if for every ε > 0 there exists

δ > 0 such that for all π1, π2 ∈ P

|π1|, |π2| < δ =⇒ ||g(π1)− g(π2)|| < ε .

2.3.2 Riemann Sum and Riemann Integral

Definitions Let X be a Banach space, f : [a, b] −→ X .

Consider a tagged partition π = (P, τ) of the interval [a,b] with

P : a = t0 < t1 < ..... < tn = b and τ = {τ1, ...τn}.

The Riemann sum of f on [a, b] for π is given by

Sf,[a,b](π) = Sf (π) =
n∑

i=1

f(τi)(ti − ti−1), (2.2)

where we note f(τi) ∈ X and (ti − ti−1) is a real scalar. Observe that for each tagged

partition π of [a,b], Sf (π) ∈ X , and so Sf : π �→ Sf (π) defines a map P → X . We

say f is Riemann integrable if

lim
|π|→0

Sf (π) = S
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in the sense defined in Section 2.3.1 (3) above. If f is Riemann integrable, the limit

S is called the Riemann integral of f over [a, b], and denoted
∫ b

a
f(s)ds. In fact,∫ a

b
f(s)ds = − ∫ b

a
f(s)ds and

∫ a

a
f(s)ds = 0.

Basic Propositions on Banach Space:

Proposition 3. If f : [a, b] −→ X is Riemann integrable on [a, b], then it is Riemann

integrable on [a, c] and [c, b], for all c ∈ (a, b).

Proof. Let ε > 0. Then by the Cauchy criterion, there exists δ > 0 such that for all

tagged partitions π1, π2 of [a, b],

|π1|, |π2| < δ =⇒ ||Sf (π1)− Sf (π2)|| < ε . (2.3)

Consider any tagged partitions σ1, σ2 of [a, c] and ρ of [c, b] with |σ1|, |σ2|, |ρ| < δ.

Then π1 = σ1 ∪ ρ and π2 = σ2 ∪ ρ are tagged partitions of [a, b] with mesh less than

δ, and so (2.3) holds. But

Sf (π1) = Sf,[a,c](σ1) + Sf,[c,b](ρ).

and

Sf (π2) = Sf,[a,c](σ2) + Sf,[c,b](ρ).

Therefore

||Sf,[a,c](π1)− Sf,[a,c](π2)|| = ||Sf (π1)− Sf (π2)|| < ε

So by the Cauchy criterion, f is Riemann integrable on [a, c]. The proof on [c, b] is

similar.

Proposition 4. If f : [a, b] → X is Riemann integrable on [a, b], then∫ b

a

f(s)ds =

∫ c

a

f(s)ds+

∫ b

c

f(s)ds ∀c ∈ (a, b).

Proof. Let ∫ b

a

f(s)ds = A ,

∫ c

a

f(s)ds = B ,

∫ b

c

f(s)ds = C.

We want to show that A = B + C. Let ε > 0 be given. It suffices to show ||A −
(B+C)|| < ε. Since we proved that f is Riemann integrable on [a, b], [a, c], and [c, b],
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there exists δ > 0 such that for all tagged partitions π, π1, π2 of [a, b], [a, c] and [c, b]

respectively, with |π|, |π1|, and |π2| < δ we have

N1 =
∥∥Sf,[a,c](π1)− B

∥∥ <
ε

3
, N2 =

∥∥Sf,[c,b](π2)− C
∥∥ <

ε

3
,

and

N = ‖A− Sf (π)‖ <
ε

3
.

Take π1, π2 partitions of [a, c] and [c, b] respectively as above. Then, π = π1 ∪ π2 is a

partition of [a,b] with |π| < δ, and

Sf (π) = Sf,[a,c](π1) + Sf,[c,b](π2) .

Then

‖A− (B + C)‖ = ||A− Sf (π) + Sf (π1) + Sf (π2)− (B − C)||
≤ N +N1 +N2 =

ε

3
+

ε

3
+

ε

3
= ε.

Therefore, ∥∥∥∥
∫ b

a

f(s)ds−
(∫ c

a

f(s)ds−
∫ b

c

f(s)ds

)∥∥∥∥ < ε

Proposition 5. If f : [a, b] −→ X is continuous, then f is Riemann integrable on

[a, b].

Proof. If f is continuous on [a,b], then f is uniformly continuous, since [a, b] is com-

pact. Let ε > 0 be given, then there exists δ > 0 such that ||f(t)−f(s)|| < ε
2(b−a)

when-

ever t, s ∈ [a, b] and |t− s| < δ. We will use the Cauchy criterion from Section 2.3.1

(4) to prove integrability. Consider tagged partitions π1 = (P1, τ), π2 = (P2, σ) on

[a,b] with |π1|, |π2| < δ. Suppose

P1 : a = x0 < x1 < ..... < xn = b and τ = {t1, ..., tn},
P2 : a = y0 < y1 < ..... < ym = b and σ = {s1, ..., sm}.

Then the Riemann sum is

Sf (π1) =
n−1∑
i=0

f(ti)(xi+1 − xi) , Sf (π2) =
m−1∑
k=0

f(sk)(yk+1 − yk).
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Let P = P1 ∪ P2. P is a refinement of both partitions P1, P2 and it has the form

a = z0,0 = x0 < .... < z0,n0 = z1,0 = x1 < ... < zn−1,nn−1 = zn,0 = xn = b.

Let π be a tagged partition partition tagged with its left end points as in figure 2.1

Figure 2.1: tagged partition of [a,b]

Now taking one subinterval of the partition P , we have

xi+1 − xi =

ni−1∑
j=0

(zi,j+1 − zi,j) .

Since xi+1 = zi+1,0 , xi = zi,0 we want to find the difference between Sf (π1) and

Sf (π2):

||Sf (π1)− Sf (π2)|| = ||Sf (π1)− Sf (π) + Sf (π)− Sf (π2)||
≤ ||Sf (π1)− Sf (π)||+ ||Sf (π)− Sf (π2)||.

We will study each term separately. For the first term, we have

||Sf (π1)− Sf (π)|| =

∥∥∥∥∥
n−1∑
i=0

f(ti) (xi+1 − xi)−
n−1∑
i=0

ni−1∑
j=0

f(zi,j) (zi,j+1 − zi,j)

∥∥∥∥∥
=

∥∥∥∥∥
n−1∑
i=0

f(ti)

ni−1∑
j=0

(zi,j+1 − zi,j)−
n−1∑
i=0

ni−1∑
j=0

f(zi,j) (zi,j+1 − zi,j)

∥∥∥∥∥
=

∥∥∥∥∥
n−1∑
i=0

ni−1∑
j=0

(f(ti)− f(zi,j)) (zi,j+1 − zi,j)

∥∥∥∥∥
≤

n−1∑
i=0

ni−1∑
j=0

||f(ti)− f(zi,j)|| (zi,j+1 − zi,j) .
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But each ||f(ti)− f(zi,j)|| < ε
2(b−a)

, since ti, zi,j ∈ [xi, xi+1] and |π1| < δ . So,

|ti − zi,j| ≤ xi+1 − xi ≤ |π| < δ.

Hence

||Sf (π1)− Sf (π)|| ≤
n−1∑
i=0

ni−1∑
j=0

(
ε

2(b− a)

)
(zi,j+1 − zi,j) =

ε

2(b− a)
(b− a) =

ε

2
.

Similarly, for the second part,

||Sf (π)− Sf (π2)|| ≤ ε

2
.

By adding the last two equations,

||Sf (π1)− Sf (π)|| ≤ ε.

Proposition 6. If f : [a, b] −→ X is Riemann integrable on [a, b] and continuous at

c ∈ [a, b], then

W (t) =

∫ t

a

f(s)ds

is differentiable at c with W ′(c) = f(c).

Proof. Suppose h > 0 and c+ h ∈ (a, b). By Proposition (4), we have

∫ c+h

a

f(s)ds =

∫ c

a

f(s)ds+

∫ c+h

c

f(s)ds.

Therefore,

W (c+ h)−W (c) =

∫ c

a

f(s)ds+

∫ c+h

c

f(s)ds−
∫ c

a

f(s)ds

=

∫ c+h

c

f(s)ds.

If h < 0 and c+ h ∈ [a, b], then by Proposition (4),

∫ c

a

f(s)ds =

∫ c+h

a

f(s)ds+

∫ c

c+h

f(s)ds.
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Therefore,

W (c+ h)−W (c) =

∫ c+h

a

f(s)ds− (

∫ c+h

a

f(s)ds+

∫ c

c+h

f(s)ds)

= −
∫ c

c+h

f(s)ds =

∫ c+h

c

f(s)ds.

Then, we want to show that

lim
h→0

1

h

∫ c+h

c

f(s)ds = f(c).

Let ε > 0. Since f is continuous at c ∈ [a, b], there exists δ > 0 such that

s ∈ (c− δ, c+ δ) ⇒ ||f(s)− f(c)|| < ε

2
. (2.4)

Let 0 < h < δ. Since f is Riemann integrable on [c, c + h], there exists r > 0 such

that for any tagged partition π of [c, c+ h] with |π| < r,

∥∥∥∥
∫ c+h

c

f(s)ds− Sf (π)

∥∥∥∥ <
εh

2
.

Let π = (P, τ) be such a tagged partition, with P : c = x0 < x1 < ..... < xn =

c+ h and τ = {t1, ...tn}. Then, we have

Sf (π) =
n−1∑
i=0

f(ti)(xi+1 − xi).

This implies∥∥∥∥1h
∫ c+h

c

f(s)ds− f(c)

∥∥∥∥ =

∥∥∥∥1h
∫ c+h

c

f(s)ds− 1

h
Sf (π) +

1

h
Sf (π)− f(c)

∥∥∥∥
≤

∥∥∥∥1h
∫ c+h

c

f(s)ds− 1

h
Sf (π)

∥∥∥∥+

∥∥∥∥1hSf (π)− f(c)

∥∥∥∥ .
For the first term, we have∥∥∥∥1h

∫ c+h

c

f(s)ds− 1

h
Sf (π)

∥∥∥∥ =

∣∣∣∣1h
∣∣∣∣
∥∥∥∥
∫ c+h

c

f(s)ds− Sf (π)

∥∥∥∥ ≤ 1

h
(
εh

2
) =

ε

2
.(2.5)

For the second term, we have∥∥∥∥1hSf (π)− f(c)

∥∥∥∥ =

∣∣∣∣1h
∣∣∣∣ . ||Sf (π)− hf(c)|| . (2.6)
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Moreover, we know that

h = c+ h− c

= xn − x0

= (xn − xn−1) + (xn−1 − xn−2) + ....+ (x1 − x0)

=
n−1∑
i=0

(xi+1 − xi)

By replacing h in (2.6) with
∑n−1

i=0 (xi+1 − xi), we obtain

∥∥∥∥1hSf (π)− f(c)

∥∥∥∥ =

∣∣∣∣1h
∣∣∣∣
∥∥∥∥∥
n−1∑
i=0

f(ti) (xi+1 − xi)−
n−1∑
i=0

(xi+1 − xi) f(c)

∥∥∥∥∥
=

1

h

∥∥∥∥∥
n−1∑
i=0

(f(ti)− f(c)) (xi+1 − xi)

∥∥∥∥∥
≤ 1

h

n−1∑
i=0

||f(ti)− f(c)|| (xi+1 − xi) .

But ti ∈ (xi+1, xi) ⊂ [c, c+ h] and h < δ, so ti ∈ (c− δ, c+ δ). Therefore by (2.3.2),

||f(ti)− f(c)|| < ε

2
.

Hence, ∥∥∥∥1hSf (π)− f(c)

∥∥∥∥ ≤ ε

2h

n−1∑
i=0

(xi+1 − xi) =
ε

2
. (2.7)

By adding (2.5) and (2.7), we obtain∥∥∥∥1h
∫ c+h

c

f(s)ds− f(c)

∥∥∥∥ ≤ ε

2
+

ε

2
= ε

The proof is similar for h < 0. Hence

W (t) =

∫ t

a

f(s)ds

is differentiable at c ∈ (a, b) with W ′(c) = f(c).

Proposition 7. If f : [a, b] → X is continuous and f = F ′, then∫ b

a

f(s)ds = F (b)− F (a).
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Proof. Let

W (t) =

∫ t

a

f(s)ds

Then (W − F )′(t) = W ′(t) − F ′(t) = f(t) − f(t) = 0 for all t. Therefore, W − F is

constant. Hence

W (b)− F (b) = W (a)− F (a) = 0− F (a) = −F (a).

Therefore ∫ b

a

f(s)ds = W (b) = F (b)− F (a).

Proposition 8. Let f : [a, b] −→ X be a continuous map and A ∈ L(X ), then

A

∫ b

a

f(s)ds =

∫ b

a

Af(s)ds.

Proof. Since A : X −→ X and f : [a, b] −→ X are continuous maps, it follows that

the composition (A ◦ f) is continuous map. Hence, by Proposition (5), both f and

A ◦ f are integrable with∫ b

a

f(s)ds = lim
|π|→0

Sf (π) and

∫ b

a

A(f(s))ds = lim
|π|→0

SA◦f (π).

Let x = lim|π|→0 Sf (π) and y = lim|π|→0 SA◦f (π). We want to show A(x) = y. By

linearity, for each tagged partition π = (P, τ) of [a, b], we have

A(Sf (π)) = A

n∑
i=1

f(τi)(ti − ti−1)

=
n∑

i=1

A(f(τi))(ti − ti−1)

= SA◦f (π).

Thus,

y = lim
|π|→0

SA◦f (π) = lim
|π|→0

A(Sf (π)),

and so we must show A(x) = lim|π|→0 A(Sf (π)). This follows from the fact that A is

continuous and x = lim|π|→0 Sf (π). To see this, let ε > 0 be given. We want to find

δ > 0 such that for all tagged partitions π of [a, b]

|π| < δ =⇒ ||A(Sf (π)− A(x)|| < ε.
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Since A is continuous, we have

lim
z→x

A(z) = A(x).

Hence, there exists δ1 > 0 such that for all z ∈ X

||z − x|| < δ1 =⇒ ||A(z)− A(x)|| < ε.

Since x = lim|π|→0 Sf (π), there exists δ > 0 such that for all tagged partitions π of

[a, b],

|π| < δ =⇒ ||Sf (π)− x|| < δ1.

This implies ||A(Sf (π))− A(x)|| < ε, as required.

Proposition 9. Change of variables: If g : R → R is continuously differentiable on

[a, b] and f : R → R is continuous on g([a, b]), then

∫ g(b)

g(a)

f(u)du =

∫ b

a

f(g(t))g′(t)dt. (2.8)

Proof. Because f is continuous on g([a, b]), then by the fundamental theorem of cal-

culus, the function

F (y) =

∫ y

g(a)

f(u)du

is differentiable on g([a, b]) and F ′(y) = f(y). Since f is continuous on g([a, b]) and

g, g′ are continuous on [a, b], the function

H(s) =

∫ s

a

f(g(t))g′(t)dt ∀s, t ∈ [a, b].

is differentalbe on [a, b], and

H ′(s) = f(g(s))g′(s) ∀s ∈ [a, b]

H ′(s) = F ′(g(s))g′(s) = (F ◦ g)′(s) by chain rule.
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Hence H ′(s)−(F ◦g)′(s) = 0 which implies that H(s)−F ◦g(s) is a constant function.
To see this, let a ∈ [a, b] then H(a)−F (g(a)) = 0 from the definition of the F (y) and

H(s). Therefore we conclude that H = F ◦ g. Also, we have

∫ b

a

f(g(t))g′(t)dt = H(b) = F (g(b)) =

∫ g(b)

g(a)

f(u)du



Chapter 3

Banach Algebra

3.1 Definition

A Banach algebra is a Banach space A together with a map

· : A×A −→ A
(x, y) �−→ xy

called the product, which satisfies the following properties for all x1, x2, x, y, z ∈ A
and a ∈ C

(i) Associativity: x(yz) = (xy)z,

(ii) Bilinearity: (ax1 + x2)y = ax1y + x2y, y(ax1 + x2) = ayx1 + yx2,

(iii) Triangle inequality: ||xy|| ≤ ||x|| ||y|| .

3.1.1 Examples

(a) The complex numbers C form a (one dimensional) complex Banach space, with

the absolute value as norm: |x + iy| = √
x2 + y2. The usual product of two

complex numbers is bilinear and associative, and

|zw| = |z|.|w| ∀ z, w ∈ C.

Hence, the complex numbers form a Banach algebra.

(b) Given any Banach space X , the space L(X ) of all bounded linear operators on

X is also a Banach space. For S, T ∈ L(X ), the composition ST = S ◦ T is in

L(X ), with

||ST || ≤ ||S|| ||T || . (3.1)

The composition operation is bilinear and associative, L(X ) is a Banach algebra

with composition as the product.

19
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3.2 Basic Properties

Continuity of the product: The product map for a Banach algebra, as we defined

it above, is continuous.

Proof. We have the product map

· : A×A −→ A
(x, y) �−→ xy

Let (x, y) ∈ A×A and consider any sequence {(xn, yn)} ⊂ A×A such that

(xn, yn) → (x, y) ∈ A×A.

This implies that: xn → x in A and yn → y in A. Furthermore, since any convergent

sequence is bounded, there exists a constant C > 0 such that ||xn|| ≤ C. From the

bilinearity of the product and the triangle inequality, we obtain

||xnyn − xy|| ≤ ||xnyn − xny||+ ||xny − xy||
≤ ||xn||.||yn − y||+ ||xn − x||.||y||
≤ C||yn − y||+ ||xn − x||||y||.

But since limn→∞ ||xn − x|| = limn→∞ ||yn − y|| = 0, this implies

lim
n→∞

||xnyn − xy|| = 0.

Equivalently, xnyn → xy, as required.

Left and right multiplication in a Banach algebra: Given any z ∈ A, we

define left and right multiplication by z, respectively by

Lz : x �−→ zx ∈ A and Rz : x �−→ xz ∈ A .

These are bounded linear maps on A with

||Lz|| ≤ ||z|| and ||Rz|| ≤ ||z||. (3.2)

Proof. The linearity of Lz and Rz follows directly from the bilinearity of the product.

The boundedness of these maps and (3.2) are immediate from the triangle inequality.
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Product Rule:

Proposition 10. If f, g : R → A are (strongly) differentiable at t0, then fg is

differentiable at t0 with

(fg)′(t0) = f ′(t0)g(t0) + f(t0)g
′(t0).

3.3 Series in a Banach Algebra

Left and Right Multiplication: because left and right multiplication are bounded

linear maps, with operator norms satisfying (3.2), if
∑∞

n=0 xn converges in A then the

left and right multiplication by a ∈ A converge as well. In that case, we have the

equalities

∞∑
n=0

xna =

( ∞∑
n=0

xn

)
a

∞∑
n=0

a.xn = a

( ∞∑
n=0

xn

)
.

Cauchy Product:

Proposition 11. If
∑

an and
∑

bn converge and one of them is absolutely conver-

gent, then

∞∑
n=0

an

∞∑
n=0

bn =
∞∑
k=0

∞∑
n=k

akbn−k

=
∞∑
n=0

n∑
k=0

akbn−k.

Proof. Consider the first equality. For each k, since
∑

bn converges, we obtain

ak

∞∑
n=0

bn = ak

∞∑
n=k

bn−k (by index shift)

=
∞∑
n=k

akbn−k. (by left multiplication)

Since
∑

ak converges, the right multiplication is given by( ∞∑
k=0

ak

)( ∞∑
n=0

bn

)
=

∞∑
k=0

(
ak

∞∑
n=0

bn

)
.
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For the second equality, suppose that
∑

an converges absolutely. Let A =
∑

an,

B =
∑

bn, and define

An =
n∑

j=0

aj , Bn =
∑n

j=0 bj , Cn =
n∑

i=0

i∑
k=0

akbi−k.

We want to show that Cn converges to AB. Hence, let I = {(i, k) ∈ {0, ..., n}2, where
k ≤ i}. Then,

Cn =
∑

(i,k)∈I
akbi−k =

n∑
k=0

n∑
i=k

akbi−k.

Letting j = i− k. Then,

Cn =
n∑

k=0

n−k∑
j=0

akbj

=
n∑

k=0

ak

n−k∑
j=0

bj

=
n∑

k=0

akBn−k

=
n∑

k=0

akBn−k − AnB + AnB

=

(
n∑

k=0

akBn−k

)
−

(
n∑

k=0

akB

)
+ AnB

=
n∑

k=0

ak(Bn−k − B) + AnB

Hence

||AB − Cn|| =

∥∥∥∥∥(A− An)B −
n∑

k=0

ak (Bn−k − B)

∥∥∥∥∥
≤ ||A− An|| ||B||+

n∑
k=0

||ak|| ||Bn−k − B||

Since Bn → B and
∑

an converges absolutely, there exists c > 0 such that ||B|| ≤ c,

and ∀n, ||Bn−B|| ≤ c and
∑∞

n=0 ||ak|| ≤ c. Let ε > 0 be given. Since
∑

an converges,

there exists Na > 0 such that for n ≥ Na, ||An − A|| < ε
3c
. This implies

||An − A||||B|| < ε

3
.
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an converges absolutely, there exists M > 0 such that

∑∞
k=M ||ak|| < ε

3c
. Then, for

n ≥ M , we have
∑n

k=M ||ak|| < ε
3c
, which implies

n∑
k=M

||ak|| ||Bn−k − B|| < c
ε

3c
=

ε

3
.

Since
∑

bn converges, there exists Nb > 0 such that for n ≥ Nb, ||Bn − B|| < ε
3c
. If

n ≥ Nb +M , n− k ≥ Nb for all 0 < k ≤ M − 1, and hence

M−1∑
k=0

||ak|| ||Bn−k − B|| < c ε
3c

= ε
3
.

By taking n ≥ max(Na,M,Nb +M),then

||AB − Cn|| ≤ ||A− An|| . ||B||

+
M−1∑
k=0

||ak|| . ||Bn−k − B||+
n∑

k=M

||ak|| . ||Bn−k − B||

<
ε

3
+

ε

3
+

ε

3
= ε.

3.4 Exponential Function in Operator Algebras

Let X be a Banach space, and consider the Banach algebra L(X ).

Powers: Let A ∈ L(X ). Then we define

A0 = I , A1 = A , A2 = AA , A3 = A2A , . . . , An = An−1A , · · · ∈ L(X )

Then, by induction, for all m,n = 0, 1, 2, . . . , we have AmAn = Am+n and ||An|| ≤
||A||n

Binomial expansion: If A,B ∈ L(X ) commute, then

(A+B)n =
n∑

k=0

(
n

k

)
An−kBk. (3.3)
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Proof. We proceed by induction onn. When n = 0, both sides of the equation areequal

the identity, since (A + B)0 = I,
(
0
0

)
= 1, A0 = I, and B0 = I. Now, assuming (3.3)

holds for n, then we will prove it for n+ 1.

(A+B)n+1 = (A+B)n(A+B)

=

(
n∑

k=0

(
n

k

)
An−kBk

)
(A+B)

=
n∑

k=0

(
n

k

)
An−kBkA+

n∑
k=0

(
n

k

)
An−kBkB.

But if A,B commute (i.e, AB = BA), then BkA = ABk. Hence

(A+B)n+1 =
n∑

k=0

(
n

k

)
An−k+1Bk +

n∑
k=0

(
n

k

)
An−kBk+1

=
n∑

k=0

(
n

k

)
An−k+1Bk +

n+1∑
j=1

(
n

j − 1

)
An−j+1Bj

= An+1B0 +
n∑

k=1

[(
n

k

)
+

(
n

k − 1

)]
An−k+1Bk + A0Bn+1

=
n+1∑
k=0

(
n+ 1

k

)
An−k+1Bk.

Exponential series: Let A ∈ L(X ). We define

eA =
∞∑
n=0

An

n!
∈ L(X ).

We note that this series converges absolutely, since∣∣∣∣
∣∣∣∣An

n!

∣∣∣∣
∣∣∣∣ = 1

n!
||An|| ≤ 1

n!
||A||n,

and the real series
∑∞

n=0
||A||n
n!

converges to the real number e||A||. Thus

∣∣∣∣eA∣∣∣∣ ≤ e||A||.

Note that e0 =
∑∞

n=0
0n

n!
= I + 0 + 0 + · · · = I.
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Product of exponentials: If A,B ∈ L(X ) commute, then eAeB = eA+B. To see

this, we use the Cauchy product and the binomial theorem

eAeB =
∞∑
n=0

An

n!

∞∑
n=0

Bn

n!
=

∞∑
n=0

n∑
k=0

Ak

k!

Bn−k

(n− k)!

=
∞∑
n=0

1

n!

n∑
k=0

n!

k!(n− k)!
AkBn−k

=
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
AkBn−k

=
∞∑
n=0

1

n!
(A+B)n = eA+B.

Inverses of exponentials: If A ∈ L(X ), then eA is invertible with inverse e−A.

This is immediate from above, since A and −A commute and e0 = I.



Chapter 4

Operator Semigroups

From now on, we consider X to be a Banach space.

4.1 Definition

Let T : [0,∞) −→ L(X ) be a mapping. If for all t, s ∈ [0,∞) the identities

⎧⎨
⎩T (t+ s) = T (t)T (s)

T (0) = I
(4.1)

hold, then T is called an operator semigroup.

Continuous semigroups: An operator semigroup T : [0,∞) −→ L(X ) is (uni-

formly) continuous if it is a continuous map from [0,∞) to L(X ) with the operator

norm topology.

Example: For A ∈ L(X ), consider the mapping t �−→ etA. For any t, s ∈ [0,∞),

where tA and sA commute, and the exponential function satisfies the following prop-

erties ⎧⎨
⎩etAesA = e(t+s)A

e0A = I
, (4.2)

etA is an operator semigroup. The following proposition shows it is a continuous

operator semigroup by Proposition (13) in Section (1).

Proposition 12. (Differentiability of the exponential map): The mapping

T : t �−→ etA

26
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is strongly differentiable and satisfies the differential equation⎧⎨
⎩

d
dt
(T (t)) = AT (t) ∀t ≥ 0

T (0) = I.
(4.3)

Proof. We know T (0) = e0 = I. We must find the derivative of T

lim
h→0

T (t+ h)− T (t)

h
= lim

h→0

e(t+h)A − etA

h

= lim
h→0

ehAetA − etA

h

= lim
h→0

(ehA − I)etA

h

= lim
h→0

ehA − I

h
etA.

Now, we want to show that

lim
h→0

ehA − I

h
= A.

We notice

ehA − I =
∞∑
n=0

(hA)n

n!
− I = I +

∞∑
n=1

(hA)n

n!
− I =

∞∑
n=1

(hA)n

n!
,

and hence

∣∣∣∣ehA − I
∣∣∣∣ ≤ ∞∑

n=1

∣∣∣∣
∣∣∣∣(hA)nn!

∣∣∣∣
∣∣∣∣ ≤

∞∑
n=1

||hA||n
n!

=
∞∑
n=1

|h|n ||A||n
n!

= e|h|||A|| − 1.

Therefore ∥∥∥∥ehA − I

h
− A

∥∥∥∥ ≤
∥∥∥∥ehA − I

h

∥∥∥∥− ||A||

≤ e|h|.||A|| − 1

|h| − ||A||

=
f(|h|)− f(0)

|h| − a,

where we are letting a = ||A|| and f(t) = eat is the exponential function on R. Then

we know f is differentiable with f ′(0) = a, so limt→0
f(t)−f(0)

t
= a. Hence

lim
h→0

f(|h|)− f(0)

|h| = a.
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Therefore, limh→0
ehA−I

h
exists and is equal to A.

Because right multiplication is continuous in a Banach algebra, it follows that

lim
h→0

ehA − I

h
etA = AetA.

This proves d
dt
(T (t)) = AT (t).

Theorem 13. If a map T : R �−→ (L(X ), ||.||) is differentiable and satisfies (4.3),

then

T (t) = etA with A = T ′(0) ∈ L(X ).

Proof. Let T : R −→ (L(X ), ||.||) be differentiable and satisfy (4.3). Let A = T ′(0).

Then, by the product rule for the derivative, we have

d

dt

(
e−tAT (t)

)
=

d

dt

(
e−tA

)
T (t) + e−tA d

dt
(T (t))

= −Ae−tAT (t) + e−tAAT (t) ∀t ≥ 0.

Consider

e−tA =
∞∑
n=0

(−t)nAn

n!
=

∞∑
n=0

Bn.

Then by the right multiplication of series for all A ∈ L(X )

e−tAA =

( ∞∑
n=0

Bn

)
A =

∞∑
n=0

(BnA) .

But

BnA =
−tnAn

n!
A =

−tnAn+1

n!
=

−tnAAn

n!
= A

−tnAn

n!
= ABn.

Then by the left multiplication of series for all A ∈ L(X )

e−tAA =
∞∑
n=0

(ABn) = A

∞∑
n=0

Bn = Ae−tA.

Therefore

d

dt

(
e−tAT (t)

)
= −Ae−tAT (t) + Ae−tAT (t) = 0 ∀t ≥ 0.
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Since the derivative is equal to zero, by Theorem (2) the function is equal to a constant

C ∈ L(X ), e−tAT (t) = C, for all t ≥ 0. But then for t = 0

C = e0T (0) = I.

Because e−tA has inverse etA for all t ≥ 0

e−tAT (t) = I

etAe−tAT (t) = etA

T (t) = etA.

4.2 Uniformly Continuous Semigroups

Theorem 14. Every (uniformly) continuous semigroup (T (t))t≥0 on a Banach space

X is of the form T (t) = etA ∀t ≥ 0 for some bounded operator A ∈ L(X ).

Proof. We will proceed by proving that the function (T (t))t≥0 is differentiable and

satisfies (4.3). By Theorem 13 we concluded that it must be of the form T (t) = etA

with T ′(0) = A.

First, because T (t))t≥0 is continuous, we can define the operator

W (t) =

∫ t

0

T (s)ds ∀t ≥ 0.

W (t) is well defined because T (s) is continuous and so the integral exists for all t ≥ 0.

Because T is continuous, by Proposition 6, W is differentiable with W ′(t) = T (t). So

I = T (0) = lim
t→0

W (t)−W (0)

t
= lim

t→0

1

t
W (t).

From Section 2.1.3, we know that the set of invertible operators is open. Since I is

invertible, 1
t
W (t) is invertible for small t ∈ R. Therefore, W (t) is invertible for small

t. Then, for such small t0, we have

T (t) = W−1(t0)W (t0)T (t).
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So

T (t) = W−1(t0)

(∫ t0

0

T (s)ds

)
T (t).

Right multiplication by T (t) in the Banach algebra L(X ) is a bounded linear map,

so by Proposition 8

T (t) = W−1(t0)

∫ t0

0

T (s)T (t)ds.

T is a semigroup, so

T (t) = W−1(t0)

∫ t0

0

T (s+ t)ds.

By Proposition 9, the equation becomes

T (t) = W−1(t0)

∫ t+t0

t

T (s)ds.

= W−1(t0)

(∫ t+t0

0

T (s)ds+

∫ 0

t

T (s)ds

)

= W−1(t0)

(∫ t+t0

0

T (s)ds−
∫ t

0

T (s)ds

)
= W−1(t0)(W (t+ t0)−W (t)).

But W is differentiable for all t ≥ 0, which finishes the proof that T is differentiable.

To find the derivative we use the semigroup property

T ′(t) = lim
h→0

T (t+ h)− T (t)

h

= lim
h→0

T (t)T (h)− T (t)

h

= lim
h→0

T (h)− T (0)

h
T (t) = T ′(0)T (t).

Therefore, with A = T ′(0), we have

d

dt
(T (t)) = AT (t) ∀t ≥ 0

This shows that (T (t))t≥0 is differentiable and satisfies (4.3), which finishes the proof.



Chapter 5

Theory of Dynamical Systems

We shall consider differential equations (DEs) of the form

x′ = f(x), (5.1)

where f : Rn → R
n is continuously differentiable. Here x = (x1(t), · · · , xn(t)), a

function of time, where x′ denotes its derivative. The Euclidean space R
n is called

the state space or phase space. The DE is called linear if f is linear, and hence given

by matrix multiplication f(x) = Ax, for an n×n matrix of real numbers A. However,

in general, we wish to consider non-linear DEs if f is non-linear. Since we identify

each vector f(x) = (f1(x), . . . , fn(x)) ∈ R
n with a vector x ∈ R

n, then the function

f is defined as a vector field. The DE is called autonomous if f does not depend on

t explicitly.

We start by giving some basic definitions and notions:

A function of ψ : R → R
n is called a solution of the DE if

ψ′(t) = f
(
ψ(t)

)
(5.2)

holds for all t ∈ R in the domain of ψ. The images of solutions ψ are called orbits of

the DE. The vector field f is tangent to the orbits because the tangent vector to the

orbit of a solution ψ at ψ(t) is ψ′(t), which satisfies (5.2). A point a ∈ R
n is called

an equilibrium point or fixed point of the DE if it is a zero of the vector field:

f(a) = 0. (5.3)

A constant function ψ(t) = a, for all t ∈ R, is a solution of the DE if and only

if a is an equilibrium point, since ψ′(t) = 0 = f(a). Such a solution describes an

equilibrium state of the physical system. We examine the behaviour of the orbits of

the DE near the equilibrium points to study their stability. Since we are assuming f

31
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is continuously differentiable,

f(x) = f(a) + Df(a)(x− a) +R1(x, a), (5.4)

with

lim
x→a

||R1(x, a)||
||x− a|| = 0 .

Here Df(a) denotes the n× n derivative matrix

Df(x) =

(
∂fi
∂xj

)
, i, j = 1, · · · , n, (5.5)

and R1(x, a) is called the error term. If a ∈ R
n is an equilibrium point of the DE,

then f(a) = 0 and we can rewrite (5.1) as

x′ = f(x) = Df(a)(x− a) +R1(x, a). (5.6)

The linearization of the DE (5.1) at an equilibrium point a is the linear DE

u′ = Df(a)u.

Since f(x) ≈ Df(a)(x− a) for x near an equilibrium point a, in general, solutions

of the linearization approximate the solutions of the original non-linear DE near the

equilibrium points.

5.1 Linear Autonomous Differential Equations

Let A be an n× n real matrix. Then the linear DE

x′ = Ax , x(0) = a ∈ R
n, (5.7)

has the unique solution of the form

x(t) = etAa , for all t ∈ R, (5.8)

where the exponential etA maps a → etaa for all t ∈ R and a ∈ R
n. The linear flow

of the DE is a one-parameter family of linear maps, and is denoted by

gt = etA. (5.9)
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The linear flow (and the non-linear flow) of the DE satisfies the properties

g0 = I and gt+s = gt ◦ gs, ∀ t, s ∈ R. (5.10)

Therefore, the linear flow {etA}
t∈R constitutes a group under the composition of maps.

In terms of the physical system, the flow describes the evolution of the dynamical

system in terms of time. The orbits are subsets of Rn divided by the flow of the DE:

γ(a) =
{
gta|t ∈ R

}
. (5.11)

This is called the orbit of the DE through a and is the image of the solution curve

x(t) = etAa. Since the solution of the DE is unique, either of these properties hold:

γ(a) = γ(b) or γ(a) ∩ γ(b) = ∅, ∀a, b ∈ R
n.

There are three types of orbits:

1. γ(a) is a point orbit if gta = a for all t ∈ R.

2. γ(a) is a periodic orbit if there exists a T > 0 such that gTa = a.

3. γ(a) is a non-periodic orbit if gta �= a for all t �= 0.

Definitions

1. Given a linear DE x′ = Ax in R
n, define y = Px to be a new function, where P

is a non-singular matrix, and let τ = kt be a new variable, where k is a positive

constant. Then y′ = By, where B = 1
k
P AP−1. Furthermore, if A = kP−1 B P ,

then the two linear dynamical systems x′ = Ax and x′ = Bx are linearly

equivalent (i.e., the linear map P maps each orbit of the flow etA to an orbit of

the etB).

2. If there exists a non-singular matrix P and a positive constant k such that

∀t ∈ R, P etA = ektB P , then the two linear flows etA and etB on R
n are linearly

equivalent.
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These definitions lead to the three types of Jordan Canonical forms for any 2× 2 real

matrix (A), which are classified as follows:

1. If A has two real independent eigenvalues, then there exists a matrix P such

that J = P AP−1, and the flow is denoted by etJ , where

J =

[
λ1 0

0 λ2

]
, etA =

[
eλ1t 0

0 eλ2t

]

The eigenvectors are e1 = (1, 0)T and e2 = (0, 1)T . The resulting solution is

y(t) = etJb, b ∈ R
2 (i.e., y1 = eλ1tb1 and y2 = eλ2tb2). Note that for non-zero

eigenvalues, the orbits of the DE are given by

[
y1
b1

] 1
λ1

=

[
y2
b2

] 1
λ2

.

2. If A has one real eigenvalue, then there exists a matrix P such that J = P AP−1,

and the flow is denoted by etJ , where

J =

[
λ 0

0 λ

]
, etA = eλt

[
1 t

0 1

]

The eigenvector is given by e1 = (1, 0)T . Note that for non-zero eigenvalues,,

then the orbits of the DE are of the form

y1 = y2

[
b1
b2

+
1

λ
log

y2
y1

]
.

3. If A has complex eigenvalues of the form α + iβ, then there exists a matrix P

such that J = P AP−1, where

J =

[
α β

−α β

]

The simplest way to calculate the orbit in this case is to introduce the polar

form (r, θ), where y1 = r cos θ and y2 = r sin θ. Then the DE becomes r′ = αr

and θ′ = −β, which implies that dr
dθ

= −α
β
r. Without loss of generality, we can

assume β > 0, since the DE is invariant under the changes (β, y1) → (−β,−y1).

Thus limt→∞ θ = −∞.
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5.2 Topological Equivalence of Linear Flows

Since the flow of the DE is limited by the number of distinct eigenvectors, linear

equivalence acts as a filter. Hence, the linear equivalence of the DE can distinguish

the behaviour of the orbits near the equilibrium points. For instance, as t → ∞, the

orbits in the three Jordan Canonical forms approach the origin. However, we can

study the long time behaviour of the DE by eliminating more features.

Definitions

1. A homomorphism is a non-linear map h : R2 → R
2 such that: h is bijective

and continuous, and h−1 is continuous. Using a homomorphic map on R
2, the

orbits of one of the flows can be mapped onto the orbits of the simplest flow.

2. If there exists a homomorphism h on R
n and a positive constant k such that

h
(
etAx

)
= ektBh(x) for all x ∈ R

n and for all t ∈ R, then two linear flows etA

and etB on R
n are topologically equivalent.

The flow is called hyperbolic if the real part of the eigenvalues are all non zero (i.e.,

�e(λi) �= 0, i = 1, 2). In fact, any hyperbolic linear flow in R
2 is topologically

equivalent to the linear flow etA, where A is one of the following matrices:

A =

(
−1 0

0 −1

)
(sink), A =

(
1 0

0 1

)
(source), A =

(
−1 0

0 1

)
(saddle).

5.3 Linear Stability

It is significant to conclude whether a physical system that is disturbed from an

equilibrium state remains close to, or approaches, the equilibrium points as t → ∞ .

Definitions

1. If, for all neighbourhoods U of 0, there exists a neighbourhood V of 0 such

that gtV ⊆ U for all t ≥ 0, where (gt = etA) is the flow of the DE, then the

equilibrium point of the DE is called stable.
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2. If the equilibrium point is stable, and if for all x ∈ V , limt→∞ ‖gtx‖ = 0, then

the equilibrium point is called asymptotically stable.

Note that, for A ∈ Mn(R)

lim
t→∞

etAa = 0 for all a ∈ R
n (5.12)

if and only if �e(λ) < 0 for all eigenvalues of A. Thus, solutions x(t) of the DE

approach the equilibrium points (0, 0) in the long term behaviour of the dynamical

system. This implies that (0, 0) is a sink in R
n. Conversely, if we replace A by −A and

t by −t, we obtain that �e(λ) > 0 for all eigenvalues. In this case, the equilibrium

point (0, 0) is called a source in R
n.

5.4 Non-Linear Differential Equations

The essential purpose of a DE is to explain the qualitative properties of a non-linear

flow, without having the exact form of the flow since it is difficult to write it down

explicitly. As in the linear flow, we consider the DE, x′ = f(x), where f is a con-

tinuously differentiable map. This DE has a unique maximal solution which satisfies

ψa(0) = a. The flow of the DE is defined by the one-parameter family of maps {gt}
t∈R

such that gt : Rn → R
n and gta = ψa(t), for all a ∈ R

n. The flow {gt} is defined in

terms of the solution function ψa(t) of the DE by

gta = ψa(t). (5.13)

Here, the orbit through a is denoted γ(a), and defined as

γ(a) =
{
x ∈ R

n
∣∣x = gta, for all t ∈ R

}
. (5.14)

Furthermore, orbits for a non-linear flow can be classified into three types, point

orbits, periodic orbits, and non-periodic orbits, as in a linear flow. We sometimes

work with the positive orbit through a, denoted by γ+(a), and defined as

γ+(a) =
{
x ∈ R

n
∣∣x = gta, for all t ≥ 0

}
, (5.15)

which defines a semigroup.
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5.5 Linearization and the Hartman-Grobman Theorem

In dynamical systems theory, the Hartman-Grobman theorem is very important since

it describes the behaviour of the dynamical system near the equilibrium points. Let

us state the theorem in general:

Theorem 15. Hartman-Grobman Theorem: Let x̄ be an equilibrium point of the DE

x′ = f(x) in R
n, where f : Rn → R

n is a continuously differentiable map. If all of

the eigenvalues of the matrix Df(x̄) satisfy �e(λ) �= 0, then there is a homomorphism

h : U → Ū of a neighbourhood U of 0 ∈ R onto a neighbourhood Ū of x̄ which

maps orbits of the linear flow etDf(x̄) onto orbits of the non-linear flow gt of the DE,

preserving the parameter t .

In short, the Hartman-Gorbman theorem states that the flow of the DE x′ = f(x)

and the flow of its linearization u′ = Df(x̄)u are locally topologically equivalent if x̄

is a hyperbolic equilibrium point.

Furthermore, given x̄ as an equilibrium point, if the real parts of the eigenvalues

of the matrix Df(x̄) are all non-zero and not all of one sign, then the equilibrium

point x̄ of a DE (5.1) in R
n is called a saddle point. Conversely, if the real parts of

the eigenvalues of the matrix Df(x̄) are all non-zero and all of one sign, then the

equilibrium point is a sink if all �e(λ) < 0, and a source if all �e(λ) > 0.



Chapter 6

Application of Dynamical Systems in Cosmology

6.1 Introduction

In cosmology, the Universe on the largest scales, in which galaxies are taken to be

the constituents, is studied dynamically. Since observations indicate that galaxies

are distributed fairly uniformly, it is usually assumed that cosmological models are

spatially homogeneous, and that the governing evolution equations (the Einstein field

equations of General Relativity) are thus ordinary differential equations. Therefore,

the qualitative features of such models can be studied using dynamical systems theory.

Several models of early universe cosmology, including the Einstein-Aether theory [4,5]

and the IR limit of Horava gravity [6,7], violate Lorentz invariance. Lorentz invariant

theories are those where the physical laws are measured to be the same for all ob-

servers that are moving uniformly with respect to each other. Einstein-Aether theory

has a preferred rest frame, and when these theories are studied, it is assumed that the

rest frame coincides with the Hubble expansion of the universe and the CMB which

are the same, (however, see [8]).

Einstein-Aether theory combines general relativity with the aether, a dynamic unit

time-like vector field. When the aether vector field is hyper surface orthogonal, the

Einstein-Aether solution is a Horava solution. The reason for that is that in Horava

gravity the aether vector is assumed to be hyper surface-orthogonal. In Einstein-

Aether theory, the local structure consists of the aether vector field ua and the metric

tensor gab. The impact of inflation on the Lorentz violation can describe much of

the physics of the early universe in conventional cosmology [9, 10]. In this chapter,

we examine the late time behaviour of the dynamics of Einstein-Aether cosmological

models, focussing on the influence of Lorentz violation on inflationary behaviour. In

38
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particular, we are concerned with the inflationary behaviour in the scalar vector ten-

sor theory in which the vector field is time like and of unit length. Analysis predicts

that in aether theory the Lorentz violation vector can cause inflation even without the

scalar field potential, altering the dynamics of the chaotic inflationary model [11–13].

6.1.1 Einstein-Aether Cosmology

Cosmological models in aether theories of gravity are becoming increasingly popular.

In [4,14–18], an Einstein-Aether gravity theory is developed with a Lorentz-violating

dynamic field that preserves locality and covariance with additional aether vector

field. The aether vector field in an isotropic and homogeneous Friedmann universe

with the expansion scale factor a(t) and the proper time t will coincide with the

cosmic frame and the expansion rate of the universe. We generalize the Einstein

equations by including an additional stress tensor for the aether field. If the universe

contains a self-interaction potential V , which is dependent on a self interacting scalar

field φ, together with the expansion rate θ = 3ȧ
a

= 3H, the modified stress tensor

[4, 5] is given by

Tab = ∇aφ∇bφ− (
1

2
∇cφ∇cφ− V + θVθ)gab + V̇θ(uaub − gab). (6.1)

This corresponds to an effective fluid, which is given by

ρ =
1

2
φ̇2 + V − θVθ and p =

1

2
φ̇2 − V + θVθ + V̇θ,

where ρ is pressure, p is density, V and θ are defined as before. The energy-momentum

conservation law or Klein-Gordon equation is

φ̈+ θφ̇+ Vφ = 0, (6.2)

the augmented Friedmann equation is given by

1

3
θ2 = ρ+

1

2
φ̇2 + V − θVθ − k

a2
, (6.3)

where k is the curvature parameter, and the Friedmann matrices are defined as follows:

ds2 = dt2 − a2(t){ dr2

1− kr2
+ r2dϑ2 + r2 sin2 ϑdϕ2}. (6.4)
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When we differentiate the Friedmann equation, we get the Raychaudhuri equation.

Since the fluid in the cosmological frame is aligned with the aether, for a perfect

matter fluid with density ρ and pressure p we assume p = p(t) and p = p(ρ) = p(t).

Therefore, the energy momentum conservation law is

ρ̇+ θ(ρ+ p) = 0. (6.5)

6.1.2 Exponential Potentials

Exponential potentials V0e
−λφ occur in high dimensional frameworks, Kaluza-Klein

theories, and super gravity [19–23]. Although the exponential potential of the scalar

field in GR does not have exponential inflation [9,10], it can have a power law inflation

if the potential is not too steep. In order to have assisted inflation [24–28], we restrict

the steep potentials by using multiple fields. A late time attractor is a scaling solution

for exponential potentials with sufficiently flat potentials [29–33]. In the case that

the parameter satisfies the (λ2 < 2), the dynamical system with positive exponential

potential is inflationary. The classical solution for the scale factor can be written as

a power law, a α tn, with n = 2
k2
. The dynamical system with negative exponential

leads to rich physics, such as that which is found in Ekpyrotic behaviour [34, 35].

6.2 The Model

We look for a general scale invariant solution of (6.2)-(6.3) in which

V (θ, φ) = V0 exp[−λφ] +
n∑

r=0

arθ
r exp[(r − 2)λφ/2], (6.6)

where V0, λ and {ar} are constants. Note that the series could be extended to negative

r if required. This choice of potential subsumes the simple cases in [12, 13]. In

particular, we shall study the case

V (θ, φ) = V0e
−λφ + a1

√
V0θe

− 1
2
λφ + a2θ

2, (6.7)

where, for convenience, we have renormalized the constant a1 (the constant a2 can

be absorbed [4,5] and will not play an essential role in the dynamical analysis). The

constants V0, a1 and a2 are expected to be positive, or at least the potential V (θ, φ) can
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be assumed to be positive definite. However, as noted above, negative constants are

permitted. If a1 and a2 are small, the potential can be thought of as a perturbation of

the standard exponential potential. For very large constants a1 and a2, we can study

non-perturbation generalizations. Note that for the positive definite (e−
1
2
λφ − 1

2
a1θ)

2,

a1 is negative and a2 = a1
2/4.

For the potential (7.8), the augmented Friedmann equation (6.3) becomes

1 =
3

2(1 + 3a2)

(
φ̇

θ

)2

+
3V0

1 + 3a2

e−λφ

θ2
− 3k

(1 + 3a2)

1

a2θ2
, (6.8)

where we have normalized the equation with a factor proportional to the square of the

expansion. The normalized Friedmann equation suggests a suitable set of expansion

normalized variables:

Ψ;=

√
3

2(1 + 3a2)

φ̇

θ
, Φ;=

√
3V0

(1 + 3a2)

e−λφ/2

θ
, K; =

3k

(1 + 3a2)

1

a2θ2
,

assuming that V0 is a positive constant and that a2 > −1/3. In terms of these

variables, the Friedmann equation assumes the simple form

1 = Ψ2 + Φ2 −K. (6.9)

The Raychaudhuri equation (expressed in terms of the deceleration parameter q)

becomes

q; = −3(
θ̇

θ2
+

1

3
) = 2Ψ2 − Φ2 − 3λa1

2
√
2
ΨΦ.

Using the Raychaudhuri equation, one can express the Klein-Gordon equation as a

first order ordinary differential equation completely in terms of the expansion nor-

malized variables, and an expansion normalized time dτ
dt

= 3θ−1:

dΨ

dτ
= −(2− 2Ψ2 + Φ2)Ψ + λ̄Φ2 + ā(1−Ψ2)Φ, (6.10)

where the constants ā and λ̄ are defined by ā = 3λa1
2
√
2
, λ̄ = λ

√
3(1+3a2)

2
.

The evolution equation for Φ is directly given from the definition of Φ and the Klein-

Gordon and Raychaudhuri equations:

dΦ

dτ
= (1 + 2Ψ2 − Φ2 − āΨΦ− λ̄Ψ)Φ. (6.11)
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The equations ((6.10)) and ((6.11)) constitute an autonomous system of first order

differential equations. Φ = 0 is an invariant set, and the physical region corresponds

to Φ ≥ 0. The curvature K is determined from the Friedmann equation (6.9), and

the condition K = 0 defines an invariant set of (6.10) and (6.11) (and is preserved

by the evolution equations dK/dτ = [4Ψ2 − 2Φ2 − 2āΨΦ]K and a partition of the

two-dimensional state space into a bounded negative curvature region (Ψ2+Φ2 < 1),

and an unbounded positive curvature region (Ψ2 + Φ2 > 1). Note that a2 is absent

from the equations. It corresponds to a term in the potential proportional to the

square of the expansion and can be absorbed by a rescaling of the expansion scalar,

but the expansion normalized system is invariant under such rescaling, which is why

a2 does not appear in such systems.

Defining |Ā| =
√
(9− λ̄2 + ā2), the equilibrium points of the system pi are given by

Equilibria K, q

p1 : Ψ = 0, Φ = 0, − 1, 0

p2 : Ψ = ±1, Φ = 0, 0, 2

p3 : Ψ =
3λ̄+ |āĀ|
9 + ā2

, Φ =
−λ̄ā2 + 3 |āĀ|

(9 + ā2)ā
, 0,

λ̄ā|Ā| − 9 + 3λ̄2 − ā2

(9 + ā2)

p4 : Ψ =
3λ̄− |āĀ|
9 + ā2

, Φ = − λ̄ā2 + 3 |āĀ|
(9 + ā2)ā

, 0, − λ̄ā|Ā| − 9 + 3λ̄2 − ā2

(9 + ā2)

p5 : Ψ =
1

λ̄
, Φ =

−ā+
√
ā2 + 8

2λ̄
, − 2λ̄2 − 6− ā2 + ā

√
ā2 + 8

2λ̄2
, 0

p6 : Ψ =
1

λ̄
, Φ =

−ā−√
ā2 + 8

2λ̄
,

2λ̄2 − 6− ā2 + ā
√
ā2 + 8

2λ̄2
, 0

The stationary solution p6 has Φ < 0, K > 0 for all values of ā ∈ R, λ̄ ∈ R
+, and

corresponds to a contracting universe with positive spatial curvature. We shall in the

following only consider expanding solutions with vanishing or negative curvature and

will therefore ignore this point since it lies outside the region of interestK ≤ 0, Φ ≥ 0.

Points p1 and p2 always satisfy these conditions. p1 is always a saddle, and p2 is either

a source (+) or a sink (−). We are most interested in the equilibrium points p3, p4,
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and p5. The points p3, p4, and p5 are contained in this region only for a restricted,

partially overlapping, range of values in (λ̄, ā)-space.

6.2.1 p3

Range of validity:

Φp3 ≥ 0 when (λ̄ ≤ 3, ā ≥ 0), or (λ̄ ≥ 3, ā ≤ −
√

λ̄2 − 9), (6.12)

Eigenvalues:

λ1 =
−5|Ā|2 + 4λ̄2 + 3λ̄|āĀ|+

√
B̄ + C̄

2(9 + ā2)

λ2 =
−5|Ā|2 + 4λ̄2 + 3λ̄|āĀ| −

√
B̄ + C̄

2(9 + ā2)

where

B̄ = ā4 +18ā2 +15ā2λ̄2 +81+ 54λ̄2 − λ̄4ā2 + λ̄2ā4 +9λ̄4, C̄ = 2λ̄(3λ̄2 + ā2 +9)|āĀ|.

Discussion: The point p3 is a sink and inflationary when 0 < ā and λ̄2 < 1
2
(ā2 + 6−

ā
√
ā2 + 8). To analyse the eigenvalues of p3, we can make the transformations

a =
(A+ 6)Λ

2
√
A2 − Λ2

, λ̃ =
Λ

2
, (6.13)

to define the new parameters A and Λ (A2 > Λ2), whence the equilibrium point p3 is

defined by

Φ̃ = − 1

A

√
A2 − Λ2 (A < 0),Ψ = −Λ

A
,

and the eigenvalues become
{
(1− 3B)B−1, 2(1− B)B−1

}
, whereB =

2

λ2

(1− 1
4
a1λ

2)

(1 + 3a2)
,

which is a sink for B < 1 and corresponds to the zero-curvature inflationary solution

P with θ = 3Bt−1, φ = φ0 +
2

λ
ln t (cf. [18,33]). Unfortunately, since the transforma-

tions (6.13) are not one-to-one, the analysis of the other equilibria is not so simple

[e.g., the ranges of applicability for the equilibrium points p4 and p5 (i.e., ranges of

values of A and Λ for the points to be physical, such as Φ ≥ 0) are very complicated,

and there can be 2 representations of the same equilibrium points].
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6.2.2 p4

Range of validity:

Φp4 ≥ 0 when (ā ≤ 0, ā2 ≥ λ̄2 − 9). (6.14)

Eigenvalues:

λ1 =
−5|Ā|2 + 4λ̄2 + 3λ̄|āĀ|+

√
B̄ − C̄

2(9 + ā2)

λ2 =
−5|Ā|2 + 4λ̄2 + 3λ̄|āĀ| −

√
B̄ − C̄

2(9 + ā2)
.

Discussion: The point p4 is a sink when ā < 0 and λ̄2 < 1
2
(ā2 + 6 − ā

√
ā2 + 8). It is

inflationary only for the subset of this region where λ̄2 < 1
2
(ā2 + 6 + ā

√
ā2 + 8).

6.2.3 p5

Range of validity:

Φp5 ≥ 0 always, but Kp5 ≤ 0 only when 2λ̄2 ≥ 6 + ā2 − ā
√
ā2 + 8. (6.15)

Eigenvalues:

λ1 = −1 + 1
2λ̄

√
48 + 22ā2 − 12λ̄2 + 2ā4 − 2ā2λ̄2 − 2ā(7 + ā2 − λ̄2)

√
ā2 + 8,

λ2 = −1− 1
2λ̄

√
48 + 22ā2 − 12λ̄2 + 2ā4 − 2ā2λ̄2 − 2ā(7 + ā2 − λ̄2)

√
ā2 + 8.

Discussion: The point p5 is a sink when λ̄2 > 1
2
(ā2 + 6− ā

√
ā2 + 8).
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Figure 6.1: Bifurcation diagrams for the three points p3, p4, and p5.

6.3 The Model with Matter:

We investigate the dynamical properties of a class of spatially homogeneous and

isotropic cosmological models containing a barotropic perfect fluid and a scalar field

with an exponential potential in Einstein-Aether theory. With matter, the augmented

Friedmann equation becomes

1 = Ω +
3

2(1 + 3a2)

(
φ̇

θ

)2

+
3V0

1 + 3a2

e−λφ

θ2
− 3k

(1 + 3a2)

1

a2θ2
, (6.16)

where

Ω :=
3ρ

(1 + 3a2)θ2
.

In terms of these variables the Friedmann equation assumes the simple form

1 = Ω + Ψ2 + Φ2 −K, (6.17)
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the Raychaudhuri equation becomes

q := −3(
θ̇

θ2
+

1

3
) =

1

2
(3γ − 2)Ω + 2Ψ2 − Φ2 − āΨΦ, (6.18)

the evolution equations become

dΨ

dτ
= −(2− 2Ψ2 + Φ2 − 1

2
(3γ − 2)Ω)Ψ + λ̄Φ2 + ā(1−Ψ2)Φ (6.19)

and
dΦ

dτ
= (1 + 2Ψ2 − Φ2 − āΨΦ− λ̄Ψ+

1

2
(3γ − 2)Ω)Φ, (6.20)

and the matter conservation equation becomes

dΩ

dτ
= (−(3γ − 2)(1− Ω) + 4Ψ2 − 2Φ2 − 2āΨΦ)Ω. (6.21)

Note that Ω = 0 defines an invariant set of the three-dimensional autonomous system

of first order differential equations. There are equilibrium points p̄i with Ω = 0. The

additional eigenvalues are:

p̄1 : − (3γ − 2)

p̄2(±) : − 3(γ − 2)

p̄3 :
−3γā2 − 27γ + 6λ̄2 + 2λ̄

√
ā2(ā2 + 9− λ̄2)

9 + ā2

p̄4 : − 3γā2 + 27γ − 6λ̄2 + 2λ̄
√

ā2(ā2 + 9− λ̄2)

9 + ā2

p̄5 : − (3γ − 2)

p̄6 : − (3γ − 2).

6.3.1 p̄3

Range of validity:

Φp̄3 ≥ 0 when (λ̄ ≤ 3, ā ≥ 0), or (λ̄ ≥ 3, ā ≤ −
√

λ̄2 − 9). (6.22)
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The point p̄3 is a sink and inflationary when ā > 0 and λ̄2 < 1
2
(ā2 + 6 − ā

√
ā2 + 8).

In addition, this point remains a sink when

2λ̄2 < γā2 + 9γ − 2

3
λ̄|āĀ|. (6.23)

For example, for the special case when γ = 1, λ̄ = 1, and for any value of ā, the

equation (6.23) becomes

5ā4 + 94ā2 + 441 > 0, (6.24)

which is always true for any value of ā, and thus the conditions on ā in this case are

the same as in the matter-free case.

6.3.2 p̄4

Range of validity:

Φp̄4 ≥ 0 when (ā ≤ 0, ā2 ≥ λ̄2 − 9). (6.25)

The point p̄4 is a sink and inflationary when ā < 0 and when

λ̄2 <
1

2
(ā2 + 6± ā

√
ā2 + 8), (6.26)

which implies that

2λ̄2 < ā2 + 9, (6.27)

since γ ≥ 1 and 2
3
λ̄|āĀ| is positive. Thus, we can add them to the right side of the

equation (6.27). Finally, we obtain

λ̄2 <
1

2
(γā2 + 9γ +

2

3
λ̄|āĀ|),

which is true for all values of λ and ā, and the third eigenvalue is always negative.

6.3.3 p̄5

Range of validity:

Φp̄5 ≥ 0 always, but Kp̄5 ≤ 0 only when 2λ̄2 ≥ 6 + ā2 − ā
√
ā2 + 8. (6.28)

The point p̄5 is a sink when λ̄2 > 1
2
(ā2 + 6 − ā

√
ā2 + 8). Then, since all eigenvalues

are always negative for γ > 2
3
, p̄3 remains a sink.
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6.3.4 Equilibrium Points with Ω �= 0

Moreover, there are additional equilibrium points with Ω �= 0

p7 : Ψ = 0,Φ = 0,Ω = 1;

the eigenvalues for p7 are:
3

2
γ, 3γ − 2,

3

2
γ − 3, (6.29)

and hence p7 is a saddle.

There is a scaling solution, corresponding to the flat FRW solution, now represented

by the equilibrium point M and

Φ =
1

2λ̄
(−ā+

√
ā2 + 9γ(2− γ)),Ψ =

3γ

2λ̄
,Ω = − 1

2λ̄2
(9γ+ ā2− ā

√
ā2 + 9γ(2− γ))+1.

(6.30)

In addition, M has zero curvature and

qM = −1

6
(3γ − 2).

The equilibrium point M

In order to study the stability of this equilibrium point which has zero curvature,

we will first consider the sub-case when K=0, where the Friemann equation can be

written as

Ω = 1− Φ2 −Ψ2.

Therefore, we will have a two dimensional dynamical systems in terms of the two

variables Φ and Ψ:

dΨ

dτ
= −(2− 2Ψ2 + Φ2 − 1

2
(3γ − 2)(1− Φ2 −Ψ2))Ψ + λ̄Φ2 + ā(1−Ψ2)Φ (6.31)

and

dΦ

dτ
= (1 + 2Ψ2 − Φ2 − āΨΦ− λ̄Ψ+

1

2
(3γ − 2)(1− Φ2 −Ψ2))Φ. (6.32)

The scaling solution corresponds to the equilibrium point, M, but just given in terms

of Φ and Ψ:

Φ =
1

2λ̄
(−ā+

√
ā2 + 9γ(2− γ)),Ψ =

3γ

2λ̄
. (6.33)
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The characteristic equation for point (6.33) is given by

−μ2 +
3

2
(γ − 2)μ+

1

4λ̄2
(162γ2 + ā

√
ā2 + 9γ(2− γ)(−27γ + 2λ̄2 − 2ā2 + 9γ2)

+45γā2 − 18γ2ā2 − 81γ3 + 2ā4 − 2ā2λ̄2 − 36γλ̄2 + 18γ2λ̄2).

The linearization of the system (6.31)-(6.32) about the equilibrium point (6.33) thus

yields the two eigenvalues are given by

μ1 =
3γλ̄− 6λ̄+

√
D̄ + āĒ

4λ̄
, (6.34)

and

μ2 =
3γλ̄− 6λ̄−

√
D̄ + āĒ

4λ̄
, (6.35)

where D̄ = 81γ2λ̄2− 108γλ̄2+36λ̄2− 324γ3− 72γ2ā2+648γ2+180γā2− 8ā2λ̄2+8ā4

Ē =
√
ā2 + 18γ − 9γ2(36γ2 − 108γ + 8λ̄2 − 8ā2).

These eigenvalues have negative real parts for a range of the values of the parameters

γ, and λ̄ and for small value of ā (similar to the standard model). For example, when

γ = 1 and λ̄ =
√
6, the eigenvalues are given by

−3

4
±

√
−54 +

√
ā2 + 9(−8ā(ā2 + 3)) + 4ā2(2ā2 + 15).

The term in the square root is negative for ā � −1
2
(so that the real part of the

eigenvalue is negative; see Figure 6.3). In Figure 6.2, we plot the sign of the eigenvalue

with the positive square root, so that there is a small range −3
4
� ā � −1

2
such that

both eigenvalues are real and negative (the graph ends when the eigenvalue becomes

imaginary).
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Figure 6.2: The value under the root,
where a1 ≡ ā.

Figure 6.3: For the eigenvalues, where a1 ≡
ā.

The scaling solution in 3D corresponds to the equilibrium point M. The linearization

of the 3D system (6.31)-(6.21) about the equilibrium point M yields the characteristic

equation

μ3 − 1

2
(10− 9γ)μ2 − 1

4λ̄2
((27γ +2ā2 − 2λ̄2 − 9γ2)(ā

√
ā2 + 18γ − 9γ2) + 2ā2λ̄2 +24λ2

−45γā2 − 12γλ̄2 + 18ā2γ2 − 162γ2 + 81γ3 − 2ā4)μ− 1

4λ̄2
((ā

√
ā2 + 18γ − 9γ2)

(−99γ2 + 54γ − 4λ̄2 + 6γλ̄2 + 4ā2 + 27γ3 − 6γā2)− 324γ2 + 72γλ̄2 − 144γ2λ̄2

+648γ3− 90γā2+171γ2ā2+4ā2λ̄2− 4ā4+54γ3λ̄2− 6γā2λ̄2− 54γ3ā2+6γā4− 243γ4).

The linearization of system (6.31)-(6.21) about the equilibrium point (6.30) yields

three eigenvalues. Two of the eigenvalues are the same as in the 2D case as given in

(6.34)-(6.35) above and the third eigenvalue has the value 3γ − 2. Hence, the scaling

solution is only stable for γ < 2
3
. For γ > 2

3
, the equilibrium point M is a saddle with

a two dimensional stable manifold and a one dimensional unstable manifold.



Chapter 7

Anisotropic Einstein-Aether Models

In this chapter we study a class of spatially anisotropic cosmological models in

Einstein-Aether theory, which includes the Bianchi type I anisotropic models [11,12].

In an anisotropic Einstein-Aether model there will be additional terms in the FE:

1: The effects on the geometry from the anisotropy (and curvature) of the actual

1-parameter subclass of Bianchi V Ih spatially homogeneous models considered.

2: The energy momentum tensor of the scalar field, due to the possible dependence

of the self interaction potential V on the Lorentz violating vector field [18]; V =

V (φ, θ, σ), where θ = 3H = 3ȧ/a is the expansion rate and σ is the shear scalar,

defined by σ2 ≡ 1
2
σabσab. The modified stress tensor T φ

ab can be written in terms of

an effective fluid with density ρφ and pressure pφ.

3: The Einstein FE are generalised by the contribution of an additional stress tensor,

Sab, for the aether field which depends on the dimensionless parameters of the aether

model (e.g., “the ci”). This has the effect of renormalizing some of the parameters

in the model (e.g., the gravitational constant G, where we choose units in which

8πG = 1; effectively we set c1 + 3c2 + c3 = 0 so that the remaining parameters in the

model can be characterized by the constant c2) [12].

4: In anisotropic models, there may be a tilt between the preferred direction of

the aether and that of the anisotropy (in an isotropic and spatially homogeneous

Friedmann universe the aether field is aligned with the cosmic frame). This adds

additional terms to the aether stress tensor Sab, which can be characterized by a

hyperbolic tilt angle, α(t), measuring the boost of the aether relative to the rest

frame of the homogeneous spatial sections [11,12]. However, it can be shown that the

tilt decays (α → 0) to the future as is expected [12], and hence we neglect it here.
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7.1 The Model

In this section we are interested in the qualitative features of cosmological models

in Einstein-Aether theory in the presence of curvature and shear. Following [36],

we consider a 1-parameter (m ≡ h − 1) class of anisotropic cosmological models,

which includes Bianchi types III (m = 0), V (m = 1), VI0 (m = −1), and VIh (all

other m). The expansion scalar and the shear scalar are given in [36]. In the case

under consideration here, there is no rotation and no acceleration. In this model,

−3
2
P = 3

a2
N , where N ≡ m2 +m+ 1 ≥ 3/4 > 0, and M ≡ 1−m√

m2+m+1
. The constants

M and N are not independent but are related (via m); formally, we can recover the

Bianchi type I case by taking M = N = 0.

Let us now consider the forms of ρφ and pφ in the specific class of geometries under

consideration here. The Einstein-Aether action [4,5], which is a generalization of the

Einstein-Hilbert action, also depends on the aether field (the time-like vector field ua).

In particular, the matter fields can depend on the aether field. Taking variations of

the self interaction potential V = V (φ, θ, σ) with respect to the metric and the aether

field ua [4, 5] we obtain (for the models under consideration) the effective density ρφ

and pressure pφ of the form:

ρφ =
1

2
φ̇2 + V − Vθ(θ +

√
6σ)− Vσ(σ − 1√

6
θ), (7.1)

pφ =
1

2
φ̇2 − V + Vθ(θ +

√
6σ +

√
6
σ̇

θ
) + Vσ(σ − 1√

6
θ − 1√

6

θ̇

θ
)

+V̇θ(1 +
√
6
σ

θ
) + V̇σ(

σ

θ
− 1√

6
). (7.2)

The evolution equations follow from the field equations derived from the Einstein-

Aether action [4, 5]; the energy-momentum conservation law, the generalized Fried-

mann equation, the Raychaudhuri equation and the evolution equation for the shear.

Therefore, assuming the forms of the potential discussed earlier, we obtain the fol-

lowing system of equations governing the Einstein-Aether cosmological models under

consideration:

θ2 = 3c2σ2 + 3ρφ − 3

2
P, (7.3)

θ̇ = −1

3
θ2 − 2c2σ2 − 1

2
(ρφ + 3pφ), (7.4)
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c2σ̇ = −c2σθ +
M

3
√
3
(θ2 − 3c2σ2 − 3ρφ), (7.5)

φ̈+ θφ̇+ Vφ = 0. (7.6)

We now introduce new expansion-normalized variables and a new time variable:

β =
√
3
cσ

θ
,

dt

dτ
=

3

θ
,

Ψ =

√
3√
2

φ̇

θ
, Φ =

√
3V0

e−λφ/2

θ
. (7.7)

For a given potential V (θ, φ, σ), we can find 3ρφ/θ
2 and 3pφ/θ

2 in terms of β, Ψ

and Φ, and determine the system of differential (evolution) equations in terms of the

expansion-normalized variables (see below). For convenience, we define K ≡ 3P
2θ2

,

and since K is always negative the generalized Friedmann eqn. usually determines a

compact region of interest (i.e., β, Ψ and Φ are bounded). Recall that the deceleration

parameter, q, is defined by dθ/dτ = −θ(1+ q), and inflation is defined by q < 0. Note

that in the Bianchi I subcase we have that K = 0.

We are looking for a general scale invariant solution in which

V (θ, φ, σ) = V0e
−√

6λ̄φ +
a√
3

√
V0θe

−
√
6
2
λ̄φ +

√
2b
√
V0σe

−
√

6
2
λ̄φ, (7.8)

where we have defined λ̄ = λ√
6
, and we have normalized the constants a and b appro-

priately.

Evolution Equations

β′ = (q − 2)β −
√
2M

c2
K, (7.9)

Ψ′ = (q − 2)Ψ +
3λ̄

2

(
2Φ2 + aΦ + bβΦ

)
, (7.10)

Φ′ = (q + 1)Φ− 3λ̄ΨΦ, (7.11)

where

K =
c2

2
β2 + Ω− 1,

Ω = Ψ2 + Φ2 − aΦβ + bΦ,

q − 2 =
(a
√
2M
c2
Φ− 4)K + 3(a+ b)λΨΦβ + 3(a− b)λΨΦ+ 6Φ2 + 3(b− aβ)Φ

bΦ− 2
.
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Note that, 0 ≤ Ω ≤ 1 and c2

2
β2 ≤ 1. We also note that when K = 0, the equilibrium

points must satisfy β = 0 or q = −2. In the latter case we have Φ = 0 and Ψ2+ c2

2
β2 =

1, which will include the cosmological sources. When β = 0 we will find equilibrium

points (with Φ and Ψ non-zero) corresponding to inflationary sinks.

7.2 2D System with Zero Curvature

By setting K = 0 in the equations (7.9) we obtain K ′ = 0, so that K = 0 is an

invariant set of the system. We recall that we can obtain the Bianchi I models (with

K = 0) when M = N = 0. Also, we set c2 = 1. When K = 0, we obtain the 2D

system

β′ = (q − 2)β, (7.12)

Φ′ = (q + 1)Φ− 3λ̄ΨΦ, (7.13)

where

Ψ2 = 1− 1

2
β2 − Φ2 + aβΦ− bΦ,

q − 2 = 3
Φ

bΦ− 2

[
(λ̄Ψ− 1)(a+ b)β + (a− b)λ̄Ψ+ b(β + 1) + 2Φ

]
.

7.3 Equilibrium Points

We define

Z =
√
b2 − 2abλ̄2 + a2λ̄2 + 4− 4λ̄2,

and

N = N1 +N2,

N1 =
√

b4λ̄2 + 2λ̄2a2b2 + λ̄2a4 + 8λ̄2,

N2 =
√
−8 + 12abλ̄2 − 2a2λ̄2 − 8ab+ 4b2λ̄2 − 4b2.

The equilibrium points that are potentially of interest (i.e., possible future attractors)

in the 2D system with zero curvature are denoted by li, given by (the associated values
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of Ψ are 1
λ̄
for l1, l4,5, and are given in section (7.3.1) and (7.3.2) for l2,3):

Equilibria

l1 : Φ = 0, β = ±
√
2λ̄2 − 2

λ̄

l2,3 : Φ =
2(2λ̄2b− b− aλ̄2 ± Z)

4λ̄2b2 − 4aλ̄2b+ a2λ̄2 + 4
, β = 0

l4,5 : Φ = −−λ̄b3 − ba2λ̄− 2aλ̄± b N

2λ̄(2 + 2ab+ b2)
, β =

λ̄b2 − λ̄ab− λ̄a2 ∓N

λ̄(2 + 2ab+ b2)

We cannot hope to study the stability of these equilibrium points in all generality.

However, we consider some values of λ̄ such that 1
5
≤ λ̄ ≤ 1

2
. First, if a = b = 0 we

will have the same equilibrium point p as in the single scalar model with matter. In

two other cases, we will study the stability for li if a = 0 and b = 0, separately.

For the point l1, which is only valid for λ̄ > 1, we have that q = 2, and hence l1 is

always non-inflationary. l1 always has one zero eigenvalue. In general, this point will

be a source, and we will not consider it further here.

7.3.1 Point l2

The value of Ψ for l2 is given by

Ψ =
λ̄(−ab+ 2b2 + 4 + a Z − b Z)

4λ̄2b2 − 4aλ̄2b+ a2λ̄2 + 4
.

We study the stability in two cases for the values of a, b between −3 and 3. The first

case is when a = 0; the eigenvalues μi, where i = 1, 2 corresponds to +,−, are given

by

μi =
−3(m2 m1(m3 +m4))±

√
2 m1 m5 +

√
2λ̄3b2 m6)

m2(m7 ±m1 m8)
,

(where
√
2 = +

√
2, etc) where

m1 =
√
b2 − 4λ̄2 + 4,

m2 =

√
−λ̄2(−4b2 + 2λ̄2b2 + (b3 + 2)b m1 − 2− b4)

(λ̄2b2 + 1)2
,
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m3 = 4bλ̄2 + 4b3λ̄4 + b5λ̄4 − b,

m4 = 4− b6λ̄4 + b2 − 4λ̄2 + 4b4λ̄62λ̄2b6 + 2b2λ̄2,

m5 = b5λ̄5 + 3b3λ̄5 − 3b3λ̄3 − bλ̄3 − b3λ̄5,

m6 = 5 + b4 − b4λ̄2 + 5b2 + 2b2λ̄4 − 6λ̄2 − 7b2λ̄2,

m7 = 10b2λ̄2 + b6λ̄4 + 2b4λ̄2 + 2b6λ̄6 + 8b4λ̄4 + 4 + b2,

m8 = b5λ̄4 + 2b3λ̄2 + b.

We plot the two eigenvalues μ1, μ2, where the horizontal axes are the values of the

parameters (b, λ̄) (where Λ in the figures below is equal to λ̄), and the vertical axes

are the values of μ1, μ2, and we obtain

Figure 7.1: a = 0; μ1-eigenvalue of l2 Figure 7.2: a = 0; μ2-eigenvalue of l2

For illustration, we also evaluate the two eigenvalues when λ̄ = 1
2
, obtaining

μi =
3(m9(m10(−16b3 − 4b5)− 192 + 2b6 − 96b2 − 4b4)±m10 m11)

2 m9(±m10(−2b5 − 16b3 − 32b) +m12)
,

and

m9 =

√
7b2 − 2b m10(b2 + 2) + 4 + 2b4

(b2 + 4)2
,
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m10 =
√
b2 + 3,

m11 = m10(6b
5 + 18b3 + 8b)− 28b2 − 6b6 − 27b4,

m12 = 112b2 + 3b6 + 32b4 + 128.

We plot the two eigenvalues μ1, μ2 when λ̄ = 1
2
(where the horizontal axes are the

values of −3 ≤ b ≤ 3 and the vertical axes are the value of the eigenvalues μ1, μ2),

and we obtain

Figure 7.3: λ̄ = 1
2
, a = 0; μ1- plot for l2 Figure 7.4: λ̄ = 1

2
, a = 0; μ2-plot for l2

Discussion As can be seen from the pictures above, for the parameter −3 ≤ b ≤ 3

, we have two negative eigenvalues which implies that l2 is a sink.

The second case is when b = 0; the eigenvalues are given by

μi =
3(m13 m15 ±m14 m16 +m17)

m14(48a2λ̄2 + 12a4λ̄4 + a6λ̄6 + 64)
,

where

m13 =
√
4− 4λ̄2 + λ̄2a2,

m14 =

√
λ̄2(4a2 + a4λ̄2 − 4a2λ̄2 + 8a m13 + 16

(4 + a2λ̄2)2
,
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m15 = −2aλ̄3 m13(16 + 4a2 + a2λ̄2 − 12λ̄2),

m16 = −64− 32a2λ̄2 − 4a4λ̄4 + 64λ̄2 + 8aλ̄2 m13(a
2λ̄2 + 4)− 4a4λ̄6,

m17 = −32a2λ̄3 − 4a4λ̄5a6λ̄7 + 48a2λ̄5 − 4a4λ̄7.

We plot the two eigenvalues μ1, μ2, where the horizontal axes are the values of the

parameters (a, λ̄) (where Λ in the figures below is equal to λ̄), and the vertical axes

are the values of μ1, μ2, and we obtain

Figure 7.5: b = 0; μ1-eigenvalues of l2 Figure 7.6: b = 0; μ2-eigenvalues of l2

For illustration, we also evaluate the two eigenvalues when λ̄ = 1
2
, obtaining

μi =
3(±m19 m21 +m20)

2 m19(768a2 + 48a4 + a6 + 4096)
,

where

m18 =
√
12 + a2,

m19 =

√
12a2 + a4 + 16a m18 + 64

(16 + a2)2
,

m20 = −2a(64 + 4a2 + a4)m18 − 320a2 − 20a4 + a6,

m21 = −6144− 1024a2 − 40a4 + 32a3 m18 + 512a m18.
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We plot the two eigenvalues μ1, μ2 when λ̄ = 1
2
(where the horizontal axes are the

values of −3 ≤ a ≤ 3 and the vertical axes are the values of the eigenvalues μ1, μ2),

and we obtain

Figure 7.7: λ̄ = 1
2
, b = 0; μ1- plot of l2 Figure 7.8: λ̄ = 1

2
, b = 0; μ2-plot of l2

Discussion As can be seen from the pictures above, we again have a sink.

Remark: Note that we always have a sink for the values−3 ≤ a ≤ 3 and 1
5
≤ λ̄ ≤ 1

2
.

The deceleration parameter for l2: In this case, the deceleration parameter can

be written in the form

q =
−4(4 + b2) + λ̄2(G+ Z C) + Z b

(X)(S − b Z)
,

where

G1 = −20ab+ 12a2λ̄2 + 36b2 − a2b2 − 2ab3 − 16ab3λ̄2,

G2 = 9λ̄2a2b2 + λ̄2a3b− 8a2 + 8b4 + 48 + 4λ̄2b4 − λ̄2a4,

G = G1 +G2,

C = −8b3 − 12b3λ̄2 + 3λ̄2a3 − 36b+ 12a+ ba62 + 2ab2 − 15ba2λ̄2 − 24λ̄2ab2,
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S = b2 + 2b2λ̄2 − 3abλ̄2 + 4 + a2λ̄2,

and

X = 4λ̄2b2 − 4aλ̄2b+ a2λ̄2 + 4,

and we note that Z is defined earlier. We consider the inflationary behaviour in the

same two cases as in the stability analysis.

(1) When a = 0 and λ̄ = 1
2
, then q is given by

q2a0 =
−16 + 9b4 + 20b2 −√

b2 + 3(11b3 + 20b)

2(b2 + 4)(3b2 + 8− 2b
√
b2 + 3)

.

(2) When b = 0 and λ̄ = 1
2
, then q is given by

q2b0 =
−2a2 + 3a

√
12 + a2 − 8

2(16 + a2)
.

We plot the values of q, where the horizontal axis is the value of a or b and the vertical

axis is the value of q, and we obtain

Figure 7.9: λ̄ = 1
2
, a = 0; q for l2 Figure 7.10: λ̄ = 1

2
, b = 0; q for l2
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Discussion For λ̄ = 1
2
, and the case where a = 0, if b � −1

2
, then q is negative;

otherwise q is positive.

For the second case where b = 0, if a ≥ 1, then q is positive; otherwise q is negative.

That is, the model is inflationary (in the latter case) when a < 1.

7.3.2 Point l3

The value of the Ψ for l3 is given by

Ψ =
λ̄(−ab+ 2b2 + 4− a Z + b Z)

4λ̄2b2 − 4aλ̄2b+ a2λ̄2 + 4
.

We study the stability in the two cases for the value of a, b between −3 and 3. The

first case is when a = 0: the eigenvalues μi (where i = 1, 2 or -, +) are given by

μi =
−3(m2(m1(m3 +m4))∓

√
2m1 m5 +

√
2λ̄3b2 m6)

m2(m7 ∓m1 m8)
.

We plot the two eigenvalues μ1, μ2, where the horizontal axes are the values of the

parameters (b, λ̄) (where Λ in the figures below is equal to λ̄), and the vertical axes

are the values of μ1, μ2, and we obtain

Figure 7.11: a = 0; μ1-eigenvalues of l3 Figure 7.12: a = 0; μ2-eigenvalue of l3
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For illustration, we also evaluate the two eigenvalues when λ̄ = 1
2
, obtaining

μi =
3(m9(m10(−16b3 − 4b5)− 192 + 2b6 − 96b2 − 4b4)∓m10 m11)

2 m9(∓m10(−2b5 − 16b3 − 32b) +m12)
.

We plot the two eigenvalues μ1, μ2 λ̄ = 1
2
, (where the horizontal axes are the values

of −3 ≤ b ≤ 3 and the vertical axes are the values of the eigenvalues μ1, μ2), and we

obtain

Figure 7.13: λ̄ = 1
2
, a = 0; μ1-plot of l3 Figure 7.14: λ̄ = 1

2
, a = 0; μ2-plot of l3

Discussion We always have a sink.

The second case is when b = 0; the eigenvalues are given by

μi =
3(m13 m15 ∓m14 m16 +m17)

m14(48a2λ̄2 + 12a4λ̄4 + a6λ̄6 + 64)
.

We plot the two eigenvalues μ1, μ2, where the horizontal axes are the values of the

parameters (a, λ̄) (where Λ in the figures below is equal to λ̄), and the vertical axes

are the values of μ1, μ2, and we obtain
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Figure 7.15: b = 0; μ1-eigenvalues of l3 Figure 7.16: b = 0; μ2-eigenvalues of l3

For illustration, we also evaluate the two eigenvalues when λ̄ = 1
2
, obtaining

μi =
3(∓m19 m21 +m20)

2 m19(768a2 + 48a4 + a6 + 4096)
.

We plot the two eigenvalues μ1, μ2 λ̄ = 1
2
, (where the horizontal axis are the values

of −3 ≤ a ≤ 3 and the vertical axis are the values of the eigenvalues μ1, μ2), and we

obtain

Discussion We always have a sink .

The deceleration parameter for l3: In this case, the deceleration parameter can

be written in the form

q =
−4(4 + b2) + λ̄2(G− Z C)− Z b

(X)(S + b Z)
.

We consider the inflationary region in the same two cases as in the stability analysis.

(1) When a = 0 and λ̄ = 1
2
, then q is given by

ql3a0 =
−16 + 9b4 + 20b2 +

√
b2 + 3(11b3 + 20b)

2(b2 + 4)(3b2 + 8 + 2b
√
b2 + 3)

.
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Figure 7.17: λ̄ = 1
2
, b = 0; μ1-plot of l3 Figure 7.18: λ̄ = 1

2
, b = 0; μ2-plot of l3

(2) When b = 0 and λ̄ = 1
2
, then q is given by

ql3b0 =
−2a2 − 3a

√
12 + a2 − 8

2(16 + a2)
.

We plot the values of q, where the horizontal axis are the values of the either a or b

and the vertical axis are the values of q, and we obtain
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Figure 7.19: λ̄ = 1
2
, a = 0; q for l3 Figure 7.20: λ̄ = 1

2
, b = 0; q for l3

Discussion For the first case when a = 0, for b > 1
2
, q is positive but if 1

2
� b it

is negative. For the second case when is b = 0, for a > −1 then q is negative but

if a < −1 it is positive. That is, the model is inflationary (in the latter case) when

a > −1.

7.3.3 Point l4

We define

J1 = b11 − 7b9 − 32b7 − 92b5 − 112b3 − 32b,

J2 = b13 − 13b11 − 20b9 − 20b7 − 160b5 − 416b3 − 384,

J = −2b20 − 4200b14 + 15b22 − 12576b12 − 34704b10 − b24 − 2b2(1116b16 − 189b18),

J̄ = +582784b10 + 471552b8 + 345984b12 − 2b28 + 127584b14,

F1 = J̄ − 894b22 − 124b24 + 42b26 + 28128b16 + 312b18,

J3 =
√

2b2(−164864b2 − 205824b4 − 61440− 82752b8 − 156160b6 + J),

J4 =
√

−294912− 983040b4 − 909312b2 − 23142b6 + F1,
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J5 = 18b6 + b10 + 48b4 + 48b2 + 3b8,

J6 = −3b10 − 30b8 + b12 − 80b6 + 192b2 + 128.

There are also two cases for the equilibrium point. First, when a = 0 and λ̄ = 1
2
, the

eigenvalues are given by

μi =
3b(

√
b4 − 12b2 − 24(J1) + J2 ±

√
b4 − 12b2 − 24 J3 ± J4)

2(b2 + 2)(
√
b4 − 12b2 − 24 J5 + J6)

.

Remark From the expression above we note that

μ1(b) = +μ2(−b) (7.14)

We plot the eigenvalues, where the horizontal axis is the real part of the eigenvalue

and the vertical axis is the imaginary part of the eigenvalue, for different values of the

parameter b (the arrow indicates the direction on the curve in which b is increasing,

and the points A and B indicate where the curve crosses the vertical (imaginary)

axis).
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Figure 7.21: λ̄ = 1
2
, a = 0; μ1-eigenvalue

of l4 (values of b at A and B are b �
−2.825,b � −1.25, respectively): Plot for
−3 ≤ b ≤ 2, arrows indicate the direction
of increase for b

Figure 7.22: λ̄ = 1
2
, a = 0; μ2-eigenvalue of

l4 (values of b at A and B are b � −2.825,
b � 1.25, respectively): Plot for −3 ≤ b ≤
2, arrows indicate the direction of increase
for b

Discussion As can be seen from the figures above, the real parts of μ1 and μ2 are

both negative when −1.25 � b � 1.25. Thus it is a sink in this range of values for b.

But the real part of μ1 or μ2 changes sign at b � 1.25 and b � −2.825, which means

l4 is a saddle. From (7.14), there are further sign changes for μ1 and μ2 at b � 2.825

and b � 1.25, r respectively.

For comparison, let us consider a = 0 and λ̄ = 1
3
; the eigenvalues are given by

μi =
b(J7 +

√
b4 − 32b2 − 64 J8 ± (J112)±

√
b4 − 32b2 − 64(J222))

2(b2 + 2)(
√
b4 − 32b2 − 64 J13 + J14)

,

where

J7 = 3b13 − 114b11 + 300b9 + 1800b7 + 720b5 − 3168b3 − 3072b,

J8 = 3b11 − 66b9 − 276b7 − 696b5 − 816b3 − 96b,

J9 =
√
−8388608 + 28672000b4 − 20512768b2 + 103450624b6 + 55072256b10,
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J10 =
√
−8b28 + 1812096b14 + 48664b22 − 12216b24 + 578b26 + 664192b16,

J111 =
√
+107808768b8 + 14094336b12 + 765088b18 + 413184b20,

J112 = J111 + J9 + J11,

J11 =
√
−4259840b2 + 6047744b10 − 4298752b6 − 8927232b4,

J12 =
√
450b24 − 6296b22 + 3822208b12 + 118912b18 − 552b20,

J221 =
√
+3909120b8 − 8b26 + 495520b16 + 156782b14,

J222 = J11 + J12 + J221,

J13 = b10 − 2b8 + 8b6 + 48b4 + 48b2,

J14 = b12 − 18b10 − 120b8 − 320b6 − 240b4 + 192b2 + 128.

We plot the eigenvalues above, where the horizontal axis is the real part of the eigen-

value and the vertical axis is the imaginary part of the eigenvalue, for different values

of the parameter b (the arrow indicates the direction on the curve in which b is increas-

ing, and the points A and B indicate where the curve crosses the vertical (imaginary)

axis).
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Figure 7.23: λ̄ = 1
3
, a = 0; μ1-eigenvalue

of l4 (values of b at A and B are b � −1.75
and b � 1.75, respectively): Plot for −3 ≤
b ≤ 3, arrows indicate the direction of in-
crease for b

Figure 7.24: λ̄ = 1
3
, a = 0; μ2-eigenvalue of

l4 (values of b at A and B, are b � −1.75,
b � 1.75, respectively): Plot for −3 ≤ b ≤
3, arrows indicate the direction of increase
for b

Discussion As can be seen from the figures above, for −1.75 � b � 1.75, the real

parts of μ1 and μ2 are both negative, which implies that l4 is a sink. But the real

part of μ1 and μ2 change signs at b � −1.75 and b � 1.75, and one of the eigenvalues

is positive and the other is negative, which means that l4 is a saddle.

Lastly, when a = 0 and λ̄ = 1
4
the eigenvalues are given by

μi =
3b(J15 +

√
b4 − 60b2 − 120 J16 ± (J17 + J18 +

√
b4 − 60b2 − 120(J212)))

4(b2 + 2)(
√
b4 − 60b2 − 120 J21 + J22)

,

where

J15 = 2b13 − 146b11 + 208b9 + 5624b7 + 4288b5 − 3904b3 − 3840b,

J16 = 2b11 − 86b9 − 352b7 − 856b5 − 992b3 − 64b,

J17 = J77 + J88,
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J77 =
√
117007616b10 + 42499584b8 − 131039040b12,

J88 =
√
−7372800 + 95907840b4 − 1550720b2 + 171548672b6,

J18 = J99 + J44,

J99 =
√
−2b2870217856b14 + 191016b22 − 13288b24,

J44 =
√
+288b26 − 25224576b16 − 5097648b18 + 236940b20,

J19 =
√
18663424b8 + 12088320b10 − 3932160b2 + 9007104b6,

J20 =
√
398112b16 + 52656b620− 7468b22 + 228b24 + 427584b14,

J212 =
√
−5152768b4 + 318240b18 − 2b26 + 3417984b12,

J21 = b10 − 9b8 − 6b6 + 48b4 + 48b2,

J22 = b12 − 39b10 − 246b8 − 656b6 − 576b4 + 192b2 + 128.

We plot the eigenvalues above, where the horizontal axis is the real part of the eigen-

value and the vertical axis is the imaginary part of the eigenvalue, for different values

of the parameter b (the arrow indicate the direction on the curve in which b is increas-

ing, and the points A and B indicate where the curve crosses the vertical (imaginary)

axis).
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Figure 7.25: λ̄ = 1
4
, a = 0; μ1-eigenvalues

of l4, (values of b at A and B are b � −2.01,
b � 2.01, respectively): Plot for −3 ≤ b ≤
3, arrows indicate the direction of increase
for b

Figure 7.26: λ̄ = 1
4
, a = 0; μ2-eigenvalues

of l4, (values of b at A and B are b �
−2.01,b � 2.01, respectively): Plot for
−3 ≤ b ≤ 3, arrows indicate the direction
of increase for b

Discussion As can be seen from the figures above, for −2.01 � b � 2.01, the real

parts of μ1 and μ2 are both negative, which means that l4 is a sink in this range of

the values of b. But for b � 2.01 and b � −2, 01 the real part of μ1 or μ2 changes

sign, so that l4 becomes a saddle.

The second case for l4 when b = 0. First, when b = 0 and λ̄ = 1
2
; the eigenvalues are

given by

μi =
3

16
a(−a3 + a n2 ± n̄2),

where

n2 =
√
(a2 − 6)(a2 + 4),

n̄2 =
√
2a6 − 2a4 n2 − 20a2 − 4a4 + 48 + 2a2 n2.

We plot the eigenvalues above, where the horizontal axis is the real part of the eigen-

value and the vertical axis is the imaginary part of the eigenvalue, for different values
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of the parameter a (the arrow indicates the direction on the curve in which a is in-

creasing, and the point C indicates where the curve crosses the vertical (imaginary)

axis).

Remark: Again we can see that

μ2(a) = μ1(−a)

Figure 7.27: λ̄ = 1
2
, b = 0; μ1-eigenvalue

of l4 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Figure 7.28: λ̄ = 1
2
, b = 0; μ2-eigenvalue

of l4 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Discussion As can be seen from the figures above, the real parts of μ1 and μ2

changes sign at a = 0, which means that l4 is a saddle.

For comparison, let us consider b = 0 and λ̄ = 1
3
; the eigenvalues are given by

μi =
1

16
a(−3a3 + 3 n3 ± n̄3),

where

n3 =
√
a4 − 64− 2a2,
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n̄3 =
√

18a6 − 18a4 n3 − 560a2 − 26a4 + 512 + 8a2 n3.

We plot the eigenvalues above, where the horizontal axis are the real part of the

eigenvalue and the vertical axis are the imaginary part of the eigenvalue, for different

values of the parameter a (the arrow indicates the direction on the curve in which a is

increasing , and the points C indicate where the curve crosses the vertical (imaginary)

axis).

Figure 7.29: λ̄ = 1
3
, b = 0; μ1-eigenvalue

of l4 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Figure 7.30: λ̄ = 1
3
, b = 0; μ2-eigenvalue

of l4 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Discussion As can be seen from the figures above, the real parts of μ1 and μ2

changes sign at a = 0, which means that l4 is a saddle.

Lastly, the eigenvalues when λ̄ = 1
4
are given by

μi =
3

16
a(−a3 + a n4 ± 1

2
n̄4),

where

n4 =
√
(a2 + 10)(a2 − 12),
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n̄4 =
√

8a6 − 8a4 n4 − 476a2 − 10a4 + 240 + 2a2 n4.

We plot the eigenvalues above, where the horizontal axis is the real part of the eigen-

value and the vertical axis is the imaginary part of the eigenvalue, for different values

of the parameter a (the arrow indicates the direction on the curve in which a is in-

creasing, and the points C indicate where the curve crosses the vertical (imaginary)

axis).

Figure 7.31: λ̄ = 1
4
, b = 0; μ1-eigenvalue

of l4 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Figure 7.32: λ̄ = 1
4
, b = 0; μ2-eigenvalue

of l4 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Discussion As can be seen from the figures above, the real parts of μ1 and μ2

changes sign at a = 0, which means that l4 is a saddle.

7.3.4 Point l5

There are also two cases for this point. Let us consider a = 0. When a = 0 and

λ̄ = 1
2
; the eigenvalues are given by

μi =
3b(−√

b4 − 12b2 − 24 (J1) + J2 ∓
√
b4 − 12b2 − 24 J3 ± J4)

2(b2 + 2)(−√
b4 − 12b2 − 24J5 + J6)

.
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We plot the eigenvalues above, where the horizontal axis is the real part of the eigen-

value and the vertical axis is the imaginary part of the eigenvalue, for different values

of the parameter b (the arrow indicates the direction on the curve in which b is increas-

ing, and the points A and B indicate where the curve crosses the vertical (imaginary)

axis).

Figure 7.33: λ̄ = 1
2
, a = 0; μ1-eigenvalue of

l5 (values of b at A and B are b � −2.825,
b � −1.25, respectively): Plot for −3 ≤
b ≤ 2, arrows indicate the direction of in-
crease for b

Figure 7.34: λ̄ = 1
2
, a = 0; μ2-eigenvalue of

l5 (values of b at A and B are b � −2.825,
b � +1.25, respectively): Plot for −3 ≤
b ≤ 2, arrows indicate the direction of in-
crease for b

Discussion As can be seen from the figures above, the real parts of μ1 and μ2 are

both negative when −1.25 � b � 1.25. Thus it is a sink in this range of values for b.

But μ1 or μ2 change signs at b � 1.25 and b � −2.825, which means l5 is a saddle.

From (7.14), there are further sign changes for μ1 and μ2 at b � 2.825 and b � 1.25,

respectively.

For comparison, let us consider the case when a = 0 and λ̄ = 1
3
; the eigenvalues are
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given by

μi =
b(J7 −

√
b4 − 32b2 − 64 J8 ± (J9 + J10)∓

√
b4 − 32b2 − 64(J11 + J12))

2(b2 + 2)(−√
b4 − 32b2 − 64 J13 + J14)

.

We plot the eigenvalues above, where the horizontal axis is the real part of the eigen-

value and the vertical axis is the imaginary part of the eigenvalue, for different values

of the parameter b (the arrow indicates the direction on the curve in which b is increas-

ing, and the points A and B indicate where the curve crosses the vertical (imaginary)

axis).

Figure 7.35: λ̄ = 1
3
, a = 0; μ1-eigenvalue

of l5 (values of b at A and B are b � −1.75
and b � 1.75, respectively): Plot for −3 ≤
b ≤ 3, arrows indicate the direction of in-
crease for b

Figure 7.36: λ̄ = 1
3
, a = 0; μ2-eigenvalue

of l5 (values of b at A and B are b � −1.75
and b � 1.75): Plot for −3 ≤ b ≤ 3, arrows
indicate the direction of increase for b

Discussion As can be seen from the figures above, for −1.75 � b � 1.75, the real

parts of the eigenvalues are both negative which implies a sink in this range of the

values of b. But μ1 and μ2 change signs at b < −1.75 and b > 1.75; one of the

eigenvalues is positive and the other is negative, which means that l5 is a saddle.
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Lastly, when a = 0 and λ̄ = 1
4
; the eigenvalues are given by

μi =
3b(J15 −

√
b4 − 60b2 − 120 J16 ∓ (J17 + J18 +

√
b4 − 60b2 − 120(J19 + J20)))

4(b2 + 2)(−√
b4 − 60b2 − 120J21 + J22)

.

We plot the eigenvalues above, where the horizontal axis is the real part of the eigen-

value and the vertical axis is the imaginary part of the eigenvalue, for different values

of the parameter b (the arrow indicates the direction on the curve in which b is increas-

ing, and the points A and B indicate where the curve crosses the vertical (imaginary)

axis).

Figure 7.37: λ̄ = 1
4
, a = 0; μ1-eigenvalue of

l5 (values of b at A and B are b � −2.01,
b � 2.01: Plot −3 ≤ b ≤ 3, arrows indicate
the direction of increase for b

Figure 7.38: λ̄ = 1
4
, a = 0; μ2-eigenvalue of

l5 (values of b at A and B are b � −2.01,
b � 2.01: Plot −3 ≤ b ≤ 3, arrows indicate
the direction of increase for b

Discussion As can be seen from the figures above, for −2.01 � b � 2.01, the real

parts of μ1 and μ2 are both negative, which means that l4 is a sink in this range of

the values of b. But for b > 2.01 and b < −2, 01 the real part of μ1 or μ2 changes

signs, so that l5 becomes a saddle.
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The second case for l5 when b = 0. First, when b = 0 and λ̄ = 1
2
; the eigenvalues are

given by

μi =
3

16
a(−a3 − a n2 ± n̄6),

where

n2 =
√

(a2 − 6)(a2 + 4), n̄6 =
√
2a6 + 2a4 n2 − 20a2 − 4a4 + 48− 2a2 n2.

We plot the eigenvalues above, where the horizontal axis are the real part of the

eigenvalues and the vertical axis are the imaginary part of the eigenvalues and the

curve is the values of the parameter a (the arrow indicates the direction on the curve

in which a is increasing, and the points C indicate where the curve crosses the vertical

(imaginary) axis).

Figure 7.39: λ̄ = 1
2
, b = 0; μ1-eigenvalue

of l5 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Figure 7.40: λ̄ = 1
2
, b = 0; μ2-eigenvalue

of l5 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Discussion As can be seen from the figures above, the real parts of μ1 and μ2

changes signs at a = 0, which means that l5 is a saddle.
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For comparison, let consider when b = 0 and λ̄ = 1
3
; the eigenvalues are given by

μi =
1

16
a(−3a3 − 3 n3 ± n̄7),

where

n3 =
√
a4 − 64− 2a2, n̄7 =

√
18a6 + 18a4 n3 − 560a2 − 26a4 + 512− 8a2 n3.

We plot the eigenvalues above, where the horizontal axis are the real part of the

eigenvalues and the vertical axis are the imaginary part of the eigenvalues and the

curve is the values of the parameter a (the arrow indicates the direction on the curve

in which a is increasing, and the points C indicate where the curve crosses the vertical

(imaginary) axis).

Figure 7.41: λ̄ = 1
3
, b = 0; μ1-eigenvalue

of l5 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Figure 7.42: λ̄ = 1
3
, b = 0; μ2-eigenvalue

of l5 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Discussion As can be seen from the figures above, the real parts of μ1 and μ2

changes signs at a = 0, which means that l5 is a saddle.
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Lastly, when b = 0 and λ̄ = 1
4
; the eigenvalues are given by

μi =
3

16
a(−a3 − a n4 ± 1

2
n̄8),

where

n4 =
√
(a2 + 10)(a2 − 12), n̄8 =

√
8a6 + 8a4 n4 − 476a2 − 10a4 + 240− 2a2 n4.

We plot the eigenvalues above, where the horizontal axis are the real part of the

eigenvalues and the vertical axis are the imaginary part of the eigenvalues and the

curve is the values of the parameter a (the arrow indicates the direction on the curve

in which a is increasing, and the points C indicate where the curve crosses the vertical

(imaginary) axis).

Figure 7.43: λ̄ = 1
4
, b = 0; μ1-eigenvalue

of l5 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Figure 7.44: λ̄ = 1
4
, b = 0; μ2-eigenvalue

of l5 (values of a at C is a � 0): Plot for
−2 ≤ b ≤ 1.5, arrows indicate the direction
of increase for a

Discussion As can be seen from the figures above, the real parts of μ1 and μ2

changes signs at a = 0, which means that l5 is a saddle.



Chapter 8

Conclusion

To summarize, the stability of the points l2, l3 is the same in both cases (a = 0,

b = 0) for all relevant values; they are sinks in the range of values −3 ≤ a, b ≤ 3 and

1
5
≤ λ̄ ≤ 1

2
. The model is inflationary for l2 if either −1

2
� b or a � 1. The model is

inflationary for l3 if either 1
2
� b or a � −1. Let us next consider the stability of l4,5.

When b = 0, they are both always saddles for all values of the parameters 1
5
≤ λ̄ ≤ 1

2

and −2 ≤ a ≤ 1.5. When a = 0, the eigenvalues change signs in various regions. For

example, for −1.25 � b � 1.25, l4.5 are sinks (but otherwise they are saddles).

We conclude that there are always ranges of values for which there exists an inflation-

ary sink. Not all of the equilibrium points correspond to physically realistic solutions

for all values of the parameters. Therefore, a complete discussion of the cosmological

model would include further analysis of the viable (physical) ranges for the parame-

ters. However, for each set of parameters in the ranges discussed, there always exists

an inflationary future attractor for sufficiently small λ̄.
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