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Abstract

A novel control scheme for asymmetric bilateral teleoperation systems is developed

based on linear models of the hardware, with two scenarios considered: i) only an

upper bound on the time delay and ii) an upper and lower bounds on the time delay.

Lyapunov based methods are used with linear matrix inequalities to prove that the

system error is bounded between the manipulators. To ensure stability, a master side

impedance matching controller is used.

Simulations were conducted using the Matlab and Simulink platform to run the LMI

code and simulate the system. Experiments were then conducted using actual hard-

ware to verify the results, with deviations from simulation results. The variations

were due to non-linearities in the hardware and model parameter approximation er-

rors. Finally, suggestions for future work are made.
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Chapter 1

Introduction

The following sections outline the background information for the research work, in-

cluding an overview of bilateral teleoperation and the many control strategies available

for use with bilateral teleoperation schemes.

1.1 Teleoperation

Teleoperation, also known as unilateral teleoperation, is the control of a remote system

with a local system where there is no feedback from the remote system to the local

system. An example of such a scheme is a remote control vehicle, where master

hardware (controller) signals for direction and velocity are sent to slave hardware

(vehicle), with a block diagram representation in Fig. 1.1. The slave system does

not send any type of signal back to the master side to update its state, the only

cues the user has to go on are what they can physically see and hear. The same

technology can also be applied to robotic arms and manipulators, where a controller

of some sort (either an identical arm or control box) is used to control the motion of

the remote arm. While excellent position control can be achieved through methods

such as Proportional-Integral-Derivative control [31], many tasks can require more

than position tracking. Specific information such as forces and torques required for

assembly of components in places where humans can’t safely work (such as outer

space and radioactive waste disposal), level of traction on a remote vehicle, or contact

forces on remote objects may be necessary for research or to complete a task. Due to

the limited amount of information provided from the slave system and the desire to

improve performance of systems where extra information is important, research has

shifted to bilateral teleoperation.

Figure 1.1: Unilateral Teleoperation System Layout

1
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1.2 Bilateral Teleoperation

In contrast to normal teleoperation, bilateral teleoperation has communication from

master to slave as well as communication from slave to master. The slave to master

communication can be state variables [39], contact forces [32], or any other informa-

tion that can be used to add an element of feel to the system. In [2], it has been

shown that operator’s have improved performance (shorter operating time for the

same task) when provided with stable force feedback compared to only having audio

and visual cues to perform the task. Unfortunately, having both forwards and back-

wards communication in the system adds levels of instability to the system as the

communication itself can become unstable. A class of control law known as passivity

control deals with this phenomenon and are discussed in Section 1.3.4. A typical

teleoperation system block diagram can be found in Fig. 1.2, where fh represents the

human input, fe the environmental input, xm master states, xs slave states, and τ

communication delays.

Figure 1.2: Bilateral Teleoperation System Layout [33] ©IEEE 1989

While bilateral teleoperation has added challenges in terms of gathering information

from the slave side and added communication channels to the system, it provides nec-

essary information for completion of specific tasks. Some current areas of application

within bilateral teleoperation systems include the medical industry [8], dental indus-

try [34], outer space [4], and waste removal [35]. In the medical and dental industries,

teleoperation schemes are used on virtual patients [34] as a method of training stu-

dents in these fields while reducing the risks to actual patients. An example from the

medical industry is the da Vinci surgery system, as shown in Fig. 1.3.

Current system performance in multiple hardware setups limits the type of medical

procedures able to be performed, as there is often a tradeoff between performance

(level of position tracking and feedback) and stability (safe range of operation) based

on the level of time delay in the system.

A second major platform that uses bilateral teleoperation is outer space exploration
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Figure 1.3: da Vinci Surgical System [36]

and maintenance. Due to the hazards of outer space, it is desirable for robotics

to be used to perform maintenance work when possible on platforms such as the

International Space Station, and for exploration of remote celestial bodies such as

the moon or Mars [37].

A common system that is considered similar to a bilateral teleoperation system is that

of a network control system (NCS). The typical layout for a network control system

is presented in Fig. 1.4, where communication delays and constraints are imposed by

the network infrastructure. The dynamic modeling of a NCS can be as follows [53]

ẋ(t) = Ax(t) + Aix(t− τi) + Ajx(t− τj) +Bu(t)

y(t) = Cx(t)

x(t) = φ(t), tε[−τmax, 0]

where the delay occurs on the state information as it passes through the network (τi

and τj), but not on the control input u(t). The function φ(t) represents the state

behavior prior to motion as it is often required for controllers upon startup.

However, in a bilateral teleoperation system, the delay is often in the control input

u(t), as the control input is based on the states of the other manipulator, or other

property that needs to be sent via network, and thus causes a delay in the control

signal. The dynamic equations for a single side of bilateral teleoperation can be
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Figure 1.4: Typical Network Control System Layout

realized as

ẋ(t) = Ax(t) +Bu(t− τ)

y(t) = Cx(t)

x(t) = φ(t), tε[−τmax, 0].

Due to the differing nature of the delays, exportation of NCS control theory to bilat-

eral teleoperation cannot directly happen. Therefore further work is needed to test if

the varying theories can be used in bilateral teleoperation settings. The second ma-

jor difference is that in a bilateral teleoperation system, two controllers are required

(master and slave) compared to the single controller needed for a NCS.

1.3 Literature Review

In order to design controllers for a bilateral teleoperation system, it was necessary to

review current control methodologies to determine thier strengths and weaknesses,

along with if they are applicable to a teleoperation setup. A literature review was

also necessary to help ensure novelty in the work being conducted, and to help with

modeling choices and troubleshooting problems. While most of the following sec-

tions focus on control strategies, a broader overview of bilateral teleoperation specific

control can be found in [14].

1.3.1 PID Control

Proportional integral derivative (PID) control is a control strategy that applies gains

on the system error. System error is typically the desired or reference position minus

the actual position. A PID controller consists of 3 main gains: Kp as the proportional

gain on the error, Ki and the integral gain on the error, and Kd as the derivative gain
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on the error. The typical transfer function of a PID controller is as follows [13], [15]:

K(s) = Kp +
Ki

s
+Kds

K(s) = Kp(1 +
1

Tis
+ Tds)

There are several methods for tuning a PID controller discussed in [13], but other

methods also exist. It should be noted that other forms of controllers based on

the PID principle exist, namely P, PI, and PD controllers. Each parameter of a

PID or subsequent controller has a different effect on the controller performance.

For example, a strictly P controller can improve its response time by increasing the

gain Kp, but at the expense of increasing oscillatory motion and the peaks of the

motion. Another important feature of pure proportional control is the existence of

steady state error which is equal to 1/Kp. In order to overcome the deficiencies

of pure proportional control, integral and derivative terms are added to reduce the

overshoots and eliminate the steady state error. More specifically, Ki is used to reach

the steady state value and overcome the steady state error of purely proportional

control. However, Ki can add to the oscillatory motion if not correctly set. The Kd

term is used to limit the rate of change of the error, as to provide a smoother signal

with less and smaller overshoots. As stated, the goals of the various gains compete

with one another (speed of response for Kp and Ki versus rate limiting of Kd) so it is

necessary to find the right balance for the specific application. Table 1.1 [15] provides

a reference for closed loop behavior when independently tuning the PID parameters.

Table 1.1: Effects of independent Kp, Ki and Kd tuning [15]

Closed Loop Response Rise Time Overshoot Settling Time Steady State Error Stability
Increasing Kp Decrease Increase Small increase Decrease Degrade
Increasing Ki Small decrease Increase Increase Large decrease Degrade
Increasing Kd Small decrease Decrease Decrease Minor change Improve

In terms of bilateral teleoperation, PID controllers and their derivatives have been

used in cases discussed in [16], [17], and [18]. In [16] a PD controller based solution is

presented based on the assumption that the human and the environment are passive,

the time delay is constant, and a joint space manipulator model is used. The other

main assumption is that the input force is related to the positional error, in that the

controller is trying to correct the error and the input is proportional to the error with

a damping injection term added for stability. The work in [17] is an extension of [16],

where the same joint based model is used along with the assumption of constant

time delay, and again damping injection terms are added to maintain the passivity
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necessary to fit within the framework. The tracking performance in [17] is improved

over [16], as is to be expected with the introduction of the integral term in the

controller. [18] presents a PID approach with sliding mode control on a system with

no delays, with the work more focused on dealing with modeling inaccuracies than

time delay issues. One common trend in the work of PID controllers for bilateral

teleoperation is the assumption of constant time delay, a factor that may not be

realized on many lower quality networks such as the internet.

1.3.2 Sliding Mode Control

Sliding mode control (SMC) is a class of variable structure control used to deal with

non-linear systems. Consider a second order system [19]

ẋ1 = x2

ẋ2 = h(x) + g(x)u

where h(x) and g(x) are unknown nonlinear functions and g > g0 > 0 for all x. The

idea is to develop a control law to keep the system on what is called the “sliding

surface”, and have the system reach this surface in finite time. In order to achieve

these goals the controller is typically developed in two stages: the controller while

on the surface, and the controller to get the system to the surface. A detailed proof

along with a numerical example can be found in [19]. There are two main advantages

for using sliding mode control(Pan, “Nonlinear Control Notes”,unpublished): 1) The

systems have robustness against a large class of model uncertainties, which enter in

the same channel as the control inputs and 2) Less information is needed compared

to classical control techniques.

Sliding mode control has been used in teleoperation systems in [20], [21], and [22].

In [20], a discrete time controller is developed for the scaled control of a microelec-

tromechanical system subject to model uncertainty in parameters. Scaling is required

between the master equipment and the micro sized slave hardware being controlled.

The work does not consider time delays, as the focus is on the ability to overcome

modeling issues between the micro slave and master hardware. The work of [21] deals

with SMC under time varying delays for linear single degree of freedom manipula-

tors. It uses and impedance matching controller on the master side and combines

the principles of SMC with an impedance matching controller on the slave side to

counteract the unknown time delay properties. In [22], another linear single degree

of freedom system is considered with only mass for a property, modal decomposition,

and no regard for time delay.
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Most works do not deal with time delays due to added complexity in the stability

proofs when the instantaneous feedback cannot be used.

1.3.3 H∞ Control

A commonly used class of robust controllers are known as H∞ controllers. In the

case of H∞ controllers, the objective is to minimize the H∞-norm of the transfer

function of the system Tzw(s). A depiction of a general H∞ setup is shown in Figure

1.5 where w represents the uncontrolled input to the system, z the output to control,

y the system measurements and u the controlled input. The dynamics of the system

can be represented as (Pan, “Nonlinear Control Notes”,unpublished)

ẋ = Ax+Bu+ Ew

y = C1x+ 0u+D1w

z = C2x+D2u+ 0w

v̇ = Acv +Bcy

u = Ccv+Dcy

where x is the plant states, and v the controller states. From the above relationships

a generalized transfer function Tzw(s) = Ccl(sI−Acl)
−1Bcl+Dcl can be realized where

Acl =

[
A+BDcC1 BCc

BcC1 Ac

]

Bcl =

[
E +BDcD1

BcD1

]

Ccl =
[
C1 +D2DcC1 D2Cc

]
Dcl =

[
D2DcD1

]
for which the internal stability is achieved only when the eigenvalues of Acl are in

the left hand side of the s-plane (Pan, “Nonlinear Control Notes”,unpublished). This

criteria can be achieved as the matrices Ac, Bc, Cc and Dc are up to the discretion

of the control system designer and can be appropriately tuned. The next step is to

define the H∞-norm of the transfer function from w to z as that is what is to be

minimized.

||Tzw||∞ = sup
0≤ω≤∞

σmax[Tzw(jω)]

With general theory covered, some examples that use the H∞ approach are found

in [23]- [26]. In [23], the H∞ approach is used for sampled data measurements on
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Figure 1.5: General H∞ control system layout

an active suspension for a car when using a quarter car model. The main element

that they wish to minimize using the H∞ control is the body mass acceleration of

the car, as to have a smoother ride. Lyapunov based criterion and linear matrix

inequality (LMI) approaches are applied as part of the techniques to minimize the

control objective. The work of [24] considers a discrete time based model of a NCS, for

which delays and data dropout exist in the communication channels. The controller

for this case is used to minimize the effects of delay and data dropout, as they are the

main factors that can cause system degradation if the models are known. In [25], the

H∞ approach is used as a method to deal with model uncertainties in a stochastic

system, but without any time delay effects. Again, Lyapunov based LMIs are used to

solve the objective minimization problem. In [26], the H∞ approach is applied to a

linear system with uncertainties in the A and C matrices and a constant state delay.

The controller is used as a state estimation device due to the uncertainties involved

in the system parameters to help correct the parameters based on the bounds of

fluctuation of the parameters in the system. As discussed, the H∞ approach has

a broad range of uses, but the challenge with the setup is to properly construct

the problem that the objective is measurable and can be minimized, along with the

potential mathematical challenges to reach a form that can be solved, either with

LMIs [23], [25] or other methods such as the Riccardi equation [26].

1.3.4 Passivity Control

Passivity based control is a method of control where the two power variables passed

between the master and slave (typically force and velocity for mechanical systems)

are monitored to ensure no increase in power level exists. If an increase in power
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Figure 1.6: Wave variable flow [4] ©IEEE 2004

is noticed within the communication channel, energy is then dissipated through the

control algorithm so that the communication channel remains passive. In order to

apply this control method, one needs to know that all other elements of the system are

passive, so that the only point in the system where passivity would be breached is the

communication channel, and thus the control algorithm to eliminate the additional

energy can be used, see [9], [10]. One issue with passivity based controllers is that

while stable performance of the system is guaranteed, position tracking cannot be

guaranteed without the addition of other control techniques, such as in [10].

An extension of passivity control is the wave variable method of teleoperation control

[12]. Two new variables, u and v, are computed based on the original power flow

variables (typically force and velocity), with u representing flow in one direction,

while v represents flow in the opposite direction. The general definition of power flow

is:

P = ẋTF =
1

2
uT · u− 1

2
vT · v

A diagram showing this layout can be seen as Fig. 1.6 courtesy of [4]. The parameter

b, known as the characteristic wave impedance, is used to relate the actual variables

to the flow variables through

u =
bẋ + F√

2b
, v =

bẋ− F√
2b

.

The tuning of b can lead to either a faster responding system with lower force feed-

back, or a slower system with a higher level of force feedback. Depending upon the

application, one method may be more desirable than another, and should be consid-

ered when working with the wave variable approach. Other examples using the wave

variable approach can be found in [7].

An extension of passivity control is the idea of time based passivity control as intro-

duced in [11], with more work on the subject presented in [9]. A further extension of



10

the time domain passivity control is power based passivity control, with a teleopera-

tion example given in [3].

1.3.5 Predictive Control

Predictive control approach to system control is typically applied to systems where

the dynamics of the slave working in the environment are well known, and time

delays can be quite large. By providing the operator with predictive responses from

the slave, the overall task completion time can be reduced, as the operator need not

wait for the response from the slave, which may take several minutes depending on

distance and communication medium. A commonly used predictor model is known

as the Smith predictor [5], where prior knowledge of the slave mechanics are used to

help reduce the effects of time delay on the system. Other examples of predictive

control for teleoperation can be found in [6] .

1.3.6 Lyapunov LMI-based State Feedback

As the title suggests, a state feedback controller uses the system states as the main

variable of interest in the controller design. State feedback can exist in the form of a

constant gain feedback, such as PID or other stabilization methods [27], or variable

gain feedback based on state values such as fuzzy logic controllers [28], [29]. Many

constant gain feedback systems are the results of LMI based solutions such as in [41]

and [42], where Lyapunov functionals are proposed to deal with different types of

network behavior such as weighted delay distributions [42] and interval time varying

delay with system non-linearities [41]. LMI problems are formulated based on the

modeling choices and solved to provide a static feedback control gain. Other works

have covered these types of problems such as [30], [39].

1.4 Research Contributions

The work in this thesis contains the following contributions:

1. Formulates the bilateral teleoperation problem into a form similar to a network

control system (NCS) problem with the use of a master side impedance controller

and slave side stabilization by using Lyapunov based linear matrix inequalities.

2. Allows for asymmetrical teleoperation systems in terms of system parameters and

range of motion characteristics. Based on the current work, as long as all asymmetrical

terms are constant and lie within the same channel as the control signal (in this case
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the velocity channel), the algorithm can account for the differences and adjust the

slave side control law accordingly.

3. Derives a novel static state feedback control gain, where the state is the system

error once the problem is reformulated as a NCS where the error is the state vector. A

Lyapunov functional based on [42] is considered for the base of the proof. Additional

disturbances, such as the human user input and environmental wall contact, are

added. These terms appear in the error bound that may not exist in standard NCS

dynamic structures (such as [42]).

4. A conference paper based on Case I (only an upper delay bound) has been accepted

at ICIRA 2012 for presentation in October.



Chapter 2

System Modeling

In order to design a control law for a teleoperation system, it is important to determine

the type of models to be used in the system, along with the general sign convention

to be used. Fig. 2.1 shows the assumed directions of the forces acting on the system,

with positive to the right. The following sections outline the modeling choices for

the manipulators (linear single degree of freedom, similar to [47], [48], [12]), the

human input force possibilities, the environmental force in the simulation case, and

the communication channel behavior (internet based model without data dropout).

Other modeling choices exist for the manipulators such as Euler-Lagrange [51], joint

based models for linked manipulators [52], [58] and other non-linear methods.

Figure 2.1: Diagram of forces and their assumed directions on 1-DOF manipulators

2.1 Master Side General Dynamics

Consider a single degree of freedom manipulator with linear properties of mass, stiff-

ness, and damping. The general dynamic equation representing the system is

mmẍm + bmẋm + kmxm = Fh + Um (2.1)

where mm represents the mass of the system, bm the damping, km the stiffness, xm

the position, Fh the human input force and Um the control signal to the system. The

12
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system can be represented in the state-space form

ẋm = Amxm +Bm(Fh + Um)

where

Am =

[
0 1

−km/mm −bm/mm

]
, Bm =

[
0

1/mm

]
.

2.2 Slave Side General Dynamics

Similar to the master dynamics, we consider the slave manipulator to be modeled as

a single degree of freedom manipulator with mass, stiffness, and damping properties.

The dynamic equation governing the system is:

msẍs + bsẋs + ksxs = Us − Fe, (2.2)

where ms represents the mass of the system, bs the damping, ks the stiffness, xs the

position, Fe the environmental contact force and Us the control signal to the system.

The system can be represented in the state-space as:

ẋs = Asxs +Bs(Us − Fe),

where

As =

[
0 1

−ks/ms −bs/ms

]
, Bs =

[
0

1/ms

]
.

2.3 Environmental Force

For simulation work it is necessary to model the expected environmental forces that

would act upon the slave manipulator in an experimental setting. For this work,

the chosen scenario was when the slave manipulator is positioned against a non-rigid

surface such as foam. In this scenario motion into the foam would cause a reactionary

force, and motion away from the foam would cause no environmental force (air drag

is considered minimal at low speeds and thus negligible). The foam is modeled as

a spring and damper system based on the position of the slave manipulator with

coefficients of Be and Ke as follows:

Fe =

{
Beẋs +Kexs : xs ≥ 0

0 : xs < 0.

This approach has been previously used in [53] , and examples of filtering by frequency

can be found in [54].
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2.4 Human User Force

For the simulation environment it is necessary to model the various types of human

user inputs possible for the system. The first input considered is a modified step

input, as a human operator cannot physically apply a true step input since human

motion is frequency limited [55]. To build the source, a ramp function is used to

reach the step value and then the value is held constant. A second source that can

be used an input to the system is a sinusoidal input, where once again the frequency

is limited to the band of human motion. For reference and shown later in Section 4,

the modified step input uses a slope of 0.2 N/s with a peak value of 1 second, while

the sinusoidal input has an amplitude of 5 N and a period of 12 seconds.

2.5 Communication Channels

In order to develop appropriate theory, some assumptions on the nature of the com-

munication channels are necessary. The channels in this work are treated as separate

entities (asymmetric delays) in two different cases: one with just an upper bound on

the channel variable time delay, and one with both an upper and lower bound on the

channel variable time delay. In both scenarios the upper limit is set at 0.08 seconds

and the lower limit at 0.02 seconds based on trans-continental internet delays [53].

While other works deal with phenomenon such as packet-loss ( [45], [53], [56], [57])

and mode dependent time delays [50], this work only focuses on delays within a range,

and future work could be done to incorporate the packet loss phenomenon. The delays

are modeled as a random number between the upper and lower bounds to represent

the random nature of delays when working on network infrastructure.

2.6 Summary

The linear single degree of freedom models used for both the master and slave manipu-

lators are presented along with the modeling choice for the human and environmental

forces for the simulation cases. Communication channel constraints are discussed and

the assumptions that the channels will have a time varying delay are outlined.
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Controller Design

The design of the master and slave side control signals will be discussed in this chapter

along with the stability proof based on the modeling choices outlined in Chapter 2.

Two separate cases are considered for the stability proof: only an upper bound on

the time delay, and both an upper and lower bound on the time delay.

3.1 Master Side Controller Design

For the master side controller an impedance matching approach is applied similar to

work in [49] such that the master manipulator will have the same impedance as a

designed system. A reference system would have the form

Mẍm +Bẋm +Kxm = Fh − Fe(t− τs(t)), (3.1)

whereM , B andK represent the mass, damping and stiffness of the desired impedance

system respectively. The desired impedance system can be represented in the state

space form as

ẋm = AMxm +BM(Fh − Fe(t− τs(t))), (3.2)

where

AM =

[
0 1

−K/M −B/M

]
, BM =

[
0

1/M

]
.

For reference, the master system is modeled as

mmẍm +BM ẋm + kmxm = Fh + Um. (3.3)

The impedance matching approach is used to allow for a constant system control gain

Kc to be designed later on to only have an impact on the slave side dynamics. By

allowing the user to control the master side impedance dynamics through the choice

of B, K, and M , the level of stability in the system can be tuned to match what is

necessitated by the application. The final master controller is designed as

Um = (BM − mm

M
B)ẋm + (

mm

M
− 1)Fh − mm

M
Fe(t− τs(t)) + (km − mm

M
K)xm, (3.4)

which can realize the desired impedance model in (3.2) when substituted into (3.3).

15
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3.2 Slave Side Controller Design

The following section deals with the design of the slave side controller by first intro-

ducing the error dynamics as required by the stability proof in Section 3.3 to allow

for a method to deal with the asymmetrical terms. The control law is then derived

to allow for positional tracking and to provide bounds to the external forces Fe and

Fh.

3.2.1 Error Dynamics

It is necessary to derive the error dynamics of the system in order to properly sub-

stitute into Lyapunov candidate derivative terms in (3.10) and design the system

control signal Us. For most teleoperation applications, it is desirable for the slave to

track the position of the master in real time i.e. e(t) = xs(t)− γxm(t) + C, where γ

is a scaling factor and C an offset constant. While other choices exist for the error

dynamics (such as e(t) = xs(t)−γxm(t−τm(t))+C [44]) this work uses the definition

of e(t) = xs(t)− γxm(t) + C. Hence

ė = ẋs − γẋm

= Asxs +Bs(Us − Fe)− γ[AMxm +BM (Fh − Fe(t− τs(t))]

= Asxs +Bs(Us − Fe)− γ[AMxm +BM (Fh − Fe(t− τs(t))]

+AMxs − AMxs

= AMe+ (As − AM)xs + γBMFe(t− τs(t))− γBMFh +BsUs −BsFe (3.5)

where τs(t) represents the time delay in communication from the slave side to the

master side, and τm(t) represents the delay from the master side to slave side.

3.2.2 Controller Design

From (3.5), the term (As−AM )xs needs to be eliminated using the slave side control

law. The controller also needs to provide a method for bounding the effects of Fh and

Fe. The term (As − AM) can be represented as:

As − AM =

[
0 0

δ1 δ2

]
, δ1 = K/M − ks/ms, δ2 = B/M − bs/ms (3.6)

where all the terms lie is the same channel the control input Us, in the ẋ2s channel,

which means that a portion of the Us can be used to eliminate it.
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Now design a control signal of the form

Us = −ms[δ1x1s + δ2x2s] +Kc(xs(t− τm(t))− xm(t− τm(t)))

+ αFh(t− τm(t))− βFe(t) + Fe(t) (3.7)

where the first term (−ms[δ1x1s + δ2x2s]) of the control input Us is to deal with the

asymmetry of the system as represented in (3.6). The second term (Kc(xs(t−τm(t))−
xm(t− τ1(t)))) is the controller input on the delayed error, as the current value of the

master states (xm) is not available to the slave side. With an ability to record states

and send time stamps, the delayed value of the slave states can be made available to

allow for the delayed error to be realized. The remaining terms (αFh(t − τm(t)) −
βFe(t) + Fe(t)) are used to provide a bound to the external disturbances Fh and Fe.

Substituting (3.7) into (3.5) yields

ė = AMe+BMFe(t− τs(t))− BMFh(t)

+Bs[Kc(xs(t− τm(t))− xm(t− τm(t)))− αFh(t− τm(t))

−βFe(t)] +BsFe(t)− BsFe(t)

= AMe+BMFe(t− τs(t))− BMFh(t) +Bs[Kce(t− τm(t))

−αFh(t− τm(t))− βFe(t)]

= AMe+BMFe(t− τs(t))− βBsFe(t) + αBsFh(t− τm(t))

−BMFh(t) +BsKce(t− τm(t)).

From the error dynamics, design an α = γms/M to combine the αBsFh(t− τm(t))−
γBMFh(t) terms from the error dynamics to a single difference term. Similarly, to

bound γBMFe(t − τs(t)) − βBsFe(t) to a single difference term, select β = γms/M .

Then the error dynamics becomes

ė = AMe +BsKce(t− τm(t))

+γBM [Fh(t− τm(t))− Fh(t)] + γBM [Fe(t− τs(t))− Fe(t)]

= AMe +BsKce(t− τm(t)) +BM [d1 + d2]

= AMe +BsKce(t− τ(t)) +D (3.8)

where D = BM [d1+d2] with d1 = γ(Fh(t−τm(t))−Fh(t)), d2 = γ(Fe(t−τs(t))−Fe(t)),

and for simplicity τ(t) = τm(t).

3.3 Stability Analysis

The stability analysis is conducted for two separate communication channel cases: i)

when only an upper bound exists on the delay, and ii) when there is both an upper
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and lower bound on the delay. Lyapunov based linear matrix inequalities (LMIs) are

used to prove stability while providing error bounds. LMIs are a common tool used

for teleoperation system stability such as in [46].

3.3.1 Case I: Upper Delay Bound Only

Theorem 1. For given constant τ2, if there exist matrices X > 0, Q̂ > 0, R̂ > 0 and

Y with appropriate dimensions, such that the following LMI⎡
⎢⎢⎢⎢⎢⎣

−Q̂− R̂ 0 0 0 R̂ 0 0

∗ Q̂+ AMX +XAT

M
− R̂ I 0 R̂ +BsY XAT

M
τ2XAT

M

∗ ∗ −γ1I X 0 0 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −2R̂ Y TBT
s τ2Y

TBT
s

∗ ∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ ∗ −XR̂−1X

⎤
⎥⎥⎥⎥⎥⎦ < 0 (3.9)

holds, then systems (3.1) and (2.2) are asymptotically stable.

Proof: Choose a Lyapunov Candidate of the following form similar as in [41]

and [42]

V = V1 + V2 + V3 (3.10)

V1 = e(t)TPe(t)

V2 =

∫ t

t−τ2

eT (s)Qe(s)ds

V3 =

∫
0

−τ2

∫ t

t+s

ėT (v)τ2Rė(v)dvds,

where τ2 is the maximum level of time delay of the time varying delay τ(t), i.e. τm(t).

It is also noted that P,Q,R > 0. The time derivatives of each function are

V̇1 = e(t)TP ė(t) + ė(t)TPe(t)

V̇2 = eT (t)Qe(t)− eT (t− τ2)Qe(t− τ2)

V̇3 = ėT (t)τ 22Rė(t)−
∫ t

t−τ2

ėT (v)τ2Rė(v)dv.

From V̇ we have an integral term of − ∫ t

t−τ2
ėT (v)τ2Rė(v)dv that needs to be converted

to a different form to fit into an LMI-based solution. By applying Jensen’s Inequality

( [41], [43]) to the term the result is

− ∫ t

t−τ2
ėT (v)τ2R2ė(v)dv ≤

⎡
⎢⎣ e(t)

e(t− τ(t))

e(t− τ2)

⎤
⎥⎦

T ⎡
⎢⎣ −R R 0

∗ −2R R

∗ ∗ −R

⎤
⎥⎦
⎡
⎢⎣ e(t)

e(t− τ(t))

e(t− τ2)

⎤
⎥⎦ . (3.11)
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Other methods exist to deal with this term such as adding “zero” terms which can be

used to eliminate the integral and leave terms that can be easily worked into a LMI,

similar to [38], [39], [45]. Then by substituting (3.8) into the V1 portion of (3.10),

V̇ = e(t)TP ė(t) + ė(t)TPe(t) + eT (t)Qe(t)

−eT (t− τ2)Qe(t− τ2) + ėT (t)τ 22Rė(t)

= e(t)TP (AMe(t) +BsKce(t− τ(t)) +D)

+(AMe(t) +BsKce(t− τ(t)) +D)TP (e(t))

−eT (t− τ2)Q2e(t− τ2) + ėT (t)(τ 22R)ė(t)

= eT (t)(Q + PAM + AT
MP + γ−11 PP )e(t) + eT (t)PBsKce(t− τ(t))

+e(t− τ(t))KT
c B

T
s Pe(t)− eT (t− τ2)Q2e(t− τ2)

+ėT (t)(τ 22R)ė(t) + γ1D
TD

Ignoring the ėT (t)(τ 22R)ė(t) term temporarily and converting to an LMI form with

the previous term from (3.11)⎡
⎢⎣ e(t)

e(t− τ(t))

e(t− τ2)

⎤
⎥⎦
T ⎡
⎢⎣ Π1 Π2 0

∗ −2R R

∗ ∗ −Q−R

⎤
⎥⎦
⎡
⎢⎣ e(t)

e(t− τ(t))

e(t− τ2)

⎤
⎥⎦+ γ1D

TD,

where

Π1 = Q+ PAM + AT
MP + γ−11 PP − R

Π2 = R + PBsKc.

Define ζ(t) =

[
e(t)

e(t− τ(t))

]
, and rewrite the LMI of this portion as

[
e(t− τ2)

ζ

]T [
−Q− R Π4

∗ Π3

][
e(t− τ2)

ζ

]
+ γ1D

TD, (3.12)

where

Π3 =

[
Π1 Π2

∗ −2R

]
, Π4 =

[
0 R

]
.

The next term that needs to be examined is ėT (t)(τ 22R)ė(t). By substituting ė into

the term and setting E(t) = AMe+BsKce(t− τ(t)), it becomes

[E(t) +D]T (τ 22R)[E(t) +D]

= ET (t)(τ 22R)E(t) + ET (t)(τ 22R)D +DT (τ 22R)E(t) +DT (τ 22R)D

= ET (t)(τ 22R + γ−12 I)E(t) +DT (τ 22R)D + γ2D
T (τ 22R

TRτ 22 )D
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Then substituting back in E(t) in a matrix form, the previous term yields[
e(t)

e(t− τ(t))

]T [
AM BsKc

]T
(τ2Rτ2 + γ−12 I)

[
AM (BsKc)

] [ e(t)

e(t− τ(t))

]

+DT (τ 22R)D + γ2D
T (τ 22R

TRτ 22 )D[
ζ
]T [

AM BsKc

]T
(τ2Rτ2 + γ−12 I)

[
AM (BsKc)

] [
ζ
]

+DT (τ 22R)D + γ2D
T (τ 22R

TRτ 22 )D (3.13)

Substituting (3.13) into (3.12) results in⎡
⎢⎢⎢⎢⎣

−Q− R Π4 0

∗ Π3 +

(
AT

M

(BsKc)
T

)
γ−12 I

(
AM (BsKc)

)
τ2

(
AT

M

(BsKc)
T

)

∗ ∗ −R−1

⎤
⎥⎥⎥⎥⎦ < 0

Apply the Schur Complement on the term Π3+

(
AT

M

(BsKc)
T

)
γ−12 I

(
AM (BsKc)

)
and expand the rows and columns to achieve

V̇ ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

−Q− R 0 R 0 0

∗ Q + PAM + AT
MP + γ−11 PP − R R +BsKc AT

M τ2A
T
M

∗ ∗ −2R Y TBT
s τ2Y

TBT
s

∗ ∗ ∗ −γ2 0

∗ ∗ ∗ ∗ −R−1

⎤
⎥⎥⎥⎥⎥⎥⎦

+ γ1D
TD +DT (τ 22R)D + γ2D

T (τ 22R
TRτ 22 )D

≤ Θ− eTe +DT (γ1I + τ 22R + γ2τ
2

2R
TRτ 22 )D

where

Θ =

⎡
⎢⎢⎣
−Q− R 0 R 0 0

∗ Q + PAM +AT

M
P + γ−1

1
PP −R + I R+ BsKc AT

M
τ2A

T

M

∗ ∗ −2R Y TBT
s τ2Y

TBT
s

∗ ∗ ∗ −γ2 0

∗ ∗ ∗ ∗ −R−1

⎤
⎥⎥⎦.

If Θ < 0 holds, then

V̇ ≤ −‖e(t)‖2 + ‖DT (γ1I + τ 22R + γ2τ
2

2R
TRτ 22 )D‖ (3.14)

which shows that the error is bounded and that the bound is determined by the

magnitude of the terms γ1, γ2, ‖D‖, the eigenvalues of R, and the upper bound of

the delay τ2.
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The next step is to linearize the above system Θ by pre- and post-multiplying by

diag(P−1, P−1, P−1, I, I) and then making the following substitutions

X = P−1

Y = KX

Q̂ = XQX

R̂ = XRX,

which results in the following LMI for Θ,⎡
⎢⎢⎣
−Q̂− R̂ 0 R̂ 0 0

∗ Q̂+ AMX +XAT

M
+ γ−1

1
I − R̂ +XIX R̂ +BsY XAT

M
τ2XAT

M

∗ ∗ −2R̂ Y TBT
s τ2Y

TBT
s

∗ ∗ ∗ −γ2 0

∗ ∗ ∗ ∗ −R−1

⎤
⎥⎥⎦ < 0

Substituting

R̂ = XRX, R−1 = XR̂−1X,

to get⎡
⎢⎢⎣
−Q̂− R̂ 0 R̂ 0 0

∗ Q̂+ AMX +XAT

M
+ γ−1

1
I − R̂+XIX R̂+ BsY XAT

M
τ2XAT

M

∗ ∗ −2R̂ Y TBT
s τ2Y

TBT
s

∗ ∗ ∗ −γ2 0

∗ ∗ ∗ ∗ −XR̂−1X

⎤
⎥⎥⎦ < 0.

We can now apply the Schur Complement twice to isolate the γ−11 and XIX terms

in the LMI thus arriving at a nearly linear LMI that can be coded in Matlab

⎡
⎢⎢⎢⎢⎢⎣

−Q̂− R̂ 0 0 0 R̂ 0 0

∗ Q̂+AMX +XAT

M
− R̂ I 0 R̂+ BsY XAT

M
τ2XAT

M

∗ ∗ −γ1I X 0 0 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −2R̂ Y TBT
s τ2Y

TBT
s

∗ ∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ ∗ −XR̂−1X

⎤
⎥⎥⎥⎥⎥⎦ < 0.

This completes the proof.

It is necessary to find a method to deal with the non-linear term XR̂−1X in (3.9).

To do so, replace XR̂−1X with a new variable G, and apply additional constraints to

LMI system⎡
⎢⎢⎢⎢⎢⎣

−Q̂− R̂ 0 0 0 R̂ 0 0

∗ Q̂+ AMX +XAT

M
− R̂ I 0 R̂+ BsY XAT

M
τ2XAT

M

∗ ∗ −γ1I X 0 0 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −2R̂ Y TBT
s τ2Y

TBT
s

∗ ∗ ∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ ∗ ∗ −G

⎤
⎥⎥⎥⎥⎥⎦ (3.15)
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where G = XR̂−1X. Define J = G−1 , P = X−1 and L = R−1, G can be translated

into [
J P

∗ L

]
≥ 0. (3.16)

To help enforce the inverse relationships between variables define the following:

Minimize Trace(XP + JG+RL)

subject to X > 0, P > 0, G > 0, J > 0, L > 0, R > 0[
X I

∗ P

]
> 0;

[
G I

∗ J

]
> 0;

[
R I

∗ L

]
> 0 (3.17)

The new LMI problem can be solved by applying the cone complementarity algorithm

( [40], [41]) in the following manner:

Step 1: Find a set of feasible matrices (X, Y,G,R, L,Q, P, J)0 that satisfies

(3.15),(3.16) and (3.17).

Step 2: Solve the following LMI minimization problem:

Minimize Trace(XP 0 + PX0 +GJ0 + JG0 +RL0 + LR0)

subject to (3.15),(3.16) and (3.17)

Step 3: Substitute the new matrix variables from the previous step into (3.9). If the

result is feasible, stop and set Kc = Y X−1. If not feasible, set the newly acquired

matrices to (X, Y,G,R, L,Q, P, J)0 and go to step 2.

It may be necessary to set a maximum number of iterations depending upon available

computing power, time, and stability of the given system matrices. The algorithm

does not guarantee a solution, but any solution will guarantee stability and tracking.

3.3.2 Case II: Upper and Lower Bound on Time Delay

Theorem 2. For given constants τ1, τ2, if there exist matrices X > 0, Q̂1 > 0,

Q̂2 > 0, R̂1 > 0, R̂2 > 0, Ŝ > 0 and Y with appropriate dimensions, such that the

following LMI
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ŝ − R̂1 − Q̂1 0 R̂1 0 0 Ŝ 0 0 0 0

∗ −Ŝ − R̂2 − Q̂2 0 0 0 Ŝ + R̂2 0 0 0 0

∗ ∗ Q̂1 + Q̂2 + AMX +XAT
M − R̂2 − R̂1 X 0 R̂2 +BsY XAT

M τ1XAT
M τ2XAT

M (τ2 − τ1)XAT
M

∗ ∗ ∗ −I I 0 0 0 0 0

∗ ∗ ∗ ∗ −γ1I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −2Ŝ − 2R̂2 Y TBT
s τ1Y

TBT
s τ2Y

TBT
s (τ2 − τ1)Y

TBT
s

∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −R−11 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R−12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.18)

holds, then systems (3.1) and (2.2) are asymptotically stable.
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Proof: Consider a Lyapunov Candidate of the following form [41], [42]:

V = V1 + V2 + V3 + V4

V1 = e(t)TPe(t)

V2 =

2∑
i=1

∫ t

t−τi

eT (s)Qie(s)ds

V3 =

2∑
i=1

∫
0

−τi

∫ t

t+s

ėT (v)τiRiė(v)dvds

V4 =

∫ −τ1

−τ2

∫ t

t+s

ėT (v)(τ2 − τ1)Sė(v)dvds

Where τ1 is the minimum level of time delay and τ2 is the maximum level of time

delay of τ(t). It is also noted that Ri, Qi, S > 0. For the proof it is necessary to have

the time derivative of each function,

V̇1 = e(t)TP ė(t) + ė(t)TPe(t)

V̇2 =

2∑
i=1

(eT (t)Qie(t)− eT (t− τi)Qie(t− τi))

= eT (t)Q1e(t)− eT (t− τ1)Q1e(t− τ1) + eT (t)Q2e(t)− eT (t− τ2)Q2e(t− τ2)

V̇3 =
2∑

i=1

(ėT (t)τ 2i Riė(t)−
∫ t

t−τi

ėT (v)τiRiė(v)dv)

= ėT (t)τ 21R1ė(t)−
∫ t

t−τ1
ėT (v)τ1R1ė(v)dv + ėT (t)τ 22R2ė(t)−

∫ t

t−τ2
ėT (v)τ2R2ė(v)dv

V̇4 = ėT (t)(τ2 − τ1)
2Sė(t)−

∫ t−τ1

t−τ2

ėT (v)(τ2 − τ1)Sė(v)dv.

Similar to Case I, apply Jensen’s Inequality to reduce the following terms

− ∫ t−τ1

t−τ2
ėT (v)(τ2 − τ1)Sė(v)dv, −

∫ t

t−τ1
ėT (v)τ1R1ė(v)dv, −

∫ t

t−τ2
ėT (v)τ2R2ė(v)dv.

− ∫ t−τ1

t−τ2
ėT (v)(τ2 − τ1)Sė(v)dv ≤

⎡
⎢⎣

e(t− τ1)

e(t− τ(t))

e(t− τ2)

⎤
⎥⎦

T ⎡
⎢⎣

−S S 0

∗ −2S S

∗ ∗ −S

⎤
⎥⎦
⎡
⎢⎣

e(t− τ1)

e(t− τ(t))

e(t− τ2)

⎤
⎥⎦ (3.19)

−
∫ t

t−τ1

ėT (v)τ1R1ė(v)dv ≤
[

e(t)

e(t− τ1)

]T [
−R1 R1

∗ −R1

][
e(t)

e(t− τ1)

]
(3.20)

− ∫ t

t−τ2
ėT (v)τ2R2ė(v)dv ≤

⎡
⎢⎣ e(t)

e(t− τ(t))

e(t− τ2)

⎤
⎥⎦

T ⎡
⎢⎣ −R2 R2 0

∗ −2R2 R2

∗ ∗ −R2

⎤
⎥⎦
⎡
⎢⎣ e(t)

e(t− τ(t))

e(t− τ2)

⎤
⎥⎦ (3.21)
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The remaining portions of V̇ are then

V̇ = e(t)TP ė(t) + ė(t)TPe(t) + eT (t)Q1e(t)− eT (t− τ1)Q1e(t− τ1) + eT (t)Q2e(t)

− eT (t− τ2)Q2e(t− τ2) + ėT (t)τ 21R1ė(t) + ėT (t)τ 22R2ė(t) + ėT (t)(τ2 − τ1)
2Sė(t).

Then combine terms to arrive at

V̇ = e(t)TP ė(t) + ė(t)TPe(t) + eT (t)(Q1 +Q2)e(t)− eT (t− τ1)Q1e(t− τ1)

− eT (t− τ2)Q2e(t− τ2) + ėT (t)(τ 21R1 + (τ2 − τ1)
2S + τ 22R2)ė(t).

Next substitute ė into the V1 portion of the Lyapunov Candidate

V̇ = e(t)TP (AMe(t) +BsKce(t− τ(t)) +D) + (AMe(t) +BsKce(t− τ(t))

+ D)TP (e(t)) + eT (t)(Q1 +Q2)e(t)− eT (t− τ1)Q1e(t− τ1)

− eT (t− τ2)Q2e(t− τ2) + ėT (t)(τ 21R1 + (τ2 − τ1)
2S + τ 22R2)ė(t)

V̇ = eT (t)(Q1 +Q2 + PAM + AT
MP + γ−11 PP )e(t)− eT (t− τ1)Q1e(t− τ1)

− eT (t− τ2)Q2e(t− τ2) + ėT (t)(τ 21R1 + (τ2 − τ1)
2S + τ 22R2)ė(t) + γ1D

TD.

Converting into an LMI form with (3.19)-(3.21)⎡
⎢⎢⎢⎣

e(t)

e(t− τ1)

e(t− τ(t))

e(t− τ2)

⎤
⎥⎥⎥⎦
T ⎡
⎢⎢⎢⎣

Π1 R1 Π2 0

R1 −S −R1 −Q1 S 0

ΠT
2 S −2S − 2R2 S +R2

0 0 S +R2 −S − R2 −Q2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

e(t)

e(t− τ1)

e(t− τ(t))

e(t− τ2)

⎤
⎥⎥⎥⎦

where

Π1 = Q1 +Q2 + PAM + AT
MP + γ−11 PP − R2 −R1

Π2 = R2 + PBsKc.

Let ζ =

[
e(t)

e(t− τ(t))

]
and rearrange the LMI resulting in

⎡
⎢⎣

e(t− τ1)

e(t− τ2)

ζ

⎤
⎥⎦
T ⎡
⎢⎣

−S − R1 −Q1 0 Π4

∗ −S −R2 −Q2 Π5

∗ ∗ Π3

⎤
⎥⎦
⎡
⎢⎣

e(t− τ1)

e(t− τ2)

ζ

⎤
⎥⎦ (3.22)

where

Π3 =

[
Π1 Π2

∗ −2S − 2R2

]

Π4 =
[
R1 S

]
Π5 =

[
0 S +R2

]
.
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The next term that needs to be examined is ėT (t)(τ 21R1+(τ2− τ1)
2S+ τ 22R2)ė(t). By

substituting ė = E(t) +D into the term it becomes

[E +D]T (τ 21R1 + (τ2 − τ1)
2S + τ 22R2)[E +D]

= ET (τ 21R1 + (τ2 − τ1)
2S + τ 22R2)E + ET (τ 21R1 + (τ2 − τ1)

2S + τ 22R2)D

+DT (τ 21R1 + (τ2 − τ1)
2S + τ 22R2)D +DT (τ 21R1 + (τ2 − τ1)

2S + τ 22R2)E

= ET (τ 21R1 + (τ2 − τ1)
2S + τ 22R2 + γ−12 I)E

+DT (γ2(τ
2
1R1 + (τ2 − τ1)

2S + τ 22R2)
2 + (τ 21R1 + (τ2 − τ1)

2S + τ 22R2))D. (3.23)

By defining the following matrix relationships

τ 21R1 + (τ2 − τ1)
2S + τ 22R2 =

[
τ1 τ2 τ2 − τ1

]⎡⎢⎣
R1 0 0

0 R2 0

0 0 S

⎤
⎥⎦
⎡
⎢⎣

τ1

τ2

τ2 − τ1

⎤
⎥⎦

E =
[
AM BsKc

] [ e(t)

e(t− τ)

]

And substituting into (3.23) resulting in

[
ζ
]T [

AM BsKc

]T ⎛
⎜⎝[

τ1 τ2 τ2 − τ1

]⎡⎢⎣ R1 0 0

0 R2 0

0 0 S

⎤
⎥⎦
⎡
⎢⎣ τ1

τ2

τ2 − τ1

⎤
⎥⎦+ γ−12 I

⎞
⎟⎠[

AM BsKc

] [
ζ
]
.

Then combining the ζ term to the previous results of the LMI in (3.22)

[
ζ
]T

Π3 +
[
AM BsKc

]T ⎛
⎜⎝[

τ1 τ2 τ2 − τ1

]⎡⎢⎣
R1 0 0

0 R2 0

0 0 S

⎤
⎥⎦
⎡
⎢⎣

τ1

τ2

τ2 − τ1

⎤
⎥⎦+ γ−12 I

⎞
⎟⎠[

AM BsKc

] [
ζ
]
. (3.24)

Using the Schur Complement on (3.24) to arrive at[
A B

BT F

]

where

A = Π3 +

[
AT

M

(BsKc)
T

]
γ−12 I

[
AM BsKc

]

B =

[
AT

M

(BsKc)
T

] [
τ1 τ2 τ2 − τ1

]

F =

⎡
⎢⎣ −R−11 0 0

0 −R−12 0

0 0 −S−1

⎤
⎥⎦ .
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Substituting back into (3.22) yields
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S − R1 −Q1 0 Π4 0

∗ −S −R2 −Q2 Π5 0

∗ ∗ Π3 +

[
AT

M

(BsKc)
T

]
γ−12 I

[
AM BsKc

] [
AT

M

(BsKc)
T

] [
τ1 τ2 τ2 − τ1

]

∗ ∗ ∗

⎡
⎢⎣

−R−11 0 0

0 −R−12 0

0 0 −S−1

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (3.25)

Applying the Schur Complement again on the term Π3 +[
AT

M

(BsKc)
T

]
γ−12 I

[
AM BsKc

]
and expanding the rows and columns to ac-

quire
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S − R1 −Q1 0 R1 S 0 0 0 0

∗ −S −R2 −Q2 0 S +R2 0 0 0 0

∗ ∗ Q1 +Q2 + PAM + AT
MP + γ1−1PP −R2 − R1 R2 + PBsKc AT

M τ1A
T
M τ2A

T
M (τ2 − τ1)A

T
M

∗ ∗ −2S − 2R2 (BsKc)
T τ1(BsKc)

T τ2(BsKc)
T (τ2 − τ1)A

T
M

∗ ∗ ∗ ∗ γ2I 0 0 0

∗ ∗ ∗ ∗ ∗ −R−11 0 0

∗ ∗ ∗ ∗ ∗ ∗ −R−12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −S−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (3.26)

Then

V̇ ≤ [ζ ]T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S − R1 −Q1 0 R1 S 0 0 0 0

∗ −S −R2 −Q2 0 S +R2 0 0 0 0

∗ ∗ Q1 +Q2 + PAM + AT
MP + γ−11 PP −R2 − R1 R2 + PBsKc AT

M τ1A
T
M τ2A

T
M (τ2 − τ1)A

T
M

∗ ∗ −2S − 2R2 KT
c B

T
s τ1K

T
c B

T
s τ2K

T
c B

T
s (τ2 − τ1)K

T
c B

T
s

∗ ∗ ∗ ∗ −γ2I 0 0 0

∗ ∗ ∗ ∗ ∗ −R−11 0 0

∗ ∗ ∗ ∗ ∗ ∗ −R−12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −S−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[ζ ]

+γ1D
TD +DT (γ2(τ

2
1R1 + (τ2 − τ1)

2S + τ 22R2)
2 + τ 21R1 + (τ2 − τ1)

2S + τ 22R2)D

≤ ζTΘζ − eTe+DT (γ1I + γ2(τ
2
1R1 + (τ2 − τ1)

2S + τ 22R2)
2 + τ 21R1 + (τ2 − τ1)

2S + τ 22R2)D

where

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S − R1 −Q1 0 R1 S 0 0 0 0

∗ −S −R2 −Q2 0 S +R2 0 0 0 0

∗ ∗ Q1 +Q2 + PAM + AT
MP + γ−11 PP − R2 − R1 + I R2 + PBsKc AT

M τ1A
T
M τ2A

T
M (τ2 − τ1)A

T
M

∗ ∗ −2S − 2R2 KT
c B

T
s τ1K

T
c B

T
s τ2K

T
c B

T
s (τ2 − τ1)K

T
c B

T
s

∗ ∗ ∗ ∗ −γ2I 0 0 0

∗ ∗ ∗ ∗ ∗ −R−11 0 0

∗ ∗ ∗ ∗ ∗ ∗ −R−12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −S−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Due to some of the non-convex terms, such as PBsKc, it is necessary to linearize by

pre- and post- multiplying by diag(P−1, P−1, P−1, P−1, I, I, I, I)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ŝ − R̂1 − Q̂1 0 R̂1 Ŝ 0 0 0 0

∗ −Ŝ − R̂2 − Q̂2 0 Ŝ + R̂2 0 0 0 0

∗ ∗ Q̂1 + Q̂2 + AMX +XAT
M + γ−11 I − R̂2 − R̂1 +XIX R̂2 +BsY XAT

M τ1XAT
M τ2XAT

M (τ2 − τ1)XAT
M

∗ ∗ −2Ŝ − 2R̂2 Y TBT
s τ1Y

TBT
s τ2Y

TBT
s (τ2 − τ1)Y

TBT
s

∗ ∗ ∗ ∗ −γ2I 0 0 0

∗ ∗ ∗ ∗ ∗ −R−11 0 0

∗ ∗ ∗ ∗ ∗ ∗ −R−12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −S−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.27)
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where,

X = P−1

Y = KX

Q̂1 = XQ1X

Q̂2 = XQ2X

R̂1 = XR1X

R̂2 = XR2X

Ŝ = XSX.

If Θ < 0 holds, then

V̇ ≤ −‖e(t)‖2 + ‖DT (γ1I + γ2(τ
2
1R1 + (τ2 − τ1)

2S + τ 22R2)
2 + τ 21R1 + (τ2 − τ1)

2S + τ 22R2)D‖ (3.28)

which shows that the error is bounded and that the bound is determined by the

magnitude of the terms γ1 and γ2, ‖D‖, the eigenvalues of R1,R2, and S, the upper

bound of the delay τ2, the lower bound of the delay τ1, and the range of the time

delay τ2 − τ1.

Applying the Schur Complement again to Θ removes the XIX and γ−11 I terms

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ŝ − R̂1 − Q̂1 0 R̂1 0 0 Ŝ 0 0 0 0

∗ −Ŝ − R̂2 − Q̂2 0 0 0 Ŝ + R̂2 0 0 0 0

∗ ∗ Q̂1 + Q̂2 + AMX +XAT
M − R̂2 − R̂1 X 0 R̂2 +BsY XAT

M τ1XAT
M τ2XAT

M (τ2 − τ1)XAT
M

∗ ∗ ∗ −I I 0 0 0 0 0

∗ ∗ ∗ ∗ −γ1I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −2Ŝ − 2R̂2 Y TBT
s τ1Y

TBT
s τ2Y

TBT
s (τ2 − τ1)Y

TBT
s

∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −R−11 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R−12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.29)

Unfortunately, Θ has 3 non-convex terms (−R−11 ,−R−12 ,−S−1) that need to be exam-

ined further. The first step is to convert the variables to their linearized equivalents

(i.e. R̂1 as opposed to R1) through the following relationships

R̂1 = XR1X, R−11 = XR̂1

−1
X

R̂2 = XR2X, R−12 = XR̂2

−1
X

Ŝ = XSX, S−1 = XŜ−1X.
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Substituting the above transformations we arrive at
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ŝ − R̂1 − Q̂1 0 R̂1 0 0 Ŝ 0 0 0 0

∗ −Ŝ − R̂2 − Q̂2 0 0 0 Ŝ + R̂2 0 0 0 0

∗ ∗ Q̂1 + Q̂2 + AMX +XAT
M − R̂2 − R̂1 X 0 R̂2 +BsY XAT

M τ1XAT
M τ2XAT

M (τ2 − τ1)XAT
M

∗ ∗ ∗ −I I 0 0 0 0 0

∗ ∗ ∗ ∗ −γ1I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −2Ŝ − 2R̂2 Y TBT
s τ1Y

TBT
s τ2Y

TBT
s (τ2 − τ1)Y

TBT
s

∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −XR̂1

−1
X 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −XR̂2

−1
X 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −XŜ−1X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.30)

This completes the proof.

It is necessary to find a method to deal with the non-linear terms XR̂1

−1
X ,XR̂2

−1
X,

and XŜ−1X in (3.18). To do so, replace XR̂1

−1
X,XR̂2

−1
X, and XŜ−1X with a new

variables G1,G2, and G3 while apply additional constraints to the LMI
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ŝ − R̂1 − Q̂1 0 R̂1 0 0 Ŝ 0 0 0 0

∗ −Ŝ − R̂2 − Q̂2 0 0 0 Ŝ + R̂2 0 0 0 0

∗ ∗ Q̂1 + Q̂2 + AMX +XAT
M − R̂2 − R̂1 X 0 R̂2 +BsY XAT

M τ1XAT
M τ2XAT

M (τ2 − τ1)XAT
M

∗ ∗ ∗ −I I 0 0 0 0 0

∗ ∗ ∗ ∗ −γ1I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −2Ŝ − 2R̂2 Y TBT
s τ1Y

TBT
s τ2Y

TBT
s (τ2 − τ1)Y

TBT
s

∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −G1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −G2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −G3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.31)

Define J1 = G−11 , P = X−1 and L1 = R−11 , therefore G1 can be translated into:[
J1 P

∗ L1

]
≥ 0. (3.32)

Define J2 = G−12 , P = X−1 and L2 = R−12 , therefore G2 can be translated into:[
J2 P

∗ L2

]
≥ 0. (3.33)

Define J3 = G−13 , P = X−1 and L3 = S−1, therefore G3 can be translated into:[
J3 P

∗ L3

]
≥ 0. (3.34)

To help enforce the inverse relationships between variables define the following:

Minimize Trace(XP + J1G1 +R1L1 + J2G2 +R2L2 + J3G3 + SL3)

subject to X > 0, P > 0, G1 > 0, J1 > 0, L1 > 0, R1 > 0, G2 > 0, J2 > 0,

L2 > 0, R2 > 0, , G3 > 0, J3 > 0, L3 > 0, S > 0[
X I

∗ P

]
> 0;

[
G1 I

∗ J1

]
> 0;

[
G2 I

∗ J2

]
> 0;

[
G3 I

∗ J3

]
> 0;

[
R1 I

∗ L1

]
> 0;

[
R2 I

∗ L2

]
> 0;

[
S I

∗ L3

]
> 0 (3.35)
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The new LMI problem can be solved by applying the cone complementarity algorithm

[41] in the following manner:

Step 1: Find a set of feasible matrices

(X, Y,Q1, Q2, P, G1, R1, L1, J1, G2, R2, L2, J2, G3, S, L3, J3)
0

that satisfies (3.31),(3.32),(3.33),(3.34) and (3.35).

Step 2: Solve the following LMI minimization problem

Minimize Trace(XP 0 + PX0 +G1J
0

1 + J1G
0

1 +R1L
0

1 + L1R
0

1 +G2J
0

2 + J2G
0

2

+R2L
0

2 + L2R
0

2 +G3J
0

3 + J3G
0

3 + SL0

3 + L3S
0)

subject to (3.31)(3.32)(3.33)(3.34) and (3.35)

Step 3: Substitute the new matrix variables from the previous step into (3.18). If the

result is feasible set Kc = Y X−1. If not feasible, set the newly acquired matrices to

(X, Y,G,R, L,Q, P, J)0 and go to step 2.

While the above theorem and algorithm are guaranteed to provide a stable result,

they are not guaranteed to find a result. Due to the fact that no solution may exist,

a loop counter and break command should be used to prevent an infinite loop.

3.4 Summary

The section outlines the designed control algorithms for the two cases considered:

only an upper bound on time delay (Case I), and an upper and lower bound on

the delay (Case II). The same master impedance controller is used for both cases,

and the error dynamics remains unchanged for each case. Both cases are LMI based

solutions from similar Lyapunov functions, with extra terms in Case II to account

for the added lower level of delay. The LMIs are formulated using techniques such as

Jensen’s Inequality, Schur Complement, and the cone complementarity algorithm to

eliminate inherent non-linearities in the LMIs in Theorems 1 and 2.



Chapter 4

Simulation Results

The following sections deal with the simulation work done using Matlab and Simulink.

Matlab was used to solve the LMI problems as described in Section 3.2 to obtain

the control gain Kc, while Simulink was used to perform the system simulation and

achieve results.

4.1 System Parameters

The following are a list of base system parameters used for computing the LMI and

running the simulations:

mm = 3kg

bm = 3Ns/m

km = 0N/m

ms = 2kg

bs = 2Ns/m

ks = 0N/m

M = 1kg

B = 4Ns/m

K = 4N/m

Be = 0Ns/m

Ke = 4N

τ2 = 0.08s

τ1 = 0.02s.

It should be noted that for Case I τ1 is not used, as no lower bound on the time delay

was considered.

4.2 Case I: Only Upper Delay Bound

The first case considered was with only an upper bound on the delay of τ2, with the

delay variable between 0 and τ2.

30
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4.2.1 Base LMI Results

Using the system parameters from Section 4.1, the LMI code ((3.15)(3.16) and (3.17))

was run to generate the following LMI variables

X =

[
0.1755 −0.1352

−0.1352 0.1725

]

Y = 1 ∗ 10−3
[
−0.4836 −0.8777

]

R̂ = 1 ∗ 10−3
[

0.384 0.0116

0.0116 0.2907

]

Q̂ = 1 ∗ 10−5
[

0.2991 −0.1156

−0.1156 0.0909

]

γ1 = 5

γ2 = 0.9

which led to the static feedback control gain of Kc =
[
−0.0168 −0.0183

]
from the

LMI stabilization algorithm. It should be noted that the values of γ1 and γ2 were pre

selected to the approximate minimum values that would allow the algorithm to find

a solution. This was done to help reduce computational load as minimum values for

γ1 and γ2 are desired based on the derived error bound expression (3.14).

4.2.2 Modified Step Response

The first input type tested on the system was that of a modified step response. The

input forcing function Fh was modeled as a ramp function up to a value of 1 N with

a slope of 0.2 N/s. After reaching a value of 1 N the force was held constant as in

Fig. 4.1 (a). The corresponding control signals are displayed in Fig. 4.1 (b), and

show relatively smooth behavior with no extreme control inputs or discontinuities

present, which is a desired trait for smooth teleoperation. The net force seen by

the manipulators as in Fig. 4.1 (c), shows slightly noisier signals being sent to the

manipulator, but with low net values of force (all less than 0.2 N). The net force is

calculated as

Fnet,m = Um + Fh

Fnet,s = Us − Fe

Also shown is the fact that equilibrium with the environment is achieved after approx-

imately 7 seconds, when the net manipulator forces going to zero. It should be noted
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that Fh and Fe need not be equal for equilibrium to be reached due to the asymmetry

in the system and the scaling of Fh for the impedance matching controller.
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Figure 4.1: (a) External forces, (b) Control signals and (c) Net manipulator forces

under a modified step input with only upper delay bound τ2

Similar to the forces plotted in Fig. 4.1, the state information is displayed in Fig.

4.2. The positions of the manipulators are shown in Fig. 4.2 (a) which displays the

desired tracking between master and slave with a final position of 0.125 m. Fig. 4.2

(b) displays the velocities of both manipulators with the expected ramping to an

approximately constant velocity to match the input, and then deceleration back to

no movement when force equilibrium is occurring on the manipulators. Fig. 4.2 (c)

displays the positional error between the master and slave manipulators which peaks

at 3.4 mm, giving a maximum error relative to final position of 2.72 %.

Lastly, Fig. 4.3 plots the positional error with reference to maximum error bound as

derived in (3.14). As shown, the error clearly lies within the bounding limits of the

algorithm, further verifying its ability to provide a stable bilateral teleoperation setup.

Only the maximum error bound is displayed due to the extremely noisy behavior of

the error bound. The error bound varies with the external forces Fh and Fe and

the true level of time delay τ in the system, causing the noisy behavior. If τ were

constant, an accurate plot of the error bound as a function of time could be obtained.
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Figure 4.2: (a) Position, (b) Velocity and (c) Positional error under a modified step

input with only upper delay bound τ2
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Figure 4.3: Positional error and its maximum bound under a modified step input

with only upper delay bound τ2
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4.2.3 Sinusoid Response

A sinusoid was considered as a second human input type. For simulation testing, a

sinusoid with a magnitude of 5 N and a frequency of 0.5 Hz was used, which falls

within the 6 Hz limit of voluntary human motion [55]. The input is shown in Fig. 4.4

(a), along with the wall contact forces that occur only when the position of the system

is positive. This is due to the assumption that the slave manipulator is resting against

the object of interest in the environment. Displayed in Fig. 4.4 (b) are the control

signals from the master side impedance matching controller and slave side stability

controller respectively. Similar to the case with the modified step input, the signals

are relatively smooth with no discontinuities or extreme force values as all values fall

within ±7 N. Lastly, Fig. 4.4 (c) displays the net force as seen by the manipulators,

and once again the signal is noisier than the control signal but again is bounded, this

time by a magnitude of 2 N.
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Figure 4.4: (a) External forces, (b) Control signals and (c) Net manipulator forces

under a sinusoidal input with only upper delay bound τ2

Fig. 4.5 (a) plots the positions of both the master and slave manipulator and displays

the high level of tracking available in the system as it is difficult to discern the level

of error from Fig. 4.5 (a) alone. Displayed in Fig. 4.5 (b) are the respective velocities

that show relatively smooth motion. Smooth motion is preferable as it would be

undesirable for high levels of overshoot in the slave tracking performance leading to
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unnecessary fluctuations in the contact force Fe. Fig. 4.5 (c) plots the error in position

of the slave from the master. As shown, a peak error of 0.03 m is realized. When

compared to a maximum distance of travel from equilibrium of 1.2 m,a percent error

relative to the maximum travel of 2.5 % is realized.

0 5 10 15
−2

−1

0

1

Time (s)

P
os

iti
on

 (m
)

(a)

Master
Slave

0 5 10 15
−0.5

0

0.5

1

Time (s)

V
el

oc
ity

 (m
/s

)

(b)

Master
Slave

0 5 10 15
−0.04

−0.02

0

0.02

0.04

Time (s)

E
rr

or
 (m

)

(c)

Error

Figure 4.5: (a) Position, (b) Velocity and (c) Positional error under a sinusoidal input

with only upper delay bound τ2

Lastly, Fig. 4.6 plots the positional error with reference to maximum error bound

as derived in (3.14). The plot shows that the error clearly lies within the bounding

limits of the algorithm.

4.2.4 Parametric Study

It was determined that a parametric study on the fixed variables of τ2, γ1, and γ2 be

conducted as to explore their effects on the error. It was expected that increasing these

values would increase the overall system error based on (3.14), although variations in

the LMI solutions may cause other behavior. All of the system parameters are the

same as in Section 4.1, with the input being a similar sinusoidal function as in Section

4.2.3, except the magnitude was reduced to 3 N.
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Figure 4.6: Positional error and its maximum bound under a sinusoidal input with

only upper delay bound τ2

τ2 variations

The first variable considered was τ2, as knowing the maximum allowable time delay

that the algorithm can handle, along with the effects of the delay on the system error

are desired. As shown in Fig. 4.7 (a), the maximum level of delay that the LMI can

handle is 0.46 seconds, which provides a maximum error of 0.118 m, a considerable

increase from the 0.02 m maximum error when τ2 is set to 0.08 seconds. Fig. 4.7 (b)

shows the maximum position of the master and that it remains relatively unchanged

in the face of the delay. This results in the system percent error increasing from 2.8 %

up to 17 % as τ2 grows from 0.08 seconds to 0.46 seconds. It is important to monitor

the control signals for undesirable maximum values so as to ensure safe operation of

the hardware. As shown in Fig. 4.8 (a), the master’s control signal maximum value

stays within the bound of 3.213 N, a reasonable level considering the 3 N peak input.

Similarly, the slave peak signal reaches limits of 1.53 N, which indicates stability as

τ2 grows until the algorithm no longer can compute a solution.

γ1 variations

The next variable considered was the disturbance isolation constant γ1 in order to

consider the effects it has on the error and control signals. As displayed in Fig. 4.9
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Figure 4.7: (a) Maximum positional error and (b) Maximum master position as τ2

varies
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Figure 4.8: (a) Maximum master control signal and (b) Maximum slave control signal

as τ2 varies
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(a), the maximum error is relatively unchanged by the changes in γ1, with an overall

trend of decline as γ1 increases. Once again the position is unaffected by the choice

of γ1, as shown in Fig. 4.9 (b). Plotted in Fig. 4.10 (a) and (b) are the maximum
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Figure 4.9: (a) Maximum positional error and (b) Maximum master position as γ1

varies

master and slave control signals respectively. As shown, the changes in γ1 have little

impact on the magnitude of the signals, with peaks of 3.213 N for the master and

0.95 N for the slave. These peaks are comparable to the maximum input force of 3

N.

γ2 variations

The final variable that was in the LMIs was γ2, and sweeps were conducted on the

parameter value similar to γ1 and τ2. Fig. 4.11 (a) shows the maximum value of the

error and an odd step response behavior. The low initial values of error are expected

based on (3.14), but the peak at shortly thereafter indicates that the behavior of the

other LMI variable must be more dependent on γ2 than γ1. This is because there

were no real variations in the γ1 maximum error values. Fig. 4.9 (b) displays the

maximum position reached by master manipulator, which remains constant at 0.7 m.

Plotted in Fig. 4.12 (a) and (b) are the maximum master and slave control signal
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Figure 4.10: (a) Maximum master control signal and (b) Maximum slave control

signal as γ1 varies
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Figure 4.11: (a) Maximum positional error and (b) Maximum master position as γ2

varies
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values. The master signal appears to be unaffected by variations in γ2 at a value

around 3.213 N. However, the values of the slave control signal appear to be dependent

on γ2, with a general first order step response appearing as γ2 increases.
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Figure 4.12: (a) Maximum master control signal and (b) Maximum slave control

signal as γ2 varies

A study was done to relate the maximum positional error to various combinations of

γ1 and γ2, see Fig. 4.13. The results indicate a much stronger relationship between the

error and γ2 based on the curvature mimicking the previous results for γ2 variations.

The variations of γ1 produce a small effect, as made evident by the gradual tapering

slope. The optimal point is located when both γ1 and γ2 are minimized.

4.3 Case II: Upper and Lower Bound on Time Delays

The second case considered contains both an upper bound of τ2 and a lower bound

of τ1 on the time delay, with the delay variable between τ1 and τ2. It was expected

that the results will vary due to the increased level of communication modeling.
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Figure 4.13: Error as γ1 and γ2 varies

4.3.1 Base LMI Results

Using the system parameters from Section 4.1, the LMI code((3.31)-(3.35)) was run

to achieve the following LMI variables

X = 1 ∗ 10−4
[

0.6359 −0.1280

−0.1280 0.6458

]

Y = 1 ∗ 10−3
[
0.2113 −0.0983

]

R̂1 = 1 ∗ 10−4
[

0.3628 −0.0995

−0.0995 0.3717

]

R̂2 = 1 ∗ 10−4
[

0.5812 0.0322

0.0322 0.4078

]

Ŝ = 1 ∗ 10−4
[

0.3230 −0.0868

−0.0868 0.3309

]

Q̂1 = 1 ∗ 10−3
[

0.0183 0.0206

0.0206 0.1406

]

Q̂2 = 1 ∗ 10−3
[

0.0169 0.0220

0.0220 0.1435

]

γ1 = 1.1

γ2 = 0.1

which led to a static feedback control gain of Kc =
[
3.1411 −0.8997

]
.
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4.3.2 Modified Step Response

The first input type tested on the system was a modified step response. The input

forcing function Fh was modeled as a ramp function up to a value of 1 N with a

slope of 0.2 N/s. After reaching a value of 1 N the force was held constant as in

Fig. 4.14 (a). The corresponding control signals are displayed in Fig. 4.14 (b), and

show relatively smooth behavior with no extreme control inputs or discontinuities

present which is a desired trait for smooth teleoperation. The net force seen by the

manipulators are in Fig. 4.14 (c). The plot shows slightly noisier signals being sent to

the manipulator, but a low net value of force (all less than 0.2 N). Also shown is the

fact that equilibrium with the environment is achieved after approximately 7 seconds,

when the net manipulator forces go to zero. It should be noted that it is not necessary

for Fh and Fe to be equal for equilibrium to be reached due to the asymmetry in the

system and the scaling for Fh for the impedance matching controller.
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Figure 4.14: (a) External forces, (b) Control signals and (c) Net manipulator forces

under a modified step input with lower delay bound τ1 and upper delay bound τ2

Similar to the forces plotted in Fig. 4.14, the state information is displayed in Fig.

4.15. The positions of the manipulators are shown in Fig. 4.15 (a) and displays

the desired tracking between master and slave. Also shown is a final equilibrium

position of 0.125 m. Fig. 4.15 (b) displays the velocities of both manipulators with
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the expected ramping to an approximately constant velocity to match the input, and

then deceleration back to no movement when force equilibrium is occurring on the

manipulators. Finally, Fig. 4.15 (c) displays the positional error between the master

and slave manipulators which peaks at 4.2 mm, giving a maximum error of 3.36 %

relative to the final position.

The results of Case II are are slightly worse than Case I as there is more error and a

higher percent error, however the increased level of modeling lends more confidence in

the results. The level of error increasing from 3.4 mm to 4.2 mm represents a percent

increase of 23.5 %, a significant jump, but an increase compared to maximum travel

of 0.56%, a less significant and more manageable increase. The better performance in

Case I without the lower bound can be attributed to the packets that were received

before the minimum delay level in Case II.
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Figure 4.15: (a) Position, (b) Velocity and (c) Positional error under a modified step

input with lower delay bound τ1 and upper delay bound τ2

Lastly, Fig. 4.16 plots the positional error with reference to maximum error bound as

derived in (3.28). The error lies within the calculated bound limits of the algorithm,

further verifying the ability to provide a stable bilateral teleoperation setup. Only the

maximum error bound is displayed due to the extremely noisy behavior of the bound.

The bound varies with the external forces Fh and Fe, as well as the true level of time
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delay τ in the system. The noisy behavior is due to the randomly varying delay values

that cause variations in the differences of Fh(t− τ)− Fh(t) and Fe(t− τ)− Fe(t).
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Figure 4.16: Positional error and its maximum bound under a modified step input

with lower delay bound τ1 and upper delay bound τ2

4.3.3 Sinusoid Response

A sinusoid was chosen as a second human input for testing as it has a constantly

changing force. For the simulations, a sinusoid with a magnitude of 3 N and a

frequency of 0.5 Hz was used, which falls within the 6 Hz limit of voluntary human

motion [55]. The input is shown in Fig. 4.17 (a), along with the wall contact force.

The contact force occurs only when the position of the system is positive as it is

assumed the slave manipulator is resting against the object of interest. Fig. 4.17

(b) shows the control signals from the master side impedance matching controller

and slave side stability controller. The control signals are relatively smooth with no

discontinuities or extreme force values, as all values falling within ±4 N. Fig. 4.17

(c) displays the net force as seen by the manipulators, and once again the signal is

noisier than the control signal but again is bounded, this time by a magnitude of 1.5

N.
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Figure 4.17: (a) External forces, (b) Control signals and (c) Net manipulator forces

under a sinusoidal input with lower delay bound τ1 and upper delay bound τ2

Fig. 4.18 (a) plots the positions of both the master and slave manipulators and dis-

plays the level of tracking available in the system. It is noted that the level of error

is difficult to discern from Fig. 4.18 (a) alone. Displayed in Fig. 4.18 (b) are the

respective velocities that show relatively smooth motion. Smoothness is desirable to

avoid high levels of overshoot in the slave tracking performance that would cause

unnecessary fluctuations in the contact force Fe. Lastly, Fig. 4.18 (c) plots the error

in position of the slave from the master. As shown, a peak error of 0.03 m is realized

compared to a maximum distance from equilibrium of 0.7 m, yielding a percent error

relative to maximum travel of 4.3 %.

When compared to Case I, the percent error of Case II is higher, primarily due to the

packets that previously would have arrived prior to 0.02 s being delayed to 0.02 s or

higher.

Fig. 4.16 plots the positional error with reference to maximum error bound as derived

in (3.28). The error lies within the calculated bound limits of the algorithm, further

verifying the algorithm’s ability to provide a stable bilateral teleoperation setup. The

maximum error bound is displayed due to the extremely noisy behavior of the bound.

The bound varie with the external forces Fh and Fe, along with the true level of time
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Figure 4.18: (a) Position, (b) Velocity and (c) Positional error under a sinusoidal

input with lower delay bound τ1 and upper delay bound τ2

delay τ in the system. The noisy behavior is due to the randomly varying delay values

that cause variations in the differences of Fh(t− τ)− Fh(t) and Fe(t− τ)− Fe(t).

4.3.4 Parametric Study

It was determined that a parametric study on the fixed variables τ1, τ2, γ1, and γ2

should be conducted as to explore their effects on the error and control signals. It was

expected that increasing these values would increase the overall system error based on

(3.28), although variations in the LMI solutions would possibly cause other behavior.

All of the system parameters are the same as in Section 4.1, with the input being the

same sinusoidal function as in Section 4.3.3.

τ1 variations

The lower delay bound τ1 was the first variable considered during the parametric

study. It was expected, based on the previous results from Sections 4.3.3 and 4.2.3,

that as τ1 increased under a constant τ2 that the level of error would increase. As

shown in Fig. 4.20 (a), the maximum error did indeed increase as τ1 increased. A

second factor considered was the positional change due to the variation of τ1. As
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Figure 4.19: Positional error and its maximum bound under a sinusoidal input with

lower delay bound τ1 and upper delay bound τ2

shown in Fig. 4.20(b), the behavior does not exist as while there was only a slight

change in value, however the peak is essentially the same.

The second set of factors to explore is the control signals to ensure they are stable. If

the position is stable then the magnitude of Fe is likewise stable due to its dependence

on position, and Fh is guaranteed to be stable as it is defined by the user, therefore

the only source of force spikes are the control signals. Fig. 4.21 shows the maximum

resulting forces for (a) master and (b) slave. Based on the plots, it can be seen that

the forces are bounded by similar bounds, and that trends do exist where the master

signal increases with τ1 and the slave signal decreases with τ1.

τ2 variations

Recalling that the maximum level of delay from Case I was 0.46 s, in finding the

maximum allowable delay for Case II the hope was it would be larger due to the

more in depth modeling of the communication channels. As displayed in Fig. 4.22

(a), the maximum allowable delay has been increased to 1.236 s, while the maximum

error shows a similar trend, as it grew along with τ2 from 0.03 m to over 0.4 m. This

is an increase in percent error from 2.85 percent to 57 percent. Unlike Case I, the
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Figure 4.20: (a) Maximum positional error and (b) Maximum master position as τ1

varies

maximum master position varies slightly with τ2, since it can be seen to grow with τ2

in Fig. 4.22(b).

It is necessary to check the control signals to ensure there are no unwanted control

signal peaks. Fig. 4.23 shows the maximum master control signal (a) and the max-

imum slave control signal (b). It can be seen that for both cases, the control signal

maximum is kept within a reasonable bound. The master maximum control signal

was bounded by 4.4 N while the slave by 1.6 N, which are comparable to the 3 N

input maximum. The patterns shown by the signals are of interest, as the master

signal continues to grow as τ2 grows, while the slave signal is somewhat parabolic

with a peak occurring at 0.73 s.

γ1 variations

After concluding the testing of τ1 and τ2, similar testing was done on the gain γ1. As

shown in Fig. 4.24 (a), other than in the first few values (γ1 < 10) there is little effect

on the error as γ1 varied. Overall the error increased by 0.004 m, or 12 %, before it

leveled off. Based on the fact the error bound is a function of γ1, ot was expected that

as γ1 increased the error would increase. However, instead the LMI compensates for
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Figure 4.21: (a) Maximum master control signal and (b) Maximum slave control

signal as τ1 varies

the changes in γ1 by adjusting other parameters such as R1, R2 and S. Secondly, it

can be seem that the maximum position that the manipulator reaches is independent

of γ1, and that all values are bounded by 0.707 m.

The second factor to consider are the control signals generated when γ1 changes. The

maximum values can be seen in Fig. 4.25. As shown, both control signals’ maximums

appear to decrease as γ1 increases and then level off. Leveling occurs at 3.224N for

the master and at 1.35N for the slave.

γ2 variations

The final parameter to explore the effects of its variation was γ2. As shown in Fig.

4.26 (a), the maximum error is dependent on the value of γ2, with the maximum

occurring when γ2 is minimized. This indicates that other LMI parameters are in-

creased to cause the additional levels of error. It appears that the ideal value of γ2

is approximately 10, assuming that the other parameters are kept constant. It is

also important to note that the value of maximum error appears to level off as γ2

increases. As plotted in Fig. 4.26 (b), the maximum position achieved by the master

manipulator remains unchanged at 0.706 m.
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Figure 4.22: (a)Maximum positional error and (b) Maximum master position as τ2

varies

The final factor to consider was the control signal peaks, which are plotted in Fig.

4.27. Fig. 4.27 (a) shows the master control signal which has no trends to it as far

as γ2 is concerned, fluctuating 3.235N. Shown in Fig. 4.27 (b) has little change based

on γ2, only a slight ramp effect when the values of γ2 are quite small, and only over

a range of 0.05N.

A study was conducted to relate the maximum positional error to various combina-

tions of γ1 and γ2 and is displayed in Fig. 4.28. The plotted results indicate that

both γ1 and γ2 have a strong effect on the error, particularly at low values. For γ1,

the error remains large, until a value of approximately 7, and then drops down to a

much smoother plane. In the case of γ2, the error remains large, until a value of ap-

proximately 36, and then drops off dramatically. Once on the smoother lower slope,

the values of maximum error continue to lower as both γ1 and γ2 increase. A final

point of interest is that when both γ1 and γ2 are small ( γ1=1 and γ2=8) the error is

minimized.
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Figure 4.23: (a) Maximum master control signal and (b) Maximum slave control

signal as τ2 varies

4.4 Summary

In summary, the simulation results for a sample test system were explored and dis-

cussed for the two test cases: where only an upper bound on delay was considered,

and where both an upper and lower bound were considered. The simulation results

demonstrate tracking capabilities, with the maximum error for Case I at 0.03 m for a

5 N sinusoid input, while in Case II the maximum error was 0.03 m with an input of

a 3 N sinusoid. A scenario with a modified step input leading to contact with a de-

formable surface was also explored, and showed that an equilibrium position occurred

where no error existed. A parametric study was conducted for both cases in which

the values of τ1, τ2, γ1, and γ2 were varied while the others were held constant in order

to evaluate their effects on the system. It was shown that τ2 had the greatest effect

on the error followed by τ1 for the case with the lower bound. The other parameters

had a smaller effect, although γ2 had a greater influence than γ1 on the error and

control signals.
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Figure 4.24: (a) Maximum positional error and (b) Maximum master position as γ1

varies

0 20 40 60 80 100 120 140 160 180 200
3.22

3.222

3.224

3.226

3.228

3.23

M
as

te
r C

on
tro

l S
ig

na
l (

N
)

(a)

0 20 40 60 80 100 120 140 160 180 200
1.345

1.35

1.355

1.36

1.365

1.37

γ1

S
la

ve
 C

on
tro

l S
ig

na
l (

N
)

(b)

Figure 4.25: (a) Maximum master control signal and (b) Maximum slave control

signal as γ1 varies
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Figure 4.26: (a) Maximum positional error and (b) Maximum master position as γ2

varies
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Figure 4.27: (a) Maximum master control signal and (b) Maximum slave control

signal as γ2 varies
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Figure 4.28: Error as γ1 and γ2 varies



Chapter 5

Experimental Work

For the experimental verification of the theoretical derivations, a bilateral teleoper-

ation setup was required. For the test setup a Phantom Omni haptic device(Fig.

5.1(a)) made by Sensable was used as the master hardware, while a Novint Falcon

haptic device(Fig. 5.1(b)) was used as the slave hardware. The Phantom Omni is

marketed as a 6-degree of freedom manipulator with force feedback capabilities in

three directions (x,y, and z). The Novint Falcon is a 3-degree of freedom manipulator

with feedback for all directions of motion.

Figure 5.1: (a) Phantom Omni haptic device [62] and (b) Novint Falcon haptic device

[61]

As the hardware is designed for multiple degrees of freedom and the theoretical deriva-

tions are for a single degree of freedom, modifications to the equipment were necessary.

For the Phantom Omni, a brace was made to allow the system to operate with only

a single degree of freedom. The Novint Falcon had a constant vertical force added

to overcome gravitational forces as a simple brace could not be made for the device.

The modifications are shown in Fig. 5.2, which displays the experimental setup for

no contact (Fig. 5.2 (a)) and for when contact occurs (Fig. 5.2 (b)).

55
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(a) (b)

Figure 5.2: Experimental hardware setup for (a) no contact and (b) contact

5.1 System Identification

Based on the derived control algorithm it was necessary to know the various system

parameters for the controllers, and to also test them in the simulation environment to

ensure safe operation. The method chosen to identify the manipulator models was the

Observer Kalman Filter Identification (ERA/OKiD) algorithm [59]. ERA/OKiD is a

system identification algorithm that uses a white noise signal with the system to be

identified and measure the output from the system. Fig. 5.3 shows the general work

flow of the algorithm. Step one is the computation of observer Markov parameters,

where one should choose a number of parameters larger than the desired system order

(at least 4 or 5 times). The next step is to compute the system Markov parameters,

which simulate the system impulse response, and compute with the observer gain

Markov parameters. The following step is to use the Eigenvalue Realization Algorithm

to recover a state space model. The final step is to transform the realized model to

modal coordinates to determine modal parameters if necessary or desired. For specific

details on the processes see [59], as the focus of this work is on the control algorithm

as opposed to system identification and modeling.

Test data was collected from the manipulators and is shown in Figs. 5.4 and 5.5. The

magnitudes of the white noise input (3 N for the Omni and 5 N for the Falcon) were

chosen such that the manipulators would move to collect useful data, but not reach

the hardware limits. This was done to ensure that an accurate representation of the

system dynamics would be captured.

Using the supplied data and the ERA/OKiD algorithm, a transfer function could
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Figure 5.3: ERA/OKiD flow chart [59]
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Figure 5.4: ERA/OKiD data for Phantom Omni device

be generated by the Matlab code (Appendix D). The input parameters for the code

were 10 rows for the Hankel matrix, 10 columns for the Hankel matrix, 101 observer

Markov parameters, and a system order of 2. From the transfer functions, the system
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Figure 5.5: ERA/OKiD data for Novint Falcon device

properties could be determined by comparison to the standard transfer function for

a single degree of freedom mechanical translational system (5.1).

G(s) =
1

m

s2 + b
m
s+ k

m

(5.1)

From the ERA/OKiD algorithm with the data shown in Fig. 5.4 for the Phantom

Omni, a corresponding transfer function (5.2) that can be compared to (5.1) was

generated

G(s) =
6.1227× 10−7s2 − 0.001268s+ 4.4776

s2 + 77.252s+ 28.192
. (5.2)

The 6.1227× 10−7s2 − 0.001268s terms in the numerator can be neglected due to the

orders of magnitude different from the rest of the terms. The system parameters can

be approximated as

m = 0.223kg

b = 17.227Ns/m

k = 6.286N/m.

Similarly for the Novint Falcon a comparison of (5.3) to (5.1) using the data from

Fig. 5.5 as the ERA/OKiD input was used to achieve the following transfer function
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G(s) =
4.6522× 10−7s2 − 0.003419s+ 0.86376

s2 + 99.655s+ 27.1689
. (5.3)

As with the Phantom Omni, the first two terms of the numerator (4.6522× 10−7s2 −
0.003419s) are ignored due to the difference in the order of magnitude from the

other numerator term. After the simplification, the following system parameters are

obtained

m = 1.158kg

b = 115.40Ns/m

k = 31.46N/m.

As shown in Fig. 5.6, the model generated by the ERA/OKiD algorithm has some

deviations from the actual output of the Phantom Omni when limited to a linear

second order single degree of freedom model. While it is expected that variations

between the model results and the actual results exist, the model does follow the

same trends and lies within a similar magnitude bound. Initial attempts to identify

the model were met with difficulty as the original system setup had a large amount

of friction leading to greater deviations. Teflon was added to the sliding surface to

reduce friction and to improve the results.
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Figure 5.6: ERA/OKiD verification for Phantom Omni device
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Displayed in Fig. 5.7 are the ERA/OKiD algorithm model results and actual test

results for the Novint Falcon. Some deviations from the actual output of the Novint

Falcon exist when limited to a linear second order single degree of freedom model.

While it was expected that variations between the model results and actual results

would exist, the level of deviation seems to be in an acceptable range considering

the 3-degree of freedom to linear single degree of freedom, and non-linear to a linear

model simplifications.
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Figure 5.7: ERA/OKiD verification for Novint Falcon device

5.2 Model Verification

While the ERA/OKiD verification can help determine model appropriateness, a sec-

ond method of verification is to apply the same input to both the generated model

in Simulink and the real hardware and compare the results. Both a sinusoidal input

and ramp inputs from various points in the operating range were used to explore if

different spots behave differently (non-linearities) and to determine minimum force

values required for motion.

Fig. 5.8 shows the results of applying the same sinusoidal input to both the hardware

and the models generated by the ERA/OKiD system identification process. As shown,

the hardware appears to have a minimum required force to cause motion (to be
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expected because of frictional effects), while the theoretical models do not have this

phenomenon.
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Input force

Due to some of the jumps in motion in Fig. 5.8, it was decided to do some ramp

testing at various positions in various directions to determine if the minimum force

for movement varies with the location, and to better determine these values. Figs.

5.9 to 5.12 display the results of the ramp testing from various points in the system,

with the model results shown for reference. The same ramp force of 0.2 N/s was

applied in each case, with just the direction reversed for the negative case.

When considering the Phantom Omni, a wide range of motion start times were noted,

ranging from approximately 3-5 s (0.6-1 N) for all but the negative ramp from the end,

which took around 8 s (1.6 N) for motion to occur. The results were expected based

on the linked nature of the manipulators, which suggested that more force would be

needed for movement when the arms are fully extended (at the end), then when they

are bent (all other positions).

When looking at the Novint Falcon, the range of motion start times begins at 12 s

(2.4 N) for the negative ramp from the midpoint to a maximum of 27 s (5.4 N) for a

negative ramp from the end. These results indicate that a non-linear type relationship,

similar to the Phantom Omni, exists. However, it is not apparent why this relationship
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exists due to the absence of noticeably moving parts on the manipulator, and because

of the parallel nature of the manipulator motion.
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Figure 5.9: Positive ramp input for Phantom Omni device (a) From base, (b) From

midpoint (c) Applied force

5.3 Data Acquisition

The derived control algorithm not only requires several pieces of constant information,

such as system parameters, to develop the control gain, but it also requires a collection

of data in real time to execute the desired control strategy on the hardware. The data

necessary for the control algorithm are the manipulator states, human user input

force, and environmental contact force.

5.3.1 States

State information is collected using the Quarc software add-on for Simulink made

by Quanser. Quarc allows the user to build a control model in the Simulink envi-

ronment. The model is then converted to a C model and runs on a real-time kernel

within Windows. This environment allows for simpler coding, and quicker and more

controlled changes for users who are more familiar with Matlab and Simulink than



63

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0
(a)

P
os

iti
on

 (m
)

Simulation
Experimental

0 1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1

0

0.1
(b)

P
os

iti
on

 (m
)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Fo
rc

e 
(N

)

Time (s)

(c)

Figure 5.10: Negative ramp input for Phantom Omni device (a) From end, (b) From

midpoint, (c) Applied force

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2
(a)

P
os

iti
on

 (m
)

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15
(b)

P
os

iti
on

 (m
)

0 5 10 15 20 25
0

2

4

6

Time (s)

Fo
rc

e 
(N

)

(c)

Simulation
Experimental

Figure 5.11: Positive ramp input for Novint Falcon device (a) From base, (b) From

midpoint, (c) Applied force



64

0 5 10 15 20 25 30
−0.2

−0.15

−0.1

−0.05

0
(a)

P
os

iti
on

 (m
)

0 5 10 15 20 25 30
−0.15

−0.1

−0.05

0

0.05
(b)

P
os

iti
on

 (m
)

0 5 10 15 20 25 30
0

2

4

6

Time (s)

Fo
rc

e 
(N

)

(c)

Simulation
Experimental

Figure 5.12: Negative ramp input for Novint Falcon device (a) From end, (b) From

midpoint, (c) Applied force

with C based programming. Quarc has Simulink specific blocks for both the Phan-

tom Omni and Novint Falcon devices. The Phantom Omni block allows the user to

work in either joint spaces (by measuring angles from encoders and applying torques

to motors) or in the cartesian workspace with positional output in millimeters and

input of force in newtons. With only positional data available, it is then necessary to

compute velocity data using a combination of a derivative block and a filter in order

to prevent the discontinuities that occur with just a derivative block. For the Novint

Falcon, the only output option is cartesian coordinates (in meters), and the input is

in force in the cartesian plane (in newtons). Again it is necessary to compute the

velocity profile from the position signal and the time step data with a filter to prevent

discontinuities.

5.3.2 Forces

The measurement of forces require additional sensors as neither the Phantom Omni

or Novint Falcon come equipped with the ability to measure applied loads. Instead

of affixing a sensor to measure the input on the master hardware, an artificial input

force was generated within Simulink similar to what was done for the simulations.

For the environmental contact force, a Futek 10 lb rated load cell was affixed to
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the Novint Falcon as shown in Fig. 5.13. The load cell was then connected to a

Quanser Q8 DAQ board, from which data can be pulled into Simulink through the

Quarc software package. Unfortunately, the data was quite noisy (Fig. 5.14(a)) and

required filtering to smooth out the data while not impeding the performance of the

system. An example of filtered data is shown in Fig. 5.14(b).

Figure 5.13: Rapid prototype attachment for load cell
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Figure 5.14: Initial load cell data (a) Unfiltered, (b) Filtered

Due to the higher than expected level of noise and odd starting behavior of the filtered
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signal, a second test was performed with no load applied to see the characteristics

of DAQ system. The results in Fig. 5.15 indicated that the DAQ board was indeed

influencing the noise and strange behavior of the load cell.
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Figure 5.15: Analog input with no connections (a) Unfiltered, (b) Filtered

After considering the results the specifications for the DAQ board were re-examined

and found to have a set input range of ±10 V. Since the DAQ board has a 14 bit

A/D converter the resulting resolution was 0.122 mV. For the Futek sensor with a 5 V

supply this would represent a change in load of 5 N, which is far too coarse resolution.

To overcome the resolution issue, an amplification circuit was built to amplify the

load cell signal by a factor of 1141.7. Using the circuit yielded a resolution of 0.0045N,

which is a far finer resolution for preventing errors arising from A/D conversion. A

sample output with a 2kg test load can be seen in Fig. 5.16, which also suggests

filtering may not be necessary because of the minimal noise and the slower response

caused by the filter.

5.4 System Tests

After determining suitable system models for the hardware involved, and tuning the

load cell, it was necessary to run various experimental tests to compare to the theoret-

ical results of Chapter 4. All the following tests were done using Case II (upper and

lower bound on time delay). A brief summary is listed in Table 5.1. For reference,

the positional error was calculated as xs − xm while the net forces were calculated as

Um + Fh for the master and Us − Fe for the slave.
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Figure 5.16: Load cell data after amplification (a) Unfiltered, (b) Filtered

Table 5.1: Experimental results summary

Case Description Results
1 No Contact Sinusoid Excellent forward tracking, slight delay

on master in slave tracking from non-
linearity

2 Direct Foam Contact Sinusoid Questionable load cell readings, but ex-
cellent tracking

3 Plastic Foam Contact Sinusoid Proper load cell readings, elevated error
readings as master non-linearity more
noticeable on return motion

4 Plastic Foam Contact Step Delay in load cell readings causes
steady state error as correction force is
too small to fix position

5.4.1 No Contact

The system parameters were set as found from the system identification in Section 5.1.

Therefore the master controller parameters were set as M = 0.223, B = 17.227, and

K = 6.286, which resulted in a control gain set of Kc = [8.7759, 3.5279]. A sinusoidal

input with a magnitude of 1 N and a frequency of 0.2 Hz was used for the human

input Fh. The corresponding system forces are represented in Fig. 5.17, while Fig.

5.18 shows positions (a), velocities (b), and positional error (c). As shown, several

peaks occur in the error profile when motion begins in the manipulators.These peaks
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are due to modeling inaccuracies and various levels of stiction that the manipulators

overcome at different rates. Potentially higher control gains may help reduce these

peaks, but could add other instability issues to the system.
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Figure 5.17: Experimental forces without contact (a) External Force, (b) Control

Signal, (c) Net force

For direct comparison, the same inputs were used in the simulation model from Chap-

ter 4 with forces in Fig. 5.19 and states in Fig. 5.20.

The results from the comparison of the theoretical linear models to the actual hard-

ware are shown in Figs. 5.17-5.20, and can be seen to vary by a significant margin

in terms of magnitudes and smoothness of response. The main contributing factors

would be the modeling and linearization of the manipulators. Both manipulators

are designed for multiple degrees of freedom, where the degrees are not necessarily

independent, and the models are definitely not linear for the degree considered. A

second major factor is that the simulation does not account for phenomena such as

stiction, since the theoretical manipulators can move with any input force unlike real

hardware. While differences are apparent, it is also clear that a level of tracking is

achieved on the hardware. Major error spikes happen when one manipulator moves

before enough force is applied to the other manipulator to cause motion, due to

modeling inaccuracies and non-linearities.
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Figure 5.18: Experimental states without contact (a) Position (b) Velocity, (c) Posi-

tional error xs − xm

5.4.2 Contact

For the experimental situations with contact, three different cases were considered: a

sinusoid input with direct foam contact, a sinusoid input with a hard surface attached

to the foam, and the modified step input into the foam with the hard surface attached

to the foam. The hard surface was added to the foam to ensure that the load cell

would read the correct level of force, as without it the foam would compress around

the other components and affect the load cell readings. In all of the following cases

the impedance controller values on the master side were

M = 0.223kg

B = 17.227Ns/m

K = 6.286N/m

which led to a control gain of Kc =[8.7759, 3.5279].

Direct Foam Contact with Sinusoid Input

The first case considered was with a sinusoid input and direct contact with the foam

surface (no hard wall between the slave and foam). The setup allowed for a softer
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Figure 5.19: Simulation forces without contact (a) External Force, (b) Control Signal,

(c) Net Force

wall as it was not necessary to compress more foam than the contact point, however

an issue arose with the load cell reading. As shown in Fig. 5.22 (a), the external

force that was read during contact shows a slight initial jump and then smoothes

off, which varies from the sinusoidal tracking as predicted in Chapter 4. The force

measurement behavior is is caused by parts of the manipulator taking part of the

load when the foam compresses around the load cell. In such an instance the sensor

reads only a fraction of the net force, as shown in Fig. 5.21. While a good level of

tracking is achieved as displayed in Fig. 5.23 (c), the validity of these results are to

be questioned due to the misleading readings from the load cell.

Plastic Covered Foam Contact with Sinusoid Input

To overcome the issue of components other than the load cell taking load, a clear

piece of hard plastic was affixed to the foam as to provide a flat surface for the load

cell to rest against (Fig. 5.24). The hard plastic surface allowed the load cell to take

the entirety of the contact force, a factor required for accurate readings. Also, by

adding the plastic, the total surface area of compression was increased, which caused

an increase in the effective stiffness of the wall. The experimental results for the hard
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Figure 5.21: Direct foam contact

plastic with a sinusoid input are displayed in Figs. 5.25 and 5.26. As shown in Fig.

5.25 (a), the contact force now shows the sinusoidal shape that was missing in Fig.

5.22 (a). The plot of system error is displayed in Fig. 5.26 (c), which shows elevated
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Figure 5.22: Experimental forces with direct foam contact under sinusoid input (a)

External Force, (b) Control Signal, (c) Net Force

error compared to the direct foam contact case. In particular, the first cycle shows

elevated steady state error, which can be in part explained by the lag in the contact

force (Fig. 5.25 (a)), along with modeling inaccuracies and sensor reading variations.

Similar to the no contact case, spikes in error exist when one manipulator moves

before the other due to modeling and friction issues. Another oddity is when the

manipulators move back to the base, the slave manipulator leads the master. The

behavior can be traced back to the non-linearities in the manipulators and modeling

inaccuracies.

Comparison simulations were conducted using the exact same parameters as set out

in the experiment. In order to fully model the contact force Fe, an experimental

approximation of the foam stiffness was required. Testing was done using the attached

load cell to read the force. A difference in position from when contact occurred to the

final position was used to determine the amount of compression. Based on the linear

trends shown in Fig. 5.27, the linear relationship of F = kx was used to approximate

the foam stiffness at 4000 N/m.

The resulting simulation results are shown in Figs. 5.28 and 5.29. The most noticeable

issue occurs during the second wall contact phase and the oscillatory motion as shown
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Figure 5.23: Experimental states with direct foam contact under sinusoid input (a)

Position (b) Velocity, (c) Positional Error

Figure 5.24: Contact with plastic affixed to the foam

in Fig. 5.28 (a). The other major discrepancy is the smooth nature of the motion in

the simulation compared to the jerky motion of the actual hardware. The difference

can be attributed to trying to use linear models for the equipment, to inaccuracies in
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Figure 5.25: Experimental forces with contact under sinusoid input (a) External

Force, (b) Control Signal, (c) Net Force

the model parameters, and to system friction.

Foam Contact with Modified Step Input

The final case considered was with the modified step input to evaluate the steady state

performance. This case is a departure from the sinusoidal input which was used to

evaluate constantly changing states and forces. Figs. 5.30 and 5.31 show the results for

when a modified step input (ramp up to 1.5 N in 9 s) is applied to the system. Similar

to the ramp test results, a minimum force was needed to move the manipulators as

demonstrated by the lack of position change and constant environmental force up to

4 s. As shown in Fig. 5.31 (a), the master manipulator travels much further than

the slave manipulator due to the delay in motion of the slave, and to the fact that

the force read by the load cell is less than the input ramp. In the ideal case of Fig.

5.32 (a), the contact force should mimic that of the input when there is no change

between the master and its impedance controller model. The variation between the

simulation and actual results can be attributed to the use of linear models for the

non-linear hardware, inaccurate parameters from the system identification, and the

load not acting directly perpendicular to the load cell surface.
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Figure 5.26: Experimental states with contact under sinusoid input (a) Position (b)

Velocity, (c) Positional Error

The same set of parameters was used to run a simulation to compare the experimental

results to the expected results. See Figs. 5.32 and 5.33. The major point of concern

was the ‘chattering’ behavior of the slave control signal and net force during the

ramp as shown in Figs. 5.32 (b) and (c). The ‘chattering’ velocity, as shown in Fig.

5.33 (b), indicated that the manipulators were vibrating at a high frequency with

low displacement. The behavior was caused by the high stiffness of the contact wall.

Fig. 5.33 (c) shows the positional error going to zero as the theory indicates. This

behavior was not seen in the actual experiment as the correcting force is too small to

overcome frictional effects, along with other issues previously discussed.

5.5 Summary

In summary, linear models for both the master hardware (Phantom Omni) and slave

hardware (Novint Falcon) were found using the ERA/OKiD identification method

using white noise as the force input. A Futek load cell was used to measure contact

forces on the slave side. An amplification circuit was required to produce accurate

results due to the input range of the DAQ card. Experiments were conducted for
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Figure 5.27: Wall stiffness testing (a) Position (b) Force

four cases: no contact, direct foam contact with a sinusoid input, hard plastic cov-

ering contact with a sinusoid input, and hard plastic contact with a modified step

input. The experimental results vary from the simulation results due to modeling

inaccuracies, non-linearities in the manipulators, and difficulties in ensuring that all

the contact force is properly transmitted through the load cell.
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Figure 5.28: Simulation forces with contact under sinusoid input (a) External Force,

(b) Control Signal, (c) Net Force
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Chapter 6

Conclusions and Future Work

This chapter summarizes the results of this thesis and suggests developments to be

pursued in the future.

6.1 Conclusions

In conclusion, a novel stabilization scheme for asymmetric bilateral teleoperation sys-

tems was developed and tested. The work formulates the bilateral teleoperation prob-

lem into a NCS problem with external disturbances. The simulation work shows that

the algorithm provides stable results by ensuring master stability with an impedance

matching controller, and by proving there is a bound on the error between the master

and slave states. The bound is based on the rate of change of the disturbances (hu-

man input and environmental contact), and the LMI variable results γ1, γ2, R1, R2,

and S. Simulation cases with a constantly varying input (sinusoid), and a constant

input after a fixed time (modified step), show that the error is bounded in both cases,

and that when there are no disturbances, the error tends to zero.

Experimental tests were also conducted using the algorithm to verify performance on

a real world system. Matlab and Simulink were used with the Quarc package to create

the test environment for the Phantom Omni (master) and Novint Falcon (slave). A

Futek load cell was attached to the slave hardware to measure the environmental

force, while Simulink was used to generate the human input. The results showed that

for the sinusoid cases a level of tracking was achieved, but with larger errors due to the

modeling inaccuracies and linearization of non-linear hardware. The modified step

results varied from the simulation results primarily due to the effects of friction. The

correcting control force was not large enough to move the manipulator in practice,

but would be large enough in a perfectly linear theory model.

6.2 Future Work

There are a couple directions one could go for future work based on the results of

this thesis. The first is to do the experiments on more linear hardware to better

verify the control algorithm results. An extension of this would be to also consider
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other methods for system identification, as identifying a higher order model and

reducing the results may produce a more accurate model than methods proposed in

this thesis. It should also be noted that other methods for system identification exist

and may be further explored in an effort to better determine the system properties.

The second would be to try and improve the modeling from linear single degree

of freedom manipulators to higher degrees of freedom, and explore how non-linear

effects or parametric uncertainty can be incorporated into the algorithm. A third

area of future work would be modeling of the network behavior. Currently only time

varying delays with an upper and lower bound are considered. Advanced modeling

of phenomenon like packet loss, and packet ordering should be considered as these

effects occur on lower quality networks such as the internet.
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Appendix A

Matlab Simulink Block Diagram for Simulation
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Appendix B

Sample Matlab Code

Case I

clear; clc; close all;

global A_m A_s B_s B_m U_m U_s F_e F_h

%% Master Variables

m_m=3; %Mass in kg

b_m=3;% Damping

k_m=0;%Stiffness, N/m

%% Slave Variables

m_s=2;%Mass in kg

b_s=2;% Damping

k_s=0;%Stiffness, N/m

%% Master Controller Variables

M=1;%Mass in kg

B=4;% Damping

K=4;%Stiffness, N/m

%% System Matrices

A_m=[0 1;

-K/M -B/M];

Am=[0 1;

-k_m/m_m -b_m/m_m];

B_m=[0; 1/m_m];

C_m=[1 0;0 1];

A_s=[0 1;

-k_s/m_s -b_s/m_s];

B_s=[0; 1/m_s];

C_s=[1 0;0 1];

eig(A_m);

I=eye(2);

90
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i=1;

tau1=.000; %delay in s

tau2=0.08;%delay in s

gamma1=5;

gamma2=.9;

%% Slave Controller Parameters

alpha=m_s/M;

% LMI CODE for Initial Feasible Set

setlmis([]);

%LMI Variables

X=lmivar(1,[2 1]);

[Y,n,sY]=lmivar(2,[1 2]);

sY;

[YT,n,sYT]=lmivar(3,[sY(1);sY(2)]);

sYT;

Q=lmivar(1,[2 1]);

R=lmivar(1,[2 1]);

P=lmivar(1,[2 1]);

J=lmivar(1,[2 1]);

L=lmivar(1,[2 1]);

G=lmivar(1,[2 1]);

%Main LMI

lmiterm([1 1 1 Q],-1,1);

lmiterm([1 1 1 R],-1,1);

lmiterm([1 1 5 R],1,1);

lmiterm([1 2 2 Q],1,1);

lmiterm([1 2 2 X],A_m,1,’s’);

lmiterm([1 2 2 R],-1,1);

lmiterm([1 2 3 0],I);
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lmiterm([1 2 5 R],1,1)

lmiterm([1 2 5 Y],B_s,1)

lmiterm([1 2 6 X],1,A_m’);

lmiterm([1 2 7 X],tau2,A_m’);

lmiterm([1 3 3 0],-I*gamma1);

lmiterm([1 3 4 X],1,1)

lmiterm([1 4 4 0],-I);

lmiterm([1 5 5 R],-2,1);

lmiterm([1 5 6 YT],1,B_s’);

lmiterm([1 5 7 YT],tau2,B_s’);

lmiterm([1 6 6 0],-I*gamma2);

lmiterm([1 7 7 G],-1,1);

%X>0

lmiterm([-2 1 1 X],1,1);

%Q>0

lmiterm([-3 1 1 Q],1,1);

%R>0

lmiterm([-4 1 1 R],1,1);

%G>0

lmiterm([-5 1 1 G],1,1);

%P>0

lmiterm([-6 1 1 P],1,1);

%J>0

lmiterm([-7 1 1 J],1,1);

%L>0

lmiterm([-8 1 1 L],1,1);

%Condition for P=X^-1
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lmiterm([-9 1 1 X],1,1);

lmiterm([-9 1 2 0],I);

lmiterm([-9 2 2 P],1,1);

%Condition for J=G^-1

lmiterm([-10 1 1 G],1,1);

lmiterm([-10 1 2 0],I);

lmiterm([-10 2 2 J],1,1);

%Condition for L=R^-1

lmiterm([-11 1 1 R],1,1);

lmiterm([-11 1 2 0],I);

lmiterm([-11 2 2 L],1,1);

%G<X^TR^-1X

lmiterm([-12 1 1 J],1,1);

lmiterm([-12 1 2 P],1,1);

lmiterm([-12 2 2 L],I,1);

lmisys = getlmis;

[tmin,xfeas]=feasp(lmisys);

X0 = dec2mat(lmisys, xfeas, X);

Y0 = dec2mat(lmisys, xfeas, Y);

R0 = dec2mat(lmisys, xfeas, R);

Q0 = dec2mat(lmisys, xfeas, Q);

L0 = dec2mat(lmisys, xfeas, L);

P0 = dec2mat(lmisys, xfeas, P);

J0 = dec2mat(lmisys, xfeas, J);

G0 = dec2mat(lmisys, xfeas, G);

K_1=Y0*inv(X0);

tmin=1;

while tmin>0.00000001

%Trace Minimization

% LMI CODE

setlmis([]);

%LMI Variables

X=lmivar(1,[2 1]);



94

[Y,n,sY]=lmivar(2,[1 2]);

sY;

[YT,n,sYT]=lmivar(3,[sY(1);sY(2)]);

sYT;

Q=lmivar(1,[2 1]);

R=lmivar(1,[2 1]);

P=lmivar(1,[2 1]);

J=lmivar(1,[2 1]);

L=lmivar(1,[2 1]);

G=lmivar(1,[2 1]);

%Main LMI

lmiterm([1 1 1 Q],-1,1);

lmiterm([1 1 1 R],-1,1);

lmiterm([1 1 5 R],1,1);

lmiterm([1 2 2 Q],1,1);

lmiterm([1 2 2 X],A_m,1,’s’);

lmiterm([1 2 2 R],-1,1);

lmiterm([1 2 3 0],I);

lmiterm([1 2 5 R],1,1)

lmiterm([1 2 5 Y],B_s,1)

lmiterm([1 2 6 X],1,A_m’);

lmiterm([1 2 7 X],tau2,A_m’);

lmiterm([1 3 3 0],-I*gamma1);

lmiterm([1 3 4 X],1,1)

lmiterm([1 4 4 0],-I);



95

lmiterm([1 5 5 R],-2,1);

lmiterm([1 6 5 Y],B_s,1);

lmiterm([1 7 5 Y],B_s,tau2);

lmiterm([1 6 6 0],-I*gamma2);

lmiterm([1 7 7 G],-1,1);

%X>0

lmiterm([-2 1 1 X],1,1);

%Q>0

lmiterm([-3 1 1 Q],1,1);

%R>0

lmiterm([-4 1 1 R],1,1);

%G>0

lmiterm([-6 1 1 G],1,1);

%Condition for P=X^-1

lmiterm([-7 1 1 X],1,1);

lmiterm([-7 1 2 0],I);

lmiterm([-7 2 2 P],1,1);

%Condition for J=G^-1

lmiterm([-8 1 1 G],1,1);

lmiterm([-8 1 2 0],I);

lmiterm([-8 2 2 J],1,1);

%G<X^TR^-1X

lmiterm([-9 1 1 J],1,1);

lmiterm([-9 1 2 P],1,1);

lmiterm([-9 2 2 L],I,1);

%P>0

lmiterm([-11 1 1 P],1,1);

%J>0

lmiterm([-12 1 1 J],1,1);

%Condition for L=R^-1

lmiterm([-13 1 1 R],1,1);

lmiterm([-13 1 2 0],I);

lmiterm([-13 2 2 L],1,1);
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%L>0

lmiterm([-14 1 1 L],1,1);

lmisys = getlmis;

n = decnbr(lmisys) ;

c = zeros(n,1);

for j=1:n,

[Xj,Pj,Jj,Gj,Rj,Lj] = defcx(lmisys,j,X,P,J,G,R,L) ;

c(j) = trace(Xj*P0+Pj*X0+Gj*J0+Jj*G0+Rj*L0+Lj*R0);

end

c

options = [1e-5,0,0,0,0] ;

[copt,xopt] = mincx(lmisys,c,options);

%

X = dec2mat(lmisys, xopt, X);

Y = dec2mat(lmisys, xopt, Y);

R = dec2mat(lmisys, xopt, R);

Q = dec2mat(lmisys, xopt, Q);

L = dec2mat(lmisys, xopt, L);

P = dec2mat(lmisys, xopt, P);

J = dec2mat(lmisys, xopt, J);

G = dec2mat(lmisys, xopt, G);

q=gamma2;

%Check if LMI valid

setlmis([]);

P=lmivar(1,[2 1]);

J=lmivar(1,[2 1]);

L=lmivar(1,[2 1]);

% gamma1=lmivar(1,[1 1]);

gamma5=lmivar(1,[1 1]);

%Main LMI
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lmiterm([1 1 1 0],-Q);

lmiterm([1 1 1 0],-R);

lmiterm([1 1 5 0],R);

lmiterm([1 2 2 0],Q);

lmiterm([1 2 2 0],A_m*X+X*A_m’);

lmiterm([1 2 2 0],-R);

lmiterm([1 2 3 0],I);

lmiterm([1 2 5 0],R)

lmiterm([1 2 5 0],B_s*Y)

lmiterm([1 2 6 0],X*A_m’);

lmiterm([1 2 7 0],tau2*X*A_m’);

lmiterm([1 3 3 0],-I*gamma1);

lmiterm([1 3 4 0],X);

lmiterm([1 4 4 0],-I);

lmiterm([1 5 5 0],-2*R);

lmiterm([1 6 5 0],B_s*Y);

lmiterm([1 7 5 0],B_s*Y*tau2);

lmiterm([1 6 6 0],-I*gamma2);

lmiterm([1 7 7 0],-X*R^(-1)*X);

%Condition for P=X^-1

lmiterm([-7 1 1 0],X);

lmiterm([-7 1 2 0],I);
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lmiterm([-7 2 2 P],1,1);

%Condition for J=G^-1

lmiterm([-8 1 1 0],G);

lmiterm([-8 1 2 0],I);

lmiterm([-8 2 2 J],1,1);

%G<X^TR^-1X

lmiterm([-9 1 1 J],1,1);

lmiterm([-9 1 2 P],1,1);

lmiterm([-9 2 2 L],I,1);

%P>0

lmiterm([-11 1 1 P],1,1);

%J>0

lmiterm([-12 1 1 J],1,1);

%Condition for L=R^-1

lmiterm([-8 1 1 0],R);

lmiterm([-8 1 2 0],I);

lmiterm([-8 2 2 L],1,1);

lmisys = getlmis;

[tmin,xfeas]=feasp(lmisys);

% Reset variable for looping

X0 = X;

Y0 = Y;

R0 = R;

Q0 = Q;

P0 = dec2mat(lmisys, xfeas, P);

J0 = dec2mat(lmisys, xfeas, J);

L0 = dec2mat(lmisys, xfeas, L);

G0 = G;

gamma10 = gamma1

gamma20 = gamma2

end

K_2=Y0/X0;
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K_c=K_2

%% Simulation parameters

tmax=15; %seconds

tstep=0.001; %step size in seconds

t=0:tstep:tmax; %time vector

%Fh=sin(t);%Human input

Be=0; %Slave Environment Damping

Ke=4;%Slave Environment Stiffness

FeG=[Ke Be];

mag=5;

freq=0.5;

delta1=K/M-k_s/m_s;

delta2=B/M-b_s/m_s;

noise=0.1;

%Input Source

source=3;

%% Initial Conditions

x_m(1)=0;

x_s(1)=0;

v_m(1)=0;

v_s(1)=0;

Xm(1,1)=x_m(1);

Xm(2,1)=v_m(1);

Xs(1,1)=x_s(1);

Xs(2,1)=v_s(1);

%% Simulations

sim(’finalv1posonly’)

e=Xs-Xm;

figure (1)

subplot(3,1,1)

plot(t,Fe,’r’,t,Fh,’b’)

xlabel(’Time (s)’)

ylabel(’Force (N)’)
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legend(’Fe’,’Fh’)

title(’(a)’)

grid on

subplot(3,1,2)

plot(t,Um,’r’,t,Us,’b’)

xlabel(’Time (s)’)

ylabel(’Force (N)’)

legend(’Master’,’Slave’)

title(’(b)’)

subplot(3,1,3)

plot(t,Um+Fh,’r’,t,Us-Fe,’b’)

xlabel(’Time (s)’)

ylabel(’Force (N)’)

legend(’Master’,’Slave’)

title(’(c)’)

figure (2)

subplot(3,1,1)

plot(t,Xm(:,1),’r’,t,Xs(:,1),’b’)

xlabel(’Time (s)’)

ylabel(’Position (m)’)

legend(’Master’,’Slave’)

title(’(a)’)

grid on

subplot(3,1,2)

plot(t,Xm(:,2),’r’,t,Xs(:,2),’b’)

xlabel(’Time (s)’)

ylabel(’Velocity (m/s)’)

legend(’Master’,’Slave’)

title(’(b)’)

grid on

subplot(3,1,3)
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plot(t,e(:,1),’r’)

xlabel(’Time (s)’)

ylabel(’Error (m)’)

legend(’Error’)

title(’(c)’)

grid on

saveas(1,’Images\upperstepforces.eps’,’psc2’)

saveas(2,’Images\upperstepstates.eps’,’psc2’)



Appendix C

Matlab Simulink Block Diagram for Experiment
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Appendix D

ERA/OKiD Code for System Identification

close all

clear all

clc

scrsz = get(0,’ScreenSize’) + [10 100 -100 -200];

%% Input parameters

N_rows = input(’\nHow many rows would you like in the Hankel Matrix? ’)

N_cols = input(’\nHow many columns would you like in the Hankel Matrix? ’)

nmp_input = input(’\nHow many Observer Markov Parameters would you

like to calculate [nmp]? ’)

p_input = input(’\nWhat would you like p to be? ’)

fprintf(’\n############### INPUT PARAMETERS ##################\n’)

fprintf(’The number of rows in the Hankel Martrix is: %3.0f’,N_rows)

fprintf(’The number of columns in the Hakel Martix is:%3.0f’,N_cols)

fprintf(’The number of Markov Parameters calculated is:%3.0f’,nmp_input)

fprintf(’The observer number, p is set to be: %2.0f’,p_input)

%% Test Data

load(’falcOKID_2’);

%load inpt_outpt

ACC = simout(250:4000)+0.021;

u_rand = force(250:4000);

dt = 0.01; % Specifided sample rate

u_inputR = force(250:4000);

y_outputR =simout(250:4000)+0.021;

%p_noise=.025; %Changes the magnitude of the noise

%t_max = length(ACC) * dt - dt;
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t = time(250:4000);

u_max = length(t);

u_impulse = zeros(u_max,1); % The input matrix

u_impulse(1) = 1; % The unit impluse

%% Plotting

figure(’Name’,’Original excitation of system’,’Position’,[scrsz])

subplot(2,1,1)

plot(t,u_rand,’r’)

title(’System Input’)

ylabel(’Magnitude’)

xlabel(’Time (s)’)

subplot(2,1,2)

plot(t,ACC,’b’)

title(’Response of the System’)

ylabel(’Magnitude’)

xlabel(’Time (s)’)

%% Setting up OKID

[l,m,r]=size(ACC);

% l = number of data points

% m = number of outputs

% r = number of inputs

p = p_input;

k = 4;

nmp = nmp_input;

%% Looping for Input V matrix

V = []; % Null to begin

for i = 1:p+1

if i==1
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V_row = [];

else

V_row = zeros(r+m,i-1);

end

for j = 1:l-i+1

if i==1

V_row = [V_row, u_rand(j,:)’];

else

V_row = [V_row, [u_rand(j,:)’; ACC(j,:)’] ];

end

end

V = [V; V_row];

end

%% Computing Observer Markov Parameters

obsMP = ACC’*pinv(V); % Eqn 6.15

%% Moving around Observer Markov Parameters (Y_bar)

Y_bar_1 = obsMP(:,1);

for i = 2:2:length(obsMP)

temp = obsMP(i);

Y_bar_1 = cat(2,Y_bar_1, temp);

end

Y_bar_2 = 0;

for i = 3:2:length(obsMP)

temp = -obsMP(i);

Y_bar_2 = cat(2,Y_bar_2, temp);

end
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%% creating the system Markov parameters

Y_sys = obsMP(1);

sum = 0; % initializing the variable

i = 1; % setting the index for the series

j = 1; % setting the index for the summation

% Builds the Parameters from Y_o_MP(2) until Y_o_MP(p)

while i <= p % index of the series

while j <= (i) % index of the summation

sum = sum + Y_bar_2(j+1)*Y_sys(i+1-j);

j = j + 1;

end

Y_sys(i+1) = Y_bar_1(i+1) - sum;

i = i + 1;

sum = 0;

j = 1;

end

% Builds the Parameters from Y_o_MP(p+1) until Y_o_MP(nmp)

sum = 0; % resetting the summation

i = p+1; % resetting the index for the series

j = 1; % resetting the index for the summation

while i <= nmp

while j < (p+1)

sum = sum + (Y_bar_2(j+1) * Y_sys(i-j+1));

j = j + 1;

end

Y_sys(i+1) = -sum;

i = i + 1;

sum = 0;

j = 1;

end

%% Computing Observer Gain Markov Parameters (Y_o)

Y_o_0 = obsMP(:,1); % makes the first observer Markov Parameter

Y_o_1 = - obsMP(:,3);
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Y_o_MP = cat(2,Y_o_0,Y_o_1); % Builds the first two terms array

sum = 0; % resetting

i = 2; % setting the index for the series

j = 1; % setting the index for the summation

%% Builds the Parameters from Y_o_MP(2) until Y_o_MP(p)

while i <= p % index of the series

while j <= (i-1) % index of the summation

sum = sum + Y_bar_2(i)*Y_o_MP(i+1-j);

j = j + 1;

end

Y_o_MP(i+1) = Y_bar_2(i+1) - sum;

i = i + 1;

sum = 0;

end

%% Builds the Parameters from Y_o_MP(p+1) until Y_o_MP(nmp)

sum = 0;

i = p+1; % resetting the index for the series

j = 1; % resetting the index for the summation

while i <= nmp

while j < (p+1)

sum = sum + (Y_bar_2(j+1) * Y_o_MP(i-j+1));

j = j + 1;

end

Y_o_MP(i) = -sum;

sum = 0;

i = i+1;

end

% Note y = Y_sys’;

%compare OKID system Markov parameters to actual impulse response

%[y_act_impulse,X] = dlsim(A,B,C,D,u_impulse);
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figure(’Name’,’OKID system Markov Parameters’,’Position’,[scrsz])

subplot(2,2,1)

plot(Y_sys,’bx’)

hold on

title(’System Markov parameters’)

ylabel(’Magnitude of output’)

legend (’System Markov Parameters’)

%% ERA

y = Y_sys’; % for ease of coding

% Constructing the Henkel Matrix

[l,m,r]=size(y);

% l = number of data points

% m = number of outputs

% r = number of inputs

%d=q*m/r; % q and d are related to the size of the Hankel matrix

[H_0, H_1] = make_hankel(y, N_cols, N_rows);

[R,E,S] = svd(H_0); % Note: R*E*S’ = H_0

%% Plotting

%figure(’Name’,’Singular Values’)

subplot(2,2,2)

plot(diag(E),’*’)

title(’Singular Values’)

ylabel(’Singular Value’)

xlabel(’Index’)

n=input(’How many non-zero singular values are there for this system?’);

%%

local = axis/6; % [XMIN XMAX YMIN YMAX]
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fprintf(’\n\n\n\n##################### iD SYSTEM ####################’)

fprintf(’\n######################## RESULTS ########################’)

fprintf(’\n################## ERA and OKID METHOD ################\n’)

Pq = R(:,1:n)*E(1:n,1:n)^.5; % Pq = R * E^.5 Observability Matrix

Qd = E(1:n,1:n)^.5*S(:,1:n)’; % Qd = E^.5 * S’ Controlability Matrix

Ad = pinv(Pq)*H_1*pinv(Qd)% PINV is Pseudoinverse denoted by (*)

Bd = Qd(:,1:r) % Bd = Qd * Er Bd is takes r columns from Qd

Cd = Pq(1:m,:) % Cd = Em’ * Pq Bd is takes m rows from Pq

Dd = y(1) % Dd = Yo

%% Calculating a Continuous system from the iD Discrete

sysd = ss(Ad,Bd,Cd,Dd,dt);

sysc = d2c(sysd);

[Acc,Bcc,Ccc,Dcc] = ssdata(sysc);

[num,den] = ss2tf(Acc, Bcc, Ccc, Dcc);

fprintf(’\nThe full identified transfer function:’)

printsys(num,den,’s’);

%% Simulating the iD system

[y_pred_impulse,X] = dlsim(Ad, Bd, Cd, Dd, u_impulse);

[y_pred_actual,X] = dlsim(Ad, Bd, Cd, Dd, u_inputR);

%% Plotting

subplot(2,1,2)

plot(t, y_pred_impulse, ’b’)

hold on

title(’Response of the iD System to a Unit Impluse’)

ylabel(’Magnitude of output’)

xlabel(’Time (s)’)

figure(’Name’,’Compare iD system response’,’Position’,[scrsz])

plot(t, y_pred_actual, ’*b’,t,ACC,’r’)
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hold on

title(’Response of the ID System to given input’)

ylabel(’Magnitude of output’)

xlabel(’Time (s)’)

legend(’Model’,’Actual’,’Location’,’SouthEast’);

saveas(1,’Images\falconOKIDdata.eps’,’psc2’)

saveas(3,’Images\falconOKIDcomparison.eps’,’psc2’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf(’\n\n\n\n**********************************************’)

fprintf(’\n****************************************************’)

fprintf(’\n\n\n\n’)



Appendix E

Operations Manual

Simulation

1. Ensure both the Simulation .m file and the model file (.mdl) are in the same folder

and have different names

2. Set the system parameters at the top of the .m file, and the simulink model

parameters after the LMI code section

3. Run the .m file. This will set the variables as have been set in the file, run the

.mdl file, and then plot the desired variables as listed in the bottom of the file.

Experiment

1. Ensure that both the Phantom Omni and Novint Falcon are plugged in and

connected to the computer. The Omni uses a firewire cable while the Falcon uses a

USB cable.

2. Go to the directory ”C: Program Files Novint Test Utilities” and run the test

application. This is necessary to clear any communication errors and to home the

device encoders.

3. Open the Phantom test utility from the start menu in the Sensable folder to home

the device and ensure it is connected properly.

4. Open Matlab R2008b, and open the model ”buildv1.mdl”, and the .m file ”Fi-

nal ver v2”.

5. Update the parameters of the .m file in the same manner as the simulation case.

6. Run the .m file to load the parameters into the Matlab workspace.

7. Go to the model file and make sure the Simulation Mode is set to External. Under

the ’Quarc’ menu select build. This may take a few minutes, and you should see the

phrase ”model name downloaded to target” on the main Matlab screen.

8. Go back to the Simulink block diagram and press the connect to target button to

load the model to the real time kernel.

9. Check that the load cell and the amplification circuit are connected, with the

amplification output going to Analog Input Channel 0. Plug in the power supply and

turn it on to power the load cell.

10. Press the run button on the Simulink screen to run the experiment.

11. Open the file ”expplotting.m” and set the plots you wish to see and run the code.
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12. Save the data to a .mat file using the command ”save FILENAME” in the

command prompt.


