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Abstract

Magnetic Resonance Imaging (MRI) is capable of detecting and tracking cells

which have been labeled with contrast agents such as superparamagnetic iron oxide

(SPIO). For the evaluation of emerging cellular therapies and other applications, it

is desirable for MRI to produce quantitative, longitudinal measurements of cellular

density in living organisms. Such quantification is challenging with many traditional

imaging methods. In this work, an MRI technique called TurboSPI is proposed for

the quantification of cellular systems. TurboSPI acquires data that can be used

to generate maps of the MRI relaxation rate R′
2, which is directly related to the

concentration of SPIO and therefore the density of cells.

The first stage of this project involved demonstrating the accuracy and range

of this quantification using micron-sized iron oxide particles and cells labeled with

SPIO. These experimental results generally confirmed the predictions of the estab-

lished theory but also showed some behavior that was not predicted. Based on this,

an extended analytical description of MRI signal relaxation in the presence of spheri-

cal magnetic perturbers was developed. This extended model compared favorably to

Monte Carlo simulations and experimental data, and may serve as the basis for more

sophisticated quantification strategies.

The main drawback of TurboSPI is its slow acquisition speed, which can be over-

come with the use of compressed sensing, a signal processing technique for recon-

structing data that has been significantly undersampled. TurboSPI is well suited to

acceleration with compressed sensing, particularly because it permits the collection

of prior information that can constrain the reconstruction. It is demonstrated that

acceleration factors of 10 to 15 are possible without significant loss of image quality

or quantification ability. TurboSPI is then demonstrated in animal models, with ex-

amples showing detection of iron and improved specificity with respect to traditional

techniques. This represents the first application of TurboSPI to cellular imaging in

vivo.
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Chapter 1

Introduction

Since its development in the 1970s, Magnetic Resonance Imaging (MRI) has es-

tablished itself as an invaluable tool for non-invasive imaging, with a tremendous

range of applications from testing of materials to mapping function in the brain. A

more recent development has been the use of MRI for cellular imaging, which has the

goal of detecting, tracking and quantifying numbers of cells within living organisms.

Such imaging will be instrumental in the development and assessment of cellular ther-

apies, which have the potential to revolutionize the treatment of a variety of medical

conditions. Evaluating these therapies will require monitoring and quantitative mea-

surement of their effectiveness in vivo, which can be challenging even with established

cellular MRI methods, many of which cannot quantify the high cell concentrations

used in therapeutic contexts.

In this work we present an MRI technique called TurboSPI which will be applied

to cellular imaging for the first time. After an overview of existing cellular MRI

techniques, potential applications in cellular imaging, and some of the underlying

physical theory, we will demonstrate that the TurboSPI technique is well suited to

quantification of cellular density or concentration over a wide range. Newly devel-

oped theoretical models will allow fuller use to be made of the data that TurboSPI

acquires, which could benefit a variety of applications. Data collection and recon-

struction methods will be presented that allow TurboSPI to be used effectively in

living organisms. We will conclude with a demonstration of cellular detection and

potential quantification in vivo.

1.1 Cellular Imaging with MRI

The development of cellular imaging has been spurred by the need to observe

and understand complex cellular processes, which often involve different types of cells

interacting over a long period of time, and which may be sensitive to the number of

1
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cells present or to other biological conditions [1]. While histological studies of biopsies

or fixed organs of animal models can be used to study these processes to some degree

[2], ultimately they will have to be monitored in vivo if they are to be successfully

translated into human populations in the form of cellular therapies.

To be suitable for in vivo cellular imaging, a particular modality should be non-

invasive, non-toxic, reasonably rapid and quantitative, i.e. able to offer numerical

data concerning the fate of therapeutic cells [3]. A number of modalities have been

proposed for cellular imaging, with varying degrees of success due to their capabilities

and limitations. Fluorescent markers can be added to biological molecules that will

target particular types of cells, but fluorescence microscopy generally uses very small

fields of view (making it difficult to scan entire organs) and has limited penetration

depth [1]. Nuclear imaging methods such as Position Emission Tomography (PET)

can be highly specific to particular tissues, but their spatial resolution is generally

limited to 1 mm or greater, and longitudinal studies are made difficult by the short

half-lives of most radionuclides and the need for repeated radiation doses.

Given these requirements, MRI has emerged as a promising candidate for a viable

cellular imaging modality. MRI is widely available in most clinical settings and has

been deployed at an increasing number of pre-clinical imaging laboratories. It is non-

invasive, uses no ionizing radiation, can image deep into opaque tissues with arbitrary

orientations, and offers reasonable acquisition times. MR images can be produced

with a variety of contrasts based on relaxation times or other physical parameters.

Relaxation times will be discussed in more detail in Chapter 2, but briefly, they

relate to the molecular processes that drive the evolution of the MRI signal. The

relaxation times T2 and T ′
2 describe loss of signal through irreversible (e.g. molecular

motion, diffusion) and reversible (e.g. static inhomogeneities in the magnetic field)

processes, respectively. These are often combined into an effective relaxation time,

T ∗
2 . The return of magnetization to equilibrium after excitation is described by a

different relaxation time, T1. Depending on the particular MRI technique being used,

the resulting image can have contrast weighting based on any of these parameters.

Though the highest attainable spatial resolution of most clinical MRI systems is

on the order of 100 μm, which is an order of magnitude larger than many cells of

interest, the use of MR contrast agents has allowed even single cells to be detected



3

in vivo using a clinical MRI system [4]. These agents reduce relaxation times in

their vicinity, allowing labeled cells to be distinguished from surrounding tissue. Fur-

thermore, this effect is often dependent on the concentration of contrast agent [5],

providing a potential avenue for quantification.

In this section we will describe the contrast agents which make cellular MRI

possible, and review some of the basic MRI methods used for cellular imaging. We

will then summarize some of the advances that have been made towards MRI of

cellular processes in living organisms, with a focus on those applications which relate

to the imaging and monitoring of cellular therapies.

1.1.1 Contrast Agents for Cellular MRI

One of the main limitations of MRI is its low sensitivity compared to other tech-

niques such as PET or fluorescence imaging. As will be described in the next chapter,

only a small fraction of the water molecules in the body contribute to the formation of

an MR image, as opposed to other modalities where every radioactive or fluorescent

molecule present in the area of interest can be detected. To circumvent this problem,

nearly all cellular imaging studies employ a contrast agent of some kind, which can

accumulate within a cell and make the cell conspicuous on the final MRI image.

The most commonly used contrast agents for cellular imaging are iron oxide

nanoparticles of varying sizes and compositions, which are collectively referred to

as Superparamagnetic Iron Oxide or SPIO. The physical mechanism of superpara-

magnetism will be discussed in Chapter 2; for the purposes of this overview, when

placed within an external magnetic field such as that used for MRI, SPIO creates

distortions in that field at a far greater intensity and extent than most other sub-

stances at the same concentration. This distortion of the magnetic field creates areas

of increased T2 and T ′
2 relaxation around the SPIO, reducing the MRI signal within

a volume far larger than that occupied by the SPIO itself [6] and creating regions

of negative contrast. SPIO particles are biodegradable, can be detected by other

modalities, and can be loaded into cells by a variety of mechanisms [2, 7].

SPIO is commercially available in a wide range of formulations, most of which

contain a mixture of magnetite (Fe3O4) and maghemite (γ-Fe2O3) encased in a bio-

compatible coating composed of polymers such as dextran, styrene or polyethylene



4

glycol [8, 9]. These formulations can be classified by the size of the coated particle

(see Figure 1.1). USPIO are ultra-small particles of iron oxide with a diameter in

the 10-50 nm range, and USPIO with a single iron oxide crystal at their core are

sometimes classified as monocrystalline iron oxide nanoparticles or MION. “Stan-

dard” SPIO particles have an inner core composed of multiple crystals and an outer

diameter on the order of 50-150 nm. Particles above 300 nm are called micron-sized

particles of iron oxide or MPIO, and can reach sizes of 5.8 μm or larger [10, 11].

Figure 1.1: Superparamag-
netic iron oxide particles can
be classified by their effective
size into USPIO (ultra-small),
SPIO, and MPIO (micron-
sized). Figure from [11].

Several formulations of SPIO such as Resovist (60 nm), Sinerem (30 nm) and

Feridex (150 nm) have been approved for clinical use1, though only for intravenous

administration in applications such as liver and lymph node imaging [9]. In these

cases, phagocytic cells which naturally take up SPIO-sized particles - Kupffer cells

in the liver, and monocytes or macrophages in the bloodstream, spleen and lymph

nodes - can be passively labeled in vivo [8]. Non-phagocytic cells can ingest SPIO

and USPIO through pinocytosis, but the rate of uptake is limited for most cell types,

particularly those of interest to cellular imaging such as stem cells [12].

Instead of in vivo labeling, most cellular imaging studies collect and label cells

in vitro before injection or implantation into a living organism. The options for

such labeling are more diverse, since a variety of agents can be used to increase the

efficiency and reproducibility of the uptake, particularly in those cell types which do

not take up SPIO naturally. The surface coating of the SPIO can be modified with

peptides [13] or smaller particles [14] to greatly increase uptake, sometimes to levels of

several million particles per cell or concentrations of 20 pg Fe/cell. Transfection agents

with a net electrical charge such as poly-L-lysine can also bind to nanoparticles and

1The manufacture and distribution of many of these agents has been discontinued after their
withdrawal from the clinical market due to low sales.
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chaperone them into a cell [7], achieving similar loading levels. Micron-sized particles

are sometimes naturally taken up into cells even without these modifications, and

have the added advantage of rendering cells detectable with much smaller numbers

of particles; in some cases cells containing a single MPIO particle are detectable, and

remain visible within daughter cells after repeated divisions [10, 15].

Once within a cell, SPIO particles will either distribute themselves throughout the

cytoplasm or become clustered into a small number of vesicles or endosomes [10, 16].

Regardless of how they are distributed, compartmentalization within the cell has a

critical effect on the magnetic properties of the labeled cell, particularly the MRI

relaxation times T2 and T ′
2, which will be discussed in Chapter 4. In any event,

multiple studies have demonstrated that neither the type nor the quantity of SPIO

within a cell has any significant effect on the cell’s ability to function properly or to

reproduce, with only a few exceptions [7, 11].

Contrast agents other than SPIO have been used for cellular MR imaging. A stan-

dard contrast agent approved for clinical use is gadolinium (Gd3+), which reduces the

relaxation time T1 and creates areas of increased signal or positive contrast. This

leads to increased specificity as compared to the negative contrast often generated by

SPIO. Though the gadolinium chelates used for clinical applications are not readily

taken up into cells, gadolinium can be attached to other ligands that will target cells

of interest [17], or loaded into cells in the form of nanoparticles [18]. One draw-

back of gadolinium is its low molar relaxivity compared to iron-oxide-based agents,

though novel nanostructures containing gadolinium are being developed to address

this limitation.

Reporter genes are also a potential source of contrast. If a cell can be engineered to

produce an MR-visible substance, such as the protein ferritin which acts as a naturally

formed iron nanoparticle, this ability will be passed on to the cell’s progeny. This

enables the longitudinal study of rapidly dividing cell populations and forgoes the

need for in vitro labeling or in vivo injection of contrast agents [19].

Despite these alternatives and others, SPIO remains the most commonly used

contrast agent for cellular MRI due to its high relaxivity, ease of use and commercial

availability. This work will focus on imaging and quantifying systems containing cells

that have been labeled with SPIO in some way.
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1.1.2 Techniques for Cellular MRI

While the presence of SPIO affects all MR relaxation times, the largest effect is on

T ∗
2 [5], and many of the methods used for imaging of SPIO-loaded cells are T ∗

2 -weighted

to provide maximum sensitivity. Three-dimensional gradient-echo (GRE) techniques

are often used for cellular imaging and, with sufficient resolution and at high field

strengths, can even detect individual cells [20, 21]. However, these techniques are

also prone to artefacts caused by other sources of magnetic field distortions, such as

those found around air-tissue interfaces. T2-weighted imaging methods such as Fast

Spin-Echo (FSE) are more robust to these effects, but their reduced sensitivity means

that they are most effective at very high magnetic field strengths and may not be

suitable for widespread clinical implementation.

Balanced Steady-State Free Precession (b-SSFP, also known as FIESTA or True-

FISP) has received attention for its ability to combine some of the benefits of gradient-

echo and spin-echo sequences. Though not as sensitive as a GRE technique, it is far

more sensitive than spin-echo techniques, [22], while providing resistance to artefacts

and a high signal-to-noise ratio. The first successful MRI-based detection of single

cells in vivo at clinical field strengths used b-SSFP [4].

In all of these techniques, the presence of SPIO reduces the MRI signal in its

vicinity, producing negative contrast which cannot always be distinguished from other

sources of reduced signal. The signal voids around SPIO may also obscure anatom-

ical details in their vicinity. A number of methods have been proposed that instead

generate positive contrast, i.e. signal around SPIO appears brighter than the back-

ground. This can be done by only exciting MRI signal in regions of inhomogeneous

magnetic fields [23], suppressing all signal which is not near field inhomogeneities (a

method referred to as IRON) [24], or deliberately applying magnetic field gradients

to remove signal from areas not containing SPIO (which is called GRASP) [25]. All

of these lead to reduced background signal and increased intensity around accumu-

lations of SPIO, though signal at the center of such regions is still reduced. These

techniques remain sensitive to other sources of field inhomogeneity and require some

foreknowledge of the expected field distributions, though the use of positive contrast

does slightly increase the specificity of these methods.
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Another way to generate positive contrast is to extract information in post-

processing about SPIO-generated magnetic susceptibility gradients in the image. One

example is Susceptibility Gradient Mapping or SGM [26], which uses a local or “short-

term” Fourier transform over groups of a few voxels to calculate a susceptibility gradi-

ent vector, and a map of this vector’s magnitude generates a positive-contrast image.

SGM can distinguish low-T2 materials from SPIO, though they appear identical on

normal images, because the former does not induce susceptibility distortions. Phase

Gradient Mapping (PGM) [27] is a similar technique that instead calculates suscep-

tibility gradients based on the image’s complex phase. The main limitation of these

methods is that they require some signal in an imaging voxel to calculate the gradi-

ent vector, making then unsuitable for imaging very high concentrations of iron with

short T ∗
2 decay times.

Ultrashort Echo Time or UTE imaging has recently demonstrated its effectiveness

in detecting SPIO using a different source of positive contrast. UTE techniques

minimize the delay between excitation of MR signal and data acquisition, allowing

them to image tissues such as cartilage that have very short T2 relaxation times [28].

The resulting images have little T2 contrast and are dominated by T1 effects, which

give positive contrast in the presence of SPIO. This contrast can be further increased

by subtracting a background image acquired with a non-UTE sequence, leaving only

those parts of the image with increased relaxation due to SPIO [29]. UTE shares the

advantages of other positive-contrast methods in terms of specificity and potentially

improves on them in terms of resistance to spurious signal from field inhomogeneities.

It also directly images the signal from areas containing SPIO instead of signal on

their periphery. The main drawback of UTE is its technical difficulty, often requiring

specialized hardware and more sophisticated data reconstruction.

Finally, as an alternative to contrast agents which affect relaxation rates, the use

of non-proton MRI to image cells is attracting attention. Since the body contains

little signal from other MR-sensitive nuclei like 19F, cells labeled with compounds

containing 19F will appear readily with little to no background signal, similar to a

fluorescence image. If combined with traditional proton MRI, the sites of 19F accu-

mulation can be localized on anatomical images. This requires additional hardware,

and due to its limited concentration the resulting 19F MR images are often at lower
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resolution, but this remains an emerging technique which will likely undergo signifi-

cant development as it is more widely adopted. For example, an in vivo cell tracking

method for tracking fluorine-labeled dendritic cells has been demonstrated in [30].

1.1.3 Examples of Cellular MRI

The techniques described in the previous section have been employed to study a

variety of cellular systems, primarily in preclinical settings but occasionally in patient

populations. The most widespread target of such study is the emerging field of cel-

lular therapy, in which cells from the patient or a suitable donor are used to repair

damaged tissue, incite the immune system to attack tumors, or provide other thera-

peutic effects without the use of drugs. These therapies may soon allow treatment of

neurological disorders, cardiac disfunction, spinal cord injuries, and various forms of

cancer. Before they can reach the clinic, these treatments have to be rigorously eval-

uated in preclinical settings and in clinical trials. The non-invasive and longitudinal

monitoring of cellular therapies is a natural application of cellular MRI.

Stem Cell Therapies

Though not the main focus of this thesis, any discussion of cellular therapy would

be incomplete without mention of treatments based on the use of stem cells. A stem

cell is simply an undifferentiated cell that can give rise to one or more specialized cell

types. Embryonic stem cells have the capacity to generate all the different types of

cells in the body, but stem cells exist in the adult body as well - neuronal stem cells

differentiate into neurons and glial cells, hematopoietic stem cells create all of the

cells found in blood, and mesenchymal stem cells give rise to bone marrow, muscle,

cartilage, and other tissues [31]. Because of their ability to create new cells, even

of types that are difficult or impossible to repair by conventional methods, stem

cells have the potential to be used therapeutically in the treatment of numerous

pathologies.

With any such therapy, the clinical outcome will depend on the proper engraftment

and long-term survival of the grafted cells, which in turn will depend on the delivery

route (i.e. direct implantation versus injection into a vein or natural cavity), the

initial distribution pattern or extent, as well as the effectiveness of migration to sites of
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pathology [32]. Proper monitoring of these processes will be critical to the evaluation

of emerging therapies [33], and cellular imaging could replace or supplement the use

of biopsies and postmortem analysis to gain such information about the implanted

cells.

For example, MRI has been used to monitor preclinical stem cell treatments of

neurological disorders such as multiple sclerosis, Alzheimer’s disease and Parkinson’s

disease, all of which could potentially be treated by grafts of stem cells [31]. Migration

of SPIO-labeled neural progenitor cells has been imaged in rats with demyelinated

neurons using T ∗
2 -weighted MRI (see Figure 1.2(a)) and correlated with histological

evidence of cell differentiation and remyelination [33]. In a rodent model of stroke,

Feridex-labeled mesenchymal stem cells were observed to migrate to the site of in-

farction even when implanted in the contralateral hemisphere, and were visualized

for up to 10 weeks [34]. Stem cell therapies for treating cardiac disease and re-

pairing damaged tissue after infarctions are also being explored. Imaging near the

heart can be challenging, but clusters of labeled cells have been visualized using both

negative-contrast [35, 36] and positive-contrast [37] techniques, with the latter being

particularly useful for increasing specificity as shown in Figure 1.2(b).

Figure 1.2: Examples of cellular MRI of stem cells. (a) Images showing grafts of neural
progenitor cells in a mouse spinal cord, with significant migration of cells visible [33].
(b) Images of SPIO-labeled mesenchymal stem cells in mouse myocardium, acquired
1 week after implantation with a T ∗

2 -weighted image (top left) and a positive-contrast
GRASP image (bottom left), as well as correspondence with histology (right) [37].
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One of the major limitations of cellular MRI for long-term monitoring of stem cell

therapies is dilution of the contrast agent after repeated cell divisions [32] or after

migration of cells. Several studies have demonstrated a loss of visible contrast in

the injection sites after two to three weeks [36, 38]. Effective long-term studies will

require the use of larger SPIO particles [35, 15] or higher loading levels, as well as

a technique capable of imaging both the high initial concentration of iron, and the

increasingly reduced concentration as time passes.

Immunotherapies

Another growing subset of cell-based treatments are those which use the body’s

immune cells to achieve a therapeutic effect, such as the eradication of a tumor.

Indeed, cancer-targeting immunotherapies are particularly promising, though several

important obstacles must be overcome for such treatments to be effective clinically.

Most cancers are not targeted by the immune system because they appear as “self”

cells, and this natural tolerance is often supplemented by immunosuppressive elements

such as regulatory T cells within the tumor [39]. In order to generate an effective

anti-tumor response, antigen-presenting cells such as dendritic cells (DCs) must be

activated by a tumor-associated antigen and then migrate to a lymph node, where

cytotoxic T cells are primed by the DCs. These T cells migrate to the tumor and, in

sufficient quantities, can overcome the local immunosuppressive cells and eliminate

the tumor. However, a disruption of any stage in this process will halt the immune

response [40], leaving the tumor intact.

Immunotherapies seek to manipulate this process in a number of ways to improve

its chances of success. Adoptive cell transfer involves harvesting and in vitro acti-

vation of dendritic cells or T cells, followed by re-implantation into the patient [39].

Bypassing the natural activation pathway in this manner can considerably increase

the strength of the immune response. Alternatively, a vaccine-based approach can

be used to introduce large quantities of a tumor-specific antigen in a way that is

more readily taken up by the immune system [41]. In either case, cellular MRI could

be used to monitor each stage of the immune response [19]. This may allow bet-

ter biomarkers to be developed for evaluating the success of these therapies, which

would be especially valuable because traditional measures such as tumor volume may
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not correlate well with eventual outcomes, and more reliable measures of immune

response are still being sought [40, 42].

One challenge faced by immunotherapies is that even in the case of adoptive

therapies where large numbers of dendritic cells are implanted, only a small fraction

(1-10%) of them typically arrive at the draining lymph node [43]. Because dendritic

cells can be labeled effectively with a variety of iron oxide formulations, including both

SPIO and micron-sized particles [44], monitoring of these cells is relatively straightfor-

ward. This could allow the impact of different injection sites, timings, concentrations

and formulations to be compared, increasing the final treatment efficacy [19].

For example, the migration of SPIO-labeled DCs from a mouse footpad to a

lymph node has been visualized over the course of several days with a multi-echo

spin-echo sequence at 4.7 Tesla, with histology used to confirm that approximately

2000 of the 106 injected cells arrived successfully [43]. Another study visualized DC

migration with a positive-contrast field-mapping technique (shown in Figure 1.3(a))

and determined that SPIO labeling did not affect cell function [45]. Imaging of

dendritic cells has also been performed in human subjects (see Figure 1.3(b)), in

a study which also demonstrated that injections of cells into the lymph node were

only effective in approximately half of the attempts, further emphasizing the need for

effective monitoring of these therapies [46].

The behavior of activated T cells can also be monitored, though such studies

are more challenging due to the reduced ability of T cells to take up SPIO; special

peptides [3] or novel particle formulations [20, 47] are often necessary to achieve high

enough loading levels. This difficulty can be bypassed by using a label such as 19F,

as done in [48] for longitudinal T cell tracking, for example. However, even with

SPIO labeling, the homing of tumor-antigen-specific T cells has been imaged in a

mouse model, in which only one of two tumors presented the desired antigen [3]. The

tumors were imaged serially, as shown in Figure 1.3(c), and three times as many T

cells arrived at the antigen-presenting tumor. As well, when multiple groups of cells

were injected, each group homed to a slightly different location, showing that multiple

injections may be helpful in clinical treatments.
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Figure 1.3: Examples of cellular MRI of immune cells. (a) Detection of dendritic
cells in a mouse lymph node using a gradient-mapping technique. Susceptibility
maps generated from gradient-echo data show increased signal in the lymph node
containing DCs (blue) compared to the control (white) [45]. (b) Detection of labeled
dendritic cells in a human lymph node using T2-weighted spin-echo (left) and T ∗

2 -
weighted gradient-echo (right) imaging; in this case, both sensitivity and specificity
are higher in the T ∗

2 -weighted gradient-echo image [46]. (c) Time course of SPIO-
labeled T cells (indicated by blue arrows) homing to a tumor in a mouse model, with
images before injection, after 12h, 16h, and 36h [3].



13

1.2 Quantitative Cellular MRI

Most of the techniques and results highlighted in the previous section involve the

detection of labeled cells, but to properly monitor, compare and evaluate various cel-

lular therapies, some kind of quantitative imaging is needed. Though many detection

techniques can be adapted for quantification to some degree, these approaches often

carry drawbacks or require assumptions that may not always be valid. The use of

specialized quantitative techniques is highly preferred due to their increased range

and specificity. This section will provide an overview of existing quantitative imaging

techniques and their use in cellular imaging studies, and will discuss some applications

where they could be particularly helpful.

1.2.1 Signal-Based Techniques

The most straightforward way to obtain quantitative information from an MR

image is to assume that either the total volume of the area showing contrast (whether

negative or positive) or the change in signal intensity with respect to the background

tissue is directly proportional to some quantity of interest, such as the concentration

of SPIO. Distinguishing the volume affected by SPIO from its surroundings can be

done through manual or automatic segmentation of the image; the former is most

effective where an entire organ contains SPIO throughout its volume, while the latter

is useful in tissues containing many small clusters of SPIO [49, 50]. Once a volume is

distinguished, its extent or intensity can be compared to similar tissue in an unaffected

area or from a reference scan obtained before the introduction of contrast.

Under proper conditions the accuracy of such techniques can be fairly good; in one

study, the relative intensity of a region containing labeled cells was used to estimate

cell densities to within 15% [51], though this was not done in vivo. Examples of

in vivo quantification using void-based measurements include monitoring of vaccine

clearance in mice vaccinated with SPIO-labeled antigens [52], tracking of dendritic

cell migration [44], monitoring of disease progression in mice with multiple sclerosis

[49] and correlation with antibody expression in a model of post-surgical inflammation

[50] (an example of which is shown in Figure 1.4(a)).
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Figure 1.4: Examples of quantification using methods based on analysis of signal
changes due to contrast agent. (a) Quantification based on automatic segmenta-
tion of signal voids in mouse kidney; areas showing significant negative contrast are
highlighted in green. The total volume showing contrast is correlated with antibody
expression measured ex vivo [50]. (b) Quantification based on a Combined Positive
Contrast subtraction image, in which contrast volume correlates to the number of
labeled cells injected into a mouse brain [53].
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Signal-based analysis can be applied to positive-contrast images as well; both se-

lective excitation of off-resonance MRI signal and suppression of on-resonance signal

yield areas of positive contrast in rough proportion to the number of labeled cells

present [24, 23]. However, very high concentrations of cells (107 - 108 cells/mL) were

required to achieve these results at typical SPIO loading levels. The GRASP tech-

nique has also been used to quantify highly compartmentalized iron in macrophages,

again at high concentrations [25]. A newer technique called Combined Positive Con-

trast subtracts a normal background image from the sum of two GRASP acquisitions,

as shown in Figure 1.4(b), yielding images that can be used to successfully quantify

smaller numbers of labeled cells [53]. The positive contrast produced by UTE tech-

niques can also be used for quantification, though residual T2 contrast may limit

accuracy at high SPIO concentrations [54].

Limitations

Though effective in certain applications, signal-based analysis methods all share

a number of drawbacks. The range of quantification is limited by the image contrast

available; there must be enough SPIO to distinguish a region of interest from the

background, and in the case of negative contrast methods, there must not be so much

SPIO that no signal remains within the void.

A practical example of this limitation is illustrated in Figure 1.5. In this study,

mice were vaccinated with a DepoVax [41] formulation in which the tumor antigen had

been conjugated to 20 nm SPIO. In principle, this allows the clearance of the vaccine

from the injection site to be calculated based on void volume and intensity [52], while

also permitting dendritic cells which have taken up the vaccine to be visualized when

they arrive at a draining lymph node. However, if the concentration of SPIO is low

enough to permit quantification of the clearance rate through volume/intensity mea-

surements of the depot, no significant changes in lymph node intensity are observed.

High SPIO concentrations allow reliable visualization of contrast in the lymph node,

but at such concentrations, the signal in the void is effectively zero, and remains

so throughout the clearance process, such that no change can be quantified. This

underscores the need for an MRI technique which provides more robust quantitative

monitoring of SPIO concentrations over a large dynamic range.
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Figure 1.5: Quantification of SPIO based on signal void volume and intensity is
often limited by the available contrast. (a) The red outline shows a depot of low-
concentration SPIO-labeled vaccine in a mouse’s flank, 1 week after injection. (b)
Depot in the same mouse 4 weeks after injection, showing a significant difference in
contrast. (c) No significant contrast in the draining lymph node is visible at this iron
concentration. (d) Depot of a high-concentration SPIO-labeled vaccine, 5 days after
injection. (e) Depot in the same mouse 33 days after injection, with no visible change
in contrast. (f) The increased iron concentration allows negative contrast to be seen
in the draining lymph node. (g) Clearance of SPIO-labeled vaccine based on signal
intensity within the depot, relative to quantity at week 1. Due to insufficient signal,
no change is seen at higher iron concentration (red).
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This is not the only limitation of signal-based quantification. Signal-based analysis

can also lack specificity, since contrast which is unrelated to SPIO (such as that

caused by magnetic field inhomogeneities or natural variations in tissue composition)

can be misidentified. Similarly, it is often assumed that any changes in contrast

volume or intensity are solely due to changes in SPIO concentration, and that the

background signal to which the contrast is compared will remain constant. However,

other factors may influence both the region volume and the overall signal intensity,

impacting the accuracy of quantification to an unpredictable degree. Finally, in many

cases the concentration of SPIO is not measured directly, but correlated with another

quantity of interest. Since many positive-contrast techniques measure distortions

around SPIO-containing regions rather than the regions themselves, positive-contrast

quantification is often an even more indirect measure of actual iron content.

Despite these limitations, signal analysis of either negative- or positive-contrast

images remains a commonly used technique due to the simplicity of analysis and

technical implementation.

1.2.2 Relaxometry Techniques

The other major category of techniques for SPIO quantification are those which

allow relaxometry, or spatially resolved measurements of MRI relaxation times such

as T2 or T ∗
2 . Because the relaxation rates R2 = 1/T2 and R∗

2 = 1/T ∗
2 vary in direct

proportion to the concentration of contrast agent in a particular area, relaxometry

techniques which can accurately generate maps of these rates are being increasingly

applied to the problem of quantitative cellular imaging.

Measuring R2 or R∗
2 generally requires a number of acquisitions with different

contrast, which is altered by varying the echo time of the sequence (to be described

further in Chapter 2). The relaxation rate is calculated based on an exponential fit

to the signal decay in a particular region. Since R∗
2 is more sensitive to changes in

SPIO than R2, often by 1-2 orders of magnitude [5], the majority of quantification

studies use gradient-echo sequences that produce R∗
2 contrast, such as the example

shown in Figure 1.6(a). However, there is some benefit to R2 quantification as well.

For example, as demonstrated in Figure 1.6(b), R2 and R∗
2 maps of the same anatomy

can distinguish free SPIO from SPIO within cells in vivo, since the free SPIO has a
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similar R2 but a much smaller R∗
2 [55, 56]. This could be helpful in monitoring cell

death, upon which a cell’s SPIO is released into the surrounding tissue.

Though a traditional single-echo scan can be performed repeatedly with different

echo times, it is more common to use a multiple-echo technique which offers increased

imaging speed by collecting data at many echo times during a single scan. Examples

of such techniques include Gradient Echo Sampling of FID and Echo (GESFIDE [58])

and Gradient Echo Sampling of Spin Echo (GESSE [59]), which repeatedly acquire

data following signal excitation or during a spin echo. As an added advantage, both

of these techniques permit simultaneous R2 and R∗
2 quantification, though this is not

always fully exploited. At low concentrations of SPIO it is also possible to perform

simultaneous quantification of R2 and R1 = 1/T1 by using a multiple-echo version of

b-SSFP [60], which is more robust against large-scale field inhomogeneities.

The range of SPIO concentrations that can be successfully quantified with these

techniques depends on the number of images collected (which impacts the accuracy of

the calculated relaxation rate) as well as the minimum time between signal excitation

and collection of the first image, which must be kept short to retain signal near high

SPIO concentrations. The number and spacing of points that can be achieved with a

multiple-gradient-echo sequence depends on available hardware, as does the minimum

echo time. Further decreasing the echo spacing entails repeating the scan with slightly

different echo times, a strategy that has been employed to quantify R∗
2 up to 1000 s−1

at the cost of increased scan duration [61]. Another refinement was demonstrated by

Seevinck et.al. [62], who quantified R∗
2 values up to 1500 s−1 by combining shifted

echoes with an estimate of the initial signal based on background intensity. Though

this resulted in a high upper limit of quantification, it also introduces bias into the

fits and requires that the background signal be relatively uniform. Simultaneous

measurements of R∗
2 and R2 have not been reported with this type of sequence.

Because relaxometry computes a physical quantity without regard to region vol-

ume, overall signal intensity or a background reference, these techniques generally

have improved accuracy compared to signal-based methods and would be more de-

sirable for longitudinal or multi-site studies. The measured relaxation rates are pro-

portional to the total iron load, making quantification straightforward. However, few

examples exist of relaxometry directly applied to the quantification of labeled cells in
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Figure 1.6: Examples of quantification using methods based on relaxometry. (a)
Quantification of SPIO-labeled mesenchymal stem cells within cartilage defects, im-
aged in vitro [57]. (b) Simultaneous R2 and R∗

2 maps of a mouse containing pellets
of free SPIO (upper) and SPIO loaded within carcinoma cells (lower); significant
differences in relaxation behavior are seen despite identical SPIO concentrations [55].



20

vivo, potentially due to the increased technical difficulty of relaxometry techniques or

a perception that signal-based analysis is adequate for existing applications.

1.3 Project Overview and Hypotheses

While a number of MRI techniques have been proposed and applied to the clin-

ically relevant problem of imaging cells labeled with SPIO, techniques capable of

quantitative cellular imaging are rare. Relaxometry is a promising avenue, but quan-

tification of high iron concentrations remains challenging. In this work, we propose

the use of a technique called TurboSPI which, though initially developed for imaging

non-biological materials, is also well suited to imaging systems of labeled cells.

Figure 1.7: Overview of significant components in the project described in this work.

The process of developing and applying TurboSPI to cellular imaging is illustrated

in Figure 1.7. After implementation and optimization of the TurboSPI sequence, as

described in Chapter 3, its ability to quantify SPIO in vitro was tested, as shall be

demonstrated in Chapter 4. TurboSPI acquires relaxometry data at far higher sam-

pling rates than most gradient-echo methods, which we believe will permit accurate

R∗
2 quantification of micron-sized iron oxide particles and labeled cells over a wide

dynamic range.

TurboSPI also allows exploration of MRI signal behavior near SPIO at a temporal

resolution that has not been previously demonstrated. Physical theories describing
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the evolution of the MRI signal may therefore be tested and verified. In the case of

relaxation near SPIO, experimental data obtained using TurboSPI shows signal be-

havior that visibly differs from theoretical predictions, even in the case of SPIO-loaded

cells. Since no existing model was suitable for fully describing this behavior, a new

analytical model was developed to predict the complete signal time course near sys-

tems of spherical magnetic particles. In Chapter 5, this model will be compared with

simulated and experimental data, and approximate forms will be computed which

we hypothesize to be suitable for curve fitting and extracting estimates of relevant

physical parameters. For example, it may be possible to separate the contributions

of cell density and cell loading to the overall iron concentration.

Our implementation of TurboSPI retains signal from stimulated echoes, using a

novel automatic calibration routine to avoid artifact formation and improve imaging

speed. However, even with this modification, acquisition times are still too slow for

most in vivo applications involving animals under anesthesia. Chapter 6 of this thesis

demonstrates the use of a signal processing technique called Compressed Sensing

which allows significant acceleration of TurboSPI data collection. As a purely phase

encoded sequence it was anticipated that TurboSPI would be particularly amenable

to compressed sensing, and that prior information could be used to help constrain the

image reconstruction algorithm and further improve performance. High resolution 3D

TurboSPI images should be capable of acceleration by factors of 15 or more without

significant loss of image quality; this is a remarkably high acceleration factor for an

image acquired with a single-channel RF coil.

With these refinements to imaging speed and quantification ability, TurboSPI

should be capable of quantitative imaging of cellular density in living organisms, and

we will conclude this work in Chapter 7 with a demonstration of iron detection and

R∗
2 relaxometry in a mouse tumor model. This represents the first application of the

TurboSPI sequence to cellular imaging in vivo.

1.3.1 Contributions to Research

The TurboSPI sequence was initially developed by Steven Beyea [63], and its

potential application to cellular imaging was proposed by Steven Beyea and Chris

Bowen. Implementation and testing of the TurboSPI sequence on the Varian console
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was performed by James Rioux, as was the development of a calibration routine for

improving image quality, based on earlier work by Bowen and colleagues [64].

For testing in vitro quantification, samples were prepared by James Rioux and,

in the case of the SPIO-loaded cell samples, Kim Brewer, who was responsible for

growing and labeling the cells. All data used for quantification was collected by James

Rioux, who also performed all of the data analysis including the writing of Matlab

programs for R∗
2 mapping.

The analytical model for spin-echo relaxation near spherical perturbers, including

the full integral forms and polynomial approximations, was developed by James Rioux

based on the existing cylindrical model of Kiselev and Posse [65]. Valerij Kiselev

provided clarification on several formulae and methods used to devise the earlier

model, and verified many of the calculations. Relaxation behavior was simulated via

Monte Carlo methods using Matlab code provided by Steve Patterson, which was

modified for systems of spherical objects by James Rioux.

The modifications to the TurboSPI pulse sequence required for the implementation

of Compressed Sensing were carried out by James Rioux, as was all data acquisition

using the accelerated TurboSPI sequence. The reconstruction algorithm was based

on that of Vaswani and Lu [66], and modified for iterative time series reconstruction

by James Rioux. The in vivo imaging experiment was performed by James Rioux

with animal handling assistance from Drew DeBay, Iulia Dude and Kim Brewer, and

using cells prepared by Kim Brewer.

Both the calibration procedure and the demonstration of in vitro quantification

with TurboSPI have recently been published in the Journal of Magnetic Resonance

[67], and these results are reproduced in Chapters 3 and 4 in accordance with Elsevier’s

policy on intellectual property rights2. Other publications concerning the analytical

model and compressed sensing acceleration are currently in preparation.

2http://www.elsevier.com/wps/find/authorsview.authors/rights



Chapter 2

Background

2.1 Magnetic Susceptibility in Materials

Before proceeding to an overview of the physics of magnetic resonance imaging, it

will be instructive to briefly consider how different materials respond to the presence

of an external magnetic field. In particular, this response is the source of the contrast

produced by SPIO which enables cellular imaging with MRI.

Fundamentally, magnetism in materials arises from the electrical charges within

atoms and molecules. Any charged particle with angular momentum, either intrinsic

(i.e. spin) or due to motion (such as an orbiting electron), will have a magnetic

dipole moment. In most materials, in the absence of an external magnetic field, these

dipoles are randomly oriented and there is no net magnetization. However, if an

external field is applied, the dipoles will interact with the field and the material will

become magnetized to some degree.

The resulting magnetization is typically proportional to the applied field,

	M = χ	B (2.1)

with the proportionality constant χ the magnetic susceptibility of the material. The

magnitude and sign of χ depend on the type of material and, in particular, the nature

of its magnetic dipoles.

Consider first the case of a dipole produced by orbital angular momentum, which

can be modeled as a charged particle moving in a circle with the centripetal accel-

eration provided by the electrostatic interaction [68, p.261]. If an external magnetic

field is applied, the moving electron will experience an additional force that alters

its dipole moment in a way that opposes the applied field, regardless of its orien-

tation. Summed over the entire material, the result is a bulk magnetization in the

direction opposite the applied field. This is referred to as diamagnetism, and typical

diamagnetic materials have negative susceptibilities on the order of 10−9 to 10−5.

23
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Diamagnetism is a property of all atoms, but is only the dominant response when

there are no unpaired electrons and the overall spin of the molecule is zero. In atoms

with unpaired electrons, the dipole moment μ experiences a torque

	τ = 	μ× 	B (2.2)

which tends to align the dipole with the external field B. Again, over the entire

ensemble of atoms the result is a net magnetization parallel to the external field. This

paramagnetic behavior is characterized by a positive susceptibility, with a magnitude

typically on the order of 10−5 to 10−2, such that the diamagnetic response is no longer

evident.

In both cases, the removal of the external magnetic field will remove the mate-

rial’s magnetization, as the dipoles return to their random alignment. However, if

the interactions between neighboring nuclei are sufficiently strong, dipoles will tend

to retain their alignments even after the external field is removed, forming extended

regions (or magnetic domains) where all of the dipoles are aligned in parallel. Ap-

plying an external magnetic field to such a material will further align the domains,

to the extent that a net magnetization will remain even when the external field is

absent. Such a material is a ferromagnet, with a susceptibility that generally varies

with the external field but can be much larger than 1.

The iron oxide contrast agents discussed in Chapter 1 are examples of superpara-

magnetic materials. Superparamagnetism is a property of nanometer-size crystals

of ferromagnetic material, each of which forms a single magnetic domain and can

be treated as an individual magnetic dipole. Such crystals are possible when the

formation of the walls which separate adjacent domains (called Bloch walls) is ther-

modynamically unfavorable; in iron oxide, for example, this occurs on a length scale

of 15-50 nanometers, depending on the precise composition [9].

Because the crystals are subject to thermal randomization, including the process

of Neel relaxation which can randomly reverse the orientation of an entire magnetic

domain [69], superparamagnetic materials have no net magnetization in the absence

of an applied field. However, when the individual domains are influenced by an

external field, they align to an extent comparable to that observed in ferromagnets,

with similar susceptibility.
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2.2 Nuclear Magnetic Resonance

Magnetic resonance imaging is founded on the principles of Nuclear Magnetic

Resonance (NMR), which was first described by Bloch and Purcell in 1946 [70, 71].

NMR lends itself well to classical descriptions under many circumstances, and for

this overview of NMR physics we will use these more intuitive representations when

possible. However, since NMR is fundamentally a quantum mechanical phenomenon

it will sometimes have to be considered in that framework.

2.2.1 Classical Description

While the previous section dealt with magnetic effects on electrons, atomic nuclei

can also act as magnetic dipoles if they have a net angular momentum 	L. The source

of this angular momentum is quantum-mechanical and will be considered shortly, but

regardless of its origin, this angular momentum gives the nucleus a magnetic dipole

moment 	μ,

	μ = γ	L (2.3)

The gyromagnetic ratio γ is characteristic of a given nucleus; for example, the hydro-

gen nucleus 1H has γ = 2.68 x 108 rad/s/T (or γ
2π

= 42.58 MHz/T).

In a system at thermal equilibrium and in the absence of any external magnetic

fields, the ensemble of nuclei are randomly oriented and there is no net magnetization.

If an external field 	B0 is applied, just as in the case of electrons, each nucleus will

experience a torque

	τ = 	μ× 	B0 (2.4)

However, because the torque applied to a system equals the rate of change of its

angular momentum, this implies

d	L

dt
= γ	L× 	B0 (2.5)

This equation of motion describes a nucleus whose magnetic moment precesses around

the applied field 	B0 with an angular frequency

ω0 = γB0 (2.6)
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This frequency is called the Larmor frequency of the particular nucleus at a given

field strength; for example, for a proton in a 3 Tesla magnetic field the Larmor

frequency is approximately 128 MHz, which is in the radio-frequency (RF) region of

the electromagnetic spectrum.

Figure 2.1: Larmor precession of a nucleus in a magnetic field. The torque applied
by the external field 	B0 rotates the magnetic moment 	μ around the B̂0 axis at a
frequency ω0 = γB0.

At typical field strengths, the tendency of nuclei to precess about and align with

the external magnetic field is dominated by thermal effects which randomize molec-

ular motions. Nonetheless, the presence of the external field does produce a small

net magnetization in the direction of the field, though without any transverse compo-

nent due to cancelation of phase throughout the ensemble. Rather than considering

individual nuclei we can now consider manipulation of this net magnetization 	M .

Our eventual goal is to measure 	M experimentally, but it must first be moved

away from the longitudinal axis to distinguish it from 	B0. This can be done by

the application of a magnetic field perpendicular to 	B0, to change the effective axis

around which the magnetization precesses. The nature of this perturbing field is best

considered in the so-called rotating reference frame, whose z-axis coincides with the

stationary (laboratory) frame, but whose x′ and y′ axes rotate at a frequency ω in

the direction of precession, as illustrated in Figure 2.2.

In this frame, if the rotation of the axes is described by a vector 	ω = ωẑ, the new

equation of motion in the rotating frame is

(
d	L

dt

)′

= γ	L× 	Beff (2.7)
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with the effective magnetic field

	Beff = 	B0 − 1

γ
	ω (2.8)

Evidently, if the rotating frame is chosen to rotate at the Larmor frequency, with

ω = ω0, the effective magnetic field is zero and the magnetization is stationary, even

if it has a component in the transverse plane.

Figure 2.2: The rotating frame of reference for an NMR experiment. (a) In the
laboratory frame, magnetization created by the external field B0 aligns with the ẑ
axis. Any component in the transverse plane would rotate at a frequency ω0. (b) In
a frame where the x̂′ and ŷ′ axes rotate at ω0, magnetization is stationary, and the
effective field is zero.

We can now consider the application of a magnetic field 	B1 along one of the

transverse axes in the rotating frame, say x̂′. The magnetization will precess about

that axis at a frequency γB1, such that in a time t the magnetization will have moved

away from the ẑ axis and toward ŷ′ by a flip angle of

θ = γB1t (2.9)

In the laboratory frame, the perpendicular field 	B1 corresponds to a magnetic field

that oscillates at the Larmor frequency. Such a field can be applied by a suitably

oriented transmitter coil, which is generally referred to as an RF coil due to the

frequencies involved. The magnitude of 	B1 is typically much less than the main field

	B0; in many practical applications, B1 is on the order of 10−6 T, which requires an RF

pulse lasting only a few milliseconds to rotate the magnetization into the transverse
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plane. For illustration we will assume a flip angle of 90 degrees, though different flip

angles are often used.

The effect of the RF pulse in the laboratory frame can be regarded as a gradual

widening of the angle at which the magnetization precesses, such that it traces a

spiral path toward the x-y plane as shown in figure 2.3. This occurs only if the pulse

frequency is at the Larmor frequency, or ’on-resonance’. This is the resonance alluded

to in the term Nuclear Magnetic Resonance.

Figure 2.3: Manipulation of magnetization with an RF pulse. (a) In the rotating
frame, applying a constant magnetic field B1 along x̂′ rotates the magnetization to-
wards the ŷ′ axis. (b) In the laboratory frame, B1 oscillates at the Larmor frequency,
and the magnetization is rotated into the transverse plane in a spiraling path.

The time evolution of magnetization can be described by the equation(
d 	M

dt

)
= γ 	M × 	Bext (2.10)

where Bext is the total external magnetic field, combining the static (B0) and RF

(B1) contributions. This forms the core of the Bloch equations, which also include

modifications to describe the return of the system to equilibrium, and which will be

considered later.

2.2.2 Quantum Mechanical Description

The preceding classical description of NMR is intuitively appealing, and its macro-

scopic predictions are correct, but a clearer understanding of the precise physical
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mechanisms can only be achieved through the use of quantum mechanics. For exam-

ple, the magnetic moment of the nucleus is not due to physical rotation but to its

intrinsic angular momentum, or spin. Any particle with a net non-zero spin 	S, such

as the spin-1/2 hydrogen nucleus 1H, will have a magnetic moment

	μ = γ	S (2.11)

When placed inside a magnetic field 	B0, the nucleus acquires potential energy de-

scribed by the Hamiltonian

H = −	μ · 	B0 (2.12)

If we constrain the external field to lie along a particular direction, such as ẑ, then

H = −γB0Sz (2.13)

with Sz an appropriate spin matrix. For example, in the case of a spin-1/2 nucleus,

Sz is proportional to the Pauli spin matrix σz. This matrix has two eigenstates

with eigenvalues ±�

2
, where � is Planck’s constant, � = h

2π
= 1.067 × 10−34J · s.

These eigenstates correspond to “spin-up” and “spin-down” orientations, in which

the magnetic moment is aligned parallel or anti-parallel to the external field B0. By

inspection of eqn. 2.13 the two eigenstates of H are the same as those of Sz, each

with a different energy:

E+ = −�γB0/2 for the spin-up state |+〉
E− = +�γB0/2 for the spin-down state |−〉

This distinction of otherwise degenerate states due to the presence of a magnetic

field is referred to as Zeeman splitting [72, p.308]. The energy difference between the

Zeeman states is

ΔE = γ�B0 = �ω0 (2.14)

The Larmor frequency ω0 derived in the previous section appears once again, but

with a different significance; now it relates to the energy required to make a nucleus

transition from one state to the other.

Because the spin-up state has lower energy, more nuclei will tend to populate

that state, but thermal effects will ensure that the higher-energy state is populated
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as well. The populations of these states can be determined with Maxwell-Boltzmann

statistics, which describe ensembles of nuclei in thermal equilibrium at relatively high

temperatures. The expected number of nuclei Ns at a given energy Es is

Ns =
N

Z
exp−Es/kT (2.15)

where N is the total number of nuclei, Z is the partition function, Z =
∑

s exp
−Es/kT ,

T is the temperature of the system and k = 1.38×10−23J/K is Boltzmann’s constant.

The number of excess spins in the spin-up alignment is

N+ −N− = N
eγ�B0/2kT − e−γ�B0/2kT

eγ�B0/2kT + e−γ�B0/2kT

= N tanh(γ�B0/2kT )

≈ NΔE

2kT
(2.16)

For typical experimental parameters of B0 = 3T and T = 300K, this gives an excess

of 1 nucleus in the spin-up state for every 106 nuclei in the ensemble. This small

population difference leads to an overall net magnetization along the direction of the

applied field, as in the classical case.

Next, we consider the time evolution of this magnetization. The evolution of a

particular quantum state |Ψ〉 is given by the time-dependent Schrödinger equation,

i�
∂

∂t
|Ψ〉 = H|Ψ〉 (2.17)

which has the solution

|Ψ〉(t) = |ψ〉e− iEt
h (2.18)

provided that the stationary portion |ψ〉 of the state also satisfies the time-independent

Schrödinger equation, H|ψ〉 = E|ψ〉.
In a system of nuclei within an external field, each nucleus in the ensemble exists

in a superposition of the |+〉 and |−〉 states, which evolves in time according to

|Ψ〉(t) = c1|+〉e− iE+t

h + c2|−〉e− iE−t

h (2.19)

The complex coefficients c1 and c2 are normalized; |c1|2+ |c2|2 = 1. It should be noted

that when the energies E± are substituted into the above expression, the factors of �
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will cancel, leading to classically relevant behavior. Indeed, it can be calculated [72,

p.161] that the expectation value of the spin in the ẑ direction is

〈Sz〉 = 〈Ψ|Sz|Ψ〉 = �

2
(c21 − c22) (2.20)

while that of the transverse components of the spin is

〈Sx〉 = �c1c2 cos(ω0t)

〈Sy〉 = �c1c2 sin(ω0t)
(2.21)

Examination of these equations allows us to identify 〈Sz〉 with the longitudinal magne-

tization, while 〈Sx〉 and 〈Sy〉 describe transverse magnetization which rotates around

the ẑ axis at a frequency ω0. This replicates the classical result but offers additional

insight into the true physical origin of the Larmor precession; it reflects the time

evolution of the wave function in the presence of the magnetic field Hamiltonian.

An RF pulse of intensity B1, frequency ω and duration t can also be modeled as a

perturbation of the system, which takes the form of a time-dependent potential [72,

p.320]

V (t) =
γ�B1

2

(
eiωt|+〉〈−|+ e−iωt|−〉〈+|) (2.22)

Each term of this potential contains an operator that changes a spin from one state to

the other, hinting at the mechanism by which the pulse operates. Under the influence

of such a potential, the coefficients c1 and c2 that describe the superposition of states

evolve according to
d

dt
cn(t) =

∑
m

Vnme
i(En−Em)t/�cn(t) (2.23)

If we supply the initial condition c1 = 1 at t = 0, i.e. the system consists of the excess

nuclei in the spin-up state, the solution to the coupled system of equations is given

by Rabi’s formula:

|c2(t)|2 = γ2B2
1

γ2B2
1 + (ω − ω0)

sin2(
√

γ2B2
1/4− (ω − ω0)2/4)t

|c1(t)|2 = 1− |c2(t)|2
(2.24)

In the case of an on-resonance RF pulse we can make the assumption ω = ω0, and

these expressions reduce even further to

|c1(t)|2 = cos2(γB1t/2)

|c2(t)|2 = sin2(γB1t/2)
(2.25)



32

The population of spins oscillates sinusoidally from spin-up to spin-down and back

again. Substituting these expressions into our earlier results for the expectation values

of S along the three axes, we find

〈Sz〉 = �

2
cos(γB1t)

〈Sx〉 = �

2
sin(γB1t) cos(ω0t)

〈Sy〉 = �

2
sin(γB1t) sin(ω0t)

(2.26)

from which we recover the earlier expression for the flip angle,

θ = γB1t (2.27)

It should be noted that this explanation does not directly address the origin of

transverse magnetization, which to fully treat in a quantum mechanical framework

is outside the scope of this work. Briefly, the RF pulse affects the system’s density

matrix, creating quantum coherences among the various states that make up the

ensemble of particles. These coherences are what allow transitions between states,

and also give rise to a non-zero expectation value in the transverse plane. While

it is intuitively appealing to think of the RF pulse aligning the phases of randomly

oriented individual nuclei, it is actually the global state of the system that changes

in response to an RF pulse, and the behavior of individual nuclei cannot be inferred.

That said, for most practical applications this full quantum description is not

necessary. Indeed, now that the central results of the classical picture of NMR have

been confirmed with quantum mechanics, we are more justified in using a classical

framework to explore NMR physics away from the atomic scale. A quasi-classical

approach is generally more instructive when modeling microscopic phenomena such

as relaxation of the excited signal, and in other cases we only need to consider the

net macroscopic magnetization of the ensemble.

2.2.3 Signal Detection and Relaxation

We wish to measure the magnetization of a system of nuclei in an applied magnetic

field, and thereby obtain information on the properties of that system. After the

application of an RF pulse, the resulting magnetization in the transverse plane will
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precess at the Larmor frequency. Maxwell’s equations state that any time-varying

magnetic field will produce an electric field, and thereby induce current flow into a

suitably oriented receiver. The resulting voltage becomes the measured NMR signal

s(t) and, if measured immediately after the excitation pulse, is often referred to as a

Free Induction Decay, or FID.

In practice it is often more instructive to examine the frequency spectrum S(ω)

of the FID, which can be obtained through a Fourier transform:

S(ω) =

∫ ∞

−∞
s(t)e2πiωtdt (2.28)

Figure 2.4: Examples of FIDs and NMR spectra, assuming no signal decay. (a) Sam-
ple of pure water. (b) Sample of pure ethanol (CH3CH2OH); each peak corresponds
to a different proton chemical environment.

If all of the nuclei in the ensemble shared the same Larmor frequency and if the

transverse magnetization did not decay with time, the resulting NMR signal would

be a pure sinusoid of frequency ω0, the Fourier transform of which would be a single

sharp peak at ω0 (Figure 2.4a). In the similar case of a sample containing protons
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in different chemical environments, each species will have slightly different Larmor

frequencies, because the electron cloud surrounding each nucleus partially shields

it from the external field. The NMR signal then contains components at various

frequencies, and the Fourier transform will yield a spectrum characteristic of the

material (Figure 2.4b). This is the principle underlying NMR spectroscopy.

In practice, of course, even in the case of a sample of pure water, the magnetic

environment of the nuclei is not homogeneous, and the NMR signal will not persist

indefinitely. As discussed above, the RF pulse moves the spin system away from equi-

librium in two ways: by inducing transitions of spins to the higher-energy spin-down

state, decreasing the longitudinal magnetization of the system, and by introducing

coherence that gives rise to transverse magnetization. After the RF pulse terminates,

thermal effects begin to return the system to its equilibrium state, in which there is

net magnetization only along the z axis, and the NMR signal created by the RF pulse

vanishes. These effects are collectively referred to as relaxation.

On the microscopic scale, relaxation is driven primarily by interactions between

neighboring nuclei as random motion brings their dipole fields into close proximity.

These motions, chiefly translation and rotation of molecules with respect to one an-

other, occur over a range of frequencies depending on the nature of the material,

which can be characterized by a spectral density function, J(ω). The magnitude of

J(ω) at particular frequencies affects the efficiency of the relaxation processes.

Restoration of the longitudinal magnetization requires that spins which were ex-

cited to the spin-down state emit a quantum of energy, �ω0, and return to the spin-up

state. Such emission can be stimulated by local field fluctuations due to molecular mo-

tions at frequency ω0, and the emitted energy is transferred to neighboring molecules,

which are referred to as the lattice. This spin-lattice relaxation causes recovery of lon-

gitudinal magnetization towards its equilibrium value, M0, at a rate which depends

on the existing magnetization Mz as

d

dt
Mz =

1

T1

(M0 −Mz) (2.29)

with T1 the longitudinal relaxation time. The solution to this differential equation is

Mz(t) = M0 + (Mz(0)−M0)e
−t/T1 (2.30)

and is depicted in Figure 2.5.
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Figure 2.5: Spin-lattice relaxation. Longitudinal magnetization recovers exponen-
tially with time constant T1 toward the equilibrium value of Mz = M0 from an initial
value of Mz(0) = −M0.

Spin-lattice relaxation will be most efficient (i.e. T1 is short) in materials which

have significant molecular motion at the Larmor frequency, which typically requires

molecules of intermediate size or with somewhat restricted motion. Systems with

small molecules that are free to move (such as pure water) or large molecules in rigid

arrangements (such as polymers) will have inefficient relaxation and long T1.

Figure 2.6: Spin-spin relaxation. Starting from a value of Mxy = M0 following an RF
excitation, transverse magnetization decays exponentially with time constant T2.

A different mechanism leads to loss of transverse magnetization, which can be

regarded as a measure of the phase coherence between the precessing particles. As

molecular motions cause neighboring dipoles to interact, the magnetic field expe-

rienced by each spin will fluctuate, causing its precession frequency to increase or
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decrease. As these interactions continue, the ensemble of nuclei will eventually lose

phase coherence entirely, leading to a loss of transverse magnetization according to

d

dt
Mxy = − 1

T2

Mxy (2.31)

which describes an exponential decay (see Figure 2.6) of the form

Mxy(t) = Mxy(0)e
−t/T2 (2.32)

In contrast to T1 relaxation, T2 or spin-spin relaxation is facilitated by slow molec-

ular motions, since fast motions will lead to a rapidly fluctuating field that, averaged

over time, has no net effect on the precession of nearby spins. T2 relaxation is slowest

in fluids like pure water where molecular motion is unrestricted, and is fastest in

systems with restricted motion, such as solids, that have a significant fraction of their

spectral density near zero. Because spin-lattice relaxation processes also lead to loss

of phase coherence, T2 is never longer than T1, and depending on the physical system,

T2 can potentially be much shorter than T1.

Figure 2.7: Effects of molecular motion on the T1 and T2 relaxation times. Systems
with highly restricted motion (red line) will have long T1 and short T2. Systems with
unrestricted motion (green line) will have long T1 and long T2. Intermediate motion
regimes (blue line) lead to short T1 and moderate T2, though T2 ≤ T1 in all cases.
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Reference has already been made in the introduction to contrast agents, which

are substances that have a significant effect on T1 or T2 in their vicinity. Adding even

a small quantity of such an agent can reduce relaxation times dramatically. In such

contexts, it is more common to refer to the relaxation rates R1 = 1/T1 and R2 = 1/T2,

which typically vary linearly with the concentration of the contrast agent. The change

in a particular relaxation rate produced by a given concentration of contrast agent

is called the relaxivity, with typical units of s−1/mM. T1 contrast agents contain

paramagnetic ions such as gadolinium or manganese, and protons in the vicinity of

these ions experience a much stronger spin-lattice relaxation. T2 contrast agents

are often superparamagnetic substances like iron oxide, which significantly dephase

protons in their vicinity. By definition a T1 agent must shorten T2 as well, but the

effect on T1 is relatively larger than in a T2 agent.

T1 and T2 relaxation can be added to equation (2.10), to form the Bloch equations

that describe the evolution and relaxation of magnetization, as(
d 	M

dt

)
= γ 	M × 	Bext +

M0 −Mz

T1

− Mxy

T2

(2.33)

As a result of T2 relaxation, the ideal signal depicted in Figure 2.4 will decay with

time, as shown in Figure 2.8. In the spectral representation this corresponds to

a broadening of the line, i.e. the peak at ω0 now has a non-zero width inversely

proportional to the T2 of the sample. In many cases this peak is further broadened

by macroscopic field inhomogeneities, caused by perturbations of the main magnetic

field due to the presence of the sample being imaged. It is customary to define an

effective spin-spin relaxation time T ∗
2 , as well as the corresponding relaxation rate

R∗
2 = 1/T ∗

2 , to account for these larger inhomogeneities.

Though the precise definition of T ∗
2 depends on the physical system, and will

be explored in more detail later for some cases of interest, for now we can give a

general form that separates the total effective relaxation T ∗
2 into contributions from

microscopic (T2) and macroscopic (T ′
2) field inhomogeneities, which combine as

1

T ∗
2

=
1

T2

+
1

T ′
2

or

R∗
2 = R2 +R′

2

(2.34)
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Figure 2.8: FID signal decay and line broadening due to relaxation. The induced
NMR signal decays due to T ∗

2 effects, and the corresponding spectral lines are broad-
ened by an amount proportional to the relaxation rate R∗

2.

Here it is assumed that T ′
2 relaxation also produces an exponential decay of signal,

which is not always the case, but it is instructive to assume so in most cases.

2.2.4 Spin and Stimulated Echoes

The decay of the NMR signal due to T2 relaxation is unrecoverable, since it results

from interactions between nuclei that are driven by random molecular motions, but

T ′
2 relaxation due to macroscopic magnetic fields can be reversed. In a classical

picture, inhomogeneities in the magnetic field will cause neighboring nuclei to precess

at different rates and lose phase coherence. However, since these fields are time-

invariant, if the phases of the nuclei are reversed, phase coherence can be regained

and signal recovered. This reversal of phase can be created by applying appropriate

RF pulses to a system which already has transverse magnetization.

Most commonly, a pulse is applied which rotates the magnetization 180 degrees

about either the x̂′ or ŷ′ axis, as depicted in Figure 2.9. (The rotating frame in-

troduced in section 2.2.1 is used for convenience.) Spins which had accumulated a

positive phase with respect to those at ω0 will now have a negative phase, and vice-

versa, but they will continue to accumulate phase as they did before the 180 degree

pulse, or refocusing pulse. If the refocusing pulse is applied at a time TE/2 after the

excitation pulse, then at time TE the spins should have regained their original phase

coherence (except for the irreversible losses from T2 decay). This is called a spin echo,

and the time TE is the echo time.
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Figure 2.9: Formation of a spin echo after a 180 degree refocusing pulse. (a) Mag-
netization is initially coherent (M = M0ŷ

′). (b) After evolving for a time TE/2,
magnetization dephases in the transverse plane. (c) An RF pulse rotates the magne-
tization 180 degrees, about x̂ in this example. (d) The magnetization rephases along
−ŷ at time TE, forming a spin echo.
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Spin echoes are useful in the study of systems with significant field inhomogeneities

(and therefore short T ′
2), since the NMR signal will decay too quickly after the ex-

citation pulse for it to be collected, but the signal can be mostly recovered with a

spin echo. Repeated applications of a 180 degree pulse can be used to continually

refocus the magnetization, creating a train of echoes whose envelope decays with T2,

making this technique effective for measuring the T2 of a material. The most common

method for performing this measurement is to apply a 90 degree pulse along one axis

(say x̂′) and refocusing pulses on the perpendicular axis (ŷ′). This set of pulses self-

compensates for small errors in the flip angles of the refocusing pulses, and is known

as a CPMG sequence after its inventors: Carr, Purcell, Meiboom and Gill [73, 74].

Figure 2.10: CPMG echo train for T2 measurement. The set of 180◦ RF pulses,
applied at times TE/2 + n· TE, leads to the formation of spin echoes (black lines)
at times t = n· TE, with amplitudes that decay as a function of T2 (gray line).

A slightly different form of echo can be created by applying a second 90 degree

pulse at time TE/2 after the initial excitation instead of a 180 degree pulse. As

shown in Figure 2.11, this rotates the transverse magnetization back towards the

longitudinal axis, though components of the magnetization remain in the transverse

plane. These transverse components will actually form a partial echo (called a Hahn

echo [75, p.486]) at time TE as in the case of a spin echo, though its amplitude is

reduced with respect to the spin echo. The magnetization that was returned to the

longitudinal axis will experience T1 relaxation, and can be returned to the transverse

plane with another 90 degree excitation, where it will form a stimulated echo at a
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time TE/2 after the third pulse. This echo also has reduced amplitude with respect

to a spin echo, but between the second and third pulses the magnetization decays

with T1, not T2, which can be advantageous for systems with long T1 but short T2.

Figure 2.11: Formation of a stimulated echo after three 90 degree pulses. (a) Magne-
tization is excited onto the ŷ′ axis with a 90 degree pulse. (b) Magnetization dephases
in the x̂′-ŷ′ plane for a time TE/2. (c) A second 90 degree pulse rotates magnetiza-
tion back into the ŷ′-ẑ plane. (d) After a time τ , transverse components have decayed
with T2. (e) Remaining magnetization is rotated back to the transverse plane with a
third 90 degree pulse. (f) At a time TE/2 after the third pulse, at time TE + τ , all
magnetization is on one side of the x̂′ axis, and a stimulated echo forms.

Since any RF pulse after the first can create an echo, the number of potential

echoes increases geometrically with the number of RF pulses used, and often multiple

echoes can form simultaneously [76]. As will be seen, in most experimental applica-

tions these echoes will have to be dealt with properly or they will contaminate the

desired signal.
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2.3 Magnetic Resonance Imaging

Having established the fundamentals of NMR we can now describe how they are

used to obtain images of an object, and explore some of the practical limitations on

the speed and resolution of MR imaging.

2.3.1 Spatial Encoding

It has already been mentioned that natural variations in the magnetic field expe-

rienced by the nuclei in a material can be used to examine, for instance, its chemical

composition. The cornerstone of MRI is the use of deliberately applied variations of

B0 to encode other information about a sample, such as the distribution of nuclei in

space. The simplest variation that can be applied is a linear gradient of the magnetic

field’s ẑ component along an arbitrary direction,

	G =
∂Bz

∂x
x̂+

∂Bz

∂y
ŷ +

∂Bz

∂z
ẑ (2.35)

which introduces a spatial dependence into the Larmor frequency,

ω(	r) = γB(	r) = γ(B0 + 	G · 	r) (2.36)

Such gradients are straightforward to generate with appropriate arrangements of

current-carrying wires, called a gradient coil. Multiple independent sets of wires

are generally integrated into a single unit, allowing the simultaneous application of

gradients along all three spatial axes, as described above. For simplicity we will now

consider a gradient applied only along ẑ. If the MRI signal is measured in the pres-

ence of such a gradient, it can be expressed as an integral over the density of spins in

the ẑ direction, weighted by their phases:

s(t) =

∫ ∞

−∞
ρ(z)eiω(z)tdz (2.37)

The function ρ(z) actually represents an effective density of spins, incorporating ef-

fects due to the sensitivity of the RF receiver coil and other system electronics, the

longitudinal magnetization at t=0, etc. Nonetheless, for this treatment we assume

ρ(z) is proportional to the actual number of nuclei in a particular location. The effect

of relaxation on the measured image will be added later.
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Ignoring the constant modulation at ω0, which in practice can be easily mixed

out, the remaining signal is

s(t) =

∫ ∞

−∞
ρ(z)eiγGztzdz (2.38)

This underscores the Fourier relationship between ρ(z) and s(t), mediated by the

Larmor equation that equates changes in position with changes in frequency. It also

allows a convenient change of variables, first proposed by Mansfield and Grannell [77],

which combines t and G into a single variable, k:

k =
1

2π
γGt (2.39)

In the more general case when G is not a constant it can instead be shown that

k =
1

2π
γ

∫ t

0

G(t′)dt′ (2.40)

In either event, k is effectively a modified time coordinate, which can also be thought

of as a spatial frequency due to its Fourier relationship with the spatial coordinate z:

s(k) =

∫ ∞

−∞
ρ(z)e2πikzdz = F [ρ(z)] (2.41)

The generation of an MR image consists of acquiring data in the spatial frequency

domain (or k-space) followed by a Fourier transformation back into image space,

yielding an estimate of the spatial distribution of nuclei,

ρ(z) = F−1[s(k)] =

∫ ∞

−∞
s(k)e−2πikzdk (2.42)

This expression can be easily generalized to higher dimensions, describing the collec-

tion of 2D or 3D images through the acquisition of 2D or 3D k-space.

ρ(	r) =

∫ ∞

−∞
s(	k)e−2πi�k·�rd	k (2.43)

The relationship between the various domains involved in MR imaging is summarized

in Figure 2.12.

2.3.2 Image Acquisition

To acquire an MR image of an object involves building up a representation of

that object in k-space, which is done by collecting the MRI signal after appropriate
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Figure 2.12: Summary of the relationships between the object being imaged and its
k-space representation in the context of MRI. A gradient G applied to an object gives
it a spatially-dependent Larmor frequency, which can be measured as the MRI signal
and expressed in terms of k-space. The Fourier transform of k-space is an image of
the object.

application of gradients. It is helpful to think of using a combination of gradients

applied over time to traverse k-space according to equation (2.40). For example, if a

constant gradient Gx = Gx̂ is applied following the excitation of signal, and multiple

data points are sampled at intervals Δt, the acquired data will fall along a line in

k-space starting at the origin,

kxn = Gx · nΔt, n = (0, 1, ...Nx/2) (2.44)

which is illustrated in Figure 2.13a. This is called frequency encoding, with Gx the

readout gradient. In most implementations a negative gradient lobe is used to move to

the edge of k-space before acquisition, as shown in Figure 2.13b, such that an entire

line is acquired at once,

kxn = −GxNx/2Δt+Gx · nΔt, n = (0, 1, ...Nx) (2.45)

This forms a gradient echo at the center of k-space, as the signal which had been

dephased by the negative rewinding lobe is rephased and then dephased by the readout

gradient. The amplitude of the echo peak is determined by T ∗
2 decay, as opposed to

T2 decay as in a spin echo.

While it is possible to use frequency encoding in arbitrary directions and sample



45

Figure 2.13: Examples of basic frequency and phase encoding. (a) A set of k-space
points along ky = 0 acquired using a readout gradient (red) in the x̂ direction. (b) A
rewinding lobe (blue) enables acquisition of an entire line of k-space during a gradient
echo. (c) A phase encode gradient lobe (green) changes the ky coordinate to acquire
a different line.
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k-space radially, with subsequent reconstruction of these projections, it is more con-

ventional to sample k-space in a rectilinear fashion, collecting Cartesian data that can

be processed with a fast Fourier transform. To change the ky coordinate, a gradient

lobe Gy = Gŷ can be applied for a fixed duration prior to data acquisition. After

the collection of a line with frequency encoding, the experiment can be repeated with

different value of Gy to collect lines at different ky positions:

kyn = t · nΔGy, n = (−Ny/2, ...− 1, 0, 1, ...Ny/2) (2.46)

Gy is referred to as a phase encoding gradient, and is illustrated in Figure 2.13c. If

desired a second phase encoding gradient Gz could be added to allow 3D imaging.

Depending on the type of gradient used, the interval between points in k-space

can be either Δk = tΔG or Δk = GΔt. In either case, this interval is related to the

field of view (FOV) in image space as

FOV =
1

Δk
(2.47)

This is a consequence of the Fourier relationship between the two domains. Because

the nominal resolution of the image Δx is simply the FOV divided by the number of

acquired points, this is equivalent to

Δx =
1

NΔk
(2.48)

which states that the resolution is inversely proportional to the extent of sampling in

k-space. For a given FOV (and therefore Δk), obtaining a higher-resolution image

(reducing Δx) therefore requires that more points be sampled in k-space, increasing

the number of repetitions and the acquisition time. In a 3D acquisition with two

phase encode gradients, the total number of repetitions is Ny ∗Nz, assuming a single

line is acquired during each repetition.

As an alternative to true 3D acquisition, data at different positions along ẑ can

be acquired by using slice-selective RF pulses. To this point, we have assumed that

the RF pulses used to excite magnetization are constant in amplitude and affect all

nuclei in the ensemble, regardless of their Larmor frequency. This is in fact only

true for broadband or hard RF pulses, and in most practical applications, a shaped

or soft RF pulse is used. Such pulses are longer in duration, have an amplitude
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that varies in time, and excite nuclei only within a limited range (or bandwidth) of

Larmor frequencies. When a shaped pulse is applied with a gradient (called a slice-

select gradient), the result is an excitation of nuclei within a specific slice instead of

the entire sample.

At small excitation flip angles α, it can be shown [75, p.397] that the frequency

profile excited by a shaped RF pulse is approximately equal to the Fourier transform

of its amplitude. A common shaped RF pulse is the sinc pulse, which has an amplitude

that varies as sin(t)/t and is usually truncated after a small number of zero crossings.

Its excitation profile is approximately rectangular, with some deviations introduced

by the truncation; these can be lessened by apodizing or smoothing the pulse. More

sophisticated RF pulses can be designed through the use of the Shinnar-LeRoux (SLR)

algorithm [78], which allows direct specification of parameters such as the transition

bandwidth and passband ripple.

Figure 2.14: Example of a shaped RF pulse for slice-selective RF excitation. The
sinc-shaped amplitude profile of the RF pulse (left) leads to an excited region which
is approximately rectangular (right); magnetization outside this region is not signifi-
cantly affected.

The strength of the applied gradient Gz determines the extent δz of the excited

region, according to

δz =
BW

γGz

(2.49)

where BW is the bandwidth of the pulse, which for most pulses is inversely propor-

tional to its duration. Exciting thin slices then requires the use of a low-bandwidth

pulse or, more commonly, the use of a strong slice-select gradient Gz.

The slice position is determined by changing the frequency offset of the RF pulse,

so that instead of a carrier frequency at ω0, it has a carrier frequency of

ωc = γ(B0 +GzΔz) (2.50)
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where Δz is the desired position of the slice center. Typically a number of slices

are collected at a spacing that prevents overlap of the excited areas, allowing data

to be collected from one slice while the nuclei in another slice are relaxing back to

equilibrium.

Figure 2.15: Relationship between RF pulse and slice parameters. The bandwidth of
the RF pulse and the strength of the slice-selection gradient determine the width of
the excited region, and the carrier frequency of the RF pulse affects the position of
the excited region.

In general, MRI data is obtained by exciting the sample with an RF pulse (which

can affect all of the nuclei within the RF coil or only those within a desired slice) and

then, before the signal decays, acquiring some portion of k-space using a combination

of frequency encoding and phase encoding. Depending on the available hardware and

the relaxation rates of the material being imaged, any portion of k-space from a single

point to an entire 3D volume can be collected following each excitation, though in

many cases a single line is acquired per repetition. After allowing a suitable delay for

recovery of longitudinal magnetization, this process can be repeated as many times

as necessary to obtain the desired coverage of k-space.

The particular pattern of RF pulses and gradients used at each repetition is called

a pulse sequence, and dozens of different sequences have been proposed, each of which

offers a particular contrast weighting, k-space sampling strategy, or mechanisms for

encoding other information about the sample such as diffusion weighting. The choice
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of pulse sequence greatly influences the appearance and quality of the acquired image.

Figure 2.16 shows some simple pulse sequences which are used to acquire gradient-

echo images, with contrast determined by T ∗
2 , and spin-echo images, with contrast

based on T2.

Figure 2.16: Examples of basic MRI pulse sequences. (a) Gradient-echo sequence.
(b) Spin-echo sequence. Both use a slice-selective RF pulse and acquire a single k-
space line per excitation. The negative lobe after the slice-select gradient reverses
dephasing caused by the slice-select gradient.

2.3.3 Properties of k-space

Because MRI does not directly obtain images of a physical object, but acquires the

k-space corresponding to that object and produces an image via Fourier transform, it

is important to understand how the acquisition of k-space and the process of Fourier

transformation affect the desired final image.

As stated earlier, k represents a spatial frequency, and the intensity of a particular

location in k-space relates to how much the image varies at that frequency. The inner

regions of k-space contain the low spatial frequencies, meaning that they define those

parts of the image which do not change rapidly, such as large regions of generally

uniform signal intensity. The outer regions of k-space, similarly, represent the higher

spatial frequencies that describe edges and rapid transitions in image intensity. This

is represented in Figure 2.17. The centre of k-space is proportional to the total signal
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intensity of the image, as seen by setting

s(	k = 0) =

∫ ∞

−∞
ρ(	x)e2πix·0d	x =

∫ ∞

−∞
ρ(	x)d	x (2.51)

Therefore, acquisition of the centre of k-space is critical to properly defining the overall

image contrast, but acquiring the extremities is necessary to obtain high resolution,

as discussed in the previous section.

Figure 2.17: Regions of k-space contribute to different aspects of the corresponding
image. (a) Complete k-space representation of a human brain, with the corresponding
image after Fourier transform. (b) The central regions of k-space define the overall
signal and contrast of the image. (c) The outer regions of k-space define edges and
high-resolution features.

In the case that ρ(	r) is real, the properties of the Fourier transform also indicate

that s(	k) should be conjugate-symmetric, i.e.

s(	k) = s∗(−	k) (2.52)
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This symmetry can be exploited to reduce the amount of k-space coverage needed to

produce an image, since only half of the full k-space needs to be collected. However,

in practice the assumption of conjugate symmetry is violated by phase variations

in the image due to inhomogeneous magnetic fields and other effects. This can be

compensated for to some degree by phase-correction methods such as homodyne re-

construction [79]. Nonetheless, the typical MR imaging experiment involves collection

of a complete or nearly complete k-space.

A variety of irregularities or artifacts can appear in MR images, most of which

manifest as modulations of the k-space. The effect of these modulations on the

resulting image can be understood through the convolution theorem,

F [fg] = F [f ]⊗F [g] (2.53)

which states that multiplications in one Fourier domain correspond to convolutions

in the other. The convolution operation ⊗ on functions f and g is defined by

f ⊗ g =

∫ −∞

−∞
f(τ)g(t− τ)dτ (2.54)

Practically, any effect which modulates the “ideal” signal intensity in k-space - such as

relaxation, finite sampling effects, inter-scan inconsistencies, or motion of the object

during the scan - will have the effect of convolving the “ideal” image with the Fourier

transform of the modulation. This transform is often referred to as a point spread

function (PSF) since it describes how signal from an ideal point impulse is distributed

to other areas of the image.

For example, since the signal decays according to T ∗
2 during a frequency-encoded

readout, the k-space intensity is modulated by e−t/T ∗2 and the image is convolved with

F [e−t/T ∗2 ], which is a Lorentzian function with a width proportional to R∗
2 = 1/T ∗

2 .

This has the effect of blurring the image along the frequency-encode direction, an

effect which increases as T ∗
2 shortens, as shown in Figure 2.18.

Another important effect is that of sampling in k-space. The actual object being

imaged in any MRI experiment is continuous, as is its ideal k-space representation,

but when MRI data is acquired, only discrete data points are sampled. This can be

expressed as a multiplication of the ideal k-space by a sampling function,

U(k) =
∞∑

n=−∞
δ(k − nΔk) (2.55)
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Figure 2.18: If the measured MRI signal decays significantly due to T ∗
2 effects during

readout, the ideal k-space (a) is multiplied by an exponential function (b). The
observed k-space (c) will be modulated in the frequency-encode direction (left-right).
The effect on the corresponding image (d) is a convolution with the Fourier transform
of the exponential decay, a Lorentzian (e). The result is an image blurred in the left-
right direction (f). Note that there are no effects in the phase encode (up-down)
direction.
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with Δk the sampling interval size and δ(k) the Dirac delta function. The Fourier

transform of such a sampling function is simply another sampling function with a

spacing 1/Δk. The result of convolving the image with this function is a replication

of the image, creating a series of identical copies a distance 1/Δk apart. The unwanted

copies or aliases can be filtered out as long as they do not overlap the primary image

(Figure 2.19).

Figure 2.19: Effects of finite sampling in k-space. Sampling of an ideal, continuous
k-space (a) is equivalent to multiplying by a sampling function (b), yielding a k-space
with values only at a set of discrete locations (c). In image space, this is equivalent to
convolving the ideal image (d) with a similar sampling function (e), creating multiple
copies of the image (f). In this case the copies do not overlap, and one can be selected
(gray overlay) to form the desired image.

However, if the spacing Δk is too large, the resulting convolution will create copies

which are too close together. Effectively, those parts of the image which are outside
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the desired field-of-view will be folded inward, creating aliasing artifacts as shown in

Figure 2.20.

Figure 2.20: Aliasing due to insufficient sampling density. The ideal k-space (a) is
sampled with an increasing spacing between points (b,c). The corresponding image
(d) is therefore convolved with a sampling function of reduced spacing (e). The result-
ing copies overlap with each other (f), making it impossible to recover an unaliased
image.

This imposes restrictions on the sampling rate of frequency-encoded images; for

a fixed readout gradient, Δt must be small enough that the resulting field of view

fully contains the object being imaged. This restriction is related to the well-known

Nyquist criterion [75, p.236] which defines the minimum sampling rate fs needed to

unambiguously encode a signal with bandwidth BW :

fs ≥ 2 · BW (2.56)
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Sampling below this rate means that high frequencies cannot be properly distin-

guished and they ”wrap around” into the rest of the image1. In this case the band-

width is the spread of Larmor frequencies introduced by the applied gradient, and

the sampling rate is fs = 1/Δt. Therefore,

1

Δt
≥ γG · FOV

1

γGΔt
≥ FOV

1

Δk
≥ FOV (2.57)

Because Δk can also be thought of as the lowest spatial frequency encoded by the

acquisition, it is necessary to keep this quantity small, such that large-scale variations

in the object can be properly represented.

2.3.4 Acquisition Hardware

The typical MRI system consists of three primary components - a magnet used

to generate the static field B0, a gradient coil used to produce controlled magnetic

field variations in three dimensions, and a radio-frequency transmitter/receiver coil

to excite and collect signal. Modern MRI systems also include a variety of hardware

to support these key systems. Figure 2.21 shows a basic block diagram of a typical

MRI system.

The main magnetic field B0 of clinical and preclinical imaging systems is generally

in the range of 1.5 to 7 Tesla, and is most often provided by a superconducting magnet.

The field of such magnets is most homogeneous in the center of their cylindrical bore,

into which the gradient and RF coils are inserted. All imaging experiments described

in this thesis were performed on a 3.0 T horizontal bore magnet.

Coaxially placed within the magnet bore is the gradient coil, which contains ar-

rangements of current-carrying wires necessary to generate linear variations in B0

along all three cartesian axes, as well as other non-linear variations used for “shim-

ming” or improving overall field homogeneity. The gradient coil used for all experi-

ments in this thesis was a 305/210 mm HD coil (Magnex Scientific, Oxford, UK) with

1Most MRI systems detect both the real and imaginary components of the complex MRI signal,
such that the sign of the frequency can be determined. This removes the factor of 2 in the Nyquist
criterion since the signal bandwidth is effectively halved.
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Figure 2.21: Block diagram of the key hardware components of a typical clinical or
preclinical MRI system.

a maximum strength of 0.2 T/m and a slew rate of 475 T/m/s. The high currents

needed to produce the desired gradients are supplied by an amplifier (Performance

Controls, Inc.) that provides a maximum of 80 A per axis. An active water cooling

system is used to maintain the temperature of the coil during operation.

A variety of RF coils can be used depending on the size of the object being imaged

and other experimental needs. Coils can contain a single channel or two independent

channels in quadrature, which effectively measure the real and imaginary component

of the complex transverse magnetization. Though it is possible to use planar coils

that are placed on the surface of the object being imaged, all of the experiments in

this work use volume coils, within which the sample is positioned. The coils used for

the experiments performed in this work included a homebuilt quadrature birdcage

coil (50 mm inner diameter), a homebuilt single-channel solenoid coil (50 mm i.d.)

and a Doty Scientific (Columbia, SC) quadrature Litz cage coil (25 mm i.d.).

When in transmit mode, the RF power supplied to the coil is generated by an

amplifier whose output is in the kW range; in the setup used here, this was a 1 kW

Varian amplifier. In receive mode, the acquired signal is pre-amplified, mixed to 20

MHz and then digitized. The collection of data, as well as timing of all inputs to the

gradient and RF amplifiers, is performed by the system console and controlled by the

acquisition computer. The 3.0 T MRI system used for these experiments is controlled

by a Varian/Agilent DirectDrive console running VnmrJ 2.3 imaging software.



Chapter 3

Implementation and Optimization of TurboSPI

A number of MRI techniques have been used to image SPIO-loaded cells, as

described in Chapter 1. While detection of SPIO is straightforward with traditional

frequency-encoded techniques (see Section 2.3.2), these methods are prone to artifacts

when R∗
2 is large, which is the case near high concentrations of SPIO. A purely phase

encoded technique would be more robust to these effects, and could greatly improve

the range of effective quantification.

In this chapter we describe TurboSPI, a multiple-echo spin-echo technique origi-

nally developed for imaging non-biological materials, but which is equally applicable

to biological systems, particularly those with large R∗
2 and small to moderate R2 re-

laxation rates such as tissues containing SPIO-loaded cells. We will also demonstrate

a method to optimize the quality of TurboSPI images which increases the available

signal and is robust enough to operate under in vivo imaging conditions.

3.1 Single Point Imaging Concepts

TurboSPI is an extension of Single Point Imaging (SPI), also known as Constant

Time Imaging, which was first proposed by Emid and Creyghton [80] as a method for

imaging materials with very large R2 relaxation rates. Unlike the majority of clinical

MRI techniques, SPI and other related sequences do not use frequency encoding to

collect multiple k-space points along a line or other trajectory, but sample a single

phase-encoded location in k-space following each RF pulse. This obviously creates

a significant penalty in terms of imaging speed, since many more RF excitations are

required to sample all of k-space. However, purely phase-encoded techniques have a

number of advantages centered around their robustness to certain kinds of artifacts

and their ability to measure samples with very large R2 and R∗
2 (short T2 and T ∗

2 ).

As outlined in the previous chapter, any modulation of the acquired data in k-

space corresponds to a convolution of the desired image by an appropriate point

57
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spread function. For instance, a sample in which the signal decays significantly dur-

ing data collection will be blurred. Large changes in the sample phase due to field

inhomogeneity or chemical shift can lead to misregistration of signal or other dis-

tortions in a frequency-encoded image. SPI and its derivatives are immune to these

effects, and in areas of high signal decay or field perturbation the result is only a loss

of signal intensity [81].

Figure 3.1: Pulse sequences for one-dimensional Single Point Imaging. (a) The signal
can be excited and collected during the phase encoding gradient to minimize T ∗

2 decay.
(b) Alternatively, data can be acquired after the phase encoding gradient is turned
off, as in the case of Chemical Shift Imaging.

In the original description of SPI the data is collected while the phase encoding

gradient is still turned on, to minimize the nominal echo time and reduce signal decay,

as shown in Figure 3.1(a). It is also possible to collect data once the phase encode

gradient has been switched off, as in Figure 3.1(b). This latter implementation allows

the acquisition of multiple data points at each k-space location, and can be used to

obtain a frequency spectrum at each pixel in the resulting image; this is known as

Chemical Shift Imaging (CSI) [75]. In contrast, many SPI implementations of the

type shown in Figure 3.1(a) only collect a single data sample at each k-space location

and therefore produce a single image.

SPI and related techniques are most widely employed in the study of materials

having short T ∗
2 relaxation times such as concrete, polymers and gases [82, 83]. If T2

is somewhat longer than T ∗
2 , a refocusing pulse can be used to introduce T2 contrast

into the images without much loss of signal. Spin-Echo SPI or SE-SPI (see Figure 3.2)

is useful in applications involving thin films or fluids within porous media [84, 85].
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Figure 3.2: Pulse sequence for one-dimensional Spin-Echo SPI, which adds T2 contrast
with a refocusing pulse.

3.1.1 TurboSPI Sequence

A further modification for systems with much longer T2 than T ∗
2 is the use of a

multi-echo train of RF pulses similar to that used in RARE [86] or Fast Spin-Echo

sequences. The result is Turbo Single Point Imaging or TurboSPI [63], with a very

basic sequence diagram shown in Figure 3.3. TurboSPI shares the main advantages

of SPI in terms of robustness to artifacts and the ability to image materials with

very short T ∗
2 . The train of pulses allows the collection of multiple k-space locations

following an RF excitation, which increases imaging speed.

Figure 3.3: Pulse sequence for a one-dimensional non-selective TurboSPI acquisition.
Two echoes are shown; typically a train of 8 or 16 echoes would be used depending
on the echo time and sample T2. The phase encoding gradient is rewound after each
acquisition, so that no accumulated phase is carried over to the next echo in the train.

TurboSPI was originally proposed for systems such as porous aggregates which

have very short T ∗
2 (< 1 ms) but comparatively long T2 (> 50 ms), such that the

resulting image is T2-weighted but remains unaffected by short-T ∗
2 effects [63]. How-

ever, TurboSPI is well suited to imaging any system with T2 
 T ∗
2 , including cells
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that have been labeled with SPIO. In particular, TurboSPI provides the opportunity

to perform relaxometry on labeled cells at very high temporal resolution.

The version of TurboSPI illustrated in Figure 3.3 acquires samples along one spa-

tial dimension, e.g. kx, after a non-selective excitation. It is straightforward to modify

the sequence to selectively excite signal from a particular slab with a shaped RF pulse

(Figure 3.4(a)) and to add phase encoding gradients in all three dimensions to pro-

duce 3D images (Figure 3.4(b)). Other modifications to the sequence to optimize

image quality will be discussed in the next section.

As a purely phase encoded sequence, TurboSPI offers considerable flexibility in

choosing the order in which k-space locations are sampled. For the moment, we will

Figure 3.4: Extensions of the basic TurboSPI sequence. (a) A slice-selection gradient
and a shaped excitation pulse are used to excite the magnetization, permitting slice-
selective imaging. (b) Phase encode gradients can be added in up to three dimensions
to allow 3D slab-selective imaging.
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consider a linear ordering, which all of the phase encodes within a single line of k-

space are collected before moving to the next line. Within a line, points closer to

the center of k-space are collected during the first echoes of the multi-echo train, and

points far from the center are collected later1, as illustrated in Figure 3.5. This phase

encoding order collects all of k-space and ensures that any artifacts due to signal

modulations during the echo train are confined to one direction.

Figure 3.5: Linear phase encode ordering for a 2D TurboSPI acquisition, in which
2048 trains of eight echoes each are used to fully sample a 128x128 matrix (16384
total sampled k-space values). (a) Train number of each sampled point; trains are
acquired beginning on the left side of k-space and proceeding to the right. (b) Echo
number of each sampled point; the central region of k-space near ky = 0 is sampled
early in the train, with the outer regions sampled late in the train.

As in the case of Chemical Shift Imaging, data can sampled throughout the period

between RF pulses, as the spin echo forms and then decays. The result will be a series

of images which will describe the evolution of the system during the spin echo, as in

Figure 3.6. Since there are no gradients applied during this period, the sampling has

no restrictions in terms of bandwidth, and data can be sampled as densely as the

system’s digitizer will permit. For example, with a typical echo spacing of several

milliseconds, hundreds of time points can be sampled at frequencies of 100 kHz or

more, creating a series of images separated by tens of microseconds. For compar-

ison, the minimum spacing between images acquired with a multiple-gradient-echo

sequence like GESFIDE is several hundred microseconds, and to sample points more

1Phase encodes can also be ordered to enhance T2 contrast by acquiring the centre of k-space
later in the echo train [86, 63], but for our application this is not desirable.
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Figure 3.6: A TurboSPI image series of a cylindrical water-filled phantom containing
5 NMR tubes (described in more detail in Section 4.2.2). The water signal (blue
crosses and line) has a long T ∗

2 and does not change significantly throughout the
time course, but the contrast of the NMR tubes changes to varying degrees due to
rephasing and dephasing of signal during the spin echo (red crosses and line). Only
five images are shown; the complete time series typically contains 256 or 512 images.

densely spaced than this requires repeated acquisitions [62]. This gives TurboSPI

a considerable advantage in terms of accurate characterization of the acquired time

course data, which will be applied to R∗
2 relaxometry in the next chapter.

Another advantage of SPI-type techniques like TurboSPI is the ability to filter

the acquired data at far lower frequencies than is possible with a frequency-encoded

image [81]. In sequences having a readout gradient, the minimum filter bandwidth

is imposed by that gradient; since a sample of width δx in a gradient Gx will have

a frequency bandwidth of γGxδx, the filter bandwidth must be larger than this to

avoid aliasing. For practical applications this bandwidth is on the order of tens of

kHz, and the inability to filter below this frequency often allows high-frequency noise

into the resulting image. For a purely phase-encoded sequence like TurboSPI, no

such restriction exists, and the only limit on the filter bandwidth is the frequency

content of the time course. This allows significant denoising of the time course, as
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Figure 3.7: TurboSPI allows for significant denoising of time courses by lifting the re-
strictions on filter bandwidth which are found in frequency-encoded sequences. Blue
line: Time course of a representative pixel, from an image acquired at a filter band-
width of 100 kHz. The dominant frequency is approximately 50kHz and corresponds
to noise produced by the gradient amplifier. Black line: Time course from the same
pixel but with filter bandwidth of 10 kHz.

demonstrated in Figure 3.7, where a significant source of external noise is removed

from the time course data without any effect on the underlying signal. In a frequency

encoded image, this noise cannot be removed as easily and degrades image SNR.

3.2 Alignment of Stimulated Echoes

As discussed in Chapter 2, every RF pulse after the initial excitation will create

an echo, either in the form of a spin echo or a stimulated echo. Depending on the

sequence timing, these echoes can potentially overlap and interfere with each other,

and in multiple-spin-echo sequences like TurboSPI this can lead to significant image

artifacts.

The most common way to remove these undesired echoes is with the use of crusher

or spoiler gradients surrounding each refocusing pulse in the train, as illustrated in

Figure 3.8. The gradient lobe immediately after the refocusing pulse dephases any

signal excited by the pulse if its flip angle is not exactly 180 degrees. The matched-

amplitude lobe before the refocusing pulse ensures that signal which already exists
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prior to the pulse is retained; it will be dephased before the pulse but rephased by

an equal amount immediately afterward. Finally, by changing the amplitude of the

matched lobes throughout the entire train, signal which is stored on the ẑ axis by

one pulse will not be fully rephased if a subsequent pulse rotates it back into the

transverse plane, and therefore stimulated echoes will not form [87].

Figure 3.8: Stimulated echoes generated by the TurboSPI echo train can be sup-
pressed with an appropriate crusher pattern, such as this one based on the method
described in [87]. The crusher lobes suppress spurious signal excited by the 180 de-
gree pulses and cause stimulated echoes to be improperly refocused, leaving only the
desired spin echo intact.

Though effective, and though this method was used in previous implementations

of TurboSPI [63], removing additional echoes in this way has disadvantages. If a

stimulated echo has the same phase encoding as a spin echo, they can be combined

constructively, creating an image with increased signal intensity compared to an image

in which stimulated echoes are suppressed with crushers; this additional signal could

permit higher resolution imaging and improve quantification. This is particularly true

when the RF pulses are not spatially homogeneous, and more of the signal intensity

forms stimulated echoes after experiencing non-ideal refocusing pulses.

In principle, alignment of echoes can be achieved with matched-amplitude crusher

pairs which have the same amplitude from one echo to the next, combined with

rewinding of phase encode gradients, as shown in Figure 3.9. This will still dephase

signal excited by the refocusing pulses but rephase any stimulated echoes as well as

the spin echo. However, this coherent summation of echoes will only be achieved if all
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Figure 3.9: A crusher pattern which maintains a constant amplitude throughout the
echo train will yield stimulated echoes that align with the spin echo, assuming that
the effects of all gradients and refocusing pulses are identical.

echoes experience the same gradient area and then align in the transverse plane [64],

which can be difficult in practice due to hardware limitations on gradient fidelity and

RF pulse phase. Any incoherent summation of echoes will lead to severe ghosting

artifacts in the phase-encode direction along which the echo train is acquired, and

potentially other image distortions or artifacts, as illustrated in Figure 3.10.

Figure 3.10: An improper alignment of spin and stimulated echoes leads to significant
image artifacts, primarily ghosting in the phase encode direction (top to bottom in
this image).
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To compensate for these problems and optimize the quality of TurboSPI images,

an automatic calibration routine was developed, similar to an existing procedure for

Fast Spin-Echo sequences [64]. This calibration ensures that the necessary conditions

for constructive signal summation (matched gradient-time integral and zero phase

difference between refocusing pulses) are met as closely as possible.

3.2.1 Calibration Procedure

TurboSPI uses no readout gradient, rewinds the phase encoding gradients after

each acquisition, and the amplitudes and durations of all crusher gradient lobes are

matched throughout the sequence to prevent spurious excitation of signal. The only

gradient which may be unbalanced (and which may lead to phase differences between

echoes) is the slice-select gradient and its refocusing lobe, whose combined area should

be zero but which may deviate from this ideal for a number of reasons. For example,

while Bloch simulations can determine the theoretically required refocusing area for

any RF excitation pulse [75], in practice, B1 inhomogeneity and other factors influence

the refocusing area in an unpredictable way. The correct amplitude for the slice-select

refocusing gradient must therefore be determined empirically.

The first stage of the calibration routine accomplishes this by incrementally ad-

justing the amplitude of the refocusing gradient, and at each increment, acquiring

an echo train with no phase encoding gradients. Each train is characterized by the

peak intensity of the first echo, which can be plotted as a function of the refocusing

gradient amplitude. The resulting curve is fitted to a polynomial (usually of order 4),

with the peak of the fitted curve corresponding to the amplitude which produces the

maximum signal across the train, and therefore to the optimal alignment of echoes

(see Figure 3.11(a)). This amplitude produces a smooth, monotonic decay of the

signal, as shown in Figure 3.11(b), and is passed back to the pulse sequence for use

in all subsequent acquisitions.

The second stage of the calibration adjusts the phase of the first refocusing pulse,

to account for any discrepancies between the phase accumulated prior to that pulse,

and the phase accumulated between subsequent pairs of pulses. This can occur, for

example, if the synthesizer phase is not properly referenced by the console during an

off-resonance excitation. The refocusing pulse phase is adjusted incrementally from
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Figure 3.11: Example of automatic calibration of TurboSPI slice-select rewinder gra-
dient amplitude and RF refocusing pulse phase. (a) Fit to the first echo peak intensity
as a function of gradient amplitude, with calculated optimal value shown by the cross.
(b) Magnitude of eight-echo train with no phase encoding and gradient amplitude set
to optimal value. (c) Fit to the average phase difference between the first two echoes
as a function of refocusing pulse phase, with x-intercept shown by the cross. (d) Phase
of eight-echo train with no phase encoding and pulse phase set to optimal value.
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−π to +π, and echo trains are acquired with no phase encoding gradients. The mean

phase difference between the first two readouts is computed as a function of the pulse

phase, and the resulting curve is fitted to a straight line (Figure 3.11(c)). The x-

intercept of this curve yields the phase which produces zero mean difference between

the phase of successive readouts, corresponding to a constructive addition of spin and

stimulated echoes with stable phase throughout the train, as shown in Figure 3.11(d).

Two sets of 20 to 30 trains, which can be acquired in several seconds with a

repetition time of 250 ms, are typically sufficient. Processing of this calibration data

is done using a compiled program written in Matlab 2008b (The Mathworks, Natick

MA), which runs on the acquisition computer. The plots shown in Figure 3.11 were

generated by this program.

3.2.2 Calibration Testing - Methods

To assess the performance of the automatic calibration procedure and the resulting

image quality, tests were performed using a water-filled phantom containing tubes of

iron oxide particles (to be further described in Section 4.2.2) and a rat imaged in

vivo. Because of the high signal intensity and defined edges in the phantom, ghosting

and other artifacts are easily observed when present, while performing the calibration

on the rat will demonstrate its robustness in realistic and challenging experimental

conditions.

TurboSPI images were obtained of a 5 mm thick 2D slice with a matrix size of

128x128, covering a 50x50 mm field of view. Images were acquired before and after

calibration using an echo train length of 8 and a repetition time of 250 ms, with

each acquisition requiring 8.5 minutes. For comparison, images were also obtained

using a single-echo acquisition, which will not generate any stimulated echoes; these

images were acquired in 68 minutes. Points near the center of k-space are acquired

on the first echo, meaning that the effective echo time TE was equal to the inter-echo

spacing of 8 ms. During each echo, 512 time points were collected at a rate of 100

kHz for a readout duration of 5.12 ms. RF pulse durations were 250 μs for the shaped

excitation pulse and 50 μs for the hard refocusing pulses.

For the demonstration of in vivo imaging, a single male Long-Evans rat was imaged

after anesthesia with an intraperitoneal injection of 1.6 g/kg urethane. The rat’s
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head was positioned within a stereotaxic restraint and secured with ear bars. The

respiration rate was monitored, and temperature was maintained at 37◦C with a

feedback-controlled warm air heater (Small Animal Instruments Inc., Stony Brook,

USA). Institutional animal care and use guidelines were followed throughout.

3.2.3 Calibration Testing - Results

Figure 3.12 shows images of both the phantom and rat, using a single echo acqui-

sition, as well as before and after the calibration procedure to align echoes during an

eight-echo train. Without the calibration, eight-echo images are prone to ghosting and

significant distortions. When the gradient amplitude and pulse phase are optimized,

the result is an image which is comparable in quality to single-echo acquisitions but

which is obtained in a fraction of the time (8 minutes instead of 64). Some blurring

of the multi-echo image is unavoidable, due to T2 modulation of the PSF in the echo

train direction, but the overall artifact level is low.

The images in Figure 3.12 correspond to the nominal echo time of TE = 8 ms

but, as shown in Figure 3.13, the image quality remains constant throughout the rise

and fall of the spin echo. There is no significant difference between the calibrated

eight-echo images and the single-echo images, nor between their time courses. This

is true even in areas containing significant off-resonance signal due to fat, such as

the highlighted voxel whose time course is shown in Figure 3.13(k), as well as in

voxels containing SPIO (not shown). These effects produce modulations of the time

course, as well as altered contrast in the corresponding images (see, for example,

Figure 3.13(b,d), where the signal in the marked voxel is far lower than at t=TE),

but without the detrimental effects on image quality that would be seen in frequency-

encoded data.

3.3 Discussion and Summary

TurboSPI has demonstrated robust image quality, both in vitro and in vivo, once

stimulated echoes are properly aligned with the fast and straightforward calibration

procedure described above. As with all SPI-type sequences, the series of images

produced by TurboSPI is insensitive to a variety of artifacts that affect frequency-

encoded techniques. To our knowledge this is the first implementation of a spin-echo
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Figure 3.12: TurboSPI images are significantly improved by the automatic calibration
procedure. (a,b) Images of a phantom (a) and in vivo rat brain (b) acquired in
64 minutes using a single echo are artefact-free. (c,d) Images acquired using an
eight-echo train in 8 minutes without adjustment to gradient amplitude or RF pulse
phase; significant artifacts are present in the echo direction (top to bottom in these
acquisitions). (e,f) Eight-echo train images with gradient amplitude adjusted and
pulse phase optimized. Some R2 blurring remains but ghosting and distortion are
reduced.
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Figure 3.13: The quality of TurboSPI images remains constant through the time
course. (a-e) Images of an in vivo rat brain obtained from different points in the
time course, using a single echo. (f-j) Images from the same time points, using an
eight-echo train. Aside from R2 blurring in the multi-echo phase encode (up/down)
direction, quality is similar throughout. (k) Time courses from a typical pixel (marked
with crosshairs), showing that the time course behavior is unaffected by the use of a
multi-echo train; the modulation is due to fat signal within the voxel.

SPI sequence which retains the signal from stimulated echoes instead of suppressing it,

potentially improving signal intensity while increasing acquisition speed and avoiding

artefacts due to improper echo alignment.

The calibration procedure described in this chapter allows image quality to be

considerably improved after a short, two-stage prescan. In practice, the adjustment

of the refocusing pulse phase is more critical to artifact levels in the image than the

refocusing gradient amplitude. This is because phase differences between adjacent

echoes tend to produce ghosting along the phase encoding direction, while an im-

properly adjusted refocusing gradient generally leads only to an overall reduction in

signal amplitude. However, it is beneficial to adjust the refocusing gradient ampli-

tude first, since this maximizes the available signal and improves the reliability of the

phase adjustment.

All of the acquisitions described in this chapter were 2D slice-selective, with a

relatively low in-plane spatial resolution (400 μm) and a relatively large slice thickness

(5 mm). For most cellular imaging purposes a high-resolution 3D image is desirable,

with resolution less than 200 μm in all three spatial directions. While the image and

time course SNR are more than sufficient to attain these dimensions, the practical

limitation on TurboSPI’s performance is acquisition time. Since TurboSPI requires

several minutes to produce single slice images at moderate resolution, high-resolution
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3D in vivo studies would be impractically long if performed with the sequence as

described in this chapter.

While lengthening the echo train from 8 echoes (as used in this chapter) to 12 or

16 echoes would seem to be a straightforward method for accelerating the acquisi-

tion, this approach has limitations. For a fixed repetition time, increasing the train

length will decrease the amount of signal available for the next excitation, reducing

overall SNR. Long echo trains also introduce more T2-related blurring due to stronger

modulation of the acquired k-space. Fortunately, TurboSPI is highly amenable to a

number of more recently developed techniques for acceleration of MR imaging; the

process of implementing these techniques for use with TurboSPI will be the subject

of Chapter 6.

First, however, we will consider the ability of TurboSPI to image concentrations of

SPIO such as those present in cellular imaging studies. The large number of images

and the short time interval between them makes TurboSPI datasets an excellent

candidate for high temporal resolution relaxometry, which is a key requirement for

the accurate quantification of SPIO-labeled cells.



Chapter 4

In Vitro Quantification of SPIO with TurboSPI

As mentioned in Chapter 1, SPIO particles are readily taken up into a number of

different cell types, and their effect on MRI relaxation rates allows the resulting con-

centration of iron to be quantified. In this chapter we will outline the physical basis of

this relaxation effect and present a simple relationship between R′
2 and iron concen-

tration. Because concentrations of SPIO within cells produce a much larger increase

in the reversible R′
2 relaxation than the irreversible R2 relaxation, the TurboSPI se-

quence is a natural candidate for imaging labeled cells. TurboSPI’s ability to reliably

image and quantify iron using the established theoretical relationship will then be

demonstrated using samples of micron-sized iron oxide particles and SPIO-labeled

cells in vitro.

4.1 Relaxation Behaviour of SPIO

The relaxation of the MRI signal is physically based on molecular motion, as

discussed in Chapter 2. For SPIO and other similar contrast agents, numerous studies

have shown that the R2 and R′
2 relaxivity have a strong dependence on the particle

size [88, 89, 90]. For small particles, both relaxivities increase with particle diameter,

but beyond a certain diameter the R2 relaxivity begins to decrease, while R′
2 continues

to increase and eventually reaches a maximum value, as shown in Figure 4.1.

This phenomenon can be understood by considering the diffusion of water molecules

in the vicinity of an SPIO particle. The portion of the particle’s inhomogeneous field

which is strong enough to cause significant dephasing of signal occupies a certain

volume in space, which is proportional to the particle’s radius as well as its magnetic

susceptibility. If a water molecule’s diffusion between the excitation and acquisition

of signal is sufficient to move it completely through the majority of the particle’s

magnetic field, the loss of coherence will be unrecoverable even after a refocusing RF

pulse, leading to relaxation dominated by R2. This is called the diffusion-narrowing

73
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Figure 4.1: R2 and R∗
2 relaxivity as a function of particle size, for microspheres

containing Dysprosium-DTPA, a paramagnetic contrast agent. The change in R2

produced by the contrast agent reaches a peak between 5 and 10 μm, and then
decreases with particle size, while the R∗

2 relaxivity reaches a maximum value at
approximately the same size. Figure reproduced from [88].

or motional narrowing regime1.

Alternatively, if the particle diffuses through only a small portion of the field,

the inhomogeneity is effectively time-independent and the dephasing can be reversed.

This is known as the static dephasing regime (SDR), in which R′
2 is the dominant

relaxation mechanism. Once a system has reached the SDR, further increases in

particle size will have no impact on relaxivity, and R′
2 reaches a plateau as observed

experimentally. (The precise conditions which must be satisfied for a system to be

considered in the static dephasing regime will be addressed in Section 4.1.4.)

In the case of cellular imaging, because the individual SPIO particles are com-

partmentalized within the cell, it is not the particle size which is of importance, but

the size of the cell. When modeling the relaxation behavior we can then consider an

SPIO-loaded cell as a single large SPIO particle with an appropriate susceptibility.

1The motional narrowing regime is so named because, in inhomogeneous systems with very broad
NMR linewidths, diffusion can actually have the effect of reducing the apparent field inhomogeneities
through motional averaging, leading to a narrower linewidth than expected.
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The theory describing signal behavior in the static dephasing regime can then be used

to predict the relationship between the total amount of iron present in an area and

the R′
2 relaxivity. This prediction, which will be derived below, is the basis of SPIO

quantification with relaxometry.

4.1.1 Relaxation in the Static Dephasing Regime

The first comprehensive theory describing MRI signal behavior in the static de-

phasing regime was that of Yablonskiy and Haacke [91]. This model completely

neglects the effects of diffusion and, in its original formulation, describes the signal

in the vicinity of magnetized perturbers immediately following excitation, i.e. during

an FID experiment.

Consider an ensemble of N perturbers with radii Rn (but geometry otherwise

unspecified for now), which occupy a total volume v in a background medium of size

V0 such that the total volume V = V0 + v. When placed within an external field B0

these perturbers will create inhomogeneous magnetic fields in their vicinity, affecting

the local Larmor frequency ω(	r) about each perturber. Regardless of the precise form

of ω(	r), the NMR signal immediately after RF excitation should be of the form

s(t) =
1

V
ρ

∫
V0

e−iω(�r)td	r (4.1)

with the local frequency ω(	r) given by a sum over all N perturbers,

ω(	r) =
N∑

n=1

wn(	r) (4.2)

Equation 4.1 is similar in form to equation 2.37 for the signal in the presence of

a field gradient, though the integral is now over V0 and normalized by the total

volume. Indeed, the scaling factor ρ is essentially ρ(	r) integrated over this volume,

and as such it incorporates effects due to flip angle and hardware sensitivity that are

unrelated to relaxation. For the purposes of this discussion, any T2 relaxation due to

the background medium can also be subsumed into ρ.

Instead of an integral over a sum of perturbers, equation 4.1 can be expressed as a

product of integrals, each of which represents the contribution of a single perturber.

This is valid so long as the volume occupied by the perturbers is small and their

inhomogeneous fields do not significantly overlap. Assuming that the perturbers are
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uniformly and independently distributed, i.e. P (	rn)d	rn = d	rn/(V − vn), the signal

becomes

s(t) = ρ
V0

V

∏
n

1

V − vn

∫
V−vn

e−iωn(�r)td	r

= ρ(1− ζ)
∏
n

1

V − vn

∫
V−vn

e−iωn(�r)td	r (4.3)

with the volume fraction ζ = v
V
introduced for convenience. The (1− ζ) term reflects

the fact that we are only considering signal from the background medium, i.e. that

the perturbers themselves are impermeable and contain no MR-sensitive nuclei.

In the simplest case, the perturbers all have the same radius R, and the volume

vn is v(R), the volume of a single perturber. The product over all perturbers can be

rewritten as [91]

s(t) = ρ(1− ζ)
∏
n

(
1− 1

V − vn

∫
V−vn

(1− e−iωn(�r)t)d	r

)

= ρ(1− ζ)

(
1− v(R)

V − v(R)
f

)N

(4.4)

with the function f defined here as

f =
1

v(R)

∫
(1− e−iω(�r)t)d	r (4.5)

The benefit of re-expressing s(t) in this form is that only the f function depends on

the geometry of the perturbers through ω(	r) and d	r.2 In the statistical limit N → ∞
and using v(R)

V−v(R)
≈ v(R)

V
= ζ/N , s(t) can be further simplified to

s(t) = ρ(1− ζ)

(
1− ζf

N

)N

(4.6)

= ρ(1− ζ)e−ζf (4.7)

In the more general case that the perturbers have a distribution of radii, with per-

turbers of radius Rn occupying a volume fraction ζ(Rn), it is straightforward to

demonstrate that

s(t) = ρ(1− ζ)e−
∫
ζ(R)f(R)dR (4.8)

2The f function also has a useful geometric interpretation which will be revisited in Chapter 5;
briefly, it relates to the effective volume throughout which a perturber is able to dephase signal.
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4.1.2 FID Experiment with Spherical Perturbers

The expression just derived is true for perturbers of any geometry; to proceed

further we need to compute f by substituting appropriate expressions for ω(	r) and

d	r into equation (4.5). Though this can be done for any geometry, including arrange-

ments of parallel or randomly oriented cylinders [91], for our purposes we consider

only the case of spherical perturbers.

Regardless of whether it represents a single SPIO particle or an SPIO-loaded cell,

a spherical perturber of radius R and with a magnetic susceptibility χ will produce

an inhomogeneous magnetic field in the form of a magnetic dipole, such that

B(r, θ, φ) =
4π

3
ΔM

(
R

r

)3

(3 cos2 θ − 1) (4.9)

The derivation of this expression is given in Appendix A.1.

The change in magnetization is ΔM = (χ − χ0)B0, where χ is the susceptibility

of the SPIO particles and χ0 is that of the surrounding medium.3 Using the Larmor

equation (equation (2.6)) the frequency shift experienced by a water molecule in the

vicinity of this SPIO particle can be expressed as

w(r, θ, φ) = δω

(
R

r

)3

(3 cos2 θ − 1) (4.10)

with the characteristic frequency δω defined as the shift at the sphere’s equator,

δω = ω(r = R, θ = π/2) =
4π

3
γΔM (4.11)

This characteristic frequency will be of importance when defining the static dephasing

condition.

Substituting equation (4.10) into equation (4.5) and using the volume element

d	r = r2dr sin θdθdφ, we obtain

f =
3

4πR3

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ ∞

R

r2dr(1− e−iδωt(R
r )

3
(3 cos2 θ−1)) (4.12)

which can be simplified using the substitutions U = cos θ and u = R3/r3, such that

r2dr = −R3du
3u2 . Then

f =
1

2

∫ 1

−1

dU

∫ 1

0

du

u2
(1− e−iδωtu(3U2−1)) (4.13)

3At many field strengths used for MRI, the magnetization of the SPIO will saturate or reach a
maximum, when all magnetic domains are aligned. In this case ΔM is the saturation magnetization.
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Though not integrable in general, this expression does have asymptotic forms for

small and large values of δωt [91]. During the short time scale t ≤ 1.5/δω, f has a

quadratic form,

f = 0.4(δωt)2 (4.14)

while on long time scales (t ≥ 1.5/δω), f is linear:

f = (C + iC ′)δωt− 1 (4.15)

The constants C and C ′ can be computed to be

C =
2π

3
√
3
= 1.2092

C ′ =
2

3

(
1√
3
ln

√
3 + 1√
3− 1

− 1)

)
= −0.1598

In most practical applications 1.5/δω is very small, and signal can only be collected

during the long time scale. In this case, f from equation (4.15) can be substituted

into equation (4.7) to give the evolution of the signal as

s(t) = ρ(1− ζ)e−Cζδωteζe−iζC′δωt (4.16)

The eζ term is close to 1 as long as ζ is small, and the oscillatory term will only affect

the phase of the signal, not the decay of its amplitude; both are often neglected from

further consideration. We therefore identify the relaxation rate R′
2 as

R′
2 = Cζδω =

8π2

9
√
3
ζγΔM (4.17)

This defines the maximum relaxivity for any set of spherical magnetic perturbers in

the static dephasing regime, regardless of their size.

It is convenient to express this relaxivity in terms of the quantity of magnetic

material present per voxel. While units of s−1/mM are often used in the context of

contrast agents, knowledge of the molar concentration of SPIO is not always readily

available. An alternative is to express R′
2 in terms of the local magnetic dose, which

is defined as the magnetic moment per unit volume, or [5]

LMD = ζΔM (4.18)

In these units, the static dephasing relaxivity becomes

R′
2 =

8π2

9
√
3
γ · LMD � 10.78 · LMD (4.19)
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4.1.3 Spin-Echo Experiment

In systems with high concentrations of SPIO, and therefore large R′
2, it can be

difficult to sample the FID before it decays completely, making accurate relaxometry

challenging. It may be beneficial to refocus the R′
2 decay with a 180 degree pulse

and sample the signal during the resulting spin echo. Though the treatment above

has been based on an FID experiment, in the static dephasing regime it is assumed

that the signal decay due to magnetic perturbers should be mostly reversible, and

s(t) should have the same general form but with a dependence on the echo time TE.

Specifically, Yablonskiy [92] has modeled the signal during the spin echo as follows.

For clarity we will also include R2 relaxation from the background medium, which

had been neglected to this point. The rising portion of the spin echo prior to t = TE

- 1.5/δω will have the form

s(t) = ρ(1− ζ)eζeR
′
2(t−TE)−R2t (4.20)

and similarly, after t = TE + 1.5/δω,

s(t) = ρ(1− ζ)eζe−R′2(t−TE)−R2t (4.21)

The only difference in these forms is the sign of the R′
2 term, since this portion of the

signal is rephasing before the spin echo and dephasing afterwards. Between t = TE -

1.5/δω and t = TE + 1.5/δω the signal will evolve non-linearly using the f given in

equation (4.14).

Sampling of the spin echo has been demonstrated with multiple-gradient-echo

sequences [58, 59] and carries a number of advantages. For example, if both sides of

the spin echo are sampled, it becomes possible to separate the reversible (R′
2) and the

irreversible (R2) contributions to the overall relaxation rate R∗
2. Furthermore, though

the region of non-linear behavior around the echo peak is predicted to be quite short,

it has been experimentally demonstrated that there is measureable deviation from

linear behavior around the peak of the FID [92]. This can be used to estimate the

volume fraction ζ occupied by the perturbers, by comparing the extrapolated signal

s(TE) from equations (4.20) and (4.21) to the actual signal measured at t=TE.
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4.1.4 Conditions for the Static Dephasing Regime

As described at the beginning of this section, for a system to be considered in

the static dephasing regime, diffusion must be sufficiently slow that a water molecule

will not move significantly through a perturber’s inhomogeneous field during the

experiment. A condition to describe such systems can be formulated in terms of

the perturber radius R, the diffusion coefficient D of the background medium, and

the strength of the inhomogeneous magnetic field around the perturber, which is

proportional to the characteristic frequency δω.

The time for a particle to diffuse through a distance R in a system of d dimensions

(d = 1, 2, 3) is given by

tD =
R2

2 · d ·D (4.22)

and we can also define a characteristic time as tc = 1/δω. The simplest criterion for

defining the static dephasing regime is then

tc � tD (4.23)

In other words, the characteristic time tc for signal from a proton near a perturber

to dephase should be much less than the time needed for that proton to diffuse away

from the particle. If this condition holds, the field should appear effectively static.

However, Yablonskiy [91] observed that this criterion is not appropriate for all

system geometries, since it does not consider the volume fraction ζ occupied by the

magnetic perturbers. He instead proposed a condition based on the NMR signal decay

which, as we have seen, occurs on a time scale proportional to (ζδω)−1. The static

dephasing condition would then be

1

ζ · δω � (r̄/2)2

2 · d ·D (4.24)

Another modification is the use of r̄, the average distance between neighboring per-

turbers, which is a more relevant distance scale for loss of NMR signal phase coher-

ence.

For systems of perturbers such as cylinders, where the volume fraction varies as

(R/r̄)2, this condition is equivalent to the simpler form given in equation (4.23).

However, since spheres of radius R occupy a volume fraction of approximately

ζ ≈
(

R

r̄/2

)3

(4.25)
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it can be shown that the simple form is not recovered, and instead we find that(
r̄/2

R

)3

� (r̄/2)2

6 ·D · δω(
r̄/2

R

)
� R2

6 ·D · δω

ζ−1/3 � R2

6 ·D · δω (4.26)

as stated in equation (24) of [91]. Since ζ must be less than 1, this condition is more

stringent than the simpler expression above, and if perturber concentrations are very

small, a system which would be otherwise expected to be in the SD regime might not

actually satisfy this condition.

In the case of a spin-echo experiment, different considerations apply. As the echo

time TE increases, the diffusive attenuation of the signal grows accordingly, and it is

this attenuation which must be small compared to the phase dispersion introduced

by the presence of the perturbers. Majumdar and Gore [93] determined that, if the

field in the vicinity of a diffusing molecule can be approximated by a gradient G, the

expected attenuation of signal at TE is

exp

[
− 1

12
D · 〈(γG)2

〉
TE3

]
(4.27)

Based on this assumption, Yablonskiy [92] computed that, for an arrangement of

parallel cylinders, the diffusive attenuation would be4

exp

[
1

24
ζ
TE3

t2ctD

]
(4.28)

To satisfy the static dephasing regime condition we require the argument of the ex-

ponential to be small, and therefore

1

24
ζ
TE3

t2ctD
� 1

TE � 2.9(T ′
2tctD)

1/3 (4.29)

This result has been referenced in the literature [62] in the context of spherical per-

turbers, though it is technically only valid for parallel cylinders. However, a calcula-

tion for the case of spherical perturbers yields a similar result:

TE � 2.4(T ′
2tctD)

1/3 (4.30)

4In this expression the characteristic time tc has been modified to include the coefficient C from
equation (4.15), such that tc =

ζ
R′

2
.
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For details of these calculations, see Appendix A.2.

Interestingly, despite the differences in system geometry, the condition differs from

the cylindrical case only in the numerical coefficient, and even then, the difference

is minimal. This means that authors who have cited equation (4.29) in the context

of a spherical system were not greatly mistaken, since a system which fulfills that

criterion will fulfill equation (4.30) as well.

It should also be be noted that the parameters best suited to meeting the static

dephasing regime conditions differ significantly between FID and spin-echo experi-

ments. While large particles and slow diffusion (hence large tD) are always required

for static dephasing, in FID experiments the particles should have large characteristic

frequency offsets δω and occupy a large volume fraction ζ, such that dephasing due to

field gradients is more rapid than dephasing due to diffusion. However, in a spin-echo

experiment, particles with small δω occupying a small volume fraction are more likely

to meet the criterion stated in equation (4.30) since these conditions reduce diffusive

attenuation of the signal. In practice a compromise between these factors is necessary

to meet both criteria.

4.2 Methods

With a theoretical understanding of the relationship between the relaxation rate

R′
2 and the local iron concentration, we can now explore the potential of using a

TurboSPI time series to quantify concentrations of SPIO with R∗
2 relaxometry. To

demonstrate the accuracy and range of this quantification, a number of samples were

prepared for in vitro imaging, which is more reproducible and is limited by fewer

confounding factors than would be present if attempting to characterize TurboSPI

in vivo. Other quantification techniques were also employed for comparison with

TurboSPI and to allow verification of the theoretically described relaxation behavior.

4.2.1 Sample Preparation

Three series of samples were prepared to test the ability of TurboSPI to accurately

quantify intra-cellular and freely suspended iron. The first two series of samples

consisted of micron-sized particles of iron oxide (MPIO, Bangs Laboratories, Fishers,

IN) which had a mean diameter of 0.96 μm in the first group, and 1.63 μm in the
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second. Various concentrations of MPIO were used; calculated iron concentrations in

the 0.96 μm group ranged from 0 to 24 μg/mL, and from 0 to 120 μg/mL in the 1.63

μm group.

A third series of samples was produced which contained HPV C3 cervical cancer

cells [94], which were loaded with Molday ION Rhodamine B, a 35 nm SPIO particle

obtained from BioPal Inc (Worcester, MA). The C3 cell line was maintained in Iscove

Modified Dulbeccos Medium (IMDM; Sigma, St. Louis, MO) supplemented with

10% heat-inactivated fetal calf serum (Sigma, St. Louis, MO), 2 mM l-glutamine

(Gibco, Burlington, ON), 50 mM 2-mercaptoethanol (Gibco, Burlington, ON), 100

U/mL penicillin and 100 μg/mL streptomycin (Gibco, Burlington, ON). Following

incubation of the cells in 5% CO2 at 37◦C for 48 hours, Molday ION Rhodamine B

was added to the cells at a concentration of 0.1 mg/mL and incubated for a further

22 hours.

The cells were washed to remove excess iron oxide, trypsinized, centrifuged and re-

suspended in a 1X HBSS (Sigma, St. Louis, MO) solution with 200 μL/mL HEPES

(Gibco, Burlington, ON). The suspended cells were divided into groups with con-

centrations ranging from 1 million to 5 million cells/mL. Cellular iron uptake was

assessed with UV/VIS spectrophotometry and was determined to be approximately

8 pg Fe/cell. The average cell size was calculated using the Countess Automated

Cell Counter (Invitrogen, Burlington, ON) and accompanying software; the average

diameter was determined to be 13 μm.

To prepare each sample, an appropriate amount of MPIO particles or labeled

cells were suspended in a heated solution of gelatin (4% by weight). This mixture

was doped with 168 μM MnCl2, a paramagnetic contrast agent, to give the samples a

background T1 and T2 comparable to that which would typically be found in biological

samples. 2 mL of each iron concentration was placed in a 5 mm NMR tube and the

gelatin was set with an icewater bath to avoid settling.

For imaging with TurboSPI, these NMR tubes were placed in groups of five within

a cylindrical phantom (see Figure 4.2). The rest of this phantom was filled with

distilled water that was also doped with 168 μM MnCl2.
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Figure 4.2: Cylindrical phantom for SPIO quantification with TurboSPI. The phan-
tom can hold up to five 5mm NMR tubes in a doped water bath, and is constructed
of ABS plastic. Schematic reproduced from [60].

4.2.2 Imaging Parameters

All TurboSPI acquisitions were 2D slice-selective, with the same parameters as

described in the previous section (5 mm slice thickness, 128x128 matrix size, 50x50

mm field of view, train length of 8, repetition time of 250 ms, TE = 8 ms, 512

time points collected at 100 kHz). The home-built quadrature RF coil was used for

all TurboSPI image acquisitions. RF pulse durations were 250 μs for the shaped

excitation pulse and 50 μs for the hard refocusing pulses.

For comparison, bulk measurements of the R∗
2 relaxation rate were obtained using

a slice-selective pulse-acquire sequence to collect the FID of a 10 mm slice through

each tube, and a slice-selective single-echo spin-echo sequence to collect the decaying

signal immediately following a spin echo. These sequences were implemented by

modifying spectroscopy sequences included on the system console (the voxel-selection

gradients were replaced with a single slice-select gradient). For the spin-echo sequence,

the echo time was set at TE = 8 ms to match the TurboSPI acquisitions. Tubes were

placed individually into the single-channel solenoid coil with no water bath. The R2

relaxation rate of each tube was also measured with a nonselective CPMG sequence

(see Figure 2.10). In each case the relaxation rate was determined by fitting a single

exponential decay curve to the acquired data with nlinfit in Matlab 2010a.

As discussed in the previous section, the relaxivity of a sample in the static de-

phasing regime can be expressed in terms of the local magnetic dose (LMD) of that

sample, which can be measured using MR susceptometry. The complete procedure

for performing this measurement is outlined in [5], and will only be summarized here;

see Figure 4.3 for an illustration of the procedure.
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Figure 4.3: Overview of the procedure for performing MR susceptometry and com-
puting the local magnetic dose of the contents of an NMR tube. (a) Image of an NMR
tube in a water bath, TE = 10 ms. (b) Same image but with TE = 100 ms; note the
loss of signal around the tube. (c) Calculated field map based on all 10 images, and
lines along which profiles are extracted for fitting. (d) An appropriate model is fit to
the average of the field map along all four profiles, which yields the susceptibility χ.
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A single NMR tube is placed within a water-filled cylindrical phantom oriented

perpendicular to B0, which in turn is placed within the solenoid RF coil. A 2D

multiple-gradient-echo sequence is used to acquire a field map of the water bath

(sequence parameters: repetition time 200 ms, 10 echoes with 10 ms spacing, 15

degree flip angle, one 5 mm slice, 128x128 matrix, 40x40 mm2 FOV). The field map

can be compared to a theoretical description of the inhomogeneity pattern resulting

from an arrangement of concentric cylinders, from which the magnetic susceptibility

of the sample can be calculated using a script written in Matlab. The LMD is the

susceptibility difference, relative to a reference tube containing no magnetic material,

multiplied by the field strength B0 in appropriate units.

4.2.3 Quantification Procedure

As was shown in Figure 3.6, the result of a TurboSPI acquisition is a series of

images which are well-suited to relaxometry. At each pixel in the image, the relaxation

rate R∗
2 is determined by a fit to the linearly decaying exponential region of the spin-

echo time course. These fits typically use 200 to 250 of the collected time points,

corresponding to a duration of 2 to 2.5 ms. For reasons to be discussed, the complete

time course including the peak of the spin echo was not used. Fits to the bulk spin-

echo signal are performed similarly, while fits to the bulk FID data use the entire

collected time course.

In all cases a two-parameter single exponential decay function (with a baseline

of zero) is fitted to the time course with a non-linear least-squares optimization in

Matlab 2010a. In the case of TurboSPI, R∗
2 mapping of the complete image set

requires less than one minute. Fits of background noise pixels are suppressed by only

fitting those pixels whose peak intensity is above a given threshold, typically 5% of

the image maximum.

To assess the variability of the determined TurboSPI relaxation rates within a

sample, time courses are fitted for each pixel, such that a standard deviation can be

computed. However, R∗
2 values used for comparisons with bulk measurements and for

determination of particle relaxivity were obtained from fits to the average of a 5x5

pixel ROI centered on each sample. Obtaining relaxation rates from an average of

pixels in this manner has been shown to improve accuracy and precision, as compared
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to the average of rates from individual pixels [95]. R′
2 for a given sample is calculated

by subtracting R2 (obtained by a CPMG measurement) from the fitted R∗
2.

The relaxivity for each group of samples is determined with a nonlinear regres-

sion (using Matlab’s nlinfit and nlparci to obtain a 95% confidence interval for

the parameters). All values are reported as the relaxivity ± the half-width of the

confidence interval.

4.3 Results

A typical TurboSPI image of five MPIO tubes within the cylindrical holder is

shown in Figure 4.4, along with a single-pixel time course and the corresponding fit

used to determine R∗
2. As can be seen in the time course, there is significant non-

linear-exponential behavior around the peak of the spin echo, and a visible shift of

the echo peak away from the nominal echo time. These effects are seen in all of the

MPIO samples and, as shown in Figure 4.5, are also present in the samples containing

SPIO-loaded cells, albeit to a much smaller degree. The presence of these effects make

fits to the entire time course difficult.

Figure 4.4: R∗
2 quantification using TurboSPI. (a) TurboSPI image from t = TE =

8 ms, with crosshairs indicating the pixel of interest. The sample holder contains
five tubes of 1.63 μm MPIO in varying concentrations. (b) Time course from indi-
cated pixel, with fitted relaxation curve superimposed (blue line). Thin dashed lines
bracket the data used for the fit, and the red circle marks the echo time TE. Note
the significant shift in the echo peak away from the nominal echo time.
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Figure 4.5: TurboSPI time course from a representative sample containing SPIO-
loaded C3 cells. Though the echo is not as significantly shifted, the peak still forms
before TE = 8 ms (dotted line), and there is some non-linear-exponential behavior.

Figure 4.6: Example of an R∗
2 map produced by analysis of TurboSPI time course

data. In this set of five tubes of 1.63 μm MPIO particles in gel suspension, MPIO
concentration increases in the clockwise direction starting with the tube nearest the
bottom.

A typical R∗
2 map for a group of 1.63 μm MPIO tubes is shown in Figure 4.6. The

fitted R∗
2 values for each of these tubes are fairly homogeneous, even at moderate iron

concentrations. The homogeneity of the R∗
2 maps for the loaded cells is also similar.

Figure 4.7 demonstrates the relaxation behavior of the SPIO-loaded C3 cells. As
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expected for these relatively large perturbers, the R′
2 to R2 ratio is high, approx-

imately 40:1, indicating that the static dephasing conditions should be met. The

bulk R′
2 relaxivity as measured by the slice-selective FID experiment was 10.73 ±

1.6 s−1/mG, while the relaxivity based on the decaying portion of the spin echo was

measured as 10.36 ± 2.9 s−1/mG by the bulk measurement and 10.47 ± 2.3 s−1/mG

by TurboSPI. None of these values are significantly different from the theoretically

predicted value of 10.78 s−1/mG for a static dephasing system.

Figure 4.7: Relaxation rates for C3 cells loaded with 35 nm SPIO, as determined by a
bulk CPMG measurement (diamonds), slice-selective bulk measurements of the FID
(squares) and spin echo (triangles), and 2D TurboSPI (circles). All relaxivities are
expressed as a function of the local magnetic dose (LMD) of magnetic material.

The relaxation behavior of the MPIO particles in gel suspension is illustrated in

Figure 4.8. As with the loaded cells, the change in the R′
2 relaxation rate with iron

concentration is greater than the change in R2, though only by a factor of 10 for the

0.96 μm particles, and by a factor of 13 for the 1.63 μm particles. The relaxivity R′
2

from the bulk FID measurement was 10.68 ± 0.38 s−1/mG for the 0.96 μm particles,

which is not significantly different from the theoretically predicted value, and 11.00

± 0.18 s−1/mG for the 1.63μm particles, which is different from 10.78 at the α = 0.05

level but not at α = 0.1.

However, unlike the SPIO-loaded cells, the R′
2 relaxivities measured with the

bulk spin-echo experiment and with TurboSPI are significantly less than the static
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Figure 4.8: Relaxation rates for (a) 0.96 μm and (b) 1.63 μm MPIO particles in
gel suspension, as determined by a bulk CPMG measurement (diamonds), by slice-
selective bulk measurements during the FID (squares) and following a spin echo (tri-
angles), and by 2D TurboSPI (circles). All relaxivities are expressed as a function of
LMD.
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dephasing prediction for both sizes of particles. The relaxivity of the 0.96 μm particles

was determined to be 8.03 ± 0.65 s−1/mG by the bulk measurement and 8.06 ± 0.68

s−1/mG by TurboSPI, while the 1.63 μm particles were found to have a relaxivity

of 6.74 ± 0.30 s−1/mG with the bulk measurement and 7.13 ± 0.31 s−1/mG with

TurboSPI. In both cases the bulk spin-echo relaxivity is not significantly different

from that obtained by TurboSPI.

The relaxivities obtained from each measurement and for all three types of per-

turbers are summarized in Table 4.1. Table 4.1 also lists the local magnetic dose

per unit iron concentration for each particle, with cellular iron concentration based

on UV/VIS spectrophotometry and MPIO concentrations based on the volume of

particles used in preparing the samples.

0.96 μm MPIO 1.63 μm MPIO Loaded cells
R2 from CPMG 0.79 ± 0.08 0.56 ± 0.03 0.25 ± 0.04
R′

2 during FID (Bulk) 10.68 ± 0.38 11.00 ± 0.18 10.73 ± 1.6
R′

2 after Spin Echo (Bulk) 8.03 ± 0.65 6.74 ± 0.30 10.36 ± 2.9
R′

2 after Spin Echo (TurboSPI) 8.06 ± 0.68 7.13 ± 0.31 10.47 ± 2.3
LMD per unit iron concentration 3.01 1.00 0.82

Table 4.1: Relaxivities and local magnetic dose (LMD) per unit iron concentration
for all sample groups. All relaxivities are in units of s−1/mG and are reported with
95% confidence interval bounds. Local magnetic doses are in units of mG / (μg/mL).

The variability of R∗
2 values obtained from fits to individual TurboSPI pixels is

shown in Figure 4.9, which plots the standard deviation of the 25 fitted R∗
2 values

within a particular ROI as a function of sample T2 for all of the MPIO samples

imaged. There is a significant increase in standard deviation as T2 approaches the

echo time TE, underscoring the requirement that R2 be small to ensure acceptable

quantification. Note that it is not sufficient that R2 be much less than R′
2, since

TurboSPI’s high sampling rate around the spin echo allows accurate fits to very large

R∗
2. However, this assumes that there is sufficient signal at the echo peak, which is

only the case if R2 is not too large; beyond a certain threshold, the SNR is too low

to guarantee accurate fits, especially if there is some residual ghosting or blurring of

background signal.
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Figure 4.9: Standard deviation of R∗
2 values obtained from single-pixel fits to Tur-

boSPI data (TE = 8 ms) within a 25-pixel ROI centered on each MPIO sample.

4.4 Discussion and Summary

Reliable in vitro quantification of both MPIO particle and SPIO-loaded cells over a

wide dynamic range has been demonstrated with TurboSPI. In all cases the measured

R∗
2 relaxation rates are linearly proportional to the local magnetic dose (LMD) as

measured by MR susceptometry, and are comparable to the rates obtained using

a bulk spin-echo measurement. This is true even at high iron concentrations with

relaxation rates in excess of R∗
2 = 1000s−1, so long as R2 is sufficiently small.

For MPIO particles, fit quality begins to degrade significantly around T2 = 2TE =

16 ms, or R2 > 60. Assuming a similar maximum R2 for SPIO-loaded cells such as

those used in this study, which have an R′
2 : R2 ratio of 40, it should be possible to

quantify relaxation rates up to 2400s−1, corresponding to an iron concentration of

270 μg/mL Fe, or 27 million cells/mL at a loading level of 10 pg/cell. This represents

a reasonable loading level and cell density that could be used in longitudinal studies

of cellular therapy [7].

While the bulk FID relaxivities of all three sample groups satisfy the prediction

of the static dephasing regime theory (R′
2 = 10.78 ·LMD), only in the case of SPIO-

loaded cells was this prediction also satisfied for the spin-echo case. For both types of

MPIO particles, the R′
2 relaxation measured after a spin echo was significantly lower

than predicted. This indicates that these particles did not satisfy the conditions of
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the SDR for the spin-echo experiment, as outlined in section 4.1.4. Indeed, Table

4.2 summarizes the relevant properties of all three particle types and shows that,

while the FID criterion is met in all cases, only the SPIO-loaded cells also meet

the SE criterion. While data are only listed for one sample from each group, these

conclusions should remain valid for all other samples in that group due to the small

effect of changes in ζ.

0.96 μm MPIO 1.63 μm MPIO C3 cells (13 μm)
Iron concentration 20 μg/mL 30 μg/mL 8 μg/mL
Volume fraction, ζ 1.5 x 10−5 1.9 x 10−5 1.44 x 10−3

Characteristic freq, δω 8.48 x 106 s−1 3.88 x 106 s−1 2.72 x 104 s−1

Characteristic time, tc 0.097 μs 0.213 μs 0.030 ms
Diffusion time, tD 0.0384 ms 0.111 ms 16.7 ms
FID SD criterion: δωζ1/3tD 8.03 11.49 25.1
δωζ1/3tD 
 1 ? YES YES YES
FID relaxivity (Bulk) 10.68 s−1/mG 11.00 s−1/mG 10.73 s−1/mG

TEc = 2.9 · (tc · tD/R′
2)

1/3
71 μs 160 μs 4.24 ms

TE = 8ms ≈ TEc? NO NO YES
Spin-echo relaxivity (TurboSPI) 8.06 s−1/mG 7.43 s−1/mG 10.47 s−1/mG

Table 4.2: Relevant properties for representative tubes from each group of samples.
Volume fractions for MPIO samples are calculated based on iron concentration, parti-
cle mass as stated by the manufacturer, and particle mean volume. Volume fractions
for cells are based upon measured concentration of cells and the average cell size.
The characteristic frequency depends on the susceptibility of an individual perturber,
obtained by dividing the tube susceptibility by the volume fraction.

These differences in relaxation behavior between MPIO particles and SPIO-loaded

cells are primarily due to the particle size, which leads to a significantly longer diffu-

sion time (since tD varies as R2). As well, the smaller characteristic frequency δω of

the loaded cells reduces diffusive attenuation in the spin-echo case. It should be noted

that, even though the critical echo time for the cell sample listed in Table 4.2 is much

larger than that for the MPIO samples, it is still less than the nominal echo time TE.

However, static dephasing behavior is still observed, suggesting that the condition

derived above, which requires TE � TEc, might be too restrictive. In practice it may

be sufficient that TE be comparable to TEc.

The results of this study are consistent with the findings of Seevinck and colleagues

[62] in which relaxation rates of holmium microspheres were measured with GESFIDE

and GESSE, and significantly lower relaxivity was observed in the spin-echo experi-

ment. They also observed that the holmium microspheres satisfied the SDR condition
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in the FID case but not the spin-echo case, and concluded that quantification using

FID signal was more reliable. We contend that spin-echo-based quantification such

as that allowed by TurboSPI is no less reliable than FID based quantification, as

evidenced by the strong linear relationship between R′
2 and local magnetic dose in

all three sample groups; it is simply necessary to measure the reduced relaxivity

beforehand under controlled conditions.

The differences between the relaxivity of loaded cells and MPIO can also be used

to support one of the main assumptions of this work; namely, that the SPIO-loaded

C3 cells can be treated as a single magnetic perturber with a radius equal to that of

the cell. While this seems a reasonable assumption in the event that individual SPIO

particles within a cell are evenly distributed throughout the cytoplasm, it might also

be possible for particles to be sequestered into one or more endosomes, in which case

a more appropriate effective size for the perturber would be that of the endosome.

However, if this were true for the C3 cells tested in this experiment, we would antic-

ipate behavior similar to that of the MPIOs, which have physical sizes comparable

to a single endosome. Since this was not observed, our assumption of a cell-sized

perturber seems valid. This can be further explored with more advanced models of

signal relaxation.

All of the spin-echo relaxometry described in this chapter used only the decaying

portion of the time course, as shown in Figure 4.4. The significant shifting of the

echo peak (seen in Figure 4.4 and observed in all of the MPIO samples) meant that

the rising portion of the spin echo was largely outside the data acquisition window,

and the portion which remained was unsuitable for curve fitting due to non-linear

exponential behavior around the peak. While increasing the acquisition window would

permit more of the rising portion to be acquired, this would also increase the echo

time of the sequence and impede quantification of large R∗
2 samples. The non-linear

behavior would also remain, and it cannot be fitted to the existing model of relaxation

described in this chapter. The methods for dealing with this unanticipated behavior,

and the opportunities it presents, are the subject of the next chapter.



Chapter 5

Extended Analytical Description of SPIO Relaxation

The peak shifting and non-linear behavior observed by TurboSPI measurements

represent more than impediments to quantification. The model presented in the

previous chapter that describes relaxation in the static dephasing regime does not

account for these effects, which are even observed (albeit to a much smaller degree)

in the SPIO-loaded cells that satisfy both static dephasing conditions. The ability

of TurboSPI to monitor spin echo relaxation at very high temporal resolution pro-

vides an opportunity to explore these effects and gain a greater understanding of the

underlying physical mechanisms, which in turn will provide opportunities to improve

the quantification of SPIO.

Spurred by the experimental observations provided by TurboSPI, an expanded

analytical description of the MRI signal in the presence of SPIO can be developed,

which may allow additional information to be obtained from TurboSPI data. This

section will describe some of the existing theoretical models that apply outside the

static dephasing regime, outline their predictions and applicability, and develop a

related model suitable for fitting to TurboSPI data. The results of this model will

then be compared to simulations and experimental data, and their application to a

number of practical outcomes will be considered.

5.1 Relaxation Outside of the Static Dephasing Regime

Yablonskiy and Haacke’s description of relaxation in the static dephasing regime

[91] is appealing for studies of SPIO-induced relaxation because of its simple pre-

diction of a relaxivity that varies linearly with iron concentration. Its relevance to

the case of SPIO-loaded cells in an FID experiment has been well documented, both

in previous studies [5, 55] and in the current work. However, its inability to fully

describe the behavior observed in TurboSPI measurements limits its applicability to

this technique.

95
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The static dephasing model described in the previous chapter does allow for non-

linear exponential behavior near the peak of the spin echo, but only for a duration

proportional to 1/δω, which in the case of MPIO particles is on the order of 10−6 s (see

Table 4.2). The extent of non-linear behavior observed in TurboSPI measurements is

far greater, usually on the order of 10−3 s, and this extent increases with δω; it is far

less evident in the case of SPIO-loaded cells which have 1/δω ≈ 10−4 s. The static

dephasing model also provides no explicit mechanism for the peak shifting observed in

all measured samples. While T2 relaxation will lead to a spin echo that peaks earlier

in time, the T2 of the samples tested in Chapter 4 is not short enough to account for

all of the observed shift.

The static dephasing model relies on the assumption that diffusion can be ne-

glected entirely, which may not be the case even with large effective particle sizes.

This is especially true in the case of a spin echo, where dephasing effects are refocusing

and diffusion becomes the dominant mechanism of signal attenuation. Indeed, the

presence of diffusion is likely a central factor in the differences between this model’s

predictions and the observations of TurboSPI. The logical course of action is then to

consider a model which describes the MRI signal near magnetic perturbations and in

the presence of diffusion, and a number of such theoretical models have been proposed

in the literature.

5.1.1 Predicted Behavior

While an exact analytical description of relaxation behavior will obviously require

a realistic mathematical model, it is actually possible to derive the broad functional

form of some key results using only geometrical arguments. This process will yield

predictions of which variables contribute to signal decay and in what proportion.

The formulation of the static dephasing model outlined in Chapter 4 used a func-

tion f to contain all of the terms which depended on the perturber geometry, and

which plays a central role in determining the relaxation rate R′
2. This function was

defined such that

s(t) ∝
(
1− v(R)

V − v(R)
f

)N

(5.1)

If f = 0, each of the N perturbers contributes a factor of 1 to the overall signal.

For non-zero f , this contribution is reduced by the fraction of the total volume V (R)
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which does not contribute signal. This in turn depends on the volume fv(R) through-

out which signal is fully dephased [65]. f therefore represents a scaling factor that

quantifies how the perturber affects a region larger than its physical size.

From symmetry considerations we can assume this region has the same geometry

as the perturber, and define r to be its radius. For the case of spherical perturbers,

f can then be estimated as

f =
4πr3/3

4πR3/3
=

r3

R3
(5.2)

Ignoring numerical coefficients and the angular dependence, the frequency offset ex-

perienced by a diffusing proton a distance r from a perturber of radius R is

ω(r) = δω
R3

r3
(5.3)

During an FID experiment, if the particle’s position does not change significantly,

then the phase it accumulates during a time t is

φ = ω(r)t (5.4)

For the proton to be significantly dephased, such that it does not contribute to the

MRI signal, we require that the accumulated phase be on the order of 1. (We could

equivalently assume a phase of 2π; this would only add an overall scaling factor

without changing the functional form.) This means

ω(r)t ∼ 1

δω
R3

r3
t ∼ 1

δωR3t ∼ r3

Comparing this to our estimate for f gives

f ∝ δωt (5.5)

This matches the asymptotic behavior of f for large values of t, as given by equation

(4.15), verifying the usefulness of this geometrical argument.

The more interesting result is the case of a spin echo, in which the dominant effect

is not dephasing, but instead the attenuation of signal due to diffusion through local

field gradients. Around a spherical perturber these gradients are proportional to

g =
dω(r)

dr
∝ δω

R3

r4
(5.6)
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and the attenuation due to diffusion processes becomes significant under the condition

Dg2TE3 ∼ 1 [96]. Substituting, and using the dimensionless variable λ = D
R2δω

,

D

(
δω

R3

r4

)2

TE3 ∼ 1

Dδω2R6TE3 ∼ r8

λ(δωTE)3R8 ∼ r8

λ3/8(δωTE)9/8R3 ∼ r3

The predicted form of f at the peak of a spin echo is therefore

f =
r3

R3
= λ3/8(δωTE)9/8 (5.7)

Now there is a dependence on both the diffusion coefficient and the particle size

(through λ), as well as a nonlinear dependence on the echo time TE. It is antici-

pated that this functional form will reappear in any satisfactory model of spin-echo

relaxation near the static dephasing regime.

5.1.2 Overview of Alternate Models

Numerous models have been proposed which incorporate the effects of diffusion

on relaxation, but for our purposes, only a small number are of interest. Models

such as the Gaussian phase approximation of Sukstanskii and Yablonskiy [97] and

several other models [98, 99] are valid only in the motional narrowing regime, in

which diffusion is the dominant mechanism of signal loss even in the FID case. While

these have applications in the study of free SPIO particles, such systems are not well

suited to imaging with TurboSPI because of their low R′
2 : R2 ratio.

Jensen and Chandra [100] developed a model using a strong field approximation

which, if satisfied, ensures that the magnetic field gradient experienced by a diffusing

particle before its signal decays is approximately linear. This assumption leads to

a function G describing the decay of signal which, in general, must be evaluated

numerically. However, from this function a number of useful asymptotic forms can be

derived, including predictions of signal behavior during FID, spin-echo and multi-echo

experiments, for both spherical and cylindrical geometries. For example, for an FID

experiment or far from the peak of a spin echo, the signal in a system of spherical
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perturbers (ignoring the scaling factor of ρ) is

s(T ) = e−4piγχB0ζ(0.4031−0.0533i)T

= e−ζ(1.21−0.16i)δωT (5.8)

in agreement with the static dephasing model (equation (4.15)). At the peak of a

spin echo, the signal in this model is

s(T ) = e−2.2184ζ(3DTE3δω2/4R2)3/8

= e−1.99ζ(δωTE)9/8λ3/8

(5.9)

As expected from geometrical considerations, this expression is non-linear in TE

and has contributions from diffusion and particle size with the correct exponents.

However, these predictions are only valid far from the echo peak or at the echo time

t=TE; a complete form of the echo shape close to TE is not provided by this model. A

generalization of Jensen and Chandra’s original model is given in [101] which extends

the results to multi-echo sequences with non-uniform echo spacing, but still only

defines the signal at echo peaks.

A model based on a strong collision approximation has been used by Bauer and

colleagues [89, 102] to analytically describe relaxation for a wide range of diffusion

values. While significantly more complex, this model does have the advantage of

providing descriptions of the signal in the intermediate motion regime, which many

other models do not describe; a Laplace transform is used to translate static dephasing

results into other diffusion regimes. Good agreement has been shown between this

model and experimental or simulated data [103]; however, as with most other models,

only the observed spin-echo relaxation rate is predicted, not the complete time course

as would be ideal for use with TurboSPI [104].

One model which does provide a complete analytical description of the MRI signal

during a spin echo is that of Kiselev and Posse [65]. This model is valid in the slow

diffusion regime where diffusion effects are limited, though still present, and also

assumes a linear field variation in the vicinity of a diffusing particle. Asymptotic

forms derived from this model match those given by Yablonskiy and Jensen, but

include correction terms to account for the effects of diffusion during the FID. As well,

the model describes shifting of the echo peak similar to that observed in TurboSPI

measurements.
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There are two drawbacks of Kiselev’s model in the context of this work. First, it

was formulated to model signal changes in microvasculature, and as such is only valid

for systems of randomly oriented cylinders; it is not immediately applicable to the

case of SPIO-labeled cells. Second, the full time course is described as an integral over

the random distribution of perturbers, which is difficult to use in practice. However,

these limitations are not insurmountable, and otherwise this model is an excellent

candidate for exploring the relaxation behavior observed by TurboSPI.

5.2 Extension of the Slow Diffusion Model

This section will describe in more detail the slow diffusion model of Kiselev and

Posse, first described in [65], which is extended here for the first time to the case of

spherical perturbers. An approximate form is also derived for the spin-echo signal

time course which will be more suitable for fitting to experimental data than the full

analytical expression.

5.2.1 Description of the Model

In many ways the model of Kiselev and Posse is similar to that of Yablonskiy and

Haacke, but simply generalized to account for cases when diffusion is slow but not

negligible. The fundamental difference is that, instead of starting with the signal

s(t) =
1

V
ρ

∫
V0

e−iω(�r)td	r (5.10)

we require a more general form that incorporates the effects of diffusion. This can be

easily achieved by noticing that e−iω(�r)t is simply the solution to the Bloch equations

(equation (2.33)) for signal in the transverse plane and in the absence of relaxation.

To add the effects of diffusion we replace the Bloch equation with the Bloch-Torrey

equation, which has an additional term containing D [105]. If ψ represents the trans-

verse magnetization, the Bloch-Torrey equation is

dψ

dt
= D∇2ψ − iγ	r · 	Gψ

= D∇2ψ − iω(	r)ψ (5.11)

This form assumes D is isotropic; in the case of anisotropic diffusion D becomes a

tensor and the solution is more complicated.
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The solution to the Bloch-Torrey equation can be obtained by various methods,

one of which is outlined in Appendix A.3. In the case of an FID experiment it can

be shown that this solution is

ψ(	r, t) = exp

(
−iω(	r)t− 1

3
D[∇ω(r)]2t3

)
(5.12)

while the solution for a spin-echo experiment is

ψ(	r, t) = exp

(
−iω(	r)(t− TE)− 1

3
D[∇ω(r)]2t3F (TE/t)

)
(5.13)

The F function in the second term is defined as

F (z) = 1− 3

2
z2 +

3

4
z3 (5.14)

and its derivation is also discussed in Appendix A.3. This expression is valid for t

> TE/2; before this time the FID solution applies. In both cases, when D = 0 the

solution reduces to the expression used in the static dephasing model as expected.

The signal can now be written as a function of Ψ, the solution for the magnetiza-

tion in the presence of all N perturbers:

s(t) = ρ(1− ζ)

∫
Ψ(	r, t)

N∏
n

dΩn (5.15)

As before, ρ incorporates all non-relaxation effects, and (1−ζ) reflects the contribution

of protons in the volume not occupied by the perturbers. The dΩn encompasses all

of the integrations necessary to average over the position of the nth object in the

network. If the volume fraction ζ occupied by the magnetic perturbers is small, we

are justified in factoring Ψ into separate contributions due to each object,

Ψ(	r, t) =
N∏
n

ψn(	r, t) (5.16)

such that the average over the entire network is simply the product of integrals due

to a single object:

s(t) = ρ(1− ζ)
N∏
n

1

V

∫
ψn(	r, t)dΩn

= ρ(1− ζ)
N∏
n

[
1− 1

V

∫
(1− ψn(	r, t))dΩn

]
(5.17)



102

At this point we can define an f function as was done in Yablonskiy and Haacke’s

model, though in this case

f =
1

v(R)

∫
dΩ(1− ψ(	r, t)) (5.18)

But the signal equation in terms of f is exactly the same as in the static dephasing

model,

s(t) = ρ(1− ζ)

(
1− ζf

N

)N

= ρ(1− ζ)e−ζf (5.19)

As before, to determine a form for f we must use our knowledge of the system

geometry and the type of experiment (FID or spin-echo).

FID Experiment

As described in [65], to obtain f for the FID case we substitute the expression

(4.10) for the frequency shift into equation (5.12) and integrate ψ over the network

of perturbers. We will first need to compute the gradient of ω for substitution in

equation (5.12).

∇ω =
∂ω

∂r
r̂ +

1

r

∂ω

∂θ
θ̂

= −3δω
R3

r4
(3 cos2 θ − 1)r̂ − 6δω

R3

r4
cos θ sin θθ̂

= −3δω
R3

r4
((3 cos2 θ − 1)r̂ + 2 cos θ sin θθ̂) (5.20)

Squaring this expression gives

[∇ω]2 = 9δω2R
6

r8
((3 cos2 θ − 1)2 + (2 cos θ sin θ)2)

= 9δω2R
6

r8
(9 cos4 θ − 6 cos2 θ + 1 + 4 cos2 θ sin2 θ)

= 9δω2R
6

r8
(5 cos4 θ + 4 cos2 θ(cos2 θ + sin2 θ)− 6 cos2 θ + 1)

= 9δω2R
6

r8
(5 cos4 θ − 2 cos2 θ + 1) (5.21)

This can now be substituted into equation (5.12) and integrated using the proce-

dure described in [65]. However, some minor modifications are necessary due to the

change in geometry from cylinders to spheres. As in the static dephasing case we use
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the volume element r2dr sin θdθdφ to obtain

fFID =
3

4πR3

∫ π

0

dθ sin θ

∫ ∞

R

r2dr

∫ 2π

0

1− exp

(
−iδω

R3

r3
(3 cos2 θ − 1)t

−3Dδω2R
6

r8
(5 cos4 θ − 2 cos2 θ + 1)t3

)
dφ (5.22)

We will make several variable substitutions to bring this function into alignment with

the notation of Kiselev. First, the time t is replaced with the dimensionless quantity

τ = δωt. The diffusion coefficient is also modified into a dimensionless parameter,

λ =
D

R2δω
(5.23)

Finally, the variable of integration is changed from r to u = R3/r3, and r2dr becomes
−R3du
3u2 . The result is

fFID =

∫ π

0
dθ

sin θ

2

∫ 1

0

du

u2
1− exp

(
−iu(3 cos2 θ − 1)τ − 3λτ3u8/3(5 cos4 θ − 2 cos2 θ + 1)

)
(5.24)

This resembles the form of fFID in Kiselev’s original model for cylinders (equation

(25) in [65]), though it is no longer possible to express the imaginary term as a

Bessel function. It can also be seen that, in the case λ = 0 this formula becomes

equivalent to the static dephasing case given in equation (4.13), and it will have the

same asymptotic forms.

In the case τ � 1 a λ-dependent correction to the static dephasing result can be

calculated, such that

fFID =
2

5
τ 2 +

12

5
λτ 3 (5.25)

In principle a similar correction to the τ 
 1 version of f should be feasible, but the

resulting integral is more challenging and at this time has not been evaluated.

Spin-Echo Experiment

By comparing the differences between equations (5.12) and (5.13), the form of f

for the spin-echo case can be determined straightforwardly. Since these differences

involve only the presence of the function F (TE/t) in the decaying exponential and

the (t − TE) dependence of the oscillatory term, we can simply alter the resulting

terms in fFID by inspection. Introducing the dimensionless variable τE = δωTE to
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replace the echo time, we find

fSE =

∫ π

0

dθ
sin θ

2

∫ 1

0

du

u2

(
1− exp

(−iu(3 cos2 θ − 1)(τE − τ)

−3λτ 3F (τE/τ)u
8/3(5 cos4 θ − 2 cos2 θ + 1)

))
(5.26)

As in the FID case, asymptotic forms for this expression can be computed. Far

from the echo peak, t 
 TE and F → 1, which means that the forms computed in

the FID case will be recovered. The other case of interest is t=TE (or equivalently,

τ = τE), in which case the oscillatory exponential term vanishes and the integral is

simplified.

Though not of significant practical use, the value of f at τ = τE with τE � 1 can

be found to be

fSE =

∫ π

0

dθ
sin θ

2

∫ 1

0

du

u2
1− exp

(
−3

4
λτ 3Eu

8/3(5 cos4 θ − 2 cos2 θ + 1)

)

=
1

2

∫ 1

−1

dU

∫ 1

0

du

u2

(
3

4
λτ 3Eu

8/3(5U4 − 2U2 + 1)

)

=
1

2

∫ 1

−1

9

20
λτ 3E(5U

4 − 2U2 + 1)dU

=
9

20
λτ 3E(1−

2

3
+ 1)

=
3

5
λτ 3E (5.27)

which, as in the case of the cylinder model [65] has a form similar to the correction

on fFID but differs by a factor of F (1) = 1
4
.

Of more interest is the form for fSE at τ = τE when τE 
 1, which is generally

the case for SPIO particles imaged at most experimentally relevant echo times. To

evaluate this integral we make the substitution U = cos θ as before, and also v =

uτ
9/8
E , such that τ 3Eu

8/3 = v8/3. This substitution is suggested by the geometrical

considerations outlined in section 5.1.1.

fSE(τE) =
1

2

∫ 1

−1

dx

∫ ∞

0

τ
9/8
E

dv

v2
1− exp

(
−3

4
λv8/3(5x4 − 2x2 + 1)

)
(5.28)

The upper limit of the integral over v has been extended to infinity to assist in

evaluation; if desired for completeness, a correction term to account for this can be

computed, which is of order τ
1/8
E .
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Though it may appear that this integral diverges, it can be evaluated by defining

the integral

A =

∫ ∞

0

dvv−2+εe−cv8/3 (5.29)

such that substituting ε = 0, c = 3
4
λ(5x4 − 2x2 + 1) will recover the second term in

the equation above, while ε = 0, c = 0 gives the first term. Using the definition of the

gamma function,

Γ(z) =

∫ ∞

0

tz−1e−tdt (5.30)

we can determine a form for A in terms of c and ε by using the substitution t = cv8/3

and dt = 8
3
cv5/3dv. Then dv

v2+ε =
3
8
dtc3/8+3ε/8t−11/8+3ε/8, and

A =

∫ ∞

0

dvv−2+εe−cv8/3

=
3

8
c3/8+3ε/8

∫ ∞

0

t−11/8+3ε/8e−tdt

=
3

8
c3/8+3ε/8Γ(−3/8 + 3ε/8)

= c3/8+3ε/8Γ(5/8 + 3ε/8) (5.31)

Here we have also made use of the property Γ(z + 1) = zΓ(z). Setting ε = 0 and

substituting for c,

fSE(τE) =
1

2
τ
9/8
E Γ(5/8)(

3

4
λ)3/8

∫ 1

−1

(5x4 − 2x2 + 1)3/8dx (5.32)

The integral over x can be evaluated numerically and yields a result of 2.162. Gath-

ering coefficients,

fSE(τE) = 1.39τ
9/8
E λ3/8 (5.33)

This has the functional form predicted by geometrical argument in section 5.1.1, and

also agrees with the form given by Jensen and Chandra [100] with a slightly different

numerical coefficient.

5.2.2 Approximate Forms

The complete expression for the evolution of the signal during the spin echo (equa-

tion (5.26)) is valuable for comparison with simulated and experimental data, as will

be described in the next section. However, for practical purposes a simpler expres-

sion is required that can be easily fitted to experimental data, in order to extract
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estimates of key parameters such as δω and the volume fraction ζ. While regions far

from the echo peak can be fitted by the asymptotic form given in equation (4.15), an

approximate form that remains valid near the peak is also desirable.

The most straightforward way to approximate a complex function like fSE is with

a Taylor series,

f(τ) ≈ f(τ0) +
df

dτ
|τ=t0(τ − τ0) +

1

2

d2f

dτ 2
|τ=τ0(τ − τ0)

2 + ... (5.34)

with the echo time τE a logical choice for the point τ0 about which to expand the

function. The first term in this Taylor series is, indeed, the expression just derived

for fSE(τE). Further terms in the expansion can be obtained by differentiation of

equation (5.26). Since neither integral is time-dependent, this involves differentiating

the integrand and then evaluating the resulting integral, which in many cases is similar

to the form A defined in the previous section.

For example, the linear-order Taylor series term is found by computing

dfSE

dτ
=

d

dτ

∫ π

0

dθ
sin θ

2

∫ 1

0

du

u2

(
1− exp

(−iu(3 cos2 θ − 1)(τE − τ)

−3λ(τ3 − 3

2
τ2Eτ +

3

4
τ3E)u

8/3(5 cos4 θ − 2 cos2 θ + 1)

))

=

∫ π

0

dθ
sin θ

2

∫ 1

0

du

u2

(
3λ(3τ2 − 3

2
τ2E)u

8/3(5 cos4 θ − 2 cos2 θ + 1) + iu(3 cos2 θ − 1)(τE − τ)

)
·

exp

(
−iu(3 cos2 θ − 1)(τE − τ)− 3λ(τ3 − 3

2
τ2Eτ +

3

4
τ3E)u

8/3(5 cos4 θ − 2 cos2 θ + 1)

)

Setting τ = τE and taking only the real part of the resulting expression yields

dfSE

dτ
=

∫ π

0
dθ

sin θ

2

∫ 1

0

du

u2

(
9

2
λτ2Eu

8/3(5 cos4 θ − 2 cos2 θ + 1)

)
·

exp

(
−3

4
λτ3Eu

8/3(5 cos4 θ − 2 cos2 θ + 1)

)

=
1

2

∫ 1

−1
dx

∫ ∞

0
dv

(
9

2
λτ

1/8
E v2/3(5x4 − 2x2 + 1)

)
exp

(
−3

4
λv8/3(5x4 − 2x2 + 1)

)

This integral is of the same form as equation (5.29), and can be solved by a similar

method, or with a computer algebra system. The final result is

dfSE

dτ
|τ=τE = 3.132λ3/8τ

1/8
E (5.35)

Further terms can be computed in a similar manner, though these calculations become

increasingly complex. For our purposes we shall stop at the second-order Taylor series,

fSE(τ) ≈ 1.39τ
9/8
E λ3/8+3.132λ3/8τ

1/8
E (τ−τE)+(0.3915λ3/8τ

−7/8
E +0.326λ−3/8τ

−9/8
E )(τ−τE)

2

(5.36)
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Figure 5.1 shows that this series expansion is a fair approximation to fSE near the

peak, for a number of different choices of parameters (listed in Table 5.1). In all

cases where a “full” fSE is shown, it is obtained by numerically integrating equation

(5.26) in Matlab. The accuracy of the Taylor expansion will eventually degrade away

from τE, but as it does the linear asymptotic form (equation (4.13)) becomes valid,

meaning that the full spin-echo time course can now be modeled in some way.

Figure 5.1: Comparison of the full (numerically integrated, blue) and approximate
forms (red) for fSE for four representative sets of parameters, which are listed in Table
5.1. Red dashed lines are the asymptotic form (equation (4.13)), while the red solid
line is the series expansion (equation (5.36)). (a) Small, strongly magnetized particles
with slow diffusion. (b) Large, strongly magnetized particles with fast diffusion. (c)
Small, weakly magnetized particles with slow diffusion. (d) Large, weakly magnetized
particles with fast diffusion.

In cases near the static dephasing regime (top two panels of Figure 5.1) the agree-

ment is excellent throughout the time course. For cases with more prominent peak

shifting the fit to the peak is somewhat less accurate, but far from the echo peak all

time courses converge to the asymptotic form predicted by static dephasing theory.
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D (μm2/ms) R (μm) δω (s−1) λ
Plot 5.1(a) 0.5 1 8.0 x 106 6.23 x 10−5

Plot 5.1(b) 2.0 4 8.0 x 106 1.56 x 10−5

Plot 5.1(c) 0.5 1 2.7 x 105 1.9 x 10−3

Plot 5.1(d) 2.0 7 2.7 x 104 1.5 x 10−3

Table 5.1: Model parameters used to generate plots in Figures 5.1, 5.4 and 5.5.

Modification for Peak Shifting

Based on the Taylor expansion given in equation (5.36) it is straightforward to

calculate the position of the echo peak. In the absence of T2 relaxation, this is simply

the minimum of fSE, which occurs at

dfSE

dτ
= 3.132λ3/8τ

1/8
E + 2(0.3915λ3/8τ

−7/8
E + 0.326λ−3/8τ

−9/8
E )(τ − τE) = 0 (5.37)

This gives a peak shift Δτ = τE − τ of

Δτ =
3.132

0.783τ−1
E + 0.652λ−3/4τ

−5/4
E

(5.38)

This expression has the desired property of Δτ → 0 at λ = 0.

To verify this expression, the actual minimum of the full, numerically integrated

fSE was calculated for a range of parameters using the fminsearch function in Mat-

lab, and compared with equation (5.38). Figure 5.2 shows a plot of the predicted

versus calculated peak shift, indicating that this expression is not suitable for most

of the parameters tested. This is likely due to the contribution of higher-order Taylor

series terms that were neglected.

To generate a more suitable form for predicting the peak shift, a model of the

form

Δτ =
a

bτ−1
E + cλ−3/4τ

−5/4
E

(5.39)

was fitted to the peak shifts calculated from each combination of δω and TE, and the

parameters a, b and c were obtained by a non-linear least squares optimization. The

values obtained from this process (expressed as mean ± standard deviation), were

a = 3.125± 0.010

b = 10.382± 0.094

c = 0.654± 0.002
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Figure 5.2: Comparison of peak shifts predicted by the Taylor series form for a
particular set of parameters (x axis) and the peak shift calculated by minimizing the
full fSE (y axis). All calculated peak shifts are smaller than predicted, in some cases
by factors of 5 or more.

Figure 5.3: Comparison of peak shifts predicted by the empirical model (x axis) and
the peak shift found by minimizing the full fSE (y axis).
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As seen in Figure 5.3, this fitted expression provides a far better fit to the calcu-

lated peak shifts. Interestingly, the values a and c are in excellent agreement with

the prediction based on the Taylor series, but b differs by more than an order of

magnitude. No errors were found in the Taylor series expansion of fSE outlined in

the previous section, so the reason for this discrepancy is not clear. Nevertheless, this

suggests that the Taylor series expansion of fSE should be

fSE(τ) ≈ 1.39τ
9/8
E λ3/8+3.132λ3/8τ

1/8
E (τ−τE)+(5.191λ3/8τ

−7/8
E +0.326λ−3/8τ

−9/8
E )(τ−τE)

2

(5.40)

Re-plotting Figure 5.1 with this new approximation used around the peak also results

in slightly increased performance in cases further from the static dephasing regime,

as shown in Figure 5.4. We therefore propose the use of this approximation in cases

where use of the full model is difficult, such as curve fitting to experimental data.

Figure 5.4: Comparison of the full (blue) and revised approximate forms (red) for
fSE. Parameters are the same as in Figure 5.1. Little change is observed in the near-
static dephasing cases (top panels), but the modified approximation does perform
slightly better in cases further from the SDR (bottom panels).
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For completeness, we also note that in the case where R2 relaxation cannot be

neglected, the expression for the peak shift must be modified to include R2 using

ds(t)

dt
= s(t)(−R2 − ζ

dfSE

dt
) = 0

dfSE

dt
= −R2

ζ

dfSE

dτ
= − R2

ζδω
(5.41)

which gives a peak shift of

Δτ =
3.132 +R2ζ

−1λ−3/8τ
−1/8
E

0.783τ−1
E + 0.652λ−3/4τ

−5/4
E

(5.42)

5.3 Validation of the Model

If the model developed in the previous section is to be of practical use, its accuracy

and applicability must be tested against experimental data. As we have demonstrated,

TurboSPI is able to provide such data at high temporal resolution, though in practice

obtaining this data over a wide range of parameters (such as particle radius and

susceptibility, volume fraction and diffusion) is challenging. MPIO particles with

arbitrary properties are not available and the iron content of SPIO-loaded cells can

be difficult to control. We will therefore supplement the available experimental data

with simulated relaxation curves.

5.3.1 Monte Carlo Simulations

The use of computer simulations is a valuable tool for characterizing the behavior

of systems that would otherwise remain inscrutable due to their complexity or the

difficulty associated with observing them experimentally. Systems containing random

processes such as diffusion, or which involve random distributions and orientations of

particles, are not easily modeled by deterministic algorithms, but can be simulated

by Monte Carlo methods, which involve repeated random sampling of an otherwise

deterministic system.

A wide variety of Monte Carlo studies have been performed to examine relaxation

behavior around magnetic perturbers. Some early examples are that of Hardy and
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Henkelman [106], who attempted to derive an empirical description of transverse re-

laxation near iron oxide particles, as did Fisel [107] for the case of susceptibility in

brain tissue. Kennan [108] and Muller [90] performed further simulations on cylindri-

cal and spherical geometries respectively, which were later reproduced and augmented

with experimental data by Boxerman, Weisskoff and colleagues [88, 109]. More re-

cently, Gillis [110] explored relaxation in the case of multiple-echo sequences, and

Matsumoto [111] simulated the effects of particle clustering.

All of these studies share common elements in terms of how the simulation is car-

ried out, and most of these elements are reproduced in the current set of simulations.

Simulation Details

To simulate the MRI signal in the presence of a network of spherical perturbers,

a number of impermeable spheres of radius R and susceptibility Δχ are distributed

randomly within a cubical universe of side length L, filling it to a specified volume

fraction ζ. The side length L is chosen based on the sphere radius and the mean

diffusion path length [109], as well as a scaling factor based on ζ to ensure that the

number of spheres generated is sufficiently large (typically at least 1000). Spheres

are not allowed to overlap. At each iteration of the simulation, a single proton is

placed within the center of the cube; if the network of perturbers is random, this is

equivalent to placing the proton at a random position within the cube.

Diffusion is simulated by computing a random path for each particle to follow, with

a step every Δt = 100μs. Each step is a randomly oriented vector in three dimensions,

with magnitude
√
6DΔt and direction chosen from a uniform distribution. Steps

which would move the proton inside a sphere are disallowed, and periodic boundary

conditions are enforced. A total of 5 x 104 random walks are generated for each

simulation, with a new network of spheres generated every 100 iterations.

At each time step, the magnetic field at the proton’s position is calculated by

superposing the fields from all of the spheres inside the cube. The resulting change

in the phase of the proton’s magnetization is tracked throughout the random walk,

with a phase reversal applied at time TE/2 to simulate a 180 degree pulse if desired.

For the purposes of these simulations, both T1 and T2 decay are neglected. The sum

of all N proton magnetizations becomes the simulated MRI signal.
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These simulations were performed on a Dell PowerEdge 2900 server (8 Intel Xeon

3.16 GHz CPUs, 50 GB RAM) in Matlab, using the Distributed Computing Toolbox

to simulate multiple protons in parallel. The total simulation time for each set of

parameters depends on the number of iterations, particle radius and volume fraction

(which affect the number of perturbers and the universe size L) but is typically

between 3 and 10 minutes.

Comparison with Analytical Model

Monte Carlo simulations were run for a variety of combinations of the parameters

R, D, δω and ζ, and the MRI signal generated by these simulations was compared

Figure 5.5: Comparison of the analytical signal (Ne−ζf , blue) with the signal gener-
ated by Monte Carlo simulation (black). Parameters are the same as in Figure 5.1,
with the following volume fractions used for each simulation: (a) ζ = 1 x 10−5, (b,c)
ζ = 5 x 10−5, (d) ζ = 5 x 10−3. Agreement is excellent throughout the time course in
the two cases close to the SDR (top panels). Further from the SDR (bottom panels),
the curves diverge somewhat after the echo peak.
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with the analytical result obtained by numerically integrating equation (5.26) with

appropriate parameters and then calculating the signal s = Ne−ζf , where N was the

number of particles in the simulation. Representative examples of these signals are

given in Figure 5.5, and show good overall agreement.

In the case of systems further from the static dephasing regime, such as those

illustrated in Figure 5.5(c,d), the simulated and calculated signals diverge after the

echo peak, to a degree depending primarily on the degree of diffusion in the system.

It should be noted that, in either case, the calculated and simulated signals coincide

at t=TE=8ms, and this is generally true for all combinations of parameters tested.

5.3.2 Experimental Data

TurboSPI time courses obtained using the methods described in the previous chap-

ter were also compared with both the calculated signal predicted by the slow diffusion

model, and the signal generated by the Monte Carlo simulations. Comparisons were

made with samples from each group described in section 4.2.1: 0.96 μm MPIO, 1.63

μm MPIO, and SPIO-labeled C3 cells.

In each case, for a valid comparison with experimental data, the parameters input

to the model and Monte Carlo simulations must be representative of the acquired data.

Fortunately, most of these parameters are already known or can be calculated easily.

For loaded cells, the cell density and radius (and therefore the volume fraction) can be

obtained by cell counting techniques, which are often performed as a matter of course

during the preparation of cultures. For particles such as MPIO, the mean radius and

particle density are typically provided by the manufacturer, and the volume fraction

can be therefore calculated based on the concentration used to prepare each sample.

In both cases the susceptibility of each perturber can be computed from the sample

susceptibility once the volume fraction is known.

The only variable not known beforehand was the diffusion coefficient of the sam-

ples, which must be obtained experimentally. Since all samples of a particular par-

ticle size are prepared at the same time using the same gelatin suspension, it can

be assumed that all samples within a group will have the same diffusion coefficient.

Since the presence of cells or MPIO should not significantly affect diffusion, a sin-

gle measurement performed on a reference sample without any SPIO should suffice.
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The diffusion coefficient can then be obtained with an MRI measurement based on

the Stejskal-Tanner pulsed gradient experiment [112]. Such measurements were per-

formed, and yielded an average diffusion coefficient of 2.02 ± 0.31 μm2/ms which was

used as input to all calculations.

Data were compared for several samples in each group. Once analytical forms

and simulations were obtained for each set of parameters, T2 decay was added to

the resulting signals, with T2 relaxation times for each sample measured as described

in Section 4.2.2. The experimental data was scaled so that its intensity at t=TE

matched the analytical signal at t=TE, and all three results were compared. The

results of this comparison for representative samples are shown in Figure 5.6, with

parameters used to generate the model and simulation in Table 5.2.

D (μm2/ms) R (μm) δω (s−1) λ ζ R2 (s−1)
Plot 5.6(a) 2.0 0.5 8.01 x 106 4.98 x 10−4 5 x 10−5 46
Plot 5.6(b) 2.0 0.8 4.03 x 106 2.49 x 10−4 5 x 10−5 23
Plot 5.6(c) 2.0 7 2.67 x 105 7.6 x 10−5 1 x 10−3 17

Table 5.2: Parameters used to generate model and simulated signals for comparison
to experimental data, as plotted in Figure 5.6.

In all cases the experimental data agree well with the Monte Carlo simulations,

and follow the same trends observed in the previous section; near the static dephasing

regime there is good agreement with the analytical model, while the data and the

model prediction do tend to diverge slightly as the effect of diffusion in the system

increases.

5.4 Applications

With the accuracy of the model validated against simulations and experimental

data, we can now consider some of the ways in which this improved description of

signal relaxation could be applied for practical benefit.

5.4.1 Improved Quantification

In the static dephasing regime, relaxation behavior in the presence of magnetic

perturbers depends only on four parameters: the characteristic frequency of the per-

turber δω (which is proportional to the susceptibility Δχ), the volume fraction ζ
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Figure 5.6: Comparison of the analytical (blue) and simulated (black) signal with ex-
perimental data (green), acquired using TurboSPI. Representative samples are shown,
with parameters listed in Table 5.2. (a) Tube of 0.96 μm MPIO particles, (b) Tube
of 1.63 μm MPIO particles, (c) Tube of SPIO-loaded C3 cells.
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occupied by the perturbers, the background R2 relaxation rate, and the scaling factor

ρ which reflects the overall signal intensity. It is not possible to obtain indepen-

dent estimates of all of these parameters with an FID experiment, since the effective

relaxation rate R∗
2 cannot be separated into its constituents R2 and R′

2 ∝ ζ · δω.
Experiments which sample both the rise and fall of the spin echo (or the FID and

the rising half of the spin echo) provide the opportunity to separate R2 from R′
2 by

comparing the rephasing and dephasing relaxation rates [59]. Also, as demonstrated

by Yablonskiy [92], the deviation from linear exponential behavior at the peak of the

echo allows estimation of ζ by comparing the actual signal intensity at the echo peak

to that extrapolated from the R∗
2 fit. As noted in reference to equation (4.16), the

presence of an eζ term in the linear-exponential region allows the volume fraction to

be computed as

ζ = log
Sextrapolated(TE)

S(TE)
(5.43)

Because this approach assumes the signal is symmetric about the echo time TE, is

it not directly applicable to the analytical model developed in this chapter. However,

it is possible to fit the Taylor-series approximation (equation (5.40)) to the echo peak

and the asymptotic form (equation (4.15)) to the rising and falling portions. This

would enable estimation of all of the parameters included in the model, including the

diffusion time R2/D contained within the parameter λ.

There would be clear benefits to obtaining this additional information in appli-

cations involving SPIO-labeled cells. While R∗
2 relaxometry can be used to quantify

the total iron load of a voxel, in the case of a population of labeled cells which is

dividing and distributing the SPIO among daughter cells, this quantity will remain

constant (assuming no migration of cells or loss of SPIO) and is therefore not use-

ful for monitoring the behavior of cells over time. However, accurate and separate

estimates of the number of cells and the loading level of each cell, obtained through

ζ and δω respectively, would allow cellular propagation to be observed more quan-

titatively. Estimation of the background R2 could also be incorporated to further

improve quantification accuracy.

However, early attempts to perform such quantification using simulated and ex-

perimental data have been unsuccessful. While a non-linear least-squares curve fitting

routine (lsqcurvefit in Matlab) can be used to fit the Taylor series (equation (5.40))
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and the asymptotic form (equation (4.15)) to the entire time course, the resulting pa-

rameter estimates are strongly dependent on the initial conditions supplied to the

fitting routine, which will not be known a priori in experimental applications. This

reflects the difficulty in correctly separating the contributions of ζ, R2/D and δω,

even in the ideal case of simulated data.

In particular, the linear asymptotic form of the time course depends on ζ ·δω while

the quadratic approximation near the peak depends on ζδω9/8λ3/8. Because of the

similarity of these forms it is possible for changes in δω to be mistakenly assigned to

λ, such that ζ and δω remain hard to separate. More sophisticated approaches than

simple curve fitting may be required if reliable parameter estimation is to become

practically feasible. For example, it may be possible to use Yablonskiy’s method

described above to provide a rough estimate of ζ which can then be refined with

curve fitting.

5.4.2 Robustness to Field Inhomogeneity

To this point, we have always assumed that the external magnetic field, or at

least the magnetic field experienced by a particular imaging voxel, is homogeneous.

Under most experimental conditions this is not the case, due to imperfect hardware

or gradients induced by anatomical structures, and the observed signal will be af-

fected by these inhomogeneities. These can be generally regarded as macroscopic

field variations, as compared with the mesoscopic fields around the perturbers, or the

microscopic fields which lead to background R2 relaxation.

Assuming that the gradient across an imaging voxel is a constant, G, such that

the range of frequencies across the width of the voxel Δx is

Δω = γGΔx (5.44)

then it can be shown [92] that the signal will be modulated by a function

F (t) =
sin(Δωt/2)

Δωt/2
(5.45)

Examples of this modulation applied to Monte Carlo data are shown in Figure 5.7.

These were generated by adding a field offset based on the particle’s position at each

step of the random walk, to simulate the presence of an applied gradient centered on
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the imaging voxel. Note that the modulation shifts the echo peak back towards the

nominal echo time, and that the relaxation behavior far from the peak is no longer

linear-exponential.

Figure 5.7: Examples of modulation introduced by macroscopic field gradients. Data
are from a Monte Carlo simulation with TE = 8ms, D = 2 μm2/ms, R = 2 μm, δω
= 4 x 106 s−1, ζ = 5 x 10−5. Black line: No external gradient. Blue line: External
gradient of 0.5 G/cm across the imaging voxel. Red line: External gradient of 1
G/cm. (a) Computed signal intensity. (b) Equivalent f function, obtained from the
logarithm of signal intensity.

Such a modulation can be added to the model used for fitting experimental data,

to attempt to separate the effects of macroscopic inhomogeneities from the mesoscopic

effects of interest. As long as the argument Δωt is small, F (t) can be approximated

by a quadratic exponential,

F (t) ≈ eΔω2t2/24 (5.46)

A basic example showing demodulation of Monte Carlo data using such an ap-

proximation is presented in Figure 5.8. Fits to the rising and falling portions of the

spin echo are computed, and the quadratic term of the fit is used to correct for the

modulation, leading to a curve that better matches the simulation performed without

macroscopic inhomogeneity. Furthermore, the coefficient of the quadratic term can

be used, in conjunction with equations (5.46) and (5.44), to estimate the macroscopic

gradient. In this example, the computed gradient is 0.286 G/cm, which compares

well with the actual simulated gradient value of 0.25 G/cm.
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Figure 5.8: Removal of modulation by macroscopic gradients, using data from a Monte
Carlo simulation with parameters matching those of Figure 5.7. Blue line: Signal from
simulation with no macroscopic gradient. Black line: Signal from simulation with
external gradient of 0.25 G/cm. Green line: Signal with effects of external gradient
demodulated.

This extra term to account for macroscopic inhomogeneity could easily be added

to the model described in this section. TurboSPI data should be particularly well-

suited to fitting with such an expanded model due to the high number and density of

time samples. This has yet to be tested rigorously, but should become possible once

a suitable procedure is devised for reliably fitting the basic model to experimental

data. One potential challenge will be the similarity of the modulation term and the

Taylor expansion near the peak, which are both quadratic in t. However, as long as

the acquisition window is wide enough, non-linear behavior away from the echo peak

should be evident and distinguishable from the linear effects of relaxation.

5.5 Summary

In this chapter we have developed an analytical description of MRI signal behavior

throughout an FID or a spin echo, in the presence of spherical magnetic perturbers

and slow but non-negligible diffusion. The analytical model demonstrates excellent

agreement with both Monte Carlo simulations and experimentally acquired data.

This model, and its approximate forms, may allow the full TurboSPI time course to

be employed for more accurate quantification of systems of SPIO-labeled cells.



Chapter 6

Acceleration of TurboSPI

To this point, the use of TurboSPI for quantification of SPIO has only been

demonstrated in vitro, and its other applications described in the literature [63, 113]

all involve the imaging of non-living systems. In order to be of practical use for the

detection and quantification of labeled cells, TurboSPI acquisitions must be obtained

in vivo. This is challenging for a variety of reasons, the most important of which

is TurboSPI’s relatively slow imaging speed, which must be improved significantly if

3D images are to be acquired of animals under anesthesia. This section will explain

how TurboSPI can be accelerated to the extent that it can successfully image animal

models in vivo.

6.1 Theory - MRI with Compressed Sensing

The speed at which any MR image can be acquired depends on a variety of factors,

but is ultimately limited by the fact that enough data must be collected in k-space

to faithfully represent the object being imaged. Increases in acquisition speed can be

achieved by omitting portions of k-space, but this always comes at a cost in terms

of image resolution or quality, as measured by the level of artifact or by the signal-

to-noise ratio (SNR). For example, omitting the corners of k-space reduces image

resolution, since some high spatial frequencies are not sampled. Sampling k-space

asymmetrically and reconstructing the remainder using conjugate symmetry [79] in-

creases the noise level of the image since there are fewer independent measurements.

Instead of changing the extent of coverage in k-space, it is possible to reduce the

density of sampling (i.e. increasing the step size Δk), but as discussed in Chapter 2,

this leads to aliasing artifacts in which multiple copies of the image overlap.

Over the past decade a number of techniques [114, 115, 116] have been proposed

for recovering un-aliased images from such undersampled datasets by using what has

come to be known as parallel imaging. A full discussion of parallel imaging is beyond

121
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the scope of this work, since the equipment available did not permit its application

to TurboSPI. As a brief summary, an object is imaged using an array of RF receiver

coils, each of which is sensitive over a different portion of the FOV. Instead of simply

combining the resulting images, which would still contain aliasing, the different spatial

sensitivities of the coils allow un-aliased images to be reconstructed, with the specific

procedure varying from one imaging method to another. In theory the image can be

undersampled by a factor equal to the number of coils in the array, though in practice

this optimal undersampling is difficult to achieve even with a suitably constructed RF

coil array. In the absence of such an array, other approaches must be considered.

Rather than uniformly undersampling k-space, we can instead consider the case of

random undersampling. This will still impact the quality of the resulting image, but

instead of coherent aliasing, the resulting artifacts will be incoherent and noise-like,

as shown in Figure 6.1. Recent advances in signal processing [117] have demonstrated

that, given certain assumptions, the original un-aliased signal can be recovered from

such randomly undersampled data. This technique is known as compressed sensing,

and its application to MRI [118] is a topic that has generated considerable inter-

est, since it allows significant acceleration of MRI acquisitions without the need for

specialized hardware, and without corresponding sacrifices in image quality.

Three conditions must be met in order to perform compressed sensing on an MRI

dataset. First, the data must be sparse or compressible, meaning that only a small

fraction of the total number of voxels have signal which differs significantly from zero.

This sparsity can be in the image domain (as in MR angiography where only blood

vessels appear bright [119]) or in some other transform domain (for example, the

majority of medical images are made sparse by a wavelet transform or discrete cosine

transform [118]). The theory of compressed sensing states that the number of samples

required to properly reconstruct such data can be far less than the Nyquist criterion

would normally allow, assuming the underlying data is sufficiently sparse [117].

The second requirement for compressed sensing is that k-space must be under-

sampled randomly, such that the resulting point spread function creates incoherent

aliasing artifacts in whichever domain sparsifies the image. In practice the undersam-

pling need not be uniformly random; variable-density undersampling has advantages

as well, which will be discussed shortly. The third requirement is that the data
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Figure 6.1: If the k-space representation of an MRI image (left) is randomly under-
sampled, the result is incoherent artifacts in the corresponding image (right). In this
example, one-third of the total k-space is sampled.

must be reconstructed with a non-linear optimization that enforces sparsity and data

consistency. The resulting recovery of aliased data is illustrated in Figure 6.2.

More rigorously, the problem we wish to solve can can be expressed mathemati-

cally in the form

min||Ψx||1 such that ||Fu[x]− y||2 < ε (6.1)

where x is the reconstructed image, Ψ is the sparsifying transform, y is the acquired

k-space data and Fu is the Fourier transform operator followed by undersampling.

||·||1 denotes the L1 norm, the sum of the absolute values of each element, while ||·||2 is
the L2 norm, the sum of their squares. This has been shown [117] to promote sparsity

of the solution while ensuring that the result is still consistent with the acquired data,

to within the noise level ε.

A variety of algorithms can be used to solve this problem, such as Orthogonal

Matching Pursuit [120] and steepest descent [121]. Of particular interest for MRI

applications is SparseMRI, a free Matlab toolbox used in [118] and elsewhere, which

solves equation (6.1) with a conjugate gradient descent algorithm. Extra terms can
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Figure 6.2: In this conceptual description of compressed sensing, a sparse signal (1) is
undersampled either randomly or uniformly (2). In the case of uniform undersampling
the aliased copies have intensities equal to the true signal and cannot be distinguished
(3a), but random undersampling leads to incoherent artifacts (3). These artifacts
obscure some of the signal, but a thresholding operation (4) recovers the dominant
components (5). Knowledge of the sampling pattern allows the incoherent artifacts
generated by the recovered components to be iteratively calculated (6) and subtracted
from the data, allowing more components to be recovered (7). Figure from [118].

be added to equation (6.1) to provide further constraints on the reconstruction, and

potentially improve the quality of the resulting image. For example, a total variation

(TV) penalty can be added [118], which reduces noise by selecting images which are

sparse under a finite-difference transform in addition to the sparsifying transform Ψ.

The L1-SPIRiT algorithm [122] combines compressed sensing with parallel imaging

and includes a constraint based on calibration data acquired by the RF coil array.

The use of prior information as an additional constraint has also been explored.

If the geometry of the desired object is known beforehand, only those solutions to

equation (6.1) which match that geometry need to be considered, i.e. the difference

between the reconstruction and the prior information should be sparse. This is par-

ticularly useful when a series of images are acquired to study dynamic systems, as in

functional MRI, since compressed sensing can be used to accelerate image acquisition

and improve the temporal resolution [123].

Such prior information can be a static reference image acquired before the onset

of the dynamic process [124] or a composite image made up of the data acquired

at all time points [125, 126, 127]. In the first case, the prior information can also

be used to prescribe an optimal undersampling pattern [128], while in the second

case, no additional scans are needed if the undersampling pattern is changed for each
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acquisition in the time series. Another use of prior information is to sort the image

voxels in order of intensity, greatly increasing the sparsity under certain transforms

[129, 130] by minimizing the differences between neighboring voxels.

6.2 Compressed Sensing with TurboSPI - Methods

In its original implementation, TurboSPI is too slow for most in vivo applications

because of the use of pure 3D phase encoding. However, for this same reason, Tur-

boSPI is particularly well suited to acceleration by compressed sensing. Frequency-

encoded sequences can be undersampled in at most two spatial dimensions, since

complete lines of k-space are acquired in the frequency-encode direction. A purely

phase-encoded sequence like TurboSPI can be undersampled in all three dimensions,

increasing the incoherence of the resulting aliasing artifacts and improving the quality

of the resulting reconstruction [118].

It has been shown that compressed sensing can be favorably applied to 19F Chem-

ical Shift Imaging in vivo [121] and to the quantitative dynamic imaging of moisture

content with SPI [124]. Both studies demonstrate the acquisition of information along

a fourth dimension, either spectral (peaks corresponding to different 19F markers) or

temporal (changes in moisture content over time), which remains comparable to that

acquired by conventional acquisitions. We shall show in this section that TurboSPI

can be similarly accelerated with compressed sensing, and that TurboSPI presents a

unique opportunity to acquire prior information, increasing the maximum accelera-

tion factor that can be achieved.

6.2.1 Reconstruction with Prior Information

Unlike many other kinds of time-resolved acquisitions, TurboSPI does not acquire

individual time points with separate acquisitions, but obtains all of the temporal

information for a single location at once. As a result, it is not possible to generate

prior information retrospectively by combining a series of differently undersampled

time points, as reported in [125] and elsewhere. We must instead use a separate

acquisition to provide prior information, similar to that described in [124]. In that

study the prior information was generated using a scan of the same type as the

subsequent accelerated scans, which was permissible because the dynamic process
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being observed (water ingress into a material) had not been initiated, and faster

imaging was unnecessary. For TurboSPI this approach is also unfeasible, and a slightly

different approach must be taken to obtain a suitable image.

TurboSPI acquires temporal information at each pixel because of the lack of read-

out gradient. If a readout gradient is introduced to the sequence but all other pa-

rameters are unchanged, as shown in Figure 6.3, the sequence becomes identical to

the typical Fast Spin-Echo (FSE) sequence used for rapid T2-weighted imaging. A

single image is produced whose contrast is determined by the signal at t=TE (see

Figure 6.4), but which is obtained in a fraction of the time needed to acquire the full

TurboSPI dataset. For example, to acquire a complete 128x128x16 TurboSPI dataset

with ETL = 8 and TR = 250 ms requires 136 minutes; to acquire an FSE image with

the same parameters takes just over 1 minute. The refocusing pulse phase must also

be recalibrated to maximize image quality, since the presence of the readout gradient

will affect the optimal value, but this requires little extra time. This provides a means

of quickly obtaining information about the sample geometry, which can be used both

to prescribe an undersampling pattern and to constrain the reconstruction.

Figure 6.3: TurboSPI pulse sequence with a readout gradient added (red), effectively
converting it into a Fast Spin-Echo sequence with all other parameters identical.

Clearly a single FSE image cannot provide an accurate representation of the entire

TurboSPI image series; as we have seen, the contrast changes significantly throughout

the rise and fall of the spin echo. However, the FSE image will match the TurboSPI
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Figure 6.4: Comparison of (a) a TurboSPI image from t=TE and (b) the FSE im-
age with matched parameters. The sample is a group of five MPIO samples in the
cylindrical phantom (see Chapter 3).

image contrast at one critical point in the time course - the echo time, t=TE. Since

the spacing between time points is so small (typically tens of microseconds), each

image should be similar to those immediately adjacent to it. Therefore, we can use

the FSE image to provide prior information for the reconstruction of the TurboSPI

image at t=TE, then use that image to assist in the reconstruction of the adjacent

images. Each image reconstructed can be used to constrain or guide the one next to

it, until the entire time course is processed. This is illustrated in Figure 6.5.

There are many ways to make use of the available prior information (or guide

image) for a particular TurboSPI image, regardless of whether it is the FSE image or

a previously reconstructed time point. The simplest is to provide the guide image as

an initial condition for an algorithm such as SparseMRI, so the optimization process

will converge more rapidly to a solution that resembles the guide image but is still

wavelet-sparse and consistent with the sampled k-space. Alternatively, the guide

image can be used to sparsify the TurboSPI data, assuming that the differences

between the guide and desired image are sparse. These differences become the target

of the reconstruction and, once computed, can be added to the guide image to produce

the desired output. Finally, Vaswani and Liu [66] have recently shown that knowledge

of the support (or most significant components) of the image to be reconstructed can

further improve reconstruction quality, by ensuring that voxels within this support

are not discarded during attempts to find a sparse solution.
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Figure 6.5: Compressed sensing reconstruction of a TurboSPI time series with guide
images. The reconstruction at each time point is guided by either the matched FSE
image (for the time point at t=TE) or a previously reconstructed adjacent image (for
all other time points). For details of the image reconstruction see Figure 6.6.
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In the current implementation of 3D CS-accelerated TurboSPI, a combination of

these last two approaches is used. This process, illustrated schematically in Figure

6.6, is performed for each point of the time course as indicated in Figure 6.5.

Given a guide image and undersampled k-space, the guide image is first intensity-

scaled, such that its overall intensity matches that of the undersampled data. The

guide is then phase corrected, using the central points of k-space to obtain a broad

estimate of the target phase; it is suggested in [118] that this increases image sparsity

and improves reconstruction accuracy. The corrected guide is Fourier transformed

and artificially undersampled to match the acquired data, and this k-space is sub-

tracted from the acquired k-space data. The k-space resulting from this subtraction

corresponds to the residual, or the differences between the guide and target image,

which is assumed to be sparse.

The guide image is also sparsified with a wavelet transform, and thresholded to re-

tain only the highest-intensity components (typically the top 5% sorted by intensity).

The matrix T denoting the indices of these components is passed to the non-linear

reconstruction algorithm along with the k-space of the residual. During the recon-

struction, the sparse components corresponding to T are held fixed. If, in the course

of attempting to find a sparser solution to equation (6.1), the algorithm attempts

to alter these components, those changes are disallowed unless they are required to

maintain consistency with the supplied k-space data. The result of the reconstruction

is a sparsified residual, which can be converted back to image space and added to the

corrected guide data to yield the desired image.

The optimization algorithm used in this implementation is the nonlinear conjugate

gradient descent algorithm provided by the Sparse MRI toolbox [118], modified to

account for the prior knowledge T [66]. The minimization problem becomes

min (||Fu[x]− r||2 + α||(Ψx) T ||1 + βTV (x)) (6.2)

The first term enforces consistency with the residual, the second enforces wavelet

sparsity with support T , and the third enforces total variation (TV) sparsity. The

weights α and β control the importance of the sparsity penalties relative to data con-

sistency, and can be specified independently to determine the impact of these con-

straints on the final image. Typical, empirically determined values for these weights

are α = β = 0.01.
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Figure 6.6: Reconstruction algorithm for an individual point in the TurboSPI time
series. Given the undersampled k-space data and a guide image, the output of the non-
linear optimization is the residual or difference between the guide and the acquired
data, which is added back to the guide to yield the desired image.
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6.2.2 Phase Encode Ordering and Undersampling

A key component of compressed sensing is a randomly undersampled acquisition

of k-space, which is straightforward to perform with a purely phase-encoded sequence

such as TurboSPI, requiring only some modifications to the order in which k-space

locations are encoded.

The implementation of TurboSPI discussed in Chapter 3 used a linear phase en-

code ordering, but this assumes a full and uniform sampling of a rectilinear k-space.

Random sampling patterns or those which sample the center more densely than the

periphery are not as amenable to such partitioning because each k-space line will

contain different numbers of points [131]. A centric ordering, such as that shown in

Figure 6.7, is a better choice in general. Points acquired at earlier echoes are al-

ways near the center of k-space in both directions, with later echoes collecting points

radially outward; this changes the resulting artifact patterns so they create circular

ghosts instead of linear ones.

Figure 6.7: Centric phase encode ordering for a 2D TurboSPI acquisition. As in the
linear case, there are 2048 trains of eight echoes. (a) Train number of each sampled
point; trains are acquired beginning along kx = 0 and proceeding counterclockwise
around the kx − ky plane. (b) Echo number of each sampled point; the central region
of k-space is sampled early in the train, with the corners sampled at the end.

The algorithm to sort k-space locations into centric ordering is straightforward.

The distance of each location to be sampled relative to the k-space center is calculated,

along with the azimuthal angle relative to the ky axis. Sampled locations are sorted

into groups based on distance, with the number of groups equal to the number of
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echoes in the TurboSPI echo train. If the total number of samples N is not evenly

divisible by the train length, highest-distance samples are discarded as needed. Each

group is then assigned to trains by azimuthal angle, with samples closer to the center

of k-space acquired earlier in the train.

The algorithm is easily extended to three dimensions; before sorting by distance

the samples are sorted by zenith angle into a number of conical shells, similar to

those used in Conical-SPRITE [132]. The number of shells is chosen to be the largest

integer divisor of N which is smaller than
√
N ; if N is prime, samples are again

discarded to make N more suitable. Each shell is then assigned to trains by radius

and azimuthal angle as in the 2D case. This leads to a sampling pattern such as that

shown in Figure 6.8, in which the acquisition starts along the +kz axis and traces a

roughly helical path through the k-space cube, finishing along −kz.

Figure 6.8: Centric ordering can also be extended to three dimensions, by assigning
the sampled k-space points to conical shells. In this case a 32x32x32 matrix is fully
sampled by 4096 trains of eight echoes, divided into 64 shells of 64 trains each.
This small matrix size is used for illustrative purposes only; in practice, matrix sizes
of 128x128x16 or 192x192x32 are used. (a) Train number during which points are
sampled. (b) Echo number during which points are sampled.

As demonstrated in Figure 6.9, centric ordering is also well-suited to arbitrary

undersampling factors. To generate an undersampling pattern, a subset of the full k-

space is selected based on a probability density function (PDF). Though truly random

undersampling (i.e. a uniform PDF) would give the most random aliasing, variable-

density undersampling has the advantage of ensuring the central regions of k-space are

fully sampled, and the resulting artifacts are generally still sufficiently incoherent to
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Figure 6.9: Centric order also lends itself naturally to undersampling of k-space. In
this example a 128x128 matrix is undersampled by a factor of 5; only 410 trains
are acquired, sampling 3280 points of a possible 16384. Points are chosen using a
variable-density probability function such that the center of k-space is more densely
sampled than the periphery. (a) Train number during which points are sampled. (b)
Echo number during which points are sampled.

allow successful reconstruction. Indeed, variable-density undersampling outperforms

purely random undersampling at high acceleration factors, even with a simple PDF

that decreases as a polynomial function of distance from the origin [118].

If prior information is known concerning the object geometry, this can be used

to determine a sampling pattern as well [128, 133]. Indeed, this is the method we

Figure 6.10: Undersampling patterns can be generated based on the FSE template
image. (a) k-space of the FSE image, scaled to emphasize features. (b) Resulting
phase encode pattern for 8X acceleration. Note the increased sampling density in
areas where the k-space is more intense.
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propose to use in conjunction with TurboSPI. The FSE image described above can be

used to prescribe an undersampling pattern which will ensure that sampling will be

denser in regions of k-space which are more important to the definition of the image,

while remaining sufficiently random to prevent coherent artifacts. This produces a

phase encoding pattern unique to the object being imaged, a step which requires little

additional time to compute but which may further improve reconstruction accuracy.

An example of such a pattern is given in Figure 6.10.

6.2.3 Assessment of Reconstruction Quality

To assess the quality of TurboSPI images accelerated and reconstructed with com-

pressed sensing, it is first necessary to acquire a fully-sampled image to serve as a

gold standard. Due to the slow scanning speed of the sequence this cannot be done

in vivo, but in order to simulate many of the conditions that would be present during

typical applications, an animal model is necessary.

Therefore, a single male Long-Evans rat was imaged ex vivo using TurboSPI. The

rat was euthanized by cardiac puncture and injection of 1 mL urethane, then securely

wrapped in a plastic sheet and placed within the 50 mm inner diameter home-built

quadrature RF coil. Since any motion of the rat due to settling or decomposition

during the fully-sampled TurboSPI acquisition would reduce image quality, the rat

was left in the coil for several hours such that it would naturally settle into a stable

position. The temperature of the water-cooled gradient coil was also reduced to 7◦C

during this time and for all acquisitions, to slow decomposition as much as possible.

Images were acquired using a 192x192x32 matrix and a 55x55x25 mm FOV, pro-

viding a nominal resolution of 280x280x780 μm; this is not TurboSPI’s maximum

resolution, but the largest image that could be acquired in the time available. A 20

mm slab was excited, and the echo time was TE=8 ms. Using an eight-echo train and

a repetition time of 250 ms, acquisition of the fully sampled dataset required 10 hours

and 15 minutes. Acquisition of the matched FSE image required 12 minutes with 4

averages to improve SNR, and this dataset was used to prescribe undersampling pat-

terns for subsequent TurboSPI images. In total, eight datasets were acquired using

acceleration factors ranging from 3 to 30, parameters for which are summarized in

Table 6.1. Reconstruction of undersampled data required 2 hours per dataset.
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Undersampling Phase Encodes Echo Trains Acquisition Time
None 1179648 147456 10 hr 14 min
3X 393200 49150 3 hr 25 min
6X 196688 24586 1 hr 42 min
10X 117936 14742 61 min
15X 78624 9828 41 min
20X 59008 7376 31 min
25X 47200 5900 25 min
30X 39336 4917 21 min

Table 6.1: Undersampling parameters and corresponding acquisition times for the ex
vivo rat images used to assess the quality of compressed sensing reconstruction. All
other imaging parameters were identical.

To evaluate reconstruction accuracy, the normalized root-mean-square error was

computed at each point in the time series. The nRMSE of a reconstructed image

is the square root of the mean squared difference between the fully-sampled and

reconstructed images, divided by the maximum intensity of the fully-sampled image.

6.2.4 Assessment of Quantification Accuracy

Since our desired application involves quantification of SPIO using the time course

information provided by TurboSPI, it is critical to determine whether this information

is disrupted by reconstruction with compressed sensing, and if so, to what degree.

This was done by acquiring fully sampled 3D TurboSPI datasets, using the samples

and cylindrical holder described in Chapter 3, followed by successive undersampling

by factors of 3, 5, 8 and 10. In total, 15 different tubes of 1.63 μm MPIO were

imaged in three groups of five, and R∗
2 was measured for each tube and at each

undersampling factor using the methods presented in Chapter 3. Fitted R∗
2 values

from individual voxels were averaged across a 25-voxel region of interest, such that a

standard deviation could also be computed.

6.3 Compressed Sensing with TurboSPI - Results

6.3.1 Quality of Reconstructed Images

Images from a representative slice of the high-resolution ex vivo rat dataset at t

= TE = 8 ms are shown in Figure 6.11. Even at undersampling factors up to 30,

image quality remains very good overall, and agrees well with both the fully-sampled
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data and the matched FSE image as expected. Some degradation of SNR and altered

contrast is observed, the latter of which will be discussed shortly.

A more quantitative measure of the reconstruction error is the normalized root-

mean-square error with respect to the fully-sampled data. Figure 6.12(a) plots the

nRMSE as a function of time for each undersampling factor; Figure 6.12(b) plots

the average nRMSE throughout the entire time series as a function of undersampling

factor. The difference between images is minimized near the nominal echo time where

the FSE guide and the reconstructed data match more closely, and increases as the

reconstruction proceeds away from t=TE.

The differences between images tend to be maximized around t=9.5 ms, corre-

sponding to the time when areas containing fat have reached minimum intensity

due to off-resonance signal cancelation. Images at this time point and from each

undersampling factor are compared in Figure 6.13, along with the fully-sampled Tur-

boSPI image from the same time point, and the FSE image matched to t=TE. The

overall quality of the images degrades as the undersampling factor increases, though

many areas (such as the spinal cord, in the top middle) retain high-resolution fea-

tures throughout the time course. Reconstructed images tend to differ most from

the fully-sampled dataset in regions containing fat, whose contrast changes the most

from t=TE.

Another feature which emerges with increasing undersampling factor is the pres-

ence of structures which are not visible in the fully-sampled image, but which are

in the guide image, such as the structure highlighted by the red box in Figure 6.13.

Such differences are also visible even at the t=TE time point. This behavior is not

unexpected; as undersampling increases, the reconstruction algorithm will rely in-

creasingly on the guide image to define the overall image contrast, with the result

being that the reconstructed image begins to more closely resemble the guide image.

This underscores the importance of ensuring that the FSE guide image matches the

TurboSPI dataset as closely as possible, as well as the need to select an appropriate

undersampling factor for a given experimental setup.
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Figure 6.11: Reconstructed images from a representative slice of the high-resolution
ex vivo rat dataset at t = TE = 8 ms and acquired with various undersampling factors
are compared to fully-sampled data at t=TE and to the matched FSE image. Overall
image quality remains good even at 30X undersampling.
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Figure 6.12: Normalized root-mean-square error of reconstructed TurboSPI datasets
with respect to fully-sampled data. (a) nRMSE at each point in the time series, for
undersampling factors from 3 to 30. Differences are minimal near TE = 8 ms and
larger away from the echo peak. (b) Mean nRMSE throughout the time series as a
function of undersampling factor.
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Figure 6.13: Comparison of reconstructed images at various undersampling factors
with fully-sampled data at t = 9.5 ms and with FSE guide image matched to t =
TE = 8 ms. Red boxes indicate a region where, as undersampling increases, contrast
begins to more closely resemble the guide image than the TurboSPI data.
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6.3.2 Impact on Quantification

Representative time courses from an individual voxel are shown in Figure 6.14,

demonstrating that CS acceleration does not greatly alter the overall shape of the time

course, including the decaying slope used to calculate R∗
2. An overall baseline offset is

sometimes added, but this does not significantly affect the measured relaxation rate.

Figure 6.14: TurboSPI time courses from an individual voxel of a dataset acquired
at various undersampling factors: unaccelerated (black), 5X (blue), 8X (green) and
10X (red). The voxel is in the center of a tube containing 1.63 μm MPIO and has
R∗

2 ≈ 300 s−1. The echo time TE=8.5 ms is indicated with the dotted line.

Relaxation rates measured from all tubes and undersampling factors are plotted

in Figure 6.15. The measured R∗
2 values are unaffected over a wide range of particle

concentrations, with most observed differences within the standard deviation of the

standard TurboSPI measurements, even at the upper range of reliable quantification.

(This upper limit is somewhat smaller than that of Chapter 4 due to an increased

echo time of TE=8.5 ms.)
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Figure 6.15: Compressed sensing acceleration (up to a factor of 10) does not signif-
icantly affect the relaxation rates measured by TurboSPI, throughout the range of
1.63 μm diameter MPIO samples tested. Error bars representing the standard de-
viation of the measured R∗

2 with a 25-pixel ROI are only plotted for the standard
(unaccelerated) TurboSPI but are comparable for all other undersampling factors.

6.4 Discussion and Summary

As a purely phase-encoded sequence with the ability to quickly acquire prior in-

formation to constrain the reconstruction, TurboSPI is especially well suited to re-

construction with compressed sensing. The reconstruction algorithm presented here

allows significant acceleration of TurboSPI images without the need for special hard-

ware and without significant impact on either image quality or the time courses used

for relaxation. This is a critical requirement for implementation of TurboSPI for in

vivo applications, which would otherwise not be possible in the time available.

As is visible in both Figures 6.11 and 6.13, as the undersampling factor increases

and less TurboSPI data is available, the reconstruction must rely on the guide image to

provide accurate image geometry and contrast at t=TE. In cases where the FSE and

fully-sampled TurboSPI images differ, such as the structure highlighted in Figure 6.13,

the contrast of the FSE image will dominate at high undersampling factors. These

effects can be minimized by ensuring that the FSE image differs from the TurboSPI

as little as possible, but there are practical challenges associated with this.

For example, to reduce artifacts caused by chemical shift and rapid signal decay,
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which do not affect the TurboSPI image, the FSE image must acquire data very

rapidly using a strong readout gradient and a correspondingly high readout band-

width. However, unlike TurboSPI time course data, the acquired FSE data cannot

be filtered without impacting the image quality, and the increased bandwidth leads

to an increase in image noise. Of particular concern with the current experimental

setup is a consistent noise source at approximately 50 kHz generated by the gradient

amplifiers, which can be easily filtered out of TurboSPI data but which irreversibly

contaminates any FSE image with a readout bandwidth larger than 50 kHz. Lowering

the readout bandwidth below 50 kHz removes this source of noise but increases the

prevalence of artifacts in the image. Repeated signal averaging can be used to reduce

the effect of noise in the FSE image at the cost of increased imaging time.

Keeping in mind that the desired application of TurboSPI is imaging of animal

models in vivo, the acceleration of the acquisition must only be enough to reduce

the overall scan time to approximately 1-1.5 hours. Any further increases in imaging

speed must be weighed against possible loss of image quality. For imaging with a

matrix size of 128x128x32, an acceleration factor of 8 should be suitable for most

practical applications, and for higher-resolution imaging (with matrix sizes such as

170x170x50) an acceleration factor of 15 should be sufficient.



Chapter 7

In Vivo Imaging with TurboSPI

The compressed sensing techniques presented in the previous chapter have enabled

TurboSPI acquisitions to be performed at speeds suitable for in vivo imaging of

animals, which can usually only be kept under anesthesia for 1.5-2 hours at a time.

In this chapter we will consider some of the challenges specific to imaging in animal

models, describe TurboSPI imaging protocols suitable for mouse imaging at 3 Tesla,

and demonstrate cellular detection and relaxometry in vivo.

7.1 Challenges of Animal Imaging

MR imaging of animal models presents several technical obstacles which do not

affect in vitro images such as the quantification examples given in Chapter 4. Aside

from the obvious restriction on imaging time, respiratory and cardiac motion may

introduce artifacts into the image depending on the area being studied. Though

these motion artifacts can be reduced by gating to a cardiac or respiratory signal,

this leads to longer scan times. As well, the natural background contrast of certain

tissues may make detection of labeled cells difficult, and rapid transitions between

tissue types may cause susceptibility gradients that affect the apparent relaxation

rate in areas containing no SPIO.

Another challenge is the presence of fat, which is found throughout the bodies

of most animals studied using MRI. As mentioned in Chapter 2, protons in different

chemical environments have slightly different Larmor frequencies. In particular, the

protons attached to lipid molecules have a frequency shifted by 3.5 parts per mil-

lion (ppm) with respect to the Larmor frequency of water protons, and when the

imaging region contains significant amounts of fat, a strong peak is visible in the

NMR spectrum at this frequency. In an external magnetic field of 3 Tesla this shift

is approximately 440 Hz.

In frequency-encoded images, the presence of fat leads to a chemical shift artifact,
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in which the signal from the fat is misregistered as belonging to water protons at

a slightly different spatial position. In TurboSPI acquisitions, signal from a voxel

containing fat is not displaced from its true position, but the time course at that

pixel is modulated at 440 Hz, with the strength of the modulation depending on the

quantity of fat present. This is the source of the modulation seen in Figure 3.13,

for example. Such modulation can obscure the desired relaxation effects, greatly

diminishing the ability to quantify SPIO, and must be addressed in some way.

7.2 Methods

7.2.1 Fat Saturation

Since the frequency of the fat-induced modulation is known, it is theoretically

possible to add an oscillatory term to the analytical model described in Chapter 5,

such that the modulation can be distinguished from other effects. In practice, it is

more effective to remove as much of the fat signal as possible from the image during

the acquisition itself, rather than relying on post-processing of the acquired data. This

can be done by applying a fat saturation pulse immediately before the excitation of

the water signal, as illustrated in Figure 7.1. This pulse is not spatially selective, but

designed to excite only a narrow range of frequencies centered 3.5 ppm away from

the frequency of the water protons. The excited fat signal is then dephased with a

spoiler gradient, and the remainder of the sequence proceeds normally before the fat

signal can recover through T1 relaxation.

To demonstrate the effects of fat saturation without any potential differences

introduced by compressed sensing reconstructions, TurboSPI images were acquired

of a mouse ex vivo, using a 128x128x16 matrix size covering a 30x30x15 mm field of

view, for a nominal resolution of 0.25x0.25x1 mm. Eight echoes were acquired with

TE = 8 ms and TR = 250 ms, sampling 512 points at 100 kHz during an acquisition

window of 5 ms. The ex vivo acquisition allows these 136-minute scans to be collected

using the same mouse in the same position within the imaging system. Images were

acquired at 3 Tesla using the 30 mm inner diameter quadrature RF coil.

Because the image contrast changes significantly after the application of a fat

saturation pulse, it was anticipated that the quality of images reconstructed with
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Figure 7.1: TurboSPI pulse sequence (first echo only) with a fat saturation pulse and
an associated spoiler gradient. The fat saturation pulse is designed to excite a very
narrow bandwidth, and therefore has a long duration of approximately 10ms.

compressed sensing could also be affected. To measure this effect, the two fully-

sampled ex vivo datasets were retrospectively undersampled at acceleration factors

between 3 and 15, with sampling patterns prescribed using an appropriate contrast-

matched FSE image. For reconstruction, sparsifying transform and total-variation

penalties of 0.1 each were used for all datasets. The normalized root-mean-square

error with respect to the fully-sampled dataset was calculated at each point of the

time series and used as a metric of reconstruction fidelity.

One of the central assumptions of the fat saturation process is that the saturation

pulse will only affect the signal from fat, without having any effect on the water

signal. Under most circumstances this assumption is reasonable, but in systems

with broad linewidth and significant off-resonance signal, some fraction of the water

protons will resonate within the frequency bandwidth of the saturation pulse, and

signal from those protons will be reduced as if it were fat signal. This represents a

potential problem when imaging high concentrations of SPIO, because some of the

already limited signal may be further decreased by the fat saturation pulse, impacting

TurboSPI’s ability to perform accurate quantification.

The effect of fat saturation on fitted R∗
2 relaxation rates was therefore assessed by

imaging a number of samples containing 1.63 μm MPIO (as described in section 4.2.1)

with and without fat saturation. R∗
2 maps were computed following the procedure
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described in section 4.2.3, and mean R∗
2 values were obtained from identical ROIs in

each dataset.

7.2.2 In Vivo Imaging Methods

For the in vivo demonstration of TurboSPI, a C57BL/6 (or “Black 6”) mouse was

imaged after injection with SPIO-labeled T-cells. 4 weeks prior to the experiment,

5 x 105 C3 (cervical cancer) cells were injected subcutaneously into the left flank,

and allowed to establish a tumor. Tumor growth was monitored weekly with calipers.

Effector T-cells (CD8+) were isolated from lymph nodes of naive mice and proliferated

over 6 days in a medium similar to that described for the C3 cells used in Chapter

4. The cells were then incubated with Molday ION Rhodamine B at a concentration

of 0.1 mg/mL for approximately 24 hours. 4 million cells were injected directly into

the tumor and the mouse was immediately imaged.

After inducing anesthesia with 3% isofluorane, the mouse was placed in a nose cone

that allowed administration of 1.5%-2% isofluorane throughout the scan to maintain

anesthesia. The mouse was placed and secured within the RF coil, and its respiration

and temperature were monitored during the scan, with a warm air blower used to

maintain the mouse’s temperature at 37◦ C. Total scan duration including setup was

approximately 2.5 hours. All animal handling was done in accordance with protocols

approved by the Dalhousie University Care for Laboratory Animals committee.

An initial image of the mouse was acquired using a balanced-SSFP sequence

(256x170x170 matrix, 38.4x25.5x25.5 mm FOV, α = 30◦, TE = 4 ms, TR = 8 ms),

which was acquired in 64 minutes with four signal averages and four acquired fre-

quencies. The mouse was then imaged with TurboSPI using a 128x128x32 matrix,

25x25x20 mm FOV, 15 mm slab excitation, ETL=8, TR = 250 ms, and a fat sat-

uration preparation. For both the b-SSFP and TurboSPI images, the RF coil used

was the 25 mm inner diameter quadrature coil. In this particular coil, the quality of

the automatic calibration was poor at typical echo times (7.5 ms), and a longer echo

time of 9.5 ms was used to improve the echo alignment. Pulse durations used were

1000 μs for the shaped excitation and 500 μs for the hard refocusing pulses.

Low overall SNR in the coil necessitated extra signal averaging to ensure a high-

quality FSE template; the FSE image was acquired in 16 minutes using 8 signal
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averages. This was followed by a TurboSPI acquisition undersampled by a factor

of 8 and acquired in 34 minutes with one average. The undersampling pattern was

prescribed based on the FSE image as described in Section 6.2.1. 256 points were

acquired during a 4 ms acquisition window at a sampling rate of 62.5 kHz, with

the time course filtered to remove frequencies above 3 kHz. Reconstruction with

the modified-CS algorithm required approximately 75 minutes for the complete time

series, using transform and total-variance weights of 0.1 each.

7.3 Results

7.3.1 Fat Saturation - Effect on Image Quality

Figure 7.2: Comparison of TurboSPI images without (top row) and with (bottom
row) fat saturation. The use of fat saturation greatly reduces the overall contrast
in the images by suppressing signal from regions containing fat. Approximate slice
positions within the mouse are shown at right; the MR data superimposed on the
schematic is from a localizer scan.

Representative slices from the t = TE = 8 ms volume of ex vivo mouse images

with and without fat saturation are shown in Figure 7.2, and demonstrate that the

overall contrast is significantly altered with fat saturation enabled. Without fat sat-

uration, areas such as the skin and other fat-rich tissues appear very bright, but with

fat saturation, the bulk of the image appears more homogeneous. Figure 7.3 shows
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the same slices but from a later time point (t = 9 ms) to demonstrate how the contrast

changes throughout the time course. The images without fat saturation demonstrate

an “India Ink” artifact [134] in which the tissues containing large quantities of fat ap-

pear to be outlined with dark contrast while remaining relatively bright (though their

intensity has decreased relative to Figure 7.2). This artifact is much less pronounced

with fat saturation enabled, though areas of high fat content still appear dark.

Figure 7.3: Away from t=TE, images without fat saturation (top row) are affected by
darkening of the boundaries between tissues (“India Ink” artifact). Images acquired
with fat saturation are affected by this artifact to a much lesser degree. Approximate
slice positions within the mouse are shown at right.

These effects are reflected in the time courses obtained from the TurboSPI image

series, and the impact of fat saturation depends heavily on the amount of fat present

in a given location. Figure 7.4 shows that, for a time course in an area with little fat,

the time course is unaffected as desired. For a time course in a region dominated by

fat signal (high intensity on the T2 weighted image at t=TE) the modulation at 440

Hz is evident, and though it cannot be removed entirely by the use of fat saturation,

its intensity is greatly diminished. For regions on a boundary between these types of

tissues, which contain a mixture of water and fat, the modulation is removed while

the average signal level remains constant. These are the areas which produce the

contrast seen in Figure 7.3, which the use of fat saturation greatly reduces.
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Figure 7.4: Time courses from TurboSPI images acquired with (blue lines) and with-
out (black lines) fat saturation. Top right: time course from a region containing little
fat. Bottom left: Time course from a region with large quantities of fat. Bottom
right: Time course from a region between tissue types.

7.3.2 Fat Saturation - Effect on Compressed Sensing

As demonstrated in the previous chapter, TurboSPI images reconstructed with

compressed sensing and initially guided by a matched FSE image differ most from

the unaccelerated data when changes in contrast are highest, and the quality of the

resulting reconstruction is best evaluated around this point, which for these ex vivo

images was t = 9 ms. Results of such a comparison for a representative slice at that

time point are shown in Figure 7.5.

In both cases the quality of the reconstructed image degrades with increasing

acceleration, but in the images with fat saturation off, the rapidly varying contrast

around tissues rich in fact leads to severe artifacts, which grow more significant at

high acceleration. No such artifacts appear when fat saturation is enabled because

of the altered contrast. Figure 7.6 plots the normalized RMS error as a function of
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Figure 7.5: The use of fat saturation has a visible impact on the quality of images re-
constructed with compressed sensing. Top row: Representative slice at t = 9 ms from
the dataset with fat saturation off, reconstructed after various degrees of undersam-
pling. Bottom row: The same slice from equivalently undersampled and reconstructed
datasets with fat saturation on.

Figure 7.6: Fat saturation significantly reduces the mean squared error of recon-
structed data with respect to fully-sampled data. (a) nRMSE at each point in the
time series, for undersampling factors from 3 to 15, with fat saturation on. (b) nRMSE
with fat saturation off. Plots use same scale and legend.
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acceleration factor, further supporting the increased accuracy of reconstruction with

fat saturation.

7.3.3 Fat Saturation - Effect on Quantification

The impact of fat saturation on the ability of TurboSPI to quantify SPIO is

demonstrated in Figure 7.7, showing that quantification appears unaffected at low

to moderate iron concentrations (corresponding to relaxation rates of R∗
2 < 400 s−1).

However, as the iron concentration rises, the ability of TurboSPI to accurately mea-

sure R∗
2 does appear to be affected to some degree. Even though the R∗

2 values mea-

sured with fat saturation are not significantly different due to the large error bars,

there is a visible trend of these rates appearing lower than those measured without

fat saturation.

Figure 7.7: Effects of fat saturation on R∗
2 quantification of MPIO samples. While the

relaxations rates agree at low to moderate concentrations, there is some disagreement
at higher concentrations, with R∗

2 values measured with fat saturation on (blue circles)
somewhat lower than those measured without fat saturation (red squares).

7.3.4 Detection of Labeled Cells

Figure 7.8 shows a mouse tumor after injection of SPIO-labeled cells, as imaged by

b-SSFP and TurboSPI. The b-SSFP image (Fig. 7.8(a)) reveals a significant area of
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negative contrast within the tumor as anticipated. Neither the FSE template image

(Fig. 7.8(b)) nor the corresponding TurboSPI image at t=TE (Fig. 7.8(c)) show

much contrast, though due to the low R2 of SPIO-labeled cells, significant changes

in contrast are not anticipated around t=TE since most of the surrounding signal

should have rephased. However, TurboSPI images further away from the echo peak

(Fig. 7.8(d)) show pronounced negative contrast throughout a volume similar to that

observed with b-SSFP.

Figure 7.8: Comparison of images showing SPIO-labeled cells within a mouse tumor
in vivo. (a) b-SSFP image, with no fat saturation. The tumor is circled in red. (b)
FSE template image with fat saturation. (c) TurboSPI image at t=TE=9.5ms. (d)
TurboSPI image at t=10.5ms. The significant darkening observed throughout the
tumor on the b-SSFP image also appears in the TurboSPI data away from TE.

A representative time course from within the tumor is shown in Figure 7.9(a). As

in the case of SPIO-loaded cells in vitro and as predicted by the analytical model, the
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time course is fairly symmetric with a slightly rounded and shifted peak. The time

courses throughout the animal can be used to generate an R∗
2 map using the methods

of Chapter 3, the result of which is shown in Figure 7.9(b). R∗
2 relaxation rates

of 1500 s−1 or higher are observed throughout the tumor, indicating very high iron

concentrations which can nonetheless be quantified with TurboSPI. High R∗
2 values

are also observed in several regions outside the tumor. As seen by comparison with

the b-SSFP image, these correspond to regions rich in fat, where modulation of the

signal due to off-resonance effects leads to spurious fits.

An additional feature of the TurboSPI image is demonstrated in Figure 7.10,

where a significant region of negative contrast seen on the b-SSFP image does not

appear in the TurboSPI data, nor in the corresponding R∗
2 map. It is possible that

this region does not represent SPIO-labeled cells, but some other tissue-related effect

such as necrosis, which appears with similar contrast on the b-SSFP image but is not

detected by TurboSPI.

Figure 7.9: Basic relaxometry of in vivo TurboSPI data. (a) Time course from
a representative voxel within the area of negative contrast, showing a time course
characteristic of SPIO-labeled cells. (b) R∗

2 map generated from a fit to the decaying
portion of the spin echo throughout the entire image.

7.3.5 Discussion and Summary

The use of fat saturation has a significant impact on the quality of TurboSPI

images, both in terms of reconstruction quality and time course fidelity. While the

current implementation of compressed sensing for TurboSPI allows higher acceleration
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Figure 7.10: TurboSPI is potentially more specific to SPIO-labeled cells than b-
SSFP. (a) b-SSFP image; circled region contains significant negative contrast. (b) A
TurboSPI image at the same anatomical position shows no such contrast. (c) Most of
the fitted R∗

2 values in that region are not significantly different from the background,
and (d) a typical time course in the region does not show evidence of relaxation
consistent with labeled cells. This region may represent tumor necrosis rather than
labeled cells.

of images with fat saturation, there is also evidence to suggest that quantification of

very high iron loads may be impaired in such images. The question of whether to use

fat saturation may therefore have to be answered on a case-by-case basis, depending

on the desired resolution and anticipated SPIO concentration.

Another practical difficulty associated with the use of fat saturation is that it

may render certain organs and anatomical structures more difficult to discern, by

suppressing the contrast that would normally distinguish them from surrounding
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tissue. If better tissue definition is required in a study where fat saturation is used,

we suggest that a second FSE guide be acquired with fat saturation off, potentially

using fewer signal averages to reduce the impact on overall imaging time.

An alternative to the use of fat saturation is a spectral-spatial RF pulse [135],

which can be used to selectively excite water protons at a particular spatial location,

effectively combining the fat saturation pulse with the standard excitation pulse.

Such pulses require a time-varying gradient to be applied during the pulse, and are

generally more robust against field inhomogeneity. Some preliminary testing was

done with a spectral-spatial excitation preceding a TurboSPI acquisition, and though

quantification did seem to be affected as in the case of fat saturation, the onset

of visible effects did not occur until roughly 600-800 s−1 (data not shown). With

additional refinements, this might become a feasible alternative to fat saturation.

Regardless of the approach used to reduce fat signal, it is challenging to completely

remove its influence from TurboSPI images, and this could represent an impediment to

accurate quantification in some circumstances. For example, if the acquisition window

is not wide enough to encompass at least one full period of fat-induced modulation,

the modulation can be confounded with R∗
2 relaxation, producing spurious voxels on

R∗
2 maps. This is the source of the areas of high apparent R∗

2 outside the tumor in

Figure 7.9. It may be possible to remove these spurious fits using methods like those

of section 5.4.2, if enough data is available for an accurate fit. This might entail

increasing the acquisition window and therefore the effective echo time.

Though attempts have been made to use TurboSPI for detection of SPIO-labeled

cells in tumors or lymph nodes following tail vein injections in mouse models, these

attempts have not yet been successful. While corresponding b-SSFP images do show

signs of SPIO in these tissues, TurboSPI images of the same mouse do not have time

courses indicative of SPIO. This may reflect different detection limits between the

two sequences, or it may reflect low-contrast information that is being lost during the

reconstruction of undersampled data. Efforts to explore these differences and improve

the detection capability of TurboSPI are ongoing. In the end, TurboSPI may simply

be more well-suited to applications in which there are larger concentrations of cells

which remain localized to a particular tissue for an extended period of time, providing

significant and stable contrast.



156

Nonetheless, this work has demonstrated the ability of TurboSPI to acquire in

vivo images of animal models with scan times that are feasible for preclinical studies.

These images are comparable in quality to those obtained with existing protocols, and

in areas known to contain large concentrations of SPIO-loaded cells, show signal time

courses similar to those observed in loaded cells in vitro. Such time courses should be

suitable for quantification by R∗
2 relaxometry, and these results could be compared to

existing signal-based quantification methods and later verified with histology.



Chapter 8

Future Work and Conclusions

8.1 Future Work

The results presented in this work represent the basis for in vivo quantification of

SPIO-labeled cells with TurboSPI, a technique that had not previously been applied to

biological systems. These results can be extended in a number of ways to improve the

accuracy of data reconstruction and SPIO quantification, which will benefit potential

applications of cellular imaging with TurboSPI.

8.1.1 Modeling Relaxation Behavior

The most significant step remaining in the practical application of the analytical

model outlined in this work is the ability to use it for fitting experimental data, as

described in section 5.4.1. As noted during that discussion, the best method for ro-

bustly fitting the approximate and/or asymptotic forms to the acquired data is still

under investigation. The main difficulty in performing these fits is separating the

contributions of the various factors involved in determining the time course shape,

which include SPIO-related parameters as well as other variables such as local field

inhomogeneities that may not be easily distinguishable from relaxation effects. Ad-

justing parameters such as the acquisition window and echo spacing may assist in

producing time courses with basis functions that are more readily separated.

Regardless of the fitting method which is to be employed, experimental verification

will be necessary, potentially using a series of samples like those described in Chapter

4, but with parameters chosen to test the ability of the fitting method to separate

changes in ζ from changes in δω.

Though all of the examples tested in this work assumed that every perturber in

a voxel was the same size, realistically a distribution of sizes can be expected. Using

equation (4.8), the model developed in Chapter 5 can be used to describe arbitrary
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distributions of particle size, and the Monte Carlo simulations can be modified ac-

cordingly to verify the model output. Though experimental measurements would not

likely be sensitive enough to accurately extract much information about particle size

distributions, it might be possible to distinguish the contributions of two different

particle sizes, such as two mixed cell populations, or large SPIO particles that have

been released from dead cells.

Another refinement which could be incorporated into the model is an extended

description of signal behavior during multi-echo experiments, similar to that found

in Jensen and Chandra’s model [100] but which could also describe signal evolution

away from the echo times nTE. The present work has assumed that the first echo of

the TurboSPI train will contribute most heavily to overall signal behavior, since the

center of k-space is sampled during the first echo, but the validity of this assumption

could be further explored with simulations and experimental data.

While the analytical model accurately describes the behavior of systems near the

static dephasing regime, as the particle’s size becomes smaller or the diffusion coef-

ficient increases, the agreement between the model and experimental data decreases.

This is likely due to violations of the model’s central assumption of a linear local field

variation. A more sophisticated model might relax this restriction, though it would

remain to be seen if the result would be too complex to be practically useful. Alter-

natively, a model such as the strong collision approximation of Bauer and colleagues

[102] could be applied to cases outside the current model’s range of applicability.

Another potential modification to the model is centered on the F function (equa-

tion (5.14)), which relates to diffusive attenuation of signal and has a significant effect

on the shape of the echo peak. The propagator-based method outlined in Appendix

A.3 is only one possible way to derive F ; for example, Jensen and Chandra arrived

at an equivalent expression by performing an integration over diffusion paths ([100]

equation (24), using a “straightforward calculation” that is not elaborated upon).

However, attempting to derive the F function through a direct solution of the Bloch

equations (as outlined, for example, in [96]) yields a different result, which has the

same asymptotic behavior at t >> TE and t = TE but differs elsewhere. This

discrepancy has not been explained, but understanding its source might offer more

insight into the underlying assumptions of the model.
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8.1.2 Compressed Sensing

The modified-CS algorithm described in Chapter 6 has proven adequate for re-

construction of TurboSPI data at moderate undersampling factors, but it is certainly

possible that further improvements in reconstruction speed and accuracy could be

achieved. As mentioned in the initial discussion on compressed sensing, a number

of alternative methods can be used to perform the non-linear optimization, each of

which has different advantages and capabilities. For example, a recently proposed

algorithm which exploits group sparsity in sets of images [136] could be tested with

TurboSPI data.

Other improvements to the existing CS reconstruction can also be explored. Before

the implementation of the modified-CS algorithm described in Section 6.2.1, the basic

reconstruction provided by the Matlab SparseMRI toolbox was used for testing. When

reconstructing data with that algorithm, which does not use prior information to

constrain the reconstruction, it was found that processing multiple contiguous time

points simultaneously was often more effective than reconstructing those time points

individually, mainly due to reduced accumulation of noise or artefacts. This behavior

was not observed in the current implementation of modified-CS, but it is possible

that further alterations to the algorithm could yield such improvements.

With improvements in the processing hardware available, it may also become

possible to reconstruct the entire 4D dataset as a single unit. Since the desired time

courses are likely sparse under appropriate transforms, the ability to sparsify the data

in that dimension would be valuable. Furthermore, since the approximate form of

the time course is known, it might be possible to use a model-based reconstruction

approach [137] to directly reconstruct parameter maps instead of deriving them from

reconstructed images. As with basic R∗
2 relaxometry, this approach would have to be

verified against a fully-sampled dataset to ensure accurate quantification.

Alternative methods for random undersampling are also being proposed by a num-

ber of groups, such as the Poisson-disc sampling described in [138], which is claimed

to produce less coherent aliasing artifacts in the wavelet domain. Implementation

of such a sampling procedure, especially if it can also include the k-space intensity

distribution of a template image as demonstrated in this work, might reduce image

artifacts at higher undersampling factors.
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Though the results of R∗
2 relaxometry are not significantly altered by acceleration

at factors up to 10, the effect of the reconstruction on other areas of the time course has

not been demonstrated. When a more robust method for fitting the approximate form

determined in Chapter 5 has been developed, such fits can be applied to accelerated

data to assess the impact of compressed sensing on more advanced quantification

procedures.

Finally, clinical and preclinical MRI systems are increasingly being outfitted with

multiple-element RF coils and receivers which are capable of parallel imaging, as de-

scribed briefly in Section 6.1. In many ways parallel imaging and compressed sensing

are complementary methods of image acceleration; parallel imaging is hardware-based

and requires uniform undersampling, while compressed sensing is software-based and

relies on random undersampling. Combinations of these techniques have been pro-

posed, most notably L1-SPIRiT [122] which uses the coil sensitivity information re-

quired for parallel imaging to constrain the CS reconstruction. While the MRI system

used for the experiments described in this work was not equipped with the hardware

to allow parallel imaging, this is a natural direction in which to continue this work,

and would potentially allow even further acceleration of TurboSPI to the point where

it might become practical for clinical applications.

8.1.3 In Vivo Imaging

As noted in the last chapter, while large quantities of SPIO-loaded cells have

been detected in vivo using TurboSPI, detection of smaller numbers of cells remains

elusive. In order to determine whether this is a limitation of the TurboSPI sequence

itself or of the compressed sensing reconstruction, it would be ideal to image a mouse

containing SPIO in the lymph node using b-SSFP followed by ex vivo TurboSPI with

full k-space sampling. Experiments of this type should be possible in the near future.

The changes in contrast between b-SSFP and TurboSPI may indicate a different

response to tissue-related effects such as tumor necrosis which, when present, may

reduce the effectiveness of SPIO quantification through signal-based methods. Tur-

boSPI’s apparent insensitivity to tumor necrosis would have to be investigated more

thoroughly before any conclusions could be drawn; the effects must be observed in

multiple animals with subsequent ex vivo histological confirmation of necrotic tissue.
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Though the chosen application of TurboSPI in this work has been the monitoring

of immunotherapy, opportunities to test TurboSPI for other applications, such as the

imaging of implanted stem cells, should not be neglected if and when they become

available. TurboSPI may be more well-suited to imaging the very high concentrations

of cells used in stem cell treatments than the relatively lower concentrations present

during immunotherapies.

8.2 Conclusions

This work has demonstrated that TurboSPI, an MRI technique originally devel-

oped for imaging of materials, can also be successfully applied to the quantitative

imaging of cells, even in living organisms. As a purely phase-encoded sequence, Tur-

boSPI is less prone to several artifacts that affect traditional imaging techniques, and

it retains signal even in areas of very high R∗
2 relaxation so long as R2 relaxation re-

mains low. This permits quantification of SPIO over a large dynamic range, including

the high SPIO concentrations that would be employed in some longitudinal cellular

imaging studies. This range is equivalent to, or better than, that provided by most

gradient-echo methods.

However, the chief advantage of TurboSPI is not necessarily its dynamic range,

but its temporal resolution, which is far higher than can be achieved by traditional

techniques which employ a readout gradient. This temporal resolution allows ob-

servations of relaxation behavior in unprecedented detail. On a practical level this

may lead to improved quantification or robustness against confounding effects such as

field inhomogeneities. As well, the high temporal resolution measurements obtained

by TurboSPI have also provided an opportunity to refine the theoretical description

of MRI signal evolution in the presence of SPIO.

In the current work, effects were observed that were not predicted by the ex-

isting static dephasing theory, but which could be explained to some degree by an

expanded model that incorporates the effects of slow diffusion near spherical mag-

netic perturbers. This model, when compared against Monte Carlo simulations and

experimental data, shows good accuracy over a range of parameters that describes

SPIO-loaded cells. Though a robust algorithm for fitting this model to data has not

yet been completed, when such a procedure is developed it should become possible
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to estimate parameters that are inaccessible to existing relaxometry techniques, such

as the separate contributions of SPIO susceptibility and cellular density to the R∗
2

relaxation rate. Compensation for effects such as field inhomogeneities may also be

possible if these effects can be reliably modeled and distinguished from relaxation

behavior.

Though characterized by lengthy acquisition times, TurboSPI can be implemented

for use in vivo with the aid of compressed sensing, which allows images of acceptable

quality to be reconstructed from highly undersampled k-space data. Acquisition of

a matched FSE template image, which is achieved by adding a readout gradient to

the standard TurboSPI sequence, can be used to prescribe the undersampling pattern

and constrain the reconstruction, allowing acceleration factors of 8-10 at moderate

resolution and potentially up to 30 at high resolution, though in practice such high

acceleration may introduce artifacts and may not be beneficial. The use of saturation

pulses to suppress off-resonance fat signal also contributes to improved image quality,

though with potential reductions in the effective range of quantification.

Imaging of SPIO-labeled cells with the current implementation of TurboSPI has

been demonstrated in vivo with reasonable acquisition times. The resulting images

are of comparable quality to those obtained by traditional methods and may show

increased specificity to SPIO, allowing accumulations of labeled cells to be distin-

guished from other effects such as tumor necrosis that would confound signal-based

analysis methods.

However, the present work has only demonstrated detection of large groups of cells

after direct injection; visualization of smaller groups of cells that have migrated into

tissue from a distant injection site remains challenging, and this would be necessary

for most applications involving imaging of immune therapies. Modifications to the

TurboSPI sequence or the reconstruction procedure will be required to improve image

quality and lower the SPIO detection limit, and suitable fitting procedures will have

to be developed before direct quantification of cellular density can be achieved under

these experimental conditions. Alternative imaging applications such as monitoring

of stem cell implants may also serve as a more effective use of TurboSPI in vivo.



Appendix A

A.1 Field of a Magnetized Sphere

In section 4.1.2 the following expression was given for the inhomogeneous mag-

netic field surrounding a uniformly magnetized sphere of radius R and susceptibility

difference Δχ when placed within an external field of 	B0 = B0ẑ.

B(r, θ, φ) =
4π

3
ΔχB0

(
R

r

)3

(3 cos2 θ − 1) (A.1)

This is equivalent to finding the magnetic field around a uniformly magnetized sphere

with 	M = M0ẑ = 4πΔχB0ẑ, and no background field. Such a boundary-value prob-

lem can be solved by using Laplace’s equation for the scalar potential Φ.

For a three-dimensional problem with azimuthal symmetry, the scalar potential

can be defined in terms of Legendre polynomials Pl as

Φ(r, θ) =
∞∑
l=0

[Alr
l +Blr

−(l+1)]Pl(cos θ) (A.2)

The coefficients Al and Bl are determined by the boundary conditions. Since the

potential must be finite at r = 0, inside the sphere Bl = 0. Similarly, Al = 0 outside

the sphere since the potential must remain finite at r = ∞. This lets us define the

potential piecewise as

Φin(r, θ) =
∞∑
l=0

Alr
lPl(cos θ) (A.3a)

Φout(r, θ) =
∞∑
l=0

Blr
−(l+1)Pl(cos θ) (A.3b)

Because of the boundary conditions on B and H at the surface of the sphere, the

following conditions on Φ and its radial derivative can also be derived [139]:

Φin(r = R) = Φout(r = R)

∂Φin

∂r

∣∣
r=R

− ∂Φout

∂r

∣∣
r=R

= 	M · n̂
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Since the magnetization of the sphere is in the ẑ direction, its component normal to

the surface is 	M · n̂ = M0ẑ · n̂ = M0 cos θ. Substituting the expressions for Φ into the

above equations, we obtain

Φin(r = R) = Φout(r = R)
∞∑
l=0

AlR
lPl(cos θ) =

∞∑
l=0

BlR
−(l+1)Pl(cos θ)

⇒ Al = BlR
−(l+2) (A.4)

M0 cos(θ) =
∂Φin

∂r

∣∣
r=R

− ∂Φout

∂r

∣∣
r=R

=
∞∑
l=0

lAlR
l−1Pl(cos θ) +

∞∑
l=0

(l + 1)BlR
−(l+2)Pl(cos θ)

Since the only Legendre polynomial containing cos θ by itself is P1, this means that

only the l = 1 term contributes to the expansion. Then

A1 + 2BlR
−3 = M0 (A.5)

Combining (A.4) and (A.5), and substituting into (A.3), gives

Φin(r, θ) =
1

3
M0r cos θ (A.6a)

Φout(r, θ) =
1

3
M0

R3

r2
cos θ (A.6b)

Since the magnetic field is the negative gradient of the scalar potential, we can easily

obtain expressions for the field inside and outside the sphere. In spherical coordinates,

the gradient operator is

∇ =
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

1

r sin θ

∂

∂φ
φ̂ (A.7)

Applying this to (A.6) yields

Bin(r, θ) = −1

3
M0 cos θr̂ +

1

3
M0 sin θθ̂ (A.8a)

Bout(r, θ) =
2

3
M0

R3

r3
cos θr̂ +

1

3
M0

R3

r3
sin θθ̂ (A.8b)
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Since we are only concerned with the field in the direction of ẑ = cos θr̂ − sin θθ̂, the

quantities of interest are

Bz,in(r, θ) = −1

3
M0 (A.9a)

Bz,out(r, θ) =
1

3
M0

R3

r3
(
2 cos2 θ − sin2 θ

)
=

1

3
M0

R3

r3
(
3 cos2 θ − 1

)
(A.9b)

For our purposes, the expression of interest is Bz,out. Substituting our previous defi-

nition of M0 yields the desired expression,

Bz,out(r, θ) =
4π

3
ΔχB0(

R

r
)3
(
3 cos2 θ − 1

)
(A.10)

A.2 Static Dephasing Condition for Spin-Echo Experiment

In this section we shall derive the condition (4.30) for a system of spherical per-

turbers to be in the static dephasing regime during a spin-echo experiment.

As mentioned in section 4.1.4, the diffusive attenuation during a spin-echo exper-

iment with echo time TE was given by Majumdar and Gore [93] as

exp

[
− 1

12
D · 〈(γG)2

〉
TE3

]
(A.11)

Before proceeding with an exact evaluation, we note some general assumptions. We

assume that the volume fraction ζ occupied by perturbers is small, such that field

distortions from neighboring perturbers do not overlap and each can be treated in-

dependently. This allows us to work with a single object instead of a network. Also,

the averaging in the above expression will take the form of a volume integral:

〈
(γG)2

〉
=

∫
(γG)2dV∫

dV
(A.12)

A suitable choice of volume, given our previous assumption, is the volume around a

particular perturber that is free of other perturbers. This can be written in terms of

the volume fraction ζ and the volume Vp of a particular perturber as

V =
Vp

ζ
(A.13)
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This will replace
∫
dV . For the upper integral we neglect the interior of the perturber,

integrating outward from zero, and since the integrand goes to zero faster than r−2,

we can reasonably extend the upper limit to infinity:

〈
(γG)2

〉
=

1

V

∫ ∞

0

(γG)2dV (A.14)

Further evaluation requires knowledge of the gradient distribution, and hence the

system geometry. As derived in Appendix A.1, the field fluctuations around a sphere

of radius R and with susceptibility difference Δχ from the background are given by

B(r, φ, θ) = δB
R3

r3
(3 cos2 θ − 1) (A.15)

with the equatorial field

δB =
4π

3
ΔχB0 (A.16)

We require the gradient of this expression, and since there is no dependence on φ we

can use the form

∇B =
∂B

∂r
r̂ +

1

r

∂B

∂θ
θ̂

= −3δB
R3

r4
(3 cos2 θ − 1)r̂ − 6δB

R3

r4
cos θ sin θθ̂

= −3δB
R3

r4
((3 cos2 θ − 1)r̂ + 2 cos θ sin θθ̂) (A.17)

The quantity we need to integrate in the expression (A.11) above is

(γG)2 = (γ∇B)2

= 9δω2R
6

r8
((3 cos2 θ − 1)2 + (2 cos θ sin θ)2)

= 9δω2R
6

r8
(5 cos4 θ − 2 cos2 θ + 1) (A.18)

with δω = γδB the characteristic frequency offset.

When performing the volume integral (A.14), the volume to be used is

V =
4πR3

3ζ
(A.19)
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and the expression can be evaluated as

〈
(γG)2

〉
=

1

V

∫ ∞

R

9δω2R
6

r8
r2dr

∫ 2π

0

dφ

∫ π

0

(5 cos4 θ − 2 cos2 θ + 1) sin θdθ

=
18πδω2

V

∫ ∞

R

R6

r6
dr

∫ 1

−1

(5x4 − 2x2 + 1)dx

=
18πRδω2

5V
· 8
3

=
36ζδω2

5R2
(A.20)

We can now substitute this expression into A.11 to obtain

exp

[
− 1

12
D · 〈(γG)2

〉
TE3

]
= exp

[
−3Dζδω2

5R2
TE3

]

= exp

[
− 1

10

6D

R2
ζδω2TE3

]

= exp

[
− 27

40π2
ζ
TE3

t2ctD

]

Here we have used the definitions

tD =
R2

6D

tc =

(
8π2

9
√
3
γΔχB0

)−1

=

(
2π

3
√
3
δω

)−1

From this we obtain the static dephasing condition

27

40π2
ζ
TE3

t2ctD
<< 1

TE3 <<
40π2

27

t2ctD
ζ

TE << 2.4(T ′
2tctD)

1/3 (A.21)

with

T ′
2 = 1/R′

2 =
tc
ζ

A.3 Propagator Solution of the Bloch-Torrey Equation

Though numerous methods can be used to solve a differential equation such as

the Bloch-Torrey equation (eqn. 5.11), the model originally proposed by Kiselev and
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Posse [65] uses a method based on Green’s functions or propagators, which allows

solution of the differential equation once the boundary conditions are known.

In general, for any differential operator L(x) there is a fundamental solution

G(x, x0) defined by

LG(x, x0) = δ(x− x0) (A.22)

The letter G is used here since the fundamental solution is a Green’s function for the

differential equation. Its usefulness stems from the fact that a solution u(x) to the

more general equation

Lu(x) = f(x) (A.23)

can be determined by convolving the (known) function f with the fundamental solu-

tion, as

u(x) =

∫
G(x, x0)f(x0)dx (A.24)

In our particular case the differential operator L corresponding to the (one-dimensional)

Bloch-Torrey equation contains derivatives in both space and time,

L =
∂

∂t
−D

∂2

∂x2
− igx (A.25)

and the resulting propagator will also have spatial and temporal dependence, and is

based on the initial condition

LG(x, x0, t) = δ(t)δ(x− x0) (A.26)

The form of G, which can be verified by substitution into the Bloch-Torrey equation,

is [140]

G(x, x0, t) =
1

(2πDt)1/2
exp

[
−(x− x0)

2

4Dt
− igt

x− x0

2
− 1

12
Dg2t3

]
e−igx0t (A.27)

This solution is valid under the linear local field approximation, which assumes that

the magnetic field variation around a given point is only due to a linear background

gradient g. The desired solution Ψ to the Bloch-Torrey equation can now be found

after convolution with the appropriate initial conditions, which will be described for

the FID and spin-echo cases.
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A.3.1 Propagator Solution for FID Experiment

In the case of an FID experiment, we need only to convolve the propagator with

a delta function representing the initial position of a spin packet:

Ψ(t) =

∫ ∫
G(x2, x1, t)δ(x1 − x0)dx1dx2 (A.28)

The delta function simply evaluates the inner integral at x1 = x0, and the remaining

integration is performed by changing variables to Δx = x2−x0, completing the square

and integrating the Gaussian by inspection.

Ψ =

∫ ∞

−∞

1

(2πDt)1/2
exp

[
− (x2 − x0)

2

4Dt
− igt

x2 − x0

2
− 1

12
Dg2t3

]
e−igx0tdx2

=exp

[
− 1

12
Dg2t3 − igx0t

] ∫ ∞

−∞

1

(2πDt)1/2
exp

[
− (Δx)2

4Dt
− i

gt

2
Δx

]
dΔx

=exp

[
− 1

12
Dg2t3 −Dt(

gt

2
)2 − igx0t

] ∫ ∞

−∞

1

(2πDt)1/2
exp

[
− (Δx)2

4Dt
− i(

gt

2
)Δx+Dt(

gt

2
)2
]
dΔx

=exp

[
− 1

12
Dg2t3 − 1

4
Dg2t3 − igx0t

] ∫ ∞

−∞

1

(2πDt)1/2
exp

[
−
(

Δx

2
√
Dt

+ i
√
Dt(

gt

2
)

)2
]
dΔx

=exp

[
−1

3
Dg2t3 − igx0t

] ∫ ∞

−∞

1

(2πDt)1/2
exp

[
−
(
Δx+ 2iDt( gt2 )

)2
2
√
Dt

]
dΔx

=exp

[
−1

3
Dg2t3 − igx0t

]
(A.29)

The t3 dependence of the attenuation function is characteristic of diffusion through a

field gradient [105], and can also be derived by direct integration of the Bloch-Torrey

equation. Deriving this result through the propagator framework, however, allows

the approach to be verified before attempting the more relevant case of the spin-echo

solution.

A.3.2 Propagator Solution for Spin-Echo Experiment

For the case of the spin echo with echo time TE, the solution to the Bloch-Torrey

equation becomes

Ψ(t) =

∫ ∫
G(x2, x1, t− TE/2)G∗(x1, x0, TE/2)dx1dx2 (A.30)

This equation is valid only for times t after the refocusing pulse; before then, the FID

solution applies. After t = TE/2, the new initial condition is simply the propagator

prior to the refocusing pulse, with complex conjugation used to represent the reversal

of the magnetization phase.
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This convolution will be made easier in the Fourier representation. We therefore

require the Fourier transform of G, which involves a similar integral to the one per-

formed for the FID case, but now with a e−ikΔx term. Ignoring the oscillatory e−igx0t

term since it does not depend on Δx, we find

H(k, t) =

∫ ∞

−∞

dΔx√
2πDt

exp

[
− (Δx)2

4Dt
− igt

Δx

2
− 1

12
Dg2t3

]
e−ikΔx

=exp

[
−Dg2t3

12

] ∫ ∞

−∞

dΔx√
2πDt

exp

[
− (Δx)2

4Dt
− i(

gt

2
+ k)Δx

]

=exp

[
−Dg2t3

12
−Dt(

gt

2
+ k)2

] ∫ ∞

−∞

dΔx√
2πDt

exp

[
− (Δx)2

4Dt
− i(

gt

2
+ k)Δx+Dt(

gt

2
+ k)2

]

=exp

[
−Dg2t3

12
−Dt(

gt

2
+ k)2

] ∫ ∞

−∞

dΔx√
2πDt

exp

[
−
(

Δx

2
√
Dt

+ i
√
Dt(

gt

2
+ k)

)2
]

=exp

[
−Dg2t3

12
−Dt(

gt

2
+ k)2

] ∫ ∞

−∞

dΔx√
2πDt

exp

[
−
(
Δx+ 2iDt( gt2 + k)

)2
2
√
Dt

]

=exp

[
−Dg2t3

12
−Dt(

gt

2
+ k)2

]
(A.31)

The Fourier transform of the complex conjugate G∗ can be found with a similar

calculation to be

H∗(k, t) = exp

[
− 1

12
Dg2t3 −Dt(

gt

2
− k)2

]
(A.32)

Note the change in the sign of k, and that the oscillatory term will change sign as

well. The desired solution Ψ can now be computed as

Ψ(t) =

∫
dk21e

ik21(x2−x1)

∫
dk10e

ik10(x1−x0)

∫
dx2

∫
dx1

(
H(k21, t− TE/2)e−igx1(t−TE/2)·

H∗(k10, TE/2)eigx0TE/2
)

=

∫
dk21

∫
dk10

∫
dx2e

ix2k21

∫
dx1e

ix1(k10−k21−g(t−TE/2))eix0(−k10+gTE/2) ·

H(k21, t− TE/2)H∗(k10, TE/2)

After collecting terms involving x1 and x2, we use the definition of the delta-function

δ(k) =

∫
dxe−ixk (A.33)

to further simplify this expression to

Ψ(t) =

∫
dk21dk10H(k21, t− TE/2)H∗(k10, TE/2)δ(k21)δ(k10 − k21 − g(t− TE/2))eix0(−k10+gTE/2)

= H(0, t− TE/2)

∫
dk10H

∗(k10, TE/2)δ(k10 − g(t− TE/2))eix0(−k10+gTE/2)

= H(0, t− TE/2)H∗(g(t− TE/2), TE/2)eix0(−g(t−TE/2)+gTE/2) (A.34)
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Into this expression we substitute

H(0, t− TE/2) = exp

[
− 1

12
Dg2(t− TE/2)3 −Dt(

g(t− TE/2)

2
)2
]

=exp

[
−1

3
Dg2(t− TE/2)3

]

=exp

[
−Dg2

(
1

3
t3 − t2TE

2
+

tTE2

4
− TE3

24

)]
(A.35)

and

H∗(g(t− TE/2), TE/2) = exp

[
− 1

12
Dg2(TE/2)3 −D(TE/2)(

gTE

4
− g(t− TE/2))2

]

=exp

[
−Dg2

(
28TE3

96
− 3tTE2

4
+

t2TE

2

)]
(A.36)

and finally we obtain

Ψ(t) = exp

[
−Dg2

(
1

3
t3 − tTE2

2
+

TE3

4

)]
e−ix0g(t−TE)

= exp

[
−1

3
Dg2t3

(
1− 3TE2

2t2
+

3TE3

4t3

)]
e−ix0g(t−TE) (A.37)

This matches the expression for the FID case, with a slight modification of the oscil-

latory term such that the phase now depends on (t− TE) instead of t, as well as the

addition of a factor

F (TE/t) = 1− 3

2

(
TE

t

)2

+
3

4

(
TE

t

)3

(A.38)
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