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Abstract

Nowadays, academic researchers maintain a personal library of papers, which they

would like to organize based on their needs, e.g., research, projects, or courseware.

Clustering techniques are often employed to achieve this goal by grouping the doc-

ument collection into different topics. Unsupervised clustering does not require any

user effort but only produces one universal output with which users may not be

satisfied. Therefore, document clustering needs user input for guidance to generate

personalized clusters for different users. Semi-supervised clustering incorporates prior

information and has the potential to produce customized clusters. Traditional semi-

supervised clustering is based on user supervision in the form of labeled instances or

pairwise instance constraints. However, alternative forms of user supervision exist

such as labeling features. For document clustering, document supervision involves la-

beling documents while feature supervision involves labeling features. Their joint use

has been called dual supervision. In this thesis, we first explore and propose a frame-

work to use feature supervision for interactive feature selection by indicating whether

a feature is useful for clustering. Second, we enhance the semi-supervised cluster-

ing with feature supervision using feature reweighting. Third, we propose a unified

framework to combine document supervision and feature supervision through seed-

ing. The newly proposed algorithms are evaluated using oracles and demonstrated

to be more helpful in producing better clusters matching a single user’s point of view

than document clustering without any supervision or with only document supervi-

sion. Finally, we conduct a user study to confirm that different users have different

understandings of the same document collection and prefer personalized clusters. At

the same time, we demonstrate that document clustering with dual supervision is able

to produce good personalized clusters even with noisy user input. Dual supervision is

also demonstrated to be more effective in personalized clustering than no supervision

or any single supervision. We also analyze users’ behaviors during the user study and

present suggestions for the design of document management software.
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Chapter 1

Introduction

1.1 Motivation

Various document collections are becoming available in many real-life text mining

tasks, e.g., billions of web pages in public websites, uncategorized email messages,

and personal libraries of research papers. Such document collections are most helpful

if organized in a structured way for efficient navigation, browsing and search. There

are existing tools with basic management functionality such as Mendeley1, CiteULike2

and Bibsonomy3. These online personal library tools provide basic browsing aids

such as organization by user-defined tags. However, the basic functionality is not

enough for efficient browsing. Especially, different users might prefer a personalized

organization of the same document collection from their point of view. This task is

usually attempted using clustering techniques.

Traditional document clustering is an unsupervised categorization of a given doc-

ument collection into clusters so that the documents within the same cluster are

more topically similar than those in different clusters. Such methods work by either

(1) optimizing some loss function over all document assignments to clusters such as

KMeans [10], or (2) fitting a probabilistic model onto the document collection such as

the multinomial näıve Bayes model [38]. Although an unsupervised method minimizes

user effort for document clustering, the output of such a method is a universal set of

potential clusters, i.e., all users are presented the same set of clusters given a docu-

ment collection. However, given the same document collection, different users might

want it to be organized in their own structure instead of being given a universal one.

Consider a collection of news stories about sports, which talks about basketball and

1http://www.mendeley.com/
2http://www.citeulike.org/
3http://www.bibsonomy.org/
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(a) A document pair is labeled
“must-link” when document collection is

organized by sports

(b) The same document pair as in
Fig. 1.1(a) is labeled “cannot-link” when

document collection is organized by
countries

Figure 1.1: According to different needs to the organization of the same document
collection, the same document pair can be given “must-link” in Fig. 1.1(a) but cannot-
link in Fig. 1.1(b).

soccer in Spain and France. One user would like to organize the collection by coun-

try while another one may want it to be organized by sport. However, unsupervised

clustering does not address this demand. Therefore, users are often dissatisfied with

the clusters generated by the unsupervised clustering algorithms [23]. This motivates

the incorporation of the user supervision in the clustering process.

Consequently, semi-supervised document clustering, which uses both labeled and

unlabeled documents, has shown its usefulness in generating clusters that match user

expectations [4, 6]. Unlike document classification, it is difficult to give labels to a

single document because there is no cluster information before the clusters are gen-

erated. Therefore, the user supervision in the form of document pairwise constraints,

“must-link” and “cannot-link” [53], is usually employed. In this method, the user

labels a document constraint by indicating whether two documents should be placed

into the same cluster. In the previous example, suppose there are two documents A

and B. Document A talks about basketball in France while document B is about

basketball in Spain. Then A and B is “must-link”-ed when the collection needs to be

organized by sport but “cannot-link”-ed when it is organized by country as illustrated

in Figure 1.1.
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Those constraints can be used to either guide the clustering process towards a bet-

ter user expected partitioning (i.e., constraint-based methods) or to learn a distance

metric that the clustering algorithm can employ (i.e., distance-based methods). The

constraint-based methods try to satisfy as many constraints as possible by modifying

the objective functions for evaluating clusterings [5], enforcing constraints during the

clustering process [53], and initializing and constraining the clustering based on the

user provided constraints [4]. The distance methods make use of the labeled con-

straints to learn an appropriate distance measures such as Mahalanobis distance [55].

The constraint-based methods and distance-based methods can be combined in a

unified framework [6].

User supervision in the form of document pairwise constraints, called document

supervision, improves the performance of the clustering algorithm significantly [4,

5, 6, 55]. However, user effort can also be used to collect alternative forms of user

supervision such as labeling terms, which is called feature supervision. In this the-

sis, we focus on single-word terms for document clustering, so we will use “term”,

“word”, and “feature” interchangeably. Considering our example, instead of labeling

documents constraints, the user could label features. If users want to organize the

document collection by country, they could provide terms that are related to countries

such as “France”, “French” and “Spain”, “Spanish”. Alternatively, if they want to

organize the document collection by sport, they could provide terms that are related

to sports such as “basketball”, “hoop” and “soccer”, “goalkeeper” as illustrated in

Figure 1.2.

Since both labeling document constraints and labeling terms can help producing

user expected organizations, it is natural to combine the two types of user supervision

together as illustrated in Figure 1.3. In a hybrid approach, the user can either label

terms whilst reading (labeling) document constraints or interleave labeling terms and

document constraints. In the former case, the user is allowed to label a document

and the terms in the document at the same time while in the latter case, the user

is presented either a document (or a document pair) or a list of terms and only

the document (or the document pair) or terms from the list can be labeled at one

time. Recent research in document classification [17, 37, 46] has demonstrated that

feature supervision can greatly reduce the number of documents required to build
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(a) Terms related to sport are
labeled when the document

collection is organized by sport

(b) Terms related to country
are labeled when the document

collection is organized by
country

Figure 1.2: According to different needs to the organization of the same document
collection, different terms could be labeled by users for clustering such as Fig. 1.2(a)
and Fig. 1.2(b).

a high-quality classifier. Generally speaking, we conjecture that feature supervision

and document supervision can be complementary towards improving cluster quality.

Feature supervision is different in document clustering from document classification.

In document classification, a term can be assigned into a specific class when it is

labeled as a discriminative feature. However, it could be difficult (but possible) for

the user to assign it to a cluster because the user needs to explore the cluster to

determine its topic. Therefore, it is different and more difficult to incorporate feature

supervision in document clustering than document classification.

Not only should the document collection be organized in a way the user expects,

but also the user should provide as little supervision as possible because labeling

document constraints (documents) and terms is expensive. Therefore, it requires

that the most “valuable” information in the form of either document constraints

or terms should be selected for user labeling. For document supervision, we might

want to present the user the document pairs with the most uncertain relationships

instead of those can be easily identified by the algorithm itself. Those easily identified

constraints not only waste user supervision, but can also do harm to the clustering

performance [20]. However, we might want to present the user the terms (or features)

which are the most promising to help the clustering instead of those uncertain ones

which are uniformed distributed across clusters and may not contain discriminative
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(a) Document constraints and
terms labeled when document
collection is organized by types

of sports

(b) Document constraints and
terms labeled when document

collection is organized by
countries

Figure 1.3: Document constraints and terms can be labeled together to help produce
user expected organization such as 1.3(a) and 1.3(b).

information.

Active learning of document constraints and terms can help to avoid labeling

redundant information to save user effort. For example, after the terms “France” and

“Spain” are selected, the terms “French” and “Spanish” may not be as informative

as before. Instead, the terms/phrases “Eiffel Tower” and “Camp Nou” should be

selected for user labeling as illustrated in Figure 1.4(a). The same rule is applicable

to document constraints as shown in Figure 1.4(b). Labeled document constraints

can already implies constraints between some unlabeled document pairs so that those

pairs are not much useful even after they are labeled. However, it is not possible for

the user to browser the document collection or the whole list of terms to find the

most informative ones to label. Therefore, the clustering algorithm should play an

active role in this process and select the most informative ones for the user to label.

Although document supervision and feature supervision are complementary, there

may also be redundancy between certain document constraints and terms. Some

already labeled document constraints may make labeling some terms redundant as

illustrated in Figure 1.4(c), vice verse. Since labeling document constraints and terms

together are helpful to organize the document collection in user expected way, an ideal

active approach should be able to select the most informative document constraint or

term for user labeling. This two types of user supervision together lead to the method

of active dual supervision, in which document constraints and terms are collected
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(a) Labeled terms result in
that other terms are not
necessary to be labeled

(b) Labeled document
constraints result in that other
document constraints are not

necessary to be labeled

(c) Labeled document
constraints result in that some
terms are not necessary to be

labeled

Figure 1.4: Information redundancy. Labeled document constraints and terms could
cause other unlabeled document constraints and terms not necessary to be labeled
such as 1.4(a), 1.4(b), and 1.4(c).

simultaneously and the best user expected clusters should be generated with least

user effort.

1.2 Our Goals

Our hypothesis is that feature supervision alone or together with document supervi-

sion can significantly improve the organization of a document collection better match-

ing user expectation. We would like to incorporate the labeled feature information in

two alternative ways: (1) label a feature as useful for clustering but do not associate

it with a cluster; (2) label a feature and associate it with a cluster. By incorpo-

rating feature supervision into clustering algorithms through these two approaches,

we conjecture that the clustering performance should be improved, i.e., the clusters

generated can better reflect the user’s point of view.

The goal of this thesis is to introduce, formalize and evaluate the feature super-

vision in document clustering. We first explore feature supervision for interactive

feature selection to aid unsupervised document clustering. Second, we augment semi-

supervised clustering with feature supervision through feature reweighting. Third,

we propose a novel unified framework to combine document supervision and feature

supervision through seeding. Finally, we conduct a user study to investigate whether

the proposed framework with noisy user input is able to produce personalized clusters
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for users. In this thesis, we propose and verify a practical framework to generate per-

sonalized clusters from the same document collection for different users. One direct

benefit of the personalized clusters might be that the user can use them to find the

needed information more efficiently than fully automatic generated clusters.

1.3 Our Contributions

We summarize the contributions of this thesis as follows:

(1) We propose a novel iterative framework which involves users interactively select-

ing the features used to represent documents and demonstrate that the feature

set obtained in this way can produce clusters that better match user expectation.

(2) We present a new method of incorporating the user supervision into unsuper-

vised document clustering through feature supervision and feature reweighting.

We demonstrate that feature supervision can significantly improve document clus-

tering accuracy when applied on top of document supervision with various semi-

supervised clustering algorithms. In particular, our experiments show that feature

supervision is superior to distance metric learning methods based on labeled doc-

ument constraints since feature supervision requires much less user effort in terms

of number of documents labeled to achieve the same performance.

(3) We propose a novel unified framework which combines document supervision

and feature supervision. The framework assumes the number of clusters is given

and uses both labeled documents and features in terms of seeding clusters and

refines this information using intermediate clusters. We demonstrate that the

framework successfully combines labeled documents and features through seeding.

The framework can also work when only a fraction of clusters are being seeded.

(4) We conduct a user study in which we ask users to group the same document

collection into clusters based on their own understandings, which are then used

as ground truth to evaluate semi-supervised clustering algorithms for user per-

sonalization. The contributions from this user study are:

(1) By designing and testing useful operations and text visualization methods

to help users to group documents, we demonstrate that selecting keywords



8

during assigning documents takes little time using the designed interface and

operations. We suggest that these operation should be included in the super-

vision interface for document management software.

(2) We observe that different users group the same document collection differ-

ently, in terms of the number of clusters, the cluster memberships of doc-

uments, and the assigned keywords. In addition, we observe that a user’s

organization of the document collection changes over time. Therefore, we con-

clude that clustering algorithms which accommodate personalization should

be employed.

(3) We show that semi-supervised clustering algorithms with a small amount of

user input can produce personalized clusters and verify that semi-supervised

clustering algorithms can produce better quality of clusters with user input

than unsupervised clustering, even if user input is noisy.

(4) We demonstrate that assigning keywords for clusters can help clustering al-

gorithms to organize documents better matching user’s point of view than

labeling only documents. The assigned keywords are used to construct cluster

structures through seeding to initialize the clustering algorithms.

With our research, we anticipate to design new algorithms to help the users to

build clusters which are best matched with their expectations but with as little ef-

fort as possible. Based on the evaluation through both oracles and human users, the

frameworks we propose show promise in helping users to better organize their docu-

ment collection and obtain personalized clusters which match their point of view.

1.4 Algorithms and User Supervision

In this thesis, we use two types of user supervision, i.e., document supervision and fea-

ture supervision. Document supervision involves document-level supervision: (1) la-

bel a document by assignment, i.e., assign a document into a cluster, or (2) label a pair

of documents by a constraint, i.e., establish the relationship (constraint) between two

documents. We shall assume that the user needs to read a fraction of the documents

in order to label a document or a document constraint. Feature supervision involves

feature-level supervision: (1) label a feature by usefulness, i.e., identify whether a
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Algorithm Chapters Document supervision
SeededKMeans 5, 6

by assignment to a cluster
ConstrainedKMeans 5

COPKMeans 5
by a constraint on a pair of documents

XingKMeanss 5

Table 1.1: Traditional clustering algorithms with only document supervision, labeling
methods the algorithms use in document supervision, and the chapters the algorithms
appear.

feature is useful for clustering, or (2) label a feature by association, i.e., associate a

feature with a document if the feature describes the topic of the document. A feature

can be labeled in three situations: (1) from a list — a feature is labeled as useful

or not for clustering when a list of features is presented to the user, or (2) while

establishing a document constraint — a feature is labeled as whether useful or not

for clustering while the user is labeling a document pair constraint by reading the

two documents associated with the constraint, or (3) while assigning a document to

a cluster — a feature is labeled and associated with the document while the user

is labeling a document by reading the content of the document. In this thesis, we

have different clustering algorithms using at least one of those supervision methods.

We summarize the clustering algorithms, the labeling (supervision) methods the al-

gorithms use, and the chapters the algorithms appear in Table 1.1 and Table 1.2. We

also list the key findings from each algorithm enhanced with feature supervision and

the user study conducted in Table 1.3.

1.5 Outline of the Thesis and Copyrights

The rest of the thesis is organized as follows.

Chapter 2 (Related Work) reviews and summarizes the existing semi-supervised

document clustering methods, feature supervision methods in document classifica-

tion. This chapter reiterates the differences of the feature supervision between doc-

ument clustering and document classification, which explains the necessity of our

research. The discussion of the literature review is a significant extension of the ones

from our previous conference papers: (1) Paper [22] presented on Track “Information



10

A
lg
or
it
h
m

C
h
ap

te
rs

F
ea
tu
re

S
u
p
er
v
is
io
n

D
o
c.

S
u
p
er
v
is
io
n

N
am

e
B
y

F
ro
m

F
ea
tu
re

se
le
ct
io
n

4
u
se
fu
ln
es
s-
li
st

u
se
fu
ln
es
s
fo
r
cl
u
st
er
in
g

a
li
st

N
on

e

C
O
P
F
es
K
M
ea
n
s

5
u
se
fu
ln
es
s-
co
n
te
n
t

u
se
fu
ln
es
s
fo
r
cl
u
st
er
in
g

d
o
c.

co
n
te
n
t

p
ai
rw

is
e
of

d
o
cu
m
en
ts
:

“m
u
st
-l
in
k
”
or

“c
an

n
ot
-l
in
k
”

X
in
gF

es
K
M
ea
n
s

5

S
ee
d
ed
F
es
K
M
ea
n
s

5
as
so
ci
at
io
n
-c
on

te
n
t

as
so
ci
at
io
n
w
it
h
a
d
o
cu
m
en
t,

an
d
w
it
h
a
cl
u
st
er

th
ro
u
gh

th
e

d
o
cu
m
en
t

d
o
c.

co
n
te
n
t

as
si
gn

m
en
t
of

a
d
o
cu
m
en
t
to

a
cl
u
st
er

C
on

st
ra
in
ed
F
es
K
M
ea
n
s

5

D
u
al
S
ee
d
ed
K
M
ea
n
s

6,
7

T
ab

le
1.
2:

N
ov
el
cl
u
st
er
in
g
al
go
ri
th
m
s
p
re
se
n
te
d
in

th
is
th
es
is
w
it
h
d
o
cu
m
en
t
su
p
er
v
is
io
n
an

d
/o
r
fe
at
u
re

su
p
er
v
is
io
n
,
la
b
el
in
g

m
et
h
o
d
s
th
e
al
go
ri
th
m
s
u
se

in
d
o
cu
m
en
t
su
p
er
v
is
io
n
an

d
fe
at
u
re

su
p
er
v
is
io
n
,
an

d
th
e
ch
ap

te
rs

th
e
al
go
ri
th
m
s
ap

p
ea
r.



11

Algorithm/Method key findings
Feature selection Feature supervision usefulness-list is effec-

tive for interactive feature selection, by se-
lecting the useful features for clustering to
improve document clustering performance
through feature reweighting.

COPFesKMeans Feature supervision usefulness-content (Ta-
ble 1.2) incorporated by feature reweighting
can improve the clustering performance fur-
ther in addition to the labeled document con-
straints which guide the clustering process.

XingFesKMeans Metric learning methods do not work well
based on labeled document constraints, i.e.,
clustering performance can be worse than
baseline algorithms without metric learn-
ing. However, feature supervision usefulness-
content (Table 1.2) with a small amount
of effort can enhance the metric learning
method and achieve better performance.

SeededFesKMeans Useful features identified from feature super-
vision usefulness-content (Table 1.2) can be
used through feature reweighting to enhance
document seeding method and improve clus-
tering performance.

ConstrainedFesKMeans Useful features identified from feature super-
vision usefulness-content (Table 1.2) can be
used through feature reweighting to enhance
document seeding and constrained methods
and improve clustering performance.

DualSeededKMeans Features associated with clusters from fea-
ture supervision association-content (Ta-
ble 1.2) and documents assigned into clusters
can be combined together to improve cluster-
ing performance through document seeding
and feature seeding.

User study Personalized clusters are desired by users.
A user’s organization of the same document
collection changes over time. Users are able
to assigned keywords to clusters during ex-
ploration of the document collection. Semi-
supervised clustering algorithms with a small
amount of user input can produce personal-
ized clusters. Semi-supervised clustering al-
gorithms with dual supervision perform bet-
ter than those without any supervision or
with any single supervision

Table 1.3: Key findings from clustering with dual supervision
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Retrieval and Access” at the ACM Symposium on Applied Computing 2011 Con-

ference4, (2) Paper [24] presented on Track “Information Retrieval and Access” at

the ACM Symposium on Applied Computing 2012 Conference5, (3) Paper [25] pre-

sented on Track “Data ming” at the ACM Symposium on Applied Computing 2012

Conference6, (4) Paper [26] published at the ACM Applied Computing Review7 and

(5) Paper [23] presented at the ACM Symposium on Document Engineering 2012

Conference8.

Chapter 3 describes the datasets and performance measures to evaluate our pro-

posed algorithms and frameworks. The datasets include different types of documents

such as newsgroups messages from the 20 newsgroup dataset, abstracts from the 3-

classic dataset, webpages from the webkb and the sector datasets, academic papers

with full text from ACM digital library, and news articles from the reuters21578

dataset. Different evaluation measures are used to evaluate algorithms based on

classes labels of standard datasets and users’ manual organized clusters, and compare

two clusterings of the same document collection. The preprocessing procedure of the

documents is also introduced in this chapter.

Chapter 4 describes an interactive feature selection framework for document clus-

tering, in which a user can label features by indicating whether a feature is useful for

clustering. The discussion of this chapter was adapted from the paper [22] presented

at the ACM Symposium on Applied Computing 2011 Conference and the technical

4 This work is based on an earlier work: Interactive Feature Selection for Document Clustering,

in SAC’11 Proceeding of the 2011 ACM Symposium on Applied Computing, Copyright 2011 ACM

978-1-4503-0113-8/11/03. http://dx.doi.org/10.1145/1982185.1982436.
5 This work is based on an earlier work: Enhancing Semi-supervised Document Clustering with

Feature Supervision, in SAC’12 Proceeding of the 2012 ACM Symposium on Applied Computing,

Copyright 2012 ACM 978-1-4503-0857-1/12/03. http://dx.doi.org/10.1145/2245276.2245457.
6 This work is based on an earlier work: Semi-supervised Document Clustering with Dual Super-

vision through Seeding, in SAC’12 Proceeding of the 2012 ACM Symposium on Applied Computing,

Copyright 2012 ACM 978-1-4503-0857-1/12/03. http://dx.doi.org/10.1145/2245276.2245306.
7 This work is based on an earlier work: A Unified Framework for Document Clustering with

Dual Supervision, in the ACM Applied Computing Review, 12(2), ACM 2012. Copyright 2012 ACM

978-1-4503-0857-1/12/03. ACM DOI will be available.
8 This work is based on an earlier work: Personalized Document Clustering with Dual Supervi-

sion, in DocEng’12 Proceeding of the 2012 ACM Symposium on Document Engineering, Copyright

2012 ACM 0-12345-67-8/90/01. ACM DOI will be available.
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report [21] at Faculty of Computer Science, Dalhousie University9 .

Chapter 5 demonstrates the effectiveness of feature supervision with existing semi-

supervised clustering algorithms through feature reweighting. The discussion of this

chapter was adapted from the paper [24] presented at the ACM Symposium on Ap-

plied Computing 2012 Conference.

Chapter 6 proposes a novel unified framework to combine document supervision

and feature supervision through seeding. The discussion of this chapter was adapted

from the paper [25] at the ACM Symposium on Applied Computing 2012 Conference

and the paper [26]10 at the ACM Applied Computing Review.

In Chapters 4, 5, and 6, the proposed frameworks and/or algorithms are evaluated

using oracles i.e., simulating human users based on the underlying class labels of the

standard datasets. Although oracles allow newly proposed algorithms and frameworks

to be evaluated quickly, they have several disadvantages (See details in Chapter 7).

Chapter 7 presents a user study conducted to demonstrate the necessity of cluster

personalization and demonstrates that document clustering with dual supervision can

produce personalized clusters even with noisy user input from human users.

Chapter 8 summarizes the thesis and presents a discussion of the implications of

the thesis. It also reveals the connections between algorithms/frameworks in different

chapters and presents the opportunities for further investigation.

9 http://www.cs.dal.ca/research/techreports/cs-2010-04
10 This work is based on an earlier work: A Unified Framework for Document Clustering with

Dual Supervision, in Volume 12, Issue 2 of the ACM Applied Computing Review, Copyright 2012

ACM 0-12345-67-8/90/01. ACM DOI will be available.



Chapter 2

Related Work

Document clustering is a popular research topic because of the huge and ever increas-

ing amount of available electronic documents. However, the clusters of documents

generated by the unsupervised clustering algorithms may not reflect the user’s point

of view. Attempts to produce clusters that match user expectation use various ways

of incorporating user supervision during clustering.

On one hand, semi-supervised clustering with instance-level pairwise constraints

has been a topic of significant interest. On the other hand, feature supervision in doc-

ument classification provides us one more approach to involve the user supervision in

document clustering. Since we try to incorporate feature supervision in the document

clustering setting, we would like to review the work related to both semi-supervised

clustering algorithms and feature supervision in document classification. In addition,

this thesis also explores personalized document clustering with both document super-

vision and feature supervision. Therefore, our reviews focus on the following areas:

(1) semi-supervised clustering, (2) feature supervision in the document classification

setting, and (3) personalized clustering.

We define the following uniform terminology: (1) instance: a data point of the

set that is being clustered, e.g. a document, also called an example; (2) feature: an

attribute of an instance, e.g. a single-word or multi-word term. In this chapter, we

use “instance” uniformly for “document”, “data point”, and “example”. We also

use “feature” uniformly for “word”, “term”, “attribute”. However, we might only

use “document” and “term” for later chapters as our methods are proposed only for

document clustering.

2.1 Semi-supervised Clustering

There has been a significant amount of research on semi-supervised clustering which

is generally categorized into the following areas: (1) constraint-based methods, in

14



15

which the constraints have to be enforced during the clustering process [53] or modify

the optimization of the loss function [31]; (2) labeled cluster seeds or cluster seeds

derived from the constraints to initialize the cluster centroids [4]; (3) distance-based

methods, in which constraints are employed to learn adaptive distance metric using

metric learning techniques [3, 12, 55]; (4) hybrid methods of constraint-based and

distance-based methods [6]; (5) feature space transformation method, in which the

original high-dimensional feature space can be projected into low-dimensional feature

subspaces guided by user labeled constraints [51] and feature selection methods, in

which the feature selection algorithm is guided by the pairwise constraints [48, 56];

(6) Besides those five methods which use constraints in a passive manner, there is also

some research on actively selecting the most informative constraints for clustering [5,

20, 27].

The current semi-supervised clustering algorithms work with document-level su-

pervision. However, feature-level supervision may further help generate better quality

of clusters, i.e., better matching user expectation. More importantly, feature super-

vision can be done together with document supervision. For example, users can label

features through highlighting while they are labeling documents.

We describe briefly the current semi-supervised clustering algorithms and the

possible approaches to incorporate feature supervision into them. All those algo-

rithms are general clustering algorithms, which are not designed specifically for doc-

ument clustering problems. Although all of them are applicable to document clus-

tering, distance-based methods are computation prohibitive when applied to high-

dimensional data like documents. A basic premise of this thesis is that features

(terms) of documents make sense to humans, and feature selection can be done by

humans, which is not true for general clustering problems.

2.1.1 Constraint-Based Methods

COP-KMeans is an algorithm directly enforcing the satisfaction of constraints during

the clustering process [53]. Since it requires that all the user provided constraints be

satisfied, the algorithm can fail when an instance cannot be placed into any cluster

due to constraint violation. Therefore, a soft-constraint version SCOP-KMeans [52]

is used to handle soft constraints, i.e. associating a cost with a constraint if it is
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violated.

PCKMeans [5] initializes the clusters by selecting instance neighborhoods derived

from the pairwise constraints. Although it has the same centroid estimation step as

KMeans [10], i.e. the mean of the instances assigned to the cluster, it assigns an

instance into the cluster so that it minimizes the sum of the distance and the cost

of the constraint violation. Similar to SCOP-KMeans, it can handle the constraints

softly.

In a paper by Ji and Xu [31], a set of instances is modeled as a weighted graph

with each document as a vertex and each edge connecting a pair of vertices weighted

by the similarity between documents. Then the best cuts of the graph under the

pairwise constraints are found for the document clustering purpose. In that paper,

the normalized cut method is used to demonstrate the idea, but they claim that any

spectral clustering method should work.

2.1.2 Seed-Based Methods

Both Seeded-KMeans and Constrained-KMeans [4] initialize the clusters using la-

beled instances for all clusters or a fraction of the clusters. Pairwise constraints

generated from the labeled instances are also used to guide the clustering. By ap-

plying the two algorithms to a variety of datasets, Basu et al. [4] demonstrate that

clustering by seeding can improve clustering performance significantly even when the

seeds are noisy or incomplete.

In Seeded-Kmeans, the labeled instances are only used to initialize the KMeans

algorithm instead of random initialization and they can change their cluster mem-

berships during the clustering. In Constrained-KMeans, the labeled instances are

used to seed the clusters and cannot change their cluster memberships. Therefore,

the constraints between instances have to be satisfied in constrained-KMeans as in

COP-KMeans [53]. Experiments indicate that Constraint-KMeans is more sensitive

to noisy seeds (i.e., seeds assigned to a cluster which should not be assigned) than

Seeded-KMeans is.

Although incomplete cluster seeds, i.e., when not all clusters have labeled data as

seeds, provide only partial prior knowledge, they are still helpful to clustering. The

transitive closures derived from “must-link” document constraints are usually used
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to seed a fraction of the clusters [5, 6].

2.1.3 Distance-Based Methods

Mahalanobis metric1 is used to scale the features for clustering aiming for improved

clustering performance compared with Euclidean distance. A suitable Mahalanobis

metric for clustering can be learned from pairwise constraints [55]. In the work of Xing

et al. [55], the criterion for finding the Mahalanobis metric is to minimize the squared

distance between all pairs of must-link instances under the constraint that the squared

distance between all pairs of cannot-link instances should be larger than constant c,

where c > 1. In the case that the matrix is diagonal, the metric can be learned using

an efficient algorithm based on the Newton-Raphson method. In the case that the

matrix is full, a different algorithm using gradient descent and the idea of iterative

projection is developed.

Bar-Hillel et al. [3] propose a method by which the full Mahalanobis metric matrix

can be learned by applying the Relevant Component Analysis (RCA) algorithm [45] to

the “chunklets” derived from the “must-link” constraints using convex optimization.

In this method, the full matrix is always learned so it may not be applicable for high-

dimensional data. In the paper by Bar-Hillel et al. [3], a connection to the method

described in Xing et al. [55] is also presented.

An obvious disadvantage of these distance-based methods is that they involve ex-

pensive computations. Therefore, they are not suitable for high-dimensional data such

as documents, of which the matrix is large. In fact, the computation is prohibitive

even for a diagonal matrix.

2.1.4 Hybrid Methods

MPCK-Means [9] provides a new method integrating constraint-based and distance-

based learning in a unified framework. In MPCK-Means, the objective function is

redefined as the sum of the total squared distances between the points and their

cluster centroids, and the cost incurred by violating any pairwise constraint. There-

fore, MPCK-KMeans can handle pairwise constraints softly as SCOP-KMeans and

1 d(x, y) = dA(x, y) = ‖x− y‖A =
√

(x− y)TA(x− y), where x and y are two points and A is a

matrix.
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PCKMeans, i.e., the pairwise constraints should be satisfied as many as possible

but can also be violated. In addition, the Euclidean distance in the objective func-

tion is parametrized using a symmetric positive-definite matrix. Similar to the ap-

proach Xing et al. [55], the metric matrix may be either diagonal or full. The optimiza-

tion of this new objective function naturally combines the constraint-guide searching

and metric learning for KMeans. Unlike other metric learning techniques, which only

learn a single metric using the supervised pairwise constraints, MPCK-Means can use

both labeled and unlabeled data to learn multiple metrics, i.e., one metric for each

cluster.

The framework proposed in [6] provides a probabilistic model for MPCK-Means

using Hidden Markov Random Fields (HMRFs). In addition to Euclidean distance,

the HMRFs framework also explores two other popular distortion measures: cosine

similarity and Kullback-Leibler divergence.

Since hybrid methods form a combination of constraint-based and distance-based

methods, they have the advantages and disadvantages of the individual components.

However, the metric learning methods generally require expensive computations so

that the hybrid methods might be not suitable for user interaction to refine their

input.

2.1.5 Feature Transformation and Selection Methods

Semi-supervised clustering method based on spherical KMeans via feather projection

(SCREEN) [51] addresses the problem of constraint-guided feature projection and

integrates it with a semi-supervised clustering algorithm. In the initialization stage

of the SCREEN method, each transitive closure of “must-link” constraints is replaced

with its average instance and is weighted by its size. The average instances are used

to represent the “cannot-link”s. Then, a projection matrix is learned by maximizing

the sum of distances between “cannot-link” instances. All instances are projected to

a low-dimensional space using the learned matrix. After the projection, all instances

are clustered by the constrained spherical Kmeans, in which instances that cannot

be linked are placed into their closest clusters. Finally, the replaced instances in each

transitive closure of “must-link” constraints are recovered and placed into the same

cluster as the replacing average instance belongs to. However, after the projection, it
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is difficult for users to interpret the document vectors.

Constraint Score [56] makes use of pairwise constraints for feature selection. By

incorporating this small amount of supervision in feature selection algorithms, the

constraint score method can achieve performance similar to what the Fisher score

method can achieve when using full class labels. However, to achieve such perfor-

mance, the constraint score method relies on a good selection of pairwise constraints.

Instead of seeking one single good set of constraints, Bagging Constraint Score [48]

incorporates bagging into the constraint score method, where the diversity of the

ensemble helps to build a better constraint score for feature selection.

2.1.6 Active Learning with Pairwise Constraints

The active learning scheme for selecting pairwise constraints proposed in Basu et al.

[5] is made up of two phases: Explore and Consolidation. The Explore phase uses the

farthest-first traversal scheme to find a non-null neighborhood for each underlying

cluster as fast as possible. At the end of Explore phrase, at least one point has been

obtained for each cluster. In Consolidate phrase, randomly selected instances can

be queried to be paired with one of the neighborhoods of the clusters. This stage

expands and consolidates the neighborhoods obtained in the Explore phase.

Huang et al. [29] investigates the active learning of constraints for semi-supervised

clustering using intermediate clustering results to guide the selection of the document

pairs. Two gain models are designed to select the most informative document pair

given the current assignments. In the independent model, previously identified con-

straints do not affect the selection of the next most informative constraints in the

current iteration. The dependent model also considers the previously identified con-

straints to avoid redundant selection and maximize the gain.

Instead of finding a neighborhood [5, 29] for each cluster, Huang and Lam [27]

discover neighborhoods only for some clusters so that constraints cannot be consumed

too quickly when the datasets are unbalanced, i.e. some clusters are very large while

others are very small. In addition, a language model is designed to represent the

neighborhoods. Based on this language model, several gain functions are proposed

to measure how much information can be gained by having a document pair been
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labeled. Three models, namely, uncertainty model, generation error model, and ob-

jective function model, are investigated for the gain function.

Constraint Selection by Committee [20] makes use of the ensemble approach to

identify informative constraints for semi-supervised clustering. Once a large collection

of based clusterings is obtained, a co-association matrix A is built to represent the

co-assignments between instances across all clusterings. Unambiguous associations

with very large Aij ≈ 1 (must-link) and small Aij ≈ 0 (cannot-link) can be identified

automatically. Therefore, user supervision can be used to identify the more uncertain

and informative constraints with Aij ≈ 0.5.

Since user supervision is labor-intensive, an active learning scheme should be

designed to recommend the most potentially informative documents for the user to

label. In this thesis, an adapted version of the Explore and Consolidate framework

is proposed for the user study. The main difference is that the adapted version does

not require the number of the clusters K be known. The adapted framework is built

into a well-designed interactive user interface with various operations to help users

to perform both document supervision and feature supervision. In addition, active

learning of labeling features can also be performed [22]. Furthermore, the active

learning of features and documents at the same time might be unified into a single

framework by adapting the method proposed for document classification [2].

2.2 Feature Supervision

Feature supervision has been mainly used to improve the performance of classifica-

tion algorithms, such as using the labeled features for each class to constrain the

probabilistic model estimation [17], making use of feature feedback with support

vector machine [40], and creating pseudo-instances using labeled features for each

class [36, 54]. However, classification methods assume there are pre-defined categories

to which users can assign documents or keywords. In document clustering setting,

users have to form their perception of the document collection during exploration.

2.2.1 Feature Supervision for Document Classification

In this section, we review the main classification algorithms using feature supervision.
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A set of representative features for each class is labeled in Liu et al. [36]. These

features are then used to extract a set of documents for each class, which are used

to form the training set. Then, the Expectation-Maximization (EM) algorithm [14]

is applied iteratively to build new classifiers. In Liu et al. [36], the features are used

only for constructing class seeds in but are not used in the following EM process.

Interactive feature selection for actively building an accurate classifier is studied

in [40], which uses linear support vector machine as the base classifier. At each

iteration of the active learning, users are asked to label both the most uncertain

document and a list of features. It uses uncertainty sampling [35] for document-level

active learning which requires users to label the document about which the classifier(s)

is (are) not certain about. The feature-level active learning ranks the features using

information gain based on the currently labeled documents and presents the user with

the features that are at top of the ordered list. The labeled features are incorporated

into the support vector machine through feature reweighting.

Druck et al. [17] proposes that the labeled features can be used to constrain the

probabilistic model estimation on unlabeled instances instead of creating pseudo-

instances as in other approaches. These soft constraints are expressed using general-

ized expectation criterion in a parameter estimation objective function that expresses

preferences on values of a model expectation. The complete object function also

includes a Gaussian prior on parameters.

Sindhwani and Melville [46] proposes a novel semi-supervised sentiment prediction

method which utilizes both labeled instances and features. Their method is based on

the joint analysis of instances and features using a bipartite graph representation of

the data. They claim that this semi-supervised model performs significantly better

than purely supervised and competing semi-supervised classification techniques when

applied to a diverse collection of sentiment prediction problems.

Sindhwani et al. [47] studies the problem of active dual supervision using graph

models. The classical uncertainty and experimental design based active learning

schemes are applied to optimally query the instance oracle and the feature oracle to

simultaneously collect two different forms of labels. The transductive experimental

design used for optimal feature labeling are based on various measures such as un-

certainty, certainty, random, and variance-based measure. The results indicate the
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certainty measure is the best of the four measures for active feature supervision. In

these schemes, the active learner probabilistically queries the instance oracle or the

feature oracle for the most informative example or word based on an interleaving

probability.

A unified approach is presented in Attenberg et al. [2] for active dual supervision

of labeling both instances and features. This approach determines which feature

or document a classifier is most likely to benefit from having been labeled. Unlike

previous active dual supervision methods which select documents and features to

label separately, this framework uses a holistic approach to active dual supervision

based on Expected Utility (estimated risk minimization) framework, in which the

most informative documents or features are selected in tandem. Several Expected

Utility measures are investigated in the proposed framework. Some measures are

supervised utility measures, such as log gain, accuracy and entropy computed on

labeled documents while others are unsupervised utility measures, such as Entropy

and maximum posterior computed on the pool of unlabeled documents [44].

2.2.2 Feature Supervision for Document Clustering

One of the main research goals in this thesis is to investigate whether feature super-

vision can improve document clustering performance. As we mentioned before, there

are no predefined categories in the document clustering setting and users have to form

their perception of the document collection during exploration. Consequently, users

do not know the number of clusters and what clusters they have at the beginning.

Due to this limitation, users cannot assign features to clusters directly before they

create them during exploration of the document collection. Therefore, we propose

three methods to label features for document clustering based on how a feature is

labeled. In the first method, users identify whether a feature is useful for clustering

given a list of features. The confirmed features will be reweighted for the representa-

tion of documents. In the second method, users label features whilst they are labeling

(by reading) documents. Besides being identified as useful or not for clustering, the

features labeled whilst labeling a document can be associated with the document

from which they are labeled. After a document is assigned to a cluster, the features

associated with the document are automatically assigned to the same cluster. In the
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third method, users can assign features directly to already created clusters. For the

second and the third methods, features can be used to seed the assigned clusters

since they are associated with clusters. At the same time, they can also be used

without considering the cluster labels and be reweighted for the representations of

the documents.

More specifically, we have different concrete feature supervision methods for the

semi-supervised clustering algorithms discussed in Section 2.1. Since constraint-based

methods do not create clusters but only identify the relationships between pairs of

documents, it is expected that the user can label a feature by indicating whether

it is “good” (discriminating) for clustering while labeling a document constraint for

the semi-supervised clustering algorithms in this category. Then, the labeled features

can be reweighted to represent the documents before the semi-supervised clustering

algorithms begin. Note that the labeled features are not associated with any specific

clusters in constraint-based methods. In seed-based methods, a user labels docu-

ments as seeds for clusters. Therefore, it is expected that a user can label features

while labeling a seed (instance) for a cluster. The labeled features are associated

with the documents in which they are labeled. After a document is assigned (la-

beled) into a cluster, the features associated with the document are automatically

assigned into the same cluster. In addition, users can come up with their own key-

words (features) for a document. They can also assign keywords directly into an

already created cluster. Without cluster labels of features being considered, the la-

beled features can be reweighted for the representations of the documents before the

semi-supervised clusterings start. However, the cluster labels of the features might

help us to cluster documents better through seeding the clusters to which they are

assigned. Therefore, the features with cluster labels can be used to seed the clusters

to which they are assigned. Since distance-based methods use document constraints

similar to constraint-based methods, feature supervision can be performed similarly

by identifying whether a feature is useful for clustering while a document constraint

is labeled. The labeled features can be reweighted for the representations of the doc-

uments and a new distance metric can be learned based on reweighted document

representations. In addition, the labeled features can also be reweighted based on

the new distance metric learned from the labeled document constraints if the matrix
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used in distance-based methods is diagonal. The feature reweighting always takes

place before the semi-supervised clustering algorithms begin. Since hybrid methods

form a combination of constraint-based and distance-based methods, the same feature

supervision approaches in constraint-based and distance-based methods can be used

in hybrid methods. The labeled features can be used to reweight the representations

of the documents without cluster labels being considered. In addition, the labeled

features can also be reweighted at each iteration of the hybrid methods after the

distance metric is learned based on the intermediate clusters and labeled document

constraints. In feature transformation methods, the labeled features can be incor-

porated similarly to constraint-based methods by reweighting the labeled features

before the semi-supervised clustering algorithms start. However, after the projection,

it is difficult for the user to identify the labeled features any more. In feature selec-

tion methods, the labeled features should have the highest constraint score computed

based on the labeled document pairs since they are thought of as useful for cluster-

ing by users. Therefore, they should always be included in the selected features for

clustering.

2.3 Personalized Clustering

There has not been much research on the personalized clustering. Drucker et al.

[18] recruited thirty-two participants to group the same document collection and

compare the different manual organizations from all users. They found that users

had individual styles and create distinct clusters. However, Drucker et al. [18] did

not evaluate the personalization of the clusters produced from different algorithms,

since the generated clusters are not evaluated by users who provided the supervision.

ClusteringWiki [1] incorporates user’s intervention and collaboration by editing and

changing the cluster memberships through a Wiki interface to personalize the user’s

search results. Leung et al. [33] introduce a personalized approach to cluster short and

ambiguous queries by capturing a user’s conceptual preferences. The approach first

extracts concepts from the search results returned from a query and then identifies

related queries using the extracted concepts. Second, a new two-step agglomerative

clustering algorithm is proposed to generate personalized query clusters. Rigou et al.

[42] introduces an algorithm to generate personalized clusters of all web documents
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satisfying a set of predefined personal user preferences. The personalized algorithm is

based on a range tree structure. Since the web documents need to be clustered before

being presented to end users, it allows more effective manipulation and supports a

better process of decision making. This method uses predefined preferences and is not

flexible for dynamic user needs. Feature supervision can be used together with these

methods and possibly improve user’s personalized clusters further. In these methods,

user supervision is applied to search results and queries, which are generally short.

In addition, these methods are particularly tuned for web search and might not work

on general document clustering with long documents such as academic papers.



Chapter 3

Datasets and Evaluation Measures

In this chapter, we describe the datasets we use to evaluate the newly proposed

algorithms and frameworks. At the same time, we present the evaluation measures

that are used to compare the performance of the newly proposed algorithms with the

baseline algorithms.

3.1 Datasets

We use several datasets to validate our algorithms and frameworks. All datasets

including the derived datasets have their own characteristics, such as the types and

length of the documents. Those datasets vary by size of the datasets, length of

documents, and separability between clusters. All datasets we use in this thesis are

summarized in Table 3.1. The details about each dataset can be found in the following

sections.

3.1.1 The 20 Newsgroups Collection

The 20-Newsgroups collection1 is widely used for testing text mining algorithms.

There are approximately 20,000 newsgroup messages, which are almost evenly parti-

tioned into 20 different Usenet newsgroups. We derived several sub-datasets from the

original 20 Newsgroups dataset to test the robustness of the clustering algorithms.

First, three small datasets with different separability are derived according to the

method described in Basu et al. [6], i.e., news-diff-3, news-related-3, and news-similar-

3. Each derived data set consists of 300 messages, with 100 messages from each of

the 3 categories. Dataset news-diff-3 covers topics from 3 quite different newsgroups

(alt.atheism, rec.sport.baseball, and sci.space). Dataset news-related-3 contains 3

related newsgroups (talk.politics.misc, talk.politics.guns, and talk.politics.mideast).

1http://people.csail.mit.edu/jrennie/20Newsgroups/

26
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Dataset Description Categories included Doc./Cat. Tot.
news-similar-3 The 20-Newsgroup

data set consists of 20
different Usenet
newsgroups, each of
which has
approximately 1000
newsgroup messages.
See Details in
Section 3.1.1.

3:comp.graphics,comp.os.ms-
windows.misc,comp.windows.x

100 300

news-diff-3 3:alt.atheism, rec.sport.baseball, and sci.space 100 300
news-related-3 3:talk.politics.misc, talk.politics.guns, and

talk.politics.mideast
100 300

news-multi-7 7:alt.atheism,comp.sys.mac.hardware,
misc.forsale,rec.sport.hockey,sci.crypt,
talk.politics.guns,soc.religion.christian

100 700

news-multi-10 10:alt.atheism,comp.sys.mac.hardware,misc.for-
sale, rec.autos,rec.sport.hockey,sci.crypt,sci.med,
sci.electronics, sci.space, talk.politics.guns

100 1000

D2-D2&D3-D3 Research papers about
Computer Science in
full text. See Details
in Section 3.1.2.

3:D2 : Software Engineering, D2&D3 : Soft-
ware Engineering and Programming Lan-
guages, and D3 : Programming languages

∼ 100 ∼ 300

D-H-I 3:D : Software, H : Information Systems, and I :
Computing Methodologies

∼ 200 ∼ 600

3-classic-abstract abstracts from CISI,
CRAN and MED of the
SMART document col-
lection. See Details in
Section 3.1.3.

CISI, CRAN, and MED ∼ 1000 ∼ 3000

webkb-sfcp-4 webpages from dif-
ferent universities.
See Details in Sec-
tion 3.1.4.

4:student, faculty, course, project 250 1000

sector-multi-10 webpages from differ-
ent industrial sectors.
See Details in Sec-
tion 3.1.5.

10:basic.materials,capital.goods,consumer.cycli-
cal, oil.and.gas.integrated, invest-
ment.services, biotechnology.and.drugs, ho-
tels.and.motels, communications.equipment,
railroad, water.utilities

100
(railroad-
95)

995

reuters-multi-10 news articles from
Reuters21578. We
use the top 10 most
frequent categories,
documents of which
does not have multiple
labels. See Details in
Section 3.1.6.

10:acq, coffee, crude, earn, gold, interest,
money-fx, ship, sugar, trade

100
(gold-90)

990

Table 3.1: All Datasets used in this thesis, derived from the 20-newsgroups (Sec-
tion 3.1.1), the ACM collection of full text papers about computer science (Sec-
tion 3.1.2), the 3-classic (Section 3.1.3), the webkb (Section 3.1.4), the industry sec-
tors (Section 3.1.5) and the reuters21578 (Section 3.1.6).
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Dataset news-similar-3 consists of messages from 3 similar newsgroups (comp.graphics,

comp.os.ms-windows, comp.windows.x). Since news-similar-3 has significant overlap

between groups, it is the most difficult one to be clustered. Those three datasets

are created for the purpose to study the effect of data separability of the algorithms.

Second, we derive two datasets with 7 and 10 clusters, called news-multi-7 and news-

multi-10 [24, 25] respectively. Each cluster of the datasets contains a random sample

of 100 documents from each of the corresponding newsgroup in the 20 newsgroups.

news-multi-7 and news-multi-10 is generated for the purpose to study the effect of

dataset size on the performance of the algorithms.

In summary, we have six datasets from 20 Newsgroups: (1) original-20: Original

20 Newsgroups dataset with about 20,000 messages, (2) news-diff-3, (3) news-related-

3, (4) news-similar-3, (5) news-multi-7, and (6) news-multi-10.

3.1.2 The ACM Paper Collection

The second dataset is a collection of 580 papers in full text [21, 22], which were man-

ually collected by the author from the Association for Computing Machinery (ACM)

Digital Library2. We use the 1998 ACM Computing Classification System to label

the categories3. In this thesis, we use the categories listed in Table 3.2. Categories

H and I are related as they have overlapped areas such as “Data Mining” and “Text

Clustering”. Two datasets are derived from ACM paper collection. The first de-

rived dataset D2-D2&D3-D3 contains three clusters, papers of which are randomly

sampled from only category D2, from both categories D2 and D3, and from only

D3 category respectively. Each category has 87 papers in this dataset and is related

to each other as they are all from D category. The second derived dataset D-H-I

consists of three clusters. This dataset has 100 papers randomly sampled from each

of D,H,I categories respectively.

Generally speaking, the categories assigned by paper authors are very coarse and

cannot reflect the accurate topics of the papers. In addition, it is not uncommon that

one paper is related to multiple topics and can be assigned to multiple categories.

Therefore, we also use this dataset in our user study besides evaluating our newly

2http://portal.acm.org
3http://www.acm.org/about/class/1998/



29

ACM category code ACM category name
D Software
D.2 Software Engineering
D.3 Programming Languages
H Information Systems
I Computing Methodologies

Table 3.2: Legend of ACM Categories

proposed algorithms using oracles. Compared to the messages in the 20 Newsgroups,

the papers are much longer, and contain many scientific terms. Therefore, these

papers should be thought of as a different type of documents from the newsgroup

messages.

3.1.3 The 3-classic Dataset

The third dataset 3-classic is made by combining the CISI, CRAN, and MED from the

SMART document collection4. MED is a collection of 1033 medical abstracts from

the Medlars collection. CISI is a collection of 1460 information science abstracts.

CRAN is a collection of 1398 aerodynamics abstracts from the Cranfield collection.

100 documents from each category are sampled to form the reduced 3-classic dataset.

This reduced dataset is named 3-classic-abstract. Similar to news-diff-3, the topics

of this dataset are quite different across categories.

Since these documents are abstracts, they are often even shorter than the messages

in 20 Newsgroups and the document vectors may be more sparse.

3.1.4 The Webkb Dataset

The webkb dataset5 is a collection of webpages from different universities. The web-

pages are homepages for students, faculty, projects, or courses. We use 250 documents

from each category and name this dataset webkb-sfcp-4.

4ftp://ftp.cs.cornell.edu/pub/smart
5http://www.cs.cmu.edu/~webkb/
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3.1.5 The Sector Dataset

The sector dataset6 is a collection of corporate webpages classified into a topic hier-

archy with about 70 leaves. We use 10 categories, each of which includes approxi-

mately 100 documents. Those categories are: (1) basic.materials, (2) capital.goods,

(3) consumer.cyclical, (4) oil.and.gas.integrated, (5) investment.services, (6) biotech-

nology.and.drugs, (7) hotels.and.motels, (8) communications.equipment, (9) railroad,

and (10) water.utilities. This dataset is named sector-multi-10.

3.1.6 The Reuters21578 Dataset

The Reuters21578 corpus7 [34] is the most widely used test collection for research

on text categorization. It consists of news articles from different news categories.

In this thesis, we use the top 10 most frequent categories, in which documents do

not belong to multiple categories so that they are suitable for testing hard clustering

algorithms. Each category includes about 100 documents. Those categories are:

(1) acq, (2) coffee, (3) crude, (4) earn, (5) gold, (6) interest, (7) money-fx, (8) ship,

(9) sugar, and (10) trade. This dataset is named reuters-multi-10.

3.1.7 Pre-processing of Documents

We pre-process each document by tokenizing the text into bags-of-words8. Then, we

remove the stop words9 and stem the remaining words using the Porter stemming

algorithm [39]. Since we need to compare the performance of feature sets with dif-

ferent sizes in Chapter 4, the top m features ranked either by mean-TFIDF [50] for

unsupervised clustering or the χ2 method for supervision are selected to represent

the documents (See details in Chapter 4). In other chapters (i.e., Chapters 5, 6, 7),

the top 2000 features using mutual information between words and documents [15]

are chosen to represent the documents using TFIDF values. Feature supervision are

performed on these 2000 features (See details in Chapter 5, 6, 7 respectively). For

the KMeans based algorithms, a feature vector for each document is constructed

6http://people.cs.umass.edu/~mccallum/data.html
7 http://www.daviddlewis.com/resources/testcollections/reuters21578/
8A word is defined as a sequence of alphabetic characters delimited by non-alphabetic characters.
9http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
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with TFIDF weighting and then normalized. For the EM-NB (Näıve Bayes) based

algorithms, the term frequency of the selected features is directly used in the related

algorithms.

3.2 Evaluation Measures

In this thesis, we introduce user supervision to clustering techniques to improve clus-

tering performance and produce personalized clusters. The algorithms are first pro-

posed and evaluated based on oracles. Oracles are simulated users based on the

underlying class labels of the standard datasets. Then, we conduct a user study to

ask human users to provide user input to guide the clustering algorithms and evaluate

the quality and personalization of the clusters based on clusters users manually cre-

ate. We use clustering accuracy [8], normalized mutual information (NMI) [16], and

Jaccard coefficient [8] to measure clustering performance for oracle-based evaluation

as in previous work [11, 4, 9, 21, 22, 24, 25]. In the user study, we need to evalu-

ate personalization of the same collection by different users. Therefore, we compare

different clusterings by Rand Distance [41] in terms of cluster memberships of docu-

ments and by Jaccard Distance in terms of assigned features to clusters. In addition,

we develop measures cohesiveness, separation, and F -Measure to evaluate clusters

produced for users based on their manual organizations of the documents. Clustering

accuracy and NMI are two external clustering validation metrics that estimate the

clustering quality with respect to the underlying document class labels. Clustering

accuracy computes the ratio between major chunks of clusters from the same classes

and the size of the document collection while NMI measures the similarity between

the clusters and underlying classes [30]. They measure how close the reconstructed

clusters are to the underlying classes of the documents. Jaccard coefficient and Rand

Index measure the similarity between two different clusterings while Jaccard Distance

and Rand Distance measure the dissimilarity between two clusterings.

3.2.1 Clustering Accuracy

Assume we have a clustering T and the underlying classes C. To estimate the cluster-

ing accuracy, we map each cluster t ∈ T to one underlying class c ∈ C if the documents

from c dominate t, i.e., the number of documents from c is maximum. Then we define
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n(t) as the number of dominating documents in t from c. The clustering accuracy

CACC of T with respect to C is defined as:

CACC(T,C) =

∑

t n(t)
∑

t |t|
=

∑

t n(t)

N
(3.1)

where N is the size of the document collection. As it is pointed out in Bekkerman

et al. [8], it is meaningless when the number of clusters K is very large. For example,

CACC is 1 when K equals N , the number of documents in the collection. The

CACC values are in the interval [0, 1]. In all our experiments, we set K the same as

the number of underlying classes in the datasets.

3.2.2 Normalized Mutual Information

Normalized mutual information (NMI) [16] measures the shared information between

the cluster assignments S and class labels L of documents. It is defined as:

NMI(S, L) =
I(S, L)

(H(S) +H(L))/2
(3.2)

where I(S, L), H(S), and H(L) denote the mutual information between S and L,

the entropy of S, and the entropy of L respectively. Assuming there are K classes

and K clusters, N documents, n(li) denotes the number of documents in class li,

n(sj) denotes the number of documents in cluster sj, n(li, sj) denotes the number of

documents in both class li and cluster sj, we define:

H(L) = −
K
∑

i=1

P (li)log2P (li) (3.3)

H(S) = −
K
∑

j=1

P (sj)log2P (sj) (3.4)

I(S, L) = −
K
∑

i=1

K
∑

j=1

P (li, sj)log2
P (li, sj)

P (li)P (sj)
(3.5)

where P (li) = n(li)/N , P (sj) = n(sj)/N and P (li, sj) = n(li, sj)/N . The NMI values

are in the interval [0, 1].
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3.2.3 Jaccard Coefficient

Jaccard coefficient [8] is used to measure similarity between two clusterings with no

underlying class labels being used. Given two clusterings yc1 and yc2, we define a as

the number of document pairs, such that two documents are from the same cluster

in both yc1 and yc2, b as the number of document pairs, such that two documents are

from the same cluster in yc1 but not in yc2, c as the number of document pairs, such

that two documents are from the same cluster in yc2 but not in yc1. Then the Jaccard

Coefficient between yc1 and yc2 is defined as:

J(yc1, y
c
2) =

a

a+ b+ c
(3.6)

Note that the values of Jaccard Coefficient are in the interval [0, 1].

3.2.4 Rand Distance

Assume a document collection D = {d1, d2, . . . , dn} and two clusterings of D, i.e.,

X = {x1, x2, . . . , xr} and Y = {y1, y2, . . . , ys}, where xi and yj are subsets of D. At

the same time, we also have xi ∩ xj = ∅ and ∪i=1,...,rxi = D where i, j ∈ {1, . . . , r}

and i is not equal to j, and yi ∩ yj = ∅ and ∪i=1,...,syi = D where i, j ∈ {1, . . . , s} and

i is not equal to j. We define the following quantities:

• a, the number of pairs of documents that are in the same cluster in X and Y .

• b, the number of pairs of documents that are in different clusters in X and Y .

• c, the number of pairs of documents that are in the same cluster in X but in

different clusters in Y .

• d, the number of pairs of documents that are in different clusters in X but in

the same cluster in Y .

The Rand Index, RI, is:

RI =
a+ b

a+ b+ c+ d
(3.7)

and the Rand Distance, RD, is:

RD = 1−RI =
c+ d

a+ b+ c+ d
(3.8)
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Rand Index and Rand Distance measure the similarity and the dissimilarity between

two clusterings respectively. The values of Rand Index and Rand Distance are in the

interval [0, 1].

3.2.5 Cohesiveness, Separation, and F -Measure

In the user study, each user manually groups the same document collection into a

set of clusters based on their own perception during the exploration. Therefore,

each user might have a very different organization from each other. In this sense,

the clusters produced by clustering algorithms for each user should be evaluated

against the user’s manually organized clusters of the document collection. Instead of

computing only the whole similarity of two clusterings, we would like to compute and

compare the cohesiveness and separation of the generated clusters based on the user

manual organized clusters. Cohesiveness measures how closely related the documents

in the same cluster are to each other while separation measures how widely separated

the documents from different clusters are from each other. To this end, we developed

measures coh, sep, and F -Measure [23] to evaluate the clusters produced for this

user with/without supervision. Those measures treat a user’s manual organization

as the gold standard. Assuming the gold standard partition G = {g1, g2, . . . , gk} and

a clustering C produced by a clustering algorithm, we define the following quantities:

• a′, the number of pairs of documents that are in the same cluster in G.

• b′, the number of pairs of documents that are in the same cluster in G and C.

• c′, the number of pairs of documents that are in different clusters in G.

• d′, the number of pairs of documents that are in different clusters in G and C.

The cohesiveness of C with respect to G, coh, is defined as:

coh =
b′

a′
(3.9)

The separation of C with respect to G, sep, is defined as:

sep =
d′

c′
(3.10)



35

and finally F -Measure with respect to G, F , is defined as:

F = 2×
coh× sep

coh+ sep
(3.11)

where coh measures the cohesiveness of C while sep measures the separation of C.

Both measures are based on a user’s manual organization G. The values of coh, sep,

and F are in the interval [0, 1].

3.2.6 Jaccard Distance

Given two sets A and B, the Jaccard Index, J I, is:

J I =
|A ∩ B|

|A ∪ B|
(3.12)

and the Jaccard Distance, JD, is:

JD = 1− JI =
|A ∪ B| − |A ∩ B|

|A ∪ B|
(3.13)

Jaccard Index, J I, measures similarity between two sets while Jaccard Distance, JD,

measures dissimilarity between two sets. Given two clusterings X and Y of a docu-

ment collectionD (Section 3.2.4), Xw = {xw1, xw2, . . . , xwr} and Yw = {yw1, yw2, . . . , yws}

are the sets of keywords assigned to each cluster in X by one user and in Y by another

user, i.e., xwi and ywj are the keywords assigned to cluster xi and yj respectively. We

define two dissimilarity measures between Xw and Yw. One measure JDa measures

dissimilarity between Xw and Yw without consideration of the cluster labels of the

assigned keywords, i.e., A = ∪i=1,2,...,rxwi and B = ∪j=1,2,...,sywj in Eq. 3.13. The

other measure JDb measures dissimilarity between Xw and Yw with cluster labels of

assigned keywords being considered. JDb is defined as:

JDb =

r
∑

i=1

min
j=1,2,...,s

JD(xwi, ywj) +
s

∑

j=1

min
i=1,2,...,r

JD(ywj, xwi)

r + s
(3.14)

In this measure, we compute the average distance between a cluster (e.g. xwi in X )

and its closest match (i.e.
r

∑

i=1

min
j=1,2,...,s

JD(xwi, ywj)) in the other clustering (i.e. Y).

The closest match ywj from the other clustering Y is the cluster that has minimum

distance (
r

∑

i=1

min
j=1,2,...,s

JD(xwi, ywj)) from the original cluster xwi. In this way, cluster
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labels are considered when the measure is computed. Note that the closest match

relationship is not symmetrical, i.e., with xwi’s closest match in Y being ywj, the

closest match of ywj in X could be xwk, where k might not be identical to i. The

values of JD and JDb are in the interval [0, 1].



Chapter 4

Interactive Feature Selection

This chapter presents how feature supervision in the form of indicating whether a

feature is useful for document clustering can be incorporated into unsupervised doc-

ument clustering [21, 22]. We ask users to confirm features out of a ranked list based

on the intermediate clusters and reweight the “accepted” features. An interactive

feature selection framework for document clustering is proposed based on this idea.

The underlying intuition is that reweighted discriminating features can help guiding

clustering algorithms to group similar documents together.

4.1 Introduction

As we mentioned in Chapter 1, traditional unsupervised clustering techniques output

potential clusters with minimum user effort but users are often dissatisfied with the

generated clusters because they are neither intuitive nor reflect user’s point of view. In

this chapter, we seek to determine whether clusters better matching user expectation

may be generated with some supervision by users. User supervision can be used in

the two components of clustering: in the algorithm itself and in the representation

of the documents to be clustered. Semi-supervised clustering applies user-provided

constraints between documents such as “must-link” and “cannot-link” to modify the

clustering algorithm by changing either the loss function or the probabilistic model.

Through optimizing the constrained loss function and forming the probabilistic model

with constraints, the user expectation is reflected in the clustering algorithm and

finally in the generated clusters. Besides constraining the clustering algorithm, user

supervision can also be used to achieve a document representation that is more in

accord with the user’s view. Users can influence the document representations by

selecting the feature set to represent the documents. Document category information,

which is not available in document clustering setting, is required for an effective

feature selection. However, users can also give feedback at the feature level. Therefore,

37
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instead of asking users to label enough documents for an effective feature selection,

we ask users to directly label features for clustering.

In this chapter, we explore how user supervision will perform when it is used for

feature selection. The work is different from previous semi-supervised clustering ap-

proaches as it asks users to label features instead of documents, and the supervision

takes the form of selecting features from a list rather than labeling document con-

straints. Traditional semi-supervised clustering algorithms and our framework per-

form at different supervision levels, i.e., document-level and feature-level respectively.

Their performance is not directly comparable because it is difficult to establish a com-

mon quantification of user effort, when the user labels features versus documents. A

key benefit of labeling features is that it may take less time than labeling documents

as reported in the active learning setting [40].

An overview of the framework we use in our study is as follows. We first obtain

document clusters using the current feature set. Then, cluster-based feature selec-

tion is performed based on the obtained clusters serving as the classes, generating a

ranked list of features. We present the top f features in the ranked list to users for

labeling. Users must label every feature as “accept” or “don’t know” according to

their understanding of the document collection. The features users label as “accept”

and a certain number of highly ranked features are used for the new representations

of the documents. The clustering algorithm iterates using the new document repre-

sentations. In this framework, users are always presented with a number of features

based on the recent clusters. The ranking of the features changes at each iteration.

In our framework we try to present the features which are the most promising to be

accepted by users so that users are asked to label as few features as possible.

Our framework is related to the paradigm of active learning (AL) in the document

classification setting. It differs from the interactive feature selection framework pro-

posed in the following ways. First, AL is normally used with document classification

algorithms but our framework performs in the document clustering setting. Com-

pared to a document clustering algorithm, a classification algorithm requires labeled

documents for training a classifier. Second, users label documents in AL but they

label features in our framework. Third, uncertain sampling [35] is used in AL to find

the most uncertain document for labeling at each iteration. However, cluster-based
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feature selection is used to locate a list of the most promising features for labeling.

To explore whether user supervision at the feature level can generate clusters

better matching user expectation, we propose an interactive framework for feature

selection, in which the feature set obtained from the interactive feature selection is

used for clustering. This framework includes several components: an underlying clus-

tering algorithm, unsupervised feature selection, cluster-based feature selection, and

user supervision. We use this framework to select the features for producing clusters

and evaluate whether the generated clusters better conform to user expectation. We

also use this framework to evaluate and quantify the effect of feature reweighting and

user effort in terms of labeling features. In our study, we use simulated users instead

of human users for practicality. Simulated users label features based on document

labels (see Section 4.3.4 for details). In addition, both of simulated and human users

may make mistakes. More importantly, simulated users can be employed repeatedly.

In this chapter, we use KMeans and Multinomial Näıve Bayes model as the underly-

ing clustering algorithms. However, we believe that other clustering algorithms also

work because our interactive feature selection framework does not depend on any

specific algorithm. In addition, we use unsupervised mean-TFIDF feature selection

and χ2, cluster-based feature selection method. Our interactive clustering framework

with interactive feature selection is as follows:

1. Initialization.

(a) Perform unsupervised feature selection and take the top m ranked features

to represent the documents.

(b) Perform the underlying clustering algorithm using the feature set obtained

in step 1a and obtain clusters of documents.

2. Interactive feature selection and clustering.

(a) Perform cluster-based feature selection based on the recent clusters.

(b) Perform interactive feature selection.

(c) Perform the underlying clustering algorithm using the feature set obtained

in step 2b and obtain new clusters of documents.

(d) Stop if no document membership changes. Otherwise, go to step 2a.
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4.2 Background

In this section, we present the underlying clustering algorithms and feature selection

techniques used in our framework. In our framework, we test one partitioning clus-

tering algorithm and one probabilistic model clustering algorithm, i.e., KMeans and

Multinomial Näıve Bayes respectively. For traditional document clustering, we em-

ploy mean-TFIDF feature selection technique to select feature subset for clustering.

For class-based feature selection, we use the χ2 feature selection technique.

4.2.1 KMeans

KMeans [10] is a very popular clustering algorithm because of its simplicity and

efficiency. It clusters data points by locally optimizing a loss function or distortion

measure, which is defined as:

J =
N
∑

i=1

K
∑

j=1

rij‖xi − µj‖
2 (4.1)

which represents the sum of the squares of the distances of each data point to its

assigned cluster center µj. The optimization of J involves finding the assignments

{rij} and cluster centroids {µj} such that the value of J is minimized. {rij} is defined

as

rij =

{

1 if data point i is assigned to cluster j

0 otherwise
(4.2)

This is usually achieved by an iterative procedure in which each iteration has two

alternating steps corresponding to optimizing {rij} and {µj}. TheKMeans algorithm

is illustrated in Algorithm 1. The time complexity of KMeans is O(IKNM), where

I is the number of iterations that KMeans runs until convergence, K is the number

of clusters, N is the number of data points, and M is the dimensionality of the data

points. Since the time complexity is linear to the parameters, i.e., I, K, N , M ,

KMeans and its variants (KMeans based methods) are very efficient.

4.2.2 Multinomial Näıve Bayes Model

Multinomial Näıve Bayes model [38] is a commonly used probabilistic model for text

clustering, which assumes a document as a vector of words, with each word generated
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Algorithm 1 KMeans [10]

Input: Data point vectors {d1, d2, . . . , dN}, seed s for random initialization of the

cluster centroids {µ1, µ2, . . . , µK}

Output: Data point assignments {rij}

Method:

1: Randomly initialize the cluster centroids {µj} based on the given seed s

2: repeat

3: for all i = 1 to N do

4: Compute all distances distij between data point di and each cluster centroid

µj

5: Assign data point di to the cluster cj when distij is the smallest, namely,

rij = 1 when j = argmink‖di − µk‖
2, otherwise rij = 0

6: end for

7: Update cluster centroids {µj} based on the new data point assignments {rij}

8: until No data point assignments change or maximum # of iterations is reached

independently by a multinomial probability distribution of the document’s class or

cluster.

Now suppose we have a labeled training set D and |D| is the size of D. In the

Näıve Bayes classifier model formulation, wdi,k denotes the word in position k of

document di, where each word is from the vocabulary V = {w1, w2, . . . , w|V|}. The

vocabulary is the feature set selected for clustering. There is also a set of predefined

classes, C = {c1, c2, ..., cn}. In order to perform classification, the posterior probability

P (cj|di) has to be computed from the prior probability and the word conditional

probability. Based on Bayesian probability and the multinomial model, we have the

prior probability

p(cj) =

|D|
∑

i=1

P (cj|di)

|D|
(4.3)
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and with Laplacian smoothing, we have word conditional probability for each class,

p(wt|cj) =

1 +

|D|
∑

i=1

N(wt, di) · P (cj|di)

|V|+

|V|
∑

s=1

|D|
∑

i=1

N(ws, di) · P (cj|di)

(4.4)

where N(wt, di) is the number of times the word wt occurs in document di. Finally,

given the assumption that the probabilities of words given class are independent, we

obtain the posterior probability used to classify documents:

P (cj|di) =
P (cj)P (di|cj)

|C|
∑

r=1

P (cr)P (di|cr)

=

P (cj)

|di|
∏

k=1

P (wdi,k|cj)

|C|
∑

r=1

P (cr)

|di|
∏

k=1

P (wdi,k|cr)

(4.5)

In the iterative Multinomial Näıve Bayes Model clustering, the clusters of docu-

ments are treated as the predefined classes in each iteration. The prior probability

and the word conditional probability of each cluster are computed based on the most

recent document distributions in the clusters.

The Expectation-Maximization (EM) algorithm is a widely used iterative algo-

rithm for maximum likelihood estimation for problems involving missing data [14].

Therefore EM algorithm is commonly used to assign cluster labels to the docu-

ments during clustering. There are two steps in each iteration of the EM algo-

rithm, namely, E step and M step. The E step assigns the missing values (cluster

labels) and the M step estimates parameters based on the most recent assignments

of cluster labels. The Multinomial Näıve Bayes clustering algorithm, also called EM-

NB algorithmname=EM-NB ,description=Expectation-Maximization with Multino-

mial Näıve Bayes model, is formed by applying EM algorithm to Näıve Bayes clas-

sifier. In EM-NB algorithm, Eq. 4.3 and Eq. 4.4 are evaluated in the M step and

Eq. 4.5 is evaluated in the E step.

The EM-NB algorithm is given in Algorithm 2. The initial p(cj|di) can be ob-

tained in two ways. It can be derived from clusters obtained from another clustering

algorithm such as KMeans. In this case, the value of p(cj|di) is 1 when di is in cluster

cj. Otherwise, the value is 0. The initial p(cj|di) can also be obtained from another

probabilistic model such as EM-NB itself, in which case its value is between 0 and 1.
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Algorithm 2 EM-NB, i.e. Multinomial Näıve Bayes [38]

Input: Data point vectors {d1, d2, . . . , dN} and initial probability that a document

belonging to a class (cluster), Pinitial(cj|di)

Output: Pnew(cj|di) and data point assignments {rij}

Method:

1: repeat

2: for all j = 1 to |C| do

3: Based on current P (cj|di), compute

• Prior probability P (cj) using Eq. 4.3

• Word conditional probabilities P (wt|cj) using Eq. 4.4

4: end for

5: for all i = 1 to N do

6: for all j = 1 to K do

7: Compute Pnew(cj|di) given the document using Eq. 4.5

8: end for

9: Assign di to cluster j, for which Pnew(cj|di) is maximum, obtain data point

assignments {rij}

10: end for

11: until No data point assignments change or maximum # of iterations is reached
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4.2.3 Mean-TFIDF Feature Selection Technique

Mean-TFIDF feature selection technique [50] is based on the principle that a good

feature has high term frequency but low document frequency. It ranks all features by

their mean-TFIDF values which are defined as follows. Term frequency tf of a feature

j in a document di is defined as tf(i,j) =
n(i,j)∑
k n(k,j)

while inverse document frequency idf

of a feature j (ftj) is defined as idfj = log |D|
|{d:ftj∈d}|

where D denotes the document

collection, n(i,j) denotes occurrences of term i in document j and d denotes a document

in D. Then TFIDF(i,j) is the product of tf and idf , namely, TFIDF(i,j) = tf(i,j)∗idfi.

The mean-TFIDF value of a feature j is the average value of TFIDF s over the

documents in the collection defined as mean-TFIDFj =
∑

i TFIDF(i,j)

|D|
.

4.2.4 χ2 Class-Based Feature Selection Technique

The χ2 value of a feature indicates whether the feature is significantly correlated with

a class [43]. Larger values indicate higher correlation. Basically, the χ2 test aggregates

the deviations of the measured probabilities from the expected probabilities assuming

independence. Assuming random variable C ∈ {0, 1} denotes class and random

variable I ∈ {0, 1} denotes existence of feature j, the χ2 value of the feature j defined

as follows:

χ2 =
∑

c,i

[kc,i − nPr(C = c) · Pr(I = i)]2

nPr(C = c) · Pr(I = i)
(4.6)

where kc,i is the number of documents in cluster c and with/without feature j indi-

cating by value of i. Pr(C = c) and Pr(I = i) are maximum likelihood probability

estimations. Assume there are N documents in the collection. If there are Nc docu-

ments in class c, then Pr(C = c) = Nc/N . If there are Ni documents with/without

feature j indicated by the value of i, then Pr(I = i) = Ni/N . In the case of where

there are more than two classes, the χ2 value of a feature j is the average of all χ2

values between feature j and all classes. After obtaining the average χ2 values, all

features are ranked and the top m ones can be used for classification.

When the χ2 is used for feature selection of document clustering, we treat clusters

as classes.
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Variable Definition
s seed for the randomization of KMeans cluster centroids {µj}
m size of feature set for document clustering
f number of features presented to users at each iteration
yc recently generated clusters
{rij} assignment of document i to cluster j
FSm feature set selected for next clustering iteration
FSbasic all features extracted
FSt

accepted set of features accepted until iteration t

g the weight for accepted features in FSt
accepted

{d1, d2, . . . , dN} document collection D = {d1, d2, . . . , dN}

Table 4.1: Definition of Variables

4.3 Methodology

In this section, we introduce the interactive feature selection and clustering frame-

works, an approach to investigate the effect of user effort, and cluster evaluation

measures. We also give details about the simulated users. In Table 4.1, we define the

variables we use in this chapter.

4.3.1 Interactive Feature Selection Framework

The high dimensionality of the document text reduces the clustering algorithm perfor-

mance. Feature selection can alleviate this problem and generate a feature set which

is easily interpreted by users. This is one of the motivations for inviting users to label

features during clustering. At each iteration, the features presented to users for con-

firmation are the top f features ranked by cluster-based feature selection, e.g. the χ2,

treating the most recent clusters as classes. Users give one of the “accept” or “don’t

know” answers when a feature is presented. If the feature is believed to be useful

for discriminating among clusters, the user will give answer “accept”; otherwise, an

answer “don’t know” is given. The algorithm that incorporates feature supervision

for feature selection is presented in Algorithm 3. All features accepted by users will

be included in the feature set for next clustering iteration. The remaining features,

up to the total number m (a fixed number given by user) of features for clustering,

are selected according to the ranking obtained by the cluster-based feature selection

based on the most recent clusters.
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Algorithm 3 Interactive Feature Selection with User Supervision

Input: m — size of feature set for document clustering, f — # of features presented

to users each time, FSt−1
accepted — set of features accepted until t− 1 iteration, FSbasic

— all features extracted, yc — intermediate clusters.

Output: FSt
accepted — set of features accepted until t iteration, FSm — feature

selected for next clustering iteration.

Method:

1: FSt
accepted ← FSt−1

accepted

2: FLall ← Rank all features in FSbasic by cluster-based feature selection, e.g. the

χ2, based on yc

3: {// accepted features and “don’t know” features are presented to users only once

and multiple times respectively}

4: FL = FLall − FSt−1
accepted

5: for all i = 1 to f do

6: Present ith feature in FL to the user, get $reply

7: if $reply == “accept” then

8: Add ith feature into FSt
accepted

9: end if

10: end for

11: FSm ← FSt
accepted

12: size← size of FSm

13: for i← 1 to m− size do

14: FSm ← FSm ∪ {(f + i)thfeature}

15: end for
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Algorithm 4 Interactive Document Clustering Framework with Feature Selection

Input: {d1, d2, . . . , dN} — document vectors, s — seed for randomization, f — # of

features presented to users at each iteration, g — the weight for accepted features, m

— size of feature set for document clustering, FSbasic — all features extracted.

Output: {rij} — assignments of document to clusters, i.e. final clusters.

Method:

1: Obtain an initial set of clusters ycinitial using the underlying algorithm (KMeans

or EM-NB) with given seed s and feature set selected by unsupervised feature

selection, e.g., mean-TFIDF

2: yc ← ycinitial

3: t← 0

4: FS0
accepted ← {}

5: repeat

6: t← t+ 1

7: Perform feature Selection with User Supervision, Algorithm 3

8: Initialize the underlying clustering algorithm with previous iteration’s param-

eters

9: Cluster documents using the new feature set and the initialized underlying

clustering algorithm and obtain new clustering ycnew and data point assignments

{rij}

10: yc ← ycnew

11: until No data point assignment changes or maximum # of iterations is reached

or the user chooses to terminate
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4.3.2 Interactive Document Clustering Framework

After a new feature set with user supervision is obtained as described in Algorithm 3,

the documents are re-clustered using this new feature set. During the re-clustering,

the accepted features may be given higher weights. The algorithm for interactive

document clustering based on interactive feature selection is given in Algorithm 4.

At the beginning, clusters are obtained from traditional KMeans with the feature set

selected by mean-TFIDF [50]. There are no user accepted features at the beginning.

It is worth noting that the feature set can be constructed automatically without user

supervision by setting f to 0. In addition, the clustering process can terminate at any

time when the user chooses to stop, or when the generated clusters do not change,

or when the maximum number of iterations is reached. The user may choose to stop

when either generated clusters or the feature set is satisfactory.

4.3.3 Cluster-Based Feature Selection

When document class labels are available, class-based feature selection can be per-

formed. Such examples are the χ2, information gain, and gain ratio. In our work,

we apply those techniques without human attached labels, by treating clusters as

classes. The cluster a document belongs to is treated as the label of the document.

We make use of the class-based feature selection and the cluster labels to perform

feature selection. To be unambiguous, we call it cluster-based feature selection as

there is no user-supervision in the document class labels.

The cluster-based (class-based) feature selection ranks the features according to

the corresponding measures [13]. Take the χ2 as an example and suppose there are K

clusters. There is one χ2 value for each feature t and each cluster c. Therefore, there

are K values of the χ2 for a feature t which we call local values. In order to sort the

features, we need one global value for each feature. The global value can be defined

either as the sum of the local values or the maximum of the local values. Since we only

use the χ2 to rank the features and simulate users, it is not important which definition

we choose as long as it is able to rank features based on the underlying document class

labels. In our research, we compute a feature’s global value as the sum of its local

values. More details about the two definitions can be found in Rigutini and Maggini

[43]. The larger the global value is, the better the feature is in discriminating among
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clusters.

4.3.4 Simulated Users

In our research, the user supervision is used to identify useful features for clustering,

namely, feature selection. Users are asked to select good features in the interactive

feature selection framework. Our goal in this chapter is to compare our interactive

framework with unsupervised feature selection. More importantly, we explore whether

our interactive framework is significantly better at feature selection than state-of-

the-art unsupervised approaches. To test for statistical significance, many runs of

the algorithms must be performed, which is very costly in terms of human effort

required. Unlike human users, a simulated user (also called oracle) based on the class

labels of the data set is fast, costs little and is sufficient for an initial proof-of-concept

demonstration.

Based on the document class labels, a ranking of all features is obtained using

class-based feature selection and the top m features can be taken to form a reference

feature set for user simulation. Then the simulated user works as follows. It gives

the answer “accept” if the presented feature is included in the reference feature set.

Otherwise, the answer is “don’t know”. With simulated users, we can quantify the

performance of the clustering algorithm by comparing computed clusters against the

underlying class labels, which are though of as the clusters users are expecting. In

the simulated user scenario, the interactive framework terminates when the generated

clusters do not change or the maximum number of iterations is reached.

In this chapter, we use feature supervision useful-list as described in Table 1.2. The

algorithms and the corresponding supervision methods are summarized in Section 1.4,

Table 1.1 and Table 1.2.

4.3.5 Feature Sets

By using the underlying clustering algorithms, we compare interactive feature selec-

tion framework with unsupervised feature selection technique. Since our framework

aims to select a better feature set for clustering, the underlying algorithms with fea-

ture sets selected by different methods are compared. The various feature sets are

listed in Table 4.2. All feature sets in Table 4.2 have the same size m = 600 except
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Feature Set Definition
FSbasic feature set including all features extracted, i.e., without

doing any feature selection
FSmean-TFIDF feature set selected by mean-TFIDF feature selection

method
FSiterative feature set selected by the interactive feature selection

framework without user supervision, i.e., f is 0
FSinteractive feature set selected by the interactive feature selection

with user supervision
FSreference reference feature set, an optimal feature set selected by

the χ2 test based on true class labels

Table 4.2: Definition of Feature Sets

FSbasic whose size depends on the number of all extracted features.

4.3.6 Effect of User Effort

In this section, we investigate the effect of user effort on the document clustering. To

the best of our knowledge, our work is the first one to do that. A few variables are

defined for the analysis. As we know, the size of the feature set f is given as an input

parameter of the interactive feature selection and clustering framework. The f value

can be thought of as the unit of effort as f features are confirmed by users at each

iteration. Therefore, total amount of user input spent in the document clustering

depends on the value of f . Suppose r is the number of iterations, then the total

number of features inspected is defined as ftotal = f × r. Out of the ftotal features

inspected, we define faccepted as the number of features accepted by users. Finally,

user effort efficiency eff -eff can be defined as:

eff -eff =
faccepted
ftotal

(4.7)

The larger eff -eff is, the larger portion of the presented features is accepted, which

may be good for clustering.

Feature Reweighting Since feature reweighting can boost classification perfor-

mance in active learning [40], feature reweighting is adopted in the interactive clus-

tering framework. Different underlying clustering algorithms have their own method

of integrating feature re-weighting. In this chapter, we use KMeans and Multino-

mial Näıve Bayes model or EM-NB. For KMeans, the TFIDF values of the accepted
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features is multiplied by the given weight g and then the vector of TFIDF values is

normalized. In EM-NB, the posterior probability of a class is

P (cj|di) =
P (cj)P (di|cj)

|C|
∑

r=1

P (cr)P (di|cr)

=

P (cj)

|di|
∏

k=1

P (wdi,k|cj)

|C|
∑

r=1

P (cr)

|di|
∏

k=1

P (wdi,k|cr)

(4.8)

for a given document [36]. g affects Eq. 4.8 through the feature term frequency:

p(wt|cj) =

1 +

|D|
∑

i=1

gt ·N(wt, di) · P (cj|di)

|V|+

|V |
∑

s=1

|D|
∑

i=1

gs ·N(ws, di) · P (cj|di)

(4.9)

where gs (the same for gt) is the weight given to feature ws in the selected feature

set. The weight gs of a given feature is defined as :

|gs| =

{

g if ws is accepted

1 otherwise
(4.10)

In our experiments, g is an integer between 1 and 10. Using the above definitions, we

study the user effort in the form of feature supervision on clustering performance by

answering the following four questions:

1. How does the value of g affect clustering performance?

2. How does clustering performance change in relation to f?

3. How does clustering performance change in relation to ftotal?

4. How does feature reweighting affect clustering performance?

5. How does feature reweighting affect user effort?

4.4 Experimental Evaluation

In this work, we use datasets: (1) news-diff-3, (2) news-related-3, (3) news-similar-3,

(4) D2-D2&D3-D3, (5) D-H-I, and (6) 3-classic-abstract. We employ three evaluation
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Dataset Measure
Performance by Feature Sets

basic mean-TFIDF Iterative Interactive Reference

news-diff-3

NMI 0.4051 0.5957 0.6651 0.7084 0.6804
Accuracy 0.6941 0.7931 0.8335 0.8522 0.8330

Jaccard Coefficient 0.4819 0.6263 0.6476 0.6801 1.0000

news-related-3

NMI 0.1755 0.3341 0.4116 0.4702 0.4501
Accuracy 0.5285 0.5931 0.6334 0.6722 0.6768

Jaccard Coefficient 0.3748 0.4956 0.5278 0.5570 1.0000

news-similar-3

NMI 0.0380 0.0765 0.1004 0.1938 0.1818
Accuracy 0.4243 0.4669 0.4988 0.5479 0.5411

Jaccard Coefficient 0.3561 0.3833 0.3819 0.5344 1.0000

D2-D2&D3-D3

NMI 0.1609 0.2315 0.2727 0.2912 0.2736
Accuracy 0.5404 0.5971 0.6293 0.6438 0.6235

Jaccard Coefficient 0.4105 0.5618 0.6292 0.6702 1.0000

D-H-I

NMI 0.1051 0.1786 0.2193 0.2594 0.2082
Accuracy 0.4699 0.5335 0.5794 0.6115 0.5496

Jaccard Coefficient 0.4753 0.5673 0.5251 0.6651 1.0000

3-classic-abstract

NMI 0.5779 0.7220 0.7626 0.8079 0.7854
Accuracy 0.7544 0.8481 0.8755 0.9017 0.8744

Jaccard Coefficient 0.6192 0.7462 0.7801 0.8127 1.0000

Table 4.3: Comparison of KMeans with Different Feature Sets Defined in Table 4.2,
namely, FSbasic, FSmean-TFIDF , FSiterative, FSinteractive, FSreference. The interactive
feature selection framework can produce better clusters than unsupervised feature se-
lection methods. The performance of the clustering algorithms improves significantly
when it moves from column FSbasic to column FSreference except where the perfor-
mance measures are bold. Accuracy and NMI are calculated based on the underlying
class labels while Jaccard Coefficient is computed on based on the clustering produced
with the reference feature set. The Jaccard Coefficient of the same two clusterings is
always 1.

measures: (1) Clustering Accuracy, (2) NMI, and (3) Jaccard Coefficient. In our

experiments, we set the number of clusters, i.e. K, to the number of true classes

in the datasets. Two underlying algorithms, KMeans and Multinomial Näıve Bayes

Model (EM-NB) are employed. However, we expect that other clustering algorithms

will also work because our interactive framework does not depend on any specific

algorithm. We use unsupervised mean-TFIDF feature selection and the χ2 method

for the cluster-based feature selection. We first present the results of the underlying

algorithms with feature sets selected by different feature selection techniques. Second,

we explore the effect of feature set size on document clustering. Third, we explore how

clustering performance depends on user effort. In this chapter, we present a subset of

experimental results to illustrate our points. The results for all other datasets have

similar patterns as presented here and may be found in Appendix B.
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4.4.1 Performance of Different Feature Sets

In this section, we compare and discuss the performance of the same underlying

algorithm with different feature sets.

Each pair of one underlying algorithm and one feature set was run 36 times1 with

different initializations over all the datasets. In our experiments, we set the size of

feature set m = 600. The average results are listed in Table 4.3 for KMeans and

Table 4.4 for EM-NB. For the performance of interactive feature set, we take the

average performance when the performance stabilizes with the number of features f

displayed to users, e.g. f is between 100 and 300.

As shown in Table 4.3 and Table 4.4, the interactive feature selection frame-

work can produce better clusters than other unsupervised feature selection methods.

In these tables, the performance of the clustering algorithms improves significantly2

when it moves from column FSbasic to column FSreference except where the per-

formance measures are bold. In Table 4.4, the exception is between FSmean-TFIDF

and FSiterative including both NMI and Clustering Accuracy measures of news-diff-3

dataset and news-similar-3 dataset. Although the automatically constructed feature

set based on iterations does not always perform better than the unsupervised feature

set, the feature set selected with user supervision does. It is especially true when

the automated feature set performs much worse than the unsupervised feature set on

news-similar-3 dataset, user supervision can bring the clustering back to the right

track and obtain better performance. Also note that interactive feature selection and

clustering framework achieves comparable performance to the underlying algorithm

with the reference feature set FSreference. The clustering performance of the reference

feature set in terms of accuracy and NMI might be worse than that of the interactive

feature set but is always the best in terms of Jaccard Coefficient. That is because

the accuracy and NMI are calculated based on the underlying class labels while Jac-

card Coefficient is computed based on the clustering produced with the reference

feature set. The Jaccard Coefficient of the same two clusterings is 1 according to the

definition of Jaccard Coefficient (Eq. 3.6 in Section 3.2.3).

1 The number of times we ran the algorithms was randomly chosen to be large enough for

computing statistical significance.
2Two-tailed tests were used for each comparison with p = 0.05
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Dataset Measure
Performance by Feature Sets

basic mean-TFIDF Iterative Interactive Reference

news-diff-3

NMI 0.5267 0.6742 0.6737 0.7845 0.7879
Accuracy 0.7622 0.8474 0.8450 0.9050 0.9034

Jaccard Coefficient 0.5471 0.6867 0.7208 0.8318 1.0000

news-related-3

NMI 0.1966 0.3756 0.3933 0.5227 0.5741
Accuracy 0.5469 0.6093 0.6150 0.7051 0.7273

Jaccard Coefficient 0.3450 0.5012 0.5257 0.5995 1.0000

news-similar-3

NMI 0.0819 0.1491 0.0259 0.1925 0.2114
Accuracy 0.4742 0.4464 0.3481 0.4793 0.5379

Jaccard Coefficient 0.3722 0.6354 0.5925 0.6765 1.0000

D2-D2&D3-D3

NMI 0.1834 0.2435 0.2486 0.3178 0.3281
Accuracy 0.5582 0.5596 0.5653 0.6082 0.6493

Jaccard Coefficient 0.4077 0.5513 0.6086 0.6875 1.0000

D-H-I

NMI 0.1051 0.1786 0.2193 0.2920 0.2082
Accuracy 0.4881 0.3678 0.4796 0.5967 0.5840

Jaccard Coefficient 0.4333 0.5112 0.5419 0.7525 1.0000

3-classic-abstract

NMI 0.6829 0.8182 0.8412 0.8841 0.8960
Accuracy 0.7946 0.9069 0.9179 0.9439 0.9503

Jaccard Coefficient 0.6683 0.8199 0.8467 0.9069 1.0000

Table 4.4: Comparison of EM-NB with Different Feature Sets Defined in Table 4.2,
namely, FSbasic, FSmean-TFIDF , FSiterative, FSinteractive, FSreference. The interactive
feature selection framework can produce better clusters than unsupervised feature se-
lection methods. The performance of the clustering algorithms improves significantly
when it moves from FSbasic to FSreference except where the measures are bold. Jac-
card Coefficient is computed on based on the clustering produced with the reference
feature set. The Jaccard Coefficient of the same two clusterings is always 1.

4.4.2 Effect of Feature Set Size

Sometimes, the interactive clustering framework with user interaction obtains better

performance than the underlying algorithm with the reference feature set as seen from

Table 4.3 and Table 4.4. The explanation is that the reference feature set is not perfect

for clustering, which could be due to several reasons. First, the reference feature set is

selected based on the underlying class labels, from which different class-based feature

selection techniques may produce different rankings of features. Second, the size of

feature set m for clustering may affect clustering performance. The above two reasons

motivated exploration of the effect of feature set size on document clustering. We

do experiments with the reference feature sets with various sizes. As we mentioned

before, the reference feature sets are selected by the χ2 test based on the underlying

document class labels. Therefore, we run the base clustering algorithms KMeans and

EM-NB to cluster documents with the reference feature sets with different sizes. The

effect of feature set size in terms of clustering accuracy is illustrated in Figure 4.1

and 4.2. The performance of both KMeans and EM-NB increases initially as the size
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Figure 4.1: Effect of feature set size on news-related-3 with KMeans and reference
feature set. Reference feature set with various sizes are used, which are selected by
the χ2 based on the underlying document class labels.

of feature set gets larger when applied to all datasets. Maximum performance can be

reached with different feature set sizes but 200 ≤ m ≤ 400 usually gives the maximum

performance. The clustering performance of both KMeans and EM-NB on datasets

with very different topics across clusters, such as news-diff-3 dataset and 3-classic-

abstract dataset, remains stable as a function of feature set size after the maximum

performance is reached, while the performance on other datasets goes down a little.

Our explanation is that there are many more noisy features in the ideal feature set for

datasets like news-similar-3 dataset than others like news-diff-3. As more features

are added, the “good” features dominate at first but noisy features take over later

on. Comparing EM-NB (Fig. 4.2) to KMeans (Fig. 4.1) on news-related-3 and news-

similar-3 datasets, we observe that EM-NB has smaller performance change than

KMeans when noisy features are introduced later on.
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Figure 4.2: Effect of feature set size on news-similar-3 with EM-NB and reference
feature set. Reference feature set with various sizes are used, which are selected by
the χ2 based on the underlying document class labels.

4.4.3 Effect of User Effort

In this section, we study the effect of user effort on clustering performance with feature

reweighting.

Effect of user effort on news-related-3 dataset is shown in Fig. 4.5 for KMeans and

Fig. 4.6 for EM-NB while effect of user effort on news-similar-3 dataset is demon-

strated in Fig. 4.7 for KMeans and Fig. 4.8 for EM-NB. The last four questions

brought up in Section 4.3 will be answered one by one as follows.

For all datasets, the user effort spent in terms of ftotal increases until the algorithm

converges increases with f , the number of features presented to users in each iteration

as seen in Fig. 4.3. We also note that the effort efficiency declines when more features

displayed in each iteration, as seen in Fig. 4.4. This may be due to the fact that

the more features are displayed each time, and the higher proportion of features

displayed are not in the reference feature set, i.e., noisy features. The effort efficiency

does not always decline due to the fact that the intermediate clusters are noisy and

the feature ranking method the χ2 is not perfect for ranking features (see Section 4.4.2

for more discussions). The observation that the effort efficiency is about 1 when f
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Figure 4.3: f vs. ftotal, EM-NB on news-diff-3 dataset. f is the number of features
presented to users at each iteration while ftotal is the number of features presented
to users after the clustering finishes. Weights are used to reweight user accepted
features.

is small (Fig. 4.4) tells that most of the displayed features are accepted as useful for

clustering by users. This fact indicates that the most useful features for clustering

are ranked very high by the χ2 based on the intermediate clusters even when the χ2

is not perfect and the intermediate clusters are noisy.

Generally speaking, the clustering performance improves with more effort pro-

vided from users (Fig. 4.7 and Fig. 4.6). However, when the interactive clustering

framework with KMeans works with news-related dataset and ACM (D-H-I ) dataset,

the clustering performance declines after a certain amount of effort is provided. One

possible reason is that the extra effort is used to introduce noisy feature from the

reference feature set FSreference.

One important finding is that the algorithm converges very quickly when f is

very small so that the total number of features accepted is only a small portion of the

reference feature set. When weight g is greater than 1 and total accepted features ftotal

is very small, the accepted features could be over-emphasized, which has a negative

effect on interactive clustering framework with EM-NB (Fig. 4.6 and Fig. 4.8). For
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Figure 4.4: Effort-Efficiency, EM-NB on news-similar-3 Dataset. Effort-Efficiency
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reweight user accepted features.

the interactive framework with EM-NB, probabilities of features in the feature set for

clustering are affected through Eq. 4.9 and the performance in terms of NMI declines

first and climbs up when more features are accepted by users.

4.4.4 Selection of Weight g

In our experiments, we tried different values of weight g (see details in Section 4.3.6)

from 1 to 10 to reweight accepted features. Comparing the effect of different g values

on various datasets, it can be found that feature reweighting helps to improve the

document clustering performance. It can either improve clustering accuracy (Fig. 4.5)

or help reach maximum clustering performance earlier (Fig. 4.7), which saves user

effort. When the interactive framework with EM-NB works with g > 1, it improves

performance when applied to the news-similar-3 dataset (which represents the dataset

that is the hardest to cluster) although it achieves comparable performance when

applied to other datasets. We suggest g = 5 to avoid over-emphasis on accepted

features.
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4.4.5 KMeans and EM-NB on the Same Datasets

We also compare the interactive framework with KMeans versus EM-NB as the

underlying algorithm on the same datasets (Fig. 4.9). It is found that the frame-

work with EM-NB is more stable than with KMeans once maximum performance

is reached. In particular, the framework with KMeans declines more strongly after

maximum performance is reached when applied to news-related dataset and ACM

(D-H-I ) dataset. Within the interactive clustering framework, EM-NB performs

better than KMeans on news-diff-3 dataset. When applied to news-related-3 and

news-similar-3 datasets, KMeans outperforms EM-NB when only a few features are

confirmed by users, e.g., ftotal < 100. With more features confirmed, EM-NB can

achieve better performance than KMeans. It is mainly due to the fact that there are

more overlaps in those two datasets, which causes noisy features to be confirmed as

“good” for clustering. The noisy features have more negative effect on EM-NB than

on KMeans.

4.4.6 KMeans or EM-NB on Different Datasets

We compare the framework with KMeans or EM-NB on the three newsgroups sub-

datasets with respect to the same number of features. When the same user effort

in terms of number of features confirmed by users is available, we can see that the

news-similar-3 dataset is still the most difficult one to be grouped and the news-diff-3

dataset remains the easiest one (Fig. 4.10).

4.5 Guidelines for Designing Interactive Framework

Based on our experiments on different datasets, guidelines for applying interactive

framework can be derived.

1. Users should be allowed to change the number of features f during the clustering

process. Since small f values may cause premature algorithm convergence before

good clusters are achieved and large f values may require more user effort

without performance improvement, allowing users to change the f value gives

users more opportunities to interact with the clustering process and obtain

better clusters with less effort. We suggest starting with 100 for f .
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2. Keep snapshots of clusters. As human users can also make mistakes in iden-

tifying features, clustering performance can decrease if some (noisy) features

are introduced. By storing the history of clustering, the users can roll back

to previous clusterings and make new decisions about feature selections from

there.

3. Visualization of clusters. In order to assist users in judging the quality of

clusters, visualization techniques such as multi-document summarization should

be applied to clusters.

4. Users should be allowed to change weights for accepted features. Our recom-

mendation for the weight value is 5, but users should have the choice to increase

or decrease the weight for the accepted features or even assign weights for indi-

vidual features according to their confidence in the feature. In this way, users

can control and adjust the effect of individual features based on a feature’s use-

fulness for the document clustering from their point of view. However, assigning

individual weights may be time-consuming.

4.6 Summary

Users can interact with the document clustering process at either the document-

level or the feature-level. Existing semi-supervised clustering algorithms improve

performance by exploiting the constraints between documents defined by users. In

this chapter, we have focused on user-guided clustering at the feature-level.

We designed and created a new framework that enables users to guide the clus-

tering process by selecting features which are meaningful to them. The framework

interleaves interactive feature selection and clustering iteratively until users choose

to stop or the underlying algorithm reaches its terminating conditions. At each it-

eration, users are presented a list of the top f features ranked by the cluster-based

feature selection of the most recent clusters. Since the ranking is based on the recent

clusters, meaningful features are likely to have higher ranking. Users rate each of

those features by selecting one of the two options: “accept” and “don’t know”. A

revised feature set including the features users “accept”-ed and highly ranked features

are used to re-cluster the documents.
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This novel method was evaluated by comparison with three different unsupervised

feature selection techniques over six different document datasets. The novel method

performed significantly better in all cases.

We also studied the effect of user effort on clustering performance in the new

framework. Our experiments indicate that a certain number of features must be

labeled by users for clustering performance to be improved and to avoid early conver-

gence of the clustering algorithm at a local optimum. After a certain amount of user

input, e.g. enough features are confirmed as useful for clustering, the performance

may either stay the same or decline a little. Our results show that reweighting of pre-

viously “accepted” features can also improve clustering performance. However, large

weights greater than 10 should be avoided to prevent over-emphasizing the accepted

features for some datasets, which might make the clustering algorithms group the

documents only based these few over-emphasized features.
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Figure 4.9: The interactive clustering framework (Algorithm 4) with different under-
lying algorithms on the same newsgroups datasets. Within the interactive clustering
framework, EM-NB works better than KMeans on news-diff dataset. When applied
to news-related and news-similar datasets, KMeans outperforms EM-NB when only
a few features are confirmed by users. With more features confirmed, EM-NB can
achieve better performance than KMeans. It is mainly due to the fact that there
are more overlaps in those two datasets, which causes noisy features are confirmed as
“good” for clustering. The noisy features have more negative effect on EM-NB than
on KMeans.
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(b) EM-NB on newsgroups dataset: (x axis-ftotal) vs. (y axis-NMI)

Figure 4.10: The interactive clustering framework (Algorithm 4) with the same
underlying algorithm on news-diff-3, news-related-3, news-similar-3 datasets. With
interactive feature selection, news-similar-3 dataset is still the most difficult one to
clustered and news-diff-3 dataset remains the easiest one with the same user effort,
namely, the number of features confirmed by users.



Chapter 5

Dual Supervision through Feature Reweighting

In the previous chapter, we explored how feature supervision can affect clustering per-

formance through feature reweighting. In the next two chapters, we will explore how

user supervision at both document-level and feature-level helps document clustering.

The joint use of user supervision at the document and feature levels is referred to as

dual supervision. In this chapter, we incorporate feature supervision through feature

reweighting to influence the document representations.

5.1 Introduction

In Section 1.4, we defined two types of user supervision, i.e., document supervision

and feature supervision for document clustering. In this chapter, we explore the

document supervision and feature supervision in the forms described next. Document

Supervision involves labeling documents, i.e., assigning a document to a cluster or

specifying a “must-link” or “cannot-link” [53] for a pairwise constraint between two

documents. Feature Supervision involves labeling features, i.e., indicating whether a

feature discriminates clusters. Note that a labeled feature is not assigned to a cluster

but is known for its usefulness for clustering.

Traditional semi-supervised clustering, which uses both labeled and unlabeled in-

stances, has shown its usefulness in generating clusters matching user expectation.

(a) Text Cloud of Document A about
Canadian Basketball

(b) Text Cloud of Document B about
Canadian Hockey

Figure 5.1: Text Clouds of Two Documents
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User supervision usually takes the form of document supervision. However, the user

can also provide alternative forms of user supervision such as feature supervision

involving labeling features for document clustering. Since this research focuses on

document clustering, we may use instance and document, feature and word inter-

changeably. Labeling documents and words can be performed at the same time, with

little additional effort for labeling words, if an appropriate document visualization is

used, such as text clouds [32]. While the user assigns a document to a cluster or spec-

ifies a pairwise constraint based on the document’s text cloud, the words appearing

in the text cloud can also be labeled by being clicked or highlighted.

Example 5-1. Documents A and B in Fig. 5.1 can be specified as a “must-link”

when clustered by country but a “cannot-link” when clustered by sport. Correspond-

ingly, the user would label the words “Canada” “Canadian” “Spain” in the first case

but “basketball” “points” “hockey” “rychel” (last name of a hockey player) in the

latter case. �

Different labeled words reflect different organizations and the user forms his point of

view based on the perception of the words in the text clouds. It has been argued

that document supervision and feature supervision are complementary rather than

completely redundant and their joint use has been called dual supervision [2].

In this chapter, we assume that the user labels a document or establishes a pair-

wise constraint by reading a fraction of the documents’ contents. At the same time,

the user can label a word by indicating (e.g. highlighting) whether it discriminates

among clusters. The text cloud could be used to visualize the fraction of the content

the user reads and augment the labeling. Since the labeled features are not associ-

ated with specific clusters, we incorporate them into the semi-supervised clustering

through feature reweighting. Despite its simplicity, our proposed method is demon-

strated to be quite robust and effective under different experimental settings. We

enhance several semi-supervised clustering algorithms mentioned in Section 2.1. We

also compare those algorithms using only labeled documents to our proposed methods

using only labeled features. Finally, we did experiments with that the user makes mis-

takes in labeling features, that the user only reads a fraction of a document content,

and that various numbers of documents are labeled per cluster. The experimental

results on several text datasets imply that far fewer document pairwise constraints
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are required for better clustering performance when feature supervision is performed

while labeling document pairs. Therefore clusters of better quality can be produced

with less user effort when dual supervision is used for document clustering.

5.2 Background

In this section, we introduce pairwise document constraints and present three semi-

supervised clustering algorithms, each of which is from a different category in Sec-

tion 2.1. COP-KMeans is a constraint-based method, and Seeded-KMeans uses

labeled documents as cluster seeds for document clustering, while distance metric

learning is from the distance-based methods.

5.2.1 Pairwise Document Constraints

Two types of pairwise constraints are used for traditional semi-supervised clustering:

• “must-link” constraints specify that two documents have to be placed in the

same cluster.

• “cannot-link” constraints specify that two documents cannot be placed in the

same cluster.

Consequently, there are usually two sets defined: M is the set of “must-link” con-

straints and C is the set of “cannot-link” constraints. Both “must-link” and “cannot-

link” constraints are symmetric. Ideally, the must-link constraints are transitive and

transitive closures can be derived.

5.2.2 KMeans

KMeans [10] is a clustering algorithm based on iterative assignments of data points

and partitions a dataset into K clusters so that the average squared distance between

the data points and the cluster centers are locally minimized. More details about

KMeans is available in Section 4.2.1.
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5.2.3 COP-KMeans

COP-KMeans [53] is a constraint-based method, where the user supervision is pro-

vided in the form of must-link and cannot-link constraints. During the clustering

process, all the constraints should be satisfied. Otherwise, COP-KMeans fails, in

which no clusters are produced. COP-KMeans is presented in Algorithm 5.

5.2.4 Seeded-KMeans

Given a dataset X , KMeans can partition it into K clusters {Xl}
K
l=1. KMeans is

usually initialized with randomly selected cluster centers. It was observed that Seed-

KMeans [4] with cluster centers initialized with centroids derived from small sets of

labeled instances could improve clustering performance significantly. To this end, we

define the seed set S ⊆ X be the subset of data points as follows: for each xi ∈ S, the

user provides the cluster Xl to which it belongs. We assume that there is at least one

data point xi for each cluster Xl. Note that there is a K-disjoint-partitioning {Sl}
K
l=1

of the seed set S such that all xi ∈ Sl belongs to Xl according to the supervision. In

Seeded-KMeans [4], the seed set S is used to initialize the KMeans algorithm. In this

method, each cluster center µl is initialized by the centroid of Sl instead of a randomly

picked centroid. Note that the seed set is only used in the initialization step and is not

used in the remaining steps of KMeans. Therefore, the seeds can change their cluster

memberships during the subsequent clustering steps. In Constrained-KMeans [4],

the seed set is also used to initialize the KMeans algorithm. However, unlike Seeded-

KMeans, the memberships of the seeds are not re-computed and kept unchanged in

the subsequent clustering steps. Compared to Seeded-KMeans, Constrained-KMeans

is more appropriate when there are no or very few noisy seeds. In fact, Constrained-

KMeans can be thought of as a combination of COP-KMeans and Seeded-KMeans. In

this paper, we assume the seed set without noise. Seeded-KMeans and Constrained-

KMeans are described in Algorithm 6.

5.2.5 Xing-KMeans

Many clustering algorithms, including K-Means, critically rely on a good metric for

the input data. A better metric may be learned from the labeled document pairwise
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Algorithm 5 COP-KMeans [53]

Input: Set of data points X , must-link set M, cannot-link set C

Output: K clusters {Xl}
K
l=1

Method:

1: Randomly initialize the cluster centers with {µ0
l }

K
l=1

2: repeat

3: Based on {µt
l}, assign each data point xi to the closest cluster X t+1

l for which

VIOLATE-CONSTRAINTS(xi,Xl,M,C) returns false. If no such cluster exists,

COP-KMeans fails and returns {}. At the end, get {X t+1
l }Kl=1.

4: Update cluster centers: u
(t+1)
l ← 1

|X
(t+1)
l

|

∑

x∈X
(t+1)
l

x

5: t← t+ 1

6: until No data point assignments change or maximum # of iterations is reached

VIOLATE-CONSTRAINTS(data point xi, cluster Xl, must-link set M, cannot-link

set C)

1: VIOLATED ← FALSE

2: for all (x, y) ∈M do

3: if y /∈ Xl and y is reassigned in the current iteration then

4: VIOLATED ← TRUE;

5: break;

6: end if

7: end for

8: for all (x, y) ∈ C do

9: if y ∈ Xl and y is reassigned in the current iteration then

10: VIOLATED ← TRUE;

11: break;

12: end if

13: end for

14: return VIOLATED
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Algorithm 6 Seeded-KMeans and Constrained-KMeans [4]

Input: Set of data points X , the seed set S = ∪K
l=1Sl

Output: K clusters {Xl}
K
l=1

Method:

1: initialize each cluster center µl using the seed subset Sl: µ
0
l ←

1
|Sl|

∑

x∈Sl
x

2: t← 0

3: repeat

4: for all xi ∈ X do

5: if Constrained-KMeans and xi ∈ S then

6: Assign xi to l where xi ∈ Sl

7: else

8: Assign xi to the closest cluster X (t+1)
l based on {µt

l} and get {X (t+1)
l }Kl=1

9: end if

10: end for

11: Update cluster centers:

u
(t+1)
l ← 1

|X
(t+1)
l

|

∑

x∈X
(t+1)
l

x

12: t← t+ 1

13: until No data point assignments change or maximum # of iterations is reached

constraints. Xing et al. [55] provide a method to learn a generalized Euclidean dis-

tance metric based on the labeled pairwise constraints. Since the learned Euclidean

distance metric can be used as a component of KMeans, we call it Xing-KMeans.

Assuming the dataset X , must-link setM and cannot-link set C, the distance metric

dst(x, y) between data point x and y can be written in the form of

dst(x, y) = dstA(x, y) = ‖x− y‖A =
√

(x− y)TA(x− y) (5.1)

The metric learning algorithm tries to learn a positive semi-definite A so that the

following optimization problem is satisfied:

minA

∑

(di,dj)∈M

‖xi − xj‖
2
A (5.2)

s.t.
∑

(xi,xj)∈C

‖xi − xj‖A ≥ 1 (5.3)
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A � 0 (5.4)

The choice of the constant 1 in the right hand side of Eq. 5.3 is arbitrary and it can

be any positive constant c so long as A is replaced by c2A.

Since document vectors {xi}
N
i=1 have very high dimensions, it is computationally

prohibitive to estimate the full matrix A. Therefore, we only consider the case when

the matrix A is diagonal. When A is a diagonal matrix, it can be represented as

A = diag(A11, A22, . . . , Ann), An efficient algorithm for estimating A can be derived

with the Newton-Raphson method by defining

g(A) = g(A11, A22, . . . , Ann)

=
∑

xi,xj∈M

‖xi, xj‖
2
A

− log(
∑

(xi,xj)∈C

‖xi − xj‖A)

(5.5)

It can be shown that minimizing g (subject to A � 0) is equivalent, up to a mul-

tiplication of A by a positive constant to solve the optimization problem defined by

Equations (5.2–5.4) [55].

5.3 Methodology

In this section, we describe the details of the document oracle and feature oracle

and present the model for labeling documents and features together. We propose a

framework to incorporate feature supervision through feature reweighting into var-

ious traditional semi-supervised clustering algorithms introduced in Section 5.2. In

the tradition semi-supervised clustering, only labeled documents from document su-

pervision are used to either initialize the clustering algorithms or guide the clustering

process. In our framework, we introduce one more supervision dimension, namely,

labeled features from features supervision into the traditional semi-supervised clus-

tering algorithms.

5.3.1 Oracles

Designing the document oracle is straightforward as all the documents in our datasets

have class labels. Therefore, the underlying document class labels can act as a doc-

ument oracle [2, 4, 6, 12, 31, 51]. However, this is not the case for feature labeling.
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Ideally, we should have a gold standard feature set. In order to simulate how a human

responds to queries for feature labels, we construct a feature oracle similarly to pre-

vious approaches [2, 17]. The χ2 value of words with respect to the known labels in

the document collection is computed and all the words are ranked by their χ2 values.

Then, the top f words are taken as the feature oracle and will be labeled as useful

for clustering when the user is queried about them. We define f as the capacity of

the feature oracle. The larger f is, the more features this oracle can label. However,

as more noisy features may be included when f is large, we should select a proper f

for our experiments. We investigate how the value of f affects clustering performance

in our experiments. Since a human users can make mistakes, we can also construct

a noisy feature oracle. The bottom half of features in the list of features sorted by

the χ2 values with respect to the known labels are considered as noisy features. A

noisy feature oracle can be constructed by replacing a certain number of features in

the top f features by the same number of features in the bottom half of the list. The

construction of a feature oracle is presented in Algorithm 7. Note that our feature

oracle is different from those previous feature oracles [2, 17] in two aspects: (1) Our

feature oracle only indicates whether a feature is useful for clustering instead of giving

the feature a class/cluster label; (2) Our feature oracle can be noisy by introducing

pnf noisy (mislabelled) features with a given probability pn > 0. In this chapter, we

use feature supervision useful-content as described in Table 1.2. The algorithms and

the corresponding supervision methods are summarized in Section 1.4, Table 1.1 and

Table 1.2.

5.3.2 Model for Document Supervision

Our purpose in this chapter is to demonstrate that enhancing traditional semi-supervised

document clustering with feature supervision can improve the clustering performance.

Therefore, with respect to document supervision in our framework, we adopt the same

supervision methods using the document oracle as in the traditional semi-supervised

clustering algorithms. In Seeded-KMeans based framework, the seeds are randomly

sampled according to the size of the seed set for each cluster. In COP-KMeans

based framework, the must-link and cannot-link constraints are derived from the

sampled seeds for Seeded-KMeans, i.e. the seeds for the same clusters form the
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Algorithm 7 Construction of a Feature Oracle

Data Input: Set of unordered features F , Training set CL – documents and their

class labels in the dataset

Parameter Input: Noise level pn, the percentage of noise features the feature oracle

will mislabel as “accept”, Feature Oracle Capacity f – the number of features the

oracle labels as “accept”, f ≪ |F|

Output: List of ordered features L – the list of features the feature oracle labels as

“accept”

Method:

1: Compute χ2 values of all features in F based on CL

2: Sort all features in F according to the computed χ2 values and obtain ordered

list T of the same size as F

3: for i = 1 to f do

4: Flip a coin with the probability pn getting the tail and obtain the outcome O

5: if O is tail then

6: Randomly pick a feature from the bottom half of T , which is considered to

be a noisy feature

7: Swap ith feature with the picked noisy feature in T

8: end if

9: end for

10: Generate L by taking the top f features of T

“must-link” constraints while the seeds for the different clusters form the “cannot-

link” constraints. In distance metric learning based framework, we randomly sample

the designated number of constraints.

5.3.3 Model for Feature Supervision

We assume that the document (or document constraint) labeling and feature labeling

happen simultaneously, i.e., the user can label words as useful for clustering while he

is labeling a document, e.g. through highlighting keywords for a document. With this

labeling model, a feature is labeled once the user recognizes it as useful for clustering

while reading a document. The advantage of this labeling model is saving user effort,
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since the user does not need to label the features separately. The disadvantage is that

the user does not need to read the whole document content in order to establish a

document constraint so that some useful features might be ignored. In our labeling

model, we first assume the user will read the whole document content to label a

document constraint. Then, we consider the user only read the first fraction p% of

content to label a document or document pair. Furthermore, we can combine the

interactive feature selection (Algorithm 3) with this model in the future. By using

the two labeling models together, the user can label a feature either while labeling a

document or from a list of features presented to him for labeling.

For example, a document d can be considered as a list of words in the order in

which the words occur in the document, i.e., < w1, w2, . . . , w|d| >, where |d| is the

length of the document in terms of the number of words. Note that wi might be the

same as wj where i is not equal to j, 1 ≤ i ≤ |d| and 1 ≤ j ≤ |d|. To label a document,

we assume that the user needs to read at least a fraction of the document content pc,

i.e., < ws, w2, . . . , we >, where 1 ≤ s ≤ |d|, s ≤ e ≤ |d| and e−s+1 = ⌈pc · |d|⌉. When

s = 1, the user reads a document from the beginning. While reading a document,

the user is assumed to be able to label words he encounters. The labeled words are

included in the labeled feature set WL. The fraction of document content could be

displayed as a text cloud and the user could label words by highlighting them on the

text clouds. The user labels a feature if it is a good description of the topic of a

cluster and discriminates the cluster from others. Note that the user does not need

to associate a feature with a specific cluster.

Definition 5-1. Assuming Labeled Feature Set WL = {w|M(w) = labeled}, where

M is the function to produce the label of a feature:

M(w) =

{

labeled if w is confirmed as useful for clustering

unlabeled otherwise, i.e., w is not presented or not confirmed as useful

(5.6)

�

5.3.4 Feature Reweighting

Since feature reweighting employed by [22] is simple and effective, we use it on the

labeled features for semi-supervised clustering. Although different semi-supervised
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clustering algorithms may have their own method of integrating the feature reweight-

ing, we only have one underlying algorithm KMeans in this chapter.

Feature reweighting for KMeans is performed as follows: the TFIDF values of

labeled features in WL are multiplied by a given weight g (> 1):

Rdi
w (tfidf) =

{

Odi
w (tfidf)× g if w ∈ WL

Odi
w (tfidf) otherwise

(5.7)

whereOdi
w (tfidf) andRdi

w (tfidf) are the original and reweighted tfidf values of feature

w in document di respectively. After being reweighted, the vector of TFIDF values

is normalized. Since Xing-KMeans learns the feature weights based on the pairwise

constraints, we use another heuristic to incorporate the labeled features. We perform

Euclidean distance metric learning and obtain the feature weights. The most useful

features based on the labeled documents constraints are assigned the highest weight

by the metric learning algorithm. Since labeled features are regarded as useful for

clustering by the user, it is reasonable to assign the highest weight to all labeled

features ∈ WL.

5.3.5 Semi-supervised Clustering with Feature Supervision

The procedure of semi-supervised clustering with feature supervision is presented in

Algorithm 8. Since traditional semi-supervised clustering methods employ user super-

vision in the form of pairwise constraints or cluster seeds, adding feature supervision

to semi-supervised clustering therefore amounts to dual supervision for clustering, i.e.,

both document supervision and feature supervision [2]. Dual supervision takes place

together and before the clustering algorithms begin. The clustering algorithms will

use both labeled documents and features to guide the clustering process and produce

clusters better matching user expectation.

5.4 Experimental Results

In this section, we demonstrate the effectiveness of our proposed methods on several

real-word datasets. Specifically, we study the performance of different weight values

for feature reweighting, the size of the feature oracle vocabulary, the fraction of a

document’s content the user reads, and the noise level of the user (feature oracle). We
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Algorithm 8 Semi-supervised Clustering with Feature Supervision

Input: Set of data points X

Output: K clusters {Xl}
K
l=1

Method:

1: Perform dual supervision, i.e., document supervision and feature supervision

2: Obtain the labeled feature set WL and the document seed set S or must-link set

M and cannot-link set C

3: if Xing-KMeans then

4: Learn diagonal matrix A and set weights of labeled features to the maximum

value in A

5: Perform basic KMeans Clustering using the learned weights

6: else

7: Perform feature reweighting based on labeled feature set WL.

8: Cluster the documents using semi-supervised clustering algorithm.

9: end if

enhance several semi-supervised clustering algorithms with feature supervision and

compare algorithms with and without feature supervision. In our experiment, each

algorithm was run 10 times with different initializations and the average performance

is reported.

5.4.1 Datasets and Evaluation Measures

In this work, we use the six datasets and NMI described in Chapter 3 to compare

the proposed methods with the baseline algorithms. The six datasets we use are:

(1) news-similar-3, (2) news-multi-7, (3) news-multi-10, (4) webkb-sfcp-4, (5) sector-

multi-10, and (6) reuters-multi-10.

5.4.2 Clustering Algorithms

In this chapter, we have several variants of KMeans with document supervision

and/or feature supervision for our experiments. The algorithms and the correspond-

ing supervision methods are summarized in Section 1.4, Table 1.1 and Table 1.2. The

algorithms we use in this chapter are as follows:
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• Random-KMeans, which is the unsupervised KMeans with random initializa-

tion of the centroids.

• Fes-KMeans, which performs feature supervision during labeling documents

(document constraints) but does not use the labeled documents (or document

constraints) for clustering.

• COP-KMeans, which enforces labeled constraints during clustering process.

• COPFes-KMeans, which enforces labeled constraints during clustering process

and uses feature supervision during labeling constraints.

• Seeded-KMeans, which uses labeled seeds to initialize the centroids forKMeans.

• SeededFes-KMeans, which uses labeled seeds to initialize the centroids for

KMeans and performs feature supervision during labeling seeds.

• Constrained-KMeans, which uses labeled seeds to initialize the centroids for

KMeans and constrain the clustering process.

• ConstrainedFes-KMeans, which uses labeled seeds to initialize the centroids

for KMeans and constrain the clustering process. At the same time, feature

supervision is performed during labeling document seeds.

• Xing-KMeans, which learns distance metric based on the labeled document

constraints.

• Xing-Fes-KMeans, which learns distance metric and uses feature supervision.

5.4.3 Analysis of Results

Other than when explicitly stated, we assume the whole content is read to label

a document and a noise-free feature oracle is employed to label the words in the

documents. In addition, we set the number of seeds for each cluster to 10, feature

capacity per cluster f to 30.

In this chapter, we mainly use dataset sector-multi-10-100 to illustrate our points.

The results for all other datasets have similar patterns as presented here and may be

found in Appendix C.
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Figure 5.2: Feature reweighting with different weights, on dataset sector-multi-10.
All weights greater than 1 improve the clustering performance over the correspond-
ing baseline algorithms, i.e., g = 1. The baseline algorithms are Random-KMeans,
Seeded-KMeans, Constrained-KMeans, and COP-KMeans respectively.

Feature Reweighting g

Different weight values, g (as discussed in Section 5.3.4), might lead to different

clustering results. We conducted experiments with different values of g to inves-

tigate the robustness of our algorithms. Results show that different datasets and

algorithms achieved their best performance with different values of g (Fig. 5.2).

However, all weights used (greater than 1) improve the clustering performance over

their corresponding baseline algorithms (g = 1), namely, Random-KMeans, Seeded-

KMeans, Constrained-KMeans, and COP-KMeans. In other words, labeled features

are treated the same as other unlabeled features for clustering when g is 1. In this

chapter, we select g = 2 to report the results on the following experiments. Weight

2 is selected since it is seldom the weight to achieve the best performance for various

algorithms on all datasets. Namely, we give the benefit to the baseline algorithms in

which g is 1.
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Figure 5.3: Performance as a function of the size of feature vocabulary, i.e., feature or-
acle capacity. Semi-supervised clustering with feature supervision shows significantly
improved performance over the method without feature supervision. The performance
of the clustering algorithms stays relatively stable after the feature oracle vocabulary
per cluster reaches a small size 10 to 30.
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Figure 5.4: Enhanced with feature supervision with varying content being read, on
dataset sector-multi-10-100. Regardless of the fraction of the content read (at least
10% in our experiments), the performance of semi-supervised clustering with feature
supervision is much better over the method with only labeled constraints.

Feature Oracle Capacity f

Feature Oracle Capacity f is the number of features the feature oracle can recognize

and label as “accept”, namely, the size of the feature oracle vocabulary. If we assume

the size of feature oracle vocabulary for each cluster is s, then f = s×K, where is K

is the number of clusters. Since we do not know the best value of s for clustering, we

conducted experiments with different values of s. We say the f features that the user

labels as “accepted” belong to the feature oracle vocabulary. The general hypothesis

is that neither too large nor small values of s can produce good clusters.

Assuming the whole content of the labeled documents is read and a noise-free

feature oracle, semi-supervised clustering with feature supervision shows significantly1

improved performance over the method without feature supervision (Fig. 5.3). With

feature supervision, Constrained-KMeans and Seeded-KMeans still performs much

better than COP-KMeans. It is noticeable that the performance of the clustering

algorithms stays relatively stable as a function of f after the feature oracle vocabulary

1Two-tailed paired t-test with p = 0.05. Also applies to other significance statements.
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Figure 5.5: Enhanced with feature supervision with varying noise feature fraction,
on dataset sector-multi-10-100. The clustering performance decreases as more noisy
features are introduced by the feature oracle, namely, the more mistakes the feature
oracle makes, the worse the performance is. However, even with some incorrect
features being labeled as “accepted”, the performance of semi-supervised clustering
with feature supervision can still improve over the pure document supervision.

per cluster reaches a small size 10 to 30. In practice, it means that the user does not

have to know all the discriminative features but only a few of the most discriminative

ones. As f grows, clustering performances may decrease, e.g., Fig. 5.3(a). Since the

algorithm used to construct the feature oracle is not perfect, it is unavoidable to

include some features which are not discriminating for clustering in the feature oracle

vocabulary as f grows. We conjecture that clustering performance declines due to

the presence of such features introduced by the construction algorithm. The behavior

of a noisy feature oracle with explicitly injected poor features is explored later.

Content Fraction pc

Since the user does not have to read the whole content of a document to label it,

we assume that the user reads a fraction pc of its content start from the beginning.

The general hypothesis is that the more content the user reads, the more features the

user will label and the better the performance is if the the user can label the features
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correctly. However, if the user is not confident with feature labeling, reading more

content might not help, but instead it might even harm the clustering performance

because more noisy features might be introduced.

Assuming a noise-free feature oracle, the clustering performance with feature su-

pervision is improved with more content of labeled documents being read (Fig. 5.4).

At the same time, regardless of the fraction of the content read (as long as it is at

least 10% in our experiments), the performance of semi-supervised clustering with

feature supervision is much better than the method with only labeled constraints.

In fact, the clustering performance only increases moderately with more than 10%

of the content of a document being read. Therefore, the user does not need to read

the whole content of a document for effective feature supervision, just as the user

does not have to read the whole content of the documents to assign a document to a

cluster or to establish a document constraint.

Noisy Feature Fraction pn

To simulate the user making mistakes by accepting poor features for clustering, we

construct feature oracles with various fractions of noisy features (See Algorithm 7).

Assuming the whole content of labeled documents is being read, we study the

behavior of the noisy feature oracle, which can make mistakes in labeling features.

Through the experiments, we find that the clustering performance decreases as more

noisy features are introduced by the feature oracle, namely, the more mistakes the fea-

ture oracle makes, the worse the performance is (Fig. 5.5). However, even with some

incorrect features being labeled as “accepted”, the performance of semi-supervised

clustering with feature supervision can still improve over the pure document super-

vision. We observe that our algorithms have high tolerance of mistakes in labeling

features (Fig. 5.5). It may be due to the fact the very few labeled features that

are highly discriminative dominate the clustering despite the presence of many non-

discriminative features.

Number of Seeds or Constraints

We used different numbers of cluster seeds and constraints for the semi-supervised

clustering algorithms. The cluster seeds for Seeded-KMeans and Constrained-KMeans
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Figure 5.6: Different Number of Document Seeds, on dataset sector-multi-10 (Con-
straints for COP-KMeans and COPFes-KMeans are generated from document seeds,
see Section 5.4.3 for details). The more documents is labeled, the better cluster-
ing performance is. To achieve the same performance without feature supervision,
a lot more documents have to be labeled. With more documents labeled, feature
supervision becomes less important than when there are only few labeled documents.

are randomly sampled and labeled. Since we compare the COP-KMeans, Seeded-

KMeans and Constrained-KMeans, the constraints used for COP-KMeans are con-

structed from the cluster seeds by establishing “must-link” constraints between the

seeds with the same cluster labels and by establishing “cannot-link” constraints be-

tween the seeds with different cluster labels. The constraints for Xing-KMeans are

randomly sampled.

Feature supervision with a few documents labeled or a few document constraints

established can improve the clustering performance significantly compared with the

pure document supervision method (Fig. 5.6). To achieve the same performance

without feature supervision, a lot more documents have to be labeled. For example, 20

documents per cluster for Constrained-KMeans have to be labeled in order to achieve

the same performance as 15 documents per cluster labeled with feature supervision

(Fig. 5.6). With more documents labeled, feature supervision becomes less important

than when there are only few labeled documents. This implies that feature supervision

can help us save user effort from labeling unnecessary documents. Since the user labels
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Figure 5.7: Metric learning method and feature supervision method, on dataset
sector-multi-10-100. Although the distance metric learning method based on labeled
document constraints works much worse than Random-KMeans even when quite
a large number of constraints is given, Random-KMeans with feature supervision
only requires a few constraints and features to be labeled to improve the clustering
performance.

features while labeling documents, feature supervision in our proposed methods does

not have to involve much extra effort.

Feature Supervision vs. Document Supervision

Besides the semi-supervised clustering with/without feature supervision, we also

ran the randomKMeans only with the labeled features, i.e., Fes-KMeans, the algo-

rithm used in Chapter 4 to incorporate labeled features. Random-KMeans with fea-

ture supervision performs better than COP-KMeans and comparably with COPFes-

KMeans (Fig. 5.5). Although Fes-KMeans performs worse than Seeded-KMeans

and Constrained-KMeans, semi-supervised clustering with feature supervision always

performs better than without feature supervision on all datasets. The distance met-

ric learning method based on labeled document constraints works much worse than

Random-KMeans even when quite a large number of constraints is given (Fig. 5.7).

Our explanation is that the high-dimensional and sparse document vectors require

too many document constraints to learn a correct distance metric. With only a few
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Figure 5.8: SeededFes-KMeans with feature oracle with different noisy feature level
for a fraction of content being read. Each curve represents a feature oracle with
the corresponding level of noisy features, on dataset sector-multi-10-100. A noisy
feature oracle still performs very well even when only a small amount of content of a
document is read for labeling.

document constraints, some unimportant features are unavoidably over-weighted.

However, Random-KMeans with feature supervision only requires a few document

constraints and features to be labeled to improve the clustering performance. Note

that Xing-Fes-KMeans can still improve the clustering performance further com-

pared to Fes-KMeans. However, the Euclidean distance metric learning algorithm is

quite computationally expensive (hours for metric learning versus seconds for feature

reweighting for labeled features) even when a diagonal matrix is assumed because of

the high-dimensional vector representation of documents.

Noisy Feature Oracle and Content Fraction

Instead of assuming a noise-free feature oracle and that the user reads the whole

content of a document to label it, we explore the behavior of the noisy feature oracle

while only a fraction of the content is read to label a document. We demonstrate the

clustering performance of a fraction of the content being read when feature oracle has

different noise levels and the clustering performance of a noisy feature oracle with

different noise level when different fractions of the content are read in Fig. 5.8 and
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Figure 5.9: SeededFes-KMeans with varying content being read for feature oracle
with different noisy feature level. Each curve represents a feature oracle with the
corresponding level of content being read, on dataset sector-multi-10-100. A noisy
feature oracle still performs very well even when only a small amount of content of a
document is read for labeling.

Fig. 5.9 respectively. It is suggested that the clustering performance improves as the

user reads more content of a labeled document and when the feature oracle is less

noisy (Fig. 5.8 and Fig. 5.9). More importantly, those figures demonstrate that a noisy

feature oracle still performs very well even when only a small amount of the content

of a document is read for labeling. This observation allows human users to make

mistakes in feature supervision while reading only a fraction of the content for labeling

a document, which supports the practicality of our feature supervision model in which

feature supervision during document supervision can improve clustering performance.

However, for a very noisy feature oracle such as one with 80% noisy features (Fig. 5.9),

the clustering performance decreases when more content of a document is read, since

the more content is read, the more noisy features are introduced. In this chapter,

the results for Seeded-KMeans are presented. The results for Fes-KMeans, COPFes-

KMeans and ConstrainedFes-KMeans have similar patterns in Appendix C.
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5.5 Future Work

In this chapter, we discuss how to augment semi-supervised clustering based on

document-level supervision with feature-level supervision. We experimented with

three different types of traditional semi-supervised clustering algorithms: (1) constraint-

based methods, (2) seeding methods, and (3) distance-based methods. To complete

this work, we would experiment with one hybrid method [6].

By applying a distance metric learning to text clustering, we found that too many

constraints are needed before effective weights are learned. Therefore, we conjecture

that it is not suitable to use metric learning based on labeled document constraints

when there are not enough constraints for the high-dimensional space vectors. We

plan to experiment with more algorithms involving metric learning based on document

constraints only [3] or both constraints and intermediate clusters [6]. In this chapter,

we assume the feature supervision takes place during document supervision. We can

separate those two processes and interleave active document selection [28] and active

feature selection [22].

5.6 Summary

In this chapter, we enhance the traditional semi-supervised document clustering with

feature supervision, which asks the user to label features by indicating whether they

discriminate among clusters. We make the assumption that the user can label features

while labeling a document so that the discriminating features are obtained without

too much extra work. The labeled features are incorporated into semi-supervised clus-

tering by feature reweighting, which explicitly gives more weight to the features that,

according to the user, discriminate among clusters. We explore this enhancement

in conjunction with different types of semi-supervised clustering algorithms. Exper-

imental results demonstrate that all types of semi-supervised clustering algorithms

enhanced with feature supervision demonstrate significantly improved clustering per-

formance. Specifically, the distance metric learned using feature supervision on top

of document constraints performs significantly better than the one learned based only

on document constraints. We also find that feature supervision improves clustering

performance even when only a small amount of content of the labeled documents is
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read and some mistakes are made in labeling features.



Chapter 6

Dual Supervision through Seeding

In the previous chapter, we explored how to incorporate dual supervision into docu-

ment clustering through feature reweighting, which was used to influence document

representations. In this chapter, we will use both document supervision and feature

supervision through seeding to influence the clustering algorithms such that clusters

better matching user expectation could be produced. We propose two models using

labeled features to generate cluster seeds.

6.1 Introduction

As we mentioned previously, traditional document clustering is an unsupervised cat-

egorization that partitions a given document collection into clusters so that topically

similar documents are placed into the same clusters. However, given the same docu-

ment collection, different users may want to organize it based on their own points of

view instead of a universal one, which is addressed to some extent by incorporating

document supervision [4]. In Section 1.4, we defined two types of user supervision,

i.e., document supervision and feature supervision for document clustering. In this

chapter, we explore document supervision and feature supervision in the forms ex-

plained next. Document Supervision involves labeling documents, i.e., assigning a

document to a cluster. Feature Supervision involves labeling features, i.e., associating

a feature with a document if that feature describes the topic of that document.

Most prior semi-supervised clustering algorithms use user supervision in the form

of document supervision such as labeled instances [4] or instance pairwise constraints [53]

for general clustering problems. However, user supervision can also be provided in al-

ternative forms such as labeling features (words) for document clustering in addition

to labeling instances (documents). Since this research focuses on document cluster-

ing, we may use instance and document, feature and word interchangeably. Labeling

90



91

Figure 6.1: Text Cloud of a Document about Canadian Basketball

documents and words can be performed at the same time, with little additional ef-

fort for labeling words, if an appropriate document visualization is used, such as text

clouds [32]. While the user assigns a document to a cluster based on the document’s

text cloud, the words appearing in the text cloud can also be labeled by being clicked

or highlighted.

Example 6-1. Consider a collection of news articles about international sports.

While the user labels the document displayed as text cloud (Fig. 6.1) to a cluster,

the words associating the document with the specific cluster can also be labeled by

being clicked or highlighted. In one scenario, the document (Fig. 6.1) can be labeled

to cluster “Canada”, in which the words “Canada”, “Canadians” should labeled (as-

sociated) with the document. In another scenario, the document would be labeled to

cluster “Basketball”, in which the words “basketball”, “points” should be associated

with the document. �

Example 6-2. Assume we have two papers and one talks about programming lan-

guages while the other is about software debugging. One human user can assign them

into the same cluster “software engineering” while another one would like to put them

into two clusters, i.e., “languages” and “debugging”. Clearly, the keywords (features)

assigned for the two cases will be different too. �

As we mentioned before, users might label different words for clusters to reflect

their own organizations of the same document collection. A user can form his un-

derstanding of the document collection based on the perception of the words in the
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text clouds. By using the text cloud for labeling documents, the user can not only

label documents to seed the clusters but also label the words discriminating between

clusters. Namely, dual supervision [2], the joint use of document supervision and

features, can be performed using text clouds.

In this chapter, we assume that the user labels a document by reading its con-

tent. At the same time, the user can label a word by indicating (e.g. highlighting)

whether it is associated with the document or the specific cluster. The text cloud

could be used to visualize the document content and enhance the labeling. We extend

two methods incorporating the labeled features from document classification to doc-

ument clustering, namely, feature-vote-model [17] which uses labeled features to vote

for cluster label of an unlabeled document, and feature-generative-model [37] which

uses labeled features to infer a multinomial generative model. In (semi-supervised)

document classification, labeled documents and features are required for each cate-

gory. However, knowledge of the relevant categories is incomplete in many domains.

Semi-supervised document clustering can group documents into partial clusters with

labeled documents and features, as well as extend and modify the existing set of clus-

ters to reflect other topical groupings in document collection [4]. In this chapter, we

propose a clustering model built from both the labeled documents and the labeled

features through seeding. This model can use both labeled documents and features

to guide the clustering process. At the same time, the knowledge from the labeled

documents and features will be refined by intermediate clusters in an iterative man-

ner. To this end, we present a unified framework which combines knowledge from

labeled documents, labeled features, and unlabeled documents by an iterative clus-

tering process. Finally, we demonstrate the effectiveness of the framework on several

real-word data sets.

6.2 Methodology

In this section, we first introduce document supervision and feature supervision in

the form of document seeding and feature seeding separately. Then, we present two

methods to model feature seeding. At the end, we describe a unified framework to

incorporate both document seeding and feature seeding into the KMeans algorithm,

namely, DualSeededKMeans.
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6.2.1 KMeans

KMeans is a unsupervised clustering algorithm based on iterative assignments of data

points to clusters and partitions a dataset into K clusters so that the average squared

distance between the data points and the closest cluster centers are locally minimized.

More details about KMeans is available in Section 4.2.1.

6.2.2 Document Seeding

Given a document set X , KMeans partitions it into K clusters {Xl}
K
l=1. Then, we

define the document seed set DL ⊆ X [4] as the following subset of data points: for

each document xi ∈ D
L, the user provides the cluster Xl to which it belongs. We

assume that there is at least one document data point xi for each cluster Xl. Note that

there is a K-disjoint partitioning {DL
l }

K
l=1 of the seed set DL such that all xi ∈ D

L
l

belong to Xl according to the supervision. We define the centers of the document

seed set {DL
l }

K
l=1 as {µd

l }
K
l=1:

µd
l =

∑

xi∈DL
l
xi

|DL
l |

(6.1)

where xi is the vector of TFIDF values of the features selected for clustering by

an unsupervised feature selection technique (see Section 3.1.7 for details). Those

seed centers can be used to both initialize the clustering algorithms and guide the

clustering process.

6.2.3 Feature Seeding

Similar to document seed set DL, we can define the feature seed set WL as the

following subset of features: for each wi ∈ W
L, the user indirectly associates it with

the cluster Xl through document xj ∈ Xl which wi occurs in and is labeled from.

We assume that each cluster has a topic and at least one feature is associated with

it. Note that there may not exist a K-disjoint partitioning {WL
l }

K
l=1 of the feature

seed set because one feature can be associated with multiple clusters. We define

the centers of the feature seed set {WL
l }

K
l=1 as {µw

l }
K
l=1, which can be derived from

either feature-vote-model (see Section 6.2.5 for details) or feature-generative-model

(see Section 6.2.6 for details). Then, those seed centers can be used to both initialize

the clustering algorithms and guide the clustering process.
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6.2.4 Feature Supervision

Feature Supervision is similar to the model described in Section 5.3.3. However,

a labeled feature can be associated with a cluster indirectly through the labeled

documents from which it is labeled. After a cluster being created, additional features

can be associated with a cluster directly by being assigned into the cluster.

6.2.5 Feature-Vote Model

In this method, we use the labeled features in the feature seed set to vote on cluster

labels for the unlabeled documents. A similar approach was introduced for document

classification [17, 54]. Each labeled feature w in a document x contributes one vote

for each of its cluster labels (could be associated with multiple clusters). Then, we

normalize the vote totals to get a probabilistic distribution over the cluster labels

for each document, i.e., {Pli} for document xi and cluster Xl. Assume document xi

contains nil labeled features for cluster Xl, we define:

Pli =
nil

∑K

k=1 nik

(6.2)

Then, the center of µw
l based on the feature seed set can be derived from these soft

labeled documents:name=µw
l ,description=Cluster center based on labeled feature set

µw
l =

∑

xi∈X

Plixi (6.3)

where xi is the vector of TFIDF values of the features selected for clustering by an

unsupervised feature selection technique (see Section 3.1.7 for details).

6.2.6 Feature-Generative Model

This model was introduced for sentiment analysis with binary classification [37] and

we extend it for document clustering with multiple clusters. In this method, we

generate each cluster center from the feature seed set directly. We choose to represent

the cluster center as a multinomial distribution which generates documents for the

corresponding cluster. Without losing generality, we derive the cluster center for

cluster Xl and words and features are used interchangeably. We define the following

notations to aid our derivations:
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V – set of words used for clustering, including both labeled and unlabeled words

PXl
– set of words labeled for cluster Xl

NXl
– set of words labeled for the other clusters, i.e., {Xk}

K
k=1, k is not equal to l

U – set of unlabeled words used for clustering

m – size of vocabulary, i.e. |V|

pXl
or p – number of words labeled for cluster Xl, i.e. |PXl

|

nXl
or n – number of words labeled for the other clusters, i.e. |NXl

|

In order to derive the multinomial distribution for cluster center of Xl, we assume the

following properties about the relationships between words and clusters.

Property 1: All words in PXl
are equally likely to occur in a document from cluster

Xl.

P (wi|Xl) = P (wj|Xl), ∀wi, wj ∈ PXl
(6.4)

We refer to the probability of any word in PXl
appearing in a document from cluster

Xl simply as P (wp|Xl).

Property 2: All words in NXl
are equally likely to occur in a document from cluster

Xl.

P (wi|Xl) = P (wj|Xl), ∀wi, wj ∈ NXl
(6.5)

We refer to the probability of any word in NXl
appearing in a document from cluster

Xl simply as P (wn|Xl).

Property 3: The unlabeled words are treated equally in each cluster.

P (wi|Xl) = P (wj|Xl), ∀wi, wj ∈ U (6.6)

We refer to the probability of any word in U appearing in a document from cluster

Xl simply as P (wu|Xl).

Property 4: A document from cluster Xl is more likely to contain a word from PXl

than a word from NXl

P (wp|Xl) = r · P (wn|Xl) (6.7)

where r is referred to as polarity level, which measures how much more likely a word in

PXl
occurs in a document from cluster Xl compared with a word in NXl

. Since a word

in PXl
is more likely to occur in a document from cluster Xl, we have 0 < 1/r ≤ 1.

Property 5: The multinomial probability distribution learned from labeled features
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for each cluster is constrained by summing to one.

m
∑

i

P (wi|Xl) = 1 (6.8)

We use property 5 as constraints to derive the appropriate probability distribu-

tion based on labeled features. By Eq. 6.8 it follows that

pP (wp|PXl
) + nP (wn|PXl

) + (m− p− n)P (wu|PXl
) = 1 (6.9)

which gives us the following inequality using Eq. 6.7 and given that m ≥ p+ n,

pP (wp|Xl) + nP (wn|Xl) ≤ 1

⇒ pP (wp|Xl) + n
P (wp|Xl)

r
≤ 1

⇒ P (wp|Xl) ≤
1

p+ n/r

Since 0 < 1/r ≤ 1, it follows that,

1

p+ n
≤

1

p+ n/r
≤

1

p

By assigning a large but not too large probability mass to the known words, P (wp|Xl)

is set to the minimum of the maximum values, i.e.

P (wp|Xl) =
1

p+ n
(6.10)

Now, it follows from Eq. 6.7,

P (wn|Xl) =
1

p+ n
·
1

r
(6.11)

Now, solving Eq. 6.9, we can have the probabilities for the unlabeled words:

P (wu|Xl) =
n(1− 1/r)

(p+ n)(m− p− n)
(6.12)

Finally, we use Equations 6.10, 6.11 and 6.12 to derive the center µw
l of cluster

Xl. The cluster center µ
w
l is defined as a vector, whose elements are the probabilities

of words in V given the cluster Xl, namely,

µw
l = (P (w1|Xl), P (w2|Xl), . . . , P (wm|Xl)) (6.13)

where wi ∈ V and m = |V| as previously defined.

In our experiments, we set r = 100 based on previous experimental results [37].
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6.2.7 Combining Multiple Centers

Opinion pool is a general approach to combine information from multiple sources, such

as the centers derived from document seed set and feature seed set in our document

clustering problem. Particularly, we use linear opinion pool approach to aggregate

multiple centers. which was used to combine probability distributions for text classi-

fication [37]. In this approach, the aggregated (pooling) center is defined as

µl =
S
∑

s=1

αsµ
s
l (6.14)

where S is the number of sources we have.

In addition, we compute the weights α’s of individual sources based on their error

in labeling the document seed set. In particular, we use the same weighting scheme

as [37]:

αs = log
1− errs
errs

(6.15)

where errs is the classification error of the source s when the derived centers based

on the information provided by the source s are used to classify the documents in the

document seed set. All αs’s are normalized to one.

6.2.8 Dual Semi-supervised KMeans

In DualSeededKMeans, both the document seeds and feature seeds are used to ini-

tialize the KMeans algorithm through derived cluster centers. To this end, the center

of the lth cluster is initialized with the pooling center derived from both µd
l and µw

l

(Eq. 6.14) before the clustering starts. During the clustering, the cluster centers are

refined using the information contained in the intermediate clusters. This information

is expressed in the form of intermediate cluster centers µc
l

µc
l =

∑

xi∈X c
l
xi

|X c
l |

(6.16)

where X c
l is the lth intermediate cluster. Then, we can incorporate µc

l to the DualSeed-

edKMeans algorithm using the linear opinion pool technique (Eq. 6.14). The algo-

rithm is described in details in Alg. 9. Note that DualSeededKMeans can be special-

ized to DocumentSeededKMeans when feature seed set is empty and FeatureSeededK-

Means when document seed set is empty.
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Algorithm 9 DualSeededKMeans

Input: Set of data points X , the document seed set DL = ∪K
l=1D

L
l , the feature seed

set WL = ∪K
l=1W

L
l

Output: K clusters {Xl}
K
l=1

Method:

1: Compute {µd
l } from {DL

l } using Eq. 6.1

2: Compute {µw
l } from {WL

l } using Eq. 6.3 or Eq. 6.13

3: initialize: µ
(0)
l = αdµ

d
l + αwµ

w
l , for l = 1, . . . , K;t← 0

4: repeat

5: for all xi ∈ X do

6: Assign xi to the closest cluster X (t+1)
l based on {µt

l} and get {X (t+1)
l }Kl=1

7: end for

8: Update intermediate cluster centers:

µc
l ←

1

|X
(t+1)
l

|

∑

x∈X
(t+1)
l

x

9: Update cluster centers:

u
(t+1)
l ← αdµ

d
l + αwµ

w
l + αcµ

c
l

10: t← t+ 1

11: until convergence

6.2.9 Oracles

Most research involving labeling documents simulates human input by a document

oracle that uses the underlying class labels of documents in the dataset [2, 4, 6, 12, 31,

51]. However, in the case of features, we do not have a gold-standard set of feature

labels. Ideally, we should have a human expert in the loop labeling the selected

features. However, such a manual process is not feasible for repetitive large-scale

experiments. Therefore, we construct a feature oracle similar to the method described

by [17]. Using the document labels, the oracle computes the χ2 value of each feature

with cluster/class label, and accepts a feature if the χ2 value is above a threshold

β. In this chapter, the β value is the mean of the top f most predictive features,

where f = 100K, namely, 100 times the number of clusters. If accepted, the feature

oracle labels a feature with the cluster in which it occurs the most times and any other

clusters in which the feature occurs at least half times of the most occurrences. In this
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chapter, we use feature supervision association-content as described in Table 1.2. The

algorithms and the corresponding supervision methods are summarized in Section 1.4,

Table 1.1 and Table 1.2.

6.3 Experimental Results

6.3.1 Datasets and Evaluation Measures

We conducted our experiments on six real-word datasets of different sizes and also

consisting of different types of text documents. The six datasets we use are: (1) news-

simliar-3 (D1 ), (2) news-multi-7 (D2 ), (3) news-multi-10 (D3 ), (4) webkb-sfcp-4

(D4 ), (5) sector-multi-10 (D5 ), and (6) reuters-multi-10 (D6 ). The evaluation mea-

sure employed here is NMI. The datasets and NMI are described in Chapter 3. In

this chapter, we present a subset of experimental results to illustrate our points. The

complete results on all datasets are presented in Appendix D.

6.3.2 Analysis of Results

First of all, we have two sets of comparisons in our experiments. The first set of

comparisons is designed to determine whether the user-provided information can be

refined by the intermediate clusters, i.e., whether clustering models incorporating

unlabeled documents categorize documents better than classification models which

only use labeled information. The clustering and classification algorithms are de-

fined as: (1) DualSeededKMeans, or its specialized algorithms when one of the seed

sets is empty, i.e., DocumentSeededKMeans and FeatureSeeded-KMeans. Note that

Feature-SeededKMeans has two variants, namely, Feature-Vote-Model and Feature-

Generative-Model to derive cluster centers. (2) SupervisedKMeans, which performs

clustering by assigning documents to nearest cluster centers inferred from either the

document seed set or the feature seed set or both. It can be achieved by running

the DualSeededKMeans or its specialized cases, i.e., DocumentSeededKMeans and

FeatureSeededKMeans, with only one iteration. Therefore, we have DualSupervisedK-

Means, DocumentSupervisedKMeans, and FeatureSupervisedKMeans. In our experi-

ment, each algorithm was run 10 times with different initializations and the average

performance is reported.
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We did thorough pairwise comparisons (Table 6.1) to demonstrate that incor-

porating unlabeled documents can refine the information provided by the user and

produce better clusters. Concretely, we compared the following pairs of algorithms:

• DocumentSeededKMeans vs. DocumentSupervisedKMeans

• FeatureSeededKMeans vs. FeatureSupervisedKMeans using Feature-Vote-Model

and Feature-Generative-Model.

• DualSeededKMeans vs. DualSupervisedKMeans using Feature-Vote-Model and

Feature-Generative-Model.

We observe that all algorithms with refinement by intermediate clusters improve their

clustering performance over peer algorithms of SupervisedKMeans (Table 6.1) ex-

cept when Feature-Vote-Model with only feature supervision performs on dataset D3

(news-multi-10 ) and DualSeededKMeans and DualSupervisedKMeans using Feature-

Vote-Model on D1 (news-similar-3 ) (indicated by * in Table 6.1), which is only 2

out of 30 comparisons. Therefore, intermediate clusters are helpful in improving

clustering performance in addition to labeled information.

The second set of comparisons is designed to see whether dual supervision performs

better than any single supervision (Table 6.2). Thus, we compare DualSeededKMeans

with DocumentSeededKMeans, and FeatureSeededKMeans. Again, we have two vari-

ants when feature seed set is involved. We observe that dual supervision with

both document labeling and feature labeling generally improves the clustering per-

formance over any single supervision except with feature-generative-model on D1

(news-similar-3 ) and D4 (webkb-sfcp-4 ) indicated by * in Table 6.2, which is only 2

out of 24 comparisons. Note that algorithms with dual supervision performs better

than document only supervision on all datasets. Therefore, it appears that it is worth

labeling features.

Second, we ran experiments with incomplete seeding, namely, only a fraction of

categories are seeded by labeled documents, or labeled features, or both (Fig. 6.2

and Fig. 6.3). It can be seen that the performance decreases with increasing num-

ber of unseeded clusters. However, the performance does not decrease substantially,

suggesting that DualSeededKMeans may be able to extend the seeded clusters and
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Supervision Algorithm D1 D2 D3 D4 D5 D6

None Basic KMeans 0.069 0.523 0.468 0.341 0.710 0.350

Document
DocumentSeededKMeans 0.276 0.692 0.686 0.397 0.815 0.637

DocumentSupervisedKMeans 0.266 0.625 0.624 0.319 0.786 0.581

Feature
Vote-Model

FeatureSeededKMeans 0.551 0.770 0.820* 0.464 0.795 0.649
FeaureSupervisedKMeans 0.548 0.766 0.820* 0.428 0.791 0.637

Gen-Model
FeatureSeededKMeans 0.515 0.724 0.791 0.470 0.805 0.692

FeatureSupervisedKMeans 0.512 0.681 0.747 0.413 0.734 0.660

Dual
Vote-Model

DualSeededKMeans 0.482* 0.757 0.783 0.421 0.822 0.687
DualSupervisedKMeans 0.482* 0.745 0.765 0.372 0.815 0.660

Gen-Model
DualSeededKMeans 0.423 0.732 0.738 0.443 0.824 0.684

DualSupervisedKMeans 0.421 0.703 0.700 0.391 0.812 0.642

Table 6.1: SupervisedKMeans compared to peer algorithms refined by intermedi-
ate clusters using measure NMI. 10 documents are labeled for each cluster and fea-
tures are labeled by feature oracle from the labeled documents. We did two-tailed
paired t-test with p = 0.05 for comparing algorithms. In this table, we compare al-
gorithms by pairs, i.e., DocumentSeedsedKMeans vs. DocumentSupervisedKMeans,
FeatureSeededKMeans vs. FeatureSupervisedKMeans using Feature-Vote-Model and
Feature-Generative-Model. DualSeededKMeans vs. DualSupervisedKMeans using
Feature-Vote-Model and Feature-Generative-Model. All algorithms refined by inter-
mediate clusters perform significantly better than peer SupervisedKMeans algorithms
except FeatureSeededKMeans and FeatureSupervisedKMeans using Feature-Vote-
Model on D3 (news-multi-10 ) and DualSeededKMeans and DualSupervisedKMeans
using Feature-Vote-Model on D1 (news-similar-3 ) indicated by *.

Supervision Algorithm D1 D2 D3 D4 D5 D6

None Basic KMeans 0.069 0.523 0.468 0.341 0.710 0.350
Document DocumentSeededKMeans 0.416 0.770 0.780 0.466 0.847 0.767

Vote-Model
Feature FeatureSeededKMeans 0.560 0.771 0.819 0.468 0.796 0.679
Dual DualSeededKMeans 0.561 0.810 0.837 0.484 0.845 0.786

Gen-Model
Feature FeatureSeededKMeans 0.515* 0.746 0.796 0.504* 0.808 0.736
Dual DualSeededKMeans 0.507* 0.802 0.814 0.502* 0.852 0.797

Table 6.2: Comparison of algorithms with dual supervision to algorithms with any
single supervision using measure NMI. 20 documents are labeled for each cluster and
features are labeled by feature oracle from those labeled documents. We did two-
tailed paired t-test with p = 0.05 for comparing pairs of algorithms. In this table, we
compared DualSeededKMeans with DocumentSeededKMeans, DualSeededKMeans
with FeatureSeededKMeans using Feature-Vote-Model or Feature-Generative-Model.
DualSeededKMeans works better than DocumentSeededKMeans on all datasets.
DualSeededKMeans works better than FeatureSeededKMeans on all datasets except
D1 (news-similar) and D4 (webkb-sfcp-4 ) with Feature-Generative-Model indicated
by *.
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generate more clusters to fit the regularities in the dataset. Therefore, not all clusters

have to be seeded by labeled information.

Finally, we study the behaviors of the DualSeededKMeans with different numbers

of document seeds. Note that the more document seeds are labeled, the more feature

seeds are labeled because the feature seeds are labeled while a document is being

labeled. We have the following observations from Fig. 6.4.

• DualSeededKMeans always works better than DocumentSeededKMeans. How-

ever, the performance of the two algorithms is getting close when more docu-

ment seeds are provided. It suggests that the feature labeling is more useful

when there are few documents labeled, i.e., little user effort. One of the possible

explanations is that few labeled documents can not represent the cluster struc-

tures very well, which can be enhanced by the labeled features at the beginning

of the learning curve. However, when enough documents are labeled, the cluster

structures can be represented quite well with only documents so that the dual

supervision has similar performance to document supervision only.

• When there are only few documents labeled, FeatureSeededKMeans (fewer fea-

ture seeds) performs better thanDualSeededKMeans andDocumentSeededKMe-

ans. It suggests that feature supervision is more reliable than document supervi-

sion when only little supervision can be provided. However, DualSeededKMeans

and DocumentSeededKMeans improve their performance more quickly than

FeatureSeededKMeans when more document seeds are labeled. When there are

enough document seeds labeled, both DualSeededKMeans and DocumentSeeded-

KMeans perform better than FeatureSeededKMeans. Our explanation is that

a few labeled features can represent the cluster structures better than a few

documents, which also contain other non-discriminating features. Therefore, it

is better to label features than documents if only limited user supervision is

available.

• Learning curves of FeatureSeededKMeans are steep at the beginning but become

flat quickly. Our explanation is that enough feature seeds are labeled after a

few document seeds get labeled at the beginning. The number of feature seeds

labeled does not change much when more document seeds are labeled later.
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6.4 Summary

In this chapter, we incorporate document supervision and feature supervision in the

form of document and feature seeding. DualSeededKMeans is a novel unified frame-

work to combine document supervision, feature supervision and unlabeled documents

in the form of seeding. DocumentSeededKMeans and FeatureSeeded-KMeans are two

special cases of DualSeededKMeans. Experimental results demonstrate that unlabeled

documents can help to refine the information provided by the user and feature super-

vision is worth the effort to improve the clustering performance further compared to

document supervision only and much more helpful when only few documents can be

labeled due to manual cost.
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Figure 6.2: Performance as a function of the number of unseeded clusters,
on reuters-multi-10 dataset. 5 documents are labeled for each seeded cluster
where FeatureSeededKMeans performs better than DocumentSeededKMeans and
DualSeededKMeans.
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Figure 6.3: Performance as a function of the number of unseeded clusters,
on reuters-multi-10 dataset. 20 documents are labeled for each seeded clus-
ter where DualSeededKMeans performs better than DocumentSeededKMeans and
FeatureSeededKMeans.
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Figure 6.4: Performance as a function of the number of labeled documents. The
more documents are labeled, the more features are labeled and the better is the
performance. The usefulness of labeled features is more obvious when there are only
a few documents labeled, e.g., < 10. In fact, the feature supervision performs even
better than dual supervision at the beginning of the curves, indicating that feature
supervision is more reliable when only few documents are labeled.



Chapter 7

Personalized Clustering with Dual Supervision

In Chapters 4, 5, and 6, we proposed algorithms to incorporate feature supervision

into clustering techniques through feature selection, feature reweighting, and feature

seeding. Similar to previous research, oracles based on underlying class labels of

standard datasets are employed to evaluate the newly proposed methods efficiently.

However, the potential for semi-supervised techniques to produce personalized clus-

ters cannot be explored in this way since an oracle has the key disadvantage that it

always gives the same answer for an assignment of a document or a feature. How-

ever, different human users might give different assignments of the same document

and/or feature because of different but equally valid points of view. In this chapter,

we report on a user study we designed and conducted in which we ask participants

(users) to group the same document collection into clusters according to their own

understandings. Then we use the resulting clusters as ground truth to evaluate semi-

supervised clustering algorithms for user personalization. Through our user study,

we observe that different users have their own personalized organizations of the same

collection. It also suggests that a user’s organization changes over time. We also con-

firm that semi-supervised algorithms with noisy user input can still produce better

organizations matching user expectation (personalization) than traditional unsuper-

vised ones. Finally, we demonstrate that labeling keywords for clusters at the same

time as labeling documents can improve clustering performance further compared to

labeling only documents with respect to user personalization.

7.1 Introduction

Nowadays, academic researchers maintain a personal library of papers related to their

research, projects, and courses, downloaded from digital libraries such as Association

for Computing Machinery (ACM) digital library1. While those papers might be

1http://dl.acm.org/
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placed into different categories (folders) when they were downloaded, such categories

can be too coarse, or inconsistent. For example, a professor may have categories

defined by a combination of his graduate students, projects, topics of interest, or by

conferences attended. Even worse, papers with different topics might be put into

the same folder only for temporary convenience. In fact, even if users categorize the

papers appropriately at one time, they might change their mind later on and want

to organize the papers in another manner. In addition, researchers might like one

organization for their research but another one for preparing their course material.

Therefore, the organization of the personal library should be easy to change over time

based on user’s needs.

Clustering techniques are often employed to group a document collection into dif-

ferent topics. Unsupervised clustering does not require any user effort. However, the

users may not be satisfied with the universal output since it does not reflect the indi-

vidual user’s point of view and completely ignores personalization. Semi-supervised

clustering incorporates prior information, e.g., user input, into clustering algorithms

and normally can produce better quality of clusters. User input is generally provided

through user supervision. With respect to document clustering, there are two types of

supervision, i.e., document supervision and feature supervision. In document super-

vision, users provide document-level user input such as labeling a few representative

documents for each cluster [4] or identifying relationship between two documents, i.e.,

“must-link” and “cannot-link” [53]. In feature supervision, users provide feature-level

user input such as assigning a few keywords for each cluster [30] or identifying the

features (words) which are useful for clustering [22, 24]. The semi-supervised clus-

tering algorithms can also produce personalized clusters if combined with user input

from individual users.

The previous semi-supervised clustering algorithms were all experimentally eval-

uated using oracles. Oracles are based on the underlying class labels of standard

datasets. In the case of document supervision, two documents are put into the same

cluster or identified as “must-link” by the oracle if they have the same class labels.

Otherwise, they are identified as “cannot-link” and must end up in different clusters.

With respect to feature supervision, a feature oracle is constructed using feature se-

lection techniques such as the χ2 or information gain based on the underlying labels
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of documents. The constructed feature oracle determines whether a feature is useful

for clustering and which cluster the feature should be assigned to. By using ora-

cles, a new semi-supervised clustering algorithm can be evaluated and verified easily

and quickly. However, there are two main disadvantages in using oracles to evaluate

semi-supervised algorithms. First, oracles always give the correct assignments of doc-

uments into clusters or “must-link” and “cannot-link”. In real situations, human users

can easily make mistakes in assigning documents. Therefore, the semi-supervised al-

gorithms should be tested under noisy supervision, e.g., two documents are placed

into the same cluster when they are not meant to. The same problem exists with

feature supervision in that a user can pick a useless feature or even assign one cluster’s

feature to another one especially when there are overlaps between clusters. Although

one might claim that noise can be injected into oracle decisions [24], the probability

method used to create the feature oracle may not be able to simulate a user’s compli-

cated decision process. Second, oracles constructed for one dataset always assign the

same label for the same document or the same feature. Assume we have two papers

and one talks about programming languages and the other about software debugging.

A document oracle based on underlying class labels will always give the same assign-

ments on whether those two papers should be placed into the same cluster. However,

one human user can assign them into the same cluster “software engineering” while

another one would like to put them into two clusters, i.e., “languages” and “debug-

ging”. Clearly, the keywords (features) assigned for the two cases will be different

too. Therefore, although semi-supervised algorithms have the potential to produce

personalized clusters, they have not been explored for this purpose.

In this chapter, we conduct a user study to determine whether semi-supervised

clustering algorithms can produce better quality of clusters when human users are

asked to perform document supervision and feature supervision than unsupervised

clustering without any supervision. At the same time, we explore the semi-supervised

algorithms to produce personalized clusters for individual users when combined with

their own user input. We develop an interactive interface to help users to group

documents and assign keywords for clusters and documents. The interface helps users

to create a new cluster, assign a document to an existing cluster, move a document

from one cluster to another, merge two clusters, remove assigned documents and
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existing clusters. Thirty-two participants (users) were recruited and asked to label

80 out of the 580 documents (academic papers). The 80 papers are selected by an

active recommender described in Section 7.2.3. The papers are generally assigned to

three coarse categories selected by their authors, i.e., software, information systems,

and computing methodologies. However, the coarse labels are not used at all in this

chapter, neither for user supervision nor for the evaluation of the algorithms. The

participants do not know the actual number of clusters in the document collection

and are asked to group the documents based on their own understanding during

exploration. In fact, there are no gold-standard labels for this dataset because each

user may create any number of sub-clusters within each coarse category. Therefore, we

may obtain different sets of clusters of the same 80 documents from each participant,

in terms of the number of clusters, the cluster membership of documents and the

keywords assigned to clusters. At the same time, they are asked to select the cluster

keywords while they are labeling documents. They can also assign keywords to each

cluster directly. In order to demonstrate that semi-supervised clustering works with

a small amount of user input, only the first few assigned documents (1 to 6) to each

cluster are used as document supervision input (see details in Section 7.3.3). At the

same time, only keywords associated with those documents or directly assigned to

each cluster are used as feature supervision input. All 580 documents are clustered

and the algorithms are evaluated based on the 80 documents manually organized by

each participant.

In summary, our contributions in this chapter are: (1) We design and test useful

operations and text visualization methods to help users to group documents, which

should be included in supervision interface for document management software. We

demonstrate that selecting keywords during assigning documents takes little time us-

ing the designed interface and operations. (2) We observe that different users group

the same document collection differently, i.e., the number of clusters, the cluster mem-

berships of documents, and the assigned keywords. In addition, we observe that a

user’s organization of a document collection changes over time. Therefore, clustering

algorithms which accommodate personalization should be employed to customized

clusters for users. (3) We demonstrate that semi-supervised clustering algorithms

with a small amount of user input can produce personalized clusters and we verify



110

that semi-supervised clustering algorithms can still produce better quality of clusters

with (noisy) user input than unsupervised clustering. (4) We demonstrate that as-

signing keywords for clusters can help clustering algorithms to organize documents

better matching user’s point of view than any single supervision, i.e., labeling only

documents or only features.

7.2 Methodology

In this section, we first introduce clustering algorithms we use to demonstrate and

verify the usefulness of user input, i.e., the unsupervised clustering algorithmKMeans

and semi-supervised clustering algorithm DualSeededKMeans. Then, we briefly de-

scribe the active learning method we use to recommend documents for user supervi-

sion. Finally, we present the interactive user interface we use to collect user input

through document supervision and feature supervision.

7.2.1 Unsupervised KMeans

KMeans [10] is a clustering algorithm based on iterative assignments of data points to

clusters and partitions a dataset into K clusters so that the average squared distance

between the data points and the closest cluster centers are locally minimized. More

details about KMeans is available in Section 4.2.1.

7.2.2 Semi-supervised DualSeededKMeans

DualSeededKMeans [25] is a semi-supervised algorithm which can incorporate user

input from both document supervision and feature supervision. It transforms user

input from document supervision into document seeding [4, 25] using clusters de-

rived from labeled documents and user input from feature supervision into feature

seeding using a Feature-Vote-Model or Feature-Generative-Model [25]. Finally, it

combines document seeding and feature seeding using the linear opinion pool [37].

DualSeededKMeans is such a general framework that it becomesDocumentSeededK-

Means without feature supervision and FeatureSeededKMeans without feature su-

pervision. In fact, DualSeededKMeans without any supervision is equivalent to
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unsupervised KMeans. More details about DualSeededKMeans is available in Sec-

tion 6.2.8. Feature-Generative-Model was used in this chapter.

7.2.3 Active Document Recommendation for User Supervision

Since user supervision is labor-intensive, an active learning scheme is designed to

recommend the most potentially informative documents for the user to label, i.e.,

assigning the documents to a cluster. Our algorithm is an adapted version of the

explore-consolidate framework [5] (See Algorithm 10) to the situation when the num-

ber of clusters K is not predefined. In the original Explore and Consolidate frame-

work [5], there are two phases to construct the cluster structure, i.e., Explore and

consolidate. In addition, an oracle is used and the number of clusters K is assumed

to be known. In each iteration of the Explore phase, a document farthest from the

assigned documents is selected using a farthest-first traversal scheme. Then, the doc-

ument is either assigned to an existing cluster or a new cluster. This step stops after

K clusters are created. In each iteration of the consolidate phase, a document is

randomly selected and assigned to one of the existing K clusters. The purpose of

this phase is to consolidate the cluster structure faster because all clusters exist and

there is no need to search for the farthest document. However, it is not directly

applicable to our work because human users create clusters according to their own

understandings of the document collection and different users may create different

numbers of clusters (unknown K). Therefore, we do not know when the Consolidate

phase should start. In the adapted version for the user study, the Explore and Con-

solidate phases are interleaved (See Algorithm 11). One iteration of the Consolidate

phase is performed after every s (4 in this chapter) iterations of the Explore phase.

However, instead of random selection, a document closest to the smallest cluster is

selected in the Consolidate phase. The main goal is to have balanced clusters and

avoid having too many small clusters.

7.2.4 Interactive User Interface for User Supervision

As we mentioned in Section 7.1, we have two types of user supervision, namely, doc-

ument supervision and feature supervision. Therefore, we need to provide operations

in the user interface to support both types of supervision. We also have to provide
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Algorithm 10 Explore and Consolidate [5]

Input: Set of document data points X , number of clusters to be created K

Output: The document seed set DL = ∪K
l=1D

L
l

Phase: Explore

1: initialize: t← 0 //number of clusters created

2: x← randomly pick a document

3: t← t+ 1

4: Create a new a cluster DL
t with x

5: while t < K do

6: x← document farthest from all created clusters {DL
l }

t
l=1

7: if x belongs to an existing created cluster DL
l , l <= t then

8: Assign x to cluster DL
l

9: else

10: t← t+ 1

11: Create a new cluster DL
t with x

12: end if

13: end while

Phase: Consolidate

1: while the user still wants to label more documents do

2: x← randomly pick a document not in the created clusters

3: Assign x to the cluster DL
l (l <= K) to which it belongs

4: end while
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Algorithm 11 Adapted Explore and Consolidate

Input: Set of document data points X , ratio of Explore and Consolidate S, i.e., one

Consolidate step every S Explore steps

Output: The document seed set DL

Method: Explore interleaved with Consolidate

1: initialize: t← 0 //number of clusters created

2: s← 0 //number of Explore steps

3: x← randomly pick a document

4: t← t+ 1, s← s+ 1

5: Create a new a cluster DL
t with x

6: while the users still wants to label more documents do

7: if s == S then

8: //Phase: Consolidate

9: x← pick a document not in the created clusters and closest to the smallest

created cluster, i.e. DL
smallest = argminl=1,...,t|D

L
l |

10: s← 0

11: else

12: //Phase: Explore

13: x← document farthest from created clusters DL
t

14: s← s+ 1

15: end if

16: if x belongs to an existing created cluster DL
l , l <= t then

17: Assign x to cluster DL
l

18: else

19: t← t+ 1

20: Create a new cluster DL
t with x

21: end if

22: end while
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visualizations of clusters and documents to aid user supervision. An interactive user

interface2 is designed for those purposes using dashboard style [19]. The user interface

is implemented in Java with G Java 2D Graphics Library3. We have four panels in

the user supervision interface (Fig 7.1):

(1) Supervision Panel {1}4: This panel supports document supervision. The sec-

tors of the outer circle denote the clusters and the inner circle represents the

document that needs to be labeled (assigned to a cluster) by the user. The (yel-

low) slices inside a sector denote the documents assigned to the corresponding

cluster. The number inside a circle, at the top left corner of a slice or sector is

the document or cluster ID. There are always two auxiliary sectors, “New Clus-

ter” and “Trash”, which are used to create new clusters and remove clusters or

documents respectively. The operations provided by this panel include: (1) Cre-

ate a new cluster: Drag the inner circle or a slice to the “New Cluster” sector.

(2) Move a document: Drag a slice from one sector to another. (3) Merge two

clusters: Drag a sector to another. (4) Remove a cluster: Drag a sector to the

“Trash” sector. (5) Remove (unlabel or unassign) a document: Drag the inner

circle or a slice to the “Trash” sector.

(2) Document To-Be-Labeled Panel {2}: This panel displays the information

of the document denoted by the inner circle in the Supervision Panel and

the document ID matches the one in the inner circle. This panel includes two

sub-panels to aid users in identifying the topic of the document, i.e., text cloud5

{5} [32] and the whole content {6} of the document. The user can select a keyword

in either sub-panel, i.e., labeling a feature, by double-clicking on the word. After

being chosen as a keyword, the word is highlighted in red. If a word is already

being highlighted, double-clicking on it removes the highlighting and it is not

a keyword any more (un-labeling a feature). The user can also add and delete

keywords by entering them in the input field {7} and using the corresponding

add/delete buttons {8,9} respectively. All keywords of this document will be

2A demo of the interactive interface is available at http://web.cs.dal.ca/~yeming/demo.htm
3http://geosoft.no/graphics/
4Corresponding Identification number in Fig. 7.1
5Text cloud is computed using OpenCloud: http://opencloud.mcavallo.org/
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shown in the keyword area of this panel.

(3) Cluster View Panel {3}: After the user single-clicks on a sector in the super-

vision panel, the information of the corresponding cluster is displayed in this

panel. This panel is similar to the Document To-Be-Labeled Panel except

that there is no visualization of the whole content simple because a cluster does

not have it. The user can assign keywords using the methods introduced previ-

ously. Note that keywords assigned to a document become keywords of its cluster

automatically while the keywords directly assigned to a cluster are not connected

to any document assigned to it. Keywords assigned into a cluster should describe

the topic of the cluster and are used by DualSeededKMeans with Feature-Vote-

Model or Feature-Generative-Model in Section 7.2.2.

(4) Document Labeled Panel {4}: The layout of this panel is identical to the

Document To-Be-Labeled Panel. When the user single-clicks on a slice in

the Supervision Panel, the information about that assigned document is shown

in this panel. Besides viewing the topic of the document, the user can also revise

the keywords assigned to this document.

7.3 Experimental Results

7.3.1 Datasets

The dataset we use for the user study is a collection of the 580 academic papers in full

text from different areas of computer science (See details in Chapter 3). Those papers

were manually collected by the author from the ACM Digital Library. Based on the

1998 ACM Computing Classification System, those papers were assigned to one or

more of the following areas by their authors: Software including Software Engineering

and Programming Languages, Information Systems and Computing Methodologies.

Generally speaking, the categories assigned by paper authors are very coarse and

cannot reflect the accurate topics of the papers. In addition, it is not uncommon that

one paper is related to multiple topics and can be assigned to multiple categories.

Therefore, this dataset is well suited for us to determine whether different users

have their own point of view of the same document collection. At the same time,
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Figure 7.1: Interface for User Supervision. The user interface supports both doc-
ument and feature supervision with four panels, i.e., top left panel for document
supervision, top right panel for the document to be labeled, bottom left panel for
a selected cluster, and bottom right Panel for an assigned document. The interface
also provides various operations to help users with document supervision and feature
supervision in each panel such as creating a new cluster, moving a document, merging
two clusters, removing a cluster or a document, labeling and unlabeling a word, etc.
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we can demonstrate the usefulness of user supervision for producing personalized

organization.

7.3.2 Evaluation Measures

We use Rand Distance based on Rand Index [41] to compare different users’ clus-

terings (groupings) of the same document collection and determine whether different

users have their own point of view, thereby motivating the inclusion of user personal-

ization as a requirement for clustering algorithms. Based on Rand Index, we develop

measures of cohesiveness and separation to evaluate the clusters produced by cluster-

ing algorithms in comparison with users’ manual organizations. In addition, we use

Jaccard Distance [49] to measure the dissimilarity between the sets of features labeled

by different users. The details and definitions of these measures can be in Chapter 3.

7.3.3 Experimental Setup

We recruited thirty-two participants to group 80 of the 580 academic papers in our

ACM dataset. Those 80 papers are selected by the active learning method presented

in Section 7.2.3 and every participant groups the same 80 papers. The thirty-two

participants include 5 female and 27 male graduate students from computer science.

At the beginning, the task of the user study is introduced to all participants explain-

ing that there are no given predefined categories and they are asked to group papers

based on their own understandings during the exploration of the collection. They are

also aware that they need to assign keywords to a document and those keywords will

be included in the cluster keywords automatically after the document is assigned to

a cluster. They can also assign and remove keywords to and from clusters directly.

Then, they are given a demonstration how to group the documents and assign key-

words using the software, whose interface is shown in Fig. 7.1 and then they are given

5 minutes to become familiar with the software. Finally, they are asked to use the

software to group the 80 documents. Documents are presented to the user one at a

time for labeling. The document to be labeled is represented by the inner circle of

Fig. 7.1. The order of appearance of the 80 documents depends on the active learning

recommendation method. Although all participants group the same 80 documents,

each user is presented the documents in a different order.
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Name Definition
Add Assign a document into a cluster
Move Move a document from one cluster to another
Delete Remove a cluster
Merge Merge two clusters
Label Add a keyword through double-clicking
Unlabel Remove a keyword through double-clicking

AddButton Add a keyword through Add Button
DelButton Remove a keyword through Delete Button

Table 7.1: Definitions of operations

For all users, we experiment with document supervision consisting of fewer than

the full 80 documents a user labels. We only use the first m documents assigned

to each cluster, where m ranges from 1 to 6. Documents within each cluster are

ordered based on the time they were assigned to the cluster, either when being la-

beled for the first time or when moved from another cluster. When a cluster B is

merged into cluster A, documents in A precede documents in B. At the same time,

only keywords associated with those documents selected for document supervision,

or directly assigned to each cluster, are used as feature supervision input. Since the

order the documents appear for labeling is distinct, the user input from each user for

DualSeededKMeans includes different sets of documents and labeled features. All

580 papers are clustered and the clusterings produced from different algorithms are

evaluated based on the 80 user labeled papers using coh, sep, and F -Measure.

7.3.4 Results

In this section, we present the user feedback and analyze results from our user study.

We performed three kinds of analysis on the following aspects: usage of the inter-

face, personalization of the same document collection, and personalized document

clustering with dual supervision.

User Satisfaction with the User Interface

Generally speaking, all participants think they know the topics of document collection

well and it is easy to identify the topic of a document and to identify the keywords

that need to be assigned into a cluster after they manually organize the 80 documents
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recommended by the active recommender. They also indicate that the operations to

assign and move a document, delete and merge clusters are easy to use. However,

only one participant used the operation “split a cluster” because others did not realize

its existence. They would like to use the software to organize their personal library

of papers if the system came with proper documentation and agree that the system

can help them to organize their papers better. A few interesting points we find out

are:

• Twenty-nine participants think assigning keywords only takes a little time (less

than 10 seconds) while only three of them indicate that it takes some time (more

than 10 second but less than 1 minute). No one thinks it takes much time (more

than 1 minute).

• All participants except one think that the whole content is more useful than

text cloud in identifying the topic of a document. This point can also be verified

by Table 7.5, which shows that about 70% keywords are labeled based on the

whole content. This is surprising since we expected that text cloud would be

more helpful. One of the possible explanations is that we used single words

for text cloud and multiple-word phrases could have made the text cloud more

useful, especially for scientific documents, which tend to have many multi-word

terms.

• All participants review the topic of an existing cluster through keywords instead

of reading documents assigned to this cluster. Therefore, it is very important

to assign meaningful and correct keywords to a cluster from the beginning.

In addition, many participants suggest that they would like to have more func-

tionality such as searching documents by words. They also suggest that we might

add a spell checker for the keywords they enter. More specifically, some participants

like to have all assigned documents with a keyword within a cluster highlighted when

the keyword of that cluster is selected.

We present a few excerpts from users’ feedback as evidence for the above obser-

vations:

• “The pie visualization6 is very easy to use after practicing on it.”

6The “Supervision Panel”
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Operation MIN AVG MED MAX
Add 80 80.5 80 92
Move 0 4.31 3 22
Delete 0 3.03 2 10
Merge 0 1.84 1 10
Label 5 72.00 54 205
Unlabel 0 4.15 2 18

AddButton 0 12.53 9 80
DelButton 0 9.28 7 36

Table 7.2: Usage of interface operations. It is not uncommon that a user moves a
document, deletes an existing cluster and merges two clusters. Many keywords are re-
moved after being assigned (Unlabel and DelButton). Users remove keywords mainly
through DelButton because they clean the keywords at the end of the organization.
In sum, a user changes his perception of the document collection during exploration.

• “I really liked the drag and drop feature, which has made the system very easy

to use.”

• “ ‘Split A Cluster’ helped me when I by mistake merged two clusters together.”

• “I like the typing keywords feature because it allows me to generalize or be more

specific about keywords without being constrained to a predefined list.”

• “I found text clouds less useful than I expected.”

• “It should be useful to have cluster or document keywords when the mouse

hovers it in the supervision panel.”

• “When a document or cluster is selected, I would expect this cluster or document

was somehow highlighted in the supervision panel. Without it, it is not easy to

move a document from one cluster to another.”

• “I’d like to have the search (CTRL+F) function and a spell checker.”

• . . .

User Behaviors

We analyze operations defined in Table 7.1 which users use during grouping docu-

ments and assigning keywords so we can identify the most useful ones that should be
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NAME MIN AVG MED MAX
# of Clusters 4 6.34 6 9

Assigned Documents 68 76.47 77 80
Assigned Keywords / Cluster 1 9.09 8 26

Table 7.3: Statistics of # of clusters created, assigned documents and keywords.
Different users create different numbers of clusters, assign different numbers of docu-
ments, and assign different numbers of keywords. However, it shows that users assign
about 10 keywords per clusters, which could be used to help clustering algorithms to
produce clusters matching their expectations.

included in future interface design. We also present the analysis of the text visual-

ization methods used in the user interface.

A document is considered as “assigned” after it is placed into an existing or a

newly created cluster. Otherwise, it is considered as “unassigned”, i.e., the document

is placed into the “trash” cluster. The average of assigned documents out of the

80 documents is 76.47 (Table 7.3). Therefore, users know topics of most documents

recommended by the active recommender. The most unassigned documents by a

user is 12, which is 15% of all documents recommended. However, most users only

have less than 4 documents not assigned to any cluster. In fact, some users put a

few documents into trash clusters at the beginning. Later on, those documents are

retrieved and assigned into an existing cluster. Oracles in previous work could not

simulate this behavior, in which not all recommended documents are assigned at the

beginning and users can have chance to put some documents on hold and cluster them

later. In addition, users are able to assign at least a few keywords for each cluster

and generally assign about 9 distinct keywords for each cluster (Table 7.3).

We display the minimum, average, median, and maximum times users use each

operation in Table 7.2. The fact that we have 92 (more than 80) add operations

indicates that some documents are moved from an existing cluster to create a new

cluster. It is also not uncommon that a user move a document from one cluster to

another, delete an existing cluster and merge two existing clusters. In addition, users

also assign plenty of keywords for clusters. At the same time, many assigned keywords

are removed since the users do not consider them as keywords after they learn more

about the collection. On one hand, keywords are assigned through double-clicking

more often than using add keywords buttons. That is mostly due to the fact users can
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Name Through Document Directly Total
Label 68.03

91.13%
3.97

8.87%
72.00

AddButton 9.00 3.53 12.53
Unlabel 3.78

51.90%
0.37

48.10%
4.15

DelButton 3.19 6.09 9.28

Table 7.4: Keywords assigned through documents or directly to clusters. Most key-
words are assigned into clusters through documents. Keyword removals equally often
happen through documents and clusters (directly). Especially, it is observed that
keyword removals through documents take place when a user is labeling a documents
through double-clicking while keyword removals through clusters usually happen after
the user finishes the manual organization and wants to clean the keywords represent-
ing the cluster.

assign the keywords during reading a document. However, some keywords have to be

assigned or removed through add or delete keyword buttons because these keywords

do not exist or are difficult to find in any document. On the other hand, users remove

keywords mainly through the delete button. That is because users normally clean

the keywords for a cluster using delete button at the end of the manual organization

so that the keywords left can represent the topic of the cluster well. All frequent use

of those operations confirm that a user can change his perception of the document

collection while exploring the document collection. Therefore, clustering software

should enable users to change the existing cluster structures.

Next, we analyze user behaviors on assigning keywords. A user can assign key-

words to a document and the keywords associated with the document are assigned

to a cluster automatically after the document is assigned into the cluster. A user

can also assign keywords to a cluster directly. In addition, we are interested in which

visualization method users use most often. We observe that most keywords are as-

signed through documents while a small percentage is assigned into clusters directly

from Table 7.4. Although most participants assigned keywords primarily by double-

clicking and rarely by using “AddButton”, one participant only used “AddButton”

because he said the keywords that he came up with could best reflect his perception

of the collection. With regards to keyword removals, users removed keywords equally

often through documents and directly from clusters. It is observed that keyword

removals through documents mostly take place when users read documents and try

to learn its topic while users remove keywords from clusters directly after they finish
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Name Text Cloud Whole Content Total
Label 23.03 31.97% 48.97 68.01% 72.00
Unlabel 1.37 33.01% 2.78 66.99% 4.15

Table 7.5: Keywords assigned through text cloud or whole content. It is observed that
more than two-thirds of the keywords assigned through double clicking are selected
using whole content of document. This fact is consistent with the user feedback that
the whole content is more helpful in discerning the topic of the document than the
text cloud. However, text cloud is still useful for assigning keywords since it has
fewer words than whole content and is easier to find the word to be assigned. As
some users indicated in the post-study questionnaires, text cloud is useful to have a
general idea about the document but the whole content helps to find the exact topic
of the document.

# 4 5 6 7 8 9 Total
Frequency 2 7 11 6 2 4 32
Percentage 6.25 21.88 34.38 18.75 6.25 12.5 100

Table 7.6: Frequency of # of clusters created. Different users create different numbers
of clusters based on their own perceptions of the same document collection.

the manual organizations and want to clean the keywords which represent the topics

of clusters. We observe that more than two-thirds of the keywords assigned through

double clicking are selected using whole content of document from Table 7.5. This

fact is consistent with the user feedback that the whole content is more helpful in

discerning the topic of the document than the text cloud. However, text cloud is

still useful for assigning keywords since it has fewer words than whole content and

easier to find the word to be assigned. As some users indicated in the post-study

questionnaires, text cloud is useful to have a general idea about the document but

the whole content helps to find the exact topic of the document.

Personalization

We compare different groupings of the same 80 papers from all participants in terms

of both documents and keywords assigned. We also compare the groupings of the

same 80 papers from the same users at different times to see whether the same users

have different views of the same collection over time.

First, users create different numbers of clusters based on their own understanding

although all numbers are between 4 and 9 (Table 7.3). More specifically, about 80%
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Measure MIN AVG MED MAX
RD 0.1308 0.2483 0.2455 0.3817
JDa 0.6346 0.8632 0.8677 1.0
JDb 0.6483 0.9007 0.9082 1.0

Table 7.7: Statistics of user manual organizations. The Rand Distance 0.25 shows
that there is substantial disagreement (Rand Distance is 0 for completely agreement)
between different users and distinct clusters were created. In addition, the Jaccard
Distances in terms of labeled keywords indicate even more disagreement between
different users (average distance about 0.90).

of the participants created 5, 6, or 7 clusters while others created 4, 8, 9 clusters

(Table 7.6). The frequency of the cluster numbers are close to uniform distribution

among 5, 6, 7 (the more frequent cluster numbers, about 74%) and among 4, 8, 9 (the

less frequent ones, about 36%) respectively. Therefore, users tend to create different

numbers of clusters. Later on, we will observe that different participants have distinct

clusters regardless of whether the cluster numbers are the same or not.

We present the minimum, average, median and maximum Rand Distance and Jac-

card Distance between organizations of all user pairs of clusterings in Table 7.7. The

average Rand Distance between the user pair organizations is about 0.25. If different

users create similar partitions of the same document collection, we would expect that

the average Rand Distance is close to 0. Therefore, the Rand Distance 0.25 shows

that there is substantial disagreement between different users and distinct clusters

were created. In addition, the Jaccard Distances in terms of labeled keywords indi-

cate even more disagreement between different users (average distance about 0.90).

That is because there is normally a much bigger word vocabulary than the number

of documents and many different keywords can be used to identify the same cluster

topic, i.e., completely different keyword sets can be used for the same topic. JDb

shows a higher disagreement than JDa because JDb considers the cluster label of

keywords while JDa does not. Therefore, it confirms our conjecture that different

users have different point of view of the same document collection.

Finally, we compare manual organizations by the same users but at different times.

Generally speaking, the two organizations are still distinct from one another although

they are closer when compared to organizations from different users (Table 7.7 and

Table 7.8). For example, the average Rand Distance between user pair’s manual
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Measure P1 P2 P3 P4 P5 AV G
RD 0.2202 0.073 0.1652 0.1323 0.1647 0.1511
JDa 0.5574 0.4444 0.82 0.8684 0.6667 0.6714
JDb 0.6072 0.4348 0.8396 0.8269 0.7498 0.6917

Table 7.8: Manual organizations by five same users at different times. Generally
speaking, the two organizations are still distinct from one another although they are
closer when compared to organizations from different users (Table 7.7). For example,
the average Rand Distance between user pair’s manual organizations is 0.25, while
from the same user is 0.15.

Name No Supervision Document Feature Dual
RD 0.080 0.2540 0.1711 0.2226

Table 7.9: Rand distances between clusterings produced by each algorithm for differ-
ent users. The average Rand Distance between clusterings produced with document
supervision and dual supervision with 4 documents and associated keywords is about
0.23, which is very close to the average Distance between different users’ manual or-
ganization (about 0.25). On the other hand, the Rand Distance between clusterings
produced without supervision is only 0.08. Therefore, clusterings obtained via semi-
supervised clustering with user supervision are highly depended on user input, and
therefore they can be viewed as personalized clusterings.

organizations is 0.25, while from the same user is 0.15.

Document Clustering with User Supervision

Semi-supervised clustering algorithms have been demonstrated to be able to improve

clustering performance over unsupervised peer algorithms using oracles [21, 22, 24,

25]. Since oracles used in previous work are assumed to give “correct” answer all

the time, our purpose here is to verify that document clustering with human’s noisy

supervision can still produce more consistent clusters with user’s manual organization

than unsupervised clustering techniques. Instead of using a single universal ground

truth as in previous work, each user has his own ground truth in our case. There-

fore, we also explore whether document clustering with user supervision can produce

personalized clusters. We present the results of clustering algorithms initialized by

a few (1 to 6) documents and the keywords labeled in those documents or assigned

directly into the clusters. We use coh, sep, and F -Measure to quantify the consis-

tency of the computed clustering with the user’s manual organization. We observe

that document supervision is able to group similar documents together while feature
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Figure 7.2: Performance of clustering algorithms with no supervision, document
supervision, feature supervision and dual supervision. Dual supervision, can gener-
ally produce clusters better matching user’s expectation than no supervision or any
single supervision, i.e., document supervision and feature supervision. Since assign-
ing keywords is efficient for users, it is worth the effort to improve the clustering
performance.
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supervision is better at separating dissimilar documents (Fig. 7.2(a) and Fig. 7.2(b)).

A small number of labeled documents appears to lead to unbalanced clusters in terms

of size with high cohesiveness (e.g. coh is 1 when all documents are place into the

a single cluster), since the labeled documents can not represent the cluster struc-

ture well. We observe this behavior in Fig. 7.2(b). A small number of keywords

assigned to clusters (through the labeled documents or directly by the user) appears

to lead to more balanced clusters with a better representation of cluster structures,

as seen in Fig. 7.2(b). Especially, document supervision can not separate dissimilar

documents very well into different clusters when less than 4 labeled documents per

cluster are provided (Fig. 7.2(b)). Since the keywords (features) assigned by users

are representative of the clusters, feature supervision can provide good performance

in terms of both cohesiveness and separation. Dual supervision, the combination of

document supervision and feature supervision, can generally produce clusters better

matching user expectation (Fig. 7.2)7. Since assigning keywords is efficient for users,

it is worth the effort in order to improve the clustering performance. In addition,

the performance of the clustering algorithms improves with more labeled documents

(and more assigned keywords) for initialization. This is easily understandable since

more documents and/or keywords can represent the cluster structures better.

We also investigate how consistent the clusterings are between different partic-

ipants. We compute and display the average Rand Distances between clusterings

generated by the same algorithm for different users with same type and amount of

supervision in Table 7.9. Like the manual organizations from each user (Table 7.7),

the clusterings produced with user’s input are also distinct from each other (Ta-

ble 7.9). The average Rand Distance between clusterings produced with document

supervision and dual supervision with 4 documents and associated keywords is about

0.23 (Table 7.9), which is very close to the average Rand Distance between different

users’ manual organization (about 0.25 in Table 7.7). On the other hand, the Rand

Distance between clusterings produced without supervision is only 0.08. Therefore,

clusterings obtained via semi-supervised clustering with user supervision are highly

depended on user input, and therefore they can be viewed as personalized clusterings.

7Two-tailed paired t-test with p = 0.05.
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7.4 Future Work

Since text cloud with single words is not as helpful as we expected, it is worth to

further investigate the utility of the text cloud with multiple-word terms. According to

user feedback, functions such as searching documents by words, retrieving documents

in a cluster with a specific keyword of that cluster, and a spell checker should be

added to the user interface in the future. Since a user changes his perception of

the document collection during exploration, the software should be able to interleave

user supervision and clustering, i.e., the user should be able to make adjustments

of documents and features after intermediate clusters are obtained [7], and then the

clustering procedure is repeated with the updated user input. Other future work

directions include enabling users to create hierarchical clusters with the user interface

and allowing soft clustering, namely, a document to be assigned to multiple clusters.

7.5 Summary

Thirty-two participants were recuited to organize the same document collection. We

analyzed users’ behaviors during their manual organization. The analysis shows that

users can easily find the keywords to assign to a cluster based on the whole content

of the documents and it is efficient according to users’ feedback. Instead of only

assigning keywords existing in the documents, users also like to come up with phrases

to describe the topics of clusters. By comparing all groupings from all participants, we

find that each user has his own perception of the document collection and a clustering

algorithm with user supervision is required to produce personalized clusters, which

better reflect his point of view. At the same time, we confirm that previously proposed

semi-supervised document clustering algorithms can produce personalized clusters

with a small amount of user input even if it is noisy. It is also demonstrated that

the same user can change his perception of the documents over time. Therefore,

operations such as moving a document between clusters and merging two clusters

should be available in software for document clustering. We also find that text cloud

with single words is less useful than the full text for users to grasp the topic of a

document.



Chapter 8

Conclusions and Future Work

In this thesis, the focus of the research is to produce personalized clusters of the

same document collection such as a personal library of papers based on individ-

ual user’s point of view. This problem can be tackled using clustering techniques.

However, traditional unsupervised clustering gives a universal output without any

personalization, which users may find unsatisfactory. Therefore, prior knowledge

from individual users has to be incorporated into clustering algorithms in order to

generate customized clusters for different users. Various semi-supervised clustering

algorithms have been designed to work with labeled instances (documents) to im-

prove clustering performance. Previous semi-supervised algorithms are mainly used

to improve clustering performance, while the potential for semi-supervised clustering

algorithms to produce personalized clusters has not been explored. Besides labeling

documents, an alternative form, i.e., labeling features for document clustering, exists

for user supervision. In addition, it has been argued that labeling documents is more

labor-intensive compared to labeling features [40]. This supervision is called feature

supervision. Correspondingly, labeling documents is called document supervision and

the joint use of document supervision and feature supervision is called dual supervi-

sion. In this thesis, we proposed frameworks and algorithms to incorporate feature

supervision into traditional unsupervised and semi-supervised clustering algorithms.

We also present a user study, which confirms that different users have their own

personalized organizations of the same document collection. In the user study, the

framework for document clustering with dual supervision is evaluated and confirmed

to perform well even with noisy user input. Generally speaking, the research was

done and evaluated in two steps: (1) Oracle-based. The proposed frameworks and

algorithms are evaluated by oracles. Oracles are based on the underlying class labels

of the standard datasets to simulate human users providing document and feature

129



130

supervision. (2) Human Users. The framework for document clustering with dual su-

pervision is evaluated and validated by noisy input provided by human users. It also

validates that semi-supervised clustering techniques are able to produce personalized

clusters with user input from individual users.

The methodological contributions of the thesis include the following.

First, we designed and created a framework that enable users to label features by

indicating whether they are useful for clustering from a ordered list of features ranked

by the χ2 based on intermediate clusters. The framework interleaves interactive

feature selection and clustering iteratively until users are satisfied with the generated

clusters. The advantage of this framework is that the features to be labeled are

recommended to users so that they do not need to read whole documents to find the

features. However, it might be difficult for users to judge whether a feature is useful

or not without context.

Second, we introduced feature supervision through feature reweighting in com-

bination with document supervision and experimented with various existing semi-

supervised clustering algorithms extended to incorporate feature supervision. In

pratice, the features could be labeled while labeling documents through text cloud or

document content.

Third, we present a novel unified framework to combine document supervision

and feature supervision through seeding. Instead of modifying the document repre-

sentations through feature reweighting, features associated with documents are used

directly to initialize the clusters by using feature seeding.

Finally, we conducted a user study to evaluate our newly designed document

clustering algorithms with dual supervision. We designed an interactive user interface,

which enabled users to group the documents flexibly. Through the user study, we

observe that different users have their own personalized organizations of the same

collection and a user’s organization changes over time. Therefore, we propose that

document clustering algorithms should be able to incorporate user input and produce

personalized clusterings based on user needs.

Since the frameworks proposed in this thesis are based on efficient clustering

algorithms, i.e., KMeans and Multinomial clustering, they are scaled to quite large

datasets and can be applied to obtain personalized web. In fact, any clustering
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algorithm can be used as the underlying algorithm with the dual supervision according

to user needs such as time requirement and performance. One limitation of this work

is the quite complicated interface design, which requires the users to spend some time

to become familiar with it. In addition, the frameworks do not support hierarchical

clustering, which is a popular document management method. However, the concept

of dual supervision can be easily extended to accommodate hierarchical clustering.

In this thesis, we explored different visualization methods to present features such

as a ranked list in Chapter 4, text cloud and whole content in Chapter 5, 6 and 7. It

is natural to combine the visualization methods together so that users can easily find

the features they want to label and also have easy access to the context at the same

time. We also explored two techniques to combine feature supervision with document

supervision, feature reweighting in Chapter 5 and feature seeding in Chapter 6. Since

these two methods are complementary to each other, we can use feature reweighting to

modify the document representations and feature seeding to influence the clustering

algorithm in a unified framework. A future work direction includes introducing feature

supervision into hierarchical clustering, in which the features associated with a parent

cluster should be more general than those of children clusters. In addition, the concept

of dual supervision can also be applied to text streams. Other possible future work

specific to chapters is presented in Chapter 5 and 7.
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Figure B.1: Effect of feature set sizes on different datasets (a),(c), (e),(g), (i),(k)
use NMI as performance measure. (b),(d), (f),(h), (j),(l) use accuracy as perfor-
mance measure. x axis-feature set size, y axis-the corresponding performance, NMI
or Accuracy.
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Figure B.2: Effect of feature set sizes on different datasets (a),(c), (e),(g), (i),(k)
use NMI as performance measure. (b),(d), (f),(h), (j),(l) use accuracy as perfor-
mance measure. x axis-feature set size, y axis-the corresponding performance, NMI
or Accuracy.
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Figure B.3: Effect of user effort on news-diff-3 dataset. (a), (b), (c), (d), (e) and
(f) use KMeans as the underlying algorithm while (g), (h), (i), (j), (k) and (l) use
EM-NB as the underlying algorithm. Legends are all weights between 1 and 10.
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Figure B.4: Effect of user effort on news-related-3 dataset. (a), (b), (c), (d), (e) and
(f) use KMeans as the underlying algorithm while (g), (h), (i), (j), (k) and (l) use
EM-NB as the underlying algorithm. Legends are all weights between 1 and 10.
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Figure B.5: Effect of user effort on news-similar-3 dataset. (a), (b), (c), (d), (e) and
(f) use KMeans as the underlying algorithm while (g), (a), (b), (c), (k) and (l) use
EM-NB as the underlying algorithm. Legends are all weights between 1 and 10.
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Figure B.6: Effect of user effort on D2-D2&D3-D3 dataset. (a), (b), (c), (d), (e) and
(f) use KMeans as the underlying algorithm while (g), (h), (i), (j), (k) and (l) use
EM-NB as the underlying algorithm. Legends are all weights between 1 and 10.
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(f) KMeans on ACM (D-H-I )
dataset: (x axis-ftotal) vs. (y

axis-Accuracy)
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(g) EM-NB on ACM (D-H-I )
dataset: (x axis-f) vs. (y

axis-ftotal)
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(h) EM-NB on ACM (D-H-I )
dataset: (x axis-f) vs. (y

axis-eff -eff)
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(i) EM-NB on ACM (D-H-I )
dataset: (x axis-f) vs. (y
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(j) EM-NB on ACM (D-H-I )
dataset: (x axis-ftotal) vs. (y
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(k) EM-NB on ACM (D-H-I )
dataset: (x axis-f) vs. (y
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Figure B.7: Effect of user effort on ACM (D-H-I ) dataset. (a), (b), (c), (d), (e) and
(f) use KMeans as the underlying algorithm while (g), (h), (i), (j), (k) and (l) use
EM-NB as the underlying algorithm. Legends are all weights between 1 and 10.
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(a) KMeans on
3-classic-abstract dataset: (x
axis-f) vs. (y axis-ftotal)
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(d) KMeans on
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(e) KMeans on
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(g) EM-NB on
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(h) EM-NB on
3-classic-abstract dataset: (x
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(i) EM-NB on
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(j) EM-NB on
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(k) EM-NB on
3-classic-abstract dataset: (x
axis-f) vs. (y axis-Accuracy)
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Figure B.8: Effect of user effort on 3-classic-abstract dataset. (a), (b), (c), (d), (e)
and (f) use KMeans as the underlying algorithm while (g), (h), (i), (j), (k) and (l)
use EM-NB as the underlying algorithm. Legends are all weights between 1 and 10.
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Figure B.9: DCIFS (Algorithm 4) with the same underlying algorithm on news-diff-3,
news-related-3, news-similar-3 datasets. Legends are all weights between 1 and 10
for all newsgroups datasets.
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Figure B.10: DCIFS (Algorithm 4) with different underlying algorithms on the same
new-diff dataset. Legends are all weights between 1 and 10 for both KMeans and
EM-NB.
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Figure B.11: DCIFS (Algorithm 4) with different underlying algorithms on the same
news-related-3 dataset. Legends are all weights between 1 and 10 for both KMeans
and EM-NB.
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Figure B.12: DCIFS (Algorithm 4) with different underlying algorithms on the same
news-similar-3 dataset. Legends are all weights between 1 and 10 for both KMeans
and EM-NB.
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Figure B.13: DCIFS (Algorithm 4) with different underlying algorithms on the same
ACM (D2-D2&D3-D3 ) dataset. Legends are all weights between 1 and 10 for both
KMeans and EM-NB.
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Figure B.14: DCIFS (Algorithm 4) with different underlying algorithms on the same
ACM (D-H-I ) datasets. Legends are all weights between 1 and 10 for both KMeans
and EM-NB.
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Figure B.15: DCIFS (Algorithm 4) with different underlying algorithms on the same
3-classic-abstract dataset. Legends are all weights between 1 and 10 for bothKMeans
and EM-NB.
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Figure C.1: Feature Reweighting with Different Weights
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Figure C.2: Performance as a Function of the Size of Feature Vocabulary, i.e., Feature
Oracle Capacity
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Figure C.3: Different Algorithms Enhanced with Feature Supervision with Varying
Content being Read
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Figure C.4: Different Algorithms Enhanced with Feature Supervision with Varying
Noisy Feature Fraction
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Figure C.5: Different Number of Document Seeds (Constraints for COP-KMeans and
COPFes-KMeans are Generated from Document Seeds, see Section 5.4.3 for Details)
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Figure C.6: Metric Learning Method and Feature Supervision Method
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Figure C.7: SeededFes-KMeans with Varying Content being Read for Feature Oracle
with Different Noisy Feature Level. Each curve represents a Feature Oracle with the
Corresponding Level of Noisy Features.
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Figure C.8: SeededFes-KMeans with Feature Oracle with Different Noisy Feature
Level for Varying Content being Read. Each curve represents a certain percentage of
content being read.



Appendix D

Experimental Results (All Figures) for Chapter 6

159



160

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  1  2  3  4  5

N
M

I

Number of Unseeded Clusters

RandomKMeans

DocumentSeededKMeans

FeatureSeededKMeans-Vote

DualSeededKMeans-Vote

FeatureSeededKMeans-Generative

DualSeededKMeans-Generative

(a) news-multi-7

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0  1  2  3  4  5

N
M

I

Number of Unseeded Clusters

RandomKMeans

DocumentSeededKMeans

FeatureSeededKMeans-Vote

DualSeededKMeans-Vote

FeatureSeededKMeans-Generative

DualSeededKMeans-Generative

(b) news-multi-10

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0  1  2  3  4  5

N
M

I

Number of Unseeded Clusters

RandomKMeans

DocumentSeededKMeans

FeatureSeededKMeans-Vote

DualSeededKMeans-Vote

FeatureSeededKMeans-Generative

DualSeededKMeans-Generative

(c) sector-multi-10

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0  1  2  3  4  5

N
M

I

Number of Unseeded Clusters

RandomKMeans

DocumentSeededKMeans

FeatureSeededKMeans-Vote

DualSeededKMeans-Vote

FeatureSeededKMeans-Generative

DualSeededKMeans-Generative

(d) reuters-multi-10

Figure D.1: Performance as a Function of the Number of Unseeded Clusters. 5
Documents Are Labeled for Each Seeded Cluster where FeatureSeededKMeans works
better than DocumentSeededKMeans and DualSeededKMeans
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Figure D.2: Performance as a Function of the Number of Unseeded Clusters. 20
Documents Are Labeled for Each Seeded Cluster where DualSeededKMeans works
better than DocumentSeededKMeans and FeatureSeededKMeans
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Figure D.3: Performance as a Function of the Number of Labeled Documents. The
more documents labeled, the more features labeled and the better performance. The
usefulness of labeled features are more obvious when there are only a few documents
labeled, e.g., < 10. In fact, the feature supervision works even better than dual
supervision at the beginning of the curves, indicating that feature supervision is more
reliable when only few documents are labeled.


