

PRIVACY MONITORING AND ENFORCEMENT IN A WEB SERVICE

ARCHITECTURE (WSA)

by

Kai Tong

Submitted in partial fulfilment of the requirements

for the degree of Master of Electronic Commerce

at

Dalhousie University

Halifax, Nova Scotia

May 2012

© Copyright by Kai Tong, 2012

 ii

DALHOUSIE UNIVERSITY

Faculty of Computer Science

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “Privacy Monitoring and Enforcement

in a Web Service Architecture (WSA)” by Kai Tong in partial fulfilment of the

requirements for the degree of Master of Electronic Commerce.

 Dated: May 3
rd

, 2012

Supervisor: _________________________________

Readers: _________________________________

 iii

DALHOUSIE UNIVERSITY

 DATE: May 3
rd

, 2012

AUTHOR: Kai Tong

TITLE: Privacy Monitoring and Enforcement in a Web Service Architecture

(WSA)

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: MEC CONVOCATION: October YEAR: 2012

Permission is herewith granted to Dalhousie University to circulate and to have copied

for non-commercial purposes, at its discretion, the above title upon the request of

individuals or institutions. I understand that my thesis will be electronically available to

the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts

from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted

material appearing in the thesis (other than the brief excerpts requiring only proper

acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

 Signature of Author

 iv

TABLE OF CONTENTS

LIST OF TABLES ..vii

LIST OF FIGURES ... viii

ABSTRACT ... x

LIST OF ABBREVIATIONS USED ..xi

ACKNOWLEDGEMENTS ...xii

CHAPTER 1 INTRODUCTION ... 1

1.1 PRIVACY IN E-COMMERCE AND E-BUSINESS 1

1.2 WEB SERVICES ARCHITECTURE .. 1

1.3 ARCHITECTURE FOR PRIVACY ENFORCEMENT IN A WSA....................... 2

1.4 RESEARCH QUESTION .. 5

1.5 OBJECTIVES .. 5

1.6 CONTRIBUTIONS ... 6

1.7 OUTLINE .. 6

CHAPTER 2 LITERATURE REVIEW .. 9

CHAPTER 3 PRIVACY ARCHITECTURE WITH CLIENT AGENT............13

3.1 INTRODUCTION ... 13

3.2 PI CLIENT AGENT .. 14

3.3 USER KB.. 15

3.4 PRIVACY DATABASE QUERY COMPONENT...................................... 15

3.5 OBLIGATION ENFORCEMENT COMPONENT 16

3.6 PROPOSED SOAP HEADER FORMAT FOR PI MONITORING 17

3.7 MONITORED WEB SERVICE LIST ... 18

CHAPTER 4 THE DETAILS OF ARCHITECTURAL COMPONENTS21

4.1 INFORMATION REQUIRED BY THE PI MONITOR AGENT....................... 21

4.1.1 Implications on the Architecture Due to EPAL 22

4.1.2 Static or Dynamic ... 24

4.2 ARCHITECTURAL OVERVIEW... 24

4.3 PI MONITOR AGENT ... 28

4.4 MULTIPLE PI MONITOR AGENTS.. 31

4.5 PI CLIENT AGENT .. 32

 v

4.6 ARCHITECTURAL COMPONENTS ... 33

4.6.1 Web Service KB.. 34

4.6.2 User KB... 36

4.6.3 Application KB.. 37

4.6.4 PI Elements Schema KB....................................... 38

4.6.5 Audit Log... 39

4.6.6 Privacy Policy KB .. 42

4.6.7 Obligation Enforcement Component 43

4.6.8 Privacy Database Query Component...................... 44

CHAPTER 5 SYSTEM WORKING SCENARIOS.................................46

5.1 SYSTEM WORKING SCENARIO 1.. 47

5.2 SYSTEM WORKING SCENARIO 2.. 49

5.3 SYSTEM WORKING SCENARIO 3.. 51

5.4 SYSTEM WORKING SCENARIO 4.. 52

CHAPTER 6 DEMONSTRATION CASES ...55

6.1 SELECTION OF CASES ... 55

6.2 DEMONSTRATION CASES .. 55

6.2.1 Demonstration Case 1 .. 55

6.2.2 Demonstration Case 2 .. 62

6.2.3 Demonstration Case 3 .. 66

6.2.4 Demonstration Case 4 .. 69

6.3 CONCLUSION ... 72

CHAPTER 7 PROTOTYPE AND EXPERIMENTATION73

7.1 IMPLEMENTATION OF PROTOTYPE... 73

7.1.1 How to Find the Called Web Service Method 75

7.1.2 PI Monitor Agent ... 76

7.1.3 PI Client Agent .. 78

7.1.4 The Supporting Components 79

7.2 EXPERIMENTATION ... 79

7.2.1 Evaluation Method ... 80

7.2.2 Experiment Setup Overview 82

 vi

7.2.3 Experiments Platform... 85

7.2.4 Experiment Results and Analysis............................ 85

7.3 SUMMARY ... 91

CHAPTER 8 CONCLUSION..93

BIBLIOGRAPHY..96

APPENDIX A SOAP TEMPLATES FOR WEB SERVICE KB..................99

SOAP REQUEST ... 99

SOAP RESPONSE .. 99

APPENDIX B SOAP TEMPLATES FOR USER KB100

SOAP REQUEST ..100

SOAP RESPONSE ...100

APPENDIX C SOAP TEMPLATES FOR APPLICATION KB101

SOAP REQUEST ..101

SOAP RESPONSE ...101

APPENDIX D SOAP TEMPLATES FOR PI ELEMENTS SCHEMA KB102

SOAP REQUEST ..102

SOAP RESPONSE ...102

APPENDIX E SOAP TEMPLATES FOR AUDIT LOG KB103

SOAP REQUEST ..103

SOAP RESPONSE ...103

APPENDIX F SOAP TEMPLATES FOR PRIVACY POLICY KB104

SOAP REQUEST ..104

SOAP RESPONSE ...104

APPENDIX G SOAP TEMPLATES FOR OBLIGATION ENFORCEMENT
COMPONENT ...105

SOAP REQUEST ..105

SOAP RESPONSE ...105

APPENDIX H SOAP TEMPLATES FOR PRIVACY DATABASE QUERY
COMPONENT ...106

SOAP REQUEST ..106

SOAP RESPONSE ...106

APPENDIX I DESIGN FOR CUSTOMER DATABASE107

 vii

LIST OF TABLES

Table 1 Results of experiment 1. ... 85

Table 2 Results of experiment 2 regarding the PI Monitor Agent on web service

account_apply. SOAP request is the request sent out from web service

account_apply. SOAP response is the response that comes back from the

invoked web service welcome_email_notify.. 88

Table 3 Results of experiment 2 regarding the PI Monitor Agent on web service

welcome_email_notify. SOAP request is the request from web service

account_apply. SOAP response is the response sent out from the

invoked web service welcome_email_notify.. 89

 viii

LIST OF FIGURES

Figure 1 Architecture Proposed in paper Privacy Compliance with Web

Services (Bodorik et al., 2009). ..4

Figure 2 The enhanced architecture. ..14

Figure 3 A proposed SOAP header format for monitoring PI.17

Figure 4 A typical WSA environment with the PI Monitor Agent and the PI

Client Agent deployed. ...19

Figure 5 Multiple PI Monitor Agents...32

Figure 6 Web Service KB's interaction with the PI Monitor Agent and the PI

Client Agent. ...35

Figure 7 User KB's interaction with the PI Monitor Agent...36

Figure 8 Application KB's interaction with the PI Monitor Agent.37

Figure 9 PI Elements Schema KB's interaction with the PI Monitor Agent.38

Figure 10 Audit Log KB's interaction with the PI Monitor Agent................................41

Figure 11 Privacy Policy KB's interaction with the PI Monitor Agent.........................42

Figure 12 Obligation Enforcement Component's interaction with the PI

Monitor Agent...43

Figure 13 Privacy Database Query Component's interaction with the PI

Monitor Agent...45

Figure 14 Possible PI flows in a typical WSA environment...46

Figure 15 Application client with PI Client Agent invokes monitored service.47

Figure 16 A monitored service invokes another monitored service..............................49

Figure 17 A monitored service invokes an unmonitored service..................................51

Figure 18 An unmonitored service or an application client without PI Client

Agent invokes a monitored service...53

 ix

Figure 19 Life cycle of a SOAP message (Shepherd, 2003)...74

Figure 20 SOAP Extensions in ASP.NET infrastructure (Shepherd, 2003).74

 x

ABSTRACT

The growth of online activities in our daily lives has led to substantially increased

attention on how organizations and their computer systems handle Personal Information

(PI). Independently, the wide adoption of Web Service Architecture (WSA), for the

integration of software, creates an opportunity to facilitate support for privacy by

monitoring the use of PI by web services and enforcing applicable privacy policies.

This thesis designs an agent for privacy monitoring and enforcement in a WSA

environment and creates a prototype as a proof of concept. The agent is based on a

specific multi-agent architecture for privacy compliance. The design of the agent has led

to extension of the architecture to bring out its full potential in monitoring PI flows and

enforcing privacy policies in a WSA environment. The evaluation of the prototype has

led to suggestions on its implementation for an operational environment.

 xi

LIST OF ABBREVIATIONS USED

XACML eXtensible Access Control Markup Language

APPEL A P3P Preference Exchange Language

P3P The Platform for Privacy Preferences Project

EPAL The Enterprise Privacy Authorization Language

DPAL The Declarative Privacy Authorization Language

EPA Enterprise Privacy Architecture

PI Privacy Information

MWSL Monitored Web Service List

KB Knowledge Base

WSA Web Service Architecture

XML Extensible Markup Language

UDDI Universal Description, Discovery and Integration

UTC Coordinated Universal Time

SOAP Simple Object Access Protocol

HTTP Hypertext Transfer Protocol

ISTPA The International Security, Trust, and Privacy Alliance

 xii

ACKNOWLEDGEMENTS

This thesis is dedicated to my parents, my all-time supporters. Their love is the biggest

support and motivation in my life.

This thesis is also dedicated to my brother, Jianyu Chen. Without his support, I could not

make it through those most difficult days of my life.

I owe my deepest gratitude to my mentor, Dr. Peter Bodorik. With his supervision in my

study, it has been an enlightment journey in the preparation of this thesis.

 1

CHAPTER 1 INTRODUCTION

1.1 PRIVACY IN E-COMMERCE AND E-BUSINESS

The growth of Internet and electronic commerce has changed how information is

exchanged among organizations and individuals. When an organization publishes an e-

Commerce web service on the Internet, the organization needs to collect privacy

information from customers to honor the provided services. How the organization is

going to handle the collected privacy information has drawn accelerated attention from

legislative and regulatory mandates and also reflects the nature of an information-rich

business environment. As a result, the need for privacy monitoring and privacy policy

enforcement in e-Commerce and e-Business has increased substantially. To implement a

privacy enforcement system within an organization, the organization needs to know

which private data is used by which application, how the private data is used by the

applications and where the private data is stored.

1.2 WEB SERVICES ARCHITECTURE

Simultaneous to the growth of the Internet, applications of web services have expanded.

Nowadays, as more and more enterprises and organizations are switching to Clouds, Web

Services Architecture (WSA), and hence the usage of web services, thrives. No matter

whether the web services are for internal clients or external customers, they provide a

new way to exchange information among business units and customers and to integrate

software within and across organizations. Usage of web services for the integration of

software creates an opportunity to facilitate support for privacy by monitoring the use of

private data by web services. According to World Wide Web Consortium’s (W3C)

definition, a web service is a software system designed to support inter-operable

machine-to-machine interaction over a network. Other systems interact with the web

service by communicating with it using Simple Object Access Protocol (SOAP). There is

an opportunity for an organization to determine which web services and applications use

 2

Privacy Information (PI) and also the flow of PI through the organization, by checking

the SOAP messages used to communicate with web services. Furthermore, WSA also

provides the opportunity to actually enforce compliance with privacy policies. Thus the

need to monitor PI and enforce privacy policy arises and that is the focus of this thesis.

1.3 ARCHITECTURE FOR PRIVACY ENFORCEMENT IN A WSA

The need to monitor Privacy Information (PI) flows and enforce privacy policies in a

WSA environment presents a challenge to companies and organizations. In a WSA

environment PI flows are bi-directional. Flow from the client to a server and flow from

the server to a client are both possible. For instance, to use the web services provided by

companies and organizations, external customers may need to submit their private

information through the Internet. Internal clients in these companies and organizations

may need to use an application client (for the definition of application client please refer

to section 3.7) to access the privacy information collected from external customers to

complete the promised services. As a result of these business activities, PI flow travels

among web services and their applications. From the business service provider’s point of

view, using WSA provides them with an opportunity to boost business and a new way of

doing business with customers. However, it also brings some challenges and problems to

protect privacy information in a WSA infrastructure. One of the problems is that in a

WSA environment, information regarding web services is published in Universal

Description Discovery and Integration (UDDI) but there is no platform to publish the

information regarding the application client. Therefore, in the absence of good software

documentation, information regarding application clients is limited and sometimes

unknown. Another problem is that WSA is a dynamic environment where PI flows

amongst web services and applications are changing, possibly from one invocation of a

web service to another. Another major problem is that web services and applications have

been developed without awareness of privacy. These challenges have received more and

more attention from businesses, lawmakers and government agencies. As more privacy

regulations and ‘best practices’ of privacy and information protection have been

 3

developed, a semi-automatic mechanism to enforce them is needed for the WSA

environment.

In the paper, entitled “Privacy Compliance with Web Services” (Bodorik et al., 2009), a

multi-agent architecture is presented to support privacy in a WSA environment in order

to enforce privacy policies for private information used by applications, including a

legacy system, without modifying the system’s code. A diagram of the architecture is

shown in Figure 1. The architecture addresses the privacy enforcement issue in a WSA

environment. Privacy enforcement is based on the premise that, in WSA, communication

between applications and system software and resources is through the web service and is

invoked by an exchange of XML messages. The authors proposed that a PI Monitor

Agent be used as a middleware between applications and web services to intercept

requests for web services and replies from web services. The PI Monitor Agent checks

these requests and replies against the Enforcement/Monitoring Rules to determine how

the requests and replies should be handled. The Enforcement/Monitoring Rules are

created to represent the company’s privacy policy and also direct the logging of web

service requests and reply messages. Logs are stored in Audit Logs and are mined by a PI

Agent off-line to acquire useful information, such as: information on private data

elements, privacy policies, which applications use PI in what context, and which privacy

policies apply to the use of PI. Such acquired information is stored in the Privacy

Knowledge Base (KB), which consists of a collection of schema/sub-knowledge bases

and agents that manage them and provide assistance to PI administrators.

 4

Figure 1 Architecture Proposed in paper Privacy Compliance with Web Services

(Bodorik et al., 2009).

One of the principal components of the architecture is a PI Monitor Agent that oversees

the invocation of web services. The PI Monitor Agent first checks the PI elements in the

requests to web services and replies from web services. Then the PI Monitor Agent

consults rules on the action to be taken. Rules are generated by the PI Agent based on the

information contained in the Privacy Knowledge Base. The Privacy Knowledge Base

consists of seven sub-knowledge bases:

• PI Elements Schema

• PI Data Mining Agent

• Privacy Policies

• Web Services PI Schema

• Applications PI sub-KB

• PI Assistant Agent for PI Experts and Developers

 5

• State/Logging sub-KB

These sub knowledge bases either contain information regarding web services,

applications, PI elements, privacy policies and how to log or assist the PI Administrator

to manage the knowledge base. The purpose of the Privacy Knowledge Base is to form a

dynamic learning mechanism for the architecture to adapt to the changes in the WSA

environment.

1.4 RESEARCH QUESTION

From the above it follows that to ensure compliancy to privacy policies when PI is used

by software, monitoring the use of PI by various software components is required.

Although software developers are becoming aware of privacy requirements and privacy

standards are being developed, most software is still being developed without much

privavcy consideration. Furhtermore, it is clearly unrealistic to expect that the current

software used by public and private organization would be modified to ensure

compliance to privacy policies. As a consequence, some add-on mechanism, that does

not require modification of existing application software, is required for enforcement of

privacy policies – the heart of the research question here.

Our literature review revealed only one proposal (Bodorik, 2009) for monitoring of

software to ensure privacy compliance on the use of PI, such that existing applications

need not be modified. However, feasibility of implementation of the proposed

architecture is yet to be established – and that is the main objective of this thesis.

1.5 OBJECTIVES

This thesis is targeted at the issue of monitoring PI flow and enforcement of privacy

regulations and policies in an enterprise’s WSA infrastructure and trying to solve the

three problems that the implementation of such a privacy system faces. We assume the

WSA architecture in which all communication between the providers and requesters in a

WSA infrastructure are in SOAP format. Furthermore, the assumption is made that

 6

databases are accessed by applications by utilizing web services and that EPAL is used to

express the privacy policy.

Our goal is to prove the concept for the PI Monitor Agent, which is the central piece of

the multi-agent architecture in paper “Privacy Compliance with Web Services” (Bodorik

et al., 2009), in order to evaluate the feasibility of implementation. Furthermore, proof of

the concept is also used to identify any missing components of the architecture and, if

found, to enhance the architecture in order to bring out its full potential in supporting

privacy compliance.

1.6 CONTRIBUTIONS

A prototype of the PI Monitor Agent concept was developed and it has lead to the

identification of the following components that enhance the multi-agent architecture for

enforcement of privacy:

 The PI Client Agent is added to the proposed architecture;

 User KB is added to KBs;

 An obligation enforcement component is added to the architecture;

 A database query component is added to the architecture;

 Interfaces of KBs are designed to provide information that is required by a PI

Monitor Agent.

 A SOAP header format is presented to carry useful information to be used by the

PI Monitor Agent to make decisions; Monitored Web Service List (MWSL) is

introduced to the architecture.

1.7 OUTLINE

The rest of this document is organized as follows:

Chapter 2: Literature Review

In this chapter we discuss related research work on the protection of privacy information

in computer systems.

 7

Chapter 3: Privacy Architecture with Client Agent

In this chapter we describe the enhancements added to a specific multi-agent architecture

for monitoring privacy and enforcing compliance. The importance of including these

enhancements is also discussed.

Chapter 4: The Details of Architectural Components

In this chapter, we describe the information that is required by the PI Monitor Agent to

make decisions. We then introduce the enhanced architecture and how it works to achieve

the goal of monitoring privacy and enforcing privacy policy in a WSA environment. As

the core components in the enhanced architecture, the PI Monitor Agent and PI Client

Agent are also described in detail. Finally, we describe how the PI Monitor Agent

interacts with other supporting components to achieve its goal.

Chapter 5: System Working Scenarios

In this chapter, we describe how the PI Monitor Agent and the PI Client Agent work, in

different scenarios, to achieve the goal of monitoring PI flows and enforcing privacy

policy in a WSA environment.

Chapter 6: Proof of Concept

In this chapter, we use simulated examples of web services and application client to

present four cases demonstrating how the PI Monitor Agent, working with other

supporting components in the architecture, works to provide privacy monitoring and

privacy policy enforcement in a WSA environment.

Chapter 7: Implementation and Experimentation

This chapter describes how the PI Monitor Agent and PI Client Agent are implemented in

ASP.NET. We then describe how the experiment environment is set up and how the

performance of the PI Monitor Agent is measured. Finally, we analyze the results of the

experiments and make suggestions on implementing the PI Monitor Agent in a real

operational environment.

 8

Chapter 8: Conclusion

This chapter concludes the paper.

Appendix

The Appendix provides all the SOAP templates and database design tables that are used

in this thesis.

 9

CHAPTER 2 LITERATURE REVIEW

Different countries may have different definitions for privacy (Cranor et al., 2006). As

defined by Schoeman (1984) in the book Philosophical Dimensions of Privacy: An

Anthology, privacy is a state or condition of limited access to a person. Privacy

protection has recently drawn a lot of attentions from both private and public sectors.

This is simply because in the current telecommunications climate, as web services are

booming on the Internet, they have become a very popular technology for information

exchange for business-to-business and customer-to-business applications (Adams, C. and

Barbieri, K. 2006).

A typical case is that in order to finish an online service provided to customers, the

service provider may need to invoke a 3
rd

 party organization’s web service for the

purpose of an information exchange to fulfill the customer’s request. Another typical case

is that when a customer requests a web service provided by a service provider, the service

provider, in order to finish the service needs to collect private information from the

customer. Transfering of this privacy information among different business units in the

service provider may also be needed to finish the web service.

This increased attention has resulted in the introduction of regulations and legislations to

this field. “In the USA, the Privacy Act of 1974 requires that federal agencies grant

individuals access to their identifiable records that are maintained by the agency, ensure

that existing information is accurate and timely, and limit the collection of unnecessary

information and the disclosure of identifiable information to third parties” (Davis, 2000).

Today, increased cross-border information flows, network information processing, use of

federated systems, application outsourcing, social networks, ubiquitous devices and cloud

computing bring greater challenges and management complexity to privacy risk

management. To address these issues, the ISTPA (2009) has proposed a Privacy

 10

Management Reference Model to increase the awareness in this area and promote the

development of software tools and systems to manage privacy information.

With regard to privacy and information protection, many methods have been developed

and proposed in this field. Standards were proposed to fasten the development of agents.

For example, the Platform for Privacy Preferences (P3P) (Cranor et al., 2006) proposed

by W3C, is designed to express organization’s privacy practices to the end customers in

XML. This design allows the information to be read by an automatic agent on behalf of

the end customer and to compare the policy content with the end customer’s privacy

preferences that are specified in a privacy preference language such as a P3P Preference

Exchange Language (APPEL). The P3P is not designed for tackling the enforcement of

privacy policy in the organization’s internal computing systems except for the purpose of

expressing the privacy policy to external customers.

Research on the use of an ontology language to represent privacy preferences and

contextual information has been examined by Gandon and Sadeh (2004), Rao et al.

(2006) and Jutla et al. (2006). Jutla et al. (2006) also presented PeCAN, a multi-agent

architecture for client side user privacy. Garcia and Toledo (2008) presented an ontology

method to translate the privacy policies expressed in P3P vocabulary into assertions that

are used to control access to private data.

To enable privacy protections within a business’s processes, we also need a language that

can be used to express privacy policies for internal computing systems. Enterprise

Privacy Authorization Language (EPAL) (IBM, 2003) and DPAL [5] are proposed for

this purpose. EPAL is an interoperability language developed by IBM to define enterprise

privacy policies on private data handling practices according to fine-grained positive and

negative authorization rights. The goal of EPAL is to provide an enterprise with a means

of encoding its privacy-related data policies and practices in an XML format document,

which can be imported and enforced by an enterprise’s privacy enforcement system.

However, EPAL does not present specific ideas on the design of a system aimed at the

goal of enforcing privacy policy.

 11

A lot of research has also been done on using database technologies to enhance privacy at

the data level. Iyengar (2002) presented a technology to apply data anonymization

technology to protect private information on the data subject level. Similar work can also

be found in the paper by Kobsa and Schreck (2003). Song et al. (2006) presented

pseudonym technology to be used to anonymize private data in their paper. According to

the research of (), privacy risks can be mitigated through

data manipulation. Agrawal et al. (2002) presented the concept of Hippocratic databases,

which brings privacy protection to relational database systems. This system uses privacy

metadata to store privacy policies and privacy authorizations. According to the research

in the paper by Jajodia and Sandhu (1991) and the research in the paper by Sandhu and

Chen (1998), multilevel secure relational databases can be used to design a fine-grained

secure data model which can be used to achieve private data access control.

Since Adam and Worthmann (1989) presented the idea of using access control

technology to achieve privacy information protection in databases in their paper, much

researches has been done on using access control technology to manage private data in a

computing system. For example, Adams and Barbieri (2006) presented the idea of

utilizing tools and technologies in access control to solve privacy and information

protection problems. Byun et al. (2004 and 2005) presented a privacy preserving access

control model based on the notion of purpose. Byun et al. (2006) also presented a new

class of access control systems based on the notion of micro-view.

The Enterprise Privacy Architecture (EPA), proposed by Karjoth et al. (2002), is

designed to achieve privacy compliance in an enterprise environment. However, this

research did not provide many details about enforcement of the model. Parker (2005)

proposed a methodology for creating and managing privacy compliance at a high level of

abstraction dealing with organizations, procedural issues, systems and managing

technological changes. Details of how the system should be designed were discussed in

the Parker’s paper.

 12

Bodorik et al. (2009) presented an adaptive agent-based enterprise information

architecture to support enforcement of privacy policies on private information used by

applications. The architecture contains KBs, which are used to store the knowledge for

the PI Monitor Agent to make decisions. Its agents are able to self learn from the logs and

databases to acquire knowledge in KBs. The architecture is placed in a WSA

environment with SOAP messages as the information exchange format among

applications and web services.

 13

CHAPTER 3 PRIVACY ARCHITECTURE WITH CLIENT AGENT

3.1 INTRODUCTION

Based on the multi-agent architecture proposed by Bodorik et al. (2009), we plan to

design an agent for privacy monitoring and enforcement in a WSA environment. The

prototype development has led to the discovery of a need for a PI Client Agent. To make

a decision on what action to take on a request to, or reply from a web service, the PI

Monitor Agent needs to know information about the client that invokes the web service.

To acquire such information, the PI Client Agent is added to the architecture to extend

the functionality of the architecture to the client side. The development of the prototype

has also led to the conclusion that the architecture proposed by Bodorik et al. (2009)

needs to be expanded and enhanced to fully support privacy monitoring and privacy

enforcement in a WSA environment. The enhancements to the architecture include:

 The PI Client Agent is added to the proposed architecture extending the

architecture to the application clients to acquire the information required by the PI

Monitor Agent;

 User KB is added to KBs;

 An obligation enforcement;

 Monitored Web Service List (MWSL) is introduced; and

 A privacy database query component.

Furthermore, interfaces of KBs are designed to provide information that is required by PI

monitor. As well, a header format is presented to carry useful information to be used by

the PI Monitor Agent to make decisions.

The enhanced architecture is diagrammatically shown in Figure 2.

 14

Figure 2 The enhanced architecture.

The following sections in this chapter describe briefly these enhancements and why they

are needed. Further details regarding the architecture can be found in later chapters.

3.2 PI CLIENT AGENT

As implied by EPAL, the rules in a privacy monitoring and enforcement architecture

should be able to express whether a user category is allowed to access a data category for

a certain action with a certain purpose when some optional conditions are satisfied and

the promised obligation/s is achievable. To construct an architecture that fully supports

privacy monitoring and enforcement, a mechanism to acquire user information and some

information about the application client is required in the architecture – hence the need

for the PI Client Agent. The PI Client Agent is designed to collect, from the user or the

operating system services, the following information about the client that invokes the

web service:

 15

• ID of the user who is using the application;

• Name of the process that invokes the web service.

Details of how this information is collected on the client are discussed in the next chapter.

3.3 USER KB

To evaluate privacy rules, the PI Monitor Agent needs to know about the user who

caused the invocation of the web service and to which user category he or she belongs.

User category is a group of users who share the same role in an organization’s computing

system from the privacy perspective. After acquiring the user ID from the client side, the

PI Monitor Agent can determine the user category from the user ID using a mapping of

the user ID’s to user categories (for definition of user category please see section 4.1.1).

A proposed User KB holds such mapping information.

During the creation of a User KB, user IDs are created with categories as their tags. A

user ID may have multiple user category tags. After user ID is acquired, the PI Client

Agent will insert the user ID into the header of the SOAP request message and when the

PI Monitor Agent on the server side receives the SOAP request, the PI Monitor Agent

will extract user ID from the SOAP header and then query the User KB about the user

category tags that are associated with that user ID.

3.4 PRIVACY DATABASE QUERY COMPONENT

We now discuss the need for the Privacy Database Query Component, which is shown in

Figure 2. As specified in EPAL, a privacy rule may contain some conditions that need to

be satisfied before the PI Monitor Agent applies the rule (IBM, 2003). A condition,

which is defined by the <condition> element in the <epal-policy> element of an EPAL

policy, determines the conditions under which a <rule> element in an EPAL policy

should be applied. The <condition> element is not an essential element in the <rule>

 16

element. When a <rule> element does not have the <condition> element, the <rule>

element does not have any pre-condition to be applied and evaluated. The <condition>

element is returned to the PI Monitor Agent by Privacy Policy KB when the applicable

<rule> element has a <condition> sub-element. For instance, consider a scenario where a

customer’s information is allowed to be accessed for marketing purposes only when the

customer is over 18 years old and the customer agrees to allow his/her PI to be used for

marketing purposes.

To check the conditions stated in privacy rules, The PI Monitor Agent needs to query the

customer database to get the values of the attributes required in the condition/s. To do so,

a component called the Privacy Database Query Component is added to query the

customer databases to get the required attributes. How the Privacy Database Query

Component interacts with the PI Monitor Agent will be discussed in the next chapter.

3.5 OBLIGATION ENFORCEMENT COMPONENT

Figure 2 also shows the Obligation Enforcement Component. As specified in EPAL,

privacy rules should also be able to specify obligations that need to be satisfied/executed

by an organization after a certain action is permitted by the rule on the PI elements (IBM,

2003). Examples of obligations include retention of the data for a specified period of

time or, perhaps, notifying the user. In an a-synchronized implementation of the

architecture, whether the obligation is achievable needs to be checked before the PI

Monitor Agent applies the applicable privacy rule.

In an EPAL policy, the obligation, which is required to be checked or executed before the

application of the privacy rule, is stated in the <obligation> sub-element of the <rule>

element. In our proposed architecture, the checking/execution of the obligation is done by

the Obligation Enforcement Component.

 17

3.6 PROPOSED SOAP HEADER FORMAT FOR PI MONITORING

As part of the proposed method for monitoring private data in a WSA environment, a

recommended header format for SOAP messages is proposed. Private data monitoring

and privacy enforcement systems use headers of SOAP messages to store information

about the invoking side that might be used by the PI Monitor Agent of the invoked

monitored web service. The invoking side could be an application client or another

monitored web service. Depending on the types of the invokers, information inserted into

the headers might be different. For instance, if the request is from an application client

with a PI Client Agent, the header contains the user ID, process name, and the invoked

web service. If, on the other hand, the request comes from another monitored web service

the header contains: the invoking web service name; the invoked web service;

information indicating whether the request has been checked by a PI Monitor Agent on

the invoking side; information on whether the response is static or dynamic. Note that

static and dynamic web services will be discussed later in section 4.1.2.

The information acquired on the invoking side is used by the PI Monitor Agent to make a

decision on whether to authorize the access to private data. How the PI Monitor Agent

uses the header information will be discussed in details in Chapter 5. Figure 3 shows the

format of the header.

User-ID Process-Name Invoking-Web-Service

Invoked-Web-Service Flag-Request-Checked

Flag-Static-Response

SOAP Body

 SOAP Header

SOAP Body

Figure 3 A proposed SOAP header format for monitoring PI.

User-ID: The ID of the user of the application client.

Process-Name: The name of the process that made the request.

 18

Invoking-Web-Service: The name of the web service that made the request.

Invoked-Web-Service: The name of the web service that is invoked.

Flag-Request-Checked: Set to “1” if this message has been checked by the PI Monitor

Agent.

Flag-Static-Response: Set to “1” if the response of the invocation is static.

The following is a template for the PI monitoring SOAP header

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:header>

<User-ID/>

<Process-Name/>

<Invoking-Web-Service/>

<Invoked-Web-Service/>

<Flag-Request-Checked/>

<Flag-Static-Response/>

</soap:header>

<soap:Body>

………………

</soap:Body>

</soap:Envelope>

3.7 MONITORED WEB SERVICE LIST

The Monitored Web Service List (MWSL) is contained in the Web Service KB and is

maintained by the PI administrator. Figure 4 shows a typical WSA environment, where

web services and application clients are distributed across the network domain.

 19

Application client in this thesis means the client software used for an application of a web

service. Data flows travel in the form of SOAP messages on the network among web

services and application clients. MWSL is a list of web services that need to be monitored

for compliance with the organization’s privacy policy rules. To have full coverage of

monitoring of PI flows in an organization’s network domain, it is recommended all the

web services of an organization be included in the MWSL. As a result, PI monitors will

be deployed to all the web services of the organization. The PI Monitor Agent runs as an

add-on component to the web service (by using either SOAP extensions or Java Axis)

inspecting requests and responses to or from their resided MWSL web services.

Figure 4 A typical WSA environment with the PI Monitor Agent and the PI Client

Agent deployed.

The MWSL is encoded in XML and is pushed to the PI Monitor Agents and the PI Client

Agents from the Web Service KB component. Once there is a change in the MWSL in

Web Service KB (such as a new web service is added to the MWSL or a web service is

removed from the MWSL), an update from the Web Service KB is pushed to the PI

Monitor Agents and the PI Client Agents. For efficiency considerations, a differential

 20

update is used. In later discussions in this thesis, a monitored web service means a web

service with a PI Monitor Agent and an unmonitored web service means a web service

without a PI Monitor Agent.

There are scenarios where application clients without PI Client Agents and unmonitored

web services are involved in data communications/exchanges with monitored web

services. These scenarios are also explored in this thesis.

 21

CHAPTER 4 THE DETAILS OF ARCHITECTURAL

COMPONENTS

Based on the findings regarding the information that is required by the PI Monitor Agent,

an enhanced version of the architecture in the paper Privacy Compliance with Web

Services (Bodorik et al., 2009) has been developed for monitoring the PI flows and

enforcing of privacy policies in a WSA environment. The core component of this

enhanced architecture is a PI Monitor Agent. A PI Client Agent is also added to the

architecture to provide the PI Monitor Agent with information regarding the client. In this

Chapter, we first describe the information required by the PI Monitor Agent to make

decisions; then talk about how the architecture works; then describe details about the PI

Monitor Agent and PI Client Agent; and, finally, describe the information and services

other supporting components in the architecture provide to the PI Monitor Agent. We

also define interfaces of these components to the PI Monitor Agent.

How other supporting components work is out of the scope of this thesis.

4.1 INFORMATION REQUIRED BY THE PI MONITOR AGENT

EPAL (Enterprise Privacy Authorization Language) is an inter-system interoperability

language developed by IBM to define enterprise privacy policies on the private data

handling practices according to fine-grained positive and negative authorization rights

(IBM, 2003). The goal of EPAL is to provide a means of encoding an enterprise’s

privacy-related data policies and practices in an XML format document, which can be

imported and enforced by an enterprise’s privacy enforcement system. As a result of

selecting EPAL, its properties determine what information is needed in a privacy

monitoring and enforcement system. This section is going to describe the information

that will be needed by a PI Monitor Agent to make decisions based on privacy policies

represented using EPAL.

 22

4.1.1 Implications on the Architecture Due to EPAL

To achieve the goal of monitoring PI flows and enforcing privacy policies in a WSA

environment, EPAL contains the following information expressed in a policy rule. An

EPAL’s policy rule expresses whether a User Category, to which the user of PI belongs,

is allowed to access a Data Category, for a certain action, with a certain purpose, when

some specified, but optional, conditions are satisfied and the obligation/s, specified by the

rule, are achievable. In an EPAL privacy policy, this is expressed in a rule element by

defining the following six sub-elements: <user-category>, <data-category>, <purpose>,

<action>, <condition> and <obligation>.

To evaluate a rule, the PI Monitor Agent will work with other supporting components in

the proposed architecture to find the following five properties regarding a web service

request/response:

• User Category

• Data Category

• Purpose

• Action

• Condition

Thus, when PI data is referenced in a web services request/response, the PI Monitor

Agent determines the above properties for that request/response. Based on these

properties, the PI Monitor Agent is able to retrieve the rule element applicable to this

request/response. The above properties are described below:

User Category

The User Category is a group of users who share the same role in an organization’s

computing system from a privacy perspective. As mentioned in Chapter 3, the User

Category is determined by user KB by a mapping of user IDs to User Categories.

 23

Data Category

The Data Category is defined from a privacy perspective in that it is a set of PI elements

that have the same privacy implications, in that the same privacy rule applies to the data

elements in a category. Mappings of sets of data objects to a Data Category are stored in

PI Elements Schema KB. The knowledge in PI Elements Schema KB in an enterprise is

acquired by using a PI Agent to mine data stores used by that enterprise. When mining of

data stores is finished, private data objects are abstracted from data stores. PI elements

are defined in a PI elements dictionary that maps data objects to PI elements. The privacy

administrator then defines different Data Categories and maps the sets of PI elements to

the defined Data Categories.

Purpose

Purpose defines the objective of the usage of PI elements. The Purpose can be obtained

from Web Service KB or User KB based on different scenarios.

Action

Action defines the action taken on the PI elements by the recipient of the PI elements.

The Action can be obtained from Application KB or Web Service KB.

Condition

Condition refers to the pre-conditions defined by the <condition> element in <epal-

policy> element of an EPAL policy. It determines the conditions under which a <rule>

element in an EPAL policy should be applied. The <condition> element is an optional

element in the <rule> element. When a <rule> element does not have a <condition>

element, it means this <rule> element does not have any pre-condition to be applied. A

<condition> element is returned to the PI Monitor Agent by Privacy Policy KB when the

applicable <rule> element has a <condition> sub-element referencing to a <condition>

element. If the <condition> sub-element in the applicable <rule> element is empty, which

means there is no precondition to the application of the <rule> element, the Privacy

Policy KB will not return any <condition> element. The PI Monitor Agent will receive an

 24

empty <condition> sub-element in the returned <rule> element and apply it without

checking any precondition.

4.1.2 Static or Dynamic

Another piece of information that is required by the PI Monitor Agent is whether the

request/response is static or dynamic. It might be known to the architecture that for a

certain web service the PI elements contained in the request to or response from that web

service will not change over different invocations. In such situations, KBs contains

knowledge regarding the data category/ies that are contained in the request or response of

the web service. Therefore, the PI Monitor Agent need not parse through the SOAP

message body to find the PI elements the message contains. The Data Category can be

acquired immediately by querying Web Service KB. To support this feature, we define

static requests/responses and dynamic requests/responses.

If the request/response between a requester and an invoked web service contains no PI

elements or the same PI elements every time the requester invokes the web service, the

request/response is considered to be static; otherwise, it is considered to be dynamic.

The information on whether the request/response is static or dynamic is stored in Web

Service KB.

4.2 ARCHITECTURAL OVERVIEW

In paper Privacy Compliance with Web Services (Bodorik et al., 2009), an agent-based

architecture is presented to enforce privacy policies on private information in a WSA

environment. Based on the development of the prototype of the PI Monitor Agent, the

architecture is enhanced to fully support the goal of monitoring the PI flow and enforcing

the privacy policy in a WSA environment. Among these enhancements, some

components have been added to the architecture. Recall that the newly added

components include:

1. A PI Client Agent is added to the architecture to collect required information from

the client side, extending the functionality of the architecture to the client side;

 25

2. User KB is added to provide mappings from user IDs to User Categories;

3. A privacy database query component is added to the architecture for the purpose

of getting the required context data by the condition element in EPAL policy; and

4. An obligation enforcement component is added to the architecture to provide

enforcement mechanism to the architecture.

This section provides an overview of the modified architecture and describes how the PI

Monitor Agent in this architecture works and where it finds the information that is

required to fulfill its tasks. Other supporting components and their interactions with the

PI Monitor Agent are also discussed in Section 4.3.

As shown in Figure 2, the proposed private data monitoring and privacy policy

enforcement architecture consists of the following twelve components: PI Monitor Agent,

PI Client Agent, Web Service KB, Application KB, PI Elements Schema KB, User KB,

Privacy Policy KB, Audit Log, PI Agent, Privacy Database Query Component,

Obligation Enforcement Component and KB Management User Interface. Among these

components, Web Service KB, Application KB, PI Elements Schema KB, User KB,

Privacy Policy KB, Privacy Data Base Query Component and Obligation Enforcement

Component provide support to the PI Monitor Agent. They provide the PI Monitor Agent

with the information it needs to make decisions or provide an obligation mechanism to

the architecture. Details regarding these components and how they interact with the PI

Monitor Agent will be discussed in Section 4.3.

In WSA infrastructures, PI flows through requests and responses to/from web services.

Inspections of PI elements in requests to and responses from web services are handled by

PI Monitor Agents. These Agents run as an add-on component on the monitored web

services, working with KBs and the Privacy Database Query component to determine

whether the request or response of a web service should be allowed through or dropped

based on the organization’s privacy policy rules.

 26

After the PI Monitor Agent gets the applicable <rule> element from Privacy Policy KB,

if there is any <obligation> sub-element in the returned <rule> element, the PI Monitor

Agent will send the required obligation/s to the Obligation Enforcement Component to

fulfill the stated obligations in the privacy policy rule. When the obligations are

completed by the Obligation Enforcement Component, the Obligation Enforcement

Component will return a “success” or “failure” message to the PI Monitor Agent

indicating whether the Obligation Enforcement Component is successful or unsuccessful.

If the Obligation Enforcement Component is successful, the PI Monitor Agent will take

the action (allow or drop) as stated in the ruling attribute of the returned <rule> element.

After the PI Monitor Agent takes an action on the request/response message, it will log

the message in the Audit Log component. Logs generated by PI Monitors or Monitor

Agents are stored in the Audit Log for the following purposes:

1. The PI Agent in the architecture data mines logs in the Audit Log to generate

KBs. This process is needed when the system first gets initiated in an

organization, so the system is able to learn the WSA environment around it and

generate the knowledge that will be stored in KBs. This knowledge, generated

from data mining, is stored in KBs and will be needed by the PI Monitor Agent to

make decisions. The generated knowledge includes:

a. Data Categories contained in invocations of web services;

b. Purposes of recipients of PI elements. By data mining logs, the PI Agent is

able to find User Categories, process names, web services that are

involved in the PI flows (messages from/to web services). With human PI

Administrator’s involvement, purposes of PI flows are determined and

stored in KBs;

c. Actions taken on PI elements by the recipients of the PI elements. By data

mining logs, the PI Agent will find User Categories, process names and

web services that are involved in the flow of PI elements. With human PI

administrator’s involvement, actions of the application client or web

service on private data will be determined and stored in KBs; and

 27

d. Whether a request/response is static or dynamic. the PI Agent data mines

logs in the Audit Log to determine if the request and response between a

requester and provider is static or dynamic in the perspective of private

data contained in the request and response. Once this information is

generated, it will be stored in KBs.

2. The PI Agent compares logs in the Audit Log with the information in KBs to

verify and correct knowledge in KBs. If the PI Agent finds the knowledge

contained in KBs is not accurate against the information in logs or if it needs to

correct KBs to reflect the latest status, the PI Agent will issue a notification email

to the privacy administrator so that the privacy administrator can investigate and

manage the correction.

Both how to mine logs contained in the Audit Log to generate KBs and how to compare

logs with knowledge in KBs to verify and correct knowledge in KBs are out of the scope

of this thesis. In this thesis we assume that the KBs are already available and the

mechanism to compare logs in the Audit Log with the knowledge in KBs to verify and

correct knowledge in the KBs is also already available.

PI Client Agents are extensions of the enhanced architecture on the application client

side. They are deployed to workstations with application clients that need to access

monitored web services (web services with PI monitors). Details about the PI Client

Agent will be discussed in section 4.5 PI Client Agent.

The PI Agent in the architecture is designed to assist the PI Administrator by performing

tasks that can be automated:

• Mine logs in the Audit Log to generate knowledge in KBs;

• Compare logs in the Audit Log with knowledge in KBs to verify and correct

information in KBs; if there is any difference, the PI Agent will send a

notification email to the PI Administrator;

 28

• Analyze UDDI to acquire information regarding web services and store them in

the Web Service KB; and

• Mine data stores of an organization to generate a dictionary for mapping the data

objects that are found in data stores to PI elements and stores the PI elements

dictionary in the PI Element Schema KB.

The details of how the PI Agent works to fulfill its tasks are out of the scope of this

thesis.

The KB Management User Interface is designed to provide a GUI for the PI

Administrator to manage KBs in the architecture. On some occasions, the PI

Administrator needs to get involved in the creation of KBs. For instance, when receiving

a notification that a difference between the logs and KBs has been found by the PI Agent

or when there is a requirement from the senior management to change the privacy

policies, the PI Administrator will get involved to investigate and modify KBs

accordingly. The details of how the KB Management User Interface is designed are out

of the scope of this thesis.

The following sections are going to focus on the PI Monitor Agent and PI Client Agent.

Details about KBs and how they interact with the PI Monitor Agent can be found in

section 4.3 Architectural Components and Interactions.

4.3 PI MONITOR AGENT

In this thesis, we assume that all the databases in an organization are accessed through

web services, that the execution of a web service is requested by sending the web service

a SOAP request message and that once the execution of the requested web service is

finished, the requested web service will return a SOAP response message.

In a WSA environment, data flows from/to web services through SOAP requests and

responses. Among the data transferred on the wire, some are PI elements. PI Monitor

Agents are deployed to web services that need to be monitored according to Web Service

 29

KB. They run as an add-on component in the monitored web service to check requests

and responses from/to the monitored web services. When there is a SOAP message going

to or coming from a monitored web service, the PI Monitor Agent of the monitored web

service will parse the SOAP message, find required information for evaluation of the

EPAL rule elements and make a decision on what action to take according to applicable

EPAL rule elements.

Based on the architecture proposed in this thesis, the working mechanism of the PI

Monitor Agent is also designed to achieve the goal of monitoring private data,

authorizing private data access and enforcing obligations in WSA. When a SOAP

message comes to or is sent from a monitored web service, the PI Monitor Agent, on the

monitored web service platform, will perform the following tasks:

1. If the message has been checked by another PI Monitor Agent, as determined by

the header, the PI Monitor Agent will pass it along without any further action. If

not, the PI Monitor Agent will find the following five properties, needed to

evaluate EPAL policy rules, regarding the SOAP message:

• User Category

• Data Category

• Purpose

• Action

• Condition

To assist the PI Monitor Agent to find the above information, the PI Client Agent

or another PI Monitor Agent on the invoking side might provide the following

information in the SOAP header:

• The user ID of the user that uses the application client of the web service;

• The name of the process that invoked the web service;

 30

• The invoked web service;

• The invoking web service;

• A flag indicating that this request message has been checked; and

• A flag indicating the response is static or dynamic.

Based on the information in the SOAP header and the information contained in

the SOAP body, the PI Monitor Agent will query KBs to find the required five

properties for the evaluation of EPAL rule elements. More details can be found in

Chapter 5.

2. Queries Privacy Policy KB about the applicable EPAL rule element. Privacy

Policy KB will return the found EPAL <rule> element together with the

<condition> element if the <condition> sub-element is not empty.

3. If there is any condition that needs to be evaluated before the application of the

returned EPAL rule element, the PI Monitor Agent will check with the Privacy

Database Query Component to find the needed data attribute values for evaluating

<condition> elements.

4. Make a decision based on the returned EPAL rule element. Possible actions

include allow and drop.

5. This step is optional. If the PI Monitor Agent is on the invoking side, it will put

the following information in the header of the SOAP request:

• A flag indicating the response is static or dynamic.

• The invoked web service.

• The invoking web service.

• A flag indicating that the request has been checked.

6. Log SOAP messages. For system benchmarking and auditing purposes, the PI

Monitor Agent will log SOAP requests/responses in the Audit Log component.

 31

Information about how to log is contained in the Web Service KB. It depends on

what web service is being called. By default, the PI Monitor Agent will log the

request or response message with the following details: the SOAP message (with

headers), the time when the message is received, the source of the message, the

destination of the message, the User Category, the Data Category, the purpose, the

action, the PI Monitor Agent’s decision and the applied EPAL rule elements

name.

A more detailed description on how the PI Monitor Agent works will be discussed in

several scenarios in Chapter 5.

In Chapter 6, multiple example cases were examined under the following different

circumstances of PI flows:

1. An Application Client with a PI Client Agent invokes a monitored web service

(web services with a PI Monitor Agent);

 2. A monitored web service invokes another monitored web service;

 3. A monitored web service invokes an unmonitored (web services without a PI

Monitor Agent) web service;

 4. An unmonitored web service invokes a monitored web service; and

 5. An application client without PI Client Agent invokes a monitored web service.

In ASP.NET infrastructure, the PI Monitor Agent is implemented by using SOAP

Extension Classes. More details regarding how the PI Monitor Agent is implemented in

ASP.NET can be found in Chapter 7.

4.4 MULTIPLE PI MONITOR AGENTS

As shown in Figure 5, in WSA environments there are cases in which, in order to finish

invoker A’s request, the invoked Web Service B needs to invoke another Web Service C.

In these cases, there might be more than two PI Monitor Agents involved in the

invocation and PI elements may vary among each invocation. In the architecture

presented in this thesis, in cases when more than two PI Monitor Agents are involved in

invocations, the PI Monitor Agent on each web service only needs to be aware of the PI

 32

elements coming in or going out of the resided web service. Inspections of PI flows on

the subsequent or parental web services will not be handled by the PI Monitor Agent on

the current web service.

Figure 5 Multiple PI Monitor Agents.

For instance, the PI Monitor on Web Service A need not to be aware of the PI flows in

the invocation between Web Service B and Web Service C.

4.5 PI CLIENT AGENT

As described in the section on the PI Monitor Agent, some information is required by the

PI Monitor Agent to make a decision on a SOAP request/response. When the invocation

of the monitored web service is from an application client, to monitor private data and

authorize private data access between this monitored web service and the invoking

application client, the PI Monitor Agent needs to acquire some information regarding the

client side such as the user ID of the user of the application client and the name of the

process that made the invocation. This information is not available in KBs and can only

be acquired from the client side. PI Client Agents are extensions of the private data

monitoring and privacy policy enforcement architecture on the client side. They gather

information from an application client and insert the gathered information into the header

of the SOAP request message. PI client agents are deployed to work stations with

application clients to complete the following functions:

 33

1. Authenticate users of the application client and insert user IDs into headers of

SOAP requests. PI Client Agents keep a copy of the monitored web service list,

which is synchronized with the copy in Web Service KB. If an application client

is invoking a web service that is in the monitored web services list, the PI Client

Agent on that workstation will prompt a user authentication. Once the

authentication is finished, the PI Client Agent will insert the user ID into the

header of the SOAP request message.

2. Find the name of the process that made the SOAP request and insert the found

process name in the header of the SOAP request message. If an application client

is invoking a monitored web service, the PI Client Agent on this application client

will find out the process that made this call and insert the process name in the

header of the SOAP request message.

4.6 ARCHITECTURAL COMPONENTS

As shown in Figure 2, for the PI Client Agent and the PI Monitor Agent to work

properly, supporting components need to be established in the architecture providing the

needed information and services to the PI Monitor Agent and the PI Client Agent. The

supporting components are:

• Web Service KB

• User KB

• Application KB

• PI Elements Schema KB

• Audit Log

• Privacy Policy KB

• Obligation Enforcement Component

• Database Query Component

These components provide web service interfaces to the PI Monitor Agent and the PI

Client Agent. PI Monitor Agents and PI Client Agents can interact with them through

 34

SOAP messages. Following sub-sections are descriptions of the supporting components

and their interfaces provided to PI Monitor Agents and the PI Client Agents.

4.6.1 Web Service KB

Web Service KB contains information to map web services to user categories. The Web

Service KB also contains information to map pairs of requesters and web services to

purposes and actions. Requesters could be processes or web services. When web services

are recipients of PI elements, web services become users of these PI elements. In order to

evaluate EPAL, PI Monitor Agents need to know the User Categories that these web

services belong to, the purposes of these web services and their actions.

Web Service KB also contains information to determine whether a request or response

between a requester and a web service is static or dynamic. The requester could be a

process or another web service. If the request or response is static, Web Service KB also

contains information about the Data Categories contained in this static request or static

response. For unmonitored web services (web services without a PI Monitor Agent)

invoking monitored web services (web services with a PI Monitor Agent), Web Service

KB contains information to determine if the request/response is static based only on the

invoked web service.

For unmonitored services and applications without PI Client Agents invoking monitored

web services, Web Service KB contains information to determine User Categories,

purposes and actions for both request and response based only on the invoked monitored

web services.

Web Service KB also contains information of what to log regarding the invocation of a

specific web service.

As shown in Figure 6, Web Service KB interacts with PI Monitor Agents and PI Client

Agents. When the PI Monitor Agent needs to get information from Web Service KB, it

 35

will request Web Service KB by calling “GetWSKBProperty” web method that Web

Service KB provides to the PI Monitor Agent.

Figure 6 Web Service KB's interaction with the PI Monitor Agent and the PI Client

Agent.

Web Method GetWSKBProperty

xmlns: http://example.com/WSKB/

Service Name: GetWSKBProperty

Web method GetWSKBProperty requires the following input data:

• <invoking_web_service_name or process_name>

• <invoked_web_service_name>

• <request_or_response> 0 for request, 1 for response

Web method GetWSKBProperty returns the following output data in a SOAP message:

• <user_category>

• <purpose>

• <action>

• <whether_request_is_static> if true, values 0

• <data_category_for_request> Null if request is not static

• <whether response is static> if true, values 0

• <data_category_for_response> Null if response is not static

 36

A template of the request and reply between a PI Monitor Agent and the Web Service KB

can be found in Appendix A.

Push of the Monitored Web Services List from Web Service KB

When there is a change in the monitored web service list in the Web Service KB, Web

Service KB will push an update to PI Monitor Agents and PI Client Agents to reflect the

change. However, Web Service KB also provides a web service interface for PI Monitor

Agents and PI Client Agents to download the monitored web services list. Before the

update or download happens both parties will exchange a “shared secret” to make sure

each one of them is a legitimate and authorized partner.

4.6.2 User KB

With the PI Client Agent, the private data monitoring and privacy policy enforcement

architecture is able to identify users on the application client side by authenticating users.

The PI Monitor Agent will need support from User KB, which contains information to

map user IDs to User Categories. Also, purposes of the usage of PI elements can be

determined based on cases of a specific user using a specific process to retrieve PI

elements. The User KB contains information to map a specific user using a specific

process to purposes. Based on the user ID and the process the user is using, User KB is

able to find the purpose of the user’s action on the private data.

Figure 7 User KB's interaction with the PI Monitor Agent.

As shown in Figure 7, User KB interacts with the PI Monitor Agent through web method

“GetUKBProperty”.

 37

Web Method GetUKBProperty

xmlns: http://example.com/UKB/

Service Name: GetUKBProperty

Web method GetUKBProperty requires the following input data:

• <user_ID>

• <process_name>

Web method GetUKBProperty returns the following output data:

• <user_category>

• <purpose>

A template of the request and reply between a PI Monitor Agent and the User KB can be

found in Appendix B.

4.6.3 Application KB

When a user is using an application client to retrieve private information from a

monitored web service, the PI Monitor Agent needs to find out the action the application

client takes on the private information. Application KB contains information to identify

the action based on the invoked monitored service and process name.

Figure 8 Application KB's interaction with the PI Monitor Agent.

As shown in Figure 8, Application KB can be queried by calling web method

“GetAKBProperty”.

Web Method GetAKBProperty

xmlns: http://example.com/AKB/

 38

Service Name: GetAKBProperty

Web method GetAKBProperty requires the following input data:

• <process_name>

• <invoked_web_service>

Web method GetAKBProperty returns the following output data:

• <action>

A template of the request and reply between a PI Monitor Agent and the Application KB

can be found in Appendix C.

4.6.4 PI Elements Schema KB

When a request/response is dynamic, the PI Monitor Agent will parse the SOAP message

to abstract the data objects contained in the SOAP message body, send them to PI

Elements Schema KB to get the applicable data category/ies. After receiving this query,

the PI Elements Schema KB is able to identify the PI elements from the queried data

objects set and based on the found PI elements identify the applicable data category/ies.

To fulfill these tasks, the PI Elements Schema KB contains the following information:

1. A dictionary for private data; and

2. Information to map sets of private data elements to data categories.

Figure 9 PI Elements Schema KB's interaction with the PI Monitor Agent.

As shown in Figure 9, the PI Monitor Agent requests the PI Elements Schema KB by

calling the following web method.

 39

Web Method GetPIESKBProperty

xmlns: http://example.com/PIESKB/

Service Name: GetPIESKBProperty

Web method GetPIESKBProperty requires the following input data:

• A set of <data_item> that are found in SOAP message body

Web method GetPIESKBProperty returns the following output data:

• <data_category>

A template of the request and reply between a PI Monitor Agent and the PI Elements

Schema KB can be found in Appendix D.

4.6.5 Audit Log

Audit Log stores logs generated by the PI Monitor Agents. When SOAP requests and

replies pass through a PI Monitor Agent, the PI Monitor Agent makes a decision on

whether to allow or drop this message. After the decision is made, the PI Monitor Agent

will send the Audit Log a SOAP message, which contains the following information to be

logged in Audit Log:

• The SOAP message:

SOAP messages with their headers are logged.

• The time when the message is received:

This is the time when the message is received by the PI Monitor Agent. Time will

be converted by the PI Monitor Agent into UTC time to eliminate the difference

between time zones that might be caused by the geographic distribution of the

organization’s web services.

• The source of the message:

 40

This is the name of the source of the message. If the message is a request, this

field is the requester’s name. If the message is a response, this field is the

provider’s name.

• The destination of the message:

This is the name of the destination of the message. If the message is a request, this

field is the provider’s name. If the message is a response, this field is the

requester’s name.

• User Category:

User Category/ies that is found by the PI Monitor Agent regarding the usage of

the message.

• Data Category:

Data Category/ies that is found by the PI Monitor Agent regarding the usage of

the message.

• Purpose:

Purpose/s that is found by the PI Monitor Agent regarding the usage of the

message.

• Action:

Action/s that is taken by the recipient of the message to the PI elements.

• PI Monitor Agent’s decision:

Action taken by the PI Monitor Agent on the message. It is either drop or allow.

• Applied EPAL rule element:

The rule element returned from the Privacy Policy KB to the PI Monitor Agent.

 41

After receiving the SOAP request from a PI Monitor Agent, the log information

contained in the SOAP message will be abstracted by Audit Log and stored in a log

database. Then the Audit Log will return success or failure to the PI Monitor Agent.

Figure 10 Audit Log KB's interaction with the PI Monitor Agent.

As shown in Figure 10, the Audit Log KB can be queried by the PI Monitor Agent by

calling the following web method.

Web Method GetALKBProperty

xmlns: http://example.com/ALKB/

Service Name: GetALKBProperty

Web method GetALKBProperty requires the following input data:

• the SOAP message (with headers),

• the time when the message is received,

• the source of the message,

• the destination of the message,

• the User Category,

• the Data Category,

• the Purpose,

• the Action,

• the PI Monitor Agent’s decision, and

• the applied EPAL rule element.

Web method GetALKBProperty returns the following output data:

 42

• Log is success

SOAP templates of the request and reply between a PI Monitor Agent and the Audit Log

KB can be found in Appendix E.

4.6.6 Privacy Policy KB

Privacy Policy KB stores the EPAL privacy policies. After the PI Monitor Agent

acquires all the information that is required to evaluate EPAL rule elements, PI Monitor

Agent will send all the following information to Privacy Policy KB:

• User category/ies

• Data category/ies

• Purpose/s

• Action/s

After receiving the query from a PI Monitor Agent, Privacy Policy KB will look up in its

rule bases and return the applicable <rule> element in EPAL policy and <condition>

elements referenced in <rule> element.

Figure 11 Privacy Policy KB's interaction with the PI Monitor Agent.

As shown in Figure 11, the Privacy Policy KB can be queried by the PI Monitor Agent by

calling the following web method.

Web Method GetPPKBPolicy

xmlns: http://example.com/PPKB/

Service Name: GetPPKBPolicy

 43

Web method GetPPKBPolicy requires the following input data:

<user_category>

<data_category>

<purpose>

<action>

Web method GetPPKBPolicy returns the following output data:

<rule> element in EPAL policy

<condition> element referenced in <rule> element

SOAP templates for the request and reply between a PI Monitor Agent and the Privacy

Policy KB can be found in Appendix F.

4.6.7 Obligation Enforcement Component

The obligation element in the EPAL policy specifies the additional required actions the

enterprise is obligated to take when a certain action is taken on the private data. After the

PI Monitor Agent determines which rule element to use, it will find in the rule element

the required obligation/s to take if there is any. The PI Monitor Agent will send the

required obligation/s to Obligation Enforcement Component, which then will execute the

required obligation/s and return “success” or “failure” messages to the PI Monitor Agent.

If the execution of the obligations is successful, the PI Monitor Agent will take the action

stated in the <action> sub-element in rule element. If the execution of the obligation/s is

not successful, the PI Monitor Agent will drop the message.

Figure 12 Obligation Enforcement Component's interaction with the PI Monitor Agent.

 44

As shown in Figure 12, the PI Monitor Agent invokes the Obligation Enforcement

Component by calling the following web method.

Web method RequestOEC

xmlns: http://example.com/OEC/

Service Name: RequestOEC

Web method RequestOEC requires the following data as input:

• <obligation> element in <rule> element

Web method RequestOEC returns the following data to PI monitor

• Success or failure

SOAP templates for the request and reply between a PI Monitor Agent and the Obligation

Enforcement Component can be found in Appendix G.

4.6.8 Privacy Database Query Component

The Privacy Database Query Component keeps the information on which database

contains the data variable/s required to evaluate the condition element in EPAL policy. In

EPAL policies, the condition element references to the container element that defines the

data structure of context data that will be used in the condition element. The Privacy

Database Query Component provides an interface for the PI Monitor Agent to query data

that is required to evaluate the condition element. Once receiving a query from the PI

Monitor Agent, the Privacy Database Query Component determines which data base

needs to be queried for the context data and gets the data from the database.

 45

Figure 13 Privacy Database Query Component's interaction with the PI Monitor Agent.

As shown in Figure 13, the PI Monitor Agent invokes the Privacy Database Query

Component by calling the following web method.

Web method RequestDQC

xmlns: http://example.com/PDQC/

Service Name: RequestPDQC

Web method RequestPDQC requires the following input:

• <container refid=

 attribute refid=> Data attribute/s in <condition> element

• <Unique_data_subject_identifier> such as CustomerID

Web method RequestPDQC returns the following output:

• <container refid= attribute refid= >data value</container refid= attribute refid= >

The unique identifier for the data subject is required to identify the data subject for which

the context data is queried. If the unique identifier is missing in the SOAP message, then

the condition cannot be satisfied and, therefore, the PI Monitor Agent will ignore the rule

element in question.

SOAP templates for the request and reply between a PI Monitor Agent and the Privacy

Database Query Component can be found in Appendix H.

 46

CHAPTER 5 SYSTEM WORKING SCENARIOS

This chapter illustrates how the PI Monitor Agent and the PI Client Agent work together,

with the support of the other architectural components, to achieve the tasks of monitoring

private data and enforcing privacy policies in a WSA environment. The scenarios are

designed to reflect the possible PI flows in a typical WSA environment.

Figure 14 Possible PI flows in a typical WSA environment.

Figure 14 shows the possible PI flows in a typical WSA environment for an enterprise’s

business. It has application clients and web services distributed across the network

domain. Some web services are monitored web services and some are not while some

application client platforms have PI Client Agents and some have not. There are five

possible scenarios regarding PI flows in such a web services and application

environment:

 47

1. An application client with a PI Client Agent invokes a monitored web service;

2. A monitored web service invokes another monitored web service;

3. A monitored web service invokes an unmonitored web service;

4. An unmonitored web service invokes a monitored web service; and

5. An application client without a PI Client Agent invokes a monitored web service.

5.1 SYSTEM WORKING SCENARIO 1

As shown in Figure 15, this working scenario demonstrates how the PI Monitor Agent

and the PI Client Agent work in the situation where an application client with the PI

Client Agent invokes a monitored web service.

Figure 15 Application client with PI Client Agent invokes monitored service.

When an application client initiates a SOAP request, the PI Client Agent on the

application client platform will kick in and detect the invoked web service in the SOAP

message body. If this invoked web service is a monitored web service, the PI Client

Agent will prompt a user authentication and find the process that made the call. Once the

user authentication is finished and the process is found, the PI Client Agent will insert the

user ID, the process name and the invoked web service name in the header of the SOAP

request and pass the message along. If the invoked web service is not a monitored web

service, the PI Client Agent will pass the message along without user authentication and

without finding the process that invoked the web service.

 48

After receiving this SOAP request, the PI Monitor Agent on the invoked web service will

find the following information in the SOAP header: user ID, process name and the

invoked web service. For the request, based on the process name and the invoked web

service, the PI Monitor Agent will query Web Service KB about the User Category/ies,

Purpose/s, Action/s and whether the request or response is static. If the request or

response is static, the Web Service KB will return Data Category/ies for the static request

or static response. The PI Monitor Agent will cache the found information for the

response (static or dynamic; including the Data Category if it is static). At this point, if

the request is static, the PI Monitor Agent has all the information it needs to evaluate an

EPAL policy and the EPAL Policy Evaluation Process will start. If the request is

dynamic, the PI Monitor Agent will need to parse though the SOAP request message to

find the data items contained in the message. After finding the data items in the SOAP

request message, the PI Monitor Agent will send all the data items to PI Elements

Schema KB to get Data Category/ies for the request. Then, the EPAL Policy Evaluation

Process will start.

The EPAL Policy Evaluation Process is as follow for this particular scenario: the PI

Monitor Agent sends the User Category/ies, Data Category/ies, Purpose/s, and Action/s

to the Privacy Policy KB. Based on the enterprise’s Privacy Policy, the KB will return the

applicable <rule> element together with any <condition> element that is referenced in the

applicable <rule> element. If the <rule> element is to drop, the PI Monitor Agent will

drop the request without processing the returned information further. If the <rule>

element is to allow the message, based on the returned <condition> element, the PI

Monitor Agent will query the Privacy Database Query Component to get the data value

required to evaluate the <condition> element. If the <obligation> sub-element in <rule>

element is not null, the PI Monitor Agent will send the <obligation> element to the

Obligation Enforcement Component to enforce the obligation stated in the <obligation>

element. Once the Obligation Enforcement Component finishes the enforcement, it will

return a success or failure message to the PI Monitor Agent. If the obligation fails, the PI

Monitor Agent will drop the request since the obligations cannot be honored. If the

obligation is successful, the PI Monitor Agent will allow the request to go through. If

 49

there is neither a <condition> sub-element nor an <obligation> sub-element in the <rule>

element, the PI Monitor Agent will allow the request through.

When the response is returned from the invoked web service, the PI Monitor Agent will

find the cached information regarding whether the response is static and, if it is static, the

Data Category. For the response, the PI Monitor Agent will query User KB about User

Category/ies and Purpose/s based on user ID and process name. The PI Monitor Agent

will also query the Application KB about Action/s based on the invoked web service and

process name. If a response is static, the PI Monitor Agent already has the required

information to evaluate the EPAL policy. The PI Monitor Agent will start the EPAL

Policy Evaluation Process. If the response is dynamic, the PI Monitor Agent will need to

parse through the SOAP response message and find the data items in the message. Then,

the PI Monitor Agent will send the found data items to the PI Elements Schema KB and

get the Data Category/ies for the response. Finally, the PI Monitor Agent will start the

EPAL Policy Evaluation Process.

5.2 SYSTEM WORKING SCENARIO 2

As shown in Figure 16, this system working scenario demonstrates how the PI Monitor

Agent works in the situation where a monitored web service invokes another monitored

web service.

Figure 16 A monitored service invokes another monitored service.

When a monitored web service initiates a SOAP request, the PI Monitor Agent hooked

with this invoking web service will find the invoked web service in the SOAP request

 50

body. If this invoked web service is monitored, the PI Monitor Agent will find the

invoking web service’s name. Once the invoking web service and invoked web service

are found, the PI Monitor Agent will query Web Service KB based on the invoking web

service and the invoked web service to find the User Category/ies, Purpose/s, Action/s,

and whether the request or response is static. If any of the request and response is static,

Web Service KB will also return the Data Category/ies for the static request or static

response. The PI Monitor Agent will insert a flag indicating the response is static or

dynamic to the SOAP request header. If the request is static, the PI Monitor Agent

already has the information needed to evaluate the EPAL policy for the request and it will

start the EPAL Policy Evaluation Process. If the request is dynamic, the PI Monitor

Agent will need to parse through the request message, find data items contained in the

request message and send them to the PI Elements Schema KB to collect the Data

Category/ies for the request. Then, the PI Monitor Agent will start the EPAL Policy

Evaluation Process. The PI Monitor Agent will also insert the following information to

the header of the request: the invoked web service, the invoking web service, a flag

indicating that the request has been checked.

After receiving this SOAP request, the PI Monitor Agent on the invoked web server will

find a flag in the header indicating that this request message has been checked. The PI

Monitor Agent will cache the information that is found in the header (the invoked web

service, the invoking web service, a flag indicating the response is static or dynamic) and

pass the request along to the invoked web service. When the SOAP response is returned

from the invoked web service, the PI Monitor Agent on the invoked web service will

check the cached flag indicating the response is static or dynamic. If it is a static

response, the PI Monitor Agent will query Web Service KB based on the invoking web

service and the invoked web service to find User Category/ies, Data Category/ies,

Purpose/s and Action/s. At this point of time, the PI Monitor Agent already have all the

information needed for the EPAL Policy Evaluation Process. The PI Monitor Agent will

start the EPAL Policy Evaluation Process. If the response is dynamic, the PI Monitor

Agent will parse through the response message, find the data items contained in the

message and send them to the PI Elements Schema KB to get Data Category/ies for the

 51

response. The PI Monitor Agent will also query Web Service KB based on the invoking

web service and the invoked web service to find User Category/ies, Purpose/s and

Action/s. The PI Monitor Agent will then start the EPAL Policy Evaluation Process. If

the EPAL Policy Evaluation Process results in an “allow” action, the SOAP response

message will arrive at the invoking web service. The PI Monitor Agent on the invoking

web service will allow this response through to the business logic of its monitored web

service.

5.3 SYSTEM WORKING SCENARIO 3

As shown in Figure 17, this system working scenario demonstrates how the PI Monitor

Agent works in the situation where a monitored web service invokes an unmonitored web

service.

Figure 17 A monitored service invokes an unmonitored service.

When a monitored web service initiates a SOAP request, the PI Monitor Agent on this

invoking web service will find the invoked web service in the SOAP request message.

The PI Monitor Agent will verify if the invoked web service is a monitored web service

or not. If not, the PI Monitor Agent will find the invoking web service. For the request,

the PI Monitor Agent will query Web Service KB based on the invoking web service and

the invoked web service to find User Category/ies, Purpose/s, Action/s and whether the

request and response are static. If any of the request or response is static, the Web Service

KB will return the Data Category/ies for the request or response. The PI Monitor Agent

will cache the found information: whether the response is static or dynamic. If the request

 52

is static, the PI Monitor Agent already has the information needed to evaluate the EPAL

policy and the EPAL Policy Evaluation Process will start. If the request is dynamic, the

PI Monitor Agent will parse through the request message, find all the data items in the

request message and send them to the PI Elements Schema KB to get Data Category/ies

for the request. The EPAL Policy Evaluation Process for request will then start.

When the response comes back from the unmonitored web service, the PI Monitor Agent

will check the following cached information: whether the response is static or dynamic. If

the response is static, the PI Monitor Agent will query Web Service KB based on the

invoking web service and the invoked web service to find User Category/ies, Data

Category/ies, Purpose/s, Action/s and then start the EPAL Policy Evaluation Process. If

response is dynamic, the PI Monitor Agent will need to parse through the response

message and get Data Category/ies for the response from the PI Elements Schema KB.

The PI Monitor Agent then queries the Web Service KB based on the invoking web

service and the invoked web service to find User Category/ies, Purpose/s and Action/s.

Then the EPAL Policy Evaluation Process will start for the response.

5.4 SYSTEM WORKING SCENARIO 4

As shown in Figure 18, this system working scenario demonstrates how the PI Monitor

Agent works in the situation where a monitored web service gets invoked by an

unmonitored web service or an application client without the PI Client Agent.

 53

Figure 18 An unmonitored service or an application client without PI Client Agent

invokes a monitored service.

When receiving a request from an unmonitored web service or an application client

without a PI Client Agent, the PI Monitor Agent on the invoked monitored web service

will notice that the PI Monitoring Header is missing. The PI Monitor Agent will parse the

SOAP message body for the invoked web service. Based on the invoked web service, the

PI Monitor Agent will find Purpose/s, Action/s and User Category/ies in the Web Service

KB for both the request and response (default values will be used if these variables

cannot be found in KBs). Also, the web service will return whether or not the request or

response is static. If the request or response is static, the Web Service KB will return the

Data Category/ies for either the static request or the static response. If the request is

static, the PI Monitor Agent will already have all the information needed to evaluate the

EPAL policy. The EPAL Policy Evaluation Process will start. If the request is dynamic,

the PI Monitor Agent will parse through the request message and collect the Data

Category/ies in the PI Elements Schema KB. The PI Monitor Agent will start the EPAL

Policy Evaluation Process.

When the response comes back from the unmonitored invoked web service, if the

response is static, the PI Monitor Agent already has the required information to evaluate

the EPAL policy. The PI Monitor Agent will start the EPAL Policy Evaluation Process. If

 54

the response is dynamic, the PI Monitor Agent will parse through the response message

and get Data Category/ies for the response in the PI Elements Schema KB. Then, the

EPAL Policy Evaluation Process will start.

 55

CHAPTER 6 DEMONSTRATION CASES

This chapter presents four sample cases to demonstrate how the architecture works to

provide private data monitoring and privacy policy enforcement in a WSA environment.

6.1 SELECTION OF CASES

These demonstration cases are chosen to reflect the working scenarios for the system as

described in Chapter 5. These scenarios are designed to reflect typical applications of

WSA in an e-Commerce business. Also, the following ideas are demonstrated in these

scenarios:

• How the system deals with cases when multiple privacy rules apply;

• How the <condition> element in EPAL policy is evaluated.

In the four cases, demonstration Case 2 is selected to reflect the two scenarios described

in Section 5.4. To the PI Monitor Agent on the monitored web service, the SOAP request

from an unmonitored web service or the SOAP request from an application client without

the PI Client Agent are the same; therefore, the way the PI Monitor Agent handles the

incoming requests and departing responses in these two scenarios is the same.

6.2 DEMONSTRATION CASES

In this section, we are going to present four demonstration cases.

6.2.1 Demonstration Case 1

In this scenario, an application client with a PI Client Agent invokes a monitored web

service, where PI elements are found in both the request and the response. The request is

static and the response is dynamic.

To accomplish services provided to customers, an e-Commerce web site “example.com”

collects certain privacy information from its customers. With users’ consent, users’ PI

 56

collected by “example.com” can be disclosed to an entity other than the one who

collected the PI. Another entity here could be another internal division or a third party

organization. This scenario also demonstrates the following concepts:

• How the <condition> element in EPAL is evaluated;

• Which policy will be returned when multiple EPAL rules apply.

For marketing purposes, Mike Smith (UserID: HO5MTS), a Marketing Manager from the

Marketing Department, wants to retrieve private information that “example.com”

collected from customer John Crane (CustomerID: T56333492). To retrieve the

customer’s PI information, the Marketing Manager will need to use an application client

called ICAM (Integrated Customer Account Management). This client is developed for

users from different departments of “example.com” to retrieve different kinds of

information regarding a specific user (such as contact information, billing information

and marketing information). In this case, Mike, the Marketing Manager, is going to use

this client to retrieve marketing information about a customer.

According to “example.com’s” privacy policy, users from the Marketing Department are

only allowed to retrieve the following private information regarding a customer for

marketing purposes if the customer agrees to let his/her information be used for

marketing purposes:

• First Name

• Middle Name

• Family Name

• Address

• Email

• Phone Number

• Fax

• Consent

• Preferences

 57

Web Service account_info_retrieval

During user data retrieval, the web service account_info_retrieval expects the following

data items from an application client:

• Customer_ID

• Data_Group (The kind of information requested; for example: marketing, billing

or contact)

If marketing data is requested, web service returns the following PI elements among other

non-PI data to the application client.

<FirstName>

<MiddleName>

<FamilyName>

<Address>

<Email>

<PhoneNumber>

<Fax>

<Consent>

<Preferences>

PI Elements Schema KB

This KB is where we maintain a PI element dictionary and define Data Categories. In PI

Elements Schema KB, <FirstName>, <MiddleName>, <FamilyName>, <Address>,

<Email>, <PhoneNumber>, <Fax>, <Consent> and <Preferences> are defined as PI

elements and are categorized as marketing_data.

User KB

This is one of the places where we define User Categories. In this scenario for the

response, the Marketing Manager who invoked the web service account_info_retrieval is

 58

the user of the PI elements. In User KB, the Marketing Manager, Mike Smith, belongs to

User Categories marketing_processor and fraud_processor.

In User KB it also shows that if user Mike Smith (UserID: HO5MTS) is using application

ICAM.exe, the purposes of the usage of PI in the response of web service

account_info_retrival are marketing_processing and fraud_processing.

Web Service KB

Web Service KB contains the following information regarding this invocation:

Based on the invocation parties (process name: ICAM.exe and the invoked web service:

account_info_retrival) the purpose of the request of web service account_info_retrieval

is mapped to user_information_retrieval_input and the resultant action is mapped to

process. For the request, web service account_info_retrieval is the user of the PI

elements in the request and web service account_info_retrieval is mapped to User

Category user_information_retrieval_interface.

Also, in Web Service KB, based on the invocation parties (invoker: ICAM.exe and

invoked: account_info_retrival) it shows that the request of this invocation is static with

the Data Category Customer_Identifier and that the response is dynamic. The Data

Category Customer_Identifier only has one PI element, which is Customer_ID.

Application KB

Application KB contains the following information: based on the invocation parties, the

Action of the response of web service account_info_retrieval is mapped to retrieval.

PI Client Agent

PI Client Agents are installed on the workstations at the Marketing Department. When

Mike Smith initiates a service request to the web service account_info_retrieval from the

ICAM client on his workstation, the PI Client Agent on his workstation will notice that a

SOAP message has been initiated. By looking at the SOAP message, the PI Client Agent

finds that this request is going to a monitored service. The PI Client Agent will then

 59

prompt an authentication window and try to find the name of the process that made this

request. When the authentication is finished and process name is found, the PI Client

Agent inserts the following headers into the SOAP message and passes the message

along.

<user-id>HO5MTS<user-id/>

<process-name>ICAM.exe<process-name/>

<invoked-web-service>account_info_retrieval<invoked-web-service>

How the PI Monitor Agent Works

After receiving this SOAP request, the PI Monitor Agent on the invoked web service

account_info_retrieval detects the following headers in the SOAP request message: user

ID, process name and the invoked web service. For the request, the PI Monitor Agent

queries Web Service KB based on the process name ICAM.exe and the invoked web

service account_info_retrival to find out that the Purpose of this request is

user_information_retrieval_input, the Action of this request is process, the User

Category of this request is user_information_retrieval_interface and that the request is

static with Data Category Customer_Identifier and that the response is dynamic. At this

point of time, the PI Monitor Agent has all the information to evaluate the EPAL Policy

for the request. The PI Monitor Agent will start the EPAL Policy Evaluation Process and

get the following applicable <rule> element from Privacy Policy KB.

<rule id=”1” ruling=”allow”>

 <short-description>rule for case 1</short-description>

 <long-description>rule for case 1</long-description>

 <user-category refid=”user_information_retrieval_interface”/>

 <data-category refid=”Customer_Identifier”/>

 <purpose refid=”user_information_retrieval_input”/>

 <action refid=”process”/>

</rule>

 60

** The above rule element in the EPAL Policy states that any user information retrieval

interface is allowed to receive the customer ID to process retrieval request for user

information.**

Since there is no <condition> and <obligation> sub-element in the applicable <rule>

element and the <rule> element is to allow the request, the PI Monitor Agent will allow

the request through and log the message.

When the response is returned from the invoked web service, the PI Monitor Agent on

the invoked web service queries User KB based on the user ID HO5MTS and process

name ICAM.exe to get the User Category/ies and Purpose/s for the response. In this case

the PI Monitor Agent gets multiple User Categories for HO5MTS: marketing_processor

and fraud_processor. The PI Monitor Agent also gets multiple purposes:

marketing_processing and fraud_processing. For the response, the PI Monitor Agent

queries Application KB to find out the action of ICAM.exe invoking account-info-

retrieval (also based on invocation parties) and gets retrieval as action. The PI Monitor

Agent already knows that the response is dynamic. The PI Monitor Agent will parse

through the response message and find the following data items: <FirstName>,

<MiddleName>, <FamilyName>, <Address>, <Email>, <PhoneNumber>, <Fax>,

<Consent> and <Preferences>. The PI Monitor Agent will send these items to the PI

Elements Schema KB. The PI Elements Schema KB finds that these data items are all PI

elements and they form the Data Category marketing_data. At this point of time, the PI

Monitor Agent will evaluate EPAL Policy for the response. During the EPAL Policy

Evaluation Process, Privacy Policy KB will find the following applicable <rule>

elements in EPAL policy:

<rule id=”2” ruling=”allow”>

<short-description>rule for case 1</short-description>

 <long-description>rule for case 1</long-description>

 <user-category refid=”marketing_processor”/>

 <data-category refid=”marketing_data”/>

 61

 <purpose refid=”marketing_processing”/>

 <action refid=”retrieval”/>

<condition refid=”condition1”/>

</rule>

<rule id=”3” ruling=”allow”>

<short-description>rule for case 1</short-description>

 <long-description>rule for case 1</long-description>

 <user-category refid=”fraud_processor”/>

 <data-category refid=”marketing_data”/>

 <purpose refid=”fraud_processing”/>

 <action refid=”retrieval”/>

</rule>

Privacy Policy KB will return the first applicable <rule> element together with the

<condition> element referenced in the <rule> element. The referenced <condition>

element is as follows:

<condition id="condition1">

 <predicate

 refid="http://www.research.ibm.com/privacy/epal#string-equal">

 <function

 refid="http://www.research.ibm.com/privacy/epal#string-bag-to-value">

 <attribute-reference

 container-refid="Customer"

 attribute-refid="Consent"/>

 </function>

 <attribute-value

 simpleType="http://www.w3.org/2001/XMLSchema#string">true</attribute-

value>

 </predicate>

 </condition>

 62

After receiving the returned <rule> element and <condition> element, the PI Monitor

Agent will send the referenced data attribute <attribute-reference container-

refid=”Customer” attribute-refid=”Consent”/> and the CustomerID T56333492 to the

Privacy Database Query Component. The Privacy Database Query Component, based on

the information it has regarding which database holds the required data attribute, accesses

the database to get the value for data attribute Consent under CustomerID T56333492. In

this case, since the customer has agreed to share privacy information for marketing

purpose, data attribute Consent has value “1” meaning it has been agreed upon. Since

there is no obligation required in the policy, the PI Monitor Agent will allow the response

through and log the response message.

6.2.2 Demonstration Case 2

In such a scenario, an application client without a PI Client Agent invokes a monitored

web service, where PI elements are found only in the request and the request is static.

A customer is trying to apply for an account on an e-Commerce site “example.com” from

Internet Explorer on his workstation. According to “example.com’s” privacy policy,

when a customer applies for an account, it only collects the following privacy

information from the customer:

• First Name

• Middle Name

• Family Name

• Gender

• Date of Birth

• Address

• Email

• Phone Number

• Fax

• Consent: an option that users choose to receive promotions from “example.com”

 63

• Preferences: commodity categories for which users choose to receive promotions

in the future (The available values are: Apparel, Automotive, Baby, Electronics,

Grocery & Pets, Health & Wellness, Home & Office, Jewelry, Movies, Music &

Books, Outdoor Living, Sports, Toys, Video Games. Customers can select any

combination of the above options as values in Preferences.)

Web Service account_apply

When a customer applies for an account on “example.com”, the monitored web service

account_apply on “example.com” is called. The client (in this case it is Internet Explorer

browser) on customer side will send the required data items to web service

account_apply, which then writes the collected data into a customer database.

To invoke account_apply, the application needs to send the following data to the web

interface of web service account_apply:

<FirstName>

<MiddleName>

<FamilyName>

<Gender>

<DateofBirth>

<Address>

<Email>

<PhoneNumber>

<Fax>

<Consent>

<Preferences>

Web Service KB

In this case, for the request, web service account_apply is the user of the PI elements. In

Web Service KB, it contains information that the User Category for the request of

 64

account_apply is application_processor. In Web Service KB it shows that anonymous is

the User Category for the response.

Web Service KB contains information to map web services to actions and purposes. In

this scenario, the request of web service account_apply is mapped to Action store and

Purpose user_application. The response of the web service account_apply is mapped to

Action none and Purpose none.

Also, in Web Service KB, it shows that the request and response of the web service

account_apply are static: the Data Category of request is initial_user_data which

contains “First Name”, “Middle Name”, “Family Name”, “Gender”, “Date of Birth”,

“Address”, “Email”, “Phone Number”, “Fax”, “Consent” and “Preferences”; the Data

Category of the response is none, which means there is no PI element in response.

How the PI Monitor Agent Works

The PI Monitor on the web service account_apply notices that the SOAP request that just

came has no PI monitoring header. Therefore, it is from an unmonitored web service or

application client without a PI Client Agent. The PI Monitor Agent detects in the request

message that the invoked web service is account_apply. For both the request and the

response, the PI Monitor Agent will query the Web Service KB based on the invoked

web service account_apply for User Category/ies, Purpose/s, Action/s and whether the

request and response are static. If any request or response is static, the Data Category/s

for the static request or static response will be returned. After checking the knowledge it

has, the Web Service KB returns the following to the PI Monitor:

For request:

• User Category application_processor

• Purpose user_application

• Action store

• request is static

• Data Category initial_user_data

 65

For response:

• User Category anonymous

• Purpose none

• Action none

• response is static

• Data Category none

At this point in time, the PI Monitor Agent already has all the information required to

evaluate the EPAL policy for the request. The EPAL Policy Evaluation Process will

begin. It finds the following <rule> element for the request:

<rule id=”4” ruling=”allow”>

<short-description>rule for case 2</short-description>

 <long-description>rule for case 2</long-description>

 <user-category refid=”application_processor”/>

 <data-category refid=”initial_user_data”/>

 <purpose refid=”account_apply”/>

 <action refid=”store”/>

</rule>

According to the privacy policy, the SOAP request message of this invocation is allowed

through and the PI Monitor Agent will log the request.

When the response comes back from the invoked web service, because the Data Category

for the response is none, response in this invocation is also allowed through. The PI

Monitor Agent will log the response.

 66

6.2.3 Demonstration Case 3

In this scenario, a monitored web service invokes another monitored web service, where

PI elements are found only in the request and the request is static.

When web service account_apply is processed, child web service welcome_email_notify

will be invoked. welcome_email_notify is hosted on another web server. The invocation

of welcome_email_notify is to send the new customer a welcome email, which includes

all the information the user just provided so the user can keep a record of what has been

collected by “example.com”. According to the privacy policy at “example.com”, web

service account_apply is allowed to forward all the information it collected to web

service welcom_email_notify.

Web services (methods) involved:

• account_apply

• welcome_email_notify

Web Service welcome_email_notify

The interface of welcome_email_notify expects the following data from an invoker:

<FirstName>

<MiddleName>

<FamilyName>

<Gender>

<DateofBirth>

<Address>

<Email>

<PhoneNumber>

<Fax>

<Consent>

<Preferences>

 67

Web Service KB

In this case, web service welcome_email_notify is the user of request and web service

account_apply is the user of response. In Web Service KB, the User Category for web

service welcome_email_notify is email_processor. The User Category for web service

account_apply is application_processor.

In this case, the Web Service KB shows that if the invoker is account_apply and the

invoked is welcome_email_notify, the Action of the request is disclose and the Purpose

of the request is user_notification.

In Web Service KB, it also shows that the request and response of web service

account_apply invoking web service welcome_email_notify are static: the data category

of request is initial user data; the data category of response is none, which means that

there is no PI element in the response.

How the PI Monitor Agent Works

When the SOAP request message is initiated by web service account_apply, the PI

Monitor Agent on the web service account_apply will find out in the SOAP message that

the invoked web service is welcome_email_notify, which is in the PI Monitor Agent’s

Monitored Web Service List. The PI Monitor Agent then figures out that account_apply

is the invoking web service. Based on account_apply as the invoker and

welcome_email_notify as the invoked, the PI Monitor will find in Web Service KB the

following information about the request:

• User Category email_processor

• Purpose user_notification

• Action disclose

• request is static

• Data Category initial user data

It also finds the following information about the response:

 68

• response is static

The PI Monitor will insert the following information to the SOAP request header: a flag

indicating the response is static.

Since the request is static and the Data Category for the request has been determined, the

PI Monitor Agent now has all the information needed to evaluate the EPAL for the

request. EPAL Policy Evaluation Process will begin. The PI Monitor Agent will get the

following <rule> element from Privacy Policy KB:

<rule id=”5” ruling=”allow”>

<short-description>rule for case 3</short-description>

 <long-description>rule for case 3</long-description>

 <user-category refid=”email_processor”/>

 <data-category refid=”initial_user_data”/>

 <purpose refid=”user_notification”/>

 <action refid=”disclose”/>

</rule>

 According to the privacy policy, the SOAP request message of this invocation is allowed

through. Before the PI Monitor passes the request message along, the request message

will be logged in the Audit Log module and the following headers will be inserted into

the header of the SOAP request message:

<invoking-web-service>account_apply< invoking-web-service/>

<invoked-web-service>welcome_email_notify< invoked-web-service/>

<flag-request-checked>yes< flag-checked/>

<flag-static-response>yes< flag-static-response/>

After receiving this request message, the PI Monitor Agent on the invoked web service

welcome_email_notify will find a flag in the header indicating that this request has been

 69

checked. The PI Monitor Agent will cache other information found in the header, such as,

the invoked web service, the invoking web service and a flag indicating the response is

static. The PI Monitor Agent will query the Web Service KB based on the invoking web

service account_apply and the invoked web service welcome_email_notify for the User

Category/ies, Purpose/s, Action/s and Data Category/ies for the response. The PI Monitor

Agent will get data category “none” for the response, which means there are no PI

elements in the response. The PI Monitor will log the response message in the Audit Log

module and allow the response message through.

6.2.4 Demonstration Case 4

In Case 4, a monitored web service invokes an unmonitored web service, where PI

elements are found only in the request. The request is static.

To complete an online order made by a customer, “example.com” will need to send the

customer’s billing information to a bank to process the transaction. When a customer

makes an order online, he/she also agrees to let “example.com” disclose his/her PI

information to a third party financial organization for transaction purposes. According to

“example.com’s” privacy policy, only the information that is needed for a transaction will

be disclosed to the financial organization.

According to the privacy policy at “example.com”, the following billing information will

be allowed to be disclosed to the financial organization to finish a transaction:

• First Name

• Middle Name

• Family Name

• Billing Address

• Credit Card Number

• Credit Card Expiration Date

 70

Web Service transaction_invoke

During the transaction, the web service transaction_invoke on “example.com” invokes

web services provided by other financial organizations to finish transactions. For our

demonstration, we can assume that TD Canada’s web service for online transactions is

customer_transaction and it requires the following input:

<Requester’s Organization ID>

<First Name>

<Middle Name>

<Family Name>

<Billing Address>

<Credit Card Type>

<Credit Card Number>

<Credit Card Expiration Date>

<Amount of money>

<Purpose for transaction>

Among the above data, we can find a billing information Data Category. Since the web

service customer_transaction is located at TD Canada, the PI Monitor Agent does not

monitor it.

PI Elements Schema KB

In PI Elements Schema KB, the following data are defined as PI elements: <First Name>,

<Middle Name>, <Family Name>, <Billing Address>, <Credit Card Number>, <Credit

Card Expiration Date>. They are categorized as the billing_data Data Category.

User KB

Since the User of the PI information is a web service, there is nothing in the User KB that

will be provided to the PI Monitor.

 71

Web Service KB

In this case, the web service customer_transaction is the recipient of the request and

transaction_invoke is the recipient of the response. In Web Service KB, both the web

service transaction_invoke and the web service customer_transaction are mapped to

User Category transaction_proccessor. In this case, Web Service KB shows that if the

invoker is transaction_invoke and the invoked is customer_transaction, both the request

and the response are static with Data Category billing_data for the request and no private

data (data category none) for the response. The Action of the request is disclose and the

Purpose of the request is transaction_process. The Purpose for the response is none and

the Action for the response is none.

How the PI Monitor Agent Works

When the SOAP request message is initiated by the web service transaction_invoke , the

PI Monitor Agent on the web service transaction_invoke will find out in the SOAP

message that the invoked web service is customer_transaction. The PI Monitor Agent

finds out that the customer_transaction is not a monitored web service. The PI Monitor

then figures out that transaction_invoke is the invoking web service. Based on

transaction_invoke as the invoker and customer_transaction as the invoked, the PI

Monitor Agent will find in Web Service KB the following information for the request:

User Category transaction_proccessor

Purpose transaction_process

Action disclose

request is static

Data Category billing_data

For the response, the PI Monitor Agent will find in the Web Service KB that the response

is static and the Data Category for the response is none. This information will be cached

for later use.

 72

The PI Monitor Agent is now ready to evaluate the EPAL Policy for the request. The

EPAL Policy Evaluation Process will begin. The PI Monitor Agent will get the following

<rule> element from Privacy Policy KB:

<rule id=”5” ruling=”allow”>

<short-description>rule for case 4</short-description>

 <long-description>rule for case 4</long-description>

 <user-category refid=”transaction_processor”/>

 <data-category refid=”billing_data”/>

 <purpose refid=”transaction_process”/>

 <action refid=”disclose”/>

</rule>

According to the privacy policy, the SOAP request message of this invocation is allowed

through. The PI Monitor Agent will log the request message and pass the request

message along. When the response message comes back, the PI Monitor Agent will

notice that the Data Category for the response is none and, therefore, allow it through and

log the response message.

6.3 CONCLUSION

These four examples demonstrate the proof that the concept of the PI Monitor Agent for

privacy monitoring and enforcement in a WSA environment. The agent is effective to

facilitate support for privacy in organizations’ computer systems. The efficiency of the PI

Monitor Agent will be evaluated in next Chapter.

 73

CHAPTER 7 PROTOTYPE AND EXPERIMENTATION

As a proof of concept, a prototype of the proposed architecture has been implemented in

ASP.NET. Based on the prototype, experiments were conducted to evaluate the

performance of the PI Monitor Agent. In this Chapter, we will first describe the

implementation of the PI Monitor Agent and the PI Client Agent in ASP.NET and then

we will describe the objective of our experiment, the set up of the experiment and the

platform of the experiment. We will also describe the method we used to measure the

performance of the PI Monitor Agent. Finally, the results of the experiment will be

analyzed to explore the performance of the PI Monitor Agent and, based on the analysis,

we will make suggestions on the implementation of the PI Monitor Agent for a real

operational environment.

7.1 IMPLEMENTATION OF PROTOTYPE

Technology that can be used to implement the PI Monitor Agent and the PI Client Agent

varies in ASP.NET when compared to a Java-based platform. Within the ASP.NET

infrastructure, PI Monitor Agents and PI Client Agents can be implemented by using

ASP.NET SOAP extensions. In Java infrastructure, AXIS is the technology to use. The

prototype of the PI Monitor Agent and the PI Client Agent was implemented in

ASP.NET using C# language. This section describes how to implement the PI Monitor

Agent and the PI Client Agent in ASP.NET. We tested the prototype on selected web

services with an application client to simulate the WSA environment in which the privacy

architecture might be working.

ASP.NET provides a unified pipeline for web services to communicate globally. This

pipeline is using SOAP as a common information communication format and HTTP as

the connection protocol (. When a SOAP message crosses this pipeline,

from a client to an ASP.NET web service and also when it returns from the web service

to the client, it needs to pass through several stages. Figure 19 illustrates these stages of

SOAP message processing for both the client and the server.

 74

Figure 19 Life cycle of a SOAP message (Shepherd, 2003).

Although ASP.NET automates much of this process, we can also use SOAP extensions to

hook up our own code into the pipelines and manipulate SOAP messages along the

pipelines. Figure 20 illustrates how SOAP extensions fit into the overall ASP.NET

architecture.

Figure 20 SOAP Extensions in ASP.NET infrastructure (Shepherd, 2003).

ASP.NET SOAP extensions are able to inspect or modify a SOAP message at specific

stages in the message processing on either the client or the server. Through this SOAP

extension architecture, we are able to access a SOAP message as it is de-serialized into

objects and as it is serialized from a common language runtime (CLR) object into a

 75

SOAP message, which enables us to implement the PI Monitor Agent and the PI Client

Agent ().

7.1.1 How to Find the Called Web Service Method

The PI Monitor Agent and the PI Client Agent need to find the called web service method

in the SOAP request message. In SOAP 1.1, when a client sends a SOAP request

message to a web service, the name of the called web service method is placed in two

locations: the SOAPAction HTTP header and the Request Element’s Name in the SOAP

envelope. This second location is noted because, in the SOAP 1.2 version, the called web

service method can only be found in the Request Element’s Name location. In order to

support both SOAP 1.1 and 1.2 in this implementation, we chose to use the Request

Element’s Name location to identify the called web service.

When a SOAP message gets initiated from a monitored web service or an application

client with the PI Client Agent, the PI Monitor Agent or the PI Client Agent on the

initiator needs to find out what web service has been invoked. We suppose the following

example: a web site provides their customers with service to query prices of stocks. The

web service name is “GetStockPrice”. A sample SOAP request message to invoke that

web service is shown below. In the sample SOAP message the invoked web service name

is highlighted in the color gray. For this SOAP request message, the PI Monitor Agent or

the PI Client Agent need to find the gray-highlighted web service and also the name

space, which is located in a line previous to the one containing the web service name. The

two, the web service name and the name space, form a unique identifier for the invoked

web service:

http://www.example.org/stock/GetStockPrice

A sample SOAP request:

POST /InStock HTTP/1.1

Host: www.example.org

 76

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">

 <m:GetStockPrice>

 <m:StockName>IBM</m:StockName>

 </m:GetStockPrice>

</soap:Body>

</soap:Envelope>

7.1.2 PI Monitor Agent

The PI Monitor Agent is implemented using the SOAP extension class. The core method

of the SOAP extension class is ProcessMessage. The ProcessMessage method provides

interfaces to hook up our own code to the eight stages in a SOAP message’s life cycle.

The PI Monitor Agent intercepts the process of SOAP messages at two stages on the

server side: “before deserialize” and “after serialize”. The following shows a sample code

to hook the PI Monitor Agent into the two stages of processing a SOAP message on the

server side. The method PIMonitorAgentIncoming() carried out during the stage “before

deserialize” is to process the incoming message while the method

PIMonitorAgentOutgoing() carried out during the “after serialize” stage is to process the

outgoing message.

 77

public override void ProcessMessage(SoapMessage message)

 {

 switch (message.Stage)

 {

 // message coming

 case SoapMessageStage.BeforeDeserialize:

 PIMonitorAgentIncoming(message);

 break;

 // about to call methods

 case SoapMessageStage.AfterDeserialize:

 break;

 // after method call

 case SoapMessageStage.BeforeSerialize:

 break;

 // message outgoing

 case SoapMessageStage.AfterSerialize:

 PIMonitorAgentOutgoing(message);

 break;

 }

 }

If the PI Monitor Agent works on the invoked web service, the

PIMonitorAgentIncoming() method deals with the request message from the invoker and

the PIMonitorAgentOutgoing() method deals with the response message being sent out to

the invoker. If the PI Monitor Agent works on the invoking web service, the

PIMonitorAgentIncoming() method deals with the returned response from the invoked

web service and the PIMonitorAgentOutgoing method deals with the request message

being sent to the invoked web service.

 78

To evaluate the performance of the PI Monitor Agent, timers are put into the PI Monitor

Agent’s code to log the time at different points of processing the SOAP request/response

message.

7.1.3 PI Client Agent

The PI Client Agent works on the client side to process the SOAP request message sent

out from the client. The PI Client Agent intercepts the SOAP request message at the stage

“after serialize”. A piece of sample code to hook the PI Client Agent into the stage “after

serialize” on the client side is shown as follows.

public override void ProcessMessage(SoapMessage message)

 {

 switch (message.Stage)

 {

 // message coming from client

 case SoapMessageStage.BeforeDeserialize:

 break;

 // about to call methods

 case SoapMessageStage.AfterDeserialize:

 break;

 // after method call

 case SoapMessageStage.BeforeSerialize:

 break;

 // outgoing to client

 case SoapMessageStage.AfterSerialize:

 PIClientAgent(message);

 break;

 }

 79

 }

The PI Client Agent() method carried out at the stage “after serialize” is the major body

of the PI Client Agent. This method only deals with the request message sent out from

the client. When the response message comes back from the invoked web service, the PI

Client Agent does not need to get involved.

7.1.4 The Supporting Components

The focus of this thesis is the PI Monitor Agent; therefore, how other supporting

components work is beyond [there is another instance where this should be changed in

another chapter] the scope of this paper. For the purpose of the proof of concept and our

experiment, we also implemented the supporting components in our experiment

environment. The supporting components are implemented with web services that take a

SOAP request from the PI Monitor Agent, deserialize the SOAP request, return data

object results, serialize the returned data objects into a SOAP response message and send

the response back. Since how each supporting component works is beyond the scope of

this thesis, the returned data objects are programmed into the code of each component in

advance. The code of each supporting component still performs the deserialization and

serialization of SOAP requests/responses.

7.2 EXPERIMENTATION

In order to test the efficacy of the developed prototype and to explore the potential

performance cost of the PI Monitor Agent, we set up a series of experiments to reflect the

demonstration cases presented in Chapter 6. Results are measured to evaluate the

efficiency of the PI Monitor Agent and conclusions are made on the feasibility of a PI

Monitor Agent in an operational environment.

In this section, we will describe how to measure the performance of the PI Monitor

Agent. Then we will provide an overview of the set-up of the experiments, describe the

 80

platforms and instrumentation of the experiments and, finally, we will present and

analyze the results of the experiments.

7.2.1 Evaluation Method

To evaluate the performance cost of the PI Monitor Agent, we will use the time delays

that are introduced to the legacy system during the processing of SOAP messages by the

PI Monitor Agent. Time delays caused by the PI Monitor Agent are represented by the

following function.

T = tparse + ti
i=1

n

+ tiner

Where

T denotes the total delay caused by the PI Monitor Agent;

tparse denotes the time spent by the PI Monitor Agent parsing the SOAP message;

ti denotes the time spent to invoke the supporting component i (of n components); and

tiner denotes the time spent within the logic function of the PI Monitor Agent itself.

There are n=8 components that could be invoked by the PI Monitor Agent during the

processing of a SOAP message. They include:

• Web Service KB

• Application KB

• User KB

• PI Elements Schema KB

• Privacy Policy KB

• Privacy Database Query Component

• Obligation Enforcement Component

• Audit Log

 81

To calculate the time delays that are related to the PI Monitor Agent, timer programs

have been put into the code of the PI Monitor Agent to log the following time points

during the processing of a SOAP message by the PI Monitor Agent:

1. When the PI Monitor Agent starts processing a SOAP message T1;

2. When the PI Monitor Agent starts parsing through the SOAP message T2 ;

3. When the PI Monitor Agent finishes parsing through the SOAP message T3 ;

4. When the PI Monitor Agent starts invoking the supporting components T4 ;

5. When the PI Monitor Agent finishes invoking the supporting components T5 ;

6. When the PI Monitor Agent finishes processing the SOAP message T6 .

By checking the log file that is generated by the PI Monitor Agent after it finishes

processing a SOAP message, we are able to get T1- T6 and calculate T , tparse , ti
i=1

8

 and

tiner in the following way:

• T = T6 T1;

• tparse = T3 T2 ;

• ti = T5 T4
i=1

8

;

• tiner = T tparse ti
i=1

8

.

Time Spent to Parse the SOAP Message tparse

In this thesis, we define the time spent by the PI Monitor Agent to parse the SOAP

message to be the time span between the PI Monitor Agent’s receipt of the SOAP

message and PI Monitor Agent’s completion of the deserialization of the SOAP into

objects. tparse depends on two major factors: the length of the SOAP message and

whether the SOAP request/response is static. If the SOAP request/response is static and

the Web Service KB contains information regarding whether the SOAP request/response

is static, there are two outcomes:

 82

1. the PI Monitor Agent does not need to parse the SOAP body to find the data

objects contained in the SOAP message, and

2. the PI Monitor Agent only needs to find the invoked web service if the invoked

web service is not contained in the header of the SOAP message.

Time Spent to Invoke A Supporting Component ti

We define the time spent by the PI Monitor Agent to invoke a supporting component to

be the time span between the PI Monitor Agent’s start of serialization of the objects into a

SOAP request message to invoke a supporting component and the receipt of the returned

data from the invoked supporting component. The time spent on serialization of input

data objects of the invocation into a SOAP request message and the time spent on

deserialization of the SOAP response message into returned data objects are included in

ti . This delay depends primarily on two major factors: how the supporting component is

implemented and the size of the information base contained in the supporting component.

For example, a KB implemented using a database to store information would be faster

than a KB implemented using XML to store information.

Time Spent within the Logic Function of the PI Monitor Agent tiner

We define the time spent within the logic function of the PI Monitor Agent tiner to be the

time the agent spends on processing the returned data objects from other supporting

components. tiner depends on the number of logic functions that the PI Monitor Agent

needs to go through to make a decision.

7.2.2 Experiment Setup Overview

To test the PI Monitor Agent, we set up our experiment environment to simulate a real

WSA environment. Demonstration Cases 1 and 3 presented in Chapter 6 were chosen as

the set up for our experiments. The reason for choosing these two cases is because they

represent two typical scenarios a PI Monitor Agent will confront from the perspective of

workload: one request is from an application client with the PI Client Agent and the other

request is from another monitored web service.

 83

Case 1 and Case 2 in Chapter 6 are scenarios where the application client invokes a

monitored web service. They differ in that in Case 1 the user ID and process name will be

inserted into the SOAP header by the PI Client Agent, while in Case 2 there is no such

information in the header due to the absence of the PI Client Agent. For the PI Monitor

Agent on the invoked web service, the workload would be almost the same for these two

cases, except in case 2 the PI Monitor Agent on the invoked web service will need to

parse the SOAP request message to find the invoked web service while in case 1 the

invoked web service is already in the SOAP header. In Case 3, the monitored web service

is invoked by another monitored web service, which is a different workload expectation

from that of Cases 1 and 2. In Case 3, two PI Monitor Agents work together to check the

request and response messages between two web services. As a result, the workload on

each PI Monitor Agent is reduced compared to the workload in Cases 1 and 2. Case 4 is

similar to Case 1 and Case 2 from the perspective of the workload assigned to the PI

Monitor Agent during the invocation of a web service.

Therefore, we chose Case 1 in Chapter 6 to be the setup of Experiment 1 while Case 3 in

Chapter 6 was chosen to be the setup of Experiment 2.

Experiment 1

For Experiment 1, from Case 1 in Chapter 6, the experiment environment was set up as

follows.

On the client side we created an application client called ICAM (Integrated Customer

Account Management), which is developed to retrieve customer information from a web

service called account_info_retrieval.

The user interface of ICAM is designed to work in the following way: in the windows

form, the user needs to type in the customer ID and choose the retrieved data type from a

drop-down list. There are three options in the drop-down list: marketing, billing and

contact. When both the customer ID is typed in and the retrieved data type is chosen, the

 84

user will click on the “OK” button to retrieve the data by invoking the web service and

passing it the customer ID and the data type as parameters. This results in a SOAP

request message being sent to the web service account_info_retrieval. The web service

will retrieve the customer information and return it in a SOAP response message, which

will result in the customer data being displayed in a separate window.

The web service account_info_retrieval is designed to work in the following way: after

receiving the request from the ICAM client, the web service accesses the customer

database to retrieve the requested customer information and return it back to the ICAM

client in a SOAP response message. An MS SQL database is used to implement the

customer database, which is populated with random customer data. Details about the

design of the customer database can be found in Appendix I.

The PI Client Agent on the client intercepts the SOAP request sent out from ICAM,

processes it and passes it along.

On the server side, the PI Monitor Agent intercepts the SOAP request/response to/from

the web service account_info_retrieval and queries other supporting components to fulfill

its tasks.

Experiment 2

For Experiment 2, from Case 3 in Chapter 6, the experiment environment was set up as

follows.

For this experiment, we created two web services: account_apply and

welcome_email_notify. When the web service account_apply is processed, the child web

service welcome_email_notify will be invoked. The invocation of welcome_email_notify

is to send the new customer a welcome e-mail, which includes all the information the

user just provided so the user can keep a record of what has been collected by

example.com. According to the privacy policy at example.com, the web service

 85

account_apply is allowed to forward all the information it collected to the web service

welcome_email_notify.

The PI Monitor Agents are installed on the two web services.

7.2.3 Experiments Platform

In the experiment, to eliminate other factors that may affect the performance such as

network bandwidth, all components were placed on one test machine, including: ICAM,

web service account_info_retrieval, web service account_apply, web service

welcome_email_notify, customer database, PI Client Agent, PI Monitor Agent and other

supporting components.

The test machine is a Windows Server 2003 SP2 virtual machine mounted on VMware

Fusion. The Windows Server 2003 SP2 virtual machine is configured with the following

resources:

•

•

•

•

7.2.4 Experiment Results and Analysis

In this section, we present the results of our experiments, analyze these results and, based

on the analysis, we make conclusions regarding the performance of the PI Monitor

Agent.

Experiment 1

The results of Experiment 1 are presented in Table 1.

Table 1 Results of experiment 1.

 86

 T tparse
ti

i=1

8

SOAP Request 3.5ms 0.3ms 3.0ms

SOAP Response 7.9ms 0.8ms 6.7ms

In Case 1, since the SOAP request is from a client with a PI Client Agent, the header of

the SOAP request message contains the following information: user ID, process name

and the invoked web service. Based on the information contained in the SOAP message

header, the PI Monitor Agent is able to find the User Category, Purpose, and Action in

the Web Service KB. Since the request is static and the Data Category contained in the

request is also stored in the Web Service KB, the PI Monitor Agent will be able to get the

Data Category for the request without parsing through the body of the SOAP request

message to get the data objects and then get the Data Category by querying the PI

Elements Schema KB based on the acquired data objects. The PI Monitor Agent then

queries the Privacy Policy KB to get the applicable rule element. As a result, the parse

time tparse for the request is a small fraction of the total time delay T because the PI

Monitor Agent only needs to parse the header of the SOAP request message. The time

spent within the logic function of the PI Monitor Agent tiner = T tparse ti
i=1

8

 is,

therefore, tiner = 0.2ms. tiner is only a small fraction of the total time delay T . The

majority of the time delay T is the time spent on invoking other supporting components

ti
i=1

8

.

For the response message, the PI Monitor Agent queries the User KB and the Application

KB to get the User Categories, Purpose and Actions. Since the PI Monitor Agent already

knows that the response is dynamic, it needs to parse through the body of the SOAP

response message to collect the data objects and then query the PI Elements Schema KB

to determine the Data Category. The PI Monitor Agent also queries the Privacy Policy

KB to determine the applicable rule element. After receiving the returned rule element

from the Privacy Policy KB, the PI Monitor Agent also needs to invoke the Privacy

 87

Database Query Component to acquire the data attribute referenced in the condition sub-

element in the returned rule element. The PI Monitor Agent will then match the data

attribute with the condition sub-element in the returned rule element. As a result, for the

response message, the time spent to invoke other supporting components (ti
i=1

8

=6.7ms)

increases while the time to parse the SOAP response message (tparse=0.8ms) also

increases due to the fact that the PI Monitor Agent needs to parse the whole message to

get the data objects contained in the message. tiner also increases from 0.2ms to 0.4ms.

From the results of Experiment 1, the following conclusions can be made:

1. Including the information about whether the request/response of a web service is

static or dynamic in the Web Service KB is helpful to improve the performance of

the PI Monitor Agent by reducing the time spent on parsing tparse .

2. Based on the results of the experiment, we suggest that multiple threading

programming or concurrent programming should be used to implement the PI

Monitor Agent in order to cut down on the time spent on invoking the supporting

components. In our implementation, the time spent on invoking other supporting

components ti
i=1

8

is the sum of the time delay that is related to invoking each of

the supporting components. This is because, in our implementation, the

invocations of supporting components by the PI Monitor Agent are programmed

for serial executions. However, invocations that are independent from each other

can be divided into several threads or parallel programs. For invocations whose

inputs depend on the outputs of other invocations, these invocations will be

carried out in a serial manner. For example, the invocation of the Privacy Policy

KB depends on the invocations of other KBs such as the Web Service KB, the

Application KB and the User KB. Therefore, the invocation of the Privacy Policy

KB must be carried out after the completion of invocations of other KBs.

 88

3. Using web services to implement the supporting components gives us flexibility.

However, using web services is not the most efficient way of implementing

supporting components as the associated parsing, serializing, and deserializing

incurs substantial overhead delays. The supporting components can be

implemented through dynamic link libraries in the architecture system. This will

tremendously improve the performance due to the fact that DLL call is a much

more efficient method than calling a web service through a SOAP message.

4. Since tparse is a major factor to the total time delay T , it would benefit the

performance if the parsing can be shared with the business logic of the legacy

system. When a SOAP message comes to the monitor web service, the data

objects abstracted by the PI Monitor Agent from the message can be used by the

legacy system’s business logic so the legacy system does not need to parse the

SOAP message again.

5. tiner is a small fraction of the total time delay T for both request and response in

Experiment 1. Therefore, in scenarios that are represented by Experiment 1, tiner

can be ignored in the analysis of the PI Monitor Agent’s performance.

Experiment 2

The results of Experiment 2 are presented in Tables 2 and 3.

Table 2 Results of experiment 2 regarding the PI Monitor Agent on web service

account_apply. SOAP request is the request sent out from web service

account_apply. SOAP response is the response that comes back from the

invoked web service welcome_email_notify.

 T tparse
ti

i=1

8

SOAP Request 4.1ms 0.3ms 3.3ms

SOAP Response 0ms 0ms 0ms

 89

Table 3 Results of experiment 2 regarding the PI Monitor Agent on web service

welcome_email_notify. SOAP request is the request from web service

account_apply. SOAP response is the response sent out from the invoked web

service welcome_email_notify.

 T tparse
ti

i=1

8

SOAP Request 0.3ms 0.3ms 0ms

SOAP Response 2.4ms 0.3ms 2.1ms

In Experiment 2, the PI Monitor Agent on the invoking web service has already checked

the SOAP request message. Consequently, when the request message arrives at the

invoked web service, the PI Monitor Agent on the invoked web service does not need to

go through the whole checking process again because a flag in the request message’s

header will reveal that this request message has been checked by another PI Monitor

Agent. Similarly, the PI Monitor Agent on the invoked web service has already checked

the SOAP response, so when the response comes back to the invoking web service the PI

Monitor Agent on the invoking web service does not need to go through the whole

checking process again because a flag in the response header will reveal that this

response message has been checked by another PI Monitor Agent. Furthermore, when

processing the request message the PI Monitor Agent on the invoking web service will

also receive information regarding the response, if there is any, in the KBs. As this

information is passed along to the PI Monitor Agent on the invoked web service, it could

save time spent on processing the response message by the PI Monitor Agent on the

invoked web service.

In Experiment 2, on both the invoker side and the invoked side, the PI Monitor Agents do

not need to parse the SOAP message body to get the Data Category since both the request

and the response are static and their Data Category information is contained in the Web

Service KB. The time spent within the logic function of the PI Monitor Agent is

tiner = T tparse ti
i=1

8

, therefore for the PI Monitor Agent on web service account_apply

processing the request tiner is 0.5 ms while for the PI Monitor Agent on web service

 90

welcome_email_notify processing the response tiner is 0 ms. Compared to tiner in

Experiment 1, tiner for the PI Monitor Agent on web service account_apply processing

the request increases. This is because the PI Monitor Agent on account_apply needs to

match the invoked web service name with the Monitored Web Service List and insert

information into the header of the SOAP request message it processes.

A noticible result is that tiner for the PI Monitor Agent on web service

wecome_email_notify processing the response is 0 ms. This is because after receiving the

response the PI Monitor Agent soon finds out that the response does not have any private

data, as a result the PI Monitor Agent allows the response message through without going

further through its logic function.

Another noticible result is that T for the PI Monitor Agent on web service account_apply

processing the response from web service welcome_email_notify is 0 ms. This is because

once the PI Monitor Agent on the invoking web service sees a response comes back from

another monitored web service, it assumes that the response message has been checked

and will allow it through right away.

Based on the results of Experiment 2, the following conclusions can be made:

1. Using headers of SOAP messages to carry information that is required by the

child web service does create a performance cost. However, this cost could be

compensated for in regard to the time that is saved by the PI Monitor Agent on the

invoked web service due to the fact that the PI Monitor Agent on the invoked side

does not need to go through the process the PI Monitor Agent went through to get

the information contained in the header. To prove this point, more

experimentation needs to be done.

2. The introduction of the Monitored Web Service List to the system does create

performance cost.

 91

3. The distribution of the workload to multiple PI Monitor Agents in a WSA

environment could benefit the overall performance by reducing the possibility of

overloading a single PI Monitor Agent.

7.3 SUMMARY

In this chapter we have proved the concept of the PI Monitor Agent we designed and

evaluated the potential performance cost of the PI Monitor Agent based on two

experiments. The experiments show that T can be improved by improving tparse , ti
i=1

n

and

tiner. For the implementation of the PI Monitor Agent in an operational environment, we

present the following conclusions:

1. The total time cost T can be reduced by including information about whether the

request/response of a web service is static or dynamic in the Web Service KB.

2. The use of multiple threading programming or concurrent programming to

implement the PI Monitor Agent will improve its performance. As most of the

modern programming languages support concurrent programming and the wide

application of multi-core processors, using concurrent programming is more

achievable in recent years.

3. The total time cost T can be reduced by implementing the supporting components

in the architecture by using DLL instead of using web services.

4. Sharing parsing with the business logic of the invoked web service would benefit

the total performance cost. However, this requires a change to the code of the

legacy system. In some cases, it is not cost efficient to change the code.

 92

5. Distributing the workload to multiple PI Monitor Agents in a WSA environment

could benefit the overall performance by reducing the possibility of overloading a

single PI Monitor Agent.

6. The introduction of the Monitored Web Service List to the system does create

performance cost.

7. Using headers of SOAP messages to carry information that is required by the

child web service does create a performance cost. This cost could be balanced by

the time that is saved on the PI Monitor Agent on the invoked web service due to

the fact that the PI Monitor Agent on the invoked side does need to go through the

process that the PI Monitor Agent went through to get the information contained

in the header. To prove this point, more experimentation needs to be done.

 93

CHAPTER 8 CONCLUSION

In this thesis we have designed an agent for privacy monitoring and enforcement in a

WSA environment and created a prototype as a proof of concept. The agent is based on a

specific multi-agent architecture for privacy compliance. To design the agent, the

information that is required for monitoring privacy and enforcing privacy policy in a

WSA environment has been studied. This intensive examination led to an extension of

the architecture to bring out its full potential in monitoring privacy information flows and

enforcing privacy policies in a WSA environment. Based on the prototype, experiments

were completed to evaluate the potential performance cost of the PI Monitor Agent. The

research outcomes lead us to suggestions on the implementation of a PI Monitor Agent

for a real operational environment.

The added components in the architecture are:

• The PI Client Agent

• The User KB

• The Obligation Enforcement Component

• The Privacy Database Query Component

A format of the SOAP header has also been proposed to facilitate privacy monitoring and

enforcement in WSA.

Besides the above enhancements, in the extended architecture we also proposed the

concept of static and dynamic request/response of a web service. Our experiments show

that the total time delay T caused by the PI Monitor Agent can be reduced by including

information about whether the request/response of a web service is static or dynamic in

the Web Service KB. On the other hand, the experiment results also show that the

introduction of the Monitored Web Service List to the system does create performance

cost.

 94

By analyzing the results of the experiments, we also suggested that using multiple

threading programming or concurrent programming to implement the PI Monitor Agent

will improve its performance. In our implementation, the time spent on invoking other

supporting components ti
i=1

8

is the sum of the time delay that is spent to invoke each of

the supporting components. The reason for this is that, in our implementation, the

invocations of supporting components from the PI Monitor Agent are programmed for

serial executions. However, invocations that are independent from each other can be

divided into several threads or parallel programs. For invocations whose inputs depend

on the outputs of other invocations, these invocations will be carried out in a serial

manner. For example, the input of the invocation of the Privacy Policy KB depends on

the outputs of invocations of other KBs such as the Web Service KB, the Application KB

and the User KB. Therefore, the invocation of the Privacy Policy KB must be carried out

after the completion of invocations of other KBs.

Another technology that can be used to improve the performance of the PI Monitor Agent

is to implement the supporting components through Dynamic Link Library (DLL) instead

of web services. Using web services to implement the supporting components does have

some advantages over the method of using DLL. One of the major advantages is that

implementing the supporting components as web services gives the architecture

flexibility for integration with other systems due to the interoperability nature of WSA.

There is, however, a performance cost to this advantage.

Since the time spent by the PI Monitor Agent on parsing (tparse) SOAP messages is a

major factor in the total time delay T , it would benefit the performance if the parsing can

be shared with the business logic of the legacy system. When a SOAP message comes to

the monitored web service, the data objects abstracted by the PI Monitor Agent from the

message can be used by the legacy system so the legacy system does not need to parse

the SOAP message again.

 95

The analysis of the results of our experiments also shows that the distribution of the

workload of monitoring and enforcing privacy to multiple PI Monitor Agents in a WSA

environment could benefit the overall performance by reducing the possibility of

overloading a single PI Monitor Agent.

For future work, further research is recommended in the following areas:

1. Using the SOAP header to carry information that is used for the support of

privacy monitoring and enforcement does create an extra performance cost.

However, this cost could be compensated by the time that would be saved by the

PI Monitor Agent on the invoked web service due to the fact that the PI Monitor

Agent on the invoked side does not need to go through the process the PI Monitor

Agent went through to get the information contained in the header. To prove this

point, more experiments need to be done.

2. The distribution of workload over PI Monitor Agents on networked web services

could affect the performance of the privacy architecture as a whole. More

research work needs to be done to measure the exact performance gain due to the

distribution of the workload.

Overall, the research and experiments undertaken and presented in this thesis prove that

the PI Monitor Agent methodology adds both efficiency and effectiveness to the

important requirements for monitoring privacy information flows and enforcing privacy

policy in WSA.

 96

BIBLIOGRAPHY

[1] Adam, N.R., Worthmann, J.C. (1989). Security-control methods for statistical

databases: a comparative study. CSUR 21(4), 515–556.

[2] Adams, C. and Barbieri, K. (2006). Privacy Enforcement in E-Services Environments.

Privacy Protection for E-Services, Idea Group, Inc.

[3] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y. (2002). Proceedings of the 28th

International Conference on Very Large Databases (VLDB). Hippocratic databases.

[4] Ashley, P., Powers, C.S., Schunter, M. (2002). Third International Symposium on

Electronic Commerce. Privacy promises, access control, and privacy management.

[5] Barth, A., Mitchell, J. C. and Rosenstein, J. (2004). Proceedings of the 2004

Workshop on Privacy in the Electronic Society. Conflict and combination in privacy

policy languages. ACM Press.

[6] Bodorik, P., Jutla, D.N., Dhillon, I. (2009). Privacy Compliance with Web

Services. Journal of Information Assurance and Security, 4 (5), 412-421.

[7] Byun, J.W., Bertino, E., Li, N. (2004). Purpose Based Access Control for Privacy

Protection in Relational Database Systems. Purdue University.

[8] Byun, J.W., Bertino, E., Li, N. (2005). Symposium on Access Control Model And

Technologies (SACMAT). Purpose based access control of complex data for privacy

protection.

[9] Byun, J.W., Bertino, E. (2006). Micro-views, or on how to protect privacy while

enhancing data usability: concepts and challenges. SIGMOD Rec. 35(1), 9–13.

[10] Cranor, L., Egelman, S., Hogben, G., Humphrey, J., Langheinrich, M., Marchiori,

M., Presler-Marshall, M., Reagle, J., Schunter, M., Stampley, D. (2006). The Platform for

Privay Preferences 1.1 (P3P1.1) Specification. Retrieved from:

http://www.w3.org/TR/P3P11/

[11] Davis, J.C (2000). Protecting privacy in the cyber era. IEEE Technology and Society

Magazine, 10-22.

[12] Dragovic, B., Crowcroft, J. (2004). Proceedings of New Security Paradigms

Workshop. Information Exposure Control through Data Manipulation for Ubiquitous

Computing.

[13] Gandon, F. and Sadeh, N. (2004). Semantic Web Technologies to Reconcile Privacy

and Context Awareness. Web Semantics Journal, 1(3), 241-260.

 97

[14] Garcia, D.Z.G., Toledo, M.A. (2008). 11
th

 IEEE International Conference on

Computational Science and Engineering Workshops. Web Service Privacy Framework

Based on a Policy Approach Enhanced with Ontologies.

[15] Hung, P., Chiu, D., Fung, W., Cheung, W., Wong, R., Choi, S., Kafeza, E., Kwok,

J., Pun, J., Cheng V. (2005). ICEC ’05 Proceedings of the 7
th

 international conference on

Electronic commerce. Towards end-to-end privacy control in the outsourcing of

marketing activities: a web service integration solution.

[16] IBM (2003). Enterprise Privacy Authorization Language [EPAL 1.2]. Retrieved

from http://www.zurich.ibm.com/security/enterprise-

privacy/epal/Specification/index.html

[17] International Security Trust and Privacy Alliance [ISTPA] (2009). Privacy

Management Reference Model. Retrieved from http://xml.coverpages.org/ISTPA-

PrivacyManagementReferenceModelV20.pdf

[18] Iyengar, V.S. (2002). Proceedings of SIGKDD’02. Transforming Data to Satisfy

Privacy Constraints. Edmonton, Alberta.

[19] Jajodia, S., Sandhu, R. (1991). ACM International Conference on Management of

Data (SIGMOD). Toward a multilevel secure relational data model. 50–59. New York:

ACM Press.

[20] Jutla D.N., Bodorik P, Zhang Y. (2006). PeCAN: An Architecture for Privacy-aware

Electronic Commerce User Contexts. Information Systems Journal, 31(4-5), 295-320.

[21] Karjoth, G., Schunter, M. and Waidner, M. (2002). Privacy-enabled services for

enterprises. IBM Research.

[22] Kobsa, A. and Schreck, J. (2003). Privacy through Pseudonymity in User-Adaptive

Systems. ACM Transactions in Internet Technology, 3(2), 149-183.

[23] LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y., DeWitt, D.

(2004). The 30th International Conference on Very Large Databases (VLDB). Disclosure

in Hippocratic Databases.

[24] Leino-Kilpi, H., Valimaki, M., Dassen, T., Gasull, M., Lemonidou, C., Scott, A.,

Arndt, M. 2001. Privacy: A Review of the Literature. International Journal of Nursing

Studies, 38, 663-671.

[25] Li, M., Sun, X., Wang, H., Zhang, Y., Zhang, J. (2011). Privacy-aware access

control with trust management in web service. World Wide Web Journal.

[26] Parker, R.G. (2005). Privacy Issues: Business Impacts and Responsibilities.

 98

CAAA/SAP AG Technology and Accounting Education Seminar Series. Canadian

Academic Accounting Association (CAAA).

[27] Rao J., Dimitrov D., Hofmann P. and Sadeh N. (2006). In Proceedings of the IEEE

International Conference on Web Services (ICWS 2006). A Mixed Initiative Framework

for Semantic Web Service Discovery and composition.

[28] Rezgui, A., Ouzzani, M., Bouguettaya, A., Medjahed, B. (2002). Proceedings of the

4
th

 international workshop on Web information and data management. Preserving

privacy in web services.

[29] Sandhu, R., Chen, F. (1998). The multilevel relational data model. ACM Trans. Inf.

Syst. Secur. 1(1), 93–132.

[30] Schoeman, E. D. (1984). Philosophical Dimensions of Privacy: An Anthology. New

York, NY: Cambridge University Press.

[31]

http://msdn.microsoft.com/en-us/magazine/cc164007.aspx

[32] Song, R., Korba,L., and Yee, G. (2006). Pseudonym Technology for E-Services. In

Privacy Protection for E-Services. Idea Group, Inc.

[33] Xu, W., Sekar, R., Ramakrishnan, I., Venkatakrishnan, V. (2005). Proceedings of

the WWW ’05 Special interest tracks and posters of the 14
th

 international conference on

World Wide Web. An approach for realizing privacy-preserving web-based services.

[34] Yee, G. (2007). Proceedings of the 2007 ACM workshop on Secure web services. A

privacy controller approach for privacy protection in web services.

 99

APPENDIX A SOAP TEMPLATES FOR WEB SERVICE KB

SOAP REQUEST

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetWSKBProperty xmlns:m="http://www.example.com/WSKB/">

<m:invoking_web_service_name_or_process_name/>

<m:invoked_web_service_name/>

<m:request_or_response/>

</m:GetWSKBProperty>

</soap:Body>

</soap:Envelope>

SOAP RESPONSE

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetWSKBPropertyresponse xmlns:m="http://www.example.com/WSKB/">

<m:user_category/>

<m:purpose/>

<m:action/>

<m:whether_request_is_static/>

<m:data_category_for_request/>

<m:whether_response_is_static/>

<m:data_category_for_response/>

</m:GetWSKBPropertyresponse>

</soap:Body>

</soap:Envelope>

 100

APPENDIX B SOAP TEMPLATES FOR USER KB

SOAP REQUEST

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetUKBProperty xmlns:m="http://www.example.com/UKB/">

<m:user_ID/>

<m:process_name/>

</m:GetUKBProperty>

</soap:Body>

</soap:Envelope>

SOAP RESPONSE

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetUKBPropertyresponse xmlns:m="http://www.example.com/UKB/">

<m:user_category/>

<m:purpose/>

</m:GetUKBPropertyresponse>

</soap:Body>

</soap:Envelope>

 101

APPENDIX C SOAP TEMPLATES FOR APPLICATION KB

SOAP REQUEST

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetAKBProperty xmlns:m="http://www.example.com/AKB/">

<m:process_name/>

<m:invoked_web_service/>

</m:GetAKBProperty>

</soap:Body>

</soap:Envelope>

SOAP RESPONSE

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetAKBPropertyresponse xmlns:m="http://www.example.com/AKB/">

<m:action/>

</m:GetAKBPropertyresponse>

</soap:Body>

</soap:Envelope>

 102

APPENDIX D SOAP TEMPLATES FOR PI ELEMENTS SCHEMA KB

SOAP REQUEST

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetPIESKBProperty xmlns:m="http://www.example.com/PIESKB/">

<m:data_item/>

…

<m:data_item/>

</m:GetPIESKBProperty>

</soap:Body>

</soap:Envelope>

SOAP RESPONSE

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>
<m:GetPIESKBPropertyresponse xmlns:m="http://www.example.com/PIESKB/">

<m:data_category/>

</m:GetPIESKBPropertyresponse>

</soap:Body>

</soap:Envelope>

 103

APPENDIX E SOAP TEMPLATES FOR AUDIT LOG KB

SOAP REQUEST

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetALKBProperty xmlns:m="http://www.example.com/ALKB/">

<m:SOAP_message/>

<m:receive_time/>

<m:source_of_message/>

<m:destination_of_message/>

<m:user_category/>

<m:data_category/>

<m:purpose/>

<m:action/>

<m:decision/>

<m:rule/>

</m:GetALKBProperty>

</soap:Body>

</soap:Envelope>

SOAP RESPONSE

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetALKBPropertyresponse xmlns:m="http://www.example.com/ALKB/">

<m:success_or_failure/>

</m:GetALKBPropertyresponse>

</soap:Body>

</soap:Envelope>

 104

APPENDIX F SOAP TEMPLATES FOR PRIVACY POLICY KB

SOAP REQUEST

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetPPKBPolicy xmlns:m="http://www.example.com/PPKB/">

<m:user_category/>

<m:data_category/>

<m:purpose/>

<m:action/>

</m:GetPPKBPolicy>

</soap:Body>

</soap:Envelope>

SOAP RESPONSE

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:GetPPKBPolicyresponse xmlns:m="http://www.example.com/PPKB">

<m:rule/>

<m:condition/>

</m:GetPPKBPolicyresponse>

</soap:Body>

</soap:Envelope>

 105

APPENDIX G SOAP TEMPLATES FOR OBLIGATION

ENFORCEMENT COMPONENT

SOAP REQUEST

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:RequestOEC xmlns:m="http://www.example.com/OEC/">

<m:obligation/>

</m:RequestOEC >

</soap:Body>

</soap:Envelope>

SOAP RESPONSE

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:RequestOECresponse xmlns:m="http://www.example.com/OEC/">

<m:success_or_failure/>

</m:RequestOECresponse>

</soap:Body>

</soap:Envelope>

 106

APPENDIX H SOAP TEMPLATES FOR PRIVACY DATABASE

QUERY COMPONENT

SOAP REQUEST

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:RequestPDQC xmlns:m="http://www.example.com/PDQC/">

<m:container refid= attribute refid=/>

<m:unique_data_subject_identifier/>

</m:RequestPDQC>

</soap:Body>

</soap:Envelope>

SOAP RESPONSE

<?xml version="1.0"?>

<soap:Envelope

 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

<m:RequestPDQCresponse xmlns:m="http://www.example.com/PDQC/">

<m:container refid= attribute refid=/>

</m:RequestPDQCresponse>

</soap:Body>

</soap:Envelope>

 107

APPENDIX I DESIGN FOR CUSTOMER DATABASE

There is only one table in customer database – table Customer.

