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Abstract 

 

With rapid advances in sequencing technologies and precipitous decreases in 

cost, public sequence databases have increased in size apace. However, experimental 

characterization of novel genes and their products remains prohibitively expensive and 

time consuming. For these reasons, bioinformatics approaches have become 

increasingly necessary to generate hypotheses of biological function. Phylogenomic 

approaches use phylogenetic methods to place genes, chromosomes, or whole genomes 

within the context of their evolutionary history and can be used to predict the function 

of encoded proteins. In this thesis, two new phylogenomic methods and software 

implementations are presented that address the problems of subcellular localization 

prediction and functional divergence prediction within protein families respectively. 

Most of the widely used programs for subcellular localization prediction have 

been trained on model organisms and ignore phylogenetic information. As a result, their 

predictions are not always reliable when applied to phylogenetically divergent 

eukaryotes, such as unicellular protists. To address this problem, PhyloPred-HMM, a 

novel phylogenomic method was developed to predict sequences that are targeted to 

mitochondria or mitochondrion-related organelles (hydrogenosomes and mitosomes). 

This method was compared to existing prediction methods using an existing test dataset 

of mitochondrion-targeted sequences from well-studied groups, sequences from a 

variety of protists, and the whole proteomes of two protists: Tetrahymena thermophila 

and Trichomonas vaginalis. PhyloPred-HMM performed comparably to existing 

classifiers on mitochondrial sequences from well-studied groups such as animals, plants, 

and Fungi and better than existing classifiers on diverse protistan lineages. 

FunDi, a novel approach to the prediction of functional divergence was 

developed and tested on 11 biological datasets and two large simulated datasets. On 

the 11 biological datasets, FunDi appeared to perform comparably to existing programs, 

although performance measures were compromised by a lack of experimental 

information. On the simulated datasets, FunDi was clearly superior to existing methods. 

FunDi, and two other prediction programs, was then used to characterize the functional 

divergence in two groups of plastid-targeted glyceraldehyde-3-phosphate 

dehydrogenases (GAPDH) adapted to roles in the Calvin cycle. FunDi successfully 

identified functionally divergent residues supported by experimental data, and 

identified cases of potential convergent evolution between the two groups of GAPDH 

sequences. 
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Chapter 1 Introduction 

 

This chapter (section 1.3) contains material originally published in:   

“Gaston D, Tsaousis AD, Roger AJ. 2009. Predicting Proteomes of Mitochondria and 

Related Organelles from Genomic and Expressed Sequence Tag Data. Methods in 

Enzymology. Mitochondrial Function, Part B: Mitochondrial Protein Kinases, Protein 

Phosphatases and Mitochondrial Diseases. 457:21-47” 

 

The prediction of protein function remains an ongoing challenge in bioinformatics, and a 

wide variety of computational approaches has been applied to many different types of 

functional characterization. With massive decreases in price and advances in 

technology, genome sequencing projects are rapidly increasing the amount of sequence 

data available in public databases. As these databases grow, so too will the demand for 

rapid, robust, and user-friendly genome scale data processing tools and pipelines for the 

prediction of protein function. Although it was shown more than a decade ago that the 

top Basic Local Alignment Search Tool (BLAST) hit is not necessarily the closest 

phylogenetic relative of a sequence (Eisen et al. 1997; Eisen 1998b; Koski & Golding 

2001) the BLAST approach is still routinely used to quickly predict functions and 

annotations in genome and transcriptome projects because of its wide acceptance and 

familiarity.  The use of phylogenetic methods to infer or predict functions, originally 

termed ‘Phylogenomics’ (Eisen et al. 1997; Eisen 1998c) provides a more sophisticated 

picture of the evolution and function of protein families (Eisen et al. 1995; Eisen 1998a; 

De Grassi et al. 2008; Cao et al. 2011; Courtiade et al. 2011) and is often used in 

comparative genomics in conjunction with other experimental techniques (Schrimpf et 

al. 2009). 
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1.1 Phylogenomics 

Phylogenomic analyses typically proceed by: 1) identifying homologous sequences of 

interest, 2) constructing and refining multiple sequence alignments, 3) reconstructing 

phylogenetic trees that relate the aligned sequences, 4) annotating the tips of the tree 

according to some molecular function(s), and 5) tracing (by some objective method) the 

evolution of that molecular function along the tree (Sjölander 2004). Once the 

evolutionary history of the function is known, the functional annotation of the unknown 

sequence can be inferred. 

 

Some phylogenomic methods such as Orthostrapper (Storm & Sonnhammer, 2002) and 

RIO (Zmasek & Eddy 2002) rely on the idea that orthologs (Fitch, 1970), genes related by 

speciation events, should have more similar functions to one another than to their 

paralogs (Ohno, 1970; Koonin, 2005), genes related to one another by gene duplication 

events (Fitch, 1970; Zuckerkandl & Pauling, 1965). Orthology-based functional 

assignment requires the identification of nodes in the phylogenetic tree that correspond 

to speciation events, and must differentiate these from nodes corresponding to gene 

duplication events from which paralogs descend, which remains a very difficult problem 

in phylogenetics and bioinformatics. A number of programs for orthology selection and 

databases of orthologs have been developed including TribeMCL (Enright et al. 2002), 

OrthoMCL (Li et al. 2003; Chen et al. 2006), InParanoid (Ostlund et al. 2010), OMA-DB 

(Roth et al. 2008; Altenhoff et al. 2011), OrthologID (Chiu et al. 2006), OrthoSelect 

(Schreiber et al. 2009), PHOG (Datta et al. 2009), LOFT (van der Heijden et al. 2007), 

MetaPhoRs (Pryszcz et al. 2011), OrthoInspector (Linard et al. 2011), OrthoDB 

(Waterhouse et al. 2011), and PhylomeDB (Huerta-Cepas et al. 2011). While the majority 

of orthology prediction methods and databases perform reasonably well (Chen et al. 

2007; Boeckmann et al. 2011), differences in the underlying datasets from which they 

construct ortholog groups, and even differences regarding how to best organize and 

present these groups can lead to different results (Boeckmann et al. 2011) depending on 
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the classification strategy used. A strict reliance on orthology prediction can therefore 

introduce additional error in the process of functional annotation by a phylogenomic 

method. 

 

There are several phylogenomic annotation methods and software packages that do not 

rely on known or defined orthology or paralogy definitions. For example SIFTER 

(Engelhardt et al. 2005, 2009, 2011) is an annotation method that adopts an empirical 

Bayes approach, creating a robust statistical framework that does not merely propagate 

function to entire clades of orthologs, but models additional information and accounts 

for scarcity of annotation within trees to make statistical phylogenetic inferences. The 

Gene Ontology (GO) Consortium has also built a phylogenomic pipeline, called PAINT 

(Gaudet et al. 2011a), that allows curators to propagate functional annotations within 

the GO network based on phylogenomic methods of inference. However, it is important 

that pipelines and software be able to take advantage of the most recent advances in 

alignment generation and phylogenetic reconstruction, including the best or most 

appropriate evolutionary models. Flexible and robust software packages should be 

easily extensible and modifiable by end users in order to remain up to date and 

relevant. In this thesis, we focus on two aspects of the in silico characterization of 

protein function using phylogenomic methods: the analysis of functional divergence and 

prediction of subcellular localization and develop novel phylogenomic software tools to 

carry out these analyses. 

 

1.2 Functional Divergence 

Functional divergence is the process by which proteins drift in molecular functions after 

speciation or gene, chromosome, or whole genome duplication events, and is perhaps 

the largest process contributing to the generation of molecular diversity (Ohno 1970). 

The hypothesis that orthologs should be more functionally similar than paralogs has 
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recently been termed the ‘Ortholog Conjecture’ (Nehrt et al. 2011), but was first 

examined in reference to the α-, β-, and γ-hemoglobin paralogous families in jawed 

vertebrates (Zuckerkandl & Pauling 1965). In the context of functional divergence, 

orthology and paralogy are most often thought of in terms of a simple division between 

speciation events and a single ancestral duplication preceding the speciation events in 

question. However, ortholog/paralog relationships are not always consistent with these 

simple one-to-one mappings. Sequences frequently have multiple orthologs in another 

species, and there may be duplication events “nested” within overall gene trees. These 

complex relationships can be easily misunderstood, especially in the context of 

functional characterization (Fitch 2000; Jensen 2001). A set of terms for dealing with 

sub-types of paralogs (co-ortholog, in-paralog, out-paralog) have also been proposed 

(Sonnhammer & Koonin 2002), and are slowly becoming more widely adopted. These 

complex relationships further complicate phylogenomic inferences of protein function. 

 

While the ortholog conjecture has almost universally been accepted, its experimental 

support has generally been limited to specific biological examples that have been 

reasonably well characterized, as with the hemoglobins discussed above. Strictly, 

orthologs should not always be more similar to one another in function than to 

paralogs, as all proteins can drift in function over evolutionary time (Jensen 2001). 

Indeed some recent studies have shown either greater functional divergence between 

orthologs than between paralogs, or at least that there is the potential for just as much 

divergence between orthologs as between paralogs (Studer & Robinson-Rechavi 2009, 

2010; Gharib & Robinson-Rechavi 2011; Nehrt et al. 2011). However, it should be noted 

that complicated relationships with multiple duplication events and potentials for 

differential gene loss can greatly complicate the interpretations of divergence within 

protein families. Furthermore, the generality of these observations are unknown, as 

studies have mostly focused on protein-coding genes within animals (Studer & 

Robinson-Rechavi, 2010) or even more specifically on comparisons between humans 
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and mice (Gharib & Robinson-Rechavi 2011; Nehrt et al. 2011). Indeed great care should 

be taken to place analyses of divergence, and comparisons of orthologs and paralogs, 

within the appropriate context of their age and biological context, such as the difference 

between one-to-one ortholog relationships and more complex relationships (Berglund 

et al. 2008; Hubbard et al. 2009; Studer & Robinson-Rechavi 2009). It is important to 

note, as in Jensen (2001), that after gene duplication either descendant sequence has 

the possibility to diverge and acquire new functions over evolutionary time. In terms of 

the ortholog conjecture, the canonical examples typically concern ancient duplication 

events where, for all taxa considered in the analysis, the relevant duplication precedes 

the subsequent speciation events. In this work on functional divergence we do not 

require this classical view of functional divergence to be true; however we are explicitly 

concerned with situations where monophyletic groups of sequences, whether they be 

descended from speciation or duplication events, share some biological similarity that 

can be contrasted with other sequences in the protein family. It is in this context that we 

can leverage the power of a phylogenomic framework to characterize functional 

divergence at the amino acid level. While the evolutionary pressures and processes 

discussed below are generally in the context of these canonical or standard 

ortholog/paralog relationships and evolutionary divergence, similar examples can be 

found for strict ortholog relationships as well. Indeed divergence between orthologs 

may be an important factor in the context of subcellular localization, discussed later. 

 

1.2.1 Duplication, Divergence, and Natural Selection 

The driving force of functional divergence is a shift in selective constraints on a gene in 

one or both descendant lineages from an ancestor. Whether this is a relaxation of 

selection, an increase in either diversifying or purifying selection, or a shift in the 

selective constraints at a site in a protein, ultimately selection or genetic drift drive any 

variant allele to fixation or loss in a population. Proteins are under a variety of selective 

constraints including their molecular function, thermodynamic constraints on protein 
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folding (Wilke et al. 2005; Bloom et al. 2007), expression level maintenance, and the 

prevention of aggregation (DePristo et al. 2005). The latter two may be particularly 

important early after gene duplication, while copy-number polymorphism is not yet 

fixed in a population. Mutations that cause aberrations in protein folding or stability 

frequently can lead to aggregation or rapid degradation (Gregersen et al. 2005; 

McClellan et al. 2005; Cuervo et al. 2010). Both aggregation and premature degradation 

of proteins are important in a number of human diseases including cystic fibrosis, 

Parkinson’s and Huntington’s disease (DePristo et al. 2005) while copy-number 

polymorphism is implicated in an increasing number of human diseases (McCarroll & 

Altshuler 2007; Zhang et al. 2009; Ricard et al. 2010). 

 

The fate of most gene duplications is pseudogenization (Lynch & Conery 2000);  the 

introduction of nonsense substitutions create premature stop codons that truncate 

protein coding genes and other substitutions in regulatory regions that eventually turn 

off expression. Substitutions, insertions, or deletions accumulate neutrally in a 

pseudogene until eventually it is purged from the genome entirely, or its sequence 

becomes unrecognizable. Alternatively, selection may act to preserve redundant gene 

loci in the absence of functional divergence. Nowak et al (1997) put forward four models 

for the maintenance of such redundancy depending on the relative fitness of 

phenotypes with multiple gene copies and the mutation and recombination rates 

between loci. The gene dosage hypothesis states that redundant gene loci result in 

altered expression levels, which may have either positive or negative effects on fitness 

(Veitia 2002; Liang et al. 2008; Qian & Zhang 2008).  

 

In addition to pseudogenization and the maintenance of redundant loci by selection, 

copies may diverge in function. Two general categories of functional divergence have 

been described: neofunctionalization and subfunctionalization. Neofunctionalization, as 

originally described by Ohno (1970), involves the gain of an entirely new, but often 
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related, function or functions by one of the duplicated genes. On the other hand, during 

subfunctionalization selection acts to maintain ancestral function in the aggregate, 

where the ancestral protein encoded two or more distinct functions. Mutations that 

reduce ancestral function in one copy are tolerated so long as the total function is not 

lost entirely (Force et al. 1999; Stoltzfus 1999; Lynch & Force 2000). Various 

experimental studies have been conducted, indicating that either neo- or 

subfunctionalization is the prevailing mode of divergence after gene duplication (Zhang 

et al. 1998; Force et al. 1999; Betrán & Long 2003; Aguileta et al. 2004; Hughes & 

Liberles 2007). However, these two types of functional divergence are not mutually 

exclusive. It is also possible that one duplicate copy first undergoes a process of 

subfunctionalization followed by a longer period of neofunctionalization such that a 

related, but distinct, function is retained when compared to one of the ancestral 

protein’s multiple functional roles (He & Zhang, 2005; Hughes & Liberles, 2007; Rastogi 

& Liberles, 2005). 

 

In any case, functional divergence is likely to proceed by an initial burst of rapid 

evolution as selective constraints are either relaxed at previously constrained sites 

allowing for neutral substitutions to accumulate (under subfunctionalization scenarios) 

and/or changes at other positions are fixed due to positive selection for new function 

(i.e during neofunctionalization). This period is followed by a longer period of 

divergence under re-imposed purifying selection. A large-scale analysis of recent 

paralogs and orthologs of similar ages and level of divergence across all three domains 

of life showed that the strength of purifying selection was lower (but not neutral) in 

paralogs than orthologs, with consequently higher overall rates of evolution and an 

increased strength of positive selection, perhaps for gene dosage effects (Kondrashov et 

al. 2002). Under this scenario, instead of a relaxation of selection and fixation neutrally 

prior to functional divergence it is hypothesized that there is positive selection on most 

gene duplicates from the very beginning and that functional divergence is driven by 
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diversifying selection. Recently, an analysis of lineage-specific, and thus “young”, gene 

duplicates in the human, macaque, mouse, and rat genomes showed evidence of 

positive selection in approximately 10% of paralagous pairs (Han et al. 2009). However, 

an earlier study in all vertebrates showed that  while positive selection was common in 

vertebrate genes, there was no difference between singletons and paralagous pairs 

from whole genome duplication events, either the fish-specific duplication event or the 

two whole-genome duplications near the origin of the vertebrate lineage (Studer et al. 

2008). The biological reality is likely that duplicate genes are fixed in a population for a 

variety of reasons, with both neutral evolution and positive selection having varying 

impact depending on the protein function, the organisms concerned and their 

population sizes. 

 

1.2.2 The Impact of Gene Duplications and Divergence 

Gene duplication events followed by rapid diversification has clearly played a role in the 

origin and diversity of many multicellular lineages (Van de Peer et al. 2001; Rodríguez-

Trelles et al. 2003). Gene, chromosome, or whole genome duplication events have 

contributed to the pathogenicity or host specificity of several important eukaryotic 

pathogens including members of the genus Phytophthora (Martens & Van de Peer, 

2010), Trypanosoma brucei (Jackson 2007), and Trichomonas vaginalis (Carlton et al. 

2007a; Rada et al. 2011).  These duplication events likely provided a rich source of 

potential variability allowing parasites to adapt to new hosts in the evolutionary arms 

race between a parasite’s defenses and their hosts’ immune systems, although this 

hypothesis has not been rigorously tested. 

 

One way in which duplicated genes may provide increased variability is through the re-

wiring of protein-protein interaction networks. Over the last decade, intrinsic structural 

disorder has been increasingly recognized for its importance in protein-protein 
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interactions (Dunker et al. 2008; Fong et al. 2009; Gsponer & Babu 2009; Fong & 

Panchenko 2010; Turoverov et al. 2010), particularly in central hubs of protein-protein 

interaction networks (Haynes et al. 2006; Oldfield et al. 2008; Patil et al. 2010a, 2010b). 

Observed gene duplicates may be biased towards those genes encoding proteins with 

greater amounts of intrinsic disorder in tertiary structure or may result in a greater 

amount of intrinsic disorder after the duplication event (Montanari et al. 2011; Siltberg-

Liberles 2011) as evidenced by greater degrees of intrinsic disorder in paralagous gene 

pairs compared to singletons. Specificity-determining sites, those sites which have 

undergone functional divergence and are thought to encode specificity differences in 

protein-protein or protein-small molecule binding between paralogs, have been 

observed to occur more frequently in neighbouring regions of disorder (Aharoni et al. 

2005; Chakrabarti et al. 2007; Chakrabarti & Panchenko 2009). A large proportion of 

putative positively selected sites in 12 species of Drosophila have been shown to occur 

in intrinsically disordered regions even when considering their relative frequency in the 

genome (Ridout et al. 2010), a subset of these sites may correlate with those also 

undergoing functional divergence. 

 

1.2.3 Characterizing Functional Divergence 

Functional divergence results in distinctive substitution patterns in multiple alignments 

of protein families, which have been broadly classified as Type I and Type II functionally 

divergent sites (Gu 1999, 2001, 2006). Type I functional divergence (Gu 1999, 2001) or 

rate-shifting sites  (Abhiman & Sonnhammer 2005) reflect a specific form of heterotachy 

(Philippe & Lopez 2001; Lopez et al. 2002; Philippe et al. 2003) characterized by a switch 

in evolutionary rate within a portion of the phylogenetic tree. These sites are often 

strongly conserved in one subtree and much more variable in the other subtree; this 

type of rate shift is more frequent than other types of heterotachy in paralogs 

undergoing functional divergence (Philippe et al. 2003). This pattern is generally 

interpreted as either a relaxation of evolutionary constraints, resulting in a shift from 
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purifying selection to neutral evolution and a resulting higher rate of sequence 

substitution. Alternatively it is also possible that a formerly unconstrained site becomes 

fixed in a paralog neutrally and fortuitously suppresses the negative fitness effects of a 

mutation elsewhere in the genome and ultimately becomes maintained by purifying 

selection (Stoltzfus 1999).  In contrast, type II functional divergence (Gu, 2006) is 

characterized by a high degree of conservation at a site in both subfamilies, but for 

amino acids with different physical and chemical properties. This pattern of substitution 

in its most extreme form corresponds to the so-called ‘constant-but-different’ (Gribaldo 

et al. 2003)  or conservation-shifting (Abhiman & Sonnhammer 2005) site. An initial 

burst of diversifying evolution is proposed to occur immediately after duplication in this 

case, followed by the fixation of the radically changed amino acid residue (or residue 

‘type’) prior to the subsequent diversification of lineages. While both type I and type II 

patterns are likely to arise under functional divergence, they may also occur by chance 

at neutrally evolving or sites under weak purifying selection and under certain 

phylogenetic tree shapes. Distinguishing between such neutral substitution patterns and 

those that are functionally meaningful is both important and difficult (Anisimova & 

Liberles, 2007) providing a strong rationale for a phylogenetic approach to the 

identification of sites undergoing functional divergence. 

 

Predictors of functional divergence are designed to identify the amino acid positions 

that are contributing the most to functional divergence between paralogs and/or 

orthologs. These positions, also known as specificity-determining sites, are often located 

in, or near, active sites or protein-protein/protein-small molecule binding patches 

(Aharoni et al. 2005; Capra & Singh 2008) and can often be located  on surface loops 

(Aharoni et al. 2005). Therefore, identifying functionally divergent amino acid positions 

can aid in the characterization of function in an unknown subfamily, predict active or 

binding site residues, or be used for rational drug design. Measures of sites undergoing 

functional divergence are, in many ways, similar to measures quantifying signals of 



11 
 

selection. While functional divergence methods have generally focused on quantifying 

the patterns of substitution at the amino acid level as opposed to the codon or 

nucleotide level (Anisimova & Liberles, 2007), there have been recent analyses of 

functional divergence correlating signals of functional divergence with signals of 

selection using codon models showing a correlation between selection and functional 

divergence patterns, particularly among type II sites (Studer & Robinson-Rechavi 2010).  

A wide variety of approaches have been applied to the identification of residues 

undergoing functional divergence in protein families. Techniques can be broken into 

three broad and overlapping categories: phylogenetic, information theoretic, and 

structural with the latter category generally being used in a supplementary fashion.  

 

1.2.4 Phylogeny-Based Functional Divergence Predictors 

Perhaps the two most widely used prediction methods are those implemented in the 

phylogeny-based DIVERGE/DIVERGE2  (Gu, 1999, 2001, 2006) and Evolutionary Trace 

methods (Lichtarge et al. 1996; Mihalek et al. 2004; Yao et al. 2006; Ward et al. 2009). 

The Evolutionary Trace (ET) method was originally designed for identification of 

functionally important residues, but has also been used for identifying functional 

divergence. Later alterations of the method improved predictions with the addition of 

rank-based scoring functions (Mihalek et al. 2004; Yao et al. 2006). The Difference 

Evolutionary Trace method (Raviscioni et al. 2006; Rodriguez et al. 2010) formalized a 

procedure for the identification of sites with different degrees of functional importance 

between subfamilies. The Evolutionary Trace method is performed on the phylogenetic 

tree and sequence alignment representing the entire protein family under consideration 

and then for each sub-family independently. Sites that are considered functionally 

important with some cut-off (often the top 20% of sites) in the whole family are 

removed from those sites that are considered functionally important within individual 

subfamilies. This leaves the subset of sites considered functionally important in sub-

groups but not in the family as a whole, which correspond to sites undergoing functional 
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divergence. This method is capable of recognizing both Type I and II patterns of 

functional divergence.  

 

The DIVERGE software package implements three separate methods for predicting 

functional divergence. The first method for Type I functional divergence, known as the 

Gu 99 method (Gu, 1999) implements a maximum-likelihood model for the correlation 

of evolutionary rates between phylogenetic groups. Sites undergoing Type I functional 

divergence will have less correlated evolutionary rates than those not undergoing 

functional divergence. Using Bayes’ rule, the posterior probability can be calculated and 

using an arbitrary cut-off value (often 0.5), sites are predicted to belong to either the 

functionally divergent or non-divergent class. This subtree likelihood method was later 

extended to a whole tree likelihood model intended to capture both Type I and Type II 

functional divergence (Gu, 2001). For Type II specific functional divergence a later model 

was implemented (Gu, 2006) that considered the deviation from expected substitution 

patterns under a standard substitution matrix such as the Dayhoff (Dayhoff et al. 1978) 

or JTT (Jones et al. 1992) matrices. Substitutions are categorized as ‘radical’ or 

‘conserved’ changes based on whether they interchange between four groups of amino 

acids established on the basis of shared physical properties (positive charge, negative 

charge, hydrophilic, hydrophobic). This model also incorporates a gamma distribution 

for evolutionary rates (Yang 1994). Inputs to DIVERGE are restricted to strictly 

bifurcating phylogenetic trees and several simple models of phylogenetic reconstruction 

are available to build neighbour-joining trees from input data if no tree is supplied. 

 

Knudsen and Miyamoto (2001) developed a likelihood-ratio test method for predicting 

functionally divergent protein residues, as well as slowly-evolving conserved sites based 

on site rate differences. This likelihood-ratio test was later extended for Type II 

functional divergence in a similar fashion, modeling Type II divergence as the occurrence 
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of a rate shift along the internal branch separating the two sub-families under 

consideration (Knudsen et al. 2003).  

 

Similarly covARES (Blouin et al. 2003; Inagaki et al. 2003) implements a statistical test for 

a rate-shift difference between sequences in two subfamilies of a phylogenetic tree in 

order to identify Type I functionally divergent sites. In order to predict Type II 

functionally divergent sites, covARES also looks for what are called “differently-evolving” 

and “absolutely-differently-evolving” sites. The former may correlate with a rate-shift 

and thus be properly defined as Type I residues where a residue is conserved in one 

subtree but not the other. Absolutely-differently-evolving sites correspond to canonical 

Type II functional divergence patterns. The covARES method also constructs vectors of 

chemical properties at a site and tests for a significant difference in these vectors 

between subgroups.  

 

SPEL (Pei et al. 2006) also implements a log-likelihood ratio based phylogenetic method 

for classification with simulations used to generate p-values. Unlike many predictors, 

SPEL is explicitly designed not to require designations of which sequences belong to 

which specificity group. Making it potentially powerful in cases where the sequence and 

functional data is less clear. The site log-likelihood is calculated given a phylogenetic 

tree. The amino acid column is then shuffled 100 times and the average log-likelihood of 

the shuffled columns is calculated. The resulting log-likelihood ratio is checked for 

significance by comparing to the distribution of log-likelihood ratios that result from 

1000 simulated amino acid positions on the same phylogenetic tree (See Pei et al. 2006 

for details). While this method is potentially quite powerful; sites that do not fit the 

normal distribution expected based on a substitution model such as WAG (Whelan & 

Goldman 2001) can arise due to various model violations not necessarily related to 

functional divergence, such as heterotachy. Their measure reflects how much better the 

data fits the phylogenetic tree compared to randomly shuffled data. 
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The final category of phylogeny-based methods are those that analyse proteins at the 

nucleotide-level employing codon models and tests for positive selection that have been 

extensively used in a likelihood ratio testing framework for the identification and 

characterization of functional divergence in protein families (Forsberg & Christiansen 

2003; Bielawski & Yang 2004; Loughran et al. 2008). These methods, while very 

powerful, depend on the accurate estimation of synonymous to non-synonymous 

substitution rates and thus may have limited accuracy for deeper divergences or trees 

involving long branches where synonymous changes are saturated (Anisimova et al. 

2002). 

 

1.2.5 Information Theory-Based Functional Divergence Predictors 

In contrast to the phylogenetic methods described above, information theoretic 

approaches typically ignore the phylogenetic relationship between sequences and 

consider only the functional clustering of sequences. This may be particularly useful in 

cases where the function does not map exactly with phylogenetic relationship. These 

information theoretic based classifiers generally employ measures such as the relative 

entropy (Hannenhalli & Russell 2000; Kalinina et al. 2004a), Mutual Information (Mirny 

2002; Kalinina et al. 2004b), Sequence Harmony (Pirovano et al. 2006) (which itself an 

extension of the Shannon Entropy (Shannon 1948)), The Two Entropy (Shannon Entropy) 

measure at both the super and sub-family levels (Ye et al. 2006), or other measures that 

differentiate between within-group and between-group similarity scores (Capra & Singh 

2008). Discriminatory machine learning techniques such as that implemented in Multi-

RELIEF (Ye et al. 2008) where the objective is to discriminate between classes based on 

feature vectors (features being amino acids at sites in the case of Multi-RELIEF) can also 

be classified as information theoretic approaches. Many information theoretic 

approaches attempt to capture some evolutionary information, either by weighting 

scores according to sequence similarity as in GroupSim (Capra & Singh 2008) or by using 
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sequence substitution matrices to account for the relative frequencies of particular 

amino acid substitutions (Kalinina et al. 2004b; Chakrabarti et al. 2007; Capra & Singh 

2008) 

 

While not explicitly information theoretic, there have also been developments in 

statistical model based classifiers for functional divergence. A Markov-Chain Monte 

Carlo Gibbs Sampler such as mcBPPS (Neuwald 2011) is capable of partitioning 

thousands of sequences, with or without “gold-standard” examples, to a specified 

number of functionally divergent groups and simultaneously optimizing the sequence 

position patterns (and thus specificity determining sites) that define them. However, as 

pointed out by Neuwald (2011) the mcBPPS classifier is designed to split the data into a 

set of statistically meaningful groups and their optimal defining patterns. While these 

patterns are statistically meaningful, and intended as a starting point for exploratory 

analysis, they are not specifically targeting sites undergoing functional divergence.  

 

1.2.6 Combined Approaches to Functional Divergence Prediction 

Some approaches attempt to combine explicitly evolutionary measures and information 

scores. For example SPEER (Chakrabarti et al. 2007) incorporates the relative entropy 

(Kullback-Leibler Divergence) of amino acid frequencies at a site, a Euclidean distance 

measure of the dissimilarity of the physicochemical properties of amino acids in groups, 

and the evolutionary rate; the difference in evolutionary rate being characterized in an 

explicit maximum-likelihood phylogenetic approach. All of these measures have been 

employed separately as predictors of functional divergence. In general, ensemble 

approaches use machine-learning techniques, or simple consensus/voting schemes, to 

combine the results of different prediction methods for improved performance (Opitz & 

Maclin 1999; Rokach 2010). This technique that has also shown promise for 

characterizing functional divergence (Chakrabarti & Panchenko 2009) where  sites were 
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predicted to be functionally divergent only if three top-performing methods (GroupSim 

(Capra & Singh 2008), Multi-RELIEF (Ye et al. 2008), and SPEER) all predicted a site to be 

divergent, or any two did. 

 

1.2.7 Assessing the Accuracy of Functional Divergence Prediction 

Comparisons between the performance of existing methods is often difficult due to the 

small number of biological datasets that have been used, or that are considered well 

characterized on an experimental level (Chakrabarti et al. 2007; Chakrabarti & 

Panchenko 2009). The performance of some programs have been reasonably well 

investigated on these or similar datasets, while the others have shown promise based 

on their ability to predict functionally divergent sites in one or a handful of handpicked 

datasets where the predictions can be rationalized in terms of their biological relevance. 

We know of no large-scale investigations conducted to date that have either attempted 

to evaluate performance of predictors based on extensive simulations of functional 

divergence or that investigate particular factors that may affect classification 

performance of predictors. Given the large number of predictors currently available, 

newly proposed methods for identifying functional divergence should be fast, sensitive, 

and be able to exploit the latest advances in computational phylogenetics. Additional 

work needs to be done to better characterize the strengths and weaknesses of various 

classifiers, and to assess their relative performance under differing evolutionary 

conditions. Current comparisons that rely on a small number of biological datasets, 

which contain only a small fraction of verified positions contributing to functional 

divergence, are insufficient. 

 

1.3 Subcellular Localization 

The subcellular location of a protein can provide useful information as to function, 

particularly in cases of duplication and retargeting to subcellular compartments. 
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Eukaryotic cells are heterogeneous and crowded environments and contain a variety of 

organelles and subcellular compartments with specialized functions including 

mitochondria, chloroplasts, the Golgi complex, the endoplasmic reticulum and other 

endomembrane compartments such as vacuoles. Of particular interest is the 

mitochondrion, an organelle of endosymbiotic origin acquired by the last common 

ancestor of all extant eukaryotes (Gray 1999). The progenitor of the modern 

mitochondrion was an alpha-proteobacterium of uncertain taxonomic affiliation 

(Andersson et al. 1998, 2003; Lang et al. 1999; Gray et al. 2001; Esser et al. 2004; 

Fitzpatrick et al. 2006; Brindefalk et al. 2011; Georgiades et al. 2011; Thrash et al. 2011) 

complete with a eubacterial genome. Over time most of this genome was either lost or 

transferred to the host nucleus as the endosymbiont lost autonomy and became an 

organelle (Timmis et al. 2004). Genes transferred to the host nucleus encode proteins 

that are translated in the cytoplasm but are targeted to the organelles if they are 

important to mitochondrial function. The ‘retargeting’ of a gene product occurs by the 

acquisition of targeting sequences recognized by proteins of the mitochondrial import 

apparatus (Pfanner et al. 2004; Dolezal et al. 2006).  The second major goal of this thesis 

is the development of new in silico tools for predicting the proteomes and ultimately the 

functions of mitochondria and mitochondrion-related organelles (MROs) in unicellular 

anaerobic eukaryotes. 

 

1.3.1 Biological Diversity of Mitochondrion-Related Organelles 

'Classical' aerobically-functioning mitochondria, such as those present in mammals, 

plants, and fungi, are the typical text-book examples of mitochondria that generate ATP 

by oxidative phosphorylation and carry out other biochemical functions including 

replication of mitochondrial DNA, transcription and translation, iron-sulfur (Fe/S) cluster 

biogenesis, metabolism of lipids, and the interconversion of amino acids. However, 

these classical mitochondria comprise only a portion of the diversity found in organelles 

derived from this endosymbiotic event. For instance, there are also anaerobic 
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mitochondria that generate ATP by respiration, but use terminal electron acceptors 

other than oxygen (e.g. fumarate, nitrate). This type of anaerobic ATP production has 

been observed in a variety of eukaryotic lineages but is arguably best understood in 

parasitic animals such as the nematode Ascaris (Howe, 2008; Tielens et al. 2002; Takaya 

et al. 1999; Kobayashi et al. 1996; Finlay et al. 1983; Tielens and van Hellemond, 1998; 

van Hellemond et al. 1998). Amongst the unicellular eukaryotes (protists) living in low 

oxygen conditions, even stranger mitochondrion-related organelles (MROs) have been 

discovered, including hydrogenosomes (Cerkasovová et al. 1973; Lindmark and Müller, 

1973) and mitosomes (Tovar et al. 1999).  

 

Classical hydrogenosomes are genome-lacking, double-membrane bound organelles 

characterized by the production of molecular hydrogen as a by-product of ATP 

generation (Müller, 1993). They catabolize pyruvate and malate via substrate-level 

phosphorylation, producing ATP anaerobically using a series of enzymes, many of which 

are not generally found in the mitochondria of aerobic eukaryotes (e.g. 

pyruvate:ferredoxin oxidoreductase (PFO), [FeFe] hydrogenase and acetate:succinate 

CoA transferase (ASCT)).These organelles were first described in parasitic parabasalid 

protists (e.g. Tritrichomonas and Trichomonas) and it was initially unclear whether they 

represented novel non-endosymbiont-derived organelles, endosymbiotic organelles of 

unique origin, or they were related to mitochondria. The matter was resolved in the 

1990s when nuclear-encoded mitochondrial marker proteins, such as mitochondrial-

type chaperonin 60 (cpn60) and Hsp70 (mtHsp70) were discovered within the 

hydrogenosomal proteome and phylogenetic analysis indicated that they were most 

closely related to homologs existing in other mitochondria (Bui et al. 1996; Germot et al. 

1996; Horner et al. 1996; Roger et al. 1996; Palmer, 1997). More recently, the 

hydrogenosomal localization of a number of systems including a mitochondrial carrier 

family (MCF) transporter and mitochondrial iron-sulfur (Fe/S) proteins as well as the 

presence of two subunits of complex I, indicate that hydrogenosomes are in fact highly 
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modified mitochondria (Dolezal et al, 2005; Hrdy et al, 2004; Sutak et al, 2004; Tachezy 

et al, 2001; van der Giezen et al, 2002). Hydrogenosomes have evolved from 

mitochondria multiple times in a number of distantly related eukaryotic lineages 

including parabasalids, ciliates, and anaerobic fungi (Barberà et al. 2007). Recent 

analysis indicates that many of the unique hydrogenosomal metabolic enzymes have 

been transferred, via lateral gene transfer, between eukaryotes as the sequences often 

form monophyletic groups that are incongruent with the presumed taxonomy (Hug et 

al. 2010; Hampl et al. 2011; Tsaousis et al. 2012) Although their energy generating 

pathways represent a convergent adaptation to anaerobiosis, it is likely that 

hydrogenosomes in these different lineages (like mitochondria of different eukaryotic 

lineages) have distinct properties. 

 

Mitosomes are a poorly characterized and heterogeneous category of MROs that are 

double-membrane bound, lack cristae and a genome, and, as far as is currently known, 

play no known role in energy generation. They were first discovered (and named) in the 

amoeboid human parasite Entameoba histolytica (Mai et al. 1999; Tovar et al. 1999) and 

were shown to contain chaperonin-60 homologs clearly related to mitochondrial 

homologs in their proteomes (Mai et al. 1999; Dolezal et al. 2005) suggesting a shared 

origin with mitochondria. Mitosomes have been shown to exist in the microsporidian 

Trachipleistophora hominis (Williams et al. 2002), Giardia intestinalis (Tovar et al. 2003), 

and a variety of other microbial eukaryotes. Like hydrogenosomes, mitosomes have 

distinct origins in diverse eukaryotic protists that seem to be the result of the parallel 

loss of many typical aerobic mitochondrial pathways. Although the exact functional roles 

of mitosomes are still unclear, they are thought to consume (not produce) ATP (Tsaousis 

et al. 2008) and, as a shared common function, carry out iron-sulfur cluster assembly 

(Roger and Silberman 2002; Goldberg et al. 2008), although for some taxa like 

Entamoeba histolytica, this latter function is still debated (Tsaousis et al. 2012). 
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 As hallmarks of their endosymbiotic origin, classical mitochondria contain genomes of 

their own encoding genes that are phylogenetically most closely related to homologs in 

the α-proteobacteria, although gene content varies between the organelles of different 

lineages (Gray et al. 1998; Marande and Burger, 2007). Over evolutionary time, different 

genes have been transferred from the mitochondrial genome to the host nucleus, and 

their products were then re-targeted back to the organelle in a process known as 

Endosymbiotic Gene Transfer (EGT) (Timmis et al, 2004). In the case of hydrogenosomes 

and mitosomes where their genomes have likely been lost entirely, all essential 

organellar genes must be located in the host genome. However, the mitochondrion-

related organelles (MROs) of Nyctotherus (Boxma et al. 2005) and Blastocystis 

(Stechmann et al. 2008) fall somewhere between classical mitochondria and 

hydrogenosomes. In both of these organisms, MROs retain their genomes, and are 

predicted to house part of the tricarboxylic acid (TCA) cycle, parts of the electron 

transport chain as well as a variety of other classical mitochondrial pathways. Curiously, 

both also possess a [FeFe] hydrogenase enzyme and other proteins typical of 

hydrogenosomes. These data, and the ongoing characterization in a variety of 

previously-unstudied anaerobic protists is beginning to reveal that MROs fall along a 

continuum of biochemical function (van der Giezen and Tovar, 2005) ranging from 

classical aerobically-respiring mitochondria to the mitosome. MROs, such as those found 

in Blastocystis sp. (Stechmann et al. 2008), Mastigamoeba balamuthi (Gill et al. 2007) 

and Trimastix pyriformis (Hampl et al. 2008) blur the distinctions between mitochondria, 

hydrogenosomes and mitosomes and illustrate this continuum of diversity.  

 

1.3.2 Protein Import 

Mitochondrial proteins may be targeted to the mitochondrial matrix, inner membrane, 

outer membrane, or the intermembrane space. There are two main import pathways, 

one mediated by N-terminal targeting sequences (presequences) and the other, known 

as the carrier protein import pathway, mediated by internal targeting sequences. Recent 
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studies have shown that a significant percentage of mitochondrial proteins do not carry 

an N-terminal targeting sequence and carry only an internal or C-terminal sequence, if 

they have a detectable localization sequence at all (Marcotte et al. 2000; Sickmann et al. 

2003; Bolender et al. 2008). The N-terminal targeting sequence and internal targeting 

sequence represent two distinct import pathways (Bolender et al. 2008 ).  

 

In general, N-terminal mitochondrial targeting sequences are enriched in positive, 

hydrophobic, and hydroxylated amino acids with acidic residues avoided. These N-

terminal targeting sequences form ampipathic alpha-helices which are recognized by 

the import machinery and cleaved off by processing peptidases after import (Pfanner et 

al. 2004; Dolezal et al. 2006; Bolender et al. 2008). Import requirements have been 

rigorously examined mostly in a small subset of eukaryotes such as yeast (Geissler et al. 

2002; Wiedemann et al. 2003; Prokisch et al. 2004) although there have also been more 

recent investigations for the Trichomonas vaginalis (Bradley et al. 1997; Dolezal et al. 

2005; Mentel et al. 2008; Smíd et al. 2008) hydrogenosome and the mitosome of 

Giardia intestinalis (Dolezal et al. 2005; Smíd et al. 2008).  

 

The mitosomal targeting sequences in the human parasite Giardia intestinalis are 

shorter than typical mitochondrial targeting sequences and are lacking in positively 

charged amino acids (Smíd et al. 2008) with the hydrogenosomal targeting sequences of 

Trichomonas vaginalis seeming to be a mix with some short “mitosomal-like” targeting 

sequences as well as long sequences with motifs more like those of canonical 

mitochondria (Smíd et al. 2008). Existing “state-of-the-art” prediction algorithms tested 

on these divergent lineages often fail to predict targeting or localization in many 

putative MRO sequences (Smíd et al. 2008). A bioinformatic search for hydrogenosomal 

proteins in Trichomonas vaginalis predicted approximately 127 proteins (Carlton et al. 

2007) while a more recent proteomic approach, combined with bioinformatic analyses, 

identified 228 (Rada et al. 2011).  
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The protein import mechanisms of the reduced MROs of Trichomonas vaginalis, Giardia 

intestinalis, and other microbial eukaryotes are still only partially understood. Both N-

terminal targeting sequences and internal targeting motifs are clearly used (Mentel et 

al. 2008) but may be shorter and have slightly altered physicochemical properties such 

as lacking distal positively charged residues typically seen in canonical mitochondrial 

targeting sequences (Smíd et al. 2008). 

 

1.3.3 Predicting Subcellular Localization 

 There are three broad categories of subcellular localization prediction programs: 1) N-

terminal signal/targeting peptide detection, 2) full protein sequence feature based, and 

3) approaches that use a mixture of the previous strategies in some fashion. N-terminal 

signal/targeting peptide classification is the most widely used type of subcellular 

prediction strategy, with the majority of available programs relying on the presence of 

such a signal exclusively, or using the presence/absence of a signal peptide as one of 

several kinds of evidence to base predictions on. Machine learning techniques such as 

Artificial Neural Networks (ANNs), Hidden Markov Models (HMMs), and Support Vector 

Machines (SVM) have all been used for the task of prediction, along with so-called 

'expert systems'. The details of machine learning algorithms are outside of the scope of 

this work. Briefly, all of these approaches are ‘trained’ on data where targeting has been 

confirmed experimentally and an attempt is made to optimize the discriminatory power 

of classification based on that training data. In many cases, training data is split into 

training and testing data sets, so that performance of the trained method can be 

evaluated using separate test data sets. For all of these approaches, features of the 

input data are extracted and then clustered in some way into one or more groups, such 

as subcellular location, based on specified criteria. In some cases, several of these 

classifiers are used in multiple layers. Individual classifiers work on one component of a 

larger problem and a final 'master' classifier combines the outputs to make a global 
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classification. For a more detailed review of these algorithms, see (Rabiner 1989; Gurney 

1997; Cristianini and Shawe-Taylor 2000; Kecman 2001).  

 

 Feature based prediction programs encompasses a broad range of strategies that may 

be employed either singly or collectively. These programs may use information that can 

be obtained directly from the protein sequence entry in a database, such as Gene 

Ontology (GO) terms, sequence annotation, and structural data. Where this kind of 

information is not available, these methods may attempt to assign data such as GO 

terms via homology and make predictions about secondary structure. Most of these 

classifiers also make use of data that can be extracted from the sequence alone: amino 

acid composition, di- or tri-peptide compositions, presence/absence of particular 

domains, secondary structure, hydrophobicity, or the predicted isoelectric point. As well 

as direct sequence features, this class of predictors also encompasses sequence 

comparison methods that use homology or phylogenetic data to make classifications. 

Homology-based prediction programs are limited by the presence of sequence similar 

homologs in the databases that are searched. Although the existence of known 

homologs certainly improves the prediction accuracy, examples from the full mass-

spectrometry based characterization of the Tetrahymena thermophila mitochondrion 

(Smith et al. 2007) have demonstrated that many hypothetical MRO-targeted proteins 

of unknown function could be organism specific or be phylogenetically restricted to a 

narrow group of eukaryotes. Sampling of organellar diversity across a wider array of 

taxa may reduce the number of lineage specific proteins found with unknown homologs, 

expanding the biochemical repertoire of mitochondria and increasing our understanding 

of the properties of those proteins.  

 

 ’Mixed’ approaches typically use several different types of protein sequence feature-

based classifiers and are frequently coupled with N-terminal signal peptide and cleavage 

site prediction strategies. The results are combined, usually by use of a voting system or 
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master classifier, into a final predicted subcellular location. This mixed classifier strategy 

is used in the programs SherLoc/SherLoc2 (Shatkay et al. 2007; Briesemeister et al. 

2009), MitoLoc/MitoLoc2 (Höglund et al. 2006; Blum et al. 2009), MITOPRED (Guda et 

al. 2004a; Guda et al. 2004b), PA-SUB (Lu et al. 2004), the PSORT family of programs 

(Nakai and Horton 1999; Bannai et al. 2002; Horton et al. 2006;  Horton et al. 2007), and 

others. These mixed approaches are useful for overcoming the shortcomings of 

individual localization programs, significantly improving performance as shown recently 

with yimLOC (Shen and Burger 2007). Integrating the results from separate programs 

can be a challenge, especially if missing data from some programs is to be allowed. 

Flexibility is often preferred to minimize the impact of the limitations of individual 

classifiers. If, for instance, the input data is a large number of expressed sequence tags  

then sequences that are missing N-terminal sequences that could contain targeting 

peptides should not be removed from consideration if some of the classifiers that are 

part of the ‘mixed’ predictor do not require this information to make a prediction.  

 

Gene Ontology (GO) terms, when available, have also proven useful for classification 

(Chou & Shen 2007, 2010; Huang et al. 2008; Blum et al. 2009; Mei et al. 2011). For 

unknown query sequences, assignment of GO terms suffers from some of the same 

problems as assignment of subcellular localization itself, and is often accomplished with 

simple BLAST-based searching approaches (Chou & Shen, 2010; Chou & Shen, 2007; 

Huang et al. 2008), although newer machine-learning (Mei et al. 2011) and phylogenetic 

(Gaudet et al. 2011) approaches also exist. Gene network (Tung & Lee 2009) and 

protein-interaction (Shin et al. 2009) data have also been used to predict subcellular 

localization but robust experimental data of this kind is only available in already well 

characterized model organisms and will not necessarily be well conserved across 

broader swathes of eukaryotic diversity. 
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In addition to the broad types of classification methods discussed above, classifiers can 

also fall into two different general categories of specialist predictors, or predictors that 

handle multiple locations. Specialist classifiers are trained and designed to predict 

localization to only one compartment, such as the mitochondrion, chloroplast, or 

secretory system whereas multi-location “general” classifiers prediction localization to 

the various compartments in a single step. In the latter case, the classifier may or may 

not attempt to deal with ‘multiplex’ proteins, those that are targeted to more than one 

subcellular localization. This dual-targeting, or “eclipsed distribution” (Regev-Rudzki & 

Pines 2007) may be uneven with minor and major localizations. Dual-targeting in 

photosynthetic eukaryotes often involves proteins of endosymbiotic origin, which have 

gained N-terminal targeting sequences with dual-specificity to the two kinds of primary 

endosymbiont-derived organelles: chloroplasts and mitochondria (Carrie et al. 2009). 

Other proteins have been characterized that undergo a process of reverse translocation 

(Ben-Menachem, et al. 2011) whereby, after import into the mitochondrion and 

subsequent cleavage of the N-terminal targeting peptide, a fraction of the imported 

proteins are translocated back across the mitochondrial membrane system to the 

cytosol. These complex targeting dynamics may complicate predictions of subcellular 

localization, particularly in the case of predictors that handle multiple locations and do 

not allow for multiple locations to be genuinely assigned (Chou & Shen 2010; Chou et al. 

2011; Chou & Shen 2007). 

 

The datasets used to train many prediction programs (e.g.the datasets for the training of 

MultiLoc (Höglund et al. 2006) or BaCelLo (Pierleoni et al. 2006)) are often restricted to 

sequences from animals, plants, and Fungi and ignore the bulk of eukaryotic diversity. 

Additionally, sampling bias within these groups, as well as a historical and ongoing 

experimentation bias in terms of localization and in-depth molecular characterization 

leaves the data skewed towards the multicellular members of these two groups. The 

remaining diversity of almost exclusively microbial eukaryotes includes anaerobic and 
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microaerophilic members with reduced MROs like hydrogenosomes and mitosomes. Key 

enzymes in their unique metabolic pathways are not part of typical subcellular 

localization training datasets but are of interest for identification in large-scale 

transcriptome and genome projects of microbial eukaryotes. There have been some 

exceptions to this trend, for instance, the larger training datasets used for Euk-mPLoc 

(Chou & Shen, 2007) and Euk-mPLoc 2.0 (Chou & Shen, 2010) cover eukaryotic diversity 

and include the hydrogenosome as one of 22 distinct subcellular localizations. However, 

including hydrogenosomes as a distinct localization from mitochondria, and relying on 

Uniprot/Swiss-Prot to distinguish the two consistently, may have a negative impact on 

performance (See Chapter 2 for more details).  

 

In order to build high-throughput pipelines and software tools for phylogenetic based 

analysis of protein function, it is important to maximize flexibility and modularity to 

more easily allow inclusion of new methods of alignment and phylogenetic 

reconstruction as they are developed. This ‘method-agnostic’ approach extends the 

usable shelf-life of scientific software so that they are not quickly outdated by rapid 

advances in core methods. In addition, because all phylogenetic methods can be 

potentially misled by systematic error, methodological artifacts, or model violation, it is 

important to explore (and quantify where possible) the types of phylogenetic conditions 

where function prediction can also go wrong. 

 

1.4 Overview of Thesis Chapters 

This thesis explores the application of phylogenomic methods to the prediction of 

subcellular protein localization and of functional divergence in protein families. These 

topics are split over three data chapters in addition to a final discussion. 
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In Chapter 2, two novel methods for the prediction of subcellular localization are 

presented. The first, Comparative BLAST for Organelles (CBOrg) is a non-phylogenomic 

method that uses a BLAST-based scoring system to rapidly screen sequences at genomic 

and transcriptomic level scales. The second, PhyloPred-HMM is a full phylogenomic 

method that uses a background database of sequences clustered de novo at the protein 

family level. It makes use of Hidden Markov Model (HMM) based search strategies and 

phylogenetic distance measured to annotate query sequences with their most probable 

subcellular location with special attention paid to diverse microbial eukaryotes not 

normally included in the training datasets of other classifiers. 

 

Chapter 3 describes FunDi, a maximum-likelihood based phylogenetic method for 

predicting the protein residues in a multiple sequence alignment undergoing functional 

divergence between two or more groups in a protein family. The performance of FunDi 

is compared to that of several other prediction programs on several biological datasets, 

and two large simulated datasets, constructed using two different methods. These 

simulated datasets also allow aspects of phylogenetic trees (e.g. size, shape, and tree 

length) that affect classification performance to be analyzed. 

 

Finally, in Chapter 4, FunDi and two other functional divergence prediction programs are 

used to characterize functional divergence and convergent evolution in the plastid-

targeted glyceralhdehyde-3-phosphate dehydrogenase (GAPDH) enzyme family of two 

eukaryotic lineages: the Archeaplastida and the Chromalveolata. Predictions of 

functional divergence, especially of potentially convergent evolution to function in an 

NADPH-dependent manner in the Calvin cycle, are discussed within the context of the 

structure, function, and regulation of GAPDH. 
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Chapter 2 Prediction of Subcellular Localization 

 

This chapter (sections 2.1.1, 2.2.1, Figure 2.1, Table 2.1) contains material originally 

published in:   

“Gaston D, Tsaousis AD, Roger AJ. 2009. Predicting Proteomes of Mitochondria and 

Related Organelles from Genomic and Expressed Sequence Tag Data. Methods in 

Enzymology. Mitochondrial Function, Part B: Mitochondrial Protein Kinases, Protein 

Phosphatases and Mitochondrial Diseases. 457:21-47” 

 

2.1 Introduction 

Prediction of subcellular localization remains a significant challenge in bioinformatics 

because of the complexity of subcellular targeting pathways in a given organism as well 

as the diversity of these pathways across the tree of eukaryotes. Although  complex 

machine-learning algorithms trained on a variety of sequence features seem to be the 

most common approach taken to predict subcellular localization, N-terminal targeting 

sequence predictors remain the most widely used tools for this purpose. This is despite 

the fact that it is now well known that there are multiple organellar import pathways, 

some of which do not involve N-terminal targeting sequences (Pfanner & Geissler 2001) 

but instead employ ‘cryptic’ internal targeting sequences or C-terminal targeting 

sequences to direct proteins to the mitochondrial (or MRO) compartment. A second 

general problem for in silico MRO proteome prediction arises from the fact that training 

sets are often comprised of relatively narrow subsets of data from Uniprot (Jain et al. 

2009; Consortium 2011) and are generally restricted to sequences from well-studied 

model organisms or groups, such as animals, Fungi, and plants, although there have 

been some exceptions (Gschloessl et al. 2008; Danne & Waller 2011; Delage et al. 2011). 

More recently, in-depth experimental determinations of MRO proteomes, combined 

with bioinformatic analyses, have given us a more robust picture of the diversity of 
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protein content of the MROs of several microbial eukaryotes including Tetrahymena 

thermophila (Smith et al. 2007), Trichomonas vaginalis (Rada et al. 2011), Entamoeba 

histolytica (Mi-ichi et al. 2009), Chlamydomonas reinhardtii (Atteia et al. 2009), and 

Giardia intestinalis (Jedelský et al. 2011). This wealth of data from functionally and 

taxonomically diverse organelles makes phylogenomic approaches to subcellular 

localization prediction much more attractive. 

 

As discussed in 1.2.1 and 1.2.2, there are a number of MROs of diverse metabolic 

function and proteomic content. These range from anaerobic organelles that use an 

alternative terminal electron acceptor instead of oxygen to hydrogenosomes and 

mitosomes. Hydrogenosomes and mitosomes in particular tend to be reduced in 

proteomic content compared to canonical mitochondria. However, hydrogenosomes 

also contain a number of unique metabolic pathways and alternative enzymes involved 

in anaerobic ATP synthesis that were acquired by their host organism by lateral gene 

transfer from anaerobic bacteria; these enzymes were  not likely present in the original 

mitochondrial endosymbiont (Hug et al. 2010; Hampl et al. 2011; Stairs et al. 2011; 

Tsaousis et al. 2012). Mitosomes are highly reduced MROs, and in parasites such as 

Giardia intestinalis, proteins imported into these organelles via the N-terminal targeting 

peptide import pathway have shorter targeting peptide sequences with slightly altered 

physicochemical properties (Smíd et al. 2008). Trichomonas vaginalis, which possesses 

hydrogenosomes, features a mix of sequences some of which have more ‘mitosomal-

like’ short N-terminal targeting peptides and others with longer canonical 

mitochondrial-type N-terminal targeting sequences (Smíd et al. 2008). These diverse 

MROs of anaerobic microbial eukaryotes contain sequences that are not typically 

included in the training sets of existing subcellular localization classifiers and thus those 

that do possess N-terminal targeting sequences may not properly be detected by these 

methods. 
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Existing prediction methods, often employing machine-learning algorithms and/or N-

terminal targeting sequence detection, make use of several different characteristic 

features of proteins to predict localization, including homology. Before introducing the 

two novel approaches to MRO proteome prediction that we have developed, a number 

of the most widely used tools for in silico MRO proteome prediction are reviewed. 

 

2.1.1 Existing Prediction Methods 

2.1.1.1 MitoProt 

MitoProt is one of the earliest-developed and most widely used programs designed to 

predict the presence of an N-terminal mitochondrial targeting sequence on a protein 

(Claros and Vincens 1996). MitoProt considers the amino acid composition of the N-

terminal portion of the amino acid sequence evaluating the hydrophobic character, net 

charge, and number of acidic residues as well as trying to detect a cleavage site. In total, 

47 individual parameters based on these general characteristics are used to calculate 

the final score of any given sequence using linear discriminant analysis. 

 

2.1.1.2 TargetP 

Like MitoProt, TargetP also predicts N-terminal targeting sequences; however, TargetP is 

also capable of predicting chloroplast and secretory system targeting signals which are 

also typically N-terminal sequences (Nielsen et al. 1997 and Emanuelsson et al. 2000). 

The most recent version of TargetP (Emanuelsson et al. 2000) features a dual-layer 

neural network, with the first layer comprised of a dedicated network for the prediction 

of each subcellular localization, while a second layer integrates the output of the first 

layer to make a final prediction. 
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2.1.1.3 PSORT 

PSORT was first developed in 1990 and has since been updated to produce a family of 

variants such as WoLF-PSORT (Horton et al. 2006;  Horton et al. 2007), PSORT II (Nakai 

and Horton, 1999), and iPSORT (Bannai et al. 2002). WoLF-PSORT is based on PSORT II 

but optimized for eukaryotic sequences, and includes features for N-terminal sequence 

prediction from iPSORT (below). PSORT II uses a wide variety of sequence features 

including the presence of any sort of N-terminal targeting sequence as well specific 

signals for different subcellular locations. It also includes predictors for RNA/DNA and 

actin binding motifs, transmembrane helices, secondary structure elements, and dozens 

of other specific sequence composition features. A k-nearest neighbor machine-learning 

classifier is used to predict the final subcellular location. The iPSORT variant uses a 

decision list architecture to classify sequences possessing a signal peptide, 

mitochondrial targeting sequence, or chloroplast targeting sequence. Sequences that 

possess none of these are classified as ‘others’. The nodes of the decision tree perform 

rule-based decision making with the first node being for the presence or absence of a 

signal peptide based on an amino acid indexing method. Sequences that lack a signal 

peptide are further checked for mitochondrial or chloroplast targeting sequences, again 

based on amino acid indexing as well as the overall amino acid pattern at the N-terminal 

end. If the source organism possibly contains a chloroplast then sequences with a 

targeting sequence are further subjected to a similar set of rules to discriminate 

between chloroplast and mitochondrial targeting. Amino acid indexing is a method of 

converting an amino acid character into a set of numeric values based on physico-

chemical properties of the amino acid. Substrings can then be averaged for these 

properties and to be classified must meet or exceed some given threshold. 

 

2.1.1.4 Predotar  

Predotar (Prediction of Organelle Targeting Sequences) employs a neural network to 

detect and classify N-terminal targeting sequences (Small et al. 2004). The neural 
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network operates on three basic parameters: 1) the charge of the amino acid side chain 

for each residue in the putative N-terminal signal/targeting peptide region, 2) the 

hydrophobicity score for each amino acid in this same region, and 3) the amino acid 

composition in the two halves of the sequence. 

 

2.1.1.5 MITOPRED 

MITOPRED  is a mixed classifier based on the presence (and occurrence pattern) of 

‘subcellular location-specific’ Pfam domains, amino acid composition, and isoelectric 

point (pI) (Guda et al. 2004a; Guda et al. 2004b). Query sequences are compared to 

each subcellular location and scores are calculated individually for the amino acid 

composition/pI and the Pfam domain occurrence.  

 

2.1.1.6 PProwler 

PProwler (Bodén and Hawkins 2005; Hawkins and Bodén, 2006) is a prediction program 

based on TargetP but, unlike TargetP, prediction of an N-terminal targeting sequence is 

not restricted to a simple linear analysis of the N-terminal region of the input protein. 

PProwler examines the N-terminal region using a non-linear recurrent neural network. 

This recurrent network is structured such that the classification of any given residue as 

belonging to a signal peptide depends on the state of the amino acid residues 

immediately up- and downstream. These residues, in turn, are dependent on the state 

of the residues up- and downstream of them, and so on in a recursive pattern. This 

recursion is designed to overcome limitations of looking at the linear sequence alone, 

such as longer-range interactions important in the three-dimensional structure such as 

the amphipathic helix of the signal peptide. A unique neural network exists for each 

subcellular location (mitochondria, chloroplast, secretory system, and other) each 

window in the N-terminal 100 amino acids is classified, by each network, using a sliding 
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window approach. The output of each location-specific neural network becomes the 

input to a final Support Vector Machine (SVM). 

 

2.1.1.7 PA-SUB 

PA-SUB (Lu et al. 2004) is a collection of five different classifiers for sub-cellular 

localization. Each classifier is trained and designed to classify proteins from a particular 

group of organisms: animals, plants, fungi, Gram-negative bacteria and Gram-positive 

bacteria. The authors of this program report a prediction accuracy of 81% for fungi and 

92-94% for the other categories. PA-SUB performs classification based on 

presence/absence of annotated features in the SwissProt entries of the top-scoring 

BLAST hits to the query sequence. PA-SUB is unable to classify sequences if no 

homologous sequences can be found in SwissProt or if no suitable feature annotations 

can be found in the SwissProt entries of homologs. 

 

2.1.1.8 yimLOC 

This classifier uses a different approach to those described above. Instead of designing 

new predictors based on sequence features, yimLOC uses a ‘mixture-of-experts’ 

approach. In this strategy, the results of several different classifiers are combined and 

analyzed by one global 'expert' classifier to determine the overall prediction, in 

yimLOC’s case by using a decision-tree. The programs integrated into predictions made 

by the online version of yimLOCm are: SubLoc, pTARGET, SherLoc, CELLO, PA-SUB, 

TargetP, Predotar, PProwler, SOSUI, MitoProt, Phobins, and TMHMM (Transmembrane 

HMM). The programs that detect N-terminal mitochondrial targeting sequences are 

combined into one decision tree, with the output of that tree combined with the 

outputs of the other programs (based on sequence features). To improve prediction of 

mitochondrial membrane proteins, which are typically more poorly predicted than 
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matrix proteins, several tools for the prediction of transmembrane domains were 

integrated into the decision trees (e.g TMHMM). 

 

2.1.1.9 CELLO 

CELLO (subCELlular LOcalization) is a prediction program originally designed for use on 

Gram-negative bacterial sequences but has since been extended for use on sequences 

from both Gram-positive bacteria and eukaryotes (Yu et al. 2006). This program uses a 

SVM on several n-peptide composition vectors. Where the n = 1 vector is the amino acid 

composition of the entire sequence, the n = 2 is the composition of di-peptides in the 

sequence, etc. CELLO uses two SVM layers; the first layer is built of classifiers that 

operate on individual sequence composition vectors while the second layer acts as a 

master classifier. 

 

2.1.1.10 SherLoc, MultiLoc, and MultiLoc2 

SherLoc (Höglund et al. 2006a; Shatkay et al. 2007) implements a novel mixture based 

approach that combines both sequence features, such as amino acid composition, and 

text features from the literature in order to predict the subcellular location; 

classification is performed using an SVM. Instead of using location references directly 

from the database entry, the authors of SherLoc designed it to use textual references 

extracted from titles and abstracts associated with the database entry. SherLoc is an 

example of a multi-tiered classifier with four sequence-based classifiers and one text-

based classifier; the predictions of these individual classifiers can then be integrated into 

a final result. The sequence-based classifiers are based on those in MultiLoc (Höglund et 

al. 2006b) and are each based on a different sequence feature: amino acid composition, 

N-terminal targeting sequence, internal anchor sequences, and sorting sequence motifs. 

The text-based classifier operates on data extracted from the titles and abstracts on 

Pubmed from the Swiss-Prot entry for the query sequence. For query sequences without 
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a Swiss-Prot entry, an attempt is made to find close homologs in the database and use 

the textual information associated with those entries. If no PubMed entries can be 

found, the text classifier is not used for that query, with the prediction then based only 

upon the four sequence feature classifiers.  

 

MultiLoc2 (Blum et al. 2009) added two additional sub-classifiers to the original MultiLoc 

system, called PhyloLoc and GO-Loc. PhyloLoc is a profile of presence/absence of a 

protein in a set of 78 completely sequenced genomes. The phylogenetic profile is thus 

composed of the ratio of the best-hit and self-hit bit scores based on Basic Local 

Alignment Search Tool (BLAST) matches. The Go-Loc classifier uses Gene Ontology (GO) 

terms. Each of these sub-classifiers, and the ones already present in MultiLoc, make a 

prediction of subcellular localization which is then fed to the master SVM classifier for 

overall prediction. 

 

2.1.1.11 PredSL 

PredSL (Petsalaki et al. 2006) is another N-terminal targeting sequence based classifier, 

specifically optimized for eukaryotic sequences. PredSL was trained on eukaryotic 

sequences from release 3.5 of Uniprot and, unlike most of the other tools described 

above, is not taxonomically restricted. It uses a mix of layered neural networks, Markov 

chains, scoring matrices, and HMMs for prediction in a manner similar to many other 

ensemble based classifiers. 

 

All of the classifiers described above, with the exception of yimLOC, tend to use similar 

sequence features, including (or exclusively), the presence of an N-terminal targeting 

sequence. The major differences between these methods lie in subtle differences in the 

training sets (often just different releases of Uniprot/Swiss-Prot) and slightly different 
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machine-learning algorithms or procedures applied. Approaches that include some type 

of homology or “phylogenetic” approach as part of their classification strategy (e.g. 

MultiLoc2) do so using BLAST, or Psi-BLAST and presence/absence of a sequence in taxa 

but lack a robust phylogenomic approach. While BLAST results can act as a proxy for 

phylogenetic inference, it fails to adequately model the evolutionary process and place 

sequences within the context of their shared evolutionary history. Indeed, the best-

scoring BLAST matches are not always the most closely related sequences (Koski & 

Golding 2001). 

 

2.1.2 New Classifiers Introduced in this Work 

In this chapter, we describe two new programs for the prediction of subcellular 

localization: CBOrg (Comparative BLAST for Organelles) and PhyloPred-HMM 

(Phylogenetic Prediction of subcellular localization with Hidden Markov Models). These 

new programs were developed to address several shortcomings in existing prediction 

methods. The majority of prediction programs available operate only on complete 

protein sequences, especially those that perform N-terminal localization sequence 

based predictions. Additionally, many prediction programs are not suitable for 

performing high-throughput predictions at the level of transcriptome or genome 

sequencing projects. Finally those programs that do use homology information to make 

predictions do not use phylogenetics and rely on simple BLAST-based scoring systems 

and use training data from a limited taxonomic subset of eukaryotic diversity. CBOrg 

relies on organellar proteome and “subtractive” (whole nuclear genome-encoded 

cellular proteomes minus organellar) databases of several organisms and uses BLAST-

based analyses allowing the similarity profiles of sequences to be rapidly screened to 

determine whether or not their closest homologs are organellar. This approach is 

especially useful for screening genes in partial transcriptomic and genomic data, where 

complete gene sequences are rarer and thus the characteristics of the N-termini of 

encoded proteins cannot always be determined. The second method that I introduce, 
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PhyloPred-HMM, provides a more robust methodology for the prediction of subcellular 

localization using the ‘phylogenomic method’ (Eisen, 1998; Eisen, et al. 1997) and a large 

backing/training database of HMMs based on MRO and non-MRO sequences that are 

sampled broadly from eukaryotic diversity. 

 

2.2 Materials and Methods 

2.2.1 CBOrg 

CBOrg uses simple comparative BLAST (Altschul et al. 1997) searches of query sequences 

(nucleotide or amino acid) against a user-defined set of organellar and subtractive 

proteome databases from several organisms to predict potential subcellular localization. 

CBOrg takes as input a set of sequences of interest in FASTA format and outputs a list of 

putatively targeted sequences at various confidence thresholds. Our initial version of 

CBOrg (v1.0) (Gill et al. 2007; Stechmann et al. 2008) contained cellular and 

mitochondrial proteomes from Human, Mouse, Arabidopsis, Yeast, Trichomonas 

vaginalis (Carlton et al. 2007), and Tetrahymena thermophila (Smith et al. 2007). We 

later later updated with a more recent experimentally derived hydrogenosomal 

proteome of Trichomonas vaginalis (Rada et al. 2011), the mitochondrial proteome of 

Chlamydomonas reinhardtii (Atteia et al. 2009), the mitosome of Entamoeba histolytica 

(Mi-ichi et al. 2009), and the mitosome of Giardia intestinalis (Jedelský et al. 2011) along 

with the accompanying predicted cellular proteomes based on full genome sequences 

for each of these organisms. Comparisons on the larger datasets, and whole proteomes, 

were made using this latest version of CBOrg. 

 

In both versions query sequences are searched against the mitochondrial and 

‘subtractive’ cellular proteome databases with BLAST, and the best aligning sequence 

(henceforth referred to as the ‘best hit’) is returned for each organism represented in 

the total set of databases. If the best hit against the organellar database has a better 
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score than the best hit against the subtractive cellular proteome database, the input 

sequence is classified as ‘organelle localized’ for that organism. In its most liberal 

‘screening’ mode, CBOrg only requires a best hit to the organellar proteome of a single 

organism to be classified as putatively organelle localized. Hits can be evaluated based 

solely on the raw BLAST alignment score or the expect-value (e-value). To handle a wide 

range of input sequence types, including clustered expressed sequence tags (ESTs) from 

transcriptome projects (nucleotide), CBOrg can do BLAST-based comparisons using 

amino acid sequence queries against protein sequence databases (blastp), six-frame 

translated nucleotide sequences against protein sequence databases (blastx), or six-

frame translated nucleotide sequences against six-frame translated nucleotide sequence 

databases (tblastx). In this chapter, and with the default source proteomes and 

genomes, only the blastp and blastx options are used. Figure 2.1 depicts a flow-chart 

summarizing the CBOrg method. 

 

2.2.2 PhyloPred-HMM 

PhyloPred-HMM is a phylogeny-based method developed for the prediction of MRO 

proteins that can be extended to any organelle with the creation of appropriate 

databases. PhyloPred-HMM employs a two-stage prediction process. Each sequence is 

first treated as a query and searched with hmmsearch from the HMMER3 package (Eddy 

1998, 2011) against a database of HMM profiles generated from alignments of 

homologous sequences clustered approximately at the superfamily level (see Database 

Construction). The top scoring profile match for each sequence (if below a user-defined 

e-value threshold (Default: 10)) is selected as the assigned superfamily/sequence cluster 

and the sequence is added to a seed alignment using the cluster's HMM profile with 

HMMER3 (Eddy 1998; 2011). The resulting multiple sequence alignments are then 

automatically trimmed using a custom in-house alignment masking algorithm (described 

in detail below). A maximum-likelihood phylogenetic tree is then estimated using 

FastTree2 (Price et al. 2009; 2010) and subcellular localization information is predicted 
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for the sequence of interest from annotation information associated with known 

sequences in the cluster. If all members of the cluster have the same subcellular 

localization annotation (‘non-mixed’ clusters), then the novel sequence is assigned this 

annotation. Otherwise, if the cluster contains both organellar and non-organellar 

sequences the annotation of the novel sequence is estimated by using one of three 

possible phylogenetic distance metrics (described in detail below). Figure 2.2 graphically 

summarizes the PhyloPred-HMM method. Sequences that cannot be assigned to a 

cluster are compared to the unclustered sequences from the dataset using phmmer, a 

search algorithm from the HMMER3 software package. Annotations for these sequences 

are then based on the annotation of their best matches in the phmmer search. Finally, 

remaining sequences, which have no hit using hmmsearch or phmmer default 

significance cut-offs, cannot be classified and are annotated as non-MRO sequences. 
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FIGURE 2.1 A SCHEMATIC REPRESENTATION OF THE COMPARATIVE BLAST FOR 
ORGANELLES (CBORG) METHOD; non-organelle proteome refers to the set of all nucleus-
encoded proteins with proteins from the organellar (mitochondrial) proteome removed. Top 
scoring results from BLAST searches are compared between databases for localization within 
that organism. Localization data is then compared between organisms in order to sort input 
sequences. Where best-hit localizations differ amongst databases, input sequences are sorted 
based on the level of agreement between the results from the different databases. The level of 
agreement required to determine the annotation is an adjustable variable of the method. 
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FIGURE 2.2 A SCHEMATIC REPRESENTATION OF THE PHYLOPRED-HMM METHOD. 
Query sequences are compared against pre-generated protein family clusters using hmmsearch. 
Sequences with no significant hit to a cluster are compared to unclustered sequences using 
phmmer. Sequences with hits to mixed-member clusters (i.e. clusters with both organellar and 
non-organellar members) are automatically aligned and included in phylogenetic trees. E-values, 
phylogenetic distances, and cluster membership are used to predict localization. 
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2.2.3 Alignment Masking 

Although software tools such as GBlocks (Castresana, 2000; Talavera & Castresana, 

2007) exist for trimming ambiguous regions of multiple alignments, they are based on 

arbitrary metrics and cutoff criteria and do not edit alignments in a similar way to the 

human expert.  Using robust statistical confidence scores based on a modeling approach 

and methods used for constructing alignments (such as the seed HMMs used with 

HMMER3) should provide a superior alternative . To this end, we devised a multiple 

alignment masking tool, AliMask-CS (Alignment Masking with Confidence Scores), that 

takes confidence scores for the columns of a multiple sequence alignment as output by 

HMMER3, FSA (Bradley et al. 2009), GUIDANCE (Penn et al. 2010), or other tools and 

evaluates them along with the percentage of gap characters at a site to determine 

whether a site should be kept or removed from the final masked alignment. A sliding 

window is used to calculate the weighted average of column confidence scores and its 

size can be adjusted by the end user along with all relevant thresholds for the inclusion 

of columns in the final alignment. Informal testing of this method suggested that it could 

be adjusted to more closely match masks generated by human inspection (data not 

shown). For the following analyses, HMMER3 scores were used with a sliding window of 

size seven. Sites kept in the final alignment had a percentage of gap characters less than 

70%, a raw column confidence value greater than or equal to six, and a sliding window 

average score of at least eight. This high-throughput, automated alignment masking tool 

is similar to TrimAL (Capella-Gutiérrez et al. 2009) in its use of a sliding window 

calculation (if desired by the user), and the fact that TrimAL’s similarity and consistency 

scores should be positively correlated with the statistical support values output by FSA 

(Fast Statistical Alignment) and HMMER3. However, because HMMs generated from 

pre-aligned clusters were  used for the final alignments in this study, and the statistical 

support value output by HMM measures the fit of the alignment to the HMM itself, the 

AliMask-CS method based on these values was employed instead of TrimAL. 
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2.2.4 Assigning Localization Annotation Using Phylogenetic Distances 

While more complex methods, such as ancestral state reconstruction, can be used to 

assign annotations associated with leaves (sequences) on phylogenetic trees to 

unknown sequences, here we propose several simpler methods based on phylogenetic 

distances. These methods have the advantage that they are very fast and they can be 

easily and quickly calculated when the number of query sequences, and thus the 

number of phylogenetic trees to be reconstructed, may be large (i.e. hundreds to 

thousands of alignments). Phylogenetic distance, in this chapter, is defined as the tip-to-

tip sum of branch lengths separating two sequences on a phylogenetic tree, a metric 

that is also known as the patristic distance between terminal nodes. Three different 

phylogenetic distance-based measures were used in this work. Given a phylogenetic 

tree with N taxa (Ti’s), one of which corresponds to an unannotated sequence of interest 

(T1) we can calculate the average tip-to-tip phylogenetic distance between T1 and all 

MRO and non-MRO Ti's. This measure is the shortest-average-distance (SAD) method. 

Highly divergent sequences, which result in abnormally long branches on phylogenies 

compared to the average sequence, may skew the SAD values inappropriately, so a 

modified form of the SAD method is calculated by first removing outliers (top and 

bottom 5% of sequences by length from both MRO and non-MRO groups), resulting in a 

outlier-trimmed shortest-average-distance (T-SAD). A third measure for assignment of 

localization is to determine the nearest tip-to-tip neighbor of the sequence of interest 

and assign to the latter the annotation associated with this neighbor (i.e. assign the 

annotation of the Ti that has the smallest distance to T1). This latter method will be 

referred to throughout the chapter as the nearest distance (ND) assignment.  

 

2.2.5 Database Construction 

To construct an appropriate source database for PhyloPred-HMM, all Eukaryotic MRO 

(Subcellular Localization: Mitochondrion, Hydrogenosome, Mitosome) and non-MRO 

sequences were retrieved from Uniprot release 2011_06 (Jain et al. 2009; Consortium 
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2011) and clustered at the 100% redundancy level. Only entries with a status of 

reviewed, that is sequences whose annotations were reviewed by a biocurator instead 

of simply automated predictions, were selected, and any confidence level 

(experimental, possible, probable, by similarity) for MRO localization was allowed. In 

addition the annotated MRO and non-MRO sequences from Tetrahymena thermophila 

(Smith et al. 2007) and the Trichomonas vaginalis genome project (Carlton et al. 2007a) 

were included for an overall total of 13,652 MRO and 147,669 non-MRO sequences 

(161,321 sequences total). Fragments were not initially excluded from the search 

parameters in order to increase taxonomic coverage of the sequences that were 

retrieved, especially for poorly sampled microbial eukaryotic groups.  

 

2.2.5.1 Sequence Clustering and Alignment 

Sequences were clustered using several de novo clustering algorithms implemented in 

the Spectral Clustering of Protein Sequences (SCPS) program (Nepusz et al. 2010) 

including: hierarchical clustering (agglomerative, e-value cutoff of 10-6), the Markov 

Clustering algorithm (MCL) with an inflation parameter of 2 (MCL-Inf2), and MCL with 

default settings (MCL-Default). MCL, as implemented in SCPS is essentially identical to 

TribeMCL (Enright et al. 2002). The input to each of these clustering algorithms is a table 

of all-versus-all BLAST e-values (Altschul et al. 1997). For MCL, e-values are transformed 

by SCPS into Euclidean distances prior to clustering (see Nepusz, et al. 2010 for details). 

SCPS offers a number of possible transformations; the default method was used in this 

work. Output clusters with two or fewer sequences were separated from the main 

group as being unsuitable for phylogenetic analysis and placed with sequences that 

could not be clustered. There were no clusters containing only two sequences that 

contained both one MRO and one non-MRO sequences. Clustered sequences were 

aligned using the multi-threaded version of MAFFT 6 (Katoh 2002; Katoh et al. 2005; 

Katoh & Toh 2008, 2010). Because there are no support values for the initial alignments 

of source clusters, MAFFT (Multiple Alignment Fast Fourier Transform) alignments were 
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trimmed using a gap percentage cutoff (60%) for every aligned column. Trimmed 

alignments were input into HMMER3 to generate a library of HMM profiles.  

 

2.2.5.2 Expanded and Cleaned Dataset 

After initial testing, the Uniprot dataset created as described above was cleaned by 

removing all sequences longer than 6000 amino acids (80 sequences), a filtering 

procedure that removed only two mitochondrial sequences (Nesprin-2 in Human and 

Mouse). Polypeptide fragments that were less than 50% of the average sequence length 

of the cluster (with the MCL-Inf2 clustering algorithm) were also removed. To improve 

the taxonomic coverage of microbial eukaryotes, complete predicted proteome sets of 

sequences for Giardia intestinalis (Jedelský et al. 2011), Entamoeba histolytica (Mi-ichi 

et al. 2009), and Chlamydomonas reinhardtii (Atteia et al. 2009) were added all of which 

included sequences with experimentally validated MRO localization annotations. Giardia 

intestinalis sequences were retrieved from genome build 2.5, Assemblage A, at 

GiardiaDB (Aurrecoechea et al. 2009, 2010). In addition, a proteomic survey of the 

hydrogenosome of Trichomonas vaginalis was recently published leading us to update 

the number of hydrogenosome localized proteins in its predicted proteome from 138 to 

228 (Rada et al. 2011). These sequences, and the rest of the proteome, were retrieved 

from build 1.3 at TrichDB (Aurrecoechea et al. 2009, 2010). All sequences from the 

appropriate genera were removed from the initial dataset prior to addition of the new 

sequences. This enhanced dataset contained 276,262 sequences, 14,871 of which are 

mitochondrial or MRO-derived.  

 

2.2.6 Testing Predictions 

CBOrg was tested using a small dataset of 15 representative sequences from a 

Blastocystis transcriptome project (Stechmann et al. 2008); eight of which were MRO 

localized and seven that were non-MRO (Stechmann et al. 2008; A. Tsaousis and A. J. 
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Roger, unpublished data). This small dataset was chosen to reflect several MRO localized 

sequences present both in canonical mitochondria and in reduced hydrogenosomes. A 

small dataset was also necessary to facilitate comparison against several other classifiers 

that have web-only interfaces and hence cannot be used to analyze large data sets. 

 

PhyloPred-HMM performance was evaluated with the starting Uniprot dataset using 

several differing approaches. First, in order to assess the clustering algorithms, 

annotated sequences from the Uniprot dataset were divided into three non-overlapping 

sets of randomly selected sequences to form three jack-knifed test sets. Sequences from 

the appropriate test set were removed from their respective multiple sequence 

alignments and HMM profiles were re-generated using HMMER3. Query sequences 

were assigned to clusters using HMMER3, with the same parameters used in the full 

PhyloPred-HMM method. Additionally, to test our three proposed phylogenetic 

assignment methods (i.e. SAD, T-SAD and ND), for all mixed-member clusters, we 

treated each sequence in turn as an unknown query and calculated each of the three 

distance measures. 

 

To compare PhyloPred-HMM performance to existing programs such as MultiLoc2 (Blum 

et al. 2009), the Höglund reduced homology test dataset was used. This dataset contains 

5959 reviewed sequences from release 42 of Uniprot, 510 of which are mitochondrial. 

All sequences in this dataset have been reviewed and represent proteins from only 

three eukaryotic groups: the animals, Fungi, and plants. To test this dataset, identical 

matches (based on the Uniprot ID) were removed from the PhyloPred-HMM sequence 

set as  described above. A second test was done by removing all sequences with more 

than 80% sequence identity. 

 



48 
 

Because the majority of subcellular localization prediction methods have been almost 

exclusively trained and tested on a very narrow range of eukaryotic diversity, we tested 

PhyloPred-HMM, CBOrg, and MultiLoc2 on the complete proteomes of two microbial 

eukaryotes: Trichomonas vaginalis and Tetrahymena thermophila. These organisms 

possess two very distinct MRO types: T. thermophila has canonical mitochondria, albeit 

with some unique adaptations to its lifestyle (Smith et al. 2007), whereas Trichomonas 

vaginalis  possesses anaerobically-functioning hydrogenosomes, have reduced 

proteomes resulting from the loss of many aerobic mitochondrial functions, but that 

also contain a number of distinct metabolic pathways which function in low oxygen 

conditions (Carlton et al. 2007b; Smíd et al. 2008; Rada et al. 2011; Schneider et al. 

2011).  

 

A smaller protist-only test set was constructed for the comparison of the performance 

of PhyloPred-HMM to CBOrg, MultiLoc2, PredSL, and iPSORT in predicting MRO 

proteomes in these non-model system eukaryotes. This dataset was constructed by 

randomly sampling 500 MRO and 5000 non-MRO sequences from the complete 

proteomes of microbial eukaryotes included in this study including: Tetrahymena 

thermophila, Trichomonas vaginalis, Chlamydomonas reinhardtii, Entamoeba histolytica, 

and Giardia intestinalis. Sequences were randomly chosen to prevent any investigator 

bias, to ensure that MRO sequences with and without N-terminal targeting peptides 

would be selected, and to ensure that non-MRO sequences would cover a range of 

other possible localizations. With respect to the latter point, the inclusion of 

Chlamydomonas reinhardtii sequences could potentially result in some chloroplast 

targeted proteins being included in the dataset, which represents a potential pitfall for 

exclusively N-terminus sequence-based classifiers. 
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2.2.7 Assessing Performance 

Several standard statistical measures of performance were used including precision, 

recall, the F1 score, the Matthews Correlation Coefficient (MCC)  (Baldi et al. 2000), and 

the accuracy (ACC) to compare CBOrg and PhyloPred-HMM to other prediction 

programs with respect to their true positive (TP), false positive (FP), true negative (TN) 

and false negative (FN) classification scores. These measures are defined in equations 1-

5 below. Note that the recall is also known as the sensitivity or statistical power of a 

test. 

 

            
  

     
                                                      Eqn. 1 

       
  

     
                                                         Eqn. 2 

     
                  

                  
                                                  Eqn. 3 

    
                

                             
                                  Eqn. 4 

    
     

            
                                                      Eqn. 5 

 

The precision is the probability that a sequence predicted to be MRO-localized is truly 

MRO-localized, while the recall is the probability that a truly MRO-localized sequence 

will be correctly predicted. It is possible to enhance recall at the expense of precision, 

which results in an increase in the number of false positive predictions. The F1 score and 

MCC are two different measures that balance precision and recall scores, acting as 

overall assessments of performance along both axes. Additionally the MCC is considered 

to be a more balanced measure of performance, compared to simple percentages or the 

accuracy especially when the membership of the two classes are very different as is the 
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case here in the MRO protein set which is small relative to the non-MRO set which is 

much larger (Baldi et al. 2000). Balanced in this sense applies to the trade-off between 

the sensitivity and specificity of a measure. However, the MCC does tend to favour 

minimizing the number of false positives as it will return a high correlation when the 

number of false positives is low but the number of true positives is also low (Baldi et al. 

2000). The MCC returns a value of 1.0 in the case of a perfect predictor, 0 for random, 

and -1.0 in the case of a perfectly inverse predictor.  

 

2.3 Results 

2.3.1 CBOrg 

CBOrg’s performance was assessed on a set of 15 sequences from a Blastocystis 

transcriptome project (Stechmann et al. 2008) and compared against the performance 

of twelve other classifiers: TargetP, SherLoc, Predotar, MitoProt, CELLO, PProwler, PA-

SUB, WoLF-PSORT, PSORT II, iPSORT, Mitopred, and yimLOC. (Table 2.1) In this analysis 

CBOrg was tested in its least stringent “screening” mode which only requires a better hit 

to the MRO database than non-MRO database for one (or more) organism(s) (note 

however that CBOrg output also ranks results by the number of organisms where the 

MRO hit was better than the best non-MRO hit, which can be used as a kind of 

confidence measure). CBOrg performed comparably to many of the classifiers tested 

against on this small, limited set of protein sequences but did yield a large number of 

false positives (3). WoLF-pSORT, yimLOC, and iPSORT also had high performance. 

 

2.3.2 Sequence Clustering 

SCPS (Nepusz et al. 2010) implements several different de novo clustering methods 

including spectral clustering, hierarchical, the Markov Cluster algorithm (MCL), and 

connected components analysis. All of these clustering methods can potentially produce  
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TABLE 2.1 PERFORMANCE OF CBORG AND SEVERAL OTHER SELECTED CLASSIFIERS ON 
A DATASET OF SEQUENCES FROM A BLASTOCYSTIS TRANSCRIPTOME SEQUENCING 
PROJECT. Default options were used for all prediction programs through their respective online 
interfaces. M indicates an MRO localization whole O is for other. 

 True MRO Localized 

 [FeFe]-
Hydrogenase 

PFO ND4 Serine 
Dehydrogenase 

mIF2-
Like 

[2Fe-2S] 
Ferredoxin 

mtHSP70 MCP 

TargetP M M O O O M M N 

SherLoc M M O O M M M M 

Predotar M M O O O M M O 

MitoProt M M M M O M M O 

CELLO O O O M O O M O 

PProwler M O O O O M M O 

PA-SUB M M M O O M O M 

WoLF-
PSORRT 

M M M M O M M M 

PSORTII M M O M O M M O 

iPSORT M M O M O M M O 

Mitopred M M O M O O M O 

yimLOC M M M M O M M M 

CBOrg O M M O M M M M 

 True Non-MRO Localized 

 RNAse-L-
Inhibitor 

6PGD LCFA-
CoA-
Ligase 

Acyl-CoA-
Binding 
Protein 

FGAR 
Synthase 

Hydroxypyruvate 
Reductase 

Sodium/Chloride 
Transport 

TargetP O O O O O O O 

SherLoc O O O O O O M 

Predotar O O O O O O O 

MitoProt O O O O O O O 

CELLO O O M O O O O 

PProwler O O O O O O O 

PA-SUB M O O O O O O 

WoLF-
PSORRT 

O O M O O O M 

PSORTII O O O O O O O 

iPSORT M O O O O O O 

Mitopred O O O O O O O 

yimLOC O O O O O O O 

CBOrg M O M M O O O 
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very different clustering results, which can affect predictive accuracy. Additionally each 

of these clustering methods has different parameters that can be adjusted. For these 

analyses, two simple widely-used clustering methods were employed: hierarchical and 

MCL. For the MCL method two different inflation (Inf) parameters were selected: the 

default setting of 1.2 and a larger inflation parameter of two. This inflation parameter 

controls the granularity of clustering and can range from a low of one to a high of five 

(Enright et al. 2002). The larger the inflation parameter, the smaller and tighter the 

clusters will tend to be. Table 2.2 summarizes the results, in terms of numbers and sizes 

of clusters, as well as the number of sequences that were not included in clusters with 

at least three members, for each of the three clustering methods used on the original 

Uniprot dataset. 

 

TABLE 2.2 A COMPARISON OF THE CLUSTERING METHODS USED TO GROUP 

EUKARYOTIC SEQUENCES TOGETHER AT THE FAMILY AND SUPERFAMILY LEVEL. Total 

number of clusters, number of sequences not placed in clusters, and average cluster size 

are indicated. 

Clustering 

Method 

Number of 

Clusters 

Number Unclustered Average Number of 

Sequences per Cluster 

Hierarchical 10642 29525 12 

MCL-Default 5673 9646 26 

MCL (Inf = 2) 8890 15708 16 
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2.3.3 Testing PhyloPred-HMM Predictions 

2.3.3.1 Cluster Assignment Accuracy 

We used several complementary techniques to evaluate: i) the performance of 

PhyloPred-HMM as a general framework, ii) the individual clustering methods used, and 

iii) our proposed phylogenetic distance-based annotation assignment methods. First, 

three jack-knifed test sets were searched against the HMM profiles of the clustered 

sequences using HMMER3. Several possible results could be obtained. For sequences 

that belong to a cluster, HMMER3 can assign the query sequence correctly to a cluster, 

to an incorrect cluster, or incorrectly to no cluster. Conversely, for query sequences that 

do not belong to a cluster, HMMER3 can assign the query incorrectly to a cluster or 

correctly by not returning a significant hit. Table 2.3 shows the accuracy (calculated 

using equation 5) for each test set and each clustering method. Cluster assignment 

accuracy is virtually identical for both of the Markov Clustering Algorithm (MCL) 

methods and lowest for hierarchical clustering (HClust). 

 

TABLE 2.3 ACCURACY ON THREE JACK-KNIFE TEST SETS FOR ALL THREE CLUSTERING 
METHODS USED TO CONSTRUCT PHYLOPRED-HMM DATABASES. Best performing results 
are depicted in bold. 

 MCL-Default MCL-Inf2 HClust 

Test Set 1 0.94 0.94 0.86 

Test Set 2 0.94 0.94 0.86 

Test Set 3 0.95 0.94 0.85 

 

To determine whether any biases existed in cluster assignment accuracy with HMM 

profiles between MRO, non-MRO, or mixed clusters, the accuracy was re-evaluated, but 

was limited only to sequences that belong to clusters (i.e. excluding unclustered 

sequences). Sequences that were not clustered by the clustering method, or that were 
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placed in clusters too small for phylogenetic analysis were not included in order to 

assess only HMMER3’s ability to correctly place sequences in to the appropriate cluster. 

Cluster assignment accuracy is again virtually identical between the two MCL-based 

clustering methods and lowest for HClust. Performance was virtually identical across 

test sets (Table 2.4). MCL with default parameters performs slightly better on the MRO 

and non-MRO only datasets, but MCL with an inflation parameter of two produces 

slightly better accuracy for mixed clusters. This may be a result of the difference in the 

number of mixed clusters between the two methods (665 with the default parameters, 

728 with an inflation parameter of two) or because the resulting clusters are small and 

tighter which results in better HMMs, or both. 

 

Table 2.4 Cluster assignment accuracy of sequences using HMM profiles and 

HMMSearch from HMMER3 package across three jack-knife datasets and three different 

clustering method and parameter settings. Best performing clustering method in bold 

for each dataset.  

 MRO 

 MCL-Default MCL-Inf2 Hclust 

Test Set 1 0.98 0.95 0.85 

Test Set 2 0.97 0.96 0.86 

Test Set 3 0.98 0.97 0.86 

                                    Non-MRO 

Test Set 1 0.95 0.94 0.88 

Test Set 2 0.95 0.94 0.88 

Test Set 3 0.95 0.94 0.88 

                                       Mixed 

Test Set 1 0.93 0.95 0.73 

Test Set 2 0.93 0.96 0.73 

Test Set 3 0.93 0.95 0.73 
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2.3.3.2 Phylogenetic Distance Measures 

To test the hypothesis that, in general, sequences will have the same subcellular 

localization as their closest homologs the three proposed distance measures: shortest 

average distance (SAD), trimmed shortest average distance (T-SAD), and nearest 

distance (ND) were calculated for every sequence in a mixed-member cluster. 

Localization was assigned by one of these measures for each sequence in turn, treating 

it as a novel query. The predicted localization could then be classified as true positive 

(TP), false positive (FP), true negative (TN), or false negative (FN). Positives belong to the 

MRO class and negatives non-MRO. Performance was assessed by calculating the 

Precision, Recall, F1 score, and Matthews Correlation Coefficient (MCC) (Table 2.5).  

 

TABLE 2.5 PERFORMANCE OF EACH OF THE THREE PROPOSED PHYLOGENETIC 
DISTANCE METHODS FOR ANNOTATIONS AS EVALUATED BY PRECISION, RECALL, F1 
SCORE, AND MCC. Each measure was evaluated on the mixed clusters that result from each of 
the three tested clustering methods. The best performing measure in each category, for each 
clustered set, is indicated in bold. 

Clustering Distance Precision Recall F1 Score MCC 

HClust SAD 0.6157 0.8557 0.7161 0.5734 

T-SAD  0.6107 0.8521 0.7115 0.5660 

ND 0.8769 0.9030 0.8898 0.8389 

MCL-Inf2 SAD 0.5808 0.9146 0.7104 0.6032 

T-SAD 0.5847 0.9129 0.7128 0.6062 

ND 0.9112 0.9246 0.9182 0.8880 

MCL-Default SAD 0.4577 0.9159 0.6104 0.5361 

T-SAD 0.4596 0.9128 0.6114 0.5367 

ND 0.9274 0.9390 0.9332 0.9176 
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The F1 score and MCC are both widely considered superior to Precision, Recall, or 

Accuracy alone when assessing the performance of a classifier, particularly when the 

size of the classification categories are of different sizes as is the case for MRO and Non-

MRO sequences (Baldi et al. 2000; Carugo 2007). Performance across the three 

clustering algorithms is highly similar as measured by either the MCC or F1 score. For a 

given clustering method performance differs sharply between the SAD/T-SAD measures 

and the ND method of annotation assignment with the latter generally performing the 

best. This difference is primarily driven by the precision scores; there are markedly 

fewer false positive predictions using the ND method for classification. No significant 

difference was observed between the trimmed (T-SAD) and standard (SAD) forms of the 

shortest average distance. 

 

2.3.3.3 Comparison on Höglund Dataset 

The foregoing results suggest that the PhyloPred-HMM method works reasonably well 

and validates the use of the proposed phylogenetic distance methods, with the nearest 

distance (ND) measure showing surprisingly better overall performance. To compare 

PhyloPred-HMM to several existing prediction methods, such as MultiLoc (Höglund et 

al., 2006b), we evaluated their performance on the Höglund test dataset of 

mitochondrial and non-mitochondrial sequences (Table 2.6). No sequence in this 

dataset is more than 80% identical to any other. After removing identical sequences (by 

Uniprot ID) from the PhyloPred-HMM database, this test set was also used to evaluate 

the relative performance of PhyloPred-HMM and CBOrg. In the case of CBOrg the 

human and yeast proteomes were not included as source databases to avoid any 

potential exact matches. The reported performance values for MultiLoc and PSORT in 

table 2.6 come from the MultiLoc publication (Höglund et al., 2006b). 
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TABLE 2.6 PERFORMANCE OF VARIOUS CLASSIFIERS AS MEASURED BY THE PRECISON, 
RECALL, F1 SCORE, AND MCC ON THE HÖGLUND DATASET. Both the SAD and ND 
measures are reported for PhyloPred-HMM 

 HClust MCL-Default MCL-Inf2 CBOrg MultiLoc PSORT 

SAD ND SAD ND SAD ND  

Precision 0.73 0.87 0.45 0.79 0.59 0.83 0.43 - - 

Recall 0.92 0.94 0.92 0.94 0.92 0.93 1.00 0.70 0.88 

F1 0.81 0.90 0.60 0.86 0.72 0.88 0.60 - - 

MCC 0.80 0.89 0.60 0.85 0.71 0.87 0.61 0.83 0.58 

 

 

PhyloPred-HMM was the best performing classifier using this test set, with an MCC 

score that was slightly higher than that of MultiLoc and much higher, regardless of the 

clustering method used, than CBOrg or PSORT. In all cases the ND measure 

outperformed SAD (T-SAD was not reported as it was virtually identical to SAD). CBOrg 

had perfect recall, all 510 mitochondrial proteins from the dataset were recovered; 

however, it had low precision (683 false positives), which is reflected in the MCC. The 

MultiLoc and PSORT values are taken from the MultiLoc publication (Höglund et al., 

2006b) where only recall and the MCC were reported and it should be noted that no 

sequence in the test set was more than 30% identical to any sequence in the training 

set. In the context of a machine learning classifier this is desirable, to ensure the test 

data is sufficiently distinct enough from the training data set. Note; however, in the case 

of PhyloPred-HMM and CBOrg we are explicitly using homology information to guide 

our predictions. 

 

2.3.4 Improved Dataset 

To improve the quality of the PhyloPred-HMM clusters, as well as the taxonomic and 

functional coverage, the original Uniprot dataset was improved upon as described in 
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section 2.2.5.2. All-versus-all BLAST comparisons were  then re-computed and the 

sequences were re-clustered using MCL with an inflation parameter of two, as this 

method seemed to result in an intermediate number and size of clusters (compared to 

default MCL parameters and hierarchical clustering) while still allowing for a high-level 

of performance. All subsequent comparisons of PhyloPred-HMM were done using this 

new set of sequences and clusters. Performance of PhyloPred-HMM with the new 

sequence database and clusters was largely unchanged on the Höglund dataset, 

although there was a drop in precision using the shortest-average-distance 

measurement (SAD) but a gain using the nearest distance (ND) measure. Precision, 

recall, F1 score, and MCC using SAD were 0.47, 0.92, 0.62, and 0.61 while for the nearest 

ND measure they were 0.86, 0.93, 0.89, and 0.88 respectively. The performance gain in 

the ND measure may be explainable by the removal of long sequences, which may link 

together distinct clusters depending on what domains are present, and the removal of 

short fragments. These factors could have a profound impact on both the alignment 

estimation and phylogenetic reconstruction.  

 

2.3.4.1 Comparison on the Höglund-80 Dataset 

To demonstrate how performance is affected by the taxonomic coverage and the 

presence of close homologs in the database, the same Höglund test dataset was again 

used, but this time any sequences more than 80% identical to the queries were removed 

from the PhyloPred-HMM database of clustered and aligned sequences (Höglund-80). 

Precision, recall, F1 score, and MCC using SAD were 0.41, 0.80, 0.54, and 0.52 while for 

the ND measure they were 0.75, 0.75, 0.75, and 0.73 respectively. These values are 

contrasted with those reported in table 2.6. 
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2.3.4.2 Microbial Eukaryote Whole Proteome Test 

Table 2.7 shows the clustering statistics for the new dataset and the changes in cluster 

composition (MRO, non-MRO, and Mixed clusters) when several different test datasets 

are constructed. In addition to the two tests described above (Höglund and Höglund-80) 

we also analysed performance on the Tetrahymena thermophila and Trichomonas 

vaginalis proteomes.  These two proteomes are from two distantly related microbial 

eukaryotes in two very different “super-groups”. Tetrahymena is a ciliate belonging to 

the Alveolata that contains a ‘canonical’ aerobic mitochondrion while Trichomonas 

contain hydrogenosomes and belongs to the Excavata. These two organisms are much 

more distantly related than any two organisms in the test and training sets upon which 

most subcellular prediction programs are trained.  Furthermore their MROs represent a 

much broader range of organellar diversity and are potentially the most difficult 

organellar proteomes to predict.  

 

2.3.4.2.1 Comparison on Two Complete Microbial Eukaryotic Proteomes 

Several other subcellular localization prediction methods were selected to compare to 

PhyloPred-HMM on these two microbial eukaryotic proteomes based on their previously 

published performance and their suitability for analysis on complete proteomes of this 

size (Tetrahymena thermophila has 27,410 protein sequences in its proteome whereas 

Trichomonas vaginalis has 59,672). In these analyses, we also included the type I error 

rate (false positive rate, equation 6) for all classifiers. The false positive rate was not 

calculated on the previous datasets as exact false and negative counts were not 

available for MultiLoc2. 

 

                    
  

     
                                                      Eqn. 6 
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TABLE 2.7 NUMBER OF CLUSTERS AND CLUSTER COMPOSITION FOR THE WHOLE 
DATASET AND CHANGES WHEN SPECIFIC SEQUENCES FROM TEST SETS ARE REMOVED. 

Dataset No. Clusters No. Mito No. non-

Mito 

No. Mixed Average 

Size (Std 

Dev) 

Whole 

Dataset 

20769 409 (0.020) 18892 

(0.909) 

1468 (0.071) 12.427 

(50.607) 

No 

Trichomonas 

17793 415 (0.023) 16035 

(0.902) 

1343 (0.075) 11.224 

(30.982) 

No 

Tetrahymena 

18862 431 (0.023) 17136 

(0.908) 

1295 (0.069) 12.486 

(51.484) 

No Höglund 20583 404 (0.020) 18724 

(0.909) 

1455 (0.071) 12.271 

(50.549) 

No Höglund 

80 

20299 385 (0.019) 18499 

(0.911) 

1415 (0.070) 11.928 

(50.205) 

 

 

Performance on both proteomes is not very good for any classifier (Table 2.8), but both 

CBOrg and PhyloPred-HMM outperform MultiLoc2, a relatively high performance 

classifier according to previous comparisons in the literature (Blum et al. 2009). Again, 

the ND measure outperforms SAD, driven by an increase in precision and only a slight 

decrease in recall. As expected, performance on Tetrahymena thermophila is higher 

than that on Trichomonas vaginalis, regardless of the method used. Because 

Trichomonas possesses a hydrogenosome instead of mitochondria, it contains many 

proteins that are components of its unique metabolic pathways. Organisms with these 

anaerobic organelles are poorly represented in public databases such as Uniprot and in  
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TABLE 2.8 COMPARISON OF PERFORMANCE MEASURED BY PRECISION, RECALL, THE F1 
SCORE, AND THE MCC ON TWO WHOLE PROTEOME DATASETS FROM MICROBIAL 
EUKARYOTES. For PhyloPred-HMM both the Shortest-Average-Distance (SAD) and Nearest 
Distance (ND) predictive measures are used. 

 Tetrahymena thermophila Trichomonas vaginalis 

Precision Recall FPR F1 

Score 

MCC Precision Recall FPR F1 

Score 

MCC 

MultiLoc2 0.07 0.56 0.16 0.12 0.15 0.008 0.25 0.12 0.015 0.025 

CBOrg 0.08 0.51 0.13 0.14 0.17 0.014 0.34 0.12 0.027 0.047 

PhyloPred-

HMM 

(SAD) 

0.16 0.6 0.067 0.25 0.28 0.03 0.35 0.037 0.06 0.09 

PhyloPred-

HMM (ND) 

0.43 0.53 0.015 0.47 0.46 0.12 0.20 0.0057 0.15 0.15 

 

 

addition, when homologous sequences are present in Uniprot they may not be 

annotated with subcellular localization data, especially in the reviewed category. 

Inclusion of the Trichomonas proteome in the PhyloPred-HMM database should 

improve predictions for data from other anaerobic eukaryotes. PhyloPred-HMM using 

the SAD measure produces better results, in both precision and recall, compared to 

MultiLoc2. In the comparison performed here the GO-Loc sub-classifier from MultiLoc2 

was not used due to time constraints. As briefly described in section 2.1.1.10, MultiLoc2 

contains several sub-classifiers whose outputs are fed into an overall master classifier. 

Two additions in MultiLoc2 are Go-Loc and Phylo-Loc. Go-Loc uses GO terms associated 

with a sequence for classification of subcellular location, while Phylo-Loc uses BLAST-

based phylogenetic profiles; the authors of MultiLoc2 report the bulk of improvement in 

MultiLoc2 over MultiLoc comes from the Phylo-Loc sub-classifier (Blum et al. 2009). 

When gene ontology (GO) terms are not available, as is the case for most of the 

sequences tested here from Tetrahymena and Trichomonas, GO term assignment is 
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performed as a first stage based on homology, adding an additional layer of annotation 

transfer in the process of subcellular location classification.  

 

2.3.4.3 Performance on a Random Microbial Eukaryotic Test Set 

Other prediction tests that were feasible for the comparison of a larger range of 

classifiers were conducted on a test set of randomly selected sequences from microbial 

eukaryotes with completed genome sequences and experimentally determined MRO 

proteomes (Table 2.9). These organisms represent broad taxonomic diversity and MRO 

function. While this dataset will be somewhat biased towards sequences from the larger 

proteomes of Tetrahymena, Trichomonas, and Chlamydomonas it should not be unfairly 

balanced in terms of internal homology nor towards sequences with or without N-

terminal targeting sequences. This random test set allows us to compare the 

performance of PhyloPred-HMM to several different classifiers for which prediction of 

entire proteomes is not feasible because the classifier software is only as a web-based 

tool or because of run-time constraints. For CBOrg, only the yeast and human 

proteomes were used as the comparative databases. 

 

Similar to the whole proteome comparisons, the performance of PhyloPred-HMM in 

these trials, using both the SAD- and ND-based annotations and all measures of 

performance, is superior to that of either MultiLoc2 or iPSORT. While iPSORT and PredSL 

only predict the presence of N-terminal targeting signals, and therefore cannot 

successfully predict any sequences with an internal targeting sequence, MultiLoc2 is a 

mixed classifier and does not rely exclusively on the presence of N-terminal targeting 

signals for prediction.  
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TABLE 2.9 COMPARISON OF SEVERAL SUBCELLULAR LOCALIZATION CLASSIFIERS ON A 
TEST DATASET OF 500 RANDOMLY SELECTED MRO AND 5000 RANDOMLY SELECTED 
NON-MRO SEQUENCES. Sequences were extracted from several whole proteomes of 
microbial eukaryotes and performance measured by the Precision, Recall, F1 Score, and MCC. 
The best score in each category is depicted in bold. 

 Precision Recall FPR F1 Score MCC 

CBOrg 0.30 0.32 0.075 0.31 0.24 

PhyloPred-

HMM (SAD) 

0.47 0.43 0.047 0.45 0.40 

PhyloPred-

HMM (ND) 

0.82 0.30 0.0063 0.44 0.47 

MultiLoc2 0.20 0.36 0.14 0.26 0.17 

iPSORT 0.20 0.21 0.087 0.20 0.12 

PredSL 0.28 0.22 0.057 0.25 0.18 

 

 

2.3.5 Properties of Clusters and Phylogenetic Trees and Predictive Accuracy 

To improve performance of a phylogenomic prediction method it is helpful to identify 

any potential properties of clusters, or their resulting phylogenetic trees, that affect the 

ability to correctly predict localization. Tetrahymena thermophila has 3779 sequences 

out of 27410 that had their best match to a mixed cluster using HMMER3, while 

Trichomonas vaginalis had 4475 of 59672 (Table 2.10). For all hits we recorded the 

number of sequences in the matching cluster, the proportion of MRO sequences,  the 

proportion of cases where the ND or the SAD measure correctly predicted the 

localization, the normalized tree length (the sum of all branch lengths divided by the 

number of taxa), the difference between MRO and non-MRO distance for both 

phylogenetic measures, and the true localization of the query sequence. Using the R 

statistical environment and rattle (Williams 2009), an R-plugin for exploratory data 

analysis, we conducted an exploratory data analysis to identify characteristics of clusters 
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and phylogenetic trees where our simple phylogenetic distance measures failed to 

correctly predict localization, and potentially identify clusters where the SAD measure 

provided the correct localization but the ND measure did not. Consistent with previous 

experiments, the SAD measure returns more positive MRO predictions, but at the 

expense of an increase in false positives.  

 

TABLE 2.10 SUMMARY OF PREDICTIONS OF SAD AND ND PHYLOGENETIC MEASURES 
ON TWO MICROBIAL EUKARYOTIC PROTEOMES. The number of query sequences from the 
proteome with hits to clusters containing both MRO and non-MRO sequences is shown, as well 
as the number of those hits that are truly MRO query sequences. The total number of correct 
predictions (MRO and non-MRO queries) for both the SAD and ND measures and the number of 
correct predictions when only MRO queries are considered are also shown 

 Mixed 

Hits 

MRO 

Query 

SAD 

Correct 

(Total) 

ND 

Correct 

(Total) 

SAD 

Correct 

(MRO) 

ND 

Correct 

(MRO) 

Tetrahymena 

thermophila 

3779 259 1936 

(51%) 

3302 

(87%) 

203  

(78%) 

165  

(64%) 

Trichomonas 

vaginalis 

4475 79 1557 

(50%) 

2870 

(92%) 

68  

(86%) 

36 

(46%) 

 

 

The number of sequences in a cluster and the proportion of those sequences that 

belong to an MRO are slightly negatively correlated with one another, in both 

Tetrahymena and Trichomonas (Figure 2.3). One possible combination of factors that 

may explain the difference between the SAD and ND measures is the proportion of MRO 

sequences and the normalized tree length (Figure 2.4). Both the ND and SAD measures 

will be affected by the overall length of the phylogenetic tree, but they may react 

differently to the presence of long-branching sequences. This is particularly true as the 

proportion of MRO sequences in clusters changes. When the proportion of MRO and 
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non-MRO sequences are nearly even, the presence of longer branching sequences can 

be averaged out in the SAD measure, but not the ND measure. However, when these 

factors were plotted against one another for both Tetrahymena thermophila and 

Trichomonas vaginalis, no clear trend or region could be identified where the SAD 

measure consistently outperformed the ND measure (Figure 2.4), although there was a 

slight tendency for the longest average normalized branch length clusters with the 

smallest proportion of MRO sequences to be best predicted by SAD.  

 

We also examined in the context of the proportion of MRO sequences and the 

normalized tree length, cases where the SAD and ND measures predicted the same 

localization, either correctly or incorrectly (Figure 2.5). As with the previous analysis, no 

obvious trend could be found in the data. Both correct and incorrect predictions were 

scattered along both axes.  

 

One factor that may influence the predictive accuracy of these measures is the absolute 

value of the difference between the MRO and non-MRO distance for the proposed 

phylogenetic distance measure. If this value were very small, for example, we might 

expect both measures to frequently make mistakes because of random errors in the 

distance values, whereas larger differences should perhaps lead to less noisy 

predictions. We examined whether this was the case and plotted the results in Figure 

2.6. The cases where the SAD measure correctly predicted localization and ND did not 

correspond to cases where the absolute difference between the closest MRO and 

closest Non-MRO was quite small. The region of the plot for the case where ND was 

correct and SAD incorrect, overlaps with the converse, however it seems to include 

more cases where larger nearest and average distances were correctly predicted. 
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FIGURE 2.3 THE PROPORTION OF MRO SEQUENCES IN A CLUSTER AS A FUNCTION OF 
CLUSTER SIZE FOR BOTH TETRAHYMENA THERMOPHILA (A) AND TRICHOMONAS 
VAGINALIS (B). In both cases there is a slight negative correlation with fewer MRO sequences, 
by proportion, in larger clusters. The majority of the data however, is clustered between 0 and 
200 sequences per cluster with a broad distribution for the proportion of sequences. 



67 
 

 

FIGURE 2.4. THE NORMALIZED TREE LENGTH VERSUS THE PROPORTION OF MRO 
SEQUENCES IN A CLUSTER, AS SUNFLOWER PLOTS, FOR BOTH TETRAHYMENA 
THERMOPHILA (A) AND TRICHOMONAS VAGINALIS (B). Blue points are cases where the 
ND Measure was correct while red points are cases where the SAD measure was correct. Cases 
where both measures were correct or incorrect are not shown. Red spoke lines from blue dots 
and yellow from red dots quantify the density of overlapping points in that region with the more 
spokes corresponding to higher density. 
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FIGURE 2.5 THE NORMALIZED TREE LENGTH VERSUS THE PROPORTION OF MRO 
SEQUENCES IN A CLUSTER, AS SUNFLOWER PLOTS, FOR BOTH TETRAHYMENA 
THERMOPHILA (A) AND TRICHOMONAS VAGINALIS (B). Blue points are cases where both 
the SAD and ND measures were correct while red points are cases where both were incorrect. 
Red spoke lines from blue dots and yellow from red quantify overlap of points with length of the 
spoke proportional to density 
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FIGURE 2.6 DIFFERENCE BETWEEN MRO AND NON-MRO DISTANCE FOR THE ND 
MEASURE VERSUS SAD MEASURE FOR BOTH TETRAHYMENA (A) AND TRICHOMONAS 
(B) AS SUNFLOWER PLOT AS IN FIGURE 4. Cases where both the SAD and ND measure 
agreed (correct or incorrect) not shown. ND correct are in blue while SAD correct are in red. Red 
spoke lines from blue dots and yellow from red quantify degree of overlap, with length of the 
spokes proportional to the density in the region. 
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It should be noted that this region of the nearest distance versus average distance plot 

also overlaps with the region where both measures predict incorrectly (Figure 2.7). Note 

however, that both measures tend to both incorrectly predict predominantly in cases 

where the nearest absolute distances between MRO and non-MRO sequences are very 

small and, conversely both agree and are correct when this measure is large (Figure 2.7). 

 

It is likely that as the difference between distances decreases, the difference approaches 

the expected range of branch length estimation error on phylogenetic trees (although 

the latter is strongly influenced by the number of taxa and number of aligned positions 

used to reconstruct that phylogeny). The SAD and ND measures are weakly correlated 

with one another according to a linear regression, although the degree of correlation is 

less strong in Trichomonas (R2=0.24) compared to Tetrahymena (R2=0.38), which may be 

a function of Trichomonas tending to form long-branches as a result of being highly 

divergent from most organisms in the dataset on the sequence level (Figure 2.8). 

Despite any clear identification of a region of parameter space where the SAD method 

will consistently perform better than the ND method, there are some measures that 

indicate whether both measures are more likely to perform equally poorly or well. In 

these cases, it is worth examining some particular clusters and predictions of interest in 

more detail. 
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FIGURE 2.7 THE DIFFERENCE BETWEEN MRO AND NON-MRO SEQUENCES IN 
TETRAHYMENA (A) AND TRICHOMONAS (B) IN CASES WHERE THE SAD AND ND 
MEASURES MAKE THE SAME PREDICTIONS, EITHER CORRECTLY (BLUE) OR 
INCORRECTLY (RED). Points in the lower left of both plots overlap significantly although 
incorrect predictions tend to be more concentrated in the lower left regions of the plot, where 
the differences are small. 
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FIGURE 2.8 CORRELATION OF THE DIFFERENCE BETWEEN MRO AND NON-MRO 
SEQUENCES FOR THE ND AND SAD MEASURES IN TETRAHYMENA (A) AND 
TRICHOMONAS (B). Linear regression line is shown in red along with the linear regression 
correlation coefficient. 
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2.3.6 Specific Prediction Examples 

If we restrict attention to queries where the sequence was assigned to a mixed 

sequence cluster, for Tetrahymena there were 1837 (153 MRO/1684 non-MRO) 

instances where both the SAD and ND measures correctly classified the query sequence 

and 377 (44 MRO/337 non-MRO) cases where both measures made an incorrect 

classification. In Trichomonas the both measures predicted 2201 (35 MRO/2166 non-

MRO) correctly and 303 (10 MRO/293 non-MRO) incorrectly respectively. With respect 

to differences between the SAD and ND measures there were 99 (50 MRO/49 non-MRO) 

instances, in Tetrahymena, where the SAD measure correctly predicted localization and 

the ND did not (SAD-right/ND-wrong), and 1465 (12 MRO/1453 non-MRO) where the 

reverse was true (ND-right/SAD-wrong). In Trichomonas there were 57 (33 MRO/24 non-

MRO) SAD-right/ND-wrong and 1913 (1 MRO/1912 non-MRO) ND-right/SAD wrong 

cases. We selected two cases from Tetrahymena thermophila to examine reasons why 

one or both measures of phylogenetic distance failed. 

 

2.3.6.1 Tetrahymena thermophila Aminotransferase Class I and II family 

(XP_001024634) 

This unknown member of the aminotransferase family is localized to the MRO of 

Tetrahymena thermophila (Smith et al. 2007) and its closest BLAST matches are 

annotated as hypothetical proteins, putative aminotransferases, or alanine 

aminotransferase. This sequence was correctly placed by HMMER3 into the same cluster 

from which it was taken in the original overall database of clusters created by MCL. This 

cluster is made up of 28 other sequences including four from Trichomonas vaginalis, 

three from Entamoeba histolytica, two from Chlamydomonas reinhardtii, and one from 

Giardia intestinalis. In Chlamydomonas and Trichomonas there are both MRO and non-

MRO localized proteins while none of the sequences are localized to the mitosomes of 

Entamoeba or Giardia. In an unrooted phylogenetic tree, the MRO localized sequences 

are distributed in a patchy or punctuated fashion throughout the tree (Figure 2.9) and 
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are, in some cases intermingled with non-MRO localized sequences. The difference 

between the MRO and non-MRO distance to T. thermophila using the SAD measure was 

0.033 and 0.032 using the ND measure. However, the query was correctly annotated as 

belonging to the MRO only by the former. This phylogenetic tree illustrates an extremely 

difficult situation for a phylogenomic (or any similarity-based) method to resolve. There 

are no close relatives of the Tetrahymena sequence in the cluster, there are many 

lineage-specific duplications events whose descendants have mixed localizations, and, 

more generally, subcellular targeting appears to have changed frequently across the 

tree. It is particularly problematic that, in this case, the closest branching sequence to 

the putative alanine aminotransferase of Tetrahymena thermophila is from Giardia 

intestinalis; there will be many MRO localized proteins in Tetrahymena that are not 

found in the functionally, hence proteomically, reduced Giardia mitosome. In order to 

better analyse the particular relationships observed in this cluster we performed a 

bootstrap analysis with 100 bootstrap replicates using FastTreeMP. Bootstrap support 

for the relationship between the sequence from Tetrahymena and Giardia is low (42) 

with no support deeper within the backbone of the tree for the placement of these 

sequences as a clade. 

 

The lineage-specific expansions in Trichomonas vaginalis and Entamoeba histolytica 

form monophyletic groups, with high bootstrap support in the case of the Trichomonas 

expansion (100) and two of the Entamoeba sequences (87), but not for the placement of 

the long-branching Entamoeba sequence with the other two (38). The two sequences 

from Giardia intestinalis do not group closely together, with one appearing to be most 

closely related to the sequence from Chlamydomonas reinhardtii and the other with the 

Tetrahymena thermophila query. Again, placement of the Giardia sequences is not 

supported, with a bootstrap support value of 46 for the grouping with Chlamydomonas.   
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FIGURE 2.9 UNROOTED MAXIMUM LIKELIHOOD PHYLOGENETIC TREE OF THE 
AMINOTRANSFERASE CLUSTER PRODUCED BY FASTTREEMP AS DESCRIBED IN THE 
METHODS. MRO-localized sequences are highlighted in red and the query sequence from T. 
thermophila (also mitochondrion-localized) is highlighted in yellow. Nodes with bootstrap values 
greater than 80 are marked with asterisks. 
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This could be a result of mis-alignment, although the HMMER3 trimmed alignment has 

no obvious errors (See Appendix B2 Figure 2.1) and neither forms an abnormally long or 

short branch in the tree, which could have induced a phylogenetic artifact. Because 

other taxa also have multiple representatives, it could reflect more ancient duplications 

and differential loss. It is also possible that this cluster should be merged with another 

to form a larger superfamily, which would result in a better, more robust, phylogenetic 

tree. In any case, this serves as an excellent example of functional characterization that 

is difficult to resolve using phylogenetic methods alone, especially in a large-scale 

automated fashion. The SAD measure did correctly predict the localization of the 

protein as the average branch length of the MRO localized sequences was shorter than 

for non-MRO sequences, which were skewed by the long branch length of one of the 

Entamoeba histolytica sequences. If the trimmed SAD measure had been used instead, 

with the shortest and longest 5% of branch lengths removed prior to averaging, the 

predicted localization would have been of a non-MRO protein. In a sense, the SAD 

method made the right prediction for the wrong reasons since there is no coherent 

phylogenetic signal in the dataset that would indicate an organelle-localization for the T. 

thermophila homolog. 

 

In contrast, this sequence does possesses a N-terminal targeting sequence and is 

correctly predicted as being MRO-localized by Predotar (Non-Plant), MitoProt 2, iPSORT, 

and MultiLoc2. Interestingly, of the other seven MRO-localized sequences in this cluster, 

no N-terminal targeting sequence could be predicted in three of the four sequences 

from Trichomonas vaginalis but could be detected in the others, including the 

sequences from Saccharomyces cerevisiae, Dictyostelium discoideum, and 

Chlamydomonas reinhardtii.  
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2.3.6.2 Putative Adenylyl/Guanylyl Cyclase Family Member (XP_001033203) 

This Tetrahymena thermophila query sequence is not MRO-localized but belongs to a 

diverse cluster of uncharacterized hypothetical proteins as well as members of the 

adenylyl/guanylyl cyclase family. The cluster, which contains 274 protein sequences in 

total, includes 15 sequences from Tetrahymena thermophila, 114 from Trichomonas 

vaginalis, and 75 from Chlamydomonas reinhardtii. This family contains both membrane 

bound receptors and soluble forms that participate in a wide variety of molecular 

processes, predominantly as members of signaling pathways according to their Uniprot 

entries (Jain et al. 2009; Consortium 2011). Although this is technically a mixed member 

cluster, only a single sequence from Trichomonas vaginalis is localized to an MRO (the 

hydrogenosome); all other sequences are non-MRO localized. Both the SAD and T-SAD 

measures make an incorrect classification suggesting the T. thermophila sequence is 

MRO-localized (the T-SAD method cannot “trim” outliers in cases where there is only a 

single sequence) but the ND measure makes the correct classification of a non-MRO 

protein as its closest branching relative is a non-MRO localized homolog from 

Trichomonas vaginalis (Figure 2.10). The sequences from Tetrahymena and Trichomonas 

are extremely closely related to one another but sit at the extreme end of a very long 

branching clade of highly divergent sequences compared to the rest of the tree. 

Inspection of the automated alignment revealed that the Trichomonas vaginalis 

sequence in question is probably not a member of this family and was not aligned in any 

of the core blocks of the alignment, with only a single position remaining in the masked 

alignment for this sequence. The next closest sequence, from Chlamydomonas 

reinhardtii, and other sequences that form this long-branching group also follow this 

pattern. This long-branching clade of sequences is an artifact of the pipeline and 

automated alignment. The ND measure gets the prediction correct, but, again, for the 

wrong reasons. Without the presence of those extremely long branches, the SAD and T-

SAD measures  
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FIGURE 2.10 PHYLOGENETIC TREE OF THE ADENYLYL/GUANYLYL CYCLASE FAMILY 
MEMBERS. THE LONG-BRANCHING CLADE TO WHICH THE TETRAHYMENA QUERY 
SEQUENCE BELONGS IS HIGHLIGHTED IN RED. The Tetrahymena sequence (labeled 5690)) 
branches sister to a non-MRO sequence from Trichomonas vaginalis at the extreme tip. Arrow 
indicates the position of the sole MRO localized sequence from Trichomonas.  
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may have been able to correctly predict the localization as the ND measure did, 

although it appears as if the MCL algorithm (Inf = 2) incorrectly grouped together two 

distinct clusters that only poorly align with one another in some regions. 

 

This sequence is weakly predicted as being located in the cytoplasm by MultiLoc2 (0.35) 

with nuclear (0.26) and mitochondrial (0.22) being the next highest predicted 

localizations. It is not predicted to be MRO localized by N-terminal targeting prediction 

methods such as Predotar or iPSORT, or MitoProt2. The sole MRO localized sequence in 

this cluster, from Trichomonas vaginalis, appears to either lack an N-terminal targeting 

sequence entirely, or the targeting sequence is very short and is not predicted to be 

localized to the MRO by any of the programs above.   

 

2.4 Discussion 

The performance of any large-scale phylogenomic method depends heavily on several 

factors including: the method by which sequences were placed together into clusters, 

the quality of the multiple sequence alignments, the alignment masking method and the 

resolution of the phylogenetic trees, the distribution of the functional annotation of 

interest within the tree, and the method by which functional annotations are 

propagated from known to unknown sequences.  

 

2.4.1 The Impact of Clustering Method and Parameters 

Clusters with too little sequence diversity will produce inferior HMMs that are less 

capable of detecting remote homologs. On the other hand, clusters that are too large 

may contain sequences that are not truly homologous, or are so divergent in sequence 

that an automated alignment of the cluster is not of sufficiently high quality for 

phylogenomic analysis. Because the method of transferring annotation from one  
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sequence to another relies on the quality of the phylogenetic tree, and the accurate 

estimation of the tree, in turn, relies heavily on the quality of the alignment, the 

potential errors introduced in each step in the chain from gathering clusters to building 

trees may be compounded and compromise the overall performance of the method. 

 

The choice of clustering method parameters can also have a large impact on sequence 

clustering, such as the ability to recover known manually curated gene families (Frech & 

Chen 2010). Indeed, with Tribe-MCL, the optimal inflation parameter for recovering a 

manually curated family has been noted to differ between different gene families even 

within a closely related group of organisms (Frech & Chen 2010). Here two different 

inflation parameters were tested, the default parameter of 1.2 and a larger value of 2.0 

based on several previous studies (Stein et al. 2003; Tekaia & Latgé 2005; Wall et al. 

2008; Frech & Chen 2010). Hierarchical clustering was also used due to its simplicity and 

popularity with a frequently used e-value cut-off of 10-6. While the two sets of 

parameters used with the MCL method resulted in differences in performance between 

the SAD and ND measures MCC of 0.6 and 0.85 for Default, 0.71 and 0.87 with inflation 

parameter of two), hierarchical clustering showed a less dramatic effect  (0.80 and 0.89). 

On the other hand, hierarchical clustering also had the worst accuracy in terms of 

assigning a query correctly to its source cluster using HMMER3 with an accuracy of 0.85. 

This may be a function of hierarchical clustering producing many small clusters, 

sometimes splitting orthologs and paralogs. If these small clusters contain 

predominantly extremely similar sequences, then queries against their HMM profiles 

with homologous but much more divergent sequences will not yield significant e-values; 

such homologs could potentially be missed entirely. The MCL method with an inflation 

parameter of two represented an ideal compromise between the MCL method with 

default parameters and hierarchical clustering. It produced more clusters of 

intermediate size compared to either of the other two methods as well as an 

intermediate number of clusters in general. Based on our analyses using the refined 
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Uniprot + proteomes dataset, this method produced adequate results on highly 

divergent microbial eukaryotes of interest, although there may be some instances of 

clustering errors, such as with the adenylyl/guanylyl cyclase family discussed above. 

Future developments of these methods should focus on efficient methods of identifying 

and correcting such errors. 

 

The choice of phylogenetic distance measure also had an impact on performance, with 

the simple ND measure performing the best overall in these comparisons. It appears as 

if in the majority of cases the ND measure is the most likely to be correct, although it is 

still worth investigating regions of tree/cluster parameter space where the SAD, or 

another appropriate measure, may offer superior performance. With the current 

implementation PhyloPred-HMM using the ND measure offers the best performance 

and should be used with that setting. 

 

2.4.2 Sequence Diversity and Uniprot Annotation 

It is notable that in the case of Trichomonas, only seven sequences are annotated in 

Uniprot as being localized to the hydrogenosome (HSP60; Ferredoxin; Adenylate kinase; 

Succinyl-CoA ligase subunit alpha 1,2, and 3; and Succinyl-CoA ligase subunit beta) and 

two are annotated as mitochondrial (both are GrpE homologs) although 228 sequences 

were found to be hydrogenosomal based on organellar proteomics (Schneider et al. 

2011). Only one sequence (Flap endonuclease 1) is annotated in Uniprot as belonging to 

the mitosome of Giardia intestinalis. While experimental data exists for these 

organisms, providing a wealth of data, Uniprot is often slow to incorporate these new 

findings, particularly in the more stringently controlled ‘reviewed’ subset of sequences.  
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The better studied eukaryotic groups commonly used for training and testing of other 

MRO-localization classifiers are quickly becoming saturated in terms of sequence 

diversity within Uniprot. The majority of experimentally annotated localizations are 

from taxa in these groups, but even more sequences have been annotated with 

potential localizations with less stringent evidence (e.g. probable, potential, by 

similarity), providing a wealth of data that can aid in predictions. In PhyloPred-HMM we 

used all sequences annotated as being localized to the MRO regardless of the 

annotation stringency. As demonstrated here, relatively simple phylogenomic 

approaches to determining localization do at least as well as arguably more 

sophisticated machine-learning approaches and actually outperform these machine-

learning algorithms on more divergent data from less well-studied eukaryote groups. As 

sequence data coupled with improved annotations from microbial eukaryotes 

accumulates, we can expect phylogenomic-based annotation to improve for these 

organisms as well. Because the presence of an N-terminal targeting sequence is seen as 

solid evidence of MRO targeting, combining a fast and accurate N-terminal targeting 

prediction algorithm with PhyloPred-HMM could substantially improve performance for 

difficult to classify phylogenetic situations like those discussed previously. However, 

some improvement in training data would be desired for any N-terminal targeting 

sequence prediction algorithm that may potentially be used because of the presence of 

shorter, idiosyncratic targeting sequences found in some organisms with reduced MROs 

(Dolezal et al. 2005; Smíd et al. 2008). 

 

2.4.3 The Impact of Phylogenetic Reconstruction Method and Alignment 

For the phylogenetic tree inferences in this study, speed and accuracy were the primary 

concerns. FastTree2 provides rapid maximum-likelihood inference of phylogenetic trees, 

with performance largely comparable to RAxML based on benchmarking analyses (Price 

et al. 2010), at least for recovering well supported groups. An alternative approach that 

was not explored in this study would be to pre-compute phylogenetic trees for all 
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clusters using RAxML (Stamatakis 2006b) and use the novel environmental sequence 

placement method implemented in this program to place query sequences on the 

predefined backbone topology. Because branch length measures are being used to 

determine subcellular localization, accuracy of the maximum-likelihood estimated 

branch lengths may have a large impact on performance, particularly in cases such as 

the Tetrahymena thermophila aminotransferase described above, where the difference 

between MRO and Non-MRO sequences were minute. While maximum likelihood 

methods are expected to be less error prone in terms of branch length estimation than 

methods such as maximum parsimony or distance-based methods, the complexity of the 

datasets, problems with automated alignment generation/masking and resulting 

phylogenetic tree estimation all produce some possibility of error (Schwartz & Mueller 

2010). 

 

FastTree2 uses several heuristics to produce trees, with generally good accuracy in 

comparison to PhyML 3 and RAxML (Price et al. 2010), and it has fast run-times 

especially when the number of sequences are large. However, there is potential for 

significant error to enter the pipeline at this stage. This may be compounded by errors 

during the multiple sequence alignment phase, which is further compounded by 

potential errors from the original sequence clustering. While the results for sequence 

from well-studied groups are comparable to those from other published classifiers, and 

superior in the case of query sequences from diverse microbial eukaryotes, significant 

improvements could be made in identifying potential sources of clustering or alignment 

errors. Construction of robust, pre-defined reference phylogenies for clusters would also 

reduce the instances of phylogenetic artifacts that affect phylogenomic inference. 
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2.4.4 The Type of Dataset Used to Evaluate Performance Matters 

There are two commonly-used methods of assessing the performance of a subcellular 

localization classifier. The first is to construct either a non-redundant (and reduced 

homology) test dataset based on the newest release of Uniprot (or another database of 

interest) while training on all sequences from previous releases. The second, and 

perhaps more widely used, method is to use a jack-knife approach to iteratively build 

training and test datasets, often using a complete sequence-by-sequence jack-knife. A 

less often used approach, at least in published performance evaluations, is to 

systematically predict the subcellular localizations of the entire proteome of an 

organism with rigorous experimental data available to validate predictions. In the cases 

where the latter has been done, it has typically been based on members of the same 

well-studied groups of eukaryotes (e.g. typically humans, yeast, nematodes, or 

Arabidopsis) that were used to train the classifiers. 

 

In this study, we evaluated performance both on a reduced homology dataset, a 

randomly generated test set of sequences from microbial eukaryotes with completely 

determined MRO proteomes, and on two whole proteomes from distantly related 

eukaryotic microbes with functionally distinct MROs. This approach more clearly 

demonstrates the situations where performance will be high and the cases where use of 

a single prediction method is likely to produce very poor results. In particular, we 

showed that there are significant differences in the performance measures, such as the 

MCC, when analyzing a random subset of data from multiple organisms and when 

analyzing whole proteomes. This performance discrepancy was particularly apparent 

with the poor performance on the whole proteome of Trichomonas vaginalis. The 

genome of Trichomonas vaginalis is nearly three times larger than the genome of 

humans and features many lineage specific expansions of gene families. This could be 

seen clearly in the examples of predictions of Tetrahymena thermophila sequences that 

we examined in detail in which Trichomonas vaginalis often made up a substantial 
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proportion of the total number of sequences in the cluster. In cases such as this, when 

predicting the subcellular localization of those Trichomonas vaginalis sequences, whole 

sets of paralagous sequences will either be correctly, or more likely, incorrectly 

classified.  

 

To summarize, it is important that future prediction programs developed for subcellular 

localization incorporate a broader taxonomic range of sequences in their training sets. 

We have likely reached, or nearly reached, the saturation point for the better studied 

taxonomic groups, except perhaps for proteins with multiple localizations where the 

number of cases identified is still increasing. Substantial improvements are still being 

made in prediction methods capable of classifying these kinds of proteins.  

 

2.4.6 Comparison to Other Classifiers 

While we could only directly compare PhyloPred-HMM performance against a small 

subset of existing classifiers, we expect the results to be comparable to other classifiers 

as well. In terms of performance on mitochondrial proteins, as opposed to performance 

values when trying to predict multiple possible localizations, other classifiers self-report 

similar values to MultiLoc2 on mitochondrial proteins and several were tested either on 

the Höglund dataset or very similar datasets, such as the BaCello Independent dataset 

(Blum et al. 2009).  

 

Although the majority of classifiers have been taxonomically restricted in terms of their 

test and training data, a notable case where this is not true is Euk-mPLoc (Chou & Shen 

2007) and the newer Euk-mPLoc 2.0 (Chou & Shen 2010). These classifiers, which allow 

for multiple localizations of proteins, include a broad list of possible subcellular 

localizations and a dataset that included all eukaryotic sequences with experimental 
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localization data. However, in these cases the hydrogenosome was treated as a unique 

subcellular localization, and not grouped together with the mitochondrion. This means 

that the training set for hydrogenosomal proteins was very small (10). In jack-knife tests 

only 2 of the 10 proteins were correctly predicted to be localized in the hydrogenosome 

for Euk-mPLoc 2.0 and none with the first version of Euk-mPLoc (Chou & Shen 2007, 

2010). The small sample size is due to annotation issues in Uniprot as described in 

section 2.4.2; only a small subset of hydrogenosomal proteins are annotated as such 

while many others are annotated as mitochondrial, resulting in a training set far too 

small for proper use in a machine-learning algorithm. 

 

2.4.7 PhyloPred-HMM as a General Phylogenomic Framework 

PhyloPred-HMM is a fast and flexible annotation pipeline for predicting the subcellular 

localization of novel amino acid input sequences. The pipeline combines the power of 

Hidden Markov Model (HMM) based profile searching against an automatically de novo 

clustered dataset of annotated proteins from Uniprot with rapid multiple-sequence 

alignment, posterior probability and gap-based alignment trimming, and rapid 

phylogenetic inference. PhyloPred-HMM leverages the computational speedups of 

parallel processing wherever possible, making the automatic generation of phylogenetic 

trees and automated annotation possible for a large number of input sequences. 

PhyloPred will also perform rough/approximate 6-frame translations of input nucleotide 

sequences allowing for annotation based on preliminary expressed-sequence tag (EST) 

and genomics data. The PhyloPred-HMM framework relies on several external programs 

for alignment and phylogenetic analysis including MAFFT, HMMER3, and FastTree2 for 

this analysis and it can be easily adapted to interface with other programs. The choice of 

clustering methodology in this work was based on a desire for larger more diverse 

clusters wherever possible, and not to restrict clusters to the more stringent 

requirements of orthology. Any clustering approach could be used, and only a handful of 

de novo techniques were tested here. The MCL algorithm with an inflation parameter of 
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two seemed to provide the best trade-off in terms of the number and size of resulting 

clusters and measures of prediction performance in terms of the F1 score and Matthews 

Correlation Coefficient. The annotation used was specifically to identify putative MRO 

localized proteins, but any phylogenetically meaningful annotation suitable for the 

phylogenomic approach could be used. The simplest assignment technique, using the 

annotation of the nearest neighbour as measured by tip-to-tip phylogenetic distance 

also proved to be the most precise in terms of performance measures. The 

comparatively poor performance of the shortest-average and trimmed shortest-average 

distance metrics may have been impacted by heavily skewed clusters where the 

majority of sequences, with the exception of one or two, had predominantly one of the 

two localizations. More robust metrics involving ancestral state reconstruction by, for 

example, maximum parsimony or likelihood-based methods may improve performance. 

 

Overall PhyloPred-HMM provides a robust phylogenomic platform for the prediction of 

subcellular localization to MROs. Performance as measured by several factors, notably 

the Matthews Correlation Coefficient, showed comparable performance to established 

machine-learning classifiers on sequences from animals, plants, and fungi and superior 

performance on less well studied microbial eukaryotes with highly divergent MROs in 

terms of their function, and highly divergent sequences in general. 

 

2.5 Author Contributions 

For sections previously published DG prepared manuscript and conducted experiments. 

Test sequences for CBOrg comparisons selected by DG and ADT. ADT and AJR provided 

editorial comments. All authors agreed on final submission of manuscript. 
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Chapter 3 Predicting Functionally Divergent Protein Residues 

 

This chapter was originally published as:  

“Gaston D, Susko E, Roger AJ. 2011. A Phylogenetic Mixture Model for the Identification 

of Functionally Divergent Protein Residues. Bioinformatics. 27:2655-2663” 

 

3.1 Introduction 

Functional divergence in proteins over evolutionary time includes the processes of sub- 

and neo-functionalization after gene duplication, as well as specialization or loss of 

functions of proteins in distinct organismal lineages (Li 1983; Henikoff et al. 1997). Two 

main patterns of functional divergence at the amino acid residue level have been 

described in the literature and were classified by Gu (1999, 2001) as Type I and Type II. 

In the case of a protein family composed of two subgroups, Type I functional divergence 

is characterized by greater conservation at a site in one subfamily versus the other 

subfamily, indicating a difference in evolutionary rate between them due to fewer 

selective constraints in the more rapidly evolving group. For Type II divergence 

sequence conservation at a site is observed in both sub-families but with a marked 

preference for different amino acids, generally with very different physicochemical 

properties in each group. Accurate prediction of functionally divergent residues, also 

known as ‘specificity determining sites’ in the case where divergence changes the 

substrate that is bound (Gerlt and Babbitt 2000), leads to an enhanced understanding of 

the mechanisms underlying functional diversification.  

 

Three main approaches have been used for the prediction of functionally divergent 

protein residues that, in broad terms, can be classified as primarily phylogenetic, 

information theoretic, or biophysical. Phylogenetic approaches such as Evolutionary 

Trace (Lichtarge et al. 1996),DIVERGE (Gu 1999, 2001; Gu and Vander Velden 2002), and 
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various Likelihood Ratio Test/Rate Shift based tests (Knudsen and Miyamoto 2001; 

Knudsen et al. 2003; Susko et al. 2002) explicitly take into account a phylogenetic tree 

that describes the evolutionary relationships among the sequences in the protein family 

under consideration. In general, phylogenetic methods for functional divergence 

prediction correlate observed patterns of amino acid substitution at a site in a multiple 

sequence alignment across subgroups within a phylogenetic tree. Local conservation 

(i.e. within a subgroup on a phylogenetic tree) relative to other sequences reflect 

probable functional specificity of that subgroup if the degree of conservation is large 

relative to the overall divergences of the sequences within that subgroup. This general 

case can be extended to more rigorous statistical models of functional divergence such 

as the type I and type II specific prediction methods employed by DIVERGE (Gu 1999, 

2001; Gu and Vander Velden, 2002). 

 

In contrast, information theoretic approaches do not generally explicitly consider the 

relationship between sequences, only the known, or predicted divisions into functional 

subgroups and perhaps some weighting based on overall sequence distances as in 

GroupSim (Capra and Singh 2008). These approaches contrast information theoretic 

measures of variation of site profiles within a subgroup to those observed at a site 

across the whole multiple sequence alignment. These profiles may most commonly be 

represented by some information theoretic measure of variability among residues at a 

site such as the Jensen-Shannon Divergence (Lin 1991), Relative Entropy/Kullback-

Leibler Divergence (Kullback and Leibler 1951), Sequence Harmony (Piravano et al. 

2006) and/or simple Shannon Entropy. 

 

Biophysical/structural methods may also include some measures of sequence 

diversity/information content as above, with a greater focus on the physico-chemical 

properties of structurally conserved residue positions. Active Sites Modeling and 

Clustering (de Milo-Minardi et al. 2010) compares profiles of structurally aligned and 

modeled active sites to identify specificity-determining residues. Surface map 
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techniques have also been developed (Pawlowski and Godzik, 2001, Sael et al. 2008) 

that compare properties such as charge and hydrophobicity of surface proteins of two 

proteins. Other methods have been used to predict the substrate-specificity of unknown 

family members in cases where annotation transfer from paralogs may not be adequate 

(Caffrey et al. 2008) and the related task of identifying functional sites (Capra et al. 

2009; Sankararaman et al. 2010). No structural methods were evaluated as part of this 

study due to the lack of adequate methods for simulating evolutionary divergence in the 

context of protein structure. 

 

Here we introduce a new phylogeny-based method, called FunDi, for detecting 

functionally divergent sites across a phylogenetic split in a protein family tree. By 

explicitly modeling type I and type II functional divergence using a mixture model, FunDi 

provides a maximum-likelihood phylogenetic framework to predict functionally 

divergent sites using specific models of amino acid substitution. As an open framework 

for functional divergence classification, FunDi is easily extended to accommodate the 

latest methods/programs for maximum-likelihood based phylogenetic reconstruction 

and new, more accurate models of amino acid substitution. We also evaluate whether a 

weighted average of FunDi’s score and the Jensen-Shannon Divergence scores of 

surrounding residues (Capra and Singh 2008) improves performance. 

A number of well-characterized protein datasets have been used for evaluations of the 

performance of some functional divergence/specificity-determining classifiers (FD 

classifiers) (Chakrabarti et al. 2007). One limitation of these biological datasets is the 

difficulty in assigning the labels of "true negative" or “false positive” to sites that are not 

involved in functional divergence. Thorough molecular characterization of every amino 

acid position in a protein family is practically infeasible; requiring mutagenesis and 

functional studies not only on a single representative sequence, but also over the 

biological sequence diversity represented by the protein family. While these biological 

datasets are unavoidably ‘noisy’ for testing the efficacy of functional divergence 

predictors for these reasons, their true positive sites are often well supported with 
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robust experimental validation. We evaluated the performance of FunDi, and several 

other FD classifiers over 11 of these biological datasets with two phylogenetically 

distinct sub-families each (Chakrabarti et al. 2007). In order to provide a more robust 

estimate of performance on less noisy data, we also introduce two alternative 

frameworks for simulating functional divergence. In this framework, we examine the 

impact of taxon sampling and the scale of branch lengths on the predictive performance 

of functional divergence classifiers because under-sampling of phylogenetic diversity 

(taxon sampling) and overall sequence divergence are two well-known factors 

influencing the accuracy and error associated with phylogenetic reconstructions (Susko 

et al. 2005; Zwickl and Hillis 2002). In the case of functional divergence, it seems likely 

that under sampling of meaningful phylogenetic diversity can lead to incorrect 

observations of substitution patterns and sequence conservation levels (Blouin et al. 

2005). By explicitly taking the phylogeny of protein families into account with an 

appropriate model of functional divergence, we expect improved predictive 

performance relative to programs that do not use this information. 

 

3.2 Methods 

3.2.1 FunDi 

We assume that a given multiple sequence alignment is composed of sites that fall in to 

two classes, those contributing to functional divergence and non-divergent sites. To 

capture the dynamics of the functionally divergent class we construct a two component 

phylogenetic mixture model where non-functionally divergent sites evolve across a 

shared phylogenetic tree (standard evolutionary model/dependent component), while 

functionally divergent sites are treated as being evolutionarily ‘uncoupled’, evolving on 

independent subtrees (FD component).  

 

Specifically, the dependent component models amino acid residues whose evolutionary 

constraints remain similar across a single phylogenetic tree. This is captured by a 



92 
 

standard substitution model of protein evolution such as JTT (Jones et al. 1992), WAG 

(Whelan and Goldman, 2001), or LG (Le and Gascuel 2008) with rates across sites (RAS) 

modeled using a discrete rate approximation to the gamma distribution.  

 

During functional divergence, this 'standard' model of evolution is violated. Under type I 

functional divergence a rate shift has occurred (heterotachy) such that a site can no 

longer be adequately modeled by the same rate categories in different lineages of the 

tree, similarly for type II functional divergence where a site has undergone a shift in the 

amino acid preferences across a phylogenetic tree. In both cases, the normal 

assumption of a homogeneous substitution process across lineages no longer holds. In 

order to capture functional divergence we introduce an ‘independent component’ 

approximation where sites in subtrees are modeled as if they were completely 

independent observations. In the maximum likelihood (ML) framework, model 

parameters such as the alpha shape parameter, amino acid frequencies, and branch 

lengths are allowed to be independently optimized in each subgroup. The total 

likelihood of a site under this simplified approximate functional divergence model will 

therefore be the product of the site likelihoods for each subgroup. Note that this is 

equivalent to assuming that the length of the internal branch length between the 

subtrees, b, is effectively infinite and approximates the period of rapid evolution that 

immediately follows the changes in functional constraints at a site associated with 

functional divergence. For two subgroups the likelihood of a site x under this 

independence model is given by: 

 

 

Lx = P(X1|T1) P(X2|T2)                                                              Eqn. 1 

 

T1 and T2 are the phylogenies and associated branch lengths for each of the two 

subtrees while X1 and X2 are the data patterns in the two subgroups at that site. In a 

mixture model context the likelihood of a site is given as the weighted sum of the 
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dependent and functional divergence components: 

 

Lx = ρP(X1, X2|T, b) + (1-ρ)(P(X1|T1) P(X2|T2))                                     Eqn. 2 

 

where ρ represents the optimized class weight parameter and T refers to the entire 

phylogenetic tree comprised of T1 and T2 linked by an internal branch of length b. The 

site likelihoods of each component are calculated by standard ML phylogenetic 

estimation software using a supplied tree and alignment along with subgroup 

assignments for taxa. The ρ parameter is optimized using a two-step line-search 

procedure to two decimal places of precision.  

 

In this framework, we assume, when used in an appropriate biological context, that the 

independent component is modeling functional divergence, other violations of the 

‘standard’ model will also be captured, such as heterotachy and potentially certain types 

of amino acid composition biases. FunDi, as currently described has for instance also 

been used to identify positions in multiple sequence alignments that do not support a 

particular phylogenetic reconstruction, more specifically sites that are incongruent with 

a particular monophyletic grouping of sequences (data unpublished).  

 

While the observed functional divergence site patterns in the two subtrees are not 

expected to be completely independent (i.e they retain a shared evolutionary 

history/trajectory), approximating them as independent offers several advantages. First, 

it allows for maximum flexibility of ML model choice. Any phylogenetic software tool 

that outputs site likelihoods can be used as the back-end engine for likelihood 

calculations. Currently, FunDi can accept site log-likelihood values from TREE-PUZZLE 

(Schmidt et al. 2002), RAxML version 7.2.6 (Stamatakis 2006b), QmmRAxML (Wang et al. 

2008), or FastTree (Price et al. 2009, 2010). This ‘Plug-And-Play’ utility allows FunDi to 

rapidly accommodate new, complex models of sequence evolution as they are 

developed. In addition, by implementing FunDi as a mixture model containing both 
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independent and dependent components, the shared evolutionary history of 

functionally divergent sites is not completely ignored. All sites will be modeled with 

likelihood contributions from both components. It is the relative contribution of the 

independent component, measured by the site-wise posterior probability of the 

functionally divergent class, that serves as an estimator of the functional divergence 

character for a given site.  

 

Here the performance of FunDi using either the “base” RAxML v.7.2.6 (called FunDi-

RAxML) or QmmRAxML (called FunDi-QmmRAxML) is evaluated. In brief, QmmRAxML is 

a mixture-model of a user-defined number of rate matrix classes (Qi’s) each with an 

associated weight (wi) that is optimized by ML. Here for each class i we define entries of 

an instantaneous rate matrix Qjk(i) = RjkΠk(i) for all pairwise combinations of amino acids 

k and j. Rjk is the standard amino acid exchangeability of amino acid j for amino acid k 

from an exchangeability matrix (WAG in this case) and the Πi’s represent nine commonly 

occurring amino acid frequency profiles estimated by Sjölander and colleagues 

(Sjölander et al. 1996). The WAG database frequencies form a 10th, catch-all, class. Πk(i) 

is therefore the frequency of the amino acid k in the frequency profile class i. Under the 

functional divergence model, this model has the advantage that each subgroup can 

optimize towards different class (profile) preferences and rates, allowing for functional 

shifts at particular sites across the split.  

 

FunDi outputs the posterior probability of each site belonging to the functional 

divergent class. FunDi can optionally be run with the ConsWin windowing method 

(FunDi-ConsWin) as described in Capra and Singh (2008), which weights site scores 

based on the Jensen-Shannon Divergence of surrounding amino acid residues. Based on 

previous results (Capra & Singh 2008) the ConsWin windowing method improved 

performance of both GroupSim and other tested classifiers of functional divergence due 

to a presumed bias for functionally divergent residues to be located preferentially within 

more conserved regions, likely ones that serve a role in either enzymatic behavior 



95 
 

(active site) or those involved with other protein-protein or protein-small molecule 

interactions. The Jensen-Shannon divergence score for all sites is calculated using a 

python script as detailed by Capra and Singh (2007). The average Jensen-Shannon 

divergence score of a window of surrounding columns in the alignment is then weighted 

and added to the posterior probability of functional divergence: 

 

S(FDx) = λP(FDx) + (1 – λ)JSDavg                                             Eqn. 3 

 

Where S(FDx) is the functional divergence score at site x, λ is the weight for the posterior 

probability of functional divergence (P(FD)) at site x, and JSDavg is the average Jensen-

Shannon Divergence score of the window. Here we used the recommended optimal 

values (Capra and Singh 2007) of 0.7 for λ and a window size of three to either side of 

the column under consideration. This sliding-window scheme has been shown to 

improve predictive performance both in the GroupSim method and with other classifiers 

(Capra and Singh 2008). 

3.2.2 Simulations 

We have implemented two simulation strategies for functional divergence in order to 

evaluate the relative performance of various FD classifiers. Alignments containing both 

functionally divergent (FD) and non-divergent (non-FD) sites were simulated over a 

variety of tree topologies in order to provide a comprehensive analysis of performance. 

 

3.2.2.1 Strategy I: Site-Specific Amino Acid Profiles  

INDELible (Fletcher and Yang 2009) was used to simulate alignments consisting of both 

functionally divergent and non-divergent sites using the 10-component QmmRAxML 

mixture model described above. In order to conform to GroupSim assumptions, 

functionally divergent sites were required to be located within windows of non-FD sites 

in the primary amino acid sequence and all sites were selected, as described below, to 

have specific Jensen-Shannon divergence score distributions. Distributions for each site 
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type were estimated from biological datasets that have been used in previous studies 

(Chakrabarti et al. 2007), with five sets of distributions used. Jensen-Shannon 

Divergence scores were calculated for all functionally divergent sites, sites located in a 

three residue windows on either side of a functionally divergent site, and all other sites 

separately. This was done for all of the two-family alignments used in Chakrabarti et al. 

2007. Four sets of the above estimates were used directly while a fifth set of score 

distributions was set to be of intermediate values compared to the other four. The 

divergence score distributions for Window and other non-FD sites in this set were equal 

to one another (Table 3.1). One-hundred random trees and corresponding alignments 

were simulated under each of these five sets. 

 

3.2.2.1.1 Phylogenetic Trees  

Random phylogenetic trees were generated using INDELible with a birth-death (BD) 

process. Trees were randomly chosen to have be-tween 10 and 50 taxa. Birth, death, 

and mutation rates were randomly selected from a uniform distribution between 0 and 

1 while the sampling parameter was constrained to a value of 1 (for details about the BD 

process see Yang and Rannala (1997)). For each of the five sets of Jensen-Shannon 

divergence scores one thousand individual trees were simulated and from these 100 

pairs were randomly selected and joined by a midpoint rooted internal branch of length 

1 expected substitution per site (0.5 on either side of root). This represented 500 

protein family trees undergoing functional divergence across a central split.  
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TABLE 3.1 THE FIVE JENSEN-SHANNON DIVERGENCE SCORE DISTRIBUTIONS USED IN 

SIMULATION OF 500 FUNCTIONALLY DIVERGENT ALIGNMENTS USING INDELIBLE 

SELECTED FROM CHAKRABARTI ET AL. (2007). The intermediate case represents values 

selected to fall within the range of values drawn from the real datasets 

Set FD 

Mean 

FD Std 

Dev 

Win 

Mean 

Win 

Std 

Dev 

Other 

Mean 

Other 

Std Dev 

Alignment 

1 0.5 0.1 0.62 0.14 0.62 0.14 Intermediate 

2 0.74 0.07 0.66 0.06 0.56 0.16 Nucleotidyl 

cyclase 

3 0.73 0.02 0.44 0.11 0.39 0.13 cd00985 

4 0.71 0.09 0.82 0.06 0.81 0.07 Smad 

5 0.41 0.12 0.63 0.14 0.51 0.21 G-proteins 

 

 

3.2.2.1.2 Simulated Alignments  

Ten-thousand non-functionally divergent sites were simulated from a random ancestral 

root sequence under each of the 10 mixture model components. Sites were then 

sampled from these sets randomly to construct both the non-FD windows around 

divergent sites and the remainder of non-FD sites in an alignment. To generate 

functionally divergent sequence data, we simulated, from a shared ancestral sequence, 

over each subtree independently with a zero internal branch length between the 

subtrees. Subtrees of non-FD sites were separated by an internal branch length of one. 



98 
 

For all site types four discrete Γ site-rate categories were used based on an α shape 

parameter of 0.5. 

 

Type I divergent sites (i.e. rate-shifted sites), were simulated using the standard WAG 

model of evolution. A root sequence was sampled from the WAG model frequencies and 

sequences for each subtree were simulated separately, with the same root sequence to 

allow for independence of rates. The simulated pool of sites was then filtered to remove 

all columns where an identical evolutionary rate was randomly assigned by INDELible.   

 

 For Type II divergent sites, 9 pairs of mixture-model components were selected from 

the mixture model such that amino acids with a high frequency in one component of the 

pair will have a low frequency in the other and vice versa. For each component pair we 

simulated 10,000 sites. Root sequences were randomly sampled from each of the two 

amino acid distributions of the components used. As for Type I sites, an alignment was 

simulated for each subtree independently with the same ancestral sequence. To 

simulate the effect of selection for differing physico-chemical properties, each branch in 

the subtree was allowed to evolve according to the proportional model (i.e. rates of 

interchange are proportional to the frequency of the target amino acid, similar to the 

CAT-Poisson model of Lartillot and Philippe, 2004) using pairs of the 10 component 

amino acid profiles selected as described above. The resulting 90,000 simulated sites 

were combined into a single pool of type II divergent sites. To accentuate the 

differences between subtrees, type I and type II simulated datasets were then filtered to 

remove any columns where the most prevalent amino acid in one subtree represented 

30% or more of sites in its counterpart. Alignment columns were also sampled from the 

type I and type II pools to have appropriate Jensen-Shannon divergence score 

distributions comparable to one of five biological datasets. To accomplish this all site 

types (Type I FD, Type II FD, non-FD) were simulated in excess as described above and a 

subset was sampled so that proportions of Jensen-Shannon divergence scores in a given 

subset roughly matched those of the biological datasets. The final alignments used were 
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400 residues in length, 40 of which were functionally divergent sites (20 Type I and 20 

Type II). Each functionally divergent site was given a window of three non-FD sites to 

either side in the final alignment to conform to the assumptions made by the GroupSim 

ConsWin (Capra and Singh 2008) method as described above. 

 

3.2.2.1.3 Taxon Sampling  

To test the impact of taxon sampling on the prediction of functional divergence, two 

phylogenetic trees were chosen to represent best and worst-case examples based on 

the performance of FunDi relative to other classifiers. Taxa were randomly re-sampled 

from these datasets in groups of 10, 15, 20, 25, 30, and 35 with the only constraint being 

that a minimum of 4 taxa were present in each subgroup. Ten replicate samplings were 

conducted for each number of taxa. A phylogenetic tree was then re-estimated from the 

data using RAxML version 7.2.6 (Stamatakis 2006b) and predictions of functional 

divergence made with each of the tested prediction methods. 

 

3.2.2.1.4 Branch Length Scaling  

The two tree topologies discussed above were again used as best and worst-cases to 

investigate the impact of branch lengths on the predictive performance of functional 

divergence detection. For each of the two trees the branches in the subtrees were re-

scaled by a factor of 0.5, 1.5, 2, 3, 4, 5, or 10, or the internal branch separating the two 

subtrees was set to a length of 1.5, 3, 5, or 10. A simulated dataset was generated as 

described above on this new phylogenetic tree and evaluated using each of the chosen 

prediction methods. 

 

3.2.2.2 Strategy II: Defined Motifs  

The ‘evolutionary motif’ method in Indel-Seq-Gen version 2 (Strope et al. 2007; 2009) 

was also used. In brief, the sequence motifs of functionally divergent sites from select 
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datasets used in prior performance evaluations (Chakrabarti et al. 2009; Chakrabarti and 

Panchenko 2009) were compiled for each of the two subgroups in a given family (Table 

3.2).  

 

Functionally divergent sites were constrained to the motifs found in the biological 

datasets selected as recommended by Strope et al. (2009). An ancestral character state 

for functionally divergent sites in both subtrees was randomly selected and evolved 

according to the differing motifs of the subtrees (e.g. Once a site fits the defined motif 

no mutation that does not fit the motif is tolerated at that position during the 

remainder of the simulation). As before, window sites were constructed surrounding 

each functionally divergent residue, but in this case were constrained to be 100% 

conserved in order to provide optimal conditions for the ConsWin windowing method 

and GroupSim. Non-functionally divergent sites for the remainder of the sequence 

length were simulated with INDELible using the 10-component amino acid profile 

mixture with WAG exchangeabilities, four Γ rate categories and an α shape parameter of 

0.5 using the original tree from the protein family. Non-FD sites were simulated under 

each of these 10 components, 25 sites per component for 250 non-FD positions 

unconstrained in their conservation level. For each of the selected biological datasets 10 

independent simulations were performed, to yield 70 simulated alignments over seven 

different phylogenetic trees. This simulation strategy allows true functionally divergent 

sites to be simulated based on known biologically derived parameters/motifs while 

removing the serious problem, in biological datasets, of undetected positives from being 

incorrectly labeled as negatives (false negatives) by simulating non-FD sites under 

substitution regimes that should correspond to neutral evolution (the standard WAG 

matrix for example). 

 

3.2.3 Testing Divergence 

For all programs, where appropriate, default values and raw scores were used to 
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produce ordered lists with sites labeled zero or one according to whether they were a 

truly functionally divergent (1) versus a non-FD (0) site. When necessary, raw scores of 

programs were rescaled to be between zero and one, with high scores being indicative 

of functional divergence.  

 

For Evolutionary Trace the Real-Value Evolutionary Trace score (rvET) (Mihalek et al. 

2004; Yao et al. 2006) was re-scaled to be between 0 and 1, high scores being better 

(indicative of functional divergence), to be comparable and in the same format as the 

other predictors for AUC-PR and AUC-ROC calculation. The real-value evolutionary trace 

score combines both the evolutionary rank of a column in and alignment and the 

information entropy. For the Difference Evolutionary Trace (DET) (Lichtarge et al. 1996; 

Madabushi et al. 2004; Raviscioni et al. 2006) the rvET and ranks were compared 

between evolutionary trace runs on the whole tree and independently on each subtree. 

If the rank was lower in the whole tree than either subtree the site was given a score of 

zero. Otherwise, the rvET value from the lower ranking of either subtree was taken and 

rescaled as described above. Several other scoring schemes were tested to simulate DET 

as performed by biologists with comparable results.   

 

For the likelihood ratio test (LRT) of Knudsen et al. (2001, 2003) rescaling was also 

performed to provide a single uniform score for every site between 0 and 1, with 1 

being the "best" functional divergence score. Here we looked at the likelihood ratio 

statistic, U, for each hypothesis (Type I divergence, Type II divergence, Type I/II, and 

Slow/Fast) and compared it to the cut-off for that type. The category with the largest 

difference from the cutoff was chosen as the classification for that site. However, if U 

was not above the cut-off in this case, or Slow/Fast was the categorization, the score 

was set to 0. Otherwise, scores were re-scaled between 0 and 1 based on the minimum 

and maximum range of U for that category. 

 

To evaluate overall performance receiver operator characteristic (ROC) and precision-
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recall (PR) curves, as well as the total Area under the curve (AUC) for both curves (AUC-

PR and AUC-ROC) values, were calculated using AUCCalculator 0.2 (Davis and Goadrich, 

2006). The AUC values each yield a single relative performance score for evaluation of 

the overall classification performance; the greater the AUC, the better the predictor 

averaged over all thresholds. An AUC value equal to one indicates perfect performance 

according to the criterion. We also used the ‘average ranks’ evaluation method that 

averages the rank of all true positive sites (ordered by decreasing FD score) in a tested 

dataset or series of datasets (in this case all 500 or 70 datasets for a simulation method). 

The lower the average rank the better the performance of the method. AUC values and 

 

 

TABLE 3.2 THE 7 BIOLOGICAL DATASETS SELECTED FROM CHAKRABARTI ET AL (2007) 

TO SIMULATE ALIGNMENTS WITH DEFINED MOTIFS FOR SUBTREES USING INDEL-SEQ-

GEN-V2. Datasets selected cover a range of alignment lengths, number of functionally divergent 

sites, taxa, and alignment lengths. 

Set # Subsites # Taxa Simulated Alignment Length 

cbm9 7 19 300 

cd00333 12 27 335 

cd00423 4 33 279 

cd00985 3 180 272 

CNmyc 11 34 328 

MDH-LDH 1 44 258 

Nucleotidyl cyclase 2 49 365 
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calculated average ranks were then used to generate boxplots using the R statistical 

package. All programs were evaluated over the larger 500 alignment and tree set 

(simulation set 1) and the smaller 70 alignment set with motifs (simulation set 2) as well 

as a set of 11 biological datasets (Chakrabarti et al. 2007). 

 

3.3 Results 

We investigated and compared the performance of the FunDi methods and several 

other methods for functional divergence site prediction over a range of tree-topologies 

and sizes, identifying particular tree topologies that may prove problematic for 

prediction of functional divergence. The impact of taxon sampling (recovery of true 

molecular diversity), length of the branch separating the subtrees, and overall tree 

length was also investigated in order to build a robust picture of the behavior of the 

various functional divergence prediction algorithms and their performance over 

phylogenetically diverse data.  

 

 Several programs were selected based on their performance in previous studies (Capra 

and Singh 2008; Chakrabarti and Panchenko 2009; Brandt et al. 2010) as well as their 

ability to be used in a large-scale testing pipeline. We tested the performance of our 

own method, FunDi (using both QmmRAxML and RAxML for site log-likelihood 

calculation), FunDi+ConsWin, SPEER (Chakrabarti et al. 2007), GroupSim (Capra and 

Singh 2008), Sequence Harmony, and Multi-RELIEF. Sequence Harmony and Multi-

RELIEF were both used as implemented in Multi-Harmony (Brandt et al. 2010). These 

programs represent the top performing methods as determined by prior studies and 

include both phylogenetic and information theoretic approaches. A likelihood ratio test 

method for functional divergence detection was also evaluated (Knudsen and Miyamoto 

2001; Knudsen et al. 2003) on both the simulated and real biological datasets. However, 

as it had poor performance in initial tests we did not do a complete set of analyses. 
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Similarly, the Difference Evolutionary-Trace and Real-Value Evolutionary-Trace methods 

could only be carried out on the 11 biological datasets tested (see below). 

 

Eleven two subfamily biological datasets were selected from Chakrabarti et al. (2007) 

and performance evaluated. The 11 datasets were selected with the requirement that 

each subfamily had to be phylogenetically distinct and contain a minimum of four taxa 

per subfamily. The datasets selected feature a broad range in terms of number of taxa 

and number of functionally divergent sites. The performance of most classifiers as 

measured by AUC-ROC was very similar, with more variation seen in the AUC-PR metrics 

(Figure 3.1). Using the medians of the AUC-PR distribution to judge the overall 

performance, GroupSim appeared to have the overall best performance with FunDi-

ConsWin and Multi-RELIEF as the next best performers in the AUC-PR plots. Median 

performance as measured by AUC-ROC is slightly higher on these 11 biological datasets 

than observed under either of the two simulation conditions examined below, but not 

significantly, except in the case of SPEER in the case of simulated dataset 2. We also 

compared the performance of the Real-Value Evolutionary Trace (Mihalek et al. 2004) 

and Difference-ET methods (Madabushi et al. 2004; Raviscioni et al. 2006) here but due 

to technical constraints were unable to perform those evaluations on our larger 

simulated datasets.  

 

In simulation Set 1 across all 500 datasets the performances of FunDi using either 

QmmRAxML or RAxML were highly similar, outperforming all other methods tested as 

measured by the area under the Precision-Recall curve (AUC-PR), the area under the 

ROC curve (AUC-ROC), and the average rank of true positive functionally divergent sites 

(Figure 3.2). The program GroupSim (Capra and Singh 2008) applies a simple windowing 

method (ConsWin) for adjusting scores of functional divergence based on neighboring 

residues in the primary sequence (described previously). We applied this same method 

to the posterior probabilities of functional divergence P(FD) generated by FunDi with 

QmmRAxML to see if it yielded an improvement and to ensure that our simulation  



105 
 

 

 

 

 

 

 

FIGURE 3.1 PERFORMANCE ON 11 BIOLOGICAL DATASETS TAKEN FROM CHAKRABARTI 

ET AL (2007) (See Table 3.3). ET (Evolutionary Trace) and DET (Difference-ET), and the 

Likelihood ratio test (LRT1) included. Results as measured by the area under the Precision-Recall 

(A) and ROC (B) curves. FunDi+CW is FunDi+QmmRAxML with the ConsWin windowing method 

applied as in GroupSim. 

 

 

 

 

 

 

 



106 
 

 

TABLE 3.3 THE 11 BIOLOGICAL DATASETS FROM CHAKRABARTI ET AL (2007) USED TO 
TEST PREDICTION PROGRAMS AND THE NORMALIZED TREE LENGTH AND SUBTREE 
LENGTHS. 

Dataset Sub-tree1 Sub-tree2 Difference 

cbm9 0.3761 0.7081 0.3320 

cd00264 2.0427 2.4408 0.3981 

cd00333 0.9780 0.8154 0.1626 

cd00365 0.7390 0.4668 0.2721 

cd00423 0.8300 1.2568 0.4262 

cd00985 0.5589 0.5831 0.0243 

CNmyc 0.1815 0.0839 0.0977 

MDH_LDH 0.2524 0.4172 0.1648 

nucleotidyl_cyclase 0.5515 0.2626 0.2889 

Rab56 0.0568 0.1348 0.0780 

RasRal 0.2004 0.0422 0.15822 

Tree A 0.3503 0.0508 0.2995 

Tree B 0.2564 0.2596 0.0031 
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FIGURE 3.2 BOXPLOTS SHOWING PERFORMANCE OF SEVERAL FUNCTIONAL 

DIVERGENCE CLASSIFIERS ON 500 SIMULATED DATASETS AS MEASURED BY THE AREA 

UNDER THE PRECISION-RECALL (A), AND RECEIVER OPERATING CHARACTERISTIC (B) 

CURVES. Higher values reflect increased performance with a maximum value of 1.0. 

Additionally performance was characterized by the average rank of true positive functionally 

divergent sites (C) with sites ordered by the respective FD score of the program tested. All 

scores transformed (if required) to be between 0 and 1 with high scores reflecting a better 

functional divergence score. For Average Rank lower median values show increased 

performance. The methods evaluated in all cases are FunDi with QmmRAxML, FunDi with 

QmmRAxML and the ConsWin windowing method, FunDi with RAxML, GroupSim, Multi-

Harmony (MR), Sequence-Harmony (SH), and SPEER. The 500 datasets were simulated with 

varying conditions over randomly generated tree topologies. 
 

 

 

 



108 
 

 

 

settings were appropriate for Group-Sim's prediction strategy. FunDi+ConsWin 

displayed an increase in predictive performance compared to the non-windowed P(FD) 

scores alone (Figure 3.2). GroupSim was the next best classifier after the three FunDi-

based methods across all datasets. Surprisingly given previous studies (Chakrabarti and 

Panchenko 2009), SPEER appeared to have the lowest performance for all three scoring 

metrics. The distribution of AUC-PR values for FunDi was significantly different from the 

other predictors in all pairwise comparisons by the Wilcoxon Signed-Rank Test with a 

Bonferroni correction for multiple comparisons (p-value < 8.8e-16). All other tests were 

also significantly different from one another with Bonferroni corrected p-values << 0.05. 

 

3.3.1 The Impact of Phylogenetic Tree Shape and the Number of Taxa 

We also investigated performance of the classifiers as a function of several common 

phylogenetic tree shape statistics. The clearest trend indicated that performance was 

greatly influenced by normalized tree length (i.e. overall sum of branch lengths divided 

by the number of taxa) as shown in Figure 3.3. All programs that we examined exhibited 

some increase in AUC-PR as the normalized tree length increased; however, this trend 

was much stronger in the three variations of FunDi tested. As the normalized tree length 

increased the performance gap between FunDi and the other prediction programs 

increases, with the FunDi-based methods doing much better in general at longer tree 

lengths. We also identified two tree topologies with identical normalized tree lengths 

(NTL = 0.18) where the performance of FunDi differs significantly (Figure 3.4). For the 

tree in figure 3.4A, FunDi performs poorly (AUC-PR=0.33) whereas in the tree in Figure 

3.4B, it performs much better (AUC-PR = 0.51). Curiously, the AUC-PR results under the 

poorly performing tree are nearly indistinguishable from those of Group-Sim (second 

best performing method overall), while there is a large difference in AUC-PRs under the 

‘high-performance’ tree. These two topologies differ mainly in their tree shapes, with a  
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FIGURE 3.3 PERFORMANCE (AREA UNDER THE PRECISION RECALL CURVE) VERSUS 

NORMALIZED TREE LENGTH (TOTAL SUMMED LENGTH OF ALL BRANCHES IN THE 

PHYLOGENETIC TREE DIVIDED BY THE NUMBER OF TAXA) FOR SEVERAL FUNCTIONAL 

DIVERGENCE CLASSIFIERS EVALUATED OVER 500 RANDOMLY SIMULATED DATASETS. 

Linear trend lines for the data points are also shown for each classifier. Larger normalized tree 

lengths result in increased predictive performance, particularly for the three versions of FunDi 

tested here. 
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FIGURE 3.4 TREES USED FOR SIMULATIONS THAT LED TO (A) POOR PERFORMANCE OF 

FUNDI (RELATIVE TO OTHER CLASSIFIERS) AND (B) GOOD PERFORMANCE. These trees 

were selected for further analyses of the impact of taxon sampling and branch length re-scaling 

as best and worst-case examples of phylogenetic tree shapes, balance, and differences between 

subtrees. Both tree topologies have an identical normalized tree length of 0.18. Performance of 

FunDi on tree topology A (as measured by the Area Under the Precision Recall Curve) was 0.33, 

while it was 0.51 for tree topology B. 
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large discrepancy between the branch lengths in the subtrees. These two tree 

topologies are best- and worst-case examples for FunDi and were selected for further 

analyses on the effect of branch length and taxon sampling on functional divergence 

prediction. While large discrepancies between branch lengths of subtrees in datasets 

with functional divergence is not uncommon, in this case a large branch length 

discrepancy is compounded with relatively short branches throughout the tree when 

compared to similar trees from 11 biological datasets examined (Table 3.3). This may 

explain why performance increases so dramatically when branches in the subtrees are 

made longer (See Below). 

 

3.3.2 The Impact of Taxon Sampling 

To test the effects of taxon sampling on functional divergence prediction, random taxon 

subsets were created from the simulated datasets from trees A and B in Figure 3.4. 

Results are shown in figure 3.5. For both trees, addition of more data in the form of 

additional taxonomic coverage improved the performance of FunDi relative to other 

tested methods, although the trend is much more pronounced for tree B. On the other 

hand, information theoretic methods appear to be relatively insensitive to taxon 

sampling, showing only moderate performance increases (or some apparent decreases, 

e.g. 3.5B). 

 

3.3.3 The Impact of Branch Length Scaling 

We also investigated the impact of branch lengths on performance  

using trees A and B as examples. We present only the results for AUC-PR as they showed 

the clearest trends. For both trees, either the branch lengths in the subtrees or the 

internal branch length separating the two subtrees were rescaled and for each case, a 

dataset was simulated and tested. The branch length effect is dependent on which  
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FIGURE 3.5 BOXPLOTS SHOWING THE IMPACT OF TAXON SAMPLING ON 

PERFORMANCE AS MEASURED BY THE AREA UNDER THE PRECISION-RECALL CURVE 

(PANELS A AND B ) ON TREE TOPOLOGIES A (A) AND B (B) FROM FIGURE 3. For each 

tree, 10 sub-sampled replicates of 10, 15, 20, 25, 30, or 35 taxa were constructed and the 

performances of each of the listed classifiers assessed. AUC-ROC results are shown in Appendix 

B3, Supplementary Figure 3.3 
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FIGURE 3.6 IMPACT OF BRANCH LENGTH RE-SCALING ON INTERNAL (A,B) OR SUB-TREE 

(C,D) BRANCHES AS MEASURED BY THE AREA UNDER THE PRECISION-RECALL CURVE. 

Re-scaling was applied to both tree topologies A and B from figure 3. Scaling factors are shown 

on the x-axis with AUC-PR scores on the y-axis. For each of the two topologies re-scaling was 

applied to the indicated branch length(s) and a random dataset simulated and performance of 

the tested functional divergence classifiers assessed as described in the Methods. 
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branch is being re-scaled (Figure 3.6), as well as the given tree. Increasing the internal 

branch (panels A and B) separating subtrees results in a decrease in predictive 

performance for all classifiers for tree B. For tree A, it is difficult to discern a clear trend 

as the performances of most classifiers do not change dramatically, although at the 

longest branch length setting (10) all methods do generally poorer than at shorter 

lengths. This general effect is expected in terms of the performance of FunDi; as the 

internal branch between subgroups increases, the whole tree becomes closer and closer 

to the independence model, decreasing the distinction (and separatability) of the two 

components of the mixture model. 

 

In the case of varying branch lengths in subtrees (Figure 3.6C and D), AUC-PR clearly 

increases for all classifiers and on either tree as the branch lengths are increased. The 

trend is most dramatic for all three versions of FunDi relative to the other programs. As 

each subtree is evolving under its own evolutionary model, longer branches in subtrees 

provide additional time for substitutions that allow discrimination between the two site 

types (functionally divergent versus non-FD) to appear (if such a substitution did not 

occur along the internal branch) and provide more information upon which a 

classification can be made. This may be particularly true for Type I functional divergence 

as longer branches lead to more scrambling of the amino acid states at that site in the 

subtree with relaxed selective pressures. In tree A (the ‘poorly’ performing tree 

topology) we see rapid increases in performance for the FunDi-based methods as 

branch lengths increase. 

 

3.3.4 Prediction of Type I versus Type II FD Sites 

We evaluated whether there were differences in the ability of methods to predict Type I 

versus Type II FD sites. While better performance is observed for Type II sites (Figure  
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FIGURE 3.7 PERFORMANCE DIFFERENCES BETWEEN TYPE I (LEFT) AND TYPE II (RIGHT) 
SITES FOR EACH OF THE TESTED PREDICTION PROGRAMS ACROSS 500 RANDOMLY 
SIMULATED DATASETS AS MEASURED BY AUC-PR (A) AND AUC-ROC (B). 
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FIGURE 3.8 BOXPLOTS OF PERFORMANCE OF FUNCTIONAL DIVERGENCE CLASSIFIERS 

ON 70 DATASETS SIMULATED WITH DEFINED MOTIFS USING INDEL-SEQ-GEN-V2 AS 

MEASURED BY AREA UNDER THE PRECISION-RECALL (A) AND RECEIVER OPERATOR 

CHARACTERISTIC (B) CURVES AS WELL AS THE AVERAGE RANK (C). The 70 simulated 

datasets are simulated with 10 replicates over each of seven tree topologies (and with defined 

motifs) from real biological datasets from Chakrabarti et al. (2007 and 2009).  
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3.7), the difference is not great as median values for AUC-PR or AUC-ROC metrics for 

Type I or Type II sites fall within the other site type’s interquartile range. 

 

3.3.5 Performance With Defined Evolutionary Motifs 

The functional divergence prediction programs were tested using the same performance 

metrics on the 70 alignments from simulated dataset 2, which used the ‘defined 

evolutionary motifs’ simulation strategy. Overall, the same general trends in relative 

performance are observed. The median AUC-PR was highest for FunDi (RAxML,  

QmmRAxML, and QmmRAxML + ConsWin); with GroupSim the next best performing 

prediction method (Figure 3.8A). The large range of performance scores observed with 

the AUC-PR data can best be explained by the varying performance on individual motifs 

and phylogenetic tree shapes used (data not shown). When evaluated using AUC-ROC, 

FunDi + ConsWin was the best performing prediction method, followed by GroupSim, 

then by FunDi (QmmRAxML or RAxML) without the windowing method (Figure 3.8B). 

Performance of FunDi (AUC-PR values) is significantly different from other predictors as 

measured by the Wilcoxon Signed-Rank Test. (p-value < 2.65e-12). If non-FD windows 

that are more highly conserved compared to the majority of non-FD sites do tend to be 

located around FD sites, a windowing method such as ConsWin is of clear benefit, 

regardless of the testing methodology, as described previously (Capra and Singh 2008). 

 

3.4 Discussion 

Although not dramatic, there is an apparent discrepancy between the performance 

results for the 11 real datasets versus those of the two simulation studies. GroupSim 

does best overall for the real datasets with FunDi-based methods amongst the next best 

performers whereas in the two kinds of simulations, FunDi-based methods (especially 

FunDi+ConsWin) typically outperform GroupSim and other methods. The source of the 

discrepancy is not very clear, but we would suggest that all of the performance metrics 

are inherently less trustable for the 11 real data sets because, for these, only the true 
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positive class of sites is known with certainty. As the relative rank of performance of the 

various methods is similar over two completely distinct functional divergence simulation 

settings and multiple performance indicators, we believe that the simulation results are 

more representative of the true performance properties of the various methods.  

 

While FunDi performs better overall, its predictive power, as measured by precision-

recall curves, remains relatively low (although performance as measured by ROC curves 

appears quite strong). This low predictive power is due to a variety of factors. Even 

under our simulation conditions, some functional shifts may result in relatively subtle 

amino acid substitutions, especially in complex situations that are an apparent mix of 

type I and type II functional divergence types, or what have been termed ‘Marginally 

Conserved’ sites (Chakrabarti et al. 2007). Marginally conserved sites, in this context, 

refer to sites that do not confirm exactly to canonical Type I or Type II site-patterns. It is 

these marginally conserved sites that prove to be the most difficult in terms of 

prediction. In addition, the majority of existing approaches essentially search for 

particular patterns of amino acid usage, patterns which can arise in an evolutionary 

context due simply to stochastic neutral changes over the underlying phylogeny of the 

protein family without any functional shift occurring, making adjustments for the 

underlying phylogeny of great importance. FunDi can also leverage improved models of 

amino acid evolution, such as the 10 component amino acid profile mixture models 

implemented in QmmRAxML (Wang et al. 2008) using WAG (used in this study), JTT, LG, 

or user-supplied exchangeabilities. Judicious model selection allows the incorporation of 

some prior knowledge of the protein's evolutionary history, structure, function, and 

amino acid frequencies. 

 

We have also introduced two new simulation strategies for functional divergence that 

are useful for benchmarking new prediction programs, and improving existing ones, 

especially in phylogenetic "trouble spots" (e.g. worst-case tree used in our analyses of 
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the impact of branch lengths and taxon sampling). Unfortunately, we were unable to 

compare our results with some of other phylogenetically-based methods such as 

DIVERGE (Gu 1999; Gu 2001; Gu and Vander Velden 2002) because the software 

implementation and run-times of the latter precluded analyses of large simulated 

datasets. Furthermore, the Gu 2001-based predictions could not be obtained for several 

of the biological datasets examined. Since FunDi is: i) scalable to the analysis of multiple 

(potentially thousands) of large protein datasets. ii) has a single coherent framework for 

the prediction of type I and type II functionally divergent sites and iii) can be used with 

any phylogenetic model of protein evolution implemented in a maximum likelihood 

framework, it has distinct advantages as compared to other phylogenetic-based 

functional divergence predictors currently in use. 

 

Our analysis on a large, phylogenetically diverse set of simulated functionally divergent 

datasets shows that taking into account the phylogeny of a protein family is an 

important part of the prediction of functionally divergent sites. While non-

phylogenetically aware prediction schemes such as GroupSim can be characterized as 

insensitive to issues of taxon sampling and phylogenetic tree topologies, they also do 

not increase in predictive accuracy under appropriate phylogenetic conditions and show 

generally poorer performance under a wide range of conditions. FunDi, as a 

phylogenetically aware prediction program, shows marked improvement in the quality 

of its predictions under increased taxon sampling (recovery of true biological diversity) 

as well as increased evolutionary time as measured by the normalized tree length and 

illustrated in our branch length re-scaling experiments.  

 

The main problem with using real biological data to evaluate the performance of 

functional divergence methods is the infeasibility of experimentally testing false and 

true negative prediction; there are simply too many sites and too many character state 

combinations to test comprehensively. The two simulation strategies described here 
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therefore provide much cleaner data, with less noise than true biological data and so 

can be used to evaluate the performance of functional divergence methods over a wide 

range of possible evolutionary conditions such as tree topologies and taxon sampling. 

The ability to specify particular sequence motifs for functionally divergent residues 

based on observed biological data, as we have done here in the second set of 

simulations, may be useful in developing methods that have better performance on 

difficult-to-classify functionally divergent residues. 
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Chapter 4 Analysis of Functionally Divergent and Convergent Evolution in 

the Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenases of the 

Archeaplastida and Chromalveolata 

 

4.1 Introduction 

 

4.1.1 Glyceraldehyde-3-phosphate Dehydrogenase 

Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reversibly catalyzes the 

sixth step of glycolysis, the conversion of glyceraldehyde 3-phosphate to D-glycerate 

1,3-bisphosphate reducing the coenzyme NAD+ to NADH in the process (Cerff & 

Chambers 1978; Ferri et al. 1978). Structurally, cytosolic GAPDH canonically functions as 

a homotetramer with each monomer composed of two domains, the N-terminal 

coenzyme binding domain, which includes the first 147 amino acids as well as the final 

20 (314 to 334), and the C-terminal catalytic domain, including the catalytic cysteine 149 

(residue numbering is based on the Bacillus stearothermophilus homolog as in 

(Biesecker et al. 1977)). The catalytic domain contains the Ps and Pi sites, which bind the 

C(3) phosphate of the substrate and the inorganic phosphate ion respectively during the 

phosphorylation step carried out by the enzyme (Moras et al. 1975). Another important 

structural feature, the S-loop (177 to 203), folds over in close proximity to the bound 

cofactor. A structural overview is shown in Figure 4.1. 

 

Archeaplastida (land plants, green algae, red algae, and glaucophytes) are eukaryotes 

that have acquired their chloroplasts via primary endosymbiosis of a cyanobacterium 

(Palmer 2003; Reyes-Prieto et al. 2007; Gould et al. 2008) and have a plastid-targeted 

GAPDH, homologous to the Gap2 of cyanobacteria (Brinkmann et al. 1987). This plastid 

GAPDH is active in the Calvin cycle and the fixation of CO2 during photosynthesis where 

it preferentially carries out the reverse of the glycolytic reaction (Henze et al. 1995).  
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FIGURE 4.1 QUATERNARY STRUCTURE OF THE GAPDH A2B2 HETEROTETRAMER (PDB: 

2PKQ) FROM SPINACIA OLERACEA (SPINACH). Crystallographic subunits O (GapB) and R 

(GapA) are show in blue and orange respectively, with the S-loop of the R subunit indicated. 

Bound NADPH in the co-enzyme binding domain drawn as a van der Waals space-filling model 

coloured by element type according to the Visual Molecular Dynamics (VMD) program. Sulfate 

ions in the Ps and Pi in purple, also as space-filling models. The O and R subunit are related by 

the R axis of symmetry. The P and Q subunits are shown in the background. 
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Unlike its glycolytic homologs, the plastid-targeted GAPDH, GapA, has a dual coenzyme 

specificity with a marked preference for binding (and oxidizing NADPH) in the Calvin 

cycle reaction, reducing 1,3 biphosphoglycerate (1,3BPGA) and producing 

glyceraldehyde-3-phosphate (G3P). In another group of photosynthetic eukaryotes, the 

Chromalveolata, a duplicate copy of cytosolic GAPDH (GapC1) was re-targeted to the 

chloroplast (Liaud et al. 1997; Fagan et al. 1998; Fast et al. 2001). This enzyme also 

features dual coenzyme specificity with a preference for NADPH when functioning in the 

Calvin cycle. Plastid targeted forms of GAPDH can also participate in the oxidative 

pentose phosphate pathway (OPP) (Buchanan 1980, 1984; Plaxton 1996); because of 

these dual-roles, NADPH-dependent GAPDH must be differentially regulated during light 

and dark cycles to prevent futile enzymatic cycling. This regulation is thioredoxin-

mediated through CP12, a small intrinsically unstructured protein that forms a protein 

complex with both GAPDH and ribulophosphokinase (RPK) (Wedel & Soll 1998; Graciet 

et al. 2004; Marri et al. 2005, 2008; Lebreton et al. 2006; Trost et al. 2006; Erales et al. 

2009).  

 

4.1.1.1 GapA and GapB 

GapA is the plastid-targeted isoform of GAPDH shared by all members of the 

Archeaplastida and is the most closely related to the Gap2 sequence of cyanobacteria. 

GapB is a land plant specific duplicate of GapA (Petersen et al. 2006a) with a C-terminal 

extension consisting of approximately 30 amino acids that is homologous to the CP12 

regulatory enzyme (Pohlmeyer et al. 1996). In land plants, active GAPDH in the plastid is 

primarily found the form of A2B2 tetramers (Ferri et al. 1978; Cerff 1979; Cerff & 

Chambers 1979) although A4 tetramers are also known (Cerff 1979; Sparla et al. 2004). 

Crystal structures for the A2B2 tetramer  and mutant A4 tetramers (Fermani et al. 2001; 

Sparla et al. 2004) have been solved, including fragments of the C-terminal extension of 

GapB that is homologous to CP12. Comparisons with crystal structures of GapC have 

yielded insights into the structural changes required for the discrimination between 
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NADH and NADPH cofactor binding and the CP12 interactions necessary to form the 

CP12/GAPDH/PRK supramolecular complex (Gardebien et al. 2006; Lebreton et al. 2006; 

Marri et al. 2008; Groben et al. 2010). 

 

4.1.1.2 GapC1 

The Chromalveolata is a proposed monophyletic ‘super-group’ of microbial eukaryotes 

comprised of the stramenopiles, haptophytes, cryptophytes, and alveolates (Cavalier-

Smith 1999, 2002, 2003).  Several lineages within each of these monophyletic groups 

contain a red-algal derived plastid of secondary endosymbiotic origin (Daugbjerg & 

Andersen 1997; Douglas & Penny 1999; Oliveira & Bhattacharya 2000; Zhang et al. 2000; 

Archibald et al. 2001). The presumed rarity of successful secondary endosymbiotic 

integration, along with several molecular phylogenies, including that of GapC1, have 

been used as support for this ‘chromalveolate hypothesis’ (Fast et al. 2001; Harper and 

Keeling 2003; Patron et al. 2004; Petersen et al. 2006b; Yoon et al. 2002). Recent work 

by Takeshita and colleagues (2009) has shown that extensive LGT within this group 

produces a phylogeny inconsistent with the presumed organismal phylogeny and may 

make its usefulness for determining chromalveolate monophyly less clear. In addition, 

various phylogenetic studies recover support for alternative groupings that modify or 

exclude Chromalveolata monophyly, such as the SAR (stramenopile, alveolate, and 

rhizaria) clade (Burki et al. 2007, 2008, 2009) and the inconsistent placement of the 

cryptophytes and haptophytes (Hackett et al. 2007; Patron et al. 2007). A recent multi-

gene phylogenetic analysis based on comparisons of support for the chromalveolate 

hypothesis between plastid, mitochondrial, and nuclear sequences favoured an 

explanation involving multiple serial eukaryote-to-eukaryote enodymbiotic events over 

common linear descent of the chromalveolates (Baurain et al. 2010). 
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Regardless of whether the chromalveolate taxa truly form a monophyletic group, the 

transition of GapC1 from a cytosolic NADH-binding GAPDH to a plastid-targeted, 

NADPH-dependent GAPDH appears to have occurred only once, and GapC1 sequences 

are monophyletic. While the evolutionary history of the red-algal derived plastid and 

their host organisms is likely very complex, we expect there to have been relatively 

uniform evolutionary pressures on GAPDH function within the plastid in some respects. 

However, because the host organisms have widely varying habitats and metabolic 

lifestyles, there appear to be many differences in terms of GapC1 regulation (discussed 

below). GapC1 represents a secondary event of plastid targeting (if we consider GapA 

and GapB as the primary event) and also a secondary case of adaptation to NADPH-

dependent function. Because the organisms within which it is found are comparatively 

less well studied, correspondingly less molecular data exists regarding GapC1 function 

and regulation, and fewer sequences from this subfamily are available in public 

databases. Like GapA and GapB, GapC1 shows dual specificity for both NADH and 

NADPH but with a preference for NADPH (Liaud et al. 1997). A large scale comparison of 

GAPDH and PRK regulation in algae including chromalveolates (Maberly et al. 2010) has 

shown variation within the latter group, and between chromalveolates and other algae 

with canonical GapA plastid-targeted sequences. Unfortunately, many of the species for 

which these studies of regulation have been completed are not the same species for 

which we have molecular sequence data for GapC1. In this chapter, we analyze the 

functional divergence and shifts in selective pressures of GapA/B and GapC1 relative to 

GapC within this enzyme’s complex phylogenetic distribution.  

 

4.1.2 Regulation of NADPH-Dependent GAPDH in Chloroplasts 

Except in the chloroplasts of the Streptophyta (land plants), NADPH-dependent GAPDH 

typically exists as a homotetramer of GapA subunits. Redox regulation of NADPH-

dependent GAPDH activity by CP12 is ancestrally inherited from cyanobacteria 

(Pohlmeyer et al. 1996; Wedel & Soll 1998) and is widespread throughout 
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photosynthetic eukaryotes, including some chromalveolates (Boggetto et al. 2007; 

Erales et al. 2008; Maberly et al. 2010). Under light conditions, thioredoxins are 

constantly reduced by ferredoxin-thioredoxin reductase, which in turn, reduces target 

proteins such as CP12 (Buchanan 1980, 1984; Martin et al. 2004; Buchanan & Balmer 

2005). The redox state of CP12 has a significant impact on its structure; oxidation of 

CP12 results in the formation of two internal disulphide bridges, reducing the overall 

disorder of CP12 and increasing the helical content (Graciet et al. 2003), although CP12 

still remains highly disordered. Oxidized CP12 then acts as a scaffold, forming a 

supramolecular complex of GAPDH and phosphoribulokinase (PRK) whereby two 

molecules of CP12, two GAPDH homotetramers, and two of PRK form an inactivated 

complex, with each CP12 molecule binding a single PRK and a GAPDH homotetramer 

(Wedel et al. 1997; Wedel & Soll 1998; Graciet et al. 2003). Reduced thioredoxin, in 

turn, reduces CP12, which releases PRK from the complex although CP12 is still bound to 

GAPDH, which is only fully activated in the presence of the substrate 1,3-

biphosphoglycerate and when NADPH to NADP+ ratios shift in favour of NADPH 

(Wolosiuk & Buchanan 1978; Wedel & Soll 1998). In the streptophytes, the C-terminal 

extension (CTE) of GapB fulfills the regulatory role of CP12, mediating the aggregation of 

A2B2 tetramers in to higher order, inactive  A8B8 complexes (Zapponi et al. 1993; 

Baalmann et al. 1996). The formation of higher order complexes of GAPDH, and its 

enzymatic activity are both tightly controlled by light conditions and substrate 

availability, at least in the Archeaplastida. 

 

In contrast, GAPDH regulation in members of the chromalveolates is less clear. In the 

diatoms Odontella sinensis (Michels et al. 2005), Thalassiosira pseudonana, and 

Phaeodactylum tricornutum (Gruber et al. 2009) the entire oxidative pentose phosphate 

pathway appears to be cytosol localized instead of occurring in the plastid. On the other 

hand, in the freshwater diatom Asterionella formosa  no regulation of PRK was observed 

in cellular extracts (Boggetto et al. 2007) but GAPDH regulation appears to function 
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much like that in Chlamydomonas reinhardtii via CP12 (Boggetto et al. 2007; Erales et al. 

2008). Additionally, putative CP12 homologs have been identified by bioinformatic 

means in the chromalveolates Thalassiosira pseudonana and Emiliania huxleyi (Groben 

et al. 2010). Bioinformatic annotation and  experimental studies fusing putative N-

terminal targeting sequences from thioredoxins with green fluorescent protein in 

Phaeodactylum have also identified several plastid-targeted thioredoxins (Weber et al. 

2009), including two canonically cytosolic proteins that appear to be localized to the 

periplastidal space (i.e. in the space between the innermost two membranes and the 

outer third membrane). Given their complex evolutionary history and acquisition of 

plastids by secondary endosymbiosis, it is reasonable to expect large differences in 

plastid associated metabolism and regulation, including the regulation of GAPDH 

function. 

 

Recently, a large-scale analysis of both PRK and GAPDH regulation was carried out on 

cellular extracts in a phylogenetically broad manner, including 12 members of the 

Chromalveolata (Maberly et al. 2010). GAPDH was activated under reducing conditions 

except in Thalassiosira pseudonana (marine diatom) and Alexandrium minutum (marine 

dinoflagellate), although the GAPDH of those organisms was activated when both 

reducing conditions and NADPH were present. Addition of NADPH alone to the extracts 

tended to result in inhibition in the case of the chromalveolates, except in the 

cryptophye alga Hemiselmis rufescens, and had no effect in the tested archeaplastidian 

species with the exception of Staurastrum cingulum which was strongly inhibited. In the 

presence of CP12 from Chlamydomonas reinhardtii GAPDH and PRK were both inhibited 

in Pseudocharaciopsis ovalis, and Asterionella formosa but not in the other 

chromalveolates tested. However, supramolecular complexes involving GAPDH and 

CP12 as found in the Archeaplastida have only been characterized in the freshwater 

diatom Asterionella formosa (Boggetto et al. 2007; Erales et al. 2008). It appears that, 

based on these experimental studies, light/dark regulation of GAPDH activity may be 
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less tightly controlled and overall more differentiated within the chromalveolates, with 

large differences especially between marine and freshwater species. Additionally, not all 

members of the Chromalveolata are photosynthetic and some, such as the 

apicomplexan parasites (e.g. members of the genus Plasmodium) contain a relict plastid 

known as the apicoplast. Even among photosynthetic chromalveolates some taxa, such 

as the dinoflagellates may be mixotrophic predators of other unicellular organisms as 

well as photosynthesizing. 

 

4.2 Methods 

4.2.1 Dataset Construction 

To build a phylogenetically broad dataset of GAPDH sequences all eukaryotic sequences 

from the Reference Sequence (RefSeq) database of the National Center for 

Biotechnology Information (NCBI) annotated with the keyword glyceraldehyde-3-

phosphate dehydrogenase were downloaded and clustered at the 90% identity level 

using UCLUST (Edgar 2010), an alternative to the program CD-HIT (Cluster Database at 

High Identity with Tolerance) (Li et al. 2001, 2002; Li & Godzik 2006). UCLUST is part of 

package of programs including USEARCH and UBLAST (Edgar 2010) which offer various 

heuristic speed-ups and improved performance over BLAST searches. UCLUST clusters 

sequences based on percent identity cut-offs as determined by an all-versus-all 

USEARCH run given a set of sequences. A random sequence is then selected as a 

representative of the cluster. Additional non-RefSeq sequences from various microbial 

lineages were also assembled; these included sequences specifically annotated as GapA 

or GapB based on a prior phylogenetic analysis (Petersen et al. 2006a), GapC1 

sequences from the dataset of Takeshita and colleagues (Takishita et al. 2009), 

cyanobacterial Gap2 sequences from Petersen et al (2006), and additional 

cyanobacterial GapC (cytosolic) homologs yielding a total of approximately 2000 

sequences. Although these additional sequences were not clustered like the RefSeq 

sequences, any 100% identical sequences were screened out, preferentially retaining 
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any sequences currently annotated as Gap2, GapA, GapB, or GapC1 from the studies 

cited to retain appropriate annotation data. This initial set of sequences was aligned 

with the Fast Statistical Alignment (FSA) program (Bradley et al. 2009) because of its 

speed and relative accuracy when aligning large groups of sequences. The preliminary 

multiple sequence alignment was then trimmed using AliMask-CS, an in house 

alignment masking script described in more detail in Chapter 2, with default parameters. 

After alignment and trimming, any sequences that were not well aligned (because of 

possible misannotations or pseudogenes), covered less than 75% of the trimmed 

alignment (fragments or pseudogenes), or that were 100% identical to other sequences 

in the dataset were removed, leaving 490 sequences. We then began an iterative 

removal process to remove sequences contributing little to the overall phylogenetic or 

sequence diversity of the dataset as defined by short terminal branch lengths. 

 

To identify sequences with short terminal branch lengths, an initial phylogenetic tree 

was inferred using FastTreeMP version 2 (Price et al. 2009, 2010) with the maximum-

Likelihood approximation to the CAT rates across sites method (Stamatakis 2006a) 

although the number of possible rate categories was fixed at 20 and every site assigned 

to the most likely rate category. The final maximum-likelihood branch length 

optimization used 20 gamma distributed rate categories and the JTT (Jones et al. 1992) 

amino acid substitution model. The objective was to retain a final dataset with broad 

taxonomic coverage as well as maximum sequence diversity. To avoid bias in the 

removal of short-branching taxa, sequences within the bottom 10 percentile of the 

terminal branch length distribution were identified from the non-GapC1 set and one 

was randomly deleted. This process was repeated until the final dataset size of 350 

sequences was reached. The final size was selected to balance enhanced sequence 

diversity in the GapA/B/2 and cytosolic GAPDH groups, overall reduction of sequences 

with extremely short terminal branch lengths, and the speed of analyses performed with 

QmmRAxML (Wang et al. 2008). 
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4.2.2 Final Multiple Sequence Alignment and Phylogenetic Tree 

After the final reduced set of sequences was finalized, a final multiple sequence 

alignment was constructed using hmmalign from the HMMER3 software package (Eddy 

1998, 2011; Johnson et al. 2010) using an HMM profile generated from the OrthoMCL 

release 4 (Li et al. 2003; Chen et al. 2006, 2007) seed alignment of GAPDH (OG4_10093). 

The alignment was then automatically trimmed using an in-house sequence masking 

program called AliMask-CS (Alignment Masking with Confidence Scores, described in 

Chapter 2) leaving an final alignment length of 327 amino acid positions. 

 

A final maximum-likelihood phylogenetic tree was inferred using FastTree2 selecting 

options to make it slightly more accurate including: slow nearest neighbour 

interchanges (NNIs), four rounds of sub-tree pruning and re-grafting (SPR), branch 

lengths optimized with 20 gamma distributed rate categories and the JTT substitution 

matrix as above, always optimizing all of the five relevant branch lengths during an NNI 

with three optimization rounds, and the slow option. The tree was displayed as 

arbitrarily rooted using the cyanobacterial non-Gap2, glycolytic GapC orthologs as basal 

taxa (all displayed trees were inferred as unrooted). In order to carry out contrasting 

analyses of functional divergence (below) the rooted phylogenetic tree was parsed in to 

two alternatives, one with the GapC1 clade removed and the other with the GapA/B/2 

clade removed. These contrasting trees allow for comparison of functional divergence 

between the GapA/B/2  and the glycolytic GAPDH group  as well as the GapC1 clade 

versus the glycolytic GAPDH group without either of these Calvin-cycle tuned GAPDH 

groups unduly influencing the analysis of the other. The aim of this study is to determine 

the residues within the two Calvin-cycle tuned GAPDH groups that have altered 

evolutionary constraints as a result of their changed cofactor-binding and regulatory 

properties. 
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4.2.3 Testing Functional Divergence  

Several different programs were used to test for sites undergoing functional divergence 

in GapC1 and GapA/B/2 relative to other GAPDH sequences. These included: FunDi 

(Chapter 3) using QmmRAxML, RAxML 7.2.6 (Stamatakis 2006b), or the multi-threaded 

version of FastTree 2; GroupSim (Capra & Singh 2008); and the Difference Evolutionary-

Trace method (Lichtarge et al. 1996; Madabushi et al. 2004; Raviscioni et al. 2006). 

Default options were used in all cases, except GroupSim where the criteria for ignoring 

alignment sites containing gap characters was changed in order to only ignore columns 

that were all gaps (none present in the tested alignments), as the AliMask-CS method 

was used to mask the final alignment. For FunDi-based predictions, the ConsWin 

windowing approach described previously (Chapter 3) was used as it increased 

predictive performance on both simulated and biological datasets. Default parameter 

choices for window size and weighting were used as described in those experiments. 

 

To identify cases of convergent functional divergence between the GapA/B/2 group and 

the GapC1 group, and to avoid one group of NADPH-dependent GAPDH sequences from 

influencing functional divergence predictions of the other, contrast analyses were used 

as described above. In this technique, each group of NADPH-dependent GAPDH 

sequences is considered in comparison only to the cytosolic GAPDH sequences. For both 

FunDi and the Difference Evolutionary-Trace methods, the two contrast phylogenetic 

trees described above were used in the analyses. 

 

Sites with a functional divergence score above 0.5 (FunDi, GroupSim) were considered 

to be functionally divergent in order to identify the maximum number of possible sites 

for consideration. For FunDi this represents all sites that are at least as well modeled by 

the independent component (in terms of their posterior probability of being functionally 

divergent; see Chapter 3 for more detail) as by the standard dependent component and 
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thus provide some signal for functional divergence. For the Difference Evolutionary-

Trace method sites are considered to be functionally divergent if they score within the 

top 20% of functionally important residues in either of the sub-groups under 

examination, but do not fall within the top 20% of functionally important residues when 

all sequences are considered in the context of the whole phylogenetic tree.  

 

4.2.4 Constructing a Homology Model 

In order to visualize the physical context of sites predicted to be functionally divergent, 

a homology model was constructed using the SWISS-MODEL webserver (Peitsch 1995; 

Arnold et al. 2006; Kiefer et al. 2009). Both guided and automated homology models 

were constructed using the Ascophyllum nodosum GapC1 sequence as input. For the 

guided homology models, either the 2PKQ ( Spinacia oleracea) or 4DBV (Geobacillus 

stearothermophilus) structures from the PDB were used as templates. For the fully 

automated mode, which constructed a homology model that included all four subunits 

of the tetramer, SWISS-MODEL used the 3E5R structure (corresponding to the cytosolic 

GAPDH of Oryza sativa) as a template. To select the GapC1 sequence for comparison, all 

GapC1 sequences were compared to PDB sequences using BLASTP, and the sequence 

with the best overall blast match to a relevant structure in the PDB was selected. The 

Ascophyllum nodosum homology models based on the 2PKQ and 3E5R templates were 

selected for structural comparisons of NADPH/NADH binding. 

 

4.2.5 Prediction of Structural Disorder 

Several different publicly available methods were used to predict regions of structural 

disorder on the sequences from the PDB structure 2PKQ and the chromalveolate 

Ascophyllum nodosum GapC1 that was used for homology model construction. We used 

DisEMBL (Linding et al. 2003) with the ‘Hot Loops’ definition of disorder and the 

Predictor Of Naturally Disordered Regions (PONDR) VL-XT method (Romero et al. 1997, 
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2001; Li et al. 1999) to predict structural disorder. Default parameters were used for 

both programs. Access to PONDR® was provided by Molecular Kinetics (6201 La Pas Trail 

- Ste 160, Indianapolis, IN 46268; 317-280-8737; E-mail: main@molecularkinetics.com ). 

VL-XT is copyright©1999 by the WSU Research Foundation, all rights reserved. PONDR® 

is copyright©2004 by Molecular Kinetics, all rights reserved. 

 

4.3 Results 

After retrieving GAPDH sequences from NCBI, along with the datasets of several 

phylogenetic analyses (Harper & Keeling 2003; Petersen et al. 2006a; Takishita et al. 

2009) and removing sequences according to the criteria outlined in section 4.2, a 

dataset of 350 eukaryotic and cyanobacterial GAPDH sequences was assembled. This 

dataset size offered the best compromise between sequence diversity, taxonomic 

coverage, and reasonable analysis times using QmmRAxML for functional divergence 

prediction. After alignment and automated masking this multiple sequence alignment 

was used to infer a maximum-likelihood phylogenetic tree using FastTree2 with maximal 

accuracy settings (Figure 4.2). FastTree 2 was selected due to its speed and relative 

accuracy compared to RAxML (Stamatakis 2006b). FastTree consistently recovers well 

supported nodes in phylogenetic reconstruction (Price et al. 2010) and the FunDi step of 

functional divergence prediction re-optimizes maximum-likelihood branch lengths of a 

supplied topology according to the model parameters used (Chapter 3).  

 

The phylogenetic tree was constructed to incorporate as much potential sequence 

diversity as possible, and as a result it contains many paralogous sequences. 

Presumably, the various GAPDH paralogs included that are not targeted to the 

chloroplast bind NADH and function in glycolysis, although it is possible that some 

paralogs have altered functional constraints as many side-functions have been 

discovered for GAPDH including virulence and adhesion (Dumke et al. 2011), 
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neurodegeneration in Alzheimer's (Butterfield et al. 2010), carcinogenesis (Colell et al. 

2009), and transcriptional regulation (Zheng et al. 2003). In this analysis we do not take 

this possibility into consideration under the assumption that many of these secondary 

functions will be unique to individual sequences and will not create a general functional 

divergence pattern over all the cytosolic homologs. 

 

The phylogenetic tree did recover GapA and GapB clades branching together as a 

monophyletic group sister to the cyanobacterial Gap2 sequences. This larger clade 

(Gap2, GapA, and GapB) will be henceforth referred to as the ‘green group’. As expected 

the green group and GapC1 sequences fall within different locations in the overall 

GAPDH phylogeny. The closest branching sister taxa (yellow clade in figure 4.2) to the 

GapC1 sequences in this tree topology are several ciliate taxa (Tetrahymena 

thermophila, Paramecium tetraurelia, and Halteria grandinella); the Tetrahymena and 

Paramecium sequences were those from a previous study (Takishita et al. 2009) where 

they were used as the outgroup for determining the internal branching order within the 

GapC1 phylogeny. Several long-branching sequences group together basal to these 

sequences including several microsporidians, the chlorarachniophyte Bigelowiella 

natans (Rhizaria), and the green alga Micromonas pusilla. Many of these sequences 

appear to be paralogs and their position and grouping together may be the result of 

long-branch attraction, although in some cases it could reflect a legitimate phylogenetic 

affiliation between the rhizarians, stramenopiles and alveolates (SAR clade) and perhaps 

the cryptophytes + haptophytes and green algae as discussed previously. Alternative 

phylogenetic tree reconstruction with RAxML 7.2.6 and the LG+Γ model of sequence 

evolution resulted in a similar overall topology although the position of the long-

branches discussed above moved basal to the nearby large assemblage of cytosolic 

GAPDH sequences, which contained the chromalveolate outgroup taxa (Tetrahymena, 

Paramecium, and Halteria). Because the positions of the closest outgroup sequences 

may impact the site- likelihood calculations and inferences of functional divergence, the  
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FIGURE 4.2 SIMPLIFIED MAXIMUM-LIKELIHOOD PHYLOGENETIC TREE OF GAPDH, 

SHOWN AS ARBITRARILY ROOTED WITH CYANOBACTERIAL SEQUENCES. Cytosolic 

GAPDH collapsed clades are coloured in blue. Gap A/B and Gap2 are in green, with GapC1 in red. 

The yellow contains several ciliate sequences that branched sister to the chromalveolate GapC1 

sequences. Uncoloured long branches sister to the GapC1/ciliate group includes highly divergent 

microsporidians and several other long branching sequences. 
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first FastTree topology was selected for use in functional divergence analysis. 

 

4.3.1 Sites Predicted to be Functionally Divergent 

All predictors of functional divergence identified a number of alignment positions with 

significant scores for both the green group versus other and the GapC1 versus the other 

GAPDH comparisons. Table 4.1 lists the number of sites predicted to be functionally 

divergent in the green group only, GapC1 only, and those predicted as functionally 

divergent in both groups for each of the prediction methods used. FunDi using 

QmmRAxML for site-likelihood calculation predicts the largest number of sites (115) 

while the Difference Evolutionary Trace Method predicts the least (39), followed by 

GroupSim (43). The Difference Evolutionary Trace Method’s scoring system is 

intrinsically more conservative, as only values in the top 20% of “importance” are 

considered potentially functionally divergent, with any sites that are important in the 

whole tree removed from the predicted pool. The two other FunDi sub-types, using 

FastTree or RAxML for site likelihood calculations, share the greatest degree of overlap, 

as expected given that the primary difference between the two is FastTree’s use of the 

maximum likelihood CAT approximation to the rates-across-sites model during its 

heuristic maximum-likelihood search, followed by use of the JTT exchangeabilities for 

branch length optimizations, whereas the closely related WAG exchangeabilities are 

used by RAxML. QmmRAxML uses the WAG exchangeabilities and a mixture of 10 

different amino acid frequency profiles described in Chapter 3 and references therein. 

 

To place the predictions of functional divergence into context, and describe the 

differences in performance between FunDi, GroupSim, and the Difference Evolutionary-

Trace Method, we gathered data from many functional and structural studies in the 

literature concerning GAPDH, paying particular attention to NADPH/NADH 

binding/discrimination and the regulation of function by CP12. Some sites play 

important roles in both, as expected, because CP12 regulation and a preference for 
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NADPH over NADH are intertwined with one another functionally, at least in the 

Archeaplastida (Pohlmeyer et al. 1996; Wedel et al. 1997; Wedel & Soll 1998; Graciet et 

al. 2003, 2004; Lebreton et al. 2006; Trost et al. 2006; Fermani et al. 2007; Marri et al. 

2008).  

 

TABLE 4.1 NUMBER OF SITES PREDICTED TO BE FUNCTIONALLY DIVERGENT IN EACH 
OF THE GROUPS IN QUESTION, OR IN BOTH GROUPS, FOR EACH OF THE CLASSIFIERS 
USED. 

 Green Group Only GapC1 Only Shared 

FunDi – FastTree 44 7 6 

FunDi – RaxML 47 8 6 

FunDi – QmmRAxML 69 26 20 

GroupSim 37 4 2 

Difference 

Evolutionary Trace 

17 15 7 

 

 

4.3.1.1 Loop positions 32-35 

Aspartate 32 (Figure 4.3 and 4.4) is one of the canonical residues implicated in the 

discrimination between NADH and NADPH in the photosynthetic form of GAPDH 

(Clermont et al. 1993). When NADH is bound, Asp32 forms a hydrogen bond with the 2’-

hydroxyl group of the adenosine in NADH (Skarzyński et al. 1987). When NADPH is 

bound, it rotates away from the cofactor thereby preventing steric clashes (Fermani et 

al. 2001; Sparla et al. 2004). This position is conserved in chloroplast (NADH-binding) 

GAPDH (e.g. GapA/B) sequences as well as Gap2 sequences and is quite highly 

conserved as an aspartate residue in the cytosolic GAPDH sequences as expected for 

NADH binding and therefore this position was not predicted as being functionally 
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divergent by any of the tested methods in sequences from the green group. However, in 

the chromalveolate plastid-targeted sequences this site it is not as well conserved with 

amino acids such as glutamate, serine, threonine, and alanine all observed, and 

predicted to be functionally divergent by FunDi (all versions) but not by either GroupSim 

or Difference Evolutionary-Trace. In the sequences where aspartate has been 

substituted with glutamate, it is likely that glutamate is performing the same function. 

When non-acidic residues at position 32 are observed, it is likely that other residues on 

the flexible loop where this site is located are involved in NADH binding in those 

sequences. 

 

There are also several predicted functionally divergent sites in close proximity to the 

conserved aspartate 32 residue, such as the valines in position 28 and 29, threonine 33, 

and the glycines in position 34 and 35. The two valines were predicted to be functionally 

divergent in both the green group and chromalveolates by all FunDi variants for 28 and 

by FunDi with FastTree or RAxML for 29 (or only in the greens using QmmRAxML),while 

Thr33 (FunDi with QmmRAxML) and Gly35 (FunDi with FastTree or QmmRAxML) were 

only predicted in the green group and Gly34 (FunDi with QmmRAxML) only in the 

chromalveolates. None of these positions were predicted as functionally divergent by 

GroupSim or the Difference Evolutionary-Trace methods. Previous experimental work in 

the NADH-binding GAPDH of the thermophilic eubacterium Bacillus stearothermophilus 

(Clermont et al. 1993; Didierjean et al. 1997; Sparla et al. 2004) involved mutating some 

of these residues (33, 34, and 35), which had previously been described as a NAD-

binding ‘fingerprint’ (Wierenga et al. 1985; Wierenga 1986), to their counterparts in 

NADPH-dependent GAPDH to investigate their role in discrimination between the two 

co-enzymes. The effect of mutating these residues was slight, except in the case of 

aspartate 32. However, threonine 33, along with arginine 77 and serine 188 (below) may 

be involved in bonding with the 2’-phosphate of NADPH, at least under certain 

circumstances (Fermani et al. 2001; Sparla et al. 2004). 
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4.3.1.2 Arginine 77 

Arginine 77 (Figures 4.3 and 4.4) is located in the “cleft” between monomers in the 

tetrameric complex along one of several flexible loop regions, physically near to 

threonine 33 and aspartate 32. In one wild-type crystal structure (Fermani et al. 2001) at 

3.0 Å resolution this residue was highly disordered; however, in a second, more recent, 

2.0 Å resolution crystal structure, Arg77 had a high degree of order and was in position 

to form a salt-bridge with the 2’-phosphate of NADPH (Sparla et al. 2004). The increased 

resolution of the more recent structure, combined with the fact that a conserved 

arginine generally is involved in binding the 2’-phosphate of NADP in other NADP-

binding enzymes with Rossman folds (Carugo & Argos 1997) provides increased 

evidence that Arg77 is involved in NADPH binding instead of Thr33.  

 

As well as stabilizing the 2’-phosphate of NADPH via a salt bond, Arg77 also plays an 

important role in the CP12 mediated regulation of NADPH-dependent activity in GAPDH 

(Figure 4.5). When CP12 (or the activated form of GapB’s C-terminal extension) enters in 

to the “cleft” region between neighbouring (R-axis symmetry related) monomers Arg77 

is distracted away from potential interactions with the 2’-phosphate of NADPH and 

swings away, towards CP12 where it is thought to interact with the negatively charged 

residues of the regulatory peptide instead (Sparla et al. 2004, 2005; Lebreton et al. 

2006; Trost et al. 2006; Fermani et al. 2007). Thus, Arg77 is one of the residues 

responsible for several key interactions unique to NADPH-dependent GAPDH. 

 

 

 

 



140 
 

 

 

 

FIGURE 4.3 KEY RESIDUES FOR CO-ENZYME DISCRIMINATION IDENTIFIED BY PREVIOUS 

EXPERIMENTAL WORK. Cartoon representation of O and R subunits shown as in Figure 4.1. 

Asp32 and Thr33 located behind bound NADP molecule, with Asp32 rotated away to reduce 

steric clash with 2’-phosphate of NADP. Ser188 and Arg77 are shown in positions to interact 

with 2’-phosphate of bound NADP. 
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FIGURE 4.4 KEY RESIDUES INVOLVED IN NADPH/NADH BINDING AND 

DISCRIMINATION IN THE CHROMALVEOLATE GAPC1 PROTEIN SEQUENCE ARE SHOWN 

MAPPED ON THE HOMOLOGY MODEL OF ASCOPHYLLUM NODOSUM (ORANGE). In blue 

is the R subunit from the PDB structure 2PKQ used as template, along with bound NADP. NADP 

and selected residues (Ser188 and Arg77) are coloured according to element type. 
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This residue was predicted to be functionally divergent by both FunDi (using either 

FastTree or QmmRAxML) and the Difference Evolutionary Trace method, but not 

GroupSim, in both the green group and among the chromalveolate plastid-GAPDH 

sequences. In the multiple sequence alignment arginine is strictly conserved in both of 

these clades, but not among cytosolic GAPDH sequences, although arginine and lysine 

are the two most commonly occurring amino acids in that position, making this a likely 

case of convergent Type I functional divergence (i.e. functional divergence involving a 

rate shift). The high degree of conservation in the cytosolic GAPDH sequences can make 

this type of site-pattern difficult to identify as being functionally divergent, but the 

phylogenetic-based methods such as FunDi and the Evolutionary-Trace method can 

resolve these difficulties. As noted previously in Chapter 1, functionally divergent 

residues are strongly correlated with regions of intrinsic disorder, which has been 

observed in this loop region of residues, giving further evidence for its role in the 

functional differentiation of NAD+ and NADPH-dependent GAPDHs.  

 

4.3.1.3 Serine 188 

Serine 188 (Figures 4.3 and 4.4) is located on the S-Loop of GAPDH where it hydrogen 

bonds with the 2’-phosphate group of NADPH bound to the monomer located across the 

R-axis of symmetry (Clermont et al. 1993; Didierjean et al. 1997; Fermani et al. 2001; 

Sparla et al. 2004). When NAD+ is bound, as in the down-regulated form of plastid-

targeted GAPDH, Ser188 instead forms hydrogen bonds with available water molecules 

and potentially with Asn39 of the opposite, R-related subgroup (Sparla et al. 2004).  

 

Serine 188 was predicted to be functionally divergent, both within the green group as 

well as the chromalveolate GapC1 sequences, by both FunDi with QmmRAxML (the 

FuNDi-FastTree Method only detected functional divergence at this site in the green 

group) and GroupSim. This position is almost universally conserved as a serine within 
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the green group (with the exception of a single alanine substitution in a GapA paralog of 

the unicellular red alga Galdieria sulphuraria. It is unlikely that this is a simple mis-

annotation of the sequence as it groups with other sequences from the green group as 

expected on phylogenetic grounds. Serine at this position is almost universally 

conserved among the chromalveolate GapC1 sequences as well, with a handful of 

substitutions to alanine, and some to threonine. In mutants with Ser188 substituted by 

an alanine  (Sparla et al. 2004) there is a reduced preference for NADPH over NAD+ and 

a phenotypic difference characterized by a “loosened” and enlarged conformation due 

to the loss of the Ser188 interaction with bound NADPH. This is probably not the case of 

Ser188Ala substitutions observed in some chromalveolate GapC1 sequences due to the 

presence of additional serine or threonine residues at positions neighbouring site 188 

on the S-loop such as 187 or the insertion between 188 and 189 in chromalveolates 

relative to the greens. Position 187 is often a serine or threonine in the chromalveolates, 

compared to a conserved alanine in the green group, and no strict conservation among 

the other sequences in the alignment. It has been hypothesized previously that the 

alanine found at position 187 in non-chromalveolate plastid-targeted GAPDHs reduces 

steric clash with the 2’phosophate of NADPH and allows serine 188 to form the 

necessary hydrogen bond (Corbier et al. 1990; Clermont et al. 1993; Eyschen et al. 1996; 

Didierjean et al. 1997; Fermani et al. 2001). This position was also predicted to be 

functionally divergent in both the chromalveolates and the green group by FunDi using 

QmmRAxML and in the green group only by FunDi using FastTree2 and by GroupSim. 

The other neighbouring position to Ser188 on the loop, which corresponds to a gap 

character in the alignment in the green group (presumably because of a deletion event 

in their common ancestor), is also often a serine or threonine residue in the 

chromalveolates. While this position was not predicted to be functionally divergent by 

any method, in those chromalveolate sequences with a substitution of serine 188 to an 

alanine, this position is always either a serine or threonine residue that is likely 

substituting for Ser188’s normal functional role.  
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4.3.1.4 Other important S-loop Residues Near Serine 188 

Among the canonical NADP-dependent GAPDH sequences of plants, the S-loop contains 

several conserved arginine residues (183, 191, 194, 195, and 197) that, along with 

Ser188, are thought to be important residues involved in interactions with CP12 (Figure 

4.5). Due to this excess of positively-charged residues, and because the regulatory 

region of CP12 and the C-terminal extension of GapB contain an excess of negatively-

charged residues it has been hypothesized that there is an important interaction 

between the two, especially given the “enlarged” phenotype often seen in Ser188Ala 

mutants. 

 

Several of these residues on the S-loop were predicted to be functionally divergent. 

Arg183 was predicted to be functionally divergent by all of the methods, whereas 

Arg191 was predicted by GroupSim, and Arg195 was predicted by both Groupsim and 

Difference Evolutionary Trace. All three of these residues were predicted to be 

functionally divergent in the green group, but not in the chromalveolate GapC1 

sequences. They are all strictly conserved arginine residues in the green group NADPH-

dependent GAPDH sequences and not strictly conserved in cytosolic GAPDH’s, although 

lysine and arginine are frequently observed. Within the chromalveolate GapC1 clade 

these positions are also not strictly conserved, although there are conserved arginine 

sequences very near (often at neighbouring positions) on the S-loop. One of these 

conserved arginine residues was predicted to be functionally divergent but only by the 

Difference Evolutionary-Trace method. 
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FIGURE 4.5 THE “CLEFT” AND CP12 BINDING REGION BETWEEN MONOMERS IN THE 

A2B2 TETRAMER OF GAPDH FROM SPINACH (2PKQ). The C-terminal extension of GapB, 

homologous to C-terminal regulatory region of CP12 and important conserved arginine residues 

are indicated. Bound NADP+ is coloured by atom type but is shown as transparent as are the P 

and R monomers. Conserved arginines, important for CP12 interaction are shown from both 

monomers. 
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4.3.1.5 Other Sites in the Coenyzme Binding Domain 

There are other sites within the coenzyme domain predicted to be functionally 

divergent, including sites predicted to be divergent in both the chromalveolate GapC1 

sequences and the plastid-targeted GAPDH sequences of the green group. While we 

cannot conclusively assign functional roles to all of these residues based on 

experimental studies, some are located in close proximity to the residues described 

above, including four residues all located on the same loop as arginine 77 (Val74, Ser75, 

Asp 76, and Asn79). Because Arg77 plays an important role in both coenzyme binding 

and the thioredoxin-mediated regulation of GAPDH during light/dark cycles, residues 

nearby may also play direct or indirect roles in regulation, or are coevolving. With the 

exception of Asn79, which was only predicted to be functionally divergent by the 

Difference Evolutionary-Trace method, these residues were only predicted by FunDi to 

be functionally divergent in both groups, Val74 regardless of which program is used for 

site-likelihood calculation and Ser75 and Asp76 only with QmmRAxML. Asp76 is further 

predicted to be functionally divergent only within the chromalveolates by FunDi using 

RAxML and Ser75 is predicted to be functionally divergent only within the greens by 

Difference Evolutionary-Trace and FunDi using FastTree or RAxML. FunDi with 

QmmRAxML is the only method to consistently identify these residues as functionally 

divergent in both groups. Residues 74, 75, and 76 are almost universally conserved 

within the archeaplastids and cyanobacterial NADPH-dependent GAPDHs with a V-S-

[NDT] motif, while these three positions are not conserved among cytosolic GAPDH 

sequences. The chromalveolate GapC1 sequences are less strongly conserved, with a 

tendency for a [ST]-[HA]-T motif, although there are some exceptions. It is possible that 

these positions may influence GapC1 regulation. The motif for Odontella for instance, 

which lacks CP12 regulation (Michels et al. 2005), is a very divergent S-R-C while for 

Ascophyllum, which does appear to have CP12 regulation,  it is the more canonical 

GapC1 motif of S-A-T. Based on the sequence conservation patterns in these residues it 

does not appear as if there is a strong argument for convergence between the green 

group and GapC1 sequences, although the region may still be important for CP12 
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mediated regulation, and the differences observed within the chromalveolates may 

partially explain some of the observed regulatory differences. The accumulation of more 

regulatory and sequence data will be needed to test these speculations. 

 

4.3.1.6 Other Catalytic Domain Residues 

Several residues in the region from 206 to 211 are also predicted as being functionally 

divergent within the green group alone, within the chromalveolates alone, or in both. 

This region plays a role in the difference between the Pi and “New” Pi site (Falini et al. 

2003; Fermani et al. 2007) which is an important structural difference between NAD+- 

and NADPH-dependent activity of catalysis. Down-regulated A4 or A2B2 bound to NAD+ 

instead of NADPH has a slightly altered conformation where the inorganic phosphate is 

located closer to the catalytic residues in what has been called the “New” Pi site instead 

of the “classic” Pi site where it is usually located in NADPH-bound GAPDH. 

 

There are other amino acids in this region, predicted to be functionally divergent, whose 

exact functional roles cannot be so easily quantified. In the chromalveolate GapC1 

sequences two sites stand out that correspond to asparagine 146 and cysteine 153 in 

the 2PKQ crystal structure (Cys149 is the catalytic cysteine in this numbering). In the 

chromalveolates, the conserved Asn146 has been substituted for a cysteine residue, 

while the conserved Cys153 has been substituted by a glycine. While the first was 

predicted to be functionally divergent by all three prediction methods (and using all 

three site-likelihood calculation programs with FunDi), the latter was not predicted to be 

functionally divergent by the Difference-Evolutionary Trace Method. 
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4.3.2 Functionally Divergent Residues and Intrinsic Structural Disorder 

Previous studies have reported that functionally divergent residues are preferentially 

located in or near regions of structural disorder (Aharoni et al. 2005; Chakrabarti et al. 

2007; Capra & Singh 2008; Chakrabarti & Panchenko 2009). To investigate whether 

intrinsic disorder is related to functional divergence in GAPDH we used sequence-based 

predictors of disordered regions on the GapA sequence of spinach, the GapC1 sequence 

of the brown alga Ascophyllum nodosum used for homology model construction, and 

the cytosolic GAPDH sequences of Ascophyllum and Homo sapiens. In all cases, only 

residues retained in the masked sequence alignment were classified as 

structured/unstructured. For all four sequences, predictions of structural disorder were 

made by PONDR, DisEmbl, and isUnstruct. DisEmbl contains three different predictors of 

structural disorder, so for these analysis we selected the “Hot Coils” method as 

providing the most information for putative disordered regions while minimizing the 

false positive rate (Linding et al. 2003) compared to considering all loop regions as 

disordered or predicting missing coordinates. Disordered regions were mapped on to 

the reference alignment used for the prediction of functional divergence and checked 

for overlap.  

 

IsUnstruct predicted the fewest number of unstructured residues, mostly limited to the 

N- and C-terminal portions of the sequence (not including targeting peptides, which 

were removed from the alignment), with the exception of the Ascophyllum and human 

cytosolic GAPDH sequences with a short internal region that was predicted to be 

inherently disordered. IsUnstruct predictions are not shown, as they provided no 

significant information compared to PONDR and DisEmbl. PONDR and DisEmble 

overlapped in some of their predictions but differ in others (Table 4.2). For example in 

the spinach sequence, PONDR and DisEmbl only overlap by five residues while they 

overlap by 32 residues in the Ascophyllum GapC1 sequence. Larger regions of structural 
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disorder (by number of residues) were observed in both of the plastid-targeted forms of 

GAPDH than in either of the two cytosolic sequences. 

 

TABLE 4.2 REGIONS PREDICTED TO BE INTRINSICALLY UNSTRUCTURED BY DISEMBLE 

AND PONDR. Numbers are according to the position numbers; not including gaps, in the 

respective sequences from the masked multiple sequence alignment. 

 DisEmbl PONDR 

2PKQ 1-24, 65-89, 118-130, 176-186, 233-

242 

17-19, 117,118, 190-198, 211-233, 

256-275 

GapC1 

Ascophyllum 

nodosum 

1-25, 58-75, 108-117, 178-203, 216-

230, 251-259, 285-294 

9-11,13,63-80,120-130,136-

139,185-212,250-273 

Ascophyllum 

nodosum 

1-12, 20-37, 172-205 176-187,239-240,262-

268,322,325 

Homo 

sapiens 

1-27, 68-79, 174-185, 241-250 182-185,198-205,244-248,321-

326 

 

 

Regions of predicted structural disorder by either method were mapped on to the 

NADPH-dependent GAPDH structures for spinach (2PKQ) and the Ascophyllum nodosum 

homology model (Figure 4.6 A and B). In both structures, when both DisEmble and 

PONDR predictions are considered, disordered regions are extensive and include regions 

in both the co-enzyme binding and catalytic domains as well as the majority of the s-

loop. In addition, these regions, which were predicted from sequence information alone, 

also include regions of known secondary structure such as alpha helices and beta-  
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FIGURE 4.6 REGIONS PREDICTED TO BE STRUCTURALLY DISORDERED BY BOTH 

DISEMBL AND PONDR IN THE SEQUENCE OF SPINACH GAPA (A) AND ASCOPHYLLUM 

NODOSUM GAPC1 (B) COLOURED IN GREEN. Regions of predicted disorder (by sequence 

alone) contain regions of defined secondary structure in the x-ray crystal structure as well as the 

homology model. The majority of long loop regions in both structures are also predicted to 

contain significant intrinsic disorder.
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sheets. In the spinach sequence, arginine 77 and serine 188, along with the important 

arginine residues on the S-loop are contained within regions of predicted disorder, the 

former in a region predicted only by DisEmble while Ser188 and the arginines were all in 

a region predicted only by PONDR. In the Ascophyllum nodosum homology model, 

whose sequence contains even more regions of predicted structural disorder than that 

of spinach GapA, arginine 77 and serine 188 are also located in disordered regions. Both 

lie in regions predicted by DisEmble and serine 188 lies in a PONDR predicted region. As 

with the spinach structure, disordered regions are located in both domains as well as 

the S-loop, and include a substantial amount of area with defined secondary structure.  

 

The residues located on the loop which contains aspartate 32, which is functionally 

divergent in the chromalveolates, does not lie within a region of predicted structural 

disorder by either method, and in either group of sequences. Sites predicted to be 

functionally divergent lie throughout the resolved crystal structure of 2PKQ or the 

homology model of Ascophyllum GapC1 with no indication of clustering or a preference 

for location in regions predicted to be disordered. To determine whether these 

observations were statistically significant, two-sided fisher’s exact tests were carried out 

on predictions for the 2PKQ sequence using either the PONDR or DisEmble predictions 

and either all sites predicted to be functionally divergent in both the green group and 

chromalveolates, or only those sites predicted to be divergent in both groups by FunDi 

using QmmRAxML. Hypothesizing that those sites predicted to be functionally divergent 

in both the greens and chromalveolates are more likely to represent sites involved in 

coenzyme discrimination/binding and regulation via protein-protein interactions we first 

limited our analysis to those sites. Fisher’s exact tests could not reject independence of 

the predictions in these cases (P-values all >> 0.05).  

 

Given the large degree of inconsistency between the two methods used to predict 

intrinsic disorder, which both use the primary sequence information alone, it is difficult 
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to determine the true regions of disorder. Combining the two prediction methods 

results in very little overlap and extremely large regions of the secondary structure to be 

considered disordered. We also performed a Fisher’s exact test for independence 

between PONDR and DisEmble. These two predictors overlapped in only 5 disordered 

predictions while PONDR predicted 78 sites to be disordered that were not by DisEmble 

and there were 52 sites where the reverse was true. The majority of sites (216) were not 

predicted to be disordered by either program. Expected counts under independence 

were 13.48, 69.52, 43.52, and 224.48 respectively. Although independence was rejected 

(P-value = 0.0034), the dataset was highly skewed relative to the number of predicted 

disordered sites. 

 

4.4 Discussion 

While there is substantial overlap in the sites predicted to be functionally divergent in 

NADPH-dependent GAPDH sequences by all of the predictors used in this work, 

especially among sites that have been previously linked with functional differences, 

there are also clear discrepancies between them. FunDi predicted the most sites, 

especially when using QmmRAxML for background calculation of site likelihoods. FunDi 

with QmmRAxML also consistently predicted more known functional sites as being 

functionally divergent. Serine 188 and arginine 77 were both predicted by FunDi with 

QmmRAxML while from the other predictors only GroupSim predicted the former and 

the Difference Evolutionary Trace method the latter. The only known functionally 

divergent residues missed by FunDi, with any likelihood calculation method, were two of 

the potentially regulatory arginines (191 and 195) on the S-loop. 

 

There has also been a high degree of convergent evolution between cyanobacterial 

derived NADPH-dependent GAPDHs and GapC1 of chromalveolates. Not only were 28 

residues predicted to be functionally divergent in both groups between all of the 
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prediction methods tested here, but also many key positions converged on the same or 

physico-chemically similar amino acid residues. Arginine 77 and serine 188 for instance, 

previously identified in crystallographic and mutagenesis studies as being two key 

residues for the discrimination between NADPH and NADH, converged on the same 

residue. Serine 188 in particular is striking, as the homologous position in cytosolic 

GAPDHs is generally a proline. While positions 32, 187, and 188 have been identified as 

fingerprints for NADPH-binding, and were thus used to characterize function in 

chromalveolate GapC1 sequences (Fagan et al. 1998; Fast et al. 2001; Harper and 

Keeling 2003), to date there have not been systematic analyses of functional divergence 

and convergent evolution between these and other plastid-targeted GAPDH sequences. 

Additionally, aspartate 32 has incorrectly been described as non-conserved in plastid-

targeted GAPDHs. Mutagenesis experiments had typically substituted this residue, as it 

is not conserved in the very distantly related archaeal GAPDH that has dual co-enzyme 

specificity. However, in cyanobacterial Gap2 and plastid-targeted GAPDH position 32 is 

still a conserved aspartate but the side-chain rotates upon NADPH-binding to a different 

conformation to prevent steric clashes with the 2’-phosphate of this coenzyme. The 

substitution to alanine at this position in the chromalveolate GapC1 sequences 

represents a unique adaptation to their role in the Calvin cycle.  

 

Also of interest are residues located near to arginine 77 (positions 74, 75, and 76) 

predicted by FunDi with QmmRAxML as being functionally divergent in both groups of 

NADPH-dependent GAPDH sequences, along with position 79, which was predicted to 

be divergent in both groups only by GroupSim. To our knowledge, no experimental work 

has suggested a functional role related to the differences between NADH- and NADPH-

dependent GAPDH sequences for these sites. However, their level of conservation in 

these groups suggests that, at the very least, they contribute to the physical and 

chemical environment at arginine 77, or may potentially be involved in interactions with 

CP12. These residues, while functionally divergent in both groups, are not an example of 
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convergent evolution as they feature very different sequence motifs. In the 

Chromalveolata, fingerprint regions such as this where there is some variability among 

lineages may help explain the apparent differences observed in GapC1 regulation 

between chromalveolate taxa, although more functional and sequence data is required. 

 

While previous studies (See 4.3.4) have indicated a connection between functional 

divergence and instrinsic structural disorder, we could find no statistically significant 

overlap here between the two. Given the minimal overlap between the two disorder 

prediction methods used, and the large area of coverage if both sets of predictions are 

combined, it is apparent that predicting disorder also remains a difficult task. 

Additionally previous examples rely on only a small amount of data from biological 

datasets, an issue we have already addressed in chapter 3. However, secondary 

structure information and predictions of disorder may still prove useful when placing 

predictions of functional divergence within their proper biological and structural 

context. 

 

The foregoing analyses serve as an excellent example of the utility of FunDi for the 

identification of key residues involved in functional divergence, especially when 

analysing large and phylogenetically complex datasets. While no single classifier 

identified all of the important specificity-determining sites with experimental 

validations, FunDi predicted the most successfully and was markedly better at 

identifying cases of convergent evolution. Based on previous simulation results (Chapter 

3), we can be confident that this improved true positive prediction rate is not generally 

achieved at the expense of a drastic increase in false positives. It is also probable that 

many of the sites predicted to be functionally divergent without experimental 

validation, are in fact functionally divergent and/or are co-evolving with functionally 

divergent residues or are responsible for maintaining appropriate protein folding 

dynamics, stability, or function. 
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Chapter 5 Conclusions 

Phylogenomic methods have been used to tackle a variety of biological problems. In this 

thesis, I implement two new methods that use a phylogenomic approach for two 

different bioinformatic problems. PhyloPred-HMM is a general phylogenomic 

framework for assigning functional annotations to unknown sequences of interest. 

Although it was designed to predict the localization of nucleus-encoded proteins to 

subcellular compartments such as mitochondria or related organelles (hydrogenosomes 

and mitosomes), it can be used to assign any kind of annotation on the basis of 

phylogeny. FunDi, the second tool I have developed, uses a maximum-likelihood mixture 

modeling approach that has a phylogenetic “independence” component that models 

sites in protein multiple sequence alignments that are contributing to functional 

divergence across a split of interest in protein families. Both of these problems relate to 

the evolution of diverse protein families, and more importantly how protein functions 

change over evolutionary time. By explicitly using phylogenetic techniques and by using 

specific evolutionary models, I have shown that these methods can improve upon 

predictive methods that do not use phylogenetic information. 

 

5.1 PhyloPred-HMM 

PhyloPred-HMM combines large scale clustering of biological sequence data, along with 

automated multiple sequence alignment and phylogenetic tree reconstruction; hidden 

markov models for sequence comparison; and a phylogenomic method for assigning 

subcellular localizations to unknown sequences of interest.  We also developed a simple 

BLAST-based approach (CBOrg) for quickly filtering data from transcriptome sequencing 

projects to identify putative MRO localized sequences. Both of these programs were 

compared to several other widely used and previously validated prediction methods 

that can be both installed on local computers and are capable of performing predictions 

at the ‘genomic scale’ (hundreds to tens of thousands of predictions) in reasonable 

amounts of time. In addition, we compared the performance of several de novo 
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clustering techniques on the reference biological sequence data used by PhyloPred-

HMM and three different phylogenetically-based distance measures for assigning 

localization data. 

 

The type of clustering method used had a small but noticeable effect on the 

performance of PhyloPred-HMM, with larger differences observed when performing 

predictions on whole proteomes versus evaluating phylogenetic distance measures on 

clusters with sequences from both MRO-localized and non-MRO-localized sequences. 

These results are due to the “tightness” and size of the resulting clusters. The 

hierarchical clustering method, the simplest tested in this work, resulted in the largest 

number of clusters but these clusters on average were smaller. The Markov Clustering 

algorithm with default parameters resulted in fewer clusters that were larger on 

average, while increasing the inflation parameter to two produced results intermediate 

between the two extremes. The MCL method, with an inflation parameter of two, was 

selected as optimal based on these properties as well as its performance.  

 

Surprisingly, of the three distance measures tested in this work, the nearest distance 

(ND) metric had the best performance compared to more complicated averaging (SAD 

and T-SAD) methods. It was hypothesized that this was due primarily to cases where 

there were large differences in the percentage of MRO-localized proteins in a sequence 

cluster; although there were certainly cases where this was true, which we examined in 

more detail (Chapter 2), no consistent trend could be observed in the overall data. The 

average distance measures tested had comparable performances, and were 

characterized by their increased recall of MRO-localized sequences, but at the expense 

of an accompanying increase in false positive predictions. However, the two SAD and ND 

measures do largely overlap. The ND measure also has an advantage in not explicitly 

depending on the validity of the ‘Ortholog Conjecture’ and neither this method, nor the 

SAD/T-SAD measures, require the identification of orthology/paralogy relationships in 
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order to make functional assignments. However, in cases where subcellular localization 

switches frequently over the phylogenetic tree, all measures (and indeed any 

phylogeny-based method) will have difficulty making accurate classifications. 

 

The PhyloPred-HMM method performed comparably, or better, to other published 

prediction methods on sequences from the Metazoa, Fungi, or Archeaplastida that 

localized to canonical mitochondria. Unlike previous prediction methods, which use only 

sequences with an experimentally determined subcellular locations, the performance of 

PhyloPred-HMM on similar datasets did not appear to suffer by using sequences 

annotated at any confidence level. It is likely that because the three groups of 

eukaryotes mentioned above are so well studied, localization data for known sequences 

has accumulated such that measures of sequence similarity alone (e.g. BLAST scores) are 

likely to be good predictors in the majority of cases. However, for sequences from more 

diverse microbial eukaryotes, there has been very little investigation of the performance 

of subcellular localization prediction. PhyloPred-HMM was specifically constructed to 

include as much taxonomic and sequence diversity as possible, especially since several 

microbial eukaryotes have recently had the contents of their MROs determined 

proteomically. When PhyloPred-HMM’s performance was compared to that of CBOrg 

and several other published prediction methods on the complete genomes of two 

microbial eukaryotes, Tetrahymena thermophila and Trichomonas vaginalis, it was 

clearly superior; however, there still remains a great deal of room for improvement as 

all methods performed relatively poorly. The performance of PhyloPred-HMM would 

improve with the inclusion of an N-terminal targeting prediction algorithm. The 

presence of an N-terminal targeting sequence is the most reliable indication of MRO 

localization, although not all organellar sequences have one. To date the majority of 

targeting prediction programs, like localization classifiers in general, have been trained 

only on a small subset of taxonomic and organellar diversity, as has been previously 

shown there are differences, particularly in length, between the localization peptides 
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found for the mitosomes and hydrogenosomes of other microbial eukaryotes. Building a 

suitable training set should now be possible for these taxa, and would greatly enhance 

localization prediction in related organisms.  

 

Despite these limitations, a phylogenomic approach to MRO targeting prediction clearly 

performs at least as well as more complex machine-learning approaches, which do not 

explicitly use phylogenetic information, on sequences from well-studied groups where a 

wealth of genomic data is available. However, as we move to less well-studied 

organisms where data from closely related taxa is sparse, performance decreases, but is 

still superior to that of other methods, including homology-based methods that use only 

BLAST or other sequence comparison methods and not a full phylogenomic framework. 

 

5.2 Functional Divergence 

Our FunDi program detects functionally divergent sites between two or more 

monophyletic groups within protein families and, like PhyloPred-HMM was developed 

with scalability to larger scale phylogenomic analyses in mind. FunDi allows for the 

modular use of any maximum-likelihood phylogenetic program capable of calculating 

and outputting site-likelihoods given a user supplied phylogenetic tree in order to 

compare a multiple sequence alignment under the standard ‘dependent’ model of 

protein evolution and our ‘independent’ model which is designed to capture significant 

signal of functional divergence. This approach, in contrast to some other phylogeny-

based methods that have been developed such as DIVERGE, allows FunDi to make use of 

improvements in maximum-likelihood based phylogenetic programs and to be rapidly 

adapted to improved models of protein evolution.  
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Because no true ‘gold standard’ examples exist for comparing the performance of new 

functional divergence prediction methods, we constructed two new simulation 

strategies for creating datasets containing functionally divergent protein residues and 

also compared the performance of FunDi to other classifiers on several reasonably well 

characterized biological datasets. We then studied the performance of FunDi, compared 

to GroupSim and the Difference Evolutionary-Trace method, by studying a case of 

convergent evolution and functional divergence between the plastid-targeted NADPH-

dependent GAPDHs of the Archeaplastida and the Chromalveolata.  

 

Comparisons of FunDi to other classifiers on nine biological datasets in Chapter 3 

showed wide variation within individual classifiers on different datasets as measured by 

both the area under the Precision-Recall (AUC-PR) and Receiver Operator Characteristic 

curves (AUC-ROC). FunDi performed comparably to several other predictors on this 

dataset, along with GroupSim, Sequence Harmony, and Multi-RELIEF. Because there are 

unknown, truly functionally divergent sites in these real datasets that will distort all 

measures of performance, we constructed two different methods for simulating 

alignments that contained both functionally divergent and non-divergent sites. Under 

both sets of simulation conditions, we showed that FunDi using QmmRAxML for site-

likelihood calculations and with the ConsWin windowing method consistently 

outperformed other methods, while GroupSim came a close second.  

 

We also evaluated performance differences under different phylogenetic tree shape and 

size scenarios to identify situations where we could expect better or worse performance 

from individual classifiers.Two phylogenetic tree shapes were identified with similar 

numbers of taxa and the same normalized tree length, but with radically different 

performance characteristics as measured by AUC-PR. These trees, were quite different 

in the relationship of their subtrees. The tree on which FunDi performed well in terms of 

prediction was more balanced, possessing subtrees with similar branch lengths while 
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the poorly performing tree was more unbalanced. This unbalanced tree had a large 

difference in the normalized tree length of the subtrees and relatively few taxa in the 

short subtree compared to the larger. This large difference in normalized tree lengths 

between subtrees was compounded by the relatively small normalized tree length of 

both, particularly the short subtree.   

 

Branch length re-scaling also impacted the performance of FunDi in two different ways 

depending on which branches were being re-scaled. When the branch separating the 

two subtrees was re-scaled performance tended to decrease with increasing length, 

with the effect most noticeable on the tree we had identified as poorly performing. As 

this branch lengthens the amount of overall divergence between the two subtrees 

increases, including for sites not contributing to any sort of functional divergence. This 

long branch closely resembles the alternative ‘independent’ model of functional 

divergence of FunDi making it more difficult to distinguish between truly functionally 

divergent and non-divergent sites. In contrast as the branches within subtrees are 

lengthened the amount of divergence time within subtrees is increased. Because this 

lengthening does not reflect the component of the mixture model used to model 

functional divergence, and functionally divergent sites are being modeled under altered 

substitution models, there is more time to “lock in” those evolutionary differences 

compared to the neutral substitutions in non-divergent sites.  

 

It is clear that the overall properties of the phylogenetic tree in question must be 

carefully considered when conducting any sort of analysis of functional divergence. 

Future work to quantify the impact these factors may have on determining suitable cut-

offs for functional divergence scoring would lead to improved predictive performance 

on biological datasets. 
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5.3 Functional Divergence in GAPDH 

Additional analyses on the GAPDH dataset in Chapter 4 showed that compared to 

GroupSim and the Difference Evolutionary-Trace method, FunDi was better able to 

identify residues of convergent functional divergence between the two groups of 

plastid-targeted sequences that had been verified by previous experimental work. Given 

the complex evolutionary history of GAPDH in this dataset, and the fact that we 

maximized sequence diversity by including paralogs from as many eukaryotic taxa as 

possible, the use of a robust phylogenetic framework with appropriate models of 

sequence evolution is key to distinguishing between sites undergoing functional 

divergence and those we might expect under purely neutral evolutionary conditions.  

 

Phylogenomic approaches and the use of maximal sequence and taxonomic diversity are 

key to improving predictions of protein function. While it possible to create information 

theoretic or machine-learning based models to detect sequence composition patterns 

associated with a function, these are always based on an incomplete picture of 

biological reality. Phylogenetic models of sequence evolution are necessary to 

distinguish between meaningful evolutionary signal and biological noise.  
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Appendix B  

B2 Classification of Subcellular Localization  
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SUPPLEMENTARY FIGURE 2.1 ALIGNMENT OF MEMBERS OF PUTATIVE 
AMINOTRANSFERASE CLASS I AND II FAMILY CLUSTER. Tetra_46 is the Tetrahymena 

thermophila query sequence sequences were aligned and automatically trimmed as described in 
2.2.
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B3 Predicting Functionally Divergent Protein Residues  

SUPPLEMENTARY FIGURE 3.1 PERFORMANCE DIFFERENCES 
BETWEEN TYPE I (LEFT) AND TYPE II (RIGHT) SITES FOR EACH 
OF THE TESTED PREDICTION PROGRAMS ACROSS 500 
RANDOMLY SIMULATED DATASETS AS MEASURED BY AUC-PR 
(A) AND AUC-ROC (B). 
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SUPPLEMENTARY FIGURE 3.2 PERFORMANCE AS MEASURED BY 
AUC-PR AND AUC-ROC ON 500 SIMULATED DATASETS AS IN 
FIGURE 1 OF MANUSCRIPT WITH THE ADDITION OF THE 
LIKELIHOOD RATIO TEST OF KNUDSEN ET AL (2002,2003) 
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SUPPLEMENTARY FIGURE 3.3 PERFORMANCE UNDER 
TAXON SAMPLING CONSTRAINTS AS MEASURED BY 
ROC CURVE ON TREES A AND B. 
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SUPPLEMENTARY FIGURE 3.4 PERFORMANCE AS MEASURED 
BY AUC-PR AND AUC-ROC ON 70 SIMULATED DATASETS AS IN 
FIGURE 6 OF MANUSCRIPT WITH THE ADDITION OF THE 
LIKELIHOOD RATIO TEST OF KNUDSEN ET AL (2002,2003) 
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