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ABSTRACT

Accurate evaluation of the non-linear wave-wave energy transfer requires a significant

proportion of the computation time of ocean wave models. The Discrete Interaction

Approximation (DIA) developed within the first version of the WAM model (WAMDI,

1988) is the only algorithm to be used today in operational wave modelling as it is the

only way to calculate the wave-wave interactions rapidly enough. In this study, the Two-

Scale Approximation (TSA), a potential successor method to the DIA, was successfully

implemented in the third generation operational wave model WAVEWATCH IIITM(WW3).

Preliminary results (Perrie and Resio, 2009) showing that it offers improved accuracy

are confirmed in this study by the modelling of wave evolution under constant winds.

Fetch-growth curves and two-dimensional spectra for energy and non-linear wave-wave

interactions obtained using the TSA in these conditions show better agreement to more

exact computations of non-linear interactions, than the DIA results. Modelling of a variety

of SWAMP-type tests (SWAMP, 1985) allowed an investigation of the capabilities of the

current implementation of the TSA method. From these experiments, several potential

improvements to the implementation of the method have been found which will widen the

scope of applicability of this formulation to the more realistically complicated sea states

encountered in operational modelling.
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CHAPTER 1

INTRODUCTION

1.1 Background

The numerical prediction of ocean waves has been a challenge for years. Wave models

require a sufficient resolution in spectral space in order to represent multiple components

of the wave field. This change from the modelling of physical space only to physical and

spectral spaces increases both the complexity and the number of computations necessary in

the model. Because of computing time constraints, an accurate description of the evolution

of the full wave spectrum related to the sea state, including all non-linear processes, is still

beyond the reach of operational wave models currently used in forecasting.

Ocean waves prediction is important for a variety of applications (e.g. marine forecasts

related to fisheries, transport, search and rescue, offshore development and recreation)

and will benefit from refinements of the forecasted wave spectrum. Products of wave

forecasts are currently often limited to significant wave height (HS), mean wave direction

and peak period, but additional information could be provided to end users, which would

be useful if the accuracy of the modelled sea state were increased. Further knowledge of

the variability in the waves could prove to be highly valuable for ship safety and operations

as the impact of waves on ships depends on their frequencies as well as the overall wave

height distribution. Producing reliable assessments of wave climatology is also important

for infrastructure design and coastal engineering. As the coastal populations in the world

1
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keep increasing, proper estimates of wave impacts on the coastal areas become even

more relevant, especially in view of possible changes in storm climatology and associated

waves, due to global warming. Furthermore, a proper description of ocean wave energy

spectra can be used to improve the evaluations of ocean mixing (Qiao et al., 2004; Smith,

2006; Warner et al., 2010) while also being central to a more physics-based approach to

computation of fluxes of energy, momentum, moisture and gases at the ocean-atmosphere

boundary in modelling (Moon et al., 2004).

Several wave models are currently in operation and most of them are maintained by

organizations dedicated to weather prediction. Two of the most widely used operational

wave models are the WAve Modeling (WAM) system maintained by the European Center

for Medium-Range Weather Forecast and the WaveWatch IIITMmodel (hereafter WW3)

developped by Hendrik L. Tolman at the National Oceanic and Atmospheric Adminis-

tration (NOAA). WW3 has been developed following WAM and the two models share a

similar approach and modular structure, along with parameterizations and approximations

based on recent research. They are therefore of comparable skill when used to model

wave evolution and could also both make use of a better representation of the non-linear

processes that determine development of the wave energy spectrum.

Wave evolution can be described in terms of the wave energy equation which considers

wind energy input, non-linear energy transfer between waves and wave dissipation (e.g.

due to white-capping). In current operational wave models, the non-linear energy transfer is

often calculated using the Discrete Interaction Approximation (DIA) method described in

Hasselmann and Hasselmann (1985) and Hasselmann et al. (1985). Research studies tend

to use alternate methods in favour of higher accuracy, such as the the Webb-Resio-Tracy

(WRT) method developed by Webb (1978), Tracy and Resio (1982) and Resio and Perrie

(1991). The DIA and WRT methods offer either high computational efficiency and limited

skill or time consuming computation of accurate results, respectively. Neither method has

seen significant changes since their original development several decades ago but advances

in computer electronics have been remarkable. Current resources dedicated to modelling
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are able to support new methods such as the Two-Scales Approximation (TSA) (Resio

and Perrie, 2008), which are able to compute non-linear wave-wave interactions more

accurately than the DIA, while being faster than the WRT method.

1.2 Literature Review

1.2.1 The Three Generations of Numerical Wave Models

Numerical wave models are often described as belonging to one of three generations.

These three generations came successively when significant improvements in the physics

of wave models were achieved. The type of wave physics used in a model determine

which generation the model belongs to. First generation wave models are associated with

a combination of empirical relationships and assumptions used to simplify the evolution

of waves for given wind conditions and fetch or duration relations. These models neglect

non-linear wave interactions completely and tend to be very limited in their scope and

capabilities. However, they can still be very useful tools if applied to a specific problem.

Environment Canada still uses a first generation model for the analysis of trapped-fetch

waves, a situation where waves and an associated storm move in synch. By keeping up

with the waves, the storm can continue to supply energy for wave growth until they become

dangerously large (Bowyer and MacAfee, 2005). This model considers waves of only one

frequency and a limited relative spread between wind and wave directions. However, the

model does have reasonable skill in forecasting waves and no third generation model can

compete with its execution time. This modeling system is therefore useful for forecasters as

they can analyse different scenarios quickly, helping them to cope with the often capricious

nature of tropical storms (MacAfee and Bowyer, 2005).

The development of second generation models was based on the implementation of the

wave energy (or wave action) spectrum. However, the lack of a proper representation of

non-linear energy transfer in second generation models forces them to use assumptions
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which severely limit their possibilities in terms of the shape of the energy spectrum. Models

which represent the energy spectrum use the energy transfer equation:

∂F

∂t
+ (cos φ)−1 ∂

∂φ
(Vφ cos φF ) +

∂

∂λ
(VλF ) +

∂

∂θ
(VθgF ) = S(φ, λ, F ) (1.1)

Vφ =
cg cos θ + Uφ

R
, (1.2)

Vλ =
cg sin θ + Uλ

R cos φ
, (1.3)

Vθg = θ̇ − cg ∗ tan φ cos θ

R
, (1.4)

S = Sin + Snl + Sds (1.5)

where θ̇ = ∂θ
∂t

, cg is the group velocity, U is the surface current speed and R is the radius

of the Earth. In Eq.1.1, F = F (f, θ, φ, λ, t) is the energy spectrum at a specific location in

latitude, longitude coordinates (φ and λ, respectively) and at a given time t, expressed as a

function of wave frequency f and direction θ, with θ = 0 for waves traveling from west to

east. The total source term, S, is defined as encompassing all sources and sinks of energy

as well as the non-linear wave dynamics which are not described by the left side of Eq.1.1.

Source terms include the wind input (Sin), the non-linear interactions (Snl) and dissipation

(Sds), along with other possible terms. Although second generation models are based on

the wave energy spectrum, they tend to use certain assumptions in order to restrict the

spectral shape of the waves in the source terms used in Eq.1.1 in order to simplify the

equation. Using several different models and test cases, it is shown in SWAMP (1985)

that these assumptions in turn limit the capabilities of the models to represent a variety of

situations like wind wave generation over pre-existing swell (waves which are decoupled

from the wind). The removal of the assumed constraints on spectral shapes present in

second generation models gives third generation models additional degrees of freedom to

simulate sea state.

The most important improvement of third generation wave models over their second

generation counterparts is the ability to resolve non-linear wave-wave interactions without
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specifying the shape of the wave spectra a priori. This grants third generation models the

flexibility needed to attempt to represent many kinds of waves created by evolving wind

fields.

Results produced by the third generation wave models, however, are still limited by the

accuracy of the implemented source terms. The proper resolution of non-linear interac-

tions is proving particularly difficult due to its complexity and the high computational

effort required to compute them accurately. Thus, although third generation models are

the state of the art when it comes to wave modeling, second and even first generation

models can also achieve comparable predicting skills when concentrating on certain model

products. For example, models of all generation can simulate integrated variables more

accurately as they depend weakly on the details of the spectral energy balance. This is

the case for the significant wave height (HS), the average wave height of the third largest

waves measured from trough to crest. Liu et al. (2000) compared models from all three

generations and obtained similar HS predictions from the three different generations of

wave models in a simulation of the waves on Lake Michigan. A similar conclusion is

also reached by Cardone et al. (1996). These results could be interpreted as meaning that

the increase in computer resources necessary for the operational use of third generation

models might not be worth the cost. However, while all the wave models can forecast

significant wave heights and wave directions to some extent, only the third generation

models can reasonably represent the wave energy spectrum by explicitly computing wave

processes in the source terms. The wave energy spectrum contains a wealth of information

inaccessible to earlier generations of wave models but available to third generation models.

This information can then be used to sustain more complex parameterizations of wave

processes, air-sea momentum flux and ocean mixing, for example, allowing for a much

more complete modeling of the ocean-atmosphere system. Therefore, third generation

models have a non-negligible advantage over their predecessors when it comes to providing

an accurate simulation of real world physics.
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1.2.2 Wave Model Physics and Non-Linear Interactions

Proper representation of the different processes involved in the energy equation (Eq.

1.1) is necessary in order to accurately calculate spectral wave evolution. For example,

wind-wave energy input (Sin) is often based on the theory of Miles (1957). In this approach

to wind-wave interactions, different wave modes grow according to the curvature of the

boundary layer wind field (∂2u
∂z2 ) at the height where the wind velocity is equal to the wave

speed of a given mode. Negative curvature of the wind field (winds increasing slower with

height, or a concave upward wind profile) will cause the waves to grow, whereas positive

curvature will not further the growth of the waves. The wind profile (which is usually

assumed to follow a logarithmic profile in the absence of waves) has a natural negative

curvature and allows for the growth of waves. In the long term, the waves would grow to

such an extent as to use all the available energy from the wind and then stabilize, leaving a

linear wind profile (Janssen, 1982).

For wave propagation, and generally in wave modelling, the concept of wave action

(Whitham, 1965; Andrews and McIntyre, 1978) is also very important in wave models.

Wave action is defined as N = F/σ, where F is the energy and σ is the intrinsic angular

frequency, as observed in the coordinate system moving with the mean flow. Wave action

is particularly useful since it is conserved during interactions, which is important when

currents are present. To this day, numerical wave models still are based on the determina-

tion of the evolution of wave action density spectra as in Eq. (1.1).

The computation of non-linear wave-wave interactions is a very significant component of

third generation wave models, essential in distinguishing them from their second generation

predecessors. In current third generation operational wave models, the Discrete Interaction

Approximation (DIA, described in section 2.1.3) is used to resolve non-linear wave-wave

interactions (Hasselmann and Hasselmann, 1985). This method sacrifices accuracy for

computational efficiency in order to ensure that the wave models can run simulations

quickly enough to be used for forecasts. Methods which compute non-linear interactions

with a high degree of accuracy do exist, but their use is impossible in operational modeling
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as they are extremely expensive computationally. The WRT method, for example, typically

requires 103 to 104 times longer computational time than the DIA to complete a given

simulation (Tolman, 2009). Therefore, other methods are being considered which would

improve on the accuracy of non-linear interactions compared to the DIA, while not being

as computationally expensive as the so-called exact methods.

The simplest step forward, given the success of the DIA as the only method used in

operational modeling for more than 20 years, is to broaden the interactions considered

in the spectral space by the method to obtain a more accurate basis to the approximation.

This method is called the Generalized Multiple DIA method (GMD, see Tolman, 2008).

However, as the GMD still does not cover the whole integration space it therefore suffers

from similar shortcomings as the DIA, but to a lesser extent. Depending on the tests and

comparisons, the GMD can be found to be too inaccurate to properly resolve the energy

balance although it may be an interesting, easy improvement for operational purposes.

Building on the advancement in computer technology, an approach based on neural

networks, known as the Neural Network Interaction Approximation (NNIA), is currently

being developed. This method depends on the learning capabilities of neural networks,

first training the methodology with pairs of spectra and calculated non-linear transfer, then

using that “knowledge” to come up with an energy transfer for given wave spectra (Tolman

et al., 2005). While the NNIA has potential for operational purposes, it suffers from not

physically or mathematically deriving its non-linear transfer, which can be a problem in

process studies.

Other methods that are currently under development include experimental approximation

methods which make use of precomputed energy transfers. The Advanced Dominant

Interaction method (AvDI) takes advantage of certain scaling properties of the non-linear

transfer in order to reduce the amount of calculations necessary to obtain an accurate

estimate (Perrie et al., 2010). For a given wavevector, a dominant part of the non-linear

transfer occurs when interacting with some other specific wavevectors. In this approach,
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the total interaction is approximated by scaling the dominant transfer with a parameter

obtained through comparisons of the given spectrum with other, pre-processed spectra

using fuzzy logic.

1.3 Objectives

Operational wave models are currently limited in their capabilities due to their poor

simulation of wave energy or action spectra. Another area that has suffered from the

inaccuracies of current models is the investigation of the dynamics of wave evolution.

This can be addressed by implementing more accurate methods for the computation of

non-linear energy transfer which will consider the entirety of the wave spectrum in the

calculations of the wave-wave interactions for every wave frequency and direction. In

order to achieve this, three main objectives were set for this study:

- To complete the implementation of a modern approximation of the non-linear wave-

wave interactions, the TSA, in WW3.

- To compare versions of WW3 using (i) DIA, (ii) the new implementation of the TSA

and (iii) the WRT method, in terms of accuracy, in order to demonstrate the potential of an

operational wave model using the TSA

- To investigate possible modifications to the new implementation of the TSA in order

to improve the value of the approximation for operational modelling.

While Perrie and Resio (2009) demonstrated the potential of the TSA method, their

experiment used predetermined observed spectra and computed the transfers outside of

a numerical model. The goal of this project is to demonstrate the advantages offered by

using the TSA for the non-linear transfers over multiple integrations as resolved in the

case of evolving spectra in a numerical model.

The DIA is the only numerical method used in operational wave modeling to this day

and is therefore the reference against which new methods have to be compared. Once the
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TSA is successfully implemented, the performance of the two models (operational WW3

using DIA and WW3-TSA) will be assessed against results obtained using the more exact

interactions computed by the WRT method in SWAMP test cases such as the evolution of

a wave field under constant or changing winds.

1.4 Structure

Chapter 2 describes the main components of the numerical wave model used for this

work, WW3, including the available source terms used for the simulations: wind-wave

interactions, wave dissipation and non-linear interactions using both the DIA or WRT

methods, as well as the numerical schemes used for advection and time integration. Chap-

ter 3 describes both the theory behind the TSA and its implementation in WW3. Chapter 4

presents simple numerical experiments performed with a one point model used to assess

the potential of the TSA for the computation of the wave-wave interactions for evolving

spectra. Chapter 5 covers experiments performed with the physical domain extended to

two-dimensions so that the impact of advection schemes and fetch on wave evolution can

be investigated. Chapter 6 summarizes and discusses the results of the previous experi-

ments and their consequences.



CHAPTER 2

MODEL DESCRIPTION

WAVEWATCH III (WW3, see Tolman 2009) is a numerical wave model developed

and used for operational purposes at the National Centers for Environmental Prediction

(NCEP). Written using fortran90 with a modular structure, the model can be run in parallel,

taking advantage of multiple processors in order to reduce elapsed computational time,

and allows the user to choose between different representations of wave physics.

The model setup for the theoretical experiments performed in this study makes use of a

Cartesian formulation of the space domain for simplicity, although a longitude-latitude

formulation is also available. Only water depths which are well beyond the threshold for

shallow water waves are used in the experiments performed. As a result, depth-induced

breaking, triad interactions and wave bottom scattering are all considered to be negligible.

The numerical simulations take into account wind-wave interactions, non-linear wave-wave

interactions and wave dissipation and are done with two different advection schemes.

2.1 Source Terms

As introduced in section 1.2, source terms for wave energy attempt to include all the

energetics in a wave model and are calculated based upon the current sea state at each

model point in space. The balance among them determines the evolution of the total energy

in the waves. Spectral energy of the waves changes according to the two-dimensional

10
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representation of the source terms in the model. The formulations used are therefore very

important in order to obtain realistic simulations of the sea state.

2.1.1 Wind-Wave Interactions

In the experiments, the representation of the energy input to waves by the wind is based

on the work of Chalikov and Belevich (1993) and Chalikov (1995). The implementation

of this source term in WW3 is described in Tolman and Chalikov (1996). Using a two-

dimensional model for extensive computations of the wave boundary layer, the wind-input

parameter β, is investigated. This parameter defines the ratio between wave energy and the

wind input term as a function of frequency ω as:

β(ω) =
ρa

ρw

ε(ω)

ωS(ω)
(2.1)

where ε(ω) is the spectral density of energy exchange, ρa is the air density, S(ω) is the

wave energy spectrum and ρw is the water density. This parameter can be approximated

by a piecewise continuous function, shown for different values of the drag coefficient in

Figure 2.1 and given by:

104β =



−a1ω̃
2
a − a2, ω̃a < −1

a3ω̃a(a4ω̃a − a5)− a6, ω̃a ∈ (−1, Ω1/2)

(a4ω̃a − a5)ω̃a, ω̃a ∈ (Ω1/2, Ω1)

a7ω̃a − a8, ω̃a ∈ (Ω1, Ω2)

a9(ω̃a − 1)2 + a10, ω̃a > Ω2

(2.2)

where ω̃a = ω|uλ|cos(θr)/g is the non-dimensional wave frequency of a wave moving at

angle θr with the wind, uλ is the wind velocity at the height of the normalized wavelength

λa given by:

λa =
2π

k|cos(θr)|
(2.3)

for a wavenumber k. In the approximation, a1 to a10, as well as Ω1 and Ω2, are parameters

depending on the drag coefficient (cλ) at that height (Chalikov, 1995) and defined as:



12

Ω1 = 1.075 + 75Cλ, Ω2 = 1.2 + 300Cλ

a1 = 0.25 + 395Cλ, a3 = (a0 − a2 − a1)/(a0 − a4 + a5)

a2 = 0.35 + 150Cλ, a5 = a4Ω1

a4 = 0.30 + 300Cλ, a6 = a0(1− a3)

a9 = 0.35 + 240Cλ, a7 = (a9(Ω2 − 1)2 + a10)/(Ω2 − Ω1)

a10 = −0.05 + 470Cλ, a8 = a7Ω1

a0 = 0.25a2
5/a4.

(2.4)

Figure 2.1: Wind-input parameter (β) as a function of apparent frequency (ω̃a) for different
values of the drag coefficient (Cλ).

The wave model takes a reference wind velocity ur at the height zr and then produces the

profile of wind velocities and drag coefficients as a function of height using a logarithmic

wind layer approximation:
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uz =
v∗
κ

ln(
z

z0

) (2.5)

where v∗ is the friction velocity, κ = 0.4 is the Von Kármán constant and z0 is the roughness

parameter obtained from the wave energy spectrum and wind properties. The profiles are

thus given by:

uλ = ur
ln(λa/z0)

ln(zr/z0)
(2.6)

Cλ = Cr(
ur

uλ

)2. (2.7)

The wave action spectrum N(k, θ) in the model is resolved on a two-dimensional space

(k, θ). The formulation for the normalized interaction between wind and waves, Sin, is

therefore extended to include multiple wave directions by using the two-dimensional

action density and the interaction parameter for every wavenumber k and direction θ. The

calculation of the wind input source term (Sin) is thus done for every spectral component

individually using:

Sin(k, θ) = β(ω(k), θ)ω(k)N(k, θ). (2.8)

It is interesting to note that for waves moving faster than the wind, as well as waves

moving against the wind, the wind input source term can be negative. Figure 2.2 shows

such a case when the wind is perpendicular to the main wave direction. Here the energy

growth is negative for waves going against the wind (θ > 2700) and it is positive where

the swell has a component propagating along the wind around θ = 223o. The generation

of new wind waves at higher frequencies is also visible.
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Figure 2.2: (a) Energy spectrum (m2Hz−1) (left) and (b) wind-wave interactions (m2),
Sin, generated by easterly winds (θ = 270o) for 48 hours and northerly winds (θ = 180o)
for 30 minutes. Angles θOCN are following the oceanographic convention.

2.1.2 Wave Dissipation

Wave dissipation encompasses the processes which remove energy from the existing

wave field. One of the important processes is wave breaking (commonly called “whitecap-

ping”). It can be described as the wave break-down that occurs when its energy content at

a certain wavelength is too large, and the wave is too steep to be stable. The wave energy

is then transferred to ocean mixing, currents and turbulence. Another important process is

the interaction of waves with the water below them. Turbulence in the oceanic boundary

layer causes a transfer of energy from the waves to the water column, further reducing their

energy. Because both processes are very complex and neither is very well understood, the

wave dissipation term in operational wave models is parameterized as a closure term, such

that the overall wave evolution in the model follows observations (Tolman and Chalikov,

1996).

Most of the existing wave dissipation parameterizations are quasi-linear in the energy

spectrum and take the form:
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Sds = −T−1
ds F (f, θ) (2.9)

where F is the energy spectrum and Tds is the dissipation time scale, which can be a

function of environmental or spectral parameters, such as the wind velocity, wave direction

or frequency. This formulation works well around the spectral energy peak and for frequen-

cies lower than the peak frequency, the region known as the forward face of the spectrum.

However, another approach is needed for the dissipation occuring at high frequencies.

The region of the energy spectrum where the frequency is about 2.5∼3.5 times the

frequency of the energy peak is known as the equilibrium range. In this region, source

terms tend to cancel one another, resulting in a self-similar shape that only weakly depends

on fetch. The timescales of evolution in the equilibrium range differ significantly from

those of the forward face, therefore these two regions need to be considered separately for

wave dissipation (Tolman and Chalikov, 1996). The dissipation components include: (i) a

dissipation term for low frequencies similar to what would be used for turbulent viscosity

in the oceanic boundary layer, and (ii) a purely diagnostic term designed to obtain the

desired spectral shape at high frequencies.

The low frequency part of the parameterization comes from the energy flux to deeper

water by the interaction of the wave motion with the underlying water. The formulation

used in WW3 is based on the Reynolds Averaged Navier-Stokes Equations, and accounts

for the mean flow, waves and turbulence, to define the local rate of wave energy dissipation,

via the spectral form:

Sds,l(f, θ) = −2k3F (f, θ)

∫ ∞

0

K(z)e−2kzdz (2.10)

where K(z) is the eddy viscosity as a function of depth. Using dimensional analysis and

neglecting stratification (the dissipation should mostly be in the mixed layer of the ocean),

the eddy viscosity is found to depend on friction velocity (u∗), depth (z), high frequency

wave height (h) and a dimensionless parameter representing wave age (ξ). Defining the

effective eddy viscosity, Ke, as:
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Ke = k

∫ ∞

0

K(z)e−2kzdz

= u∗h

∫ ∞

0

kK̃(
z

h
, ξ)e−2kzdz = u∗hφ(ξ)

(2.11)

where φ(ξ) is a nondimensional function of wave age found to be linear during the tuning

process, leads to low frequency dissipation represented as:

Sds,l(f, θ) = −2u∗hk2φ(ξ)F (f, θ). (2.12)

Interestingly, this formulation means that there will be no dissipation in the absence of

wind (u∗ = 0) or high frequency waves (h = 0).

The high frequency dissipation term is a closure term, intended to be consistent with

other source terms in the equilibrium range of the spectrum in the sense of constraining

WW3 to compare as well as possible with observations. Since this region of the energy

spectrum is largely independent of fetch, the balance should be attained between Sin, Snl

and Sds and allow for a stable shape of the energy to fit an f−5 tail (in WW3) in this

region. With the other two source terms and the desired shape known, it becomes a closure

problem. Assuming that the balance

Sin + Snl + Sds = 0 (2.13)

is achieved for a one-dimensional spectrum of the form

F (f) = αg2(2π)−4f−5 (2.14)

and defining the interaction timescales at a given frequency as

T−1 =

∫
θ
Sdθ∫

θ
Fdθ

(2.15)
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the timescale T of interaction can then be compared. Non-linear interactions scale by

f 11F 2, which in this region of the spectrum corresponds to a linear dependence on fre-

quency, whereas wind-wave interactions have a cubic dependence. The balance is thus

mainly between input and dissipation in the equilibrium range. From this result and

knowledge of the wave model numerics, the high frequency dissipation can be expressed

as

Sds,h(f, θ) = −a0(
u∗
g

)2f 3[αn(f)]BF (f, θ),

B = a1(
fu∗
g

)−a2 ,
(2.16)

where αn is the frequency dependant nondimensional energy level from the definition of

the energy spectrum in the equilibrium range (eqn. 2.14) normalized by a representative

level which comes from tuning, along with a0, a1 and a2.

Both high and low frequency dissipation terms are then blended linearly between

frequencies, in order to obtain the full dissipation term in the model, an example of which

is shown in Figure 2.3.

2.1.3 Non-Linear Wave-Wave Interactions

Non-linear energy transfer between ocean waves (Snl, Eq.1.5) occurs between quadru-

plets of waves. Solving the formulation for interactions with a given wave represented

by wavevector k1 thus requires consideration of all possible sets three wave vectors

(k2,k3,k4). Integration of the non-linear interactions over all three two-dimensional wave

vectors thus yields the change in action density N1 at wavenumber k1 as a 6-dimensional

integral in wave-number space specified by the Hasselmann equation:

Snl =

∫ ∫ ∫
G(k1,k2,k3,k4)δ(k1 + k2 − k3 − k4)δ(σ1 + σ2 − σ3 − σ4)

×[N1N3(N4 −N2) + N2N4(N3 −N1)]dk2dk3dk4

(2.17)
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Figure 2.3: Wave dissipation (m2) term calculated for the energy spectrum shown in
Figure 2.2(a). Note the dissipation around the swell peak, the extension towards the new
wind direction where higher frequency waves are developing and the local maximum for
wind sea at higher frequency.

where the wave action densities Ni = Fi/σi are defined for wavevectors ki, G is a

complicated coupling term (Hasselmann, 1962) and the delta functions enforce the two

quadruplet interaction constraints:

k1 + k2 = k3 + k4, (2.18)

σ1 + σ2 = σ3 + σ4. (2.19)

This equation was also discovered independently by Zakharov and Filonenko (1966).

The non-linear interactions are responsible for the familiar shape of the wave energy

spectrum, transferring energy from mid-frequencies and the spectral peak region (where

input by wind is usually the largest) to lower frequencies, ultimately creating swell. This

can be seen in Figure 2.4, which shows the non-linear interactions spectrum corresponding
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to the energy spectrum presented in Figure 2.2(a). In this case, the energy transfer to

lower frequencies is caused by negative interactions in mid-frequencies (f ∼ 1.6Hz) and

positive interactions below the energy peak (f ∼ 1.2Hz). Energy transfers towards higher

frequencies (f > 0.45 Hz in Fig.2.4) and side-lobes at about 45 degrees from the main

wave direction (θ = 300o in Fig.2.4) can also be seen. The positive side-lobes contribute

to bimodal characteristics in spectra, as suggested by Webb (1978) and recently observed

by Long and Resio (2007). The energy transferred to high frequencies is then lost to

wave-breaking dissipative processes (Sds).

Figure 2.4: Non-linear interactions (m2) calculated for the energy spectrum shown in
Figure 2.2.

Third generation wave models can use a variety of methods for the computation of

non-linear energy transfers, of which the most important is the Discrete Interaction Ap-

proximation (DIA) (Hasselmann and Hasselmann, 1985; Hasselmann et al., 1985). It

was developed for the first third generation model, WAM (WAMDI, 1988) and is still

in use to this day, as it is the only method to be computationally efficient enough for

operational models. The WAM model allows an explicit balance of wind input, non-linear
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wave-wave interactions and wave dissipation, whereas previous models would underesti-

mate non-linear interactions or neglect them altogether and overestimated wind input as

a compensation. In third generation wave models, the explicit balance of source terms

attempts to resolve as many degrees of freedom as the spectrum has, allowing energy to be

distributed in response to the specifics of the forcing. Therefore, increasing the accuracy of

the non-linear transfer calculation methods is related to increasing the number of degrees

of freedom of the model. This freedom in the non-linear energy transfer also allows a

greater freedom in spectral shapes; thus, situations where swell and wind seas are present

or where winds change sharply (potentially creating multi-modal spectra) can be modelled

much more accurately than in models of the preceding generations.

The interactions between waves of different frequencies and directions are central to

the creation of the spectral shape. Besides the theoretical work done to understand the

Hasselmann equation (Eq. 2.17), there is also the challenge of calculating the Snl expres-

sion in a numerical wave model. Although it is possible to calculate the non-linear term

exactly, it is a very expensive calculation computationally and, even with the resources

available today, it is too inefficient for operational wave modeling. Of all the numerical

methods that calculate the integral accurately, the first was developed by Hasselmann

and Hasselmann (1985) and called Exact-NL. The Exact-NL method calculates the non-

linear transfer by integrating over the whole discrete wave energy spectrum, essentially

performing a summation over all wavenumbers, which is very time consuming. It was

subsequently improved by using scaling properties of Eq. (2.17) and geometric arguments

to avoid repeating certain parts of the calculations, which led to the equivalent, yet faster,

Webb-Resio-Tracy method (Webb, 1978; Tracy and Resio, 1982; Resio and Perrie, 1991).

After the completion of the Exact-NL method, the Discrete Interaction Approximation

(DIA) (Hasselmann et al., 1985) was developed. It has become the workhorse of opera-

tional wave modeling to this day as its calculation time is orders of magnitudes faster than

the so-called exact methods. The DIA is based on using only a subset of the interacting

wavenumbers, which makes the reduction in calculation time possible, according to:
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ω1 = ω2 = ω (2.20)

ω3 = ω(1 + λ) (2.21)

ω4 = ω(1− λ) (2.22)

with λ = 0.25. Since the angles between the wavenumbers are predefined as θ3 =

11.5o, θ4 = −33.6o, the DIA only computes a restricted subset of the interactions. Having

such a limited set of interactions, good agreement in all regions of the wave spectrum is

impossible. The DIA is tuned such that it models the low frequency spectral peak well

since this is the dominant energy bearing region of the spectrum. The use of the DIA

has important impact both on the other regions of the energy spectrum and on integrated

variables such as Hs, the significant wave height, which is the most commonly forecasted

variable. However, the main downside of the use of the DIA is a rather poor agreement in

the higher frequency regions of the spectrum where the DIA overestimates the negative

mid-frequency Snl lobe as well as the positive high frequency variation. Figure 2.5 shows

a comparison between the Exact-NL and DIA methods exhibiting this behaviour. To

counteract the error introduced by the DIA, wind input and wave dissipation are in turn

overestimated in the mid and high frequency regions, respectively, creating a state of

energy balance that attempts to reproduce observed values for integrated quantities like

Hs, but for which the details of the evolution are strongly biased.

2.2 Time-Stepping Scheme

Wave modeling involves the simulation of a vast variety of phenomena occurring at

widely differing time steps. These include the slow variation of water levels with tides

(typically T ∼ 12 hrs for semi-diurnal tides), the propagation of waves from one grid point

to the next (T ∼ δx/cp) to the waves themselves, their wave-wave interactions and their

evolution, which depend on much smaller time scales. In order to cope with this, WW3
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Figure 2.5: Comparison of the one-dimensional non-linear interactions (Snl) as computed
by Exact-NL with the results from DIA for a JONSWAP spectrum (Hasselmann et al.,
1985).

uses 4 different time steps:

δtg: a global time step for the propagation of the entire solution in time,

δtp: the spatial propagation time step,

δts: the intra-spectral propagation time step, used for refraction.

δtS: the source term integration time step.

The last three of the above time steps, which are integer fractions of the global time

step, are associated with different aspects of wave evolution as indicated, and are treated

individually in the model. If computations required for spatial and intra-spectral propaga-

tion should occur for the same time, the order in which they are performed is alternated for
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higher numerical accuracy. WW3 therefore performs the following three different time

integrations of the wave field:

Firstly, for the spatial propagation, it numerically solves

∂N
∂t

+
∂

∂x
ẋN +

∂

∂y
ẏN = 0, (2.23)

where N = Nc−1
g , ẋ and ẏ are the longitudinal and meridional propagation speeds, respec-

tively. Secondly, for the intra-spectral propagation WW3 solves

∂N

∂t
+

∂

∂k
k̇gN +

∂

∂θ
θ̇gN = 0 (2.24)

k̇g =
∂σ

∂d

U · ∇xd

cg

− k · ∂U

∂s
(2.25)

θ̇g = θ̇ − cg tan φ cos θ

R
(2.26)

θ̇ = −1

k

[
∂σ

∂d

∂d

∂m
− k · ∂U

∂x

]
(2.27)

where U is the current velocity, d is the depth and m and s are coordinates parallel and

perpendicular to the direction θ. Thirdly, for the source term integration it solves

∂N

∂t
= S (2.28)

using the semi-implicit scheme based on

δN(k, θ) =
S(k, θ)

1− εD(k, θ)δt
(2.29)

where ε is a parameter between 0 and 1 and D is given by

D(k, θ) =
∂S(k, θ)

∂N(k, θ)
(2.30)

which is called the diagonal term.
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2.3 Advection Schemes

To assess the impact of wave propagation on the model results from the two-dimensional

experiments, two different propagation (advection) schemes are used in this study. The

simplest one is a first order upwind scheme, originally intended for use during development

of WW3. A flux formulation is used where the flux between grid points is given by

Fi,− = [φ̇bNu]
n
j,l,m, (2.31)

φ̇b = 0.5(φ̇i−1 + φ̇i)j,l,m, (2.32)

Nu =

{
Ni−1 for φ̇b ≥ 0

Ni for φ̇b < 0,
(2.33)

where j, l and m are discrete grid counters in λ-, θ- and k-spaces, respectively and n is the

discrete time step counter. Here, φ̇b is the propagation velocity, or group velocity, at the

boundary between the cells considered. The time stepping is thus done using:

Nn+1
i,j,l,m = Nn

i,j,l,m +
∆t

∆φ
[Fi,− − Fi,+] +

∆t

∆λ
[Fj,− − Fj,+] (2.34)

where ∆ t is the propagation time step, ∆ φ and ∆ λ are latitude and longitude increments,

respectively, and the different Fi represent fluxes with the neighbouring cells.

The other propagation scheme used is the QUICKEST scheme developed by Leonard

(1979) and Davis and More (1982) with the ULTIMATE TVD (total variance diminish-

ing) limiter (Leonard, 1991). This scheme is third order in accuracy in both space and time.

It is interesting to note that both advection schemes come with significant differences.

The first order scheme has a high degree of numerical diffusion, which is absent in the

third order scheme. Although this is an advantage in the third-order scheme, the numerical

diffusion also smooths out numerical noise, which can limit its impact on wave contours.

Examples of wave fields using these schemes are shown in Figure 2.6, which illustrate the

effect of the different schemes on the wave fields.
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Figure 2.6: Significant wave height fields (in meters) and wave direction (arrows) calculated
using (a) the linear propagation scheme and (b) the cubic propagation scheme after 48 hours
of winds blowing westward and 5.5 hours of winds blowing South. Note the differences in
the North-East corner of the domain.



CHAPTER 3

TWO-SCALE APPROXIMATION

Motivated by the fact that, currently, the most widely used methods of calculation of the

non-linear wave-wave interactions (viz. DIA, Exact-NL or WRT) have problems in either

efficiency or accuracy, a step forward for numerical ocean wave modelling, especially

operational modelling, is to develop a new method which should be fairly accurate and

also efficient. With the advances in computing technology and the deployment of computer

clusters to satisfy modelling needs, computational resources available today are vastly

superior to those which were available more than twenty-five years ago, when the previous

methods were designed. As such, new methods can afford to be computationally more

expensive than the DIA which, after years of use, is unchallenged in its efficiency. All

the potential efficiency gains from symmetry and geometrical integration arguments have

already been implemented for the so-called exact integration of the interactions. Therefore,

future methods require the application of new approximations in order to offer gains in

accuracy compared to the DIA while remaining operationally viable.

Introduced by Resio and Perrie (2008), the Two-Scale Approximation (henceforth TSA)

represents such a method which can make use of new computing technology. The TSA tries

to achieve a better approximation in order to get numerical results that are more faithful to

those of the complete integral than the DIA while remaining numerically efficient enough

to be used in operational model runs.

26
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Figure 3.1: Decomposition of (a) the wave action spectrum into (b) the parametric broad-
scale shape and (c) its associated perturbation, or local-scale, term. Note: a slight asymme-
try in the energy spectrum is made evident in the perturbation term.

3.1 Formulation

The TSA is based on a decomposition of the wave energy spectrum into two parts, one

of which follows a predefined parametric shape, and the other is the residual deviation

from this shape. The parametric part of the spectrum, also called the broad-scale term,

represents the first term of a functional series expansion and should contain most of the en-

ergy, especially around the spectral energy peak. The residual part, also called local scale,

is the deviation of the spectrum from the parametric fit and contains the remaining energy.

For classical JONSWAP wind sea, the parametric broad-scale term should provide a good

representation of most of the spectrum, and the local scale term should be small. However,

in the case of complex sea states, we will show that the local scale term becomes more

prominent. Figure 3.1 shows an example of the decomposition for a spectrum generated by

an easterly wind blowing for forty-eight hours, followed by a half-hour of northerly wind.

In the TSA formulation, in order to calculate the wave-wave interactions, only a subset

of all possible interactions are retained. The original action component in Eq.2.17 is cubic



28

in wave action and contains two terms; the first uses the product of wave numbers one

and three, the second uses their difference. By decomposing the spectrum into two scales,

broad-scale and local-scale, each term of the cubic component becomes eight terms (23),

yielding:

N3 = n̂1n̂3(n̂4 − n̂2) + n̂2n̂4(n̂3 − n̂1) +

n′1n
′
3(n

′
4 − n′2) + n′2n

′
4(n

′
3 − n′1) +

n̂1n̂3(n
′
4 − n′2) + n̂2n̂4(n

′
3 − n′1) +

n′1n
′
3(n̂4 − n̂2) + n′2n

′
4(n̂3 − n̂1) + (3.1)

n̂1n
′
3(n̂4 − n̂2) + n̂2n

′
4(n̂3 − n̂1) +

n′1n̂3(n̂4 − n̂2) + n′2n̂4(n̂3 − n̂1) +

n̂1n
′
3(n

′
4 − n′2) + n̂2n

′
4(n

′
3 − n′1) +

n′1n̂3(n
′
4 − n′2) + n′2n̂4(n

′
3 − n′1)

where hats(ˆ) represent broad-scale components and primes(´) represent the local-scale

perturbations. The first two terms in Eq.3.1 include self interactions in the broad-scale

components on the first line, which can be obtained from shape characteristics and scaling

properties of non-linear transfer. Those form the broad-scale’s contribution to Snl and are

denoted B. The other terms are the cross-interactions between local- and broad-scale terms.

The argument is made by Resio and Perrie (2008) that there should be no, or very little,

correlation between terms involving n′2 and n′4 along with their product and difference.

Their integral should be much smaller than that of the other terms in the expansion since

they are expected to oscillate between positive and negative contributions. Keeping only

the cross-interactions which strongly depend on the dominant broad-scale terms results in

a new cubic term. The approximation to the cubic interaction term can be defined as:

N3 ≈ B + N3
∗ (3.2)

where
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B = n̂1n̂3(n̂4 − n̂2) + n̂2n̂4(n̂3 − n̂1) (3.3)

N3
∗ = n̂2n̂4(n

′
3 − n′1) + n′1n

′
3(n̂4 − n̂2)

+ n̂1n
′
3(n̂4 − n̂2) + n′1n̂3(n̂4 − n̂2). (3.4)

This choice of terms allows to reduce the integral from six to two dimensions. Indeed,

the integral still covers the whole two-dimensional spectrum of the third wavenumber (k3)

but keeping the broad-scale contribution from wave number two (n̂2) and four (n̂4) does not

force the integral to remain six-dimensional. The wave action for these spectral components

only comes from the broad-scale, and thus only depends on the same parameters as the

broad-scale action for wave numbers one (n̂1) and three (n̂3). The broad-scale components

can all be precomputed using the broad-scale and retrieved when necessary, saving valuable

computational time. The results from the two different components, B and N3
∗ , can

be summed up to produce the two-scale approximation to the non-linear wave-wave

interactions described by Eq.2.17, the TSA, defined as:

∂n1

∂t
=

∫ ∫ ∫
(B + N3

∗ )C|
∂W

∂n
|−1dsk3dθ3dk3 (3.5)

where ds is a coordinate defined along the spectral space which satisfies the interaction

constraints (Eq.2.18-2.19) while C and |∂W
∂n
|−1 are the coupling and gradient terms, equiv-

alent to G in Eq.2.17. The reduction of the problem to two parts, one of which has a

simpler parametric solution, allows for much faster calculations which still consider the

wave spectrum for all spectral space, instead of a subset.

The TSA formulation given by Eq.3.5 can be rewritten to take advantage of the poten-

tially precomputed quantities as

∂n1

∂t
= (

β

β0

)3Bi (3.6)

+ (
fp0

fp

)

〈
( β

β0
)
∫ ∫

(n̂1n
′
3 + n′1n̂3 + n′1n

′
3)Λd(n̂2 − n̂4, k1, k3, θ3, x1, ..., xn)k3dθ3dk3

+( β
β0

)2
∫ ∫

(n′1 − n′3Λp(n̂2n̂4, k1, k3, θ3, x1, ..., xn)k3dθ3dk3

〉
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where Bi is the integral of the broad-scale contribution from equation 3.5 and the remaining

integral makes use of the precomputed variables Λp and Λd:

Λd(n̂2 − n̂4, k1, k3, θ3, x1, ..., xn) =

∮
C|∂W

∂n
|−1(n̂4 − n̂2)ds (3.7)

Λp(n̂2n̂4, k1, k3, θ3, x1, ..., xn) =

∮
C|∂W

∂n
|−1(n̂4n̂2)ds. (3.8)

The integration along the locus of points which satisfy the wave-wave interaction con-

ditions (Eq.2.18-2.19) is then only dependant on the broad-scale parameters. In this

formulation, the integral for the TSA thus has only 2 dimensions in spectral space, rather

than 6 dimensions for Exact-NL, the exact integral, or 3 dimensions for the WRT method.

This approach cannot be reproduced by geometric methods used by DIA or GMD because

they only consider a fixed number of locations in spectral space when approximating the

non-linear wave-wave interactions. The ability of the TSA to consider the whole spectral

space, while intrinsically more computationally expensive than the DIA, also allows for an

increase in accuracy that is beyond the reach of other simpler methods.

The contributions from both the broad- and local-scale parts of the approximation are

shown in Figure 3.2, for the spectrum shown in Figure 3.1a. The shape of the broadscale

non-linear interactions in Figure 3.2a is similar to what should be expected; a positive lobe

at low wavenumber and negative lobe for higher wavenumbers. This represents a flux of

energy from higher frequencies to lower ones, or the evolution of wind waves into swell.

The perturbation, which is essentially a correction term, amplifies the positive peak while

reducing the amplitude of the negative and side lobes.

The sum of the two interaction components shown in Figure 3.2 yields the two-scale

approximation to the non-linear interactions, shown in Figure 3.3b, with the interactions

from the WRT method shown in panel a. Figure 3.3 illustrates that, in areas close to the

spectral peak and where the broad-scale covers most of the action, the approximation holds

very well. Further from the peak, where the fit is not as accurate, the approximation does
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not have the same skill. Since the shape of the broad-scale and the exactitude of the fit are

entirely up to the fitting procedure, the TSA can theoretically hold in any situation. In this

work, a simple symmetric spectral shape with a single peak is used.

Figure 3.2: Contributions to the non-linear interactions from (a) the broad-scale and (b)
the perturbation, or local-scale, terms shown in Figure 3.1b and c.
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3.2 Implementation

WW3 already includes modules for the computation of non-linear wave-wave interac-

tions using the DIA and the WRT method. Because TSA is an approximation based on

modifications of the exact calculations, the simplest approach for its implementation inside

the model is to modify the code used for the WRT method. As our aim is to evaluate

the accuracy of the TSA, we overlook the time saving potential of TSA and focus solely

on obtaining a modified module which is able to calculate the non-linear wave-wave

interactions using the TSA in a mathematically correct way.

In order to use the TSA inside WW3, three modifications are required: the addition of

an algorithm to divide the wave energy spectrum into a parametric broad-scale part with

its associated perturbation local-scale term; alteration of the code in order to calculate

the TSA for the non-linear wave-wave interactions; and a derivation of the TSA diagonal

terms as defined in 2.30.

Figure 3.3: Non-linear interactions as calculated by (a) the WRT method and (b) the
TSA for the input spectrum shown in Figure 3.1a. Asymmetry in the local-scale leads to
asymmetry in the non-linear interactions.
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3.2.1 Creation of the Two Energy Scales

The energy partition is performed in a subroutine called optsa in the non-linear interac-

tions computation module mod xnl4v5.f90. This subroutine uses peak frequency, group

velocity as well as one- and two-dimensional energy to calculate the two scales necessary

for the calculation of TSA for the interactions.

The wave spectrum partition is performed on the one-dimensional energy spectrum

obtained from the integration of the two-dimensional energy spectrum over directions. An

example of the one-dimensional spectrum is shown in Figure 3.4 for the two-dimensional

spectrum of Figure 3.1. With the peak identified, the energy at that frequency is used to

find the dominant direction of the main component of the waves. It is common in wave

modelling to approximate the wave spectra by using the separable form:

F (f, θ) ≈ F1D(f)D(θ) (3.9)

where F is the two-dimensional wave spectrum and F1D(f) is the one-dimensional energy

spectrum obtained by integrating the two-dimensional spectrum over directions. The

spectral spreading function, D(θ), is usually of the form

D(θ) =
cosm(θ)∫ π/2

−π/2
cosm(θ)dθ

(3.10)

and is used to spread the energy contained in F1D over spectral directions 90 degrees to

the left and right of the main spectral direction. A higher spreading power (m) confines

the energy closely around the peak direction while a lower value corresponds to energy

spreading over multiple directions. In this implementation of the TSA, sixteen powers

are considered for the parametric form, giving the different spreading functions shown in

Figure 3.5. The spreading power to be used in the decomposition is obtained by comparing

the peak energy divided by the energy integral of the spectrum at that frequency to the

cosine normalization that would correspond to the different spreading powers, as shown in

Figure 3.6. Using this power, the energy of the one-dimensional fit will be spread over

directions in order to obtain the two-dimensional fit, shown for the peak frequency of the
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Figure 3.4: One-dimensional wave energy spectrum.

Figure 3.5: Spreading powers considered in the creation of the broad-scale term for the
energy spectrum.
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Figure 3.6: Fit of the ratio of peak energy to energy integral by comparison with the
integral of cosines of the various spreading powers.

Figure 3.7: Comparison of the model energy spectrum and the spectral spreading obtained.
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Figure 3.8: Normalized energy and fitting parameters used for the generation of the
one-dimensional energy spectrum.

spectrum in Figure 3.7.

After the spreading power is obtained, the one-dimensional energy spectrum fit is deter-

mined. In order to limit the number of parameters used to store the pre-computed variables,

the energy fit is done with a predetermined shape which relies solely on γ, the ratio of

energy at the peak of the normalized spectrum to the average of the energy content in the

equilibrium range. In the literature, this region of the spectrum corresponds to frequencies

that are about 2.5∼3.5 times larger than the peak frequency, but in the implementation

the factors used are 1.36 and 2.27. Normalized energy, equilibrium range and the fitting

parameter can be seen in Figure 3.8.

The parametric one-dimensional energy spectrum is generated in accordance to a prede-

fined shape and transformed to action, to give the broad-scale spectrum in Figure 3.9. The

parametric spectrum is then convoluted with the spreading function in order to obtain the

two-dimensional parametric, or broad-scale, action (Figure 3.1b) and the difference with

the model’s action is stored as the perturbation, or local-scale term (Figure 3.1c).
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Figure 3.9: One-dimensional action spectrum, parametric fit and perturbation.

3.2.2 Calculation of the Non-Linear Wave-Wave Interactions

TSA’s calculation of non-linear wave-wave interactions is performed in subroutine

q t13v4T which is added to the interactions module mod xnl4v5.f90. Since there are

certain conditions under which the TSA cannot be used, such as when the spectral peak is

at very high frequencies forcing the equilibrium range outside of the modelled spectral

space, the original WRT subroutine was retained as a contingency. Because the TSA

integral is computed subject to the same constraints as WRT, all the geometry of the

wave-wave interactions is exactly the same as for the WRT method.

3.2.3 Derivation and Calculation of the Diagonal Terms

Diagonal terms are defined for all frequencies and directions by Eq.2.30 and are required

in Eq.2.29 for the time integration of source terms. Although it is relatively straightforward

to take the derivative of Eq.2.17 with respect to action density, it becomes more compli-

cated when confronted with the interaction integral as defined for the TSA, since terms are

defined as functions of both scales, not the total action.

However, the broad-scale and perturbation interactions can be recombined together to

obtain the total interactions as calculated using the TSA:
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N3
tsa = (n̂1 + n′1)(n̂3 + n′3)(n̂4 − n̂2) (3.11)

+ n̂2n̂4(n̂3 + n′3 − n̂1 − n′1).

Let n1 = n̂1 + n′1, then the cubic term of the non-linear interactions for the TSA can be

re-written as

N3
tsa = n1(n̂3 + n′3)(n̂4 − n̂2) (3.12)

+ n̂2n̂4(n̂3 + n′3 − n1)

in which case the diagonal term, for action n1 = N(k1, θ1), is given by:

D(k1, θ1) =
∂S(k1, θ1)

∂N(k1, θ1)
(3.13)

=

∫ ∫ ∫
((n̂3 + n′3)(n̂4 − n̂2)− n̂2n̂4)C|

∂W

∂n
|−1dsk3dθ3dk3.

Figure 3.10 compares the diagonal terms calculated by the WRT and TSA methods. The

action spectrum used as the input for the computation of the diagonal term by both methods

is the slightly asymmetric spectrum shown in Figure 3.1a. This creates asymmetries in the

diagonal terms which are significant in the WRT diagonal terms of Figure 3.10a. The TSA

diagonal terms also show asymmetries, although they are much less significant than those

observed in the WRT diagonal terms. The overall shapes, with a stronly negative area for

high wavenumbers along θ = 180o and a weaker negative area along θ = 360o, are also

similar in the two methods.

The diagonal terms can be further divided into two parts, with one calculated using the

broad-scale, DB and the other obtained from the perturbation term DP , in order to speed

up computations. Here, DB is solely dependant on the broad scale and can be entirely

pre-computed using
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DB(k1, θ1) =

∫ ∫ ∫
(n̂3(n̂4 − n̂2)− n̂2n̂4)C|

∂W

∂n
|−1dsk3dθ3dk3. (3.14)

The diagonal term associated with the perturbation is then

DP (k1, θ1) =

∫ ∫
n′3Λd(n̂2 − n̂4, k1, k3, θ3, x1, ..., xn)k3dθ3dk3 (3.15)

which uses the same pre-computed variable, Λd, as defined in equation 3.7. The respective

contributions of these two components to the diagonal term is shown in Figure 3.11. The

decomposition into the contributions from the two different scales explains the discrepancy

between the WRT and TSA diagonal terms of Figure 3.10. Diagonal terms are mostly

dependant on the broad-scale, which in this implementation is symmetric by construction.

The broad-scale diagonal terms are therefore symmetric by construction as well, as shown

in Figure 3.11a. The perturbation, which carries the asymmetry of the spectrum, cannot

entirely compensate in this case, yielding the mostly symmetric total diagonal terms of

Figure 3.10b.
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Figure 3.10: Diagonal terms as calculated by (a) the WRT method and (b) the TSA for the
input spectrum shown in Figure 3.1a.
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Figure 3.11: Diagonal term components from (a) the broad-scale and (b) the perturbation
for the TSA diagonal term shown in Figure 3.10.



CHAPTER 4

ONE POINT EXPERIMENTS

Wave evolution in ocean wave models can be affected by several factors described

earlier. In order to limit the bulk of the wave dynamics to the balance of source terms,

several one-point numerical experiments are conducted to assess the performance of the

new method. The first tests of the TSA are performed on a simple domain consisting

of only nine points shown in Figure 4.1. Of these, only the centre point is active water;

the surrounding eight are land boundary points. Unlike circulation models in which land

masses are considered to be a closed boundary, wave models allow waves to dissipate as

they reach the shore. A sea point surrounded by land points can thus only lose energy to

the boundaries. This setup allows us to consider local seas exclusively as no waves are

coming from any neighbouring grid cell. The energy spectrum stabilizes (reaches dynamic

equilibrium) when the contributions of all source terms balance with energy propagation.

The one point experiments were performed using the DIA, TSA and WRT methods for

calculation of non-linear interactions, as well as the two different propagation schemes

described in section 2.3.

4.1 Turning Winds

The first experiment is the one-point equivalent of the seventh test case described in

SWAMP (1985). In this experiment, wind blows in one direction until saturation is reached,

then the wind rotates by 90o while keeping the same strength. This can be thought of as

42
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Figure 4.1: Model domain used for the one point experiments. The green point is the
model’s active output point and red points are land points.

being similar to the passage of a meteorological front over a modelled domain, which

can cause a rapid rotation in winds. In our case, 20 m/s easterly winds blow for 48 hours,

followed by 72 hours of northerly winds of the same speed. The durations of the two

periods of winds are longer than required to reach dynamic equilibrium. These simulations

were quick to perform, the run time for the one point models on a single processor is less

than two hours. Once the equilibrium is reached, the wave energy spectrum simply stays

constant. Such long time integrations thus allowed us to check the model stability.

4.1.1 Growth Curves and One-Dimensional Evolution

The main spectrally integrated parameters considered for wave growth are the significant

wave height (Hs) and the peak frequency (fp). These two variables define the energy con-

tent of the wave spectrum and its location in spectral space. In the growth curves for this

experiment, shown in Figure 4.2, the difference between using the two advection schemes

for a given non-linear interaction formulation is small for both Hs and fp in comparison

to the difference caused by the change of non-linear interaction calculation method. The

similarity in the growth curves using different advection schemes for the same non-linear

interaction method indicates that the impact of the formulations of non-linear wave-wave

interactions on wave evolution is larger than that of the propagation schemes used in this

experiment.

Figure 4.2 shows that dips in wave height and peak frequency occur after 48 hours,

when the wind turns from easterly to northerly. The wind shift causes dissipation of the
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waves which have a component going against the wind. The change in wind direction also

breaks the dynamic equilibrium between source terms, which had allowed the significant

wave height to grow to close to 3 meters. Propagation and dissipation continue to have

their impacts on spectral evolution and, with turning winds, waves become decoupled from

the wind, forming swell that propagates out of the domain. Meanwhile, new wind waves

are generated, which eventually reach similar levels for wave height and peak frequency as

the previous equilibrium. Everything after the transition tends to be similar to what was

before the winds turned, only rotated by 90o.

The growth curves calculated by the WRT and TSA methods show very good agreement,

especially for the peak frequency, for which the two methods are almost indistinguishable.

Large differences in the significant wave height growth curves shown in Figure 4.2a can

be explained by the fact that Sin and Sds have both been tuned to observed growth curves

and for the DIA and WRT while similar tuning has not been performed yet for the TSA.

In wave modelling studies, the dissipation term Sds is typically used as a closure term

designed to be tuned so that given formulations for other source terms result in appropriate

model behaviour with respect to growth curve observations. This is the case with the wave

dissipation parameterization used here, which has been tuned for both the WRT and DIA

methods. As the TSA is relatively close to the exact integration represented by the WRT

method, the tuning performed for the WRT is also used for the TSA. However, it is to

be expected from these results that a retuning of the dissipation in order to weaken the

term would allow the TSA runs to generate higher waves and remain close to the WRT Hs

curve. The shape of the TSA curves however, are similar to the WRT curves, which is very

encouraging.

Figure 4.3 demonstrates that the evolution of the one dimensional energy spectra, the

energy spectrum integrated over directions (F1D), is consistent with the evolution of the

integrated parameters of Figure 4.2. Since both the first and third order propagation

schemes provide essentially identical results, only the first order scheme is shown here.

The spectra produced by the WRT (Figure 4.3a) and the TSA (Figure 4.3b) methods are in
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Figure 4.2: Growth curves for the turning wind experiment showing (a) the significant
wave height and (b) the peak frequency. Different formulations for non-linear interactions
are marked by different colours, while the different propagation schemes (first or third
order) are marked by different symbols.

good agreement. Their shape and distribution along the frequency axis are similar, whereas

the DIA (Figure 4.3c) results show spectra which are much broader.

The large differences in peak frequencies shown in Figure 4.2b can also be seen in

Figure 4.3. The high energy regions of both the WRT and TSA results occur at the same

frequencies, whereas the spectra for the DIA peak at higher frequencies and also stabilize

earlier. The energy content values, summarized by Hs in Figure 4.2a, are also visible here.

While the WRT and DIA spectra show similar values for the peak energy, the wider spread

for the DIA explains its larger overall energy content and thus higher waves. The shape

of the TSA spectra is very much like that of the spectra obtained using the WRT, being
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Figure 4.3: Evolution of one-dimensional energy spectrum in m2Hz−1 obtained from
model results using (a) the WRT, (b) the TSA and (c) the DIA with the first order propaga-
tion scheme.

narrow during wave growth and thicker upon reaching equilibrium. This is especially

easy to see with the curvature in the high frequency region of Figures 4.3a and 4.3b

during the first twelve hours and between hours 48 and 60. The spectral distribution of

energy of the WRT and TSA results are very close. The lower significant wave heights

of the results obtained using the TSA shown in Figure 4.2a therefore does not come

from a discrepancy in a specific area of the spectrum but from the overall lower energy

levels. Spectral shape being harder to reproduce than intensity, this is an encouraging result.

The other interesting feature shown in Figure 4.3 is the weak oscillation in the energy

spectra as the waves reach equilibrium. This is particularly visible in the TSA results

(Figure 4.3b), between the sixteenth and thirtieth hours, and again for a similar period as

the waves are re-equilibrating with the northerly wind. A similar phenomenon, albeit much

shorter lived and restricted to the peak area can be seen for both the WRT (Figure 4.3a) and

DIA (Figure 4.3c) results. This represents a brief period after which the different source

terms re-balance one another. The oscillations in the TSA last longer and are observed on
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a wider range of frequencies.

The evolution of one-dimensional non-linear wave-wave interactions, the non-linear

interactions equivalent of F1D shown in Figure 4.4, shares very similar main features

with one-dimensional energy spectra (Figure 4.3). Once the stable solution is reached,

the positive peak of the interactions for both the WRT method and the TSA method are

centred around the same frequencies while the DIA peaks at slightly higher frequencies.

This difference in the final position of the positive contributions of the interactions plays a

major role in the difference in the locations of the energy peak, as non-linear interactions

are responsible for the transfer of energy towards lower frequencies. The intensity of the

interactions calculated using the TSA is also weaker than that calculated by the WRT

method because the energy spectrum peaks at a lower maximum energy for the TSA.

The shapes of non-linear wave-wave interactions shown in Figure 4.4 are very similar

for the three methods, with the negative lobes of the TSA being slightly deeper during

wave growth and extending to higher frequencies upon reaching equilibrium. The DIA

shows broader positive peaks similar to the corresponding energy, as well as a narrow band

of more negative interactions around 0.17Hz which is not observed in either the WRT

and TSA. The oscillations found in Figure 4.3 are also present in the positive peak of the

non-linear interactions, particularly for TSA results.

A closer inspection of the evolution of both the one-dimensional energy and non-linear

interactions shown in Figure 4.5 reveals that the oscillations in non-linear interactions

lead the oscillations in energy spectra. The broadening of the non-linear interactions term

in frequencies is maximal at hours 15 and 22 of the simulation while the energy spectra

broaden at hours 17 and 24. The amplitude of the oscillations is larger for the runs using

the TSA than in the runs using the other two methods due to the TSA’s approach to the

calculation of the non-linear interactions. The higher amplitude can be explained by the

two-step process used for the TSA: the decomposition of the energy spectrum into two

scales, then the calculation of the interactions, neglecting part of the energy. This means

that the TSA calculates its interactions based on a partial representation of the energy
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Figure 4.4: Evolution of the one-dimensional non-linear interactions in m2 for (a) the
WRT, (b) the TSA and (c) the DIA obtained using the first order propagation scheme.

spectrum which is updated every time step, making convergence to the equilibrium solution

more complex. However, it does converge towards a two-dimensional energy spectrum

which is very similar to the one obtained with the WRT.

4.1.2 Two-Dimensional Spectral Evolution

The spectra obtained by the three methods after the first forty-eight hours are shown

in Figure 4.6 and the corresponding non-linear interactions are shown in Figure 4.7. As

with the one-dimensional spectra, only the spectra for the experiment with the first order

propagation scheme are presented. The two-dimensional wave spectra generated in the

wave growth part of this simulation using the TSA method show remarkable agreement

with those obtained using the WRT method. Spectral shape and peak location produced

by the TSA and WRT are very similar but peak energy is underestimated in the TSA results.

The equilibrium energy spectra obtained using the WRT and the TSA methods share

a number of similarities. The location of the peak energy, the bimodal distribution of

energy at higher frequencies (two maxima for different directions at a given frequency)
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Figure 4.5: A closer view of the oscillations found in (a) the energy spectra and (b) the
non-linear interactions for the TSA using the first order propagation scheme.
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and the sharp drop in energy with a small amount of concavity in the forward face (the

region of spectral space with frequencies lower than the peak frequency) are all shared

characteristics of both the WRT and TSA methods. By comparison, the spectrum obtained

with the DIA shown in Figure 4.6 has a significantly bimodal distribution of energy in the

forward face but no bimodality at higher frequencies, a slower decrease in energy on the

forward face and concave sides which are all quite different from the spectra obtained in

the WRT or TSA cases. Additionally, while the two-dimensional spectral energy peak of

the DIA spectrum is at the same frequency as for the spectra of the other two methods,

the spread of energy is larger above the peak, and smaller for the other spectra (from

TSA and WRT). The two-dimensional distribution of energy above the peak for the DIA

spectrum causes its one-dimensional energy peak to be at higher frequency, explaining the

discrepancy between the DIA and WRT curves in Figure 4.2b.

The non-linear interaction spectra for the WRT and TSA methods shown in Figure 4.7

have similar large-scale features except for different peak intensities. Both the WRT and

TSA methods generate a broad negative lobe and a narrow, bimodal, positive lobe. By

comparison, the interactions obtained using the DIA have a deeper negative lobe and

broader positive lobe. The larger spread of the positive lobe and its exaggerated concavity

contribute to the presence of similar features in the energy spectrum. The cause of the band

of more negative interactions in Figure 4.4c can also be seen in the two-dimensional inter-

actions in Figure 4.7c. It is the frequency interval (∼0.17 Hz) over which the negative lobe

is abnormally deep, and where the positive lobes on either sides do not quite compensate.

One hour after the wind turned from easterly to northerly, new wind waves can be seen

around θ = 180o while the waves generated by the easterly winds (θ = 2700) are still

present, as shown in Figure 4.8. Once again, the spectra obtained using the WRT and the

TSA methods are very similar at this time. In this case, however, it is mainly because

the non-linear interactions in the wind waves are of much smaller amplitude than the

interactions in the swell during the first hour. The TSA method, due to its formulation and

due to the parameterization chosen for the broad-scale in this implementation, cannot yet
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Figure 4.6: Wave energy spectrum (m2Hz−1) obtained with (a) the WRT method, (b) the
TSA and (c) the DIA after 48 hours of easterly winds.



52

Figure 4.7: Non-linear interactions (m2) obtained with (a) the WRT method, (b) the TSA
and (c) the DIA after 48 hours of easterly winds.
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produce reasonable interactions when dealing with multiple peaks in a spectrum. With the

TSA method, the broad-scale term will try to fit the highest energy peak, which in this case

is the swell peak, resulting in interactions that tend to be accurate only in this region, as

shown in Figure 4.9. The other peak is then solely represented by the perturbation term and

as such the interactions calculated for it might not be accurate. Figure 4.9 demonstrates

that there is very good agreement between WRT and TSA results for the interactions

around the swell peak, while around the wind waves, where interactions are dynamically

the most important in terms of spectral development, there is very little non-linear transfer.

Meanwhile, the DIA’s results, while being worse than those of the TSA around the swell

peak, globally look more accurate as its formulation is able to give some representation to

the non-linear transfer around the wind sea peak of the spectral space. The interactions as

calculated with the WRT also include a strong flux of energy towards high frequencies for

the wind sea, which is absent from the non-linear interactions of TSA, because it is far away

from the region where the broad-scale is dominant. Non-linear interactions from the DIA

method also fail in generating intense non-linear interactions at high frequencies (> 0.4

Hz) in the wind direction (Fig.4.9a and c), most likely because of the coarse approximation

used.

The model using the TSA still generates relatively accurate results as far as the shape of

the energy spectrum is concerned for the transition period, since wind input and dissipa-

tion can generate an acceptable wind sea without non-linear interactions in the first few

hours following the turn in the winds, while the swell propagates out of the domain. A

parameterization which would include the possibility of multiple peaks in the broad-scale

would allow the TSA to produce more accurate non-linear interactions for the wind waves

during the early phase of the transition.

Three hours after the wind has turned, the majority of the energy associated with waves

going westward has propagated out of the domain and the wind waves have reached a

level that dominates the overall spectrum. At this time, the magnitude of the interactions

calculated with the TSA is very large compared to that of the other two methods, as shown
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in Figure 4.10. This is because the spectral shape of the wind waves deviates significantly

from its dynamical equilibrium shape, having been misrepresented until now in the TSA

methodology. The high amplitude of the interactions allows the model to correct the shape

of the wind sea in a relatively short amount of time and from the fourth hour onward, the

spectra and non-linear interactions for the WRT and TSA method are once again very

close, with the results using the DIA standing out, as was the case during the previous

wave growth period. The flux of energy towards high frequencies visible in Figure 4.10 is

analogous to the flux observed in the interactions calculated with the WRT method earlier

in the simulation and shown in Figure 4.9.
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Figure 4.8: Wave energy spectrum (m2Hz−1) obtained with (a) the WRT method, (b) the
TSA and (c) the DIA after 48 hours of easterly winds followed by an hour of northerly
winds.
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Figure 4.9: Non-linear interactions (m2) obtained with (a) the WRT method, (b) the TSA
and (c) the DIA after 48 hours of easterly winds followed by an hour of northerly winds.
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Figure 4.10: Non-linear interactions (m2) obtained with (a) the WRT method, (b) the TSA
and (c) the DIA after 48 hours of easterly winds followed by three hours of northerly
winds.
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4.2 Slowly Turning Winds

In this section, the performance of the WW3 model using the TSA method is examined

in a situation where the change in winds is more gradual. This change in forcing generates

an asymmetric wave spectrum instead of multiple distinct peaks. This experiment starts

with easterly winds blowing for 48 hours as for the experiment in section 4.1. After

48 hours, instead of suddenly turning the winds by 90o, winds in this experiment are

turned by 7.5o every two hours, producing a change of 90o over a period of 24 hours. The

meteorological equivalent of this situation would be a cyclone starting directly south of the

modelled domain and moving north-eastward, producing a cyclonic rotation in the winds.

After the 24 hours turning period, the wave model is ran for an additional 72 hours in order

to reach its new equilibrium.

4.2.1 Growth Curves and One-Dimensional Evolution

Unlike the case of the sharply turning winds, with slowly turning winds, differences are

large in the growth curves (Figure 4.11) produced by the two propagation schemes once

the wind starts to turn. During the first 48 hours, the situation is exactly the same as in

section 4.1 (Figure 4.11) and the waves reach the same equilibrium state as in Figure 4.2.

After that, the dip in the significant wave height is neither as rapid nor as deep as it is

in Figure 4.2 because the change in winds is gradual and the wave energy spectrum of

the previous dynamic equilibrium is gradually modified, instead of being fully decoupled

from the wind and instantly becoming swell which propagates out while new wind waves

are created. Similarly, since there is no entirely new wind sea created, the spike in peak

frequency observed in section 4.1 (when the location of the maximum energy changed

from swell to wind sea) does not occur in this case. Instead, a gradual transition starts at

hour 48 and lasts for more than 24 hours.

The results obtained using the TSA and WRT methods in this experiment are similar

during wave growth. By comparison, the DIA and the WRT methods produce similar

model results during the transition period: with one smooth dip in significant wave height,

or peak in peak frequency, followed by a new equilibrium state. This is not the case for the
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Figure 4.11: Growth curves for the slowly turning wind experiment showing (a) the
significant wave height and (b) the peak frequency. Different formulations for non-linear
interactions are marked by different colours, while the different propagation schemes (first
or third order) are marked by different symbols.

results obtained using the TSA, which has two oscillations of differing amplitudes instead

of one.

The evolutions of the one-dimensional energy spectra shown in Figure 4.12 are con-

sistent with the growth curves of their respective mean wave parameters. The WRT and

DIA results are smooth and show a gap between maxima while the wind was turning.

The one-dimensional TSA results are very similar between the two propagation schemes,

although their growth curves are different from one another. This is because the different

timing of the oscillations is much more obvious with time shown on a logarithmic scale as

in Figure 4.11, then when shown linearly as in Figure 4.12. The time required to reach
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equilibrium is longer because of these oscillations, which are similar to the ones occurring

in the experiment in section 4.1. The equilibrium solutions of the results obtained with the

three methods are essentially the same as in the experiment in section 4.1, as should be

expected given that the forcing is the same, except for the more gradual transition phase.

The slowly turning winds modify the energy spectrum over time which is different

from the creation of new wind waves as in section 4.1. The TSA was initially expected

to perform better with the slowly changing wave spectrum than with a spectrum showing

multiple peaks. However, the difficulties in dealing with asymmetries created in the wave

spectra from the spin-up period by the turning winds proved to be a significant challenge

for the TSA in this experiment.

Figure 4.13 shows differences between one-dimensional non-linear interaction spectra

generated by the two propagation schemes for the three methods. Results obtained with

the WRT method are the least sensitive to the change of propagation schemes. For both

the TSA and DIA methods, the negative lobes in model runs with the third order scheme

are wider than when the first order scheme is used. The oscillations present after the winds

turned are also more important when using the third order scheme. This can be seen in the

most negative part of the interactions for TSA, between hours 67 and 77 and for both the

positive and negative parts of the DIA results.
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Figure 4.12: One-dimensional energy spectrum evolution in m2Hz−1 for (a) the WRT, (b)
the TSA and (c) the DIA obtained using the first order propagation scheme (top) and third
order scheme (bottom).
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Figure 4.13: One-dimensional non-linear interactions in m2 for (a) the WRT, (b) the TSA
and (c) the DIA obtained using the first order propagation scheme (top) and third order
scheme (bottom).
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4.2.2 Two-Dimensional Spectral Evolution

The most interesting wave development occurs in the twenty-four hours during which

the wind is turning. The oscillations seen in Figures 4.12 and 4.13 during this period are

due to the current formulation used for TSA’s parametric fit to generate the broad-scale

component of the energy spectrum. Depending on the frequency and direction of the

energy peak, the TSA model will generate a broad-scale term using a predefined shape.

As shown in section 4.1.2 when the broad-scale component changed from swell to wind

sea, the location of the broad-scale peak in spectral space has a significant impact on the

quality of the interactions obtained with the TSA method.

The oscillations observed while the wind is turning in this experiment are in essence

the same phenomenon as the sudden strong non-linear interactions at the fifty-first hour

of the experiment described in section 4.1.2. In this case, instead of being caused by the

propagation of the swell outside the domain during the growth of the new wind-sea, the

shift in the spectral location of the broad-scale is caused by the changes in the shape of the

energy spectrum.

With slowly turning winds, the broad-scale component does not change appreciably at

every time step, because the general shape of the spectrum evolves slowly. However, the

perturbation grows because the wind input is stronger on one side of the energy spectrum

than on the other. When the asymmetry is large enough to affect the parametric fit of the

spectrum, a significantly different broad-scale component is generated. Since the TSA

depends strongly on the broad-scale, the shift causes a change in the shape and location of

the non-linear interactions which will in turn impact the evolution of the energy spectrum

differently. Over successive iterations of the model, the spectrum converges towards a new

solution. Meanwhile, the perturbation grows on one side because of the turning winds,

until the whole process begins anew with another shift in the broad-scale. Only when the

forcing becomes stationary can the oscillations recede. Indeed, in Figures 4.12 and 4.13,

the last oscillation occurs after the winds settled in their new direction and has smaller

amplitude than the other ones.
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Figure 4.14 shows the wave energy spectra and non-linear interactions seven hours after

the winds have started to turn. The energy spectrum from the TSA has taken a shape

which is significantly different from the spectrum obtained with the WRT method, with

corresponding non-linear interactions. At this point, the spectrum obtained using the DIA

is closer to that of the WRT and the DIA non-linear interactions are closer to those of

WRT than TSA. The shape of the positive peak of the interactions of all three methods is

also closely tied to the shape of the corresponding energy spectrum. The fitting routine

currently used for the TSA cannot properly represent strongly asymmetric energy spectra.

Since the perturbation is too large, the interactions calculated using the TSA have diverged

from those of the WRT method, leading to a different wave energy spectrum.

One hour later, after the wind has been turning for eight hours, the wind waves, the

spectral components centered on θ = 240o, now contain most of the energy present in the

spectrum, as shown in Figure 4.15. At this point, the broad-scale shifts from being a fit of

the swell centered on θ = 270o to fitting the wind waves. The interactions calculated with

the TSA are stronger than those of the other methods. The shape of the spectrum is signifi-

cantly different from its equilibrium shape which explains the magnitude of the interactions,

even though the overall energy content of the spectrum the TSA model run is smaller. The

non-linear interactions calculated by the TSA at this step have a strong positive peak at

θ = 270o, the location of the energy peak in the WRT model run, rather than the wind sea

peak, around θ = 240o like in the previous hour. On the other hand, nothing has changed

for the DIA, both the energy and the interactions are close to the ones shown in Figure 4.14.
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Figure 4.14: Wave energy spectrum (m2Hz−1) (left) and non-linear interactions (m2)
(right) obtained with the WRT method (top), the TSA (centre) and the DIA (bottom) after
48 hours of easterly winds followed by seven hours of turning winds.
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Figure 4.15: Wave energy spectrum (m2Hz−1) (left) and non-linear interactions (m2)
(right) obtained with the WRT method (top), the TSA (centre) and the DIA (bottom) after
48 hours of easterly winds followed by eight hours of turning winds.
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During the next three hours, non-linear interactions contribute to the convergence of

the energy spectrum obtained using TSA towards the spectrum obtained with the WRT

method. After these three hours, there is much more in common between the WRT and the

TSA results than with the DIA, as seen in Figure 4.16.

On the twelfth hour, however, the wind sea portion of the energy in the TSA result,

shown in Figure 4.17, is once more becoming stronger due to the lack of representation

of the developing spectral components in the broad-scale. This flaw in the parametric fit

causes the interactions to be more positive in that region than they should be. This begins

a new cycle where the energy spectrum deviates from the solution obtained with the WRT

method until a change in the location and shape of the broad-scale brings the evolution

back to convergence to the WRT result.

These oscillations continue as the wind keeps turning, until the forcing stops turning and

the interactions calculated using the TSA make the energy converge to its dynamical equi-

librium solution. This test shows that, under recurring changes in the forcing, the current

version of the TSA responds in incremental bursts instead of continuously, indicating that

the TSA requires a parametric shape which allows for asymmetry in the energy spectrum

so that the broad-scale component can evolve more gradually.
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Figure 4.16: Wave energy spectrum (m2Hz−1) (left) and non-linear interactions (m2)
(right) obtained with the WRT method (top), the TSA (centre) and the DIA (bottom) after
48 hours of easterly winds followed by eleven hours of turning winds.
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Figure 4.17: Wave energy spectrum (m2Hz−1) (left) and non-linear interactions (m2)
(right) obtained with the WRT method (top), the TSA (centre) and the DIA (bottom) after
48 hours of easterly winds followed by twelve hours of turning winds.



CHAPTER 5

TWO-DIMENSIONAL EXPERIMENTS

Five additional experiments were performed on a two-dimensional domain, which are

primarily intended to compute the basic fetch-limited growth curves and, secondarily, to

investigate the impact of wave propagation and swell - wind sea interactions in model runs

using the version of the TSA method proposed in this thesis. The model domain is a square

ocean of 23 by 23 points with a grid spacing of 50km. The outer points of the domain are

land, so waves reaching the boundary of the domain are simply absorbed. Of the 441 active

points, 25 were chosen as the models output points in the four experiments, providing

additional data about the dynamics of the wave evolution at their locations. These points

are located on a 5 by 5 square grid, as shown in Figure 5.1, and were chosen to obtain

maximum coverage.

5.1 Wave Generation

In this experiment the two-dimensional domain is subjected to 20 m/s winds coming

from the east for 48 hours. With the waves growing on a wide domain, both duration-

limited and fetch-limited growth comparisons can be performed using the DIA, WRT and

TSA formulations for the non-linear interactions. This experiment also serves as the initial

conditions for the subsequent forays into more complicated sea-states.

70
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Figure 5.1: Model domain used for the two-dimensional experiments. Green points are
output points shown with their associated numbers, red points are land and blue points
active ocean points.

5.1.1 Field Evolution

The wave field develops under constant easterly winds. In this setup wave heights at

a given time are highest in the model run using the DIA and lowest using the TSA. The

highest waves over the model domain for all methods and propagation schemes combina-

tions are at the centre of the domain’s west side. The fields of significant wave height, Hs,

at hour 24 are shown in Figure 5.2. The maximum values are 8.74 m for the model using

the WRT, 7.72 m for the TSA and 9.03 m for the DIA methods.

The general progression of small waves on the east of the domain and larger waves on

the west side is very similar among the three models, especially in the easternmost quarter

of the domain. The fetch-limited growth seen here is somewhat equivalent to duration-

limited growth sampled at different times. The similarity between all the Hs fields for the

easternmost quarter of the model domain, followed by more visible differences in wave

heights at larger fetches in the domain, are consistent with the growth curves shown in

section 4 for single point integrations. The three methods using both propagation schemes
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Figure 5.2: Significant wave height fields (in meters) and wave direction (arrows) after 24
hours of easterly winds for the WRT (left), the TSA (centre) and the DIA (right) with the
first and third order propagation schemes (top and bottom, respectively).

have similar skill in simulating Hs for the short fetch. However, differences become

obvious among interaction schemes at longer fetch, or after longer times, as different

interaction schemes converge to different dynamic equilibria.

There are some differences in the spatial distributions of wave height among the six

cases presented in Figure 5.2. While the wave fields generated using the first order propa-

gation scheme (in the top row) have curved contours on the northern and southern sides of

the domain, the third order scheme produces slightly straighter contours, parallel to the

coastlines of the domain. This is due to the larger numerical diffusion in the first order

propagation scheme than in the third order scheme and occurs regardless of the method

used for the computation of non-linear interactions.

Another impact of the propagation schemes, which is more visible in the wave fields at

hour 48 shown in Figure 5.3, is the smoothing of the numerical noise in the TSA’s field.
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At that point, unlike the fields obtained using the WRT and DIA methodologies, the TSA

shows strong interactions with the edges of the domain. These create two protrusions of

higher significant wave heights near the edges. Using the first order scheme, the protru-

sions are smoothed somewhat by the numerical diffusion. However, with the third order

propagation scheme, they are much more clearly defined. The early development of these

structures can be seen in Figure 5.2 as well, close to both the north and the south edges of

the domain, between the fifteenth and seventeenth points. These structures are absent in

the early stage of wave growth. They first occur on the eighteenth hour of the evolution

close to the eastward edge of the domain. By then, the wave height where these features

are seen has reached its maximum fetch-limited value and the wave spectrum is in dynamic

equilibrium. The waves then propagate westward across the domain and continue to reach

their wave height limits as dictated by fetch, as can be seen by comparing Figures 5.2

and 5.3.

5.1.2 Growth Curves

The evaluation of the evolution of the main wave parameters, significant wave height

(Hs) and peak frequency (fp), is very important in assessing the characteristics of wave

models. Only duration-limited growth curves could be assessed with the one point experi-

ments presented in chapter 4. The duration-limited growth curves at point #3, located at

the centre near the western edge of the domain, are presented in Figure 5.4. In the initial

phase of the wave growth, waves appear to be dominated by local generation processes.

During this phase, which covers the first ten hours, wave heights simulated using the TSA

are particularly close to results obtained with the WRT method. As time goes on, waves

propagate from greater distances, nearer the eastern edge of the domain, leading to the

creation of waves about ten meters high after thirty hours. After the first ten hours, wave

heights obtained using the TSA method are lower than those obtained using the WRT

method and their equilibrium solution also differs. As the TSA results diverge from WRT

results, the DIA converges to about the same wave heights as the WRT method. This is

expected as source terms Sin and Sds have been tuned to be largely in agreement with
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Figure 5.3: Significant wave height fields (in meters) and wave direction (arrows) after 48
hours of easterly winds for WRT (left), the TSA (centre) and the DIA (right) with the first
and third order propagation schemes (top and bottom, respectively).
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Figure 5.4: Duration-limited growth curves for output point 3 of the two-dimensional
domain showing (a) the significant wave height and (b) the peak frequency. Different
methods for non-linear interactions are marked by different colours, while the different
propagation schemes are marked by different symbols.

observed fetch-limited growth curves for the WRT and DIA methods, for example as

discussed by Holthuijsen (2007), while this has not been done for the TSA.

Unlike in the significant wave height growth curves, in the peak frequency growth

curves, shown in Figure 5.4b, the WRT and TSA curves remain very close for the full

48 hours, while the DIA stabilizes at slightly higher frequencies. These results are sim-

ilar to those obtained for duration-limited growth results in the one-point experiments

described in chapter 4, which shows that the addition of wave propagation preserves the

similarity between growth curves. Only when the waves converge to their final highest

significant wave height does the propagation scheme make much difference, with the 1st
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order linear scheme somewhat limiting the oscillations about the dynamic equilibrium limit.

Figure 5.5 presents results produced by the three methods at points #23, #18, #13, #8

and #3, which form a transect going through the center of the domain parallel to the wind

direction. These points are chosen in order to minimize the impact of the north and south

boundaries of the domain on fetch limited growth observed along the transect. Along this

transect, fetch is the distance from the eastern boundary point. Fetch-limited growth curves

along this transect after 48 hours are shown in Figure 5.5. Fetch- and duration-limited

growth should have some degree of equivalence, through similarity properties of the wave

equations, whereby waves which have developed at longer fetches are older. In this case,

the fetch-limited growth curves are consistent with the duration-limited ones. At short

fetch, the significant wave height obtained with TSA and WRT are close together, but

the TSA results diverge from the results obtained with the WRT method at longer fetch

due to contributions of the other source terms (Sin and Sds), and the advection. Results

calculated by the DIA show much higher wave heights at short fetch than results calculated

by the TSA and WRT methods. At long fetches the levels obtained using the DIA converge

towards those obtained using the WRT method. The TSA and WRT results remain close

together in terms of peak frequency, especially when using the first-order propagation

scheme, while the results from DIA are consistently higher.

5.1.3 Spectral Evolution

The main advantage of the TSA over the DIA is its ability to calculate more accurate

non-linear interactions which have a similar spectral shape as that obtained with WRT’s

representation of the non-linear wave-wave interactions. Thus, spectral evolution as pro-

duced by the TSA should resemble that resulting from WRT. The spectra obtained from

location #3 for both the TSA and WRT methods support this. After twenty-four hours,

spectra obtained using both propagation schemes look very similar; therefore only the

spectra obtained with the first-order scheme are presented in Figure 5.6. This similarity in

spectra for all methods explains why the growth curves shown in Figure 5.4 do not appear

to appreciably differ between the two propagation schemes.
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Figure 5.5: Fetch-limited growth curves for a transect in the middle of the two-dimensional
domain after forty-eight hours showing (a) significant wave height and (b) the peak
frequency. Different formulations for non-linear interactions are marked by different
colours, and the different propagation schemes are marked by different symbols.
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There are however significant differences in both the wave energy and non-linear inter-

action spectra among all three methods (Fig.5.6). Wave energy spectra obtained using the

TSA and WRT methods peak at the same frequencies and have a similar steep forward face.

They are also both bimodal at higher frequencies. Their main difference is in the values

of the peak energy, which is lower in the TSA results than for the WRT. This explains

the lower significant wave heights and similar peak frequencies. Energy spectra obtained

using the DIA are somewhat different from the spectra using the WRT, with a peak energy

occuring at higher frequency than for the energy spectrum from the WRT method and a

different directional distribution. The forward face of the energy spectrum of the DIA

results is not as steep as that obtained with the other methods and also spread over a wider

range of directions. Contrary to the one point experiment, the high frequency part of the

spectrum obtained using the DIA method does show a certain degree of bimodality.

The non-linear interactions calculated by the three methods are dependent on the respec-

tive input energy spectra. The interactions calculated using the WRT and TSA methods

have narrow positive and negative lobes, with very shallow extensions towards higher

frequencies. The non-linear interactions calculated using the WRT method show two

high frequency side lobes which are not reproduced with the same intensity by TSA or

DIA formulations. The WRT method generates a separated extension of the negative lobe

towards higher frequencies, which the DIA somewhat reproduces, albeit with two regions

of negative interactions. The extension of the energy spectrum derived from the DIA

towards lower frequencies is explained by the two maxima and wider spread in frequencies

of the positive lobe of the interactions calculated with it.

Figures 5.7 and 5.8 show the equilibrium spectra obtained using the first and third order

propagation schemes at hour 48. The wave fields have reached their dynamic equilibria,

as seen in the growth curves, and reflect the source terms and propagation schemes used

in the integrations. The energy spectra for all three methods have similar shapes to the

corresponding spectra shown in Figure 5.6. However the bimodality at high frequencies is
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Figure 5.6: Wave energy spectrum (m2Hz−1) (left) and non-linear interactions (m2) (right)
obtained with the WRT method (top), the TSA (centre) and the DIA (bottom) after 24
hours of easterly winds at 800 km fetch using the first order propagation scheme.
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increased in all of them.

Similar large-scale features occur in the wave energy spectra and non-linear interactions

after 48 hours. However, there are noticeable differences caused by the use of the two

propagation schemes. With the first-order propagation scheme shown in Figure 5.7, the

low frequency part of the interactions have kept the same shape as they had after 24 hours,

however further structural features have appeared at high frequencies. Positive lobes are

present for the DIA, and a further elongation of the negative lobe of the TSA, along with

an extension of the bimodal energy spectrum towards higher frequencies. In the WRT

and TSA non-linear interactions calculated from spectra obtained with the third-order

propagation scheme, shown in Figure 5.8, the positive and negative lobes are wider in

frequencies and angles and their peak values are lower than interactions from the first-order

scheme. Positive lobes at higher frequencies are also visible, although the ones generated

using the TSA cover a much wider fraction of the spectral space. Interactions from the DIA

show the smallest differences between propagation schemes, although the high frequency

positive lobes are missing.
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Figure 5.7: Wave energy spectrum (m2Hz−1) (left) and non-linear interactions (m2) (right)
obtained with the WRT method (top), the TSA (centre) and the DIA (bottom) after 48
hours of easterly winds on a 800 km fetch using the first-order propagation scheme.
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Figure 5.8: Wave energy spectrum (m2Hz−1) (left) and non-linear interactions (m2) (right)
obtained with the WRT method (top), the TSA (centre) and the DIA (bottom) after 48
hours of easterly winds on a 800 km fetch using the third-order propagation scheme.
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5.2 Turning Winds

This experiment was carried out to assess the performance of the three methods in

simulating waves under turning winds on the two-dimensional domain. The wind forcing

is the same as used in section 4.1, with 20 m/s winds coming from the east for 48 hours and

then from the north for 72 hours. While the waves are growing, before the wind turns, the

model results produced by the three methods are the same as described in section 5.1. Once

the winds become northerly, since the swell generated initially does not propagate quickly

outside of the domain (as in section 4.1), it can interact with the newly generated wind seas.

Waves generated in the first 48 hours of the simulation continue to propagate westward

while a new wind sea begins to grow. The wave spectra generated by the easterly winds

peak along the easterly direction (θ = 270o) and contain energy for directions ranging

from θ = 200o to θ = 340o. This range in directions means that some waves have a

northward component in their direction while others have a southward component. The

northerly wind removes energy from waves with a northward component in their direction

and provides energy to the waves with a southward component, which creates asymmetries

in the swell.

As seen in section 4.1, the current version of the TSA method has difficulties when

dealing with swell and wind sea occurring at the same point. In this experiment, the time

required for the swell to reach the edge of the domain is much longer, so the swell will

interact with the wind sea over a greater length of time. After six hours of northerly winds,

the wave field is significantly influenced by the new winds, as shown in Figure 5.9. The

first noticeable feature is the region to the east of the domain where waves are now going

southward. This comes from the swell propagating away from the region, leaving only the

developing wind sea which is parallel to the wind.

Under the northerly wind, wave height contours would be expected to rotate counter-

clockwise in time. However, this is not the case in all model runs. Both runs performed

using the WRT method show contours rotating in the expected way. However, some
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Figure 5.9: Significant wave height fields (in meters) and wave direction (arrows) after
48 hours of easterly winds followed by 6 hours of northerly winds obtained using the
WRT (left), the TSA (centre) and the DIA (right) with the first and third order propagation
schemes (top and bottom, respectively).

additional structures become visible. In the run with the third-order propagation scheme,

an inversion in the contours curvature is observable close to the north edge of the domain.

The distance between the northern edge and the inversion is the same as the distance to the

eastward protrusions of significant wave height seen in the wave fields of the current TSA

during the initial wave growth. This indicates that interactions with the boundaries can be

an issue even with the WRT formulation for the non-linear interactions. The first order

scheme also shows a change in curvature but the diffusion associated with the scheme

mitigates it.

The wave fields obtained using the TSA show that the wind reinforces the northern pro-

trusions of higher significant wave heights while the lower half of the domain is dominated

by swell, still propagating westward. This results in a shape that is contrary to expectations.

Model runs using the DIA show the smoothest contours of the three methods, with a hint
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of boundary effect on the north side of the domain, which is more prominent on the east

where wave heights are lower.

After 24 hours under the northerly winds, wave fields from the WRT and DIA methods

are both showing convergence towards their equilibrium solutions. Fields from the TSA

differ in intensity and in shape from the fields of the other methods. Wave heights are

well above those obtained when using the WRT and DIA methods, with maximum wave

heights of up to 14 m for the results using the TSA compared to maxima below 8 m for the

other methods. Simulations using both propagation schemes show higher waves on the

western side of the domain, which is where the influence of the swell was longest, with a

maximum in the north-west corner of the domain, where the wave height protrusion did

impact the early development of the waves.

At hour 120, after seventy-two hours of northerly winds, fields obtained with WRT

and DIA have both reached their dynamical equilibrium, as shown in Figure 5.10. Fields

generated using the TSA are still evolving but are converging towards their stable solutions

as well, including the development of the extensions of high significant wave height along

the edges of the domain. The return of the wave field to the expected equilibrium solution

after the important disruption caused by the change in wind forcing shows the resilience of

the WW3-TSA model to perturbations.
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Figure 5.10: Significant wave height fields (in meters) and wave direction (arrows) after
48 hours of easterly winds followed by 72 hours of northerly winds obtained using the
WRT (left), the TSA (centre) and the DIA (right) with the first and third order propagation
schemes (top and bottom, respectively).

5.3 Slowly Turning Winds

This experiment was carried out to assess the performance of the three methods in

simulating waves under slowly turning winds on the two-dimensional domain. Initial

conditions were taken from section 5.1 and subjected to winds turning slowly southward

over 24 hours followed by 72 hours of northerly winds.

Slowly turning winds were initially thought of as a favourable forcing for the current

implementation of the TSA; this forcing should prevent the appearance of a distinct wind

sea peak in addition to the swell. As was demonstrated in section 4.2, the asymmetries

generated by the turning winds proved to be a different challenge to the TSA.

At hour 60, which is 12 hours after the wind has started to rotate, wind blows north-

easterly. Waves in all the simulations show a transition from being parallel to the current
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wind along the eastern border of the domain (Figure 5.11), where waves were just created,

to being westward in the north-west corner where the swell peak has not yet been influ-

enced by the wind. In the south-west corner of the domain, the peak wave direction also

has rotated towards the current wind direction. This rotation comes from the combination

of the swell with waves growing as they propagate southward from the north.

As in section 5.2, the most notable feature of the TSA is the further development of the

northern region of anomalously high wave height under the turning winds. In this case, it is

limited to a smaller part of the domain, especially when using the third order propagation

scheme. The eastern edge of the domain, as well as a horizontal band in the centre, are

relatively close to the results obtained from the other two methods. In the most part, peak

wave directions over the domain are also similar to directions obtained using the WRT

and DIA methods. This similarity suggests that discrepancies in wave heights originate

from the high frequency part of the spectrum, while the peak region might be following a

more normal evolution. Although the spurious features are still present at the end of the

transition, the difference in maximum wave height between the TSA and WRT results is

about 3 m, compared to 6 m in the previous section. Moreover, the perturbation does not

extend all the way to the southern edge of the domain.

After the winds stop turning and remain northerly, the wave field of all methods start

to converge to their dynamical equilibrium solutions. At hour 96, twenty-four hours after

turning to northerly, fields obtained from both the WRT and DIA methods are very close

to their stable solutions, while the TSA is still evolving. The TSA is taking longer to reach

its equilibrium due to the magnitude of the perturbation of the wave field. When used with

the first order propagation scheme, the TSA method produces results which are relatively

close to the WRT equilibrium solution, more so than with the third order scheme which

still shows spurious features. At hour 144, after seventy-two hours of constant forcing,

fields from simulations using the TSA are close to their final wave fields for both of the

propagation schemes and similar to Figure 5.10.
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Figure 5.11: Significant wave height fields (in meters) and wave direction (arrows) 12
hours into the transition phase obtained using the WRT (left), the TSA (centre) and the DIA
(right) with the first and third order propagation schemes (top and bottom, respectively).

In this experiment, as well as the previous section for sharply turning winds, the

numerical diffusion of the first order scheme appears to be a significant advantage for the

present version of the TSA. Although the TSA fields generated using both propagation

schemes develop noticeable spurious features, a more diffusive propagation scheme tends

to smooth spurious features, reducing their importance and allowing the model to reach

its equilibrium solution faster. Under the perturbations described here and in section

5.2, although the simulations using the TSA do go through a phase where the solution

degenerates, they remain stable enough to eventually converge back to their solution once

conditions become more favourable to the parameterization.
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5.4 Oblique Winds

This experiment was designed to further investigate the role played by wave propagation

in the evolution of the wave field. The setup is the same as for the the experiment described

in section 5.1 except that, instead of being easterly, the wind is north-easterly. Although

this is a relatively small change, the implications for wave propagation in a model with a

cartesian domain are significant. Instead of propagating mainly along one of the main axis

of the domain, the waves are now oblique to both axis which complicates the propagation.

5.4.1 Field Evolution

During the first 18 hours of wave growth, all model variations perform relatively well.

The impact of wave propagation scheme is very small and, as in the case of the other

experiments, the model runs using the TSA method produce slower growth then when

using the WRT method while model runs using the DIA method reach higher energy levels

quicker. Otherwise, wave fields at hour 12, shown in Figure 5.12, exhibit little difference

between model runs.

At hour 18, the first spurious features start to show in the TSA runs, in the north-east

corner of the domain, as shown in Figure 5.13. At this point, the only impact of the

propagation scheme is that waves modelled using the third order propagation scheme reach

higher levels at a given fetch for all methods, which is indicated by more closely spaced

significant wave height contours.

Later in the model run, the boundary effects seen in previous sections become visible,

creating lobes of higher significant wave height along the northern and eastern edges of the

domain. After twenty four hours, the wave fields from model runs using the WRT and DIA

methods are in very good agreement, while the results from the TSA have much faster

wave growth than the other methods, close to the northern and eastern edges. However, the

saturation levels obtained with the TSA are up to two meters lower than those of the other

methods. The overall maximum wave height, which occurs in the south-west corner of the

domain, is relatively unaffected and shows the usual influence of non-linear interactions,

with the DIA producing the highest waves and the TSA the smallest.



90

Figure 5.12: Significant wave height fields (in meters) and wave direction (arrows) after 12
hours of north-easterly winds obtained using the WRT (left), the TSA (centre) and the DIA
(right) with the first and third order propagation schemes (top and bottom, respectively).

Figure 5.13: Significant wave height fields (in meters) and wave direction (arrows) after 18
hours of north-easterly winds obtained using the WRT (left), the TSA (centre) and the DIA
(right) with the first and third order propagation schemes (top and bottom, respectively).
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5.4.2 Spectral Evolution

Looking at the wave energy spectrum and associated interactions, overall results are con-

sistent with those shown in section 5.1. TSA produces spectra which have a much closer

shape to the WRT spectra than the DIA. The non-linear wave-wave interactions, especially

around the peak, are also very similar, while the positive lobe of the interactions produced

using DIA remains quite far away and is responsible for the discrepancies observed in the

shape of the energy spectrum.

The wind used in this experiment blows towards the south-west of the domain, at an

angle of 225o in polar coordinates, which are the coordinates used for the internal compu-

tations of WW3. The angular distribution of the spectral grid used in these simulations

has 10o resolution. The energy spectrum created under these conditions therefore tends

to be split between two directions, 220o and 230o. As described in section 3.2.1, the

parameterization used for the broad-scale in the TSA in this implementation finds the

spectral peak in the one-dimensional spectrum, then the direction where the energy is

maximized for that given frequency.

In this situation, there is not a single direction with maximum energy, but two, which

the current parameterization cannot account for. This results in the broad-scale component

peaking preferentially in one of the two directions, until the energy at the discounted

direction becomes larger, causing a shift in the location of the broad-scale direction. This

oscillation can be seen in Figures 5.14 to 5.16 where spectra and associated interactions

for the thirteenth to fifteenth hours of the simulation are shown for the model output point

#1, which is at maximal fetch for the diagonal winds.

In these figures, although the energy spectrum and non-linear interactions obtained with

the TSA are both close to those from WRT, asymmetries can be seen in the non-linear

interactions resulting from TSA. The other methods, WRT and DIA, have fully symmetric

formulations and do not show this. At hour 13, TSA’s extension of the negative lobe of

the non-linear interactions towards higher frequencies has higher amplitudes for waves
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centred around 210o (see Figure 5.14) instead of being spread around 220o to 230o like the

other methods. TSA’s positive lobes at high frequencies are also different, with the one

centred around 270o starting at higher frequencies than the other lobe.

An hour later (hour 14), the wave energy spectrum, shown in Figure 5.15, produces an

almost symmetric interaction spectrum for the TSA, with minor changes for the results

from WRT or DIA. At hour 15, shown in Figure 5.16, the directional location of the

broad-scale term has once again changed and the negative lobe is now slanted towards

more westward directions. There is also a small positive lobe around 270o which has no

mirror image. Over the course of the experiment, both the WRT and DIA methodologies

remain symmetric at all times, whereas the TSA results, due to the formulation of its

parameterization, produces asymmetric non-linear interactions and energy spectra.

This also sheds a new light on the boundary effects observed with the TSA results.

Points close to the edge of the domain receive energy from the centre of the domain

because waves do not propagate exclusively in the direction of the wind. However, they

do not receive any energy from the edge of the integration domain, as it is represented by

land, which simply absorbs all incoming energy. This can create asymmetric spectra, or

potentially spectra which peak for a direction that falls between directions defined in the

spectral grid. Addressing these two issues could mitigate the edge effects observed when

using the TSA.
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Figure 5.14: Wave energy spectrum (m2Hz−1) (left) and non-linear interactions (m2)
(right) obtained with the WRT method (top), the TSA (centre) and the DIA (bottom)
after thirteen hours of north-easterly winds at model output point #1 using the first-order
propagation scheme.
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Figure 5.15: Wave energy spectrum (m2Hz−1) (left) and non-linear interactions (m2)
(right) obtained with the WRT method (top), the TSA (centre) and the DIA (bottom)
after fourteen hours of north-easterly winds at model output point #1 using the first-order
propagation scheme.
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Figure 5.16: Wave energy spectrum (m2Hz−1) (left) and non-linear interactions (m2)
(right) obtained with the WRT method (top), the TSA (centre) and the DIA (bottom)
after fifteen hours of north-easterly winds at model output point #1 using the first-order
propagation scheme.
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5.5 Diagonal Front

This experiment builds upon the turning winds experiment. Here, instead of turning the

winds at a predefined time over the whole domain, a front divides the domain diagonally

from the north-west to the south-east. Winds in the south-west half of the domain are

orientated northerly, which is towards the front. In the north-east half of the domain, winds

are westerly, going away from the front. Waves created in the south-west section of the

domain thus propagate towards the front and cross it at different periods of their evolution

depending on the distance from their point of origin to the front.

Wave fields produced with the frontal winds all share a similar shape in the early hours of

evolution, shown in Figure 5.17 at hour 15. Two maxima occur in the domain, around the

areas with the longest fetch before and after the waves encounter the front. Normal wave

evolution with losses on the western edge of the domain and the front explain the triangular

shape. Once waves cross the front, energy loss to the wind causes a brief decrease in

wave height, followed by an increase as the new wind waves develop. Longer fetches in

the northern section of the domain allow for higher waves to develop. At hour 21, fields

produced using the TSA begin to show the influence of the model’s boundary in the western

part of the domain, and an inversion in concavity in the southern contours close to the front.

Later in the model runs, the maxima in wave heights occur closer to the boundary of

the domain, where the fetch is longest, for the WRT and DIA cases, but not for the TSA

results where changing winds (as waves cross the front) cause the maximum to occur near

the centre of the domain, just past the front. The saddle point seen near the middle of

the domain for both the WRT and DIA simulations is also present with the TSA results,

although the loss of energy from crossing the front is smaller. Figure 5.18 shows the fields

at hour 24 and the absence of the concavity in the southern contours for the TSA results.

The model runs using the TSA show a rapid turning in peak directions as waves cross

the wind fronts along with an increase in significant wave heights, hinting at problems in

handling the wind shift. This is expected given the results from section 5.2. On the other
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Figure 5.17: Significant wave height fields (in meters) and wave direction (arrows) 15
hours into the diagonal front experiment for the WRT (left), the TSA (centre) and the DIA
(right) using the first and third order propagation schemes (top and bottom, respectively).

hand, similarities in the southern half of the domain indicate that, with a younger swell

peaking at higher frequencies, the evolution under perpendicular winds is resolved more

accurately by the TSA than for older swell in the northern half.

At hour 48, the wave fields have mostly reached their equilibrium solutions. For all

simulations, the southern half of the domain shows very similar features, including the loss

of energy to the western model boundary and straight contours with a concave eastern side.

The influence of the wind front on the wave field is very similar for the model runs using

the WRT and DIA methods, with waves further north than two-thirds of the domain not

changing directions as the swell overwhelms the developing wind sea. The wave fields

obtained with the TSA method are similar to those at hour 24 and the southern half of the

domain shows better agreement with fields obtained with the WRT method.
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Figure 5.18: Significant wave height fields (in meters) and wave direction (arrows) 24
hours into the diagonal front experiment for the WRT (left), the TSA (centre) and the DIA
(right) using the first and third order propagation schemes (top and bottom, respectively).



CHAPTER 6

SUMMARY AND DISCUSSION

Calculation of the non-linear wave-wave interactions represents one of the most compu-

tationally expensive steps for numerical wave models. In order to meet the inherent time

constraints of operational modelling, only a crude approximation, the Discrete Interactions

approximation (DIA), has been used until now. The two-scale approximation, called TSA,

is a new method for the computation of non-linear wave-wave interactions. The TSA was

successfully implemented in WaveWatchIII (denoted WW3), an operational numerical

wave forecast model. The TSA method makes use of a multi-step process in order to

simplify the required computations. From the input energy spectrum, a broad-scale term

is constructed to contain the majority of the energy and is assumed to have a predefined

parametric shape. The difference between the actual spectral energy and the broad-scale

term is calculated and stored as the local-scale or perturbation term. Using these two terms,

the non-linear wave-wave interactions are then generated (Resio and Perrie, 2008). Results

presented in this study confirm the initial findings of Perrie and Resio (2009), that the

TSA method produces nonlinear wave-wave interaction spectra which closely resemble

the results of so-called exact methods, in this case the WRT method (Webb, 1978; Tracy

and Resio, 1982; Resio and Perrie, 1991).

Numerical studies of the impact of multiple successive time integrations of source

terms on the wave energy spectrum were performed. In the case of steady wind forcing

with wind speed and direction held constant, the TSA is able to generate a succession

99
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of wave energy spectra whose shape is much closer to results obtained using the WRT

method when compared with results obtained with the DIA. The two main mean wave

parameters used in operational forecasting and modelling, significant wave height and

peak frequency, are accurately simulated by the wave model using the TSA in the first ten

hours of wave growth. Given WW3’s default source terms for wind input energy Sin, and

wave dissipation Sds, accuracy for significant wave height deteriorates after the first ten

hours of wave growth but tracking of peak frequency remains excellent up to and including

the time where the system reaches dynamical equilibrium. The actual two-dimensional

energy spectra produced using the TSA also show very good agreement with WRT results

in shape, while the magnitude of the energy peak is lower, explaining the difference in

significant wave height between the two methods.

Two duration-limited experiments were performed with WW3’s default source terms,

using sharply turning and slowly turning winds. In these numerical experiments, the

transitions initiate oscillations in the energy spectra and associated non-linear interactions

from the TSA. These stem from asymmetries created in the energy spectrum which the

current formulation of the parametric shape used to define the broad-scale term cannot take

into account. In the case of sharply turning winds, a second peak is generated, whereas

the slowly turning winds create intense asymmetries as the waves rotate to follow the

wind. In both cases, these perturbations exceed the range of applicability of the current

TSA formulation. However, once the forcing stops changing, the TSA results converge to

the solutions obtained using the WRT method. Furthermore, taking those situations into

account for the formulation of TSA’s parametric shape would allow the TSA to properly

model them.

In order to assess the skill of the current implementation of the TSA in a situation more

akin to operational wave modelling, simulations of wave growth over a two-dimensional

domain were performed. Under constant wind forcing, the significant wave heights and

peak frequencies produced by the TSA show good agreement with results obtained using

the WRT method and DIA. Notable boundary edge effects are observed, which stem from
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TSA’s current parametric shape not taking into account the asymmetries in the energy

spectrum. This effect can be somewhat mitigated by numerical diffusion. Duration-limited

growth at points taken far from the sides of the domain, and where fetch is the longest,

show consistent results with the time integration experiment; TSA produces accurate

spectral shapes with slightly lower spectral energies. Fetch-limited growth curves taken in

the centre of the domain along the wind direction are similar, with agreement for both sig-

nificant wave heights and peak directions at short fetch. Further along the fetch, significant

wave heights from TSA do not increase as rapidly with fetch as with other two methods.

However, the peak frequency from TSA results remains closer to results obtained with the

WRT method than the DIA.

Additional experiments, inspired by tests described in SWAMP (1985), were performed

on the two-dimensional domain to investigate the robustness of the current implementation

of the TSA in the wave model. First, slowly and sharply turning winds were applied to the

waves after they had reached their equilibrium sea state. Results from these experiments

show the importance of adding the possibility of asymmetries and multiple peaks into

the formulation for the parametric shape of the broad-scale component. Once the winds

stabilize over the domain, the wave field once again converges towards its equilibrium

solution, showing that the model is stable when subjected to temporary perturbations

that take it outside its current realm of applicability. Wave growth under slanting winds

was also studied, which created a situation where the energy peak was spread over two

neighbouring frequencies. Accounting for this possibility in the creation of the broad-scale

term will improve the range of situations for which the TSA method might be applicable.

Study of frontal winds showed that the WW3-TSA was more successful in modelling wind

shifts for younger seas than for strong swell which can create unstable situations. This

issue, along with the turning wind cases, can be addressed by allowing for multiple peaks

and asymmetries to be taken into account for the parametric broad-scale term.

Overall, the model results presented in this thesis have demonstrated the potential for

increased accuracy provided by the TSA method when compared to the DIA, for both
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wave energy spectra and the non-linear interactions, over time and spatial scales that allow

the spectrum to reach its dynamical equilibrium. For these cases, the current method for

the decomposition of the energy spectra into the two different scales required by TSA

proved to be adequate. With the proper broad-scale and local-scale energy components, the

approximation to the complete non-linear interactions performed by the TSA is successful

in producing time-series of energy and non-linear interaction spectra that closely resemble

the ones obtained with the WRT method.

The various experiments constructed in this study to simulate complicated sea states

suggest that allowing for the possibility of multiple peaks and asymmetries in the paramet-

ric shape (when generating the broad-scale term) should yield a notable enhancement of

the range of applicability of the TSA. Investigation of the neglected terms in the approxi-

mation and of a two-dimensional spectrum fitting method could also be considered. Upon

implementation of the improvements to the parametric shape, along with the fulfilment of

the time saving potential of the approximation, TSA should become a serious contender for

the computation of non-linear interactions in both research and operational wave models.
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