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ABSTRACT 

Two of the most significant challenges facing the world in the 21
st
 century are improving 

energy security and mitigating the effects of climate change. To counter these challenges, 

renewable energy sources, such as wind, are considered a possible solution and have 

gained importance worldwide. With many jurisdictions setting high wind-energy targets 

for the coming decades, risks have grown as the demand for new wind turbines has 

outstripped the growth of its suppliers.  

Integrating significant amounts of wind-electricity into existing networks raises reliability 

concerns due to variable nature of wind. A method for estimating the reliability of wind-

energy systems is presented which is a combination of a forecasting method (probabilistic 

approach) and RL (Resistance-Load) technique (risk-based approach), demonstrated 

through a case study, and verified using real-time wind farm data. 
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CHAPTER 1 INTRODUCTION 

Maintaining or improving energy security and mitigating climate change will be the two 

most pressing challenges facing the 21
st
 century. The evidence to support this is, for 

example, stated by the International Energy Agency (IEA) in World Energy Outlook 

(WEO), 2010: 

―The energy world faces unprecedented uncertainty. The global economic crisis of 

2008-2009 threw energy markets around the world into turmoil and the pace at 

which the global economy recovers holds the key to energy prospects for the next 

several years. But, it will be governments, and how they respond to the twin 

challenges of climate change and energy security, that will shape the future of 

energy in the longer term.” [1]. 

With the uncertainty in economic growth, it is difficult to predict the outlook for energy 

with confidence. According to WEO, the emerging economies, such as, China and India 

will drive global energy use, resulting in an increased total primary energy demand. The 

increase in energy demand will include fossil fuels accounting for over one-half of the 

increase in total primary energy share [1].  

For many years, fossil fuels, namely oil, coal and natural gas, have served as the principal 

primary energy source in meeting world’s energy needs [2]. In 2007, their contribution 

accounted for over 80% in meeting the world total primary energy demand (see Figure 

1.1). The IEA has projected an increase of 36% in the world primary energy demand 

between 2008 and 2035, from around 12,300 Mtoe (million tonnes of oil equivalent) to 

over 16,700 Mtoe, or 1.2% per year on average [1]. A large part of this increase in energy 

demand is expected to come from non-OECD countries reflecting faster economic 

growth, industrial production, population and urbanization [1].  
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Figure 1.1 Fuel share of world total primary energy supply in 2007 [3] 

Based on IEA’s projections for 2035, oil is expected to remain the dominant fuel in the 

primary energy-mix, although its share will drop from 34% in 2007 to 28% by 2035. The 

demand for coal sees a steep rise until 2020 and gradually declines while the growth in 

natural gas is expected to surpass the demand for other fossil fuels due to its 

environmental and practical attributes [1]. Since fossil fuels are finite sources of energy 

on earth, their increasing demand to meet the growing needs raises concerns over security 

of supply.  

The extensive consumption of fossils has led to an increase in anthropogenic greenhouse 

gas (GHG) concentrations in the environment resulting in the rise of global average 

temperatures since the mid-20
th

 century [4]. Greater warming over land than over the 

ocean, melting of ice-caps, changing wind patterns and tropical storms are some of the 

impacts attributed to climate change [5]. 

To counter the twin challenges of maintaining or improving energy security and 

mitigating climate change, low-carbon emission technologies have gained considerable 

interest around the world, resulting in an increased electricity generation from 

renewables, such as wind, solar, biomass and geothermal. The thesis focus is on wind 

energy, one of the renewables, and how it can be made more secure and reliable in the 

future.  

Oil 

34% 

Natural Gas 

21% 
Nuclear 

6% 

Hydro 

2% 

Biomass 

10% 

Other 

1% 

Coal 

26% 



3 

 

1.1 The Growth of Wind Energy and the Wind Industry 

High demand for wind-generated electricity and increasing number of turbine 

installations are indictors reflecting the growth of wind energy and the wind industry, 

respectively. Since 2000, worldwide, renewable-based electrical generation has grown by 

almost 900 TWh; although most of this increase came from hydroelectricity, wind-

electricity experienced a seven-fold growth [6]. Expectations of significant supplies of 

electricity from wind-energy systems (i.e., individual wind turbines or groups of turbines 

in a wind farm) in the future are now a commonplace; for example, the Global Wind 

Energy Council (GWEC) in its Global Wind Energy Outlook 2010, projects that world 

wind energy production will increase over tenfold by 2030—emphasizing the importance 

of wind as a key contributor to improving energy security and reducing greenhouse gas 

emissions [7]. For example, Figure 1.2 shows the increasing level of global wind-energy 

generation projected by the GWEC to 2030, assuming an advanced growth scenario. 

 

Figure 1.2  Future projections for global wind-energy generation [7] 

To meet future projections of wind-generated electricity, the demand for new wind 

turbines has grown at a rapid pace. Each year since 2001 has seen a rise in wind installed 

capacity; see Figure 1.3, except in 2010 which experienced a slowdown for the first time 

in more than two decades [8]. Also, the investment in new wind turbines saw a decline for 

the first time and the market for new turbines reached an overall capacity of 37.64 GW, 

down from 38.31 GW in 2009. Yet, a major contribution towards the growth in wind 
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energy was attributed to China which alone accounted for more than half of the world 

wind market 2010, adding 18.9 GW of new installed capacity. Many nations such as 

Germany, Spain, U.K, France and Italy are considered major wind energy markets where 

the annual wind turbine sales range between 0.5 and 1.5 GW; while other nations such as 

Poland, Belgium, Brazil, Japan and Mexico emerged as a medium sized markets for new 

wind turbines in the range of 100 and 500 MW. Despite the slowdown in 2010, altogether 

83 countries worldwide used wind energy for electricity generation and 52 countries 

increased their total installed capacity; hence, the year 2010 witnessed world wind 

capacity reaching over 195 GW after 159 GW installed in 2009 and 120 GW in 2008 [8]. 

 

Figure 1.3  Worldwide growth in new wind installations [8] 

One of the outcomes of the growth in demand for wind energy is the increasing size of 

wind turbines. Wind turbines of the early 1920s ranged in size from 1 to 3 kW, while the 

largest wind turbine of 1940s was a result of industrialization; world’s first megawatt-size 

wind turbine named Smith-Putnam rated at 1.25 MW was used to feed electricity to a 

local utility network for several months during the World War II [9]. The interest in wind 

energy faded as the oil prices dropped following WW II; it was the oil shock of 1970s 

that the interest in wind turbines rose again and wind energy is now seen as essential to 

meet the need for clean and renewable electricity.  
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Wind turbines have grown in size; become more complex with time as the industry has 

been producing bigger and higher capacity (commercial or utility scale) wind turbines 

rated from 650 kW to 7 MW [10]. Currently, E-126 model, rated 7.5 MW stands as the 

highest capacity wind turbine to date [11]; while some manufacturers are talking about 10 

MW wind turbines in the future [10]. 

1.2 Wind Turbine Basics 

Wind turbines are machines for generating electricity that use energy from the wind. The 

rotor blades and the nacelle of a wind turbine are held aloft with the support of a tubular 

steel tower. The mechanical rotation of the blades due to kinetic energy of the wind 

results in generation of electricity by a generator [12]. Figure 1.4 explains the working 

principle of a wind turbine and lists some of the major components.  

 

Figure 1.4  Working principle and components of a wind turbine [13] 

Wind turbines are divided into two categories, - Horizontal Axis Wind Turbines 

(HAWT), and Vertical Axis Wind Turbines (VAWT) depending on the rotation of the 

main shaft (axis). The horizontal axis turbine resembles a ―propeller-type‖ design, while 

the vertical axis turbine resembles like an ―egg-beater‖. The main components of a wind 

turbine are: 

 Rotor hub and blades, which convert the wind’s energy into rotation of the shaft; 
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 A nacelle (enclosure) containing a drive train, usually including a gearbox and a 

generator; 

 A tower, to support the rotor and drive train; and  

 Electronic equipment such as controls, electric cables, ground support equipment, and 

interconnection equipment. 

Wind turbine towers are mostly tubular and made of steel. The blades are made of fiber 

glass-reinforced polyester or wood-epoxy. Based on their installation, wind turbines can 

be onshore (land-based) or offshore (sea-based). Onshore wind turbines are usually 

installed in hilly or mountainous regions which are generally 3 km or more inland from 

the nearest shoreline. Offshore wind turbines are installed 10 km or more from the land, 

have a fixed bottom or foundation based tower, and are installed where the water depth is 

not more than 40 m. Some offshore wind turbines are deep-water turbines and are known 

as floating wind turbines. More important for offshore wind turbines is that the buoy, 

which is tethered to the sea-bed with cables, should keep the turbines from pitching and 

rolling violently in ocean swells [14]. 

1.3 Risk and Reliability 

With the expansion of wind energy, the elements of risk and reliability concerns have also 

grown. Reliability issues have arisen over wind-generated electricity which faces 

uncertainty due to variable nature of wind to meet a dynamic load; and risks have grown 

as the turbine manufacturers try to keep up with the demand for new wind turbines while 

maintaining the quality of their product.  

1.3.1 Risk 

The term risk, in general, can be defined as ―a possibility of incurring a loss‖ [15]; 

whereas mathematically, it is the probability of such a loss [15]. Identifying and studying 

risks is useful to avoid the occurrence of events that can lead to a negative result. A risk 

analysis for wind energy is important because wind is considered as one of the solutions 

to overcome our energy and climate change issues.  

Spreading at a rapid pace—and with the order books already full for the coming years—

the industry is confronted with challenges and risks in meeting the growing demand for 
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new wind turbines. Events like shortage of raw materials, shortage of installation vessels 

and equipment failures have raised quality and quantity concerns worldwide. It is 

therefore necessary to determine whether the wind industry holds enough potential or if 

the world is only banking on an energy source that is surrounded by risks. 

1.3.2 Reliability 

A system in general is considered reliable if it performs a certain task successfully under 

a set of operating conditions. In case of a wind-energy system, meeting a jurisdiction’s 

electrical load is the prime concern, while the operating conditions may vary in different 

regions.  

To ensure the reliability of a system, it is important to identify the uncertainties that can 

affect a system’s performance, or its reliability. The uncertainties present in a wind-

energy system can occur in the form of energy source (wind speeds), the conversion 

process (wind turbine and electrical network), and energy services (electrical load). An 

energy system with such randomness in itself can deter the efforts towards overcoming 

the twin challenges of energy security and climate change; therefore, reliability 

forecasting is important. 

1.4 Thesis Objectives 

This thesis develops a reliability forecasting method for wind-energy systems which can 

be employed to calculate the probability of success for a wind farm in meeting a 

jurisdiction’s electrical load; the method is a combination of a forecasting method (a 

probabilistic approach) and RL (Resistance-Load) technique (a risk-based approach). Due 

to uncertainties present in renewable energy sources, it is hard to predict their future 

values with confidence; hence a probabilistic method is employed. The forecasting 

method uses probability distributions to study and simulate random variables, while the 

RL technique employs reliability equations to calculate the probability of R > L for a 

given year. Higher the probability of R > L, greater is the system reliability. The RL 

technique, in general, has been widely used to estimate system reliability, but here, it is 

being introduced to energy security. The reliability forecasting method will be 

demonstrated with the following objectives: 
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1) Analysing the probability distributions: The presence of uncertainties in a wind-

energy system requires that the random variables be identified first and then their 

probability distributions studied. The probability distributions are best represented 

through distribution parameters which are calculated using historical data. 

2) Simulating random variables: Simulations can be performed to generate the most 

probable replications of the real-world. The random variables are replicated for a 

given year using their distribution parameters calculated in the previous step to obtain 

the simulated values of generation and load (or R and L). 

3) Verifying the forecasting method: Steps 1 and 2, representing the probabilistic 

simulations, will be verified using real-time wind farm data to ensure the validity of 

the forecasting method. 

4) Calculating the probability that R is greater than L: The simulated values of R and L 

can be employed for an RL analysis to calculate the probability of R > L (or 

reliability) for a wind-energy system with the help of reliability equations. 

The thesis also includes a qualitative risk analysis of the wind industry that examines 

various issues arising during a wind turbine’s lifecycle; that is, from the stages of 

manufacturing a turbine to its operational stage in a wind farm.  

1.5 Thesis Organization 

The thesis is divided into six chapters and three appendices. Chapter 2 reviews existing 

reliability work and introduces the new approach employing the RL (Resistance-Load) 

technique to energy security.  

Chapter 3 discusses in detail the method and simulation steps to obtain future R and L 

values, and reliability equations to forecast wind farm reliability. 

Chapter 4 presents the results of a case study. Results are divided into, first, the 

verification of forecasting method and second, reliability forecasting or calculating the 

probability of R > L using the RL technique.  

Chapter 5 presents a discussion and significance of the case study results. Further 

applications of the RL technique to wind-energy systems are also described.  
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Finally, chapter 6 presents the concluding remarks for the thesis and lists some limitations 

of the method. Related future work is also suggested. 

Appendix A and B comprise of historical wind speed and load data analysis results 

respectively, while appendix C presents a discussion on the risk analysis of the wind 

industry. 
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CHAPTER 2 BACKGROUND 

The focus of this chapter is to examine the background work in the current state of risk 

and reliability research for wind-energy systems. The chapter begins with a qualitative 

risk analysis by enlisting the risk categories here, although a major part of this chapter 

looks at the application of existing techniques for wind farm reliability and how to make 

wind-energy systems more reliable. The chapter concludes by discussing the drawbacks 

of existing reliability approaches and introduces the RL technique while simultaneously 

explaining how RL can be a better approach in forecasting reliability.  

2.1 Qualitative Risk Analysis 

With many nations having their wind energy targets established for the coming decades, 

the demand for multi-MW wind turbines has grown. New wind turbines with larger and 

heavier components such as bigger blades, taller towers and heavier nacelles are being 

manufactured to meet the growing needs of wind-generated electricity. This is leading to 

various types of risks during a turbine’s lifecycle. For example, larger turbines consume 

more raw materials, need more space for transportation and installation, increased 

surveillance during its operation and higher investments. A failure at any stage of its 

lifetime can result in a loss in terms of energy or money, or both. The risks can be 

subdivided into four main categories that may arise during a turbine’s lifecycle; these are: 

1) Manufacturing and Installation risks 

2) Operational risks 

3) Environmental risks 

4) Financial risks 

 

Manufacturing risks arise as some of the key raw materials, such as, the rare-earth metals 

(for making permanent magnets) and acryonitrile (used in production of carbon fiber) 

could face a possible shortage of supply in the future resulting in their rising costs and 

making wind turbines expensive; while installation risks are seen as lack of sufficient 

installation vessels and shortage of electric cables to link the wind farms exist. Wind 

variability, increased gearbox failures, and wearing out of bearings has given rise to some 

of the operational challenges resulting in failure of wind-generated electricity. 
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Environmental concerns have risen due to low-frequency noise of wind turbines, while 

killing of bats and birds have drawn attention from various environmental groups. All 

such risks that surround wind-turbine industry and where huge investments are expected 

to flow raises a financial risk and it is worth asking—―Are the investments safe?‖ A 

further detailed discussion of the four risk categories is continued in Appendix C.  

2.2 Quantitative Reliability Assessments 

Although the past decade has witnessed the unprecedented growth of wind energy 

worldwide, its growing complexity is calling into question the reliability of wind-energy 

systems. For example, turbine failures due to quality concerns and generation risks 

associated with the variability of wind speeds mean that wind-energy systems are more 

prone to failure in meeting end-use electricity demand than traditional generation-

systems. As a result, considerable effort is being made to improve the reliability of wind-

energy systems through the application of various analysis techniques. This section 

reviews some of this research, including equipment failure analysis and the impact of 

wind speed variability. The RL technique is then introduced as a means to assess and 

forecast reliability. 

2.2.1 Equipment Failure 

Failure Modes and Effects Analysis (FMEA), a general purpose failure analysis 

technique, is now being used in the study of wind turbine designs and how they can be 

simultaneously made both more reliable and more economical [16]. FMEA considers a 

wind turbine as a system, requiring the identification of those components that can lead to 

a system failure and assigning them a risk ranking based on their severity, occurrence, 

and detection. Although this can help improve turbine design, it lacks information on how 

well a wind turbine or a group of turbines would perform in meeting a community’s load, 

given the uncertainties present in wind speeds, load, and system losses.  

Ozgener and Ozgener performed reliability analysis on a wind turbine (specifically the 

generator) and showed that the factor of reliability (that is, the reliability of individual 

components) is 0.37 at 4380 hours of operation, giving it a failure rate of 2.28 × 10
-4

 h
-1

 

[17]. The study also revealed that if 25% of all electric, electronic, and mechanical 

components could be improved, the failure rate would reduce to 2.10 × 10
-4

 h
-1

, thereby 
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increasing the lifetime of a wind generator from 25,000h to 30,000h. Failure rate of 1.3 × 

10
-4

 h
-1

 was achieved when the defects were brought down by 75%. Other factors that can 

impact the reliability of wind turbines and can lead to loss of electrical generation, such as 

turbine blade degradation and downtime due to equipment replacement, were not 

included in the analysis. The authors did not provide information on how well a set of 

similar turbines would perform if they were installed to meet a jurisdiction’s electricity 

load. Similar results have also been obtained by Iniyan, Suganthi, and Jagadeesan [18]. 

A recent study conducted by Herbert, Iniyan, and Goic examined the overall reliability of 

a wind farm based on the performance of wind turbine components [19]. The results 

indicated that failure rates were lower during the first year of service when compared with 

subsequent years due to increased breakdowns and longer maintenance time. A Weibull 

probability distribution was applied to study the reliability of the wind farm comprising of 

15 wind turbines, each of 225 kW capacity. The study listed performance parameters such 

as technical availability (94%), real availability (82.88%), and capacity factor (24.9%), on 

average, between 2000 and 2004. The analysis included a spare-part optimization study at 

different risk levels such as 90%, 80%, and 70% to evaluate the requirement of 

components during the time of unpredictable failures. The results were—five, eight, and 

ten spare parts for 70%, 80%, and 90% risk levels respectively, with gearbox replacement 

being the highest as compared to other sub-components. The spare part optimization 

results were useful for determining minimum shutdown periods and increasing power 

generation. Since this work only focused on the reliability of wind turbine components it 

did not discuss whether the wind farm was successful in meeting the load. Furthermore, 

the performance of the components in terms of their lifetime and future reliability were 

not considered. The study suggested that as the complexity of wind turbines increases, so 

does the concern over their reliability. 

Edimu, Gaunt, and Herman have used probability distributions for studying reliability 

indices of energy systems to give a better understanding of risks as compared to using 

average values for parameters like failure rates and restoration times [20]. According to 

this study, using mean values of indices ignores the shape of the Probability Density 

Function (PDF) index and limits the quality of the index interpretation. The study was 

performed on a composite electrical-power system, using Monte-Carlo simulation 
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techniques; failure was defined by the outages of generating unit(s), transmission line(s), 

or a combination of generation and transmission outages. The study found that the use of 

continuous PDFs in reliability analysis of unconventional sources such as wind and solar 

is extremely useful as the generation models reflect high levels of variability. Since this 

work was limited to generation and transmission aspects, no evaluation of generation 

against load was presented to indicate the overall reliability of the wind-energy system. 

2.2.2 Wind Variability 

Abul’Wafa has proposed a probabilistic method to examine the contribution of wind 

power to the overall reliability of an energy system [21]. The system modeling and 

evaluation consists of three steps: wind speed modeling, wind turbine generator (WTG) 

system modeling, and system risk modeling. The wind speed model simulates the 

variation of wind speed over specified period of time for a selected geographical site, the 

WTG model comprises of different WTG units totalizing 425.82 MW of installed 

capacity, while the system risk model involves studying the risks and reliability when the 

generation is compared against the load. The results indicate that there are limits to 

reliability with higher penetrations of wind electricity. The probabilistic method does not 

identify the probability distributions considered for wind speeds and loads in the case 

study, which if not addressed correctly, can produce incorrect reliability results. The 

method also omitted information on grid availability over time for which the reliability 

was calculated. 

Degeilh and Singh’s work on wind farm reliability [22] focused on minimizing the 

variance of aggregated wind farm output by optimally distributing a set number of wind 

turbines at known sites. Using three years of wind data from a NREL/3TIER study of the 

western U.S. provided the statistics for evaluating each site’s possible mean power 

output, variance, and correlation with the other sites. The approach considered the impact 

of wind-power output variance reduction on a power system against a modeled load to 

study the reliability variation. The results showed that power-output variances were most 

reliable when the sites are not significantly correlated. A Monte-Carlo simulation was run 

for every hour over the three year period to determine the level of reliability of each wind 

turbine, had a mechanical or electrical failure taken place. Xie and Billinton conducted a 
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similar reliability study of wind speed between two wind test sites; it showed a poor 

reliability of the wind farms due to high correlation of the sites [23]. A relative 

comparison such as this indicated loss of electrical generation but did not address the 

overall reliability of the system on energy services of a jurisdiction in meeting its energy 

needs, putting energy security at risk.  

2.2.3 Reliability Assessment  

The North American Electric Reliability Corporation (NERC) maintains reliability 

standards for bulk power system across North America by enforcing standards for power 

system reliability and annually checking resource adequacy using 10-year forecasts and 

summer and winter forecast plans [24]. According to NERC, the reliability standards are 

defined as planning and operating rules that electric utilities must follow to ensure the 

most reliable system possible. The reliability analysis involves a stepwise ―Event 

Analysis‖ technique; the principal components of this analysis technique are: 

 Identifying and understanding the cause of the event, 

 Ensuring timely action of corrective steps or evaluation of recommendations, 

 Learning lessons from such an occurrence to avoid repetition of similar events, 

 Integrating risk analysis to the event analysis process, and 

 Sharing the enhancements across the industry to maintain high reliability standards 

The focus of such an analysis technique is inclined towards increasing the reliability of 

power transmission and distribution networks while discussing key issues and trends that 

could affect system performance. It lacks information on how the uncertainty in 

renewable energy sources such as wind generation can impact overall system reliability in 

meeting the expected load demand, limiting NERC’s reliability results. 

An analysis report by NERC on integrating renewables states that unique operating and 

planning characteristics would be required to accommodate and effectively manage their 

variable nature to ensure reliability standards [25]. To integrate significant amount of 

variable generation to the bulk power system, the analysis techniques and tools will 

require probabilistic approaches. According to this report, variable generation 

manufacturers are encouraged to support the development of probabilistic approaches or 

models for bulk power system reliability. Such approaches would require the use of 
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probability density functions to address the randomness associated with renewable 

generation, the transmission network, and load demand. The findings suggest that an 

addition of risk assessment along with probabilistic techniques would be required to 

design the future bulk power system [24]. 

Another reliability approach often used by resource planners includes calculating system 

Loss of Load Expectation (LOLE) or Loss of Load Probability (LOLP) values [25]. These 

values are obtained through reliability simulations where resource adequacy is indicated 

by calculating reserve margins and expected demand profiles, including forced outage 

rates and maintenance schedules. The reliability simulations also include probabilistic 

cost simulations for meeting a demand curve from specified generating units over the 

simulation period [25].  

2.2.4 Reliability Assessment Using RL 

The uncertainties involved in a wind-energy system occur in the form of variable wind 

speeds (source), system losses including failures (conversion process), and variable load 

(services). From the reliability work discussed above, the assessment techniques either 

focus on uncertainties in wind as an energy source, the wind-conversion process, the 

electricity services using wind, or a combination of these. This kind of analysis limits the 

system reliability assessment where uncertainties can be ignored, potentially producing 

results that can be detrimental to energy security of a jurisdiction. 

Some engineering systems are designed to have a certain ―resistance‖, R, against an 

applied ―load‖, L. ―Resistance-Load‖ is a risk-analysis technique widely used for the 

reliability assessment of systems. The importance of this technique and its utility to both 

engineering and non-engineering applications make it a useful risk-assessment tool. Some 

examples where RL has been employed for reliability assessment include [15]: 

1. Structural reliability: Factors such as the structural strength of beams having a 

specified cross-section. The beams have certain resistance R to withstand a load L; 

failure occurs when L > R. 

2. Trading: Stock market trading involves an asking price and a buying price. Treating 

the selling price as the load L and buying price as resistance R, the stock will fail to 

be sold if L > R. 
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3. Communication: A local network is connected to the internet through a gateway 

device with a certain throughput capacity. The gateway’s throughput capacity is the 

resistance R and the sum of the user’s internet activity is the load L. A user will 

experience a slowdown of response whenever L > R. 

Reliability analysis using the RL technique for energy security considers the random 

nature of electrical generation and load simultaneously. For a wind-energy system, the 

uncertainties associated with the net electrical generation and the energy services can be 

addressed using R and L, respectively. A wind-energy system will be considered reliable 

when its generation R will exceed the load L. The RL technique is used to calculate the 

probability of R > L (represented as P[R > L]) which is the expected reliability of a wind 

farm calculated over a given year. 

2.3 Summary 

This chapter introduced the four main risk categories, followed by a detailed description 

about various application techniques aimed at improving reliability of wind-energy 

systems. The existing techniques fail to address the uncertainty in energy source, 

conversion process and energy services simultaneously, hence RL technique is introduced 

to energy security. As claimed by NERC that a combination of risk-based approach with 

probabilistic methods would be required to design future bulk power systems; RL 

technique can be combined with probabilistic methods to forecast reliability of wind-

energy systems. The following chapter presents the reliability forecasting method. 
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CHAPTER 3 METHOD 

This chapter presents the method of forecasting reliability using the RL technique. An 

energy system is considered reliable when its electrical generation (R) is greater than load 

(L). The method of forecasting reliability (or calculating the probability of R > L) can be 

summarized as follows: 

1. Identifying random variables of the system 

2. Analysing probability distribution of random variables through historical data 

3. Calculating respective probability distribution parameters 

4. Simulating, using step 3, random variables to acquire R and L values 

5. Implementing reliability equations to calculate probability of R > L 

Following these steps, the expected probability of R > L for a wind-energy system for a 

given year can be obtained. A detailed discussion of the method is now presented. 

3.1 Identifying Random Variables 

For the purposes of the method, there are three time-dependent random variables: 

1. Wind speeds (v)  

2. System losses (loss) [26] 

3. Load (L) 

Wind speeds and system losses together contribute to a variable electrical output (or R 

value), while the load (or L value) can be considered independent of them.  

Random variables are generally represented using probability distributions. Correct 

identification of a probability distribution is important and can be done with the help of 

graphical analysis tools such as histogram and probability plots.  

To estimate future reliability, it is necessary to forecast values of R and L using 

simulation techniques, such as, random variate generation and Monte-Carlo simulation to 

obtain the most likely scenario. Sections 3.2 and 3.3 describe the steps required to model 

R and L values respectively, while section 3.4 discusses the reliability equations used for 

calculating the probability of R > L.  
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3.2 Modeling the R Value 

R represents the total electrical output of a wind farm for a given year that can vary with 

wind speeds and system losses. These two random variables can be identified for their 

probability distributions through historical data records of wind speeds and system losses. 

A sample histogram as shown in Figure 3.1 describes a Weibull probability distribution. 

 

Figure 3.1 A sample histogram for a Weibull distribution  

A Weibull distribution can be further verified by performing a normality test using a 

probability plot, a graphical technique to assess whether or not a probability distribution 

adequately describes a data distribution [27]. In some cases, the data may follow a normal 

distribution and consequently, is difficult to separate from a Weibull distribution due to 

similarity of the curves. A probability plot following a straight line confirms a normal 

distribution of the data points ([28] and [29]). It is easy to detect the spread of data points 

from the straight line when the data set is small, but for a larger data set, the deviation at 

the end points of the trend line is a better indication of non-normality. Figure 3.2 gives a 

sample probability plot confirming a Weibull distribution. 
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Figure 3.2 A sample probability plot  

The deviation from the trend line is measured using probability plot correlation 

coefficient (PPCC =     
 ) which gives the goodness-of-fit measurement for a 

distribution. Based on experience, an R
2

PP ≥ 0.95, with no systematic curvature implies an 

adequate fit for normality, but higher the R
2

PP value, more rigorous is the test for fitting a 

data distribution; for example, an R
2

PP ≥ 0.99 to separate a normal distribution from a 

Weibull distribution can be used [27]. 

Since probability distribution of wind speeds v can be represented using a two-parameter 

Weibull distribution, its cumulative distribution function (CDF) is given by equation (3.1) 

[30]. 

                    
 

 

                 
(3.1) 

where c and k are the scale and shape distribution parameters, respectively. If twice the 

logarithm of the Weibull CDF is taken, then equation (3.1) can be rearranged as equation 

(3.2). 

                          (3.2) 
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which is similar to y = ax + b form, the straight line equation. One can now evaluate (ln v, 

ln[-ln{1-F(v)}]) pair by linear regression analysis to study the line-of-fit plot and obtain 

the values of Weibull distribution parameters using equations (3.3) and (3.4).  

    (3.3) 

            (3.4) 

While F(v) can be estimated by any of the methods listed in Table 3.1, where n is the 

number of data points and x is the x
th

 data point arranged in ascending order. 

Table 3.1 Methods for estimating F(v) 

Method F(v) 

Mean Rank  

     
 

Median Rank        

         
 

Symmetrical CDF        

 
 

 

Simulating wind speeds require generating new values of random variables with a 

specified distribution which involves the following two steps [31]: 

1. A sequence of random numbers distributed uniformly between 0 and 1 is obtained; 

u~U(0,1) representing a uniform distribution. 

2. The sequence is then transformed into a sequence of random values of the desired 

distribution. This step is sometimes called random variate generation. 

To generate a random distribution using a CDF, inverse transform algorithms are a 

common practice. Such inverse transform algorithms are based on the observation that for 

a given distribution having a distribution function F(v), the value of F(v) is uniformly 

distributed between 0 and 1. 

To simulate wind speeds for known values of Weibull distribution parameters c and k (as 

calculated above), random variate generation and inverse transformation algorithm, both 

described through equation (3.5), and solving for u = F(v) with 0 ≤ u ≤ 1, can be used. 

                         (3.5) 
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Since u represents a uniform distribution between 0 and 1, (1 – u) is also considered to be 

uniformly distributed and the simulated wind speeds can be obtained using equation (3.6) 

[31]. 

                     (3.6) 

In brief, the following two steps summarize a random Weibull distribution simulation for 

obtaining new wind speeds:  

1. Generate u~U(0,1)   

2. Return v = c [–ln u]
1/k

   

The second random variable contributing to a variable R, that is, system losses can be 

identified for its probability distribution using histogram and probability plot techniques 

(as done for wind speeds). For a normal or lognormal distribution of system losses, the 

respective distribution parameters, that is, mean and variance can be obtained from 

historical records. These parameters can be used to simulate new set of system losses 

through Monte-Carlo simulation technique; a technique used to model a phenomenon 

with uncertainties in the input which rely on repeated random sampling for computation 

of results. 

After obtaining simulated losses and wind speeds, the net hourly generation PNet(h) from a 

wind farm comprising NT wind turbines can be calculated using equation (3.7). 

                      (3.7) 

Where Pout is the electrical output from a single wind turbine given by equation (3.8), 

where A is the turbine swept area (m
2
); ρair, the air density (kg/m

3
); Cp, the power 

coefficient (percent); and v is hourly simulated wind speed (m/s) obtained using equation 

(3.6). 

     
 

 
          

(3.8) 

And Tloss is the sum of the total simulated losses, calculated using equation (3.9). 

                                          (3.9) 

Where loss1… lossn are the system losses, such as, turbine generator unavailability, 

transmission losses, and wake-induced losses, all measured as percentages. 
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The modeled electrical generation or R value over a year is the summation of the net 

hourly generations, as shown in equation (3.10). 

          

    

   

 

(3.10) 

The mean and variance values for a discrete and normally distributed R are given by 

equations (3.11) and (3.12), respectively. 

   
 

    
  

    

   

 

(3.11) 

  
  

 

    
             

 
    

   

 

(3.12) 

 

For a lognormally distributed R, natural logarithm of mean and variance values must be 

obtained. The standard deviation is calculated by taking square root of the variance. 

3.3 Modeling the L Value 

In RL, load can be either normally or lognormally distributed [15]. Since an energy 

system’s load is independent of wind speed and losses; simulating an energy load only 

requires a study of historical load trends of the jurisdiction. Since normal and lognormal 

distributions are closely related to one another, a probability plot is preferred over a 

histogram as it becomes difficult to separate the two based on histogram alone. To 

identify normal or lognormal distribution for system load through a probability plot, 

following steps are used [27]: 

1. Let the data be determined by a random variable X having N number of data points, 

which can be denoted by xn (for n = 1,2…N). Sort these values in ascending order 

such that x1 ≤ x2… ≤ xN. 

2. Check for each values of xn > 0 for n = 1,2…N. If any negative value or a zero value is 

encountered, a lognormal distribution cannot fit the data. If all values are positive, 

then go to step 3.  

3. All the positive data points are then transformed by taking natural logarithms and will 

form the ordinate axis of the probability plot.  
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4. An empirical cumulative probability is then calculated for each sample size of N 

points using equation (3.13). 

                for          (3.13) 

where pn is the cumulative probability for the n
th

 ordered value. 

5. The abscissa is constructed from the normal scores, z(p). The normal scores for N data 

points can be obtained by taking the inverse of CDF of the standard normal 

distribution. 

6.  The lognormal probability plot is then constructed from the points {z(pn), ln[xn]}. 

The data points for the plot would fit a normal and lognormal distribution if a straight line 

pattern is observed. A linear regression analysis using least square method can provide a 

quantitative measure of the goodness-of-fit and is represented by R
2

PP. A higher R
2

PP 

value is used to choose between a better fit of distribution. A normal probability plot can 

be constructed by not transforming the data points, which is, by not taking natural 

logarithms. 

For an identified probability distribution, its respective distribution parameters, that is, 

mean and variance can be obtained which are used for simulating a new load for a given 

year. The mean of a set of numbers x1, x2, …. xn is denoted by    and is called arithmetic 

mean. A sample mean is calculated from observations obtained by sampling a statistical 

population, using equation (3.14). 

  
     

         

 
 

(3.14) 

Where n is the number of observations for a variable x. 

If a series of observations is sampled from a larger population or from a probability 

distribution which gives the probabilities of each possible result, then the probability 

distribution can be used to construct a ―population mean‖ (µx), which is also the expected 

value for a sample drawn from this probability distribution. For small samples the two 

means may differ from each other, but the ―Law of Large Numbers‖ states that larger the 

size of the sample, the more likely it is that the sample mean will be close to the 

population mean [32]. 

http://en.wikipedia.org/wiki/Sampling_(statistics)
http://en.wikipedia.org/wiki/Statistical_population
http://en.wikipedia.org/wiki/Statistical_population
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Variance is used as a measure of how far a set of numbers are spread from the expected 

value (or mean). If a random variable X has a mean value µ, then the variance of X for a 

population of size N is given by equation (3.15). 

   
 

 
        

 

   

 

(3.15) 

A normally distributed load is an example of a probability distribution for which a simple 

closed form expression does not exist, as possible in the case of the Weibull distribution 

where inverse transformation technique could be directly applied (for example, see 

equation (3.5)). To simulate a normal distribution for known mean and variance 

parameters, it is necessary to use numerical methods for inverse transformation technique 

[33]. For simulating a normally distributed load, the Box and Muller transformation 

algorithm can be used [34]. 

For simulating a lognormal distribution, random variates are generated based on the fact 

that, if Y is normally distributed with mean µ and variance σ
2
, then e

Y
 is lognormally 

distributed with parameters µ and σ
2
 [35]; the algorithm can be written as, 

1. Generate normally distributed Y with mean µ and variance σ
2
  

2. Return X = e
Y
 

After obtaining the simulated load (normally or lognormally distributed), the total load 

(or L value) at the end of a year can be obtained from the summation of the hour load 

using equation (3.10) and replacing PNet(h) with Lh (hourly simulated load). For a discrete 

and normally distributed L, the mean and variance can be obtained using equations (3.11) 

and (3.12), replacing R with L, PNet(h) with Lh and µR with µL. Variations in load 

(increasing or decreasing) for a given year can be addressed by calculating new values of 

µL and σ
2

L to indicate the expected change. 

For a lognormally distributed L, natural logarithm of mean and variance values should be 

obtained. The standard deviation is calculated by taking square root of variance value.  

3.4 Calculating Probability of R > L 

For any system, the reliability or probability R > L can be defined using equation (3.16) 

[36]. 
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(3.16) 

where ƒRL(r,l) is the joint (bivariate) distribution of R and L , which can also be written as 

equation (3.17) [15]. 

                                     (3.17) 

The reliability can be estimated by numerical integration, but requires knowledge of 

ƒRL(r,l), which may be difficult to estimate due to the large amount of data required to 

form a bivariate histogram and then to fit a joint distribution to it. Instead, the joint 

distribution can be simplified to equation (3.18) assuming R and L are independent of 

each other [15]. 

                          (3.18) 

With this, ƒR(r) and ƒL(l) can be estimated separately, which requires less data than 

ƒRL(r,l); the new reliability is given by equation (3.19). 

           

 

   

 

  

                 
(3.19) 

If R and L are distributed normally or lognormally, the event [R > L] is same as [15], 

1. [R-L > 0]  for normal distribution 

2. [R/L > 1]  for lognormal distribution 

 

For a normal distribution of R and L, the mean and variance are given by equations (3.20) 

and (3.21), respectively.  

         (3.20) 

  
    

    
  (3.21) 

where X denotes R-L. For simulated values of R and L, the system reliability can be 

estimated using equation (3.22). 

                            
  

  
  (3.22) 

where φx is standard normal cumulative distribution function and σ is the standard 

deviation. 
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Similarly, for a lognormal distribution of R and L, the mean and variance are given by 

equations (3.23) and (3.24), respectively. 

               (3.23) 

    
      

      
  (3.24) 

Where X denotes R/L. The system reliability can be estimated (for simulated R and L 

values) using equation (3.25). 

         
 

 
                         

    

    
  

(3.25) 

Equations (3.22) and (3.25) are the reliability equations and indicate the probability of R 

> L. The probabilities or value of φX can be obtained from normal distribution probability 

tables [15]. 

3.5 Summary 

This chapter identified wind speeds, system losses and load as the three random variables 

for a wind-energy system. It showed how their probability distributions could be analysed 

through historical data using analysis tools such as histograms and probability plots. 

Wind speeds can be represented using Weibull distribution, while load and losses through 

normal or lognormal distributions. The steps for calculating respective distribution 

parameters and simulation steps for replicating the random variables were discussed; it 

was shown how values of R and L could be obtained. Finally, the probability of R > L 

was determined by substituting the mean and standard deviation values of R and L into 

the reliability equations. The implementation of the method is presented through a case 

study performed on a wind farm and its results are discussed in the following chapter. 
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CHAPTER 4 CASE STUDY 

This chapter demonstrates the application of the forecasting method and the RL technique 

through a case study of a wind farm located in, and supplying electricity to, the City of 

Summerside, Prince Edwards Island, Canada. The wind farm has 12 MW installed 

capacity and comprises of four Vestas V-90 wind turbines, each rated at 3 MW. The 

chapter begins with an identification of probability distributions of random variables by 

analyzing wind speeds and load using monthly data and yearly data, respectively. 

Simulated values of generation and load (that is, R and L) are produced using historical 

records from 2006 to 2009 for the year 2010 which are compared with real-time data 

from Summerside wind farm for verification purposes. To forecast reliability for a year in 

future, R and L values are simulated using data from 2006 to 2010 and reliability 

equations are then implemented. The chapter concludes by calculating an expected 

reliability (or probability of R > L). The case study is implemented in Microsoft Excel 

2007.  

4.1 Verifying the Forecasting Method 

Before employing the method to forecast future R and L values, it was necessary to verify 

it. This was done by backcasting the expected values of R and L for 2010 using historical 

data from 2006 to 2009 and comparing them with the actual 2010 values. With limited 

wind farm data (the Summerside wind farm began operation at the end of 2009), local 

wind speeds (2006-09) and system losses (approximate values) were used to estimate 

wind farm output R, while hourly historical load (2006-09) was available from 

Summerside. 

Hourly wind speeds for 2006 through 2009 were obtained from Environment Canada’s 

online climate data website and were analysed for their probability distributions. The 

wind speeds are a two-minute average, sampled every five seconds at the end of each 

hour and are measured at an elevation of 10 m above ground level [37]. From the 10 m 

data, the wind speed for a given height can be calculated using equation (4.1) [38], 

                (4.1) 

where v is the wind speed at a higher elevation h and vref is the reference wind speed at a 

given height href (in this case, 10 m). The exponent α is the wind-shear and typically 
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assumed to be 0.2 [38].  The turbines at Summerside have a hub height of 80 m, the value 

of h. 

An analysis of wind speed data for identification of the probability distribution was 

conducted for each month; sample results for February 2008 are displayed using a 

histogram and probability plot in Figure 4.1 and Figure 4.2, respectively. 

 

Figure 4.1 Wind speed histogram for February 2008 

 

Figure 4.2 Probability plot for February 2008 
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An R
2

PP ≤ 0.9850 and deviation from the trend line implied a Weibull distribution. The 

distribution parameters c and k for February 2008 were calculated using equations (3.3) 

and (3.4). Linear regression analysis was applied to study the line-of-fit (LoF) plot for 

estimating c and k values. The value of R
2

LoF (0.9867) indicated a good fit between actual 

data points and predicted data points. Figure 4.3 displays the results for Weibull 

parameter calculations.  

 

Figure 4.3 Results for Weibull parameter calculations for February 2008 

Similar wind speed data analysis was performed for all the months from 2006 through 

2009 and a four-year average of Weibull parameters was calculated for each month 

(monthly results of wind data analysis are displayed in Appendix A of the thesis). This 

was necessary to study historical wind speed data distribution and an average of 

distribution parameters was required to simulate future wind speeds that could possibly 

occur for 2010. For known values of c and k, wind speeds for 2010 were simulated every 

hour using Excel’s inbuilt random generator and equation (3.6). 

System losses were estimated from a wind-integration study conducted by the Nova 

Scotia Department of Energy; the losses and their respective values are shown in Table 

4.1. 

Table 4.1 Losses and their approximate values [26] 
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Type of Loss Value 

WTG Unavailability (loss1) 3% 

Collection and Substation Unavailability (loss2) 0.5% 

Electrical and Transmission Loss (loss3) 2% 

Utility/Grid Unavailability (loss4) 0.5% 

Icing and Blade Degradation (loss5) 3% 

Wake Induced Turbulence Loss (loss6) 5% 

 

The lack of wind-production data made it necessary to assume a normal distribution for 

the losses; system losses were also assumed to be constant for verification purposes. 

The output from a single wind turbine, Pout, was calculated using equation (3.8), with the 

hourly simulated wind speeds v and Vestas V-90 specifications for A (6,362 m
2
), ρair 

(1.225 kg/m
3
), and CP, power coefficient values corresponding to a given wind speed v 

[39]. The total system losses Tloss were calculated using equation (3.9), while the net 

hourly generation PNet(h) was obtained from equation (3.7). The final R value was reached 

using equation (3.10); Table 4.2 gives a result comparison. 

Table 4.2 Verifying R value (N.A. – Not available; n.a. – Not applicable) 

Parameters 

2010 

Summerside 

Data (Actual) 

2010 

Simulated 

Results 

Percent 

Error 

Maximum wind speed (m/s) N.A. 37.36 n.a.
 

Peak generation (MWh) 11.69 11.82 1.1% 

Total yearly generation [R value] (MWh) 30,278 30,323 0.14% 

 

The L value for 2010 was simulated using distribution parameters calculated from a 

historical load trend analysis of the loads from 2006 to 2009. Histogram and probability 

plots were used for load data analysis; Figure 4.4 shows a histogram plot for load data. 
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Figure 4.4 Load histogram for 2007 

Since the histogram has a zero value, load follows a normal distribution because a 

lognormal distribution cannot have a negative or zero value. Table 4.3 lists the results of 

load data analysis and their corresponding histograms and probability plots are shown in 

Appendix B of the thesis. 

Table 4.3 Type of distribution from load data analysis 

Year Type of 

distribution  

Explanation 

2006 Normal  Indicates zero value in histogram plot 

2007 Normal Indicates zero value in histogram plot 

2008 Normal Based on probability plot with higher goodness-of-fit for 

normal distribution R
2

PP = 0.9701, than lognormal R
2

PP = 

0.9566 

2009 Normal Indicates zero value in histogram plot 

 

The distribution parameters, mean and variance, were then calculated and a four-year 

average of the parameters was used to simulate a load using Excel’s random generator to 

obtain hourly values for 2010. Table 4.4 gives a comparison of the forecast results with 

the actual data from Summerside. 
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Table 4.4 Comparing the actual and forecast L value for 2010 

Parameters 

2010 

Summerside 

Data (Actual) 

2010 

Forecast 

Results 

Percent 

Error 

Peak load (MWh) 22.1 23.5  6.4% 

Total yearly load [L value] (MWh) 120,440 118,804 -1.4% 

 

The difference in peak load values showed an error of 6.4%, while the R and L simulated 

values indicate an error of less than 2% of the actual data for 2010, which meant that the 

steps employed in the forecasting method can be considered acceptable pertaining to 

Summerside’s wind speed and load data. 

4.2 Calculating Probability of R > L Using Reliability Equations 

Probability calculations for R > L can be performed for any given year. The RL technique 

can be employed to compare the performance of wind-energy systems over the years if 

historical values of R and L are available, while simulated R and L values can be used to 

calculate an expected reliability. The operating conditions for a year in future may 

change, such as, an increase or decrease in load or wind farm capacity, or both. These 

variations can be addressed by recalculating the values of distribution parameters µR, σR 

and µL, σL for R and L, respectively.  

For demonstrating the RL technique, the probability of R > L is calculated using five 

years of historical data from 2006 through 2010 for wind speeds, system losses and load 

to forecast R and L values for a given year, say 2011. No expected variations in load and 

wind farm capacity have been assumed for this example. The five-year average of 

monthly Weibull distribution parameters were obtained for simulating new wind speeds; 

Table 4.5 lists those scale and shape parameters. 
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Table 4.5 Five-year average of monthly Weibull parameters for 2006-2010 wind data 

 

Month 

Scale 

Parameter 

(c) 

Shape 

Parameter 

(k) 

January 9.59 1.75 

February 9.34 1.89 

March 9.67 1.76 

April 9.80 1.85 

May 8.98 2.18 

June 8.29 2.07 

July 7.81 2.31 

August 7.2 2.15 

September 8.32 1.99 

October 8.85 1.80 

November 9.18 1.78 

December 10.95 1.79 

 

As no historical record was available for losses, a normal distribution was assumed, while 

the loss values from Table 4.1 were taken as the mean. Using the mean values, Monte-

Carlo simulation technique was applied which helped to simulate system losses and to 

study the uncertainties associated with them. Standard deviations were calculated by 

assuming three different values of Coefficient of Variation (CoV), 5%, 15%, and 25% 

[40]. To study the variations in system losses, the Monte-Carlo simulations were 

performed for the year 2011 at hourly intervals.  

Of the six categories of losses listed in Table 4.1, loss2 and loss4 (substation and grid 

unavailability, respectively) were not included in Monte-Carlo simulation as their mean 

values are close to zero (~0.5%) and CoV is usually defined for non-zero means, hence 

they were assumed constant. Table 4.6 provides a summary of the Monte-Carlo 

simulation results and expected R values obtained using simulated wind speeds and losses 

for 2011. 

Table 4.6 Monte-Carlo simulation results and the expected value of R 
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Parameters 
CoV 

5% 15% 25% 

Maximum possible loss value (%) 14.7 17.6 19.9 

Minimum possible loss value (%) 11.9 9.4 7.2 

Peak wind farm output (MWh) 11.69 11.46 11.93 

Total yearly generation R (MWh) 30,453 30,275 30,271 

Mean [µR] (MWh) 3.47 3.45 3.45 

Standard deviation [σR] (MWh) 3.40 3.38 3.38 

 

The load data for 2010 followed a normal distribution and a five-year average of load 

distribution parameters (from 2006-2010) provided mean and standard deviation values of 

13.61 MWh and 2.90 MWh, respectively. These values were used for simulating a new 

hourly load for 2011 using Excel’s inbuilt random number generator. The simulated L 

value obtained at the end of the year was 117,824 MWh.  

The analysis showed that both the R and L simulated values were found to have a normal 

distribution. For normally distributed values of R and L, the probability of R > L was 

calculated from equation (3.22) and normal distribution probability tables were used for 

the corresponding values of standard normal cumulative distribution function, φX. The 

mean (µR) and standard deviation (σR) values used for R are listed in Table 4.6 for 

different CoVs; while for L, the values were µL=13.59 MWh and σL=2.93 MWh. The 

probabilities were calculated for 100%, 75%, and 50% of load and the results are listed in 

Table 4.7. 

Table 4.7 Expected probability of R > L for a given year 

CoV 5% 15% 25% 

Load 100% 75% 50% 100% 75% 50% 100% 75% 50% 

µX -10.12 -6.53 -3.53 -10.14 -6.55 -3.55 -10.14 -6.55 -3.55 

σX 4.48 4.04 3.70 4.47 4.02 3.68 4.47 4.02 3.68 

P [R > L] 1.2% 5.3% 17.1% 1.1% 5.1% 16.8% 1.1% 5.1% 16.8% 

 

The expected probability of R > L in meeting a full-load is 1.2%, while half-load can be 

met with approximately 17% probability for all CoV values and under similar operating 

conditions. An increase in probability values can be seen a result of reduced load, that is, 

from meeting the jurisdiction’s full-load to half-load. Results for 15% and 25% CoV 

values remained unchanged, indicating that variations in system losses have a less 
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significant impact on wind farm reliability as compared to variations in load. The higher 

probability of R > L reflects greater reliability in meeting a jurisdiction’s load during a 

given year. 

4.3 Summary 

This chapter demonstrated the reliability forecasting method and the application of RL 

technique in calculating the probability of R > L for Summerside wind farm under 

specified operating conditions of wind speeds, system losses and load. The forecasting 

method was first verified by simulating generation and load scenarios for 2010, which 

were compared with Summerside’s real-time wind generation and load data, respectively. 

Small percentage error in R and L values, that is, less than 2%, verified the steps of the 

forecasting method. A five-year average of probability distribution parameters for wind 

speeds and load were calculated from historical data analysis from 2006 to 2010. Hourly 

wind speeds and load were simulated for a year in future, and R and L values were 

obtained. System losses being unavailable were assigned a normal probability distribution 

for analysis purposes. Simulation techniques such as random variate generation and 

Monte-Carlo simulation were employed. For a normally distributed R and L, reliability 

equation (3.22) was used for calculating the probability results. A low reliability (1.2%) is 

forecasted for the wind farm in meeting Summerside’s full-load, while half-load can be 

met with 17% reliability. Further discussion on results in presented in the next chapter. 
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CHAPTER 5 DISCUSSION 

This chapter presents a discussion on the results analysis of the case study performed and 

lists some of the assumptions made. It begins with a recalculation of reliability for an 

anticipated increase in Summerside’s load and its impact on the reliability of the wind 

farm. A justification for the difference in data analysis, that is, monthly data for wind 

speeds and yearly data for load for identifying probability distributions is then presented. 

An hourly comparison of forecasted results with Summerside’s 2010 actual performance 

for R > L hours in meeting its full-load and half-load is also presented. An application of 

the RL technique for estimating number of wind turbines is then described. Such 

information can be useful to wind farm operators to increase their wind farm’s reliability 

to desired levels. The chapter concludes by enlisting the case study assumptions. 

5.1 Results Analysis 

The case study results for the Summerside wind farm showed that the probability of R > 

L being 1.2% for a full-load and nearly 17% for a half-load for all CoV values. Since a 

jurisdiction’s total load can change over time, a sample calculation with a 10% increase in 

Summerside’s load was performed and the probability of R > L was recalculated. Here, 

the increase changed the load distribution parameters µL and σL which were recalculated 

and then substituted in equation (3.22). The probability values declined from 1.2% above 

to 0.8% for the full-load, while half-load could be met with a probability of 14.3%, down 

from 17%. This provided an expected reliability of the Summerside wind farm for an 

anticipated increase in the city’s load in the near future. 

Since wind speeds can show high variability and can be difficult to predict, the 

identification of probability distribution and calculations of Weibull distribution 

parameters were done with 12 separate months of wind data rather than a single year. For 

each month’s analysis, the hourly wind speeds taken from the Environment Canada 

website provided sufficient data points; for example, more than 700 data points that were 

analyzed using histogram and probability plots, and then the distribution parameters were 

calculated.  

On the other hand, load, being less variable than wind speeds, used annual data; the 

histogram and probability plots were drawn for load using 8760 data points and the 
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distribution parameters, that is, mean and variance were calculated for each year. Since 

load is more predictable (for example, morning and evening peak loads), the load data 

analysis was restricted to yearly assessment for identification of its probability 

distribution. Figure 5.1 shows predictability of the peak load during any given day 

obtained for the year 2010, while Figure 5.2 shows the seasonal peak load variations 

during summer and winter months for the same year. The peak load was found to be less 

dynamic and varied within a specified range from 17 MW to 22 MW. A subsequent 

analysis of the seasonal average load for Summerside showed less variation with a range 

of 11.3 MW to 15.5 MW. 

 

Figure 5.1 Daily morning and evening peak load histogram for 2010 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

P
ea

k
 L

o
a

d
 F

re
q

u
en

cy
 (

h
o

u
rs

) 

Time (hrs) 



38 

 

 

Figure 5.2 Seasonal variations in peak load for 2010 

Although wind speeds are best represented using a Weibull distribution, some exceptions 

of normally distributed wind data were observed during the historical data analysis. The 

probability plots for those wind speeds followed a straight-line pattern and indicated 

higher values of R
2

PP; the R
2

PP values exceeded 0.985 which confirmed a normal 

distribution. Table 5.1 gives a list of months that were excluded from the analysis due to 

normality of wind speed data.  

Table 5.1 Normal distribution for wind speed data 

Month – Year   R
2

PP value 

May 2007 0.9875 

July 2009  0.9884 

September 2009  0.9863 

December 2006  0.9877 

 

Figure 5.3 and Figure 5.4 show a normally distributed wind data for December 2006 

through a histogram and a probability plot, respectively. 
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Figure 5.3 Normally distributed wind data histogram (Dec-2006) 

 

Figure 5.4 Probability plot with R
2

PP ≥ 0.985 (Dec-2006) 

The probability results (that is, the percentage values) cannot be considered equivalent to 

the number of hours (or time) in a year when the wind farm output would exceed the 

load; rather, the results should be interpreted as follows: a lower probability indicates a 

limited number of wind output hours exceeding the load, while a higher probability 

indicates more hours of excess generation. Table 5.2 shows the forecast of hourly supply 

versus full-load results compared with Summerside wind farm performance during its 

first year of operation. According to the definition, a wind-energy system can be 
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considered reliable only for P[R > L] (see equation (3.16)), while the failure is defined as 

P[R ≤ L], that is, an unreliable system [36].   

Table 5.2  Comparison of supply versus load hours (full-load) for 2010 

Criteria Actual 2010 

Hours 

Forecast Outcome 

Hours Time Probability 

R < L  8509 8612 98.3% 98.8% Unreliable 

R = L  1 0 0% 0% Unreliable 

R > L  250 148 1.7% 1.2% Reliable 

 

The reliability results forecast for Summerside showed a probability of R > L of 1.2%, 

which corresponds to 148 hours (or 1.7% of the time) when wind generation exceeds the 

load. A higher percentage would have indicated more number of hours with excess of 

wind-generated electricity, or in other words, greater wind farm reliability. Reasons for 

lower reliability of the wind-energy system can be attributed to a low annual mean 

generation from the wind farm (approximately 3 MW) when compared with 

Summerside’s average load (approximately 13 MW) per year. Table 5.3 gives an hourly 

comparison of the forecasted performance where excess wind-generation could meet 

Summerside’s half-load more reliably (with nearly 17% probability), that is, for 1876 

hours (or over 21% of the time).  

Table 5.3 Comparison of supply versus load hours (half-load) for 2010 

Criteria Actual 2010 

Hours 

Forecast Outcome 

Hours Time Probability 

R < L  6902 6884 78.6% 82.9% Unreliable 

R = L  0 0 0% 0% Unreliable 

R > L  1858 1876 21.4% 17.1% Reliable 

 

Hourly comparisons such as this can be useful in studying the short-term availability of 

wind-generated electricity which can provide information to a wind farm operator to plan 

for the import or export of electricity as needed. To improve its energy security, the city 

of Summerside is also connected to West Cape supply (a wind farm having 9 MW 

installed capacity) and can purchase electricity from New Brunswick Power (a power 

utility company), when needed. This dependence on other resources for electricity is 

indicative of the uncertainty associated with wind energy (or an energy source). 
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Since hourly historical load data was available from 2006 through 2009, the wind farm’s 

2010 generation was also compared with different loads from these years. This was done 

to estimate how the wind farm would have performed over these years for a given 

Summerside load, had it been operating since 2006. The reliable hours of wind-electricity 

(that is, R > L hours) were found to be 297, 217, 192 and 179 hours from 2006 to 2009, 

respectively. A decreasing number of hours of reliable wind-generation were a result of 

consistent rise in Summerside’s load since 2006; but, a high value of 250 hours of excess 

generation for 2010, up from 179 in the previous year, indicated an overall reduction in 

energy consumption during 2010. The 2010 L value at the end of the year was 120.4 

GWh, down from 122.4 GWh during 2009. Such a variation reflected the uncertainty 

involved in the end-user demand (or energy services). 

The number of iterations performed for simulating system losses using the Monte-Carlo 

technique were done for 8760, 26280 and 43800 values, which is equivalent to one, three 

and five years of hourly data points, respectively. The variations in losses simulated over 

the three time periods showed negligible variations, hence 8760 iterations were chosen 

for the case study. Also, the final probability results were similar for 15% and 25% CoV 

values which demonstrated that variations in system losses, one of the random variables, 

had less significant contribution towards reliability results as compared to variations in 

the load; hence, choosing one year of iterations was considered a reasonable choice. 

The probability results are anticipated values indicating expected annual performance of 

the wind farm which has been designed to operate under a defined set of conditions, such 

as expected wind speeds, load, and system losses. The contribution of these results can be 

useful in studying wind energy projects which have been proposed with significant 

installed capacity and large number of wind turbines. Such projects usually provide 

information on the percentage share of the energy mix that would be met using wind-

generated electricity, but often fail to address how reliable a wind farm would be in 

meeting a jurisdiction’s load. It is necessary from the viewpoint of energy security to 

have an estimated reliability of a wind-energy system which employs a variable source of 

energy, instead being entirely unaware of its potential performance: the higher the 

probability value, the greater is the wind-energy system’s reliability. 
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5.2 Applications of the RL Technique 

The RL technique can be useful in determining additional number of wind turbines 

required to improve wind farm’s reliability. For example, to achieve reliability (that is, 

P[R > L]) value of 75%, a new mean generation µR should be calculated to estimate 

additional number of wind turbines. For a normally distributed R and L, new µR value can 

be calculated using reliability equation (3.22), for which the inputs, such as P[R > L] 

values over 50% can be obtained using student-t distribution table for corresponding α 

value (representing probability percentage) and ν (representing degrees of freedom) [42]; 

and σR can be substituted in terms of µR using a CoV value obtained from Table 4.6. For 

example, a sample calculation for 60% reliability (up from the current 1.2%) in meeting 

Summerside’s full-load would require 12 additional wind turbines, assuming each rated at 

3 MW or an additional capacity of 36 MW to its existing generation. 

The application of the RL technique is not limited to wind energy. A jurisdiction may 

employ multiple energy sources where estimating the overall reliability of an energy 

system holds greater significance than reliability of one energy resource. The forecasting 

method can be applied to any energy source that is random in nature, such as, wind or 

solar and their expected generation can be combined with the generation of other sources 

such as oil, natural gas and coal to obtain a new mean value µR—the total generation from 

all energy sources. The new mean can be used to find a jurisdiction’s energy system 

reliability against a modeled load (or µL value) by calculating the probability of R > L 

using reliability equations. Hence the wide applicability of RL analysis is an advantage to 

energy security as it can be combined with different energy sources, either renewables or 

non-renewables, or both. 

5.3 Case Study Assumptions  

The reliability forecasting method using historical data analysis and application of the RL 

technique presented has limitations which required assumptions being made due to 

limited data availability.  

For example, missing hourly wind data from the Environment Canada datasets were 

handled in one of the two ways:  
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1. A block of up to five consecutive hours of missing wind data were assigned an 

average wind speed of the previous and next hour value. Using average wind speeds 

for missing wind data have been applied and suggested in [41]. 

2. A block of more than five consecutive hours of missing wind data was considered as 

non-existent. Assigning an average value for a greater number of hours was rejected 

due high variations of wind speeds; hence, the histograms and probability plots were 

drawn with only available monthly wind data. Table 5.4 gives a list of months of 

missing wind data from 2006 through 2010. 

Table 5.4 Missing wind speed data (2006-2010) 

Month – Year Available 

wind speeds 

(hrs) 

Missing 

wind speeds 

(hrs) 

January 2006   688 56 

March 2009   654 90 

April 2008  686 34 

May 2008   0 744 

May 2009   738 6 

September 2008  708 12 

November 2010  714 6 

 

Limited data availability from Summerside meant that it was necessary to use system 

losses from the Nova Scotia Wind-Integration study report. These losses were assigned a 

normal distribution and their variance values were calculated using different CoV values; 

the final results being similar for 15% and 25% CoV. Data availability would have helped 

analysing the probability distribution for system losses as done for wind speeds and load.  

5.4 Summary 

This chapter presented a discussion on the case study results obtained for forecasting 

reliability for Summerside wind farm. Monthly historical data of wind speeds and yearly 

data for load was used for identification of probability distributions. Wind speeds are 

generally represented using a Weibull distribution, but some exceptions of normal 

distributions were observed; those months were excluded from the analysis. An hourly 

comparison of generation and load forecasted values showed an excess of wind-generated 

electricity for 148 hours in meeting a full-load and  for 1876 hours in meeting a half-load 
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for Summerside. Reliability of the wind farm was also calculated for an anticipated 10% 

increase in load which further reduced the probability of R > L to 0.8% from the current 

1.2% for a full-load. An application of the RL technique was used to estimate number of 

wind turbines that could make Summerside wind farm more reliable; an additional 

capacity of 36 MW can increase its reliability value to 60%. Some assumptions were 

considered to address the missing wind data from Environment Canada website. Due to 

limited data availability from Summerside, system losses were taken from Nova Scotia 

Wind-Integration study report. Next chapter presents the concluding remarks for the 

thesis. 
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CHAPTER 6 CONCLUSION 

The challenges of addressing energy security and climate change are expected to drive the 

growth of renewable-based electrical generation. Wind energy is now considered by 

many as one of the possible solutions to counter these challenges. As a result, worldwide 

growth in wind energy is expected to increase as more wind turbines are installed to meet 

the demand for clean electricity.  

Despite this, wind energy has risks and uncertainties that need to be addressed, perhaps 

the most significant being that due to its variability, it cannot be considered as a reliable 

source of energy for meeting an electrical load. Such uncertainty raises concerns 

regarding the ability of wind-energy systems to contribute significantly towards a 

jurisdiction’s energy security. 

Given the need for reliability in wind-energy systems, the contribution of this thesis has 

been a method intended to forecast an expected reliability while simultaneously 

addressing the uncertainties of wind, wind turbines, electrical network (including losses), 

and load. The method is a combination of a forecasting method and a risk-based 

technique: the forecasting method is used to model future generation and load (or R and 

L) scenarios through simulations, while the RL technique, a risk-based approach for 

calculating reliability of systems—either engineering or non-engineering—was 

introduced to energy security.  

The method begins with an identification of random variables—or the sources of 

uncertainty—within a wind-energy system whose values can change with time; they were 

identified as wind speeds, system losses and load. Random variables are generally 

represented using probability distributions, for example, normal, lognormal or Weibull. A 

correct identification of a probability distribution is important for addressing the 

uncertainties of a system; an incorrect identification can produce wrong reliability results 

that can be detrimental to energy security. Graphical analysis tools, such as, histograms 

and probability plots can be used for identification purposes. Since normal, lognormal and 

Weibull distributions possess similarity of curves, a rigorous test using probability plots is 

necessary to separate these distributions. A higher R
2

PP value can be used; usually, an 

R
2

PP value of 0.95 or more indicates a normal distribution, but an R
2

PP value of over 0.985 
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can also be selected. Wind speeds, losses and load were analysed for their probability 

distributions using historical data records. Histograms provided a visual identification, 

and probability plots were used to study the best-fit of a distribution for a given data set. 

Using these analysis tools, the objectives of identifying the random variables and their 

corresponding probability distributions was achieved.  

Following this identification, the probability distribution parameters were obtained. A 

Weibull distribution is represented through its scale c and shape k parameters, while 

normal or lognormal distribution through its mean µ and variance σ
2
. Based on the fact 

that a Weibull Cumulative Distribution Function (CDF) can be rearranged to represent the 

straight line equation, its parameters (c and k) were calculated using the line-of-fit plot 

which employed linear regression analysis technique. For normal or lognormal 

distributions, the parameters, that is, its mean and variance were obtained from historical 

data analysis. For a large data set, for example, yearly data with 8760 observations, the 

arithmetic mean was considered similar to population mean based on the principle of 

―Law of Large Numbers‖; and in case of limited data availability and for a known mean 

value, a Coefficient of Variation (CoV) was assumed. With this, the objective of 

obtaining the probability distribution parameters was met.  

To forecast reliability of a wind-energy system, future generation and load (or R and L) 

scenarios must be simulated. A variable wind output is a function of wind speeds and 

system losses, while the load can be considered independent of them. To model an R and 

L value, the random variables, that is, wind speeds, losses, and load were simulated using 

simulation techniques, such as, random variate generation and Monte-Carlo simulation. 

All simulations were done using Microsoft Excel 2007 software. Simulating hourly wind 

speeds required Weibull distribution parameters, a uniform distribution obtained using 

random variate generation, and inverse transformation technique. For normally 

distributed system losses, Monte-Carlo simulation technique was used to generate hourly 

values; while Excel’s inbuilt random generator was used for simulating an hourly load. 

Using these hourly scenarios the final R and L values were obtained at the end of the year. 

Hence, the objective of replicating the random variables and obtaining the simulated R 

and L values was achieved. 
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A wind-energy system can be considered reliable only when its generation exceeds the 

load (or R > L). To achieve the final two objectives of the thesis, that is, verifying the 

forecasting method and to calculate the reliability of a wind-energy system, a case study 

was done on Summerside wind farm; a 12 MW wind farm which began operating since 

October 2009 and supplies electricity to the city of Summerside (meeting its residential 

and industrial load).  

To verify the forecasting method, historical records of the three random variables, that is, 

wind speeds, system losses and load were obtained from 2006 to 2009 using which the 

new values of generation and load were simulated for 2010; Summerside provided the 

real-time hourly data for the same year. After identifying the probability distributions—

Weibull distribution for wind speeds and normal distribution for load and losses—their 

respective probability distribution parameters (as a four-year average) were calculated. 

Hourly simulated wind speeds were generated, while losses were assumed constant for 

verification purposes, and a simulated R value was obtained for 2010. A summation of 

hourly simulated load provided the final L value at the end of the year. The result 

comparisons of actual and simulated R and L values showed an error of less than 2%, and 

the objective of verifying the forecasting method was achieved.  

Using this forecasting method and five years of historical data from 2006 to 2010, future 

R and L values were simulated. A five-year average of Weibull distribution parameters 

for simulating wind speeds and Monte-Carlo technique for simulating losses were used to 

obtain a future R value. The L value was simulated using Excel’s random generator for 

which the inputs—five year average of mean and standard deviation—were used. The R 

and L values were found to be normally distributed and reliability equation (3.22) was 

used to calculate reliability (or probability of R > L) which was obtained using normal 

probability distribution tables. The probabilities were calculated for full-load, 75% load 

and half-load; and the results were 1.2%, 5.3% and 17.1%, respectively. An hourly 

comparison of forecasted values showed an excess of wind-generated electricity for 148 

hours that could reliably meet a full-load and 1876 hours to meet a half load. With this, 

the objective of calculating an expected reliability of a wind-energy system achieved. 
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An application of the RL technique was also used in forecasting the reliability of 

Summerside wind farm with an anticipated increase in load. A 10% increase in 

Summerside load was assumed for the future which changed the load distribution 

parameters. The new mean and standard deviation values were obtained and reliability 

was recalculated. The new reliability results showed a probability of R > L at 0.8% which 

declined from the current 1.2% in meeting Summerside’s full-load.  

An additional number of wind turbines were also calculated using the RL technique. For a 

desired reliability and a known load, a new mean generation value was obtained. A 

sample calculation for 60% reliability of the wind farm in meeting Summerside’s full-

load was performed which resulted in an additional 36 MW capacity requirement or 12 

new wind turbines assuming each rated at 3 MW.  Such results can be useful to wind farm 

operators to estimate how many more wind turbines are actually needed to improve their 

wind-energy system’s reliability and to what levels.  

At present wind energy only constitutes a small share of the current energy mix. As 

indicative from the results, it is yet to prove itself in terms of reliably contributing 

towards energy security and also towards climate change. Due to the risks and 

uncertainties involved, forecasting reliability of wind-energy systems will remain the 

prime concern as the growth of wind energy continues in the future. Also, as stated by 

North American Electric Reliability Corporation (NERC) future bulk power systems 

would require an application of both—probabilistic methods and risk analysis 

techniques—a reliability forecasting method such as the one presented is a combination 

of these approaches. 

Many wind energy projections only focus on additional installed capacities to be added in 

the future, but lack information on how well those wind farms will actually perform 

against a given load. As a result, these projections tend to overlook the uncertainties and 

the risks involved in energy source (wind variability) and the dynamism of energy 

services (variable load). Adding wind energy by setting up wind farms worldwide cannot 

guarantee an equivalent supply of reliable wind-electricity, hence, it will be important to 

have knowledge about the potential performance of wind-energy systems. This generic 

method can be applied to forecast any wind-energy system’s reliability with available 
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historical data for wind speeds, system losses and load. With the information on 

reliability forecasting of wind-energy systems, the world can look forward to a more 

secure energy future and simultaneously respect environmental concerns, or in other 

words, counter the twin challenges of energy security and climate change. 

6.1 Limitations of the Method 

The availability and access to risk-analysis software can be a limitation. The kind of 

reliability assessment presented here is generally performed with the help of 

commercially available risk-analysis packages. These packages have inbuilt capability to 

identify the probability distributions and generate random numbers that results in using 

lesser number of equations while also reducing the simulation time. Due to such features, 

the risk-analysis packages can be expensive and usually have limited access, unless 

purchased. The easy applicability of the method described in the thesis can be seen from 

the fact that Excel software which is widely available to many users can also be used to 

demonstrate the reliability forecasting method employing the RL technique, when access 

to expensive software can be problematic. The lower percentage error verified the steps, 

the equations used to demonstrate the reliability forecasting method, and the acceptability 

of Excel software for this study. 

To implement the reliability equations, R and L must have similar probability 

distributions, both normally distributed for equation (3.22) and lognormally for equation 

(3.25), as the simulated data may result in change of the probability distributions of R and 

L. Following the simulations, the forecast values for R and L must be verified for their 

correct probability distributions using histogram and probability plots before applying 

them to reliability equations. The possibility of a change in probability distribution is high 

in the case of R value which is obtained by simulating two random variables at the same 

time, that is, wind speeds and system losses, using Excel’s built-in random number 

generator and Monte-Carlo simulation, respectively; while in the case of the L values, the 

required probability distribution can be specified beforehand—as normal or lognormal—

an inbuilt capability of Excel software. The RL analysis application will fail if a 

difference in probability distributions of R and L occurs. 
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6.2 Future Work 

In addition to the work presented above, several enhancements can be made in the 

following ways: 

1. With an expected know value of wind-generated electricity, a jurisdiction can 

evaluate its actual greenhouse gas reductions possible over a given year. 

2. With hourly information available on wind-generated electricity from a wind farm, 

some applications, such as charging of electric vehicles and storing wind energy (in 

ETS units for space heating) can be better planned.  

3. Another possible future work using this approach can be helpful in forecasting 

reliability of solar-energy systems which also involves a renewable and variable 

source of energy. 
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APPENDIX A Historical Wind-Data Analysis Results 

Additional results on the probability distribution identification of historical wind data 

(2006-2009) through histogram and probability plots are shown in this section. A 

histogram only provides visual identification, while a probability plot is constructed to 

confirm the best-fit for a Weibull distribution.  

Including each month’s wind data analysis results of the past four years would have 

resulted in large number of histograms and probability plots, hence, this has been 

addressed by selecting three different months from each of the previous four years; Table 

I gives a brief summary. 

Table I Historical year and months selection for wind data analysis results 

Year Months 

2006 January, February and March 

2007 April, May and June 

2008 July, August and September 

2009 October, November and December 

 

Each month’s result analysis includes a histogram and its corresponding probability plot. 

Any R
2

PP value of more than 0.985 rejects a Weibull distribution and confirms normality 

of wind speed data. 
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Figure I and Figure II show wind data analysis for January 2006 hourly wind speeds. 

 

Figure I Histogram for January 2006 wind speeds 

 

Figure II Probability plot for January 2006 wind speeds 
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Figure III and Figure IV show wind data analysis for February 2006 hourly wind speeds. 

 

Figure III Histogram for February 2006 wind speeds 

 

Figure IV Probability plot for February 2006 wind speeds 
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Figure V and Figure VI show wind data analysis for March 2006 hourly wind speeds. 

 

Figure V Histogram for March 2006 wind speeds 

 

Figure VI Probability plot for March 2006 wind speeds 
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Figure VII and Figure VIII show wind data analysis for April 2007 hourly wind speeds. 

 

Figure VII Histogram for April 2007 wind speeds 

 

Figure VIII Probability plot for April 2007 wind speeds 
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Figure IX and Figure X show wind data analysis for May 2007 hourly wind speeds. 

 

Figure IX Histogram for May 2007 wind speeds 

 

Figure X Probability plot for May 2007 wind speeds 
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Figure XI and Figure XII show wind data analysis for June 2007 hourly wind speeds. 

 

Figure XI Histogram for June 2007 wind speeds 

 

Figure XII Probability plot for June 2007 wind speeds 
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Figure XIII and Figure XIV show wind data analysis for July 2008 hourly wind speeds. 

 

Figure XIII Histogram for July 2008 wind speeds 

 

Figure XIV Probability plot for July 2008 wind speeds 
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Figure XV and Figure XVI show wind data analysis for August 2008 hourly wind speeds. 

 

Figure XV Histogram for August 2008 wind speeds 

 

Figure XVI Probability plot for August 2008 wind speeds 
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Figure XVII and Figure XVIII show wind data analysis for September 2008 hourly wind 

speeds. 

 

Figure XVII Histogram for September 2008 wind speeds 

 

Figure XVIII Probability plot for September 2008 wind speeds 
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Figure XIX and Figure XX show wind data analysis for October 2009 hourly wind 

speeds. 

 

Figure XIX Histogram for October 2009 wind speeds 

 

Figure XX Probability plot for October 2009 wind speeds 
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Figure XXI and Figure XXII show wind data analysis for November 2009 hourly wind 

speeds. 

 

Figure XXI Histogram for November 2009 wind speeds 

 

Figure XXII Probability plot for November 2009 wind speeds 
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Figure XXIII and Figure XXIV show wind data analysis for December 2009 hourly wind 

speeds. 

 

Figure XXIII Histogram for December 2009 wind speeds 

 

Figure XXIV Probability plot for December 2009 wind speeds 
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APPENDIX B Historical Load-Data Analysis Results 

Results for probability distribution identification of historical load data (2006, 2008, 2009 

and 2010) are shown here. Yearly data has been used to draw histograms and probability 

plots. A negative or a zero value will reject a lognormal distribution. Figure XXV shows 

the histogram for the year 2006 implying a normally distributed data. 

 

Figure XXV Histogram plot for 2006 load data 

Figure XXVI shows a histogram plot for the year 2008 load data.  

 

Figure XXVI Load histogram for year 2008 
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Since the histogram (above) shows all positives values, probability plots were drawn to 

study the best-fit for the data distributions between normal and lognormal. A higher R
2

PP 

value was used to select the best-fit between the two probability distributions. Probability 

plot for a lognormal fit showed an R²PP value of 0.9556 (see Figure XXVII), while it was 

0.9701 for a normal fit (see Figure XXVIII); hence, a normal distribution was selected for 

year 2008 load data. 

 

Figure XXVII Porbability plot of a lognormal fit for 2008 load data 

 

Figure XXVIII Porbability plot of a normal fit for 2008 load data 
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Load data analysis for the year 2009 and 2010 indicated a zero value in histogram plots 

(see Figures XXIX and XXX, respectively) implying a normal distribution.  

 

Figure XXIX Histogram plot for 2009 load data 

 

 

Figure XXX Histogram plot for 2010 load data 
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APPENDIX C Qualitative Risk Analysis 

Continuing from the background chapter of the thesis, a detailed risk analysis on the four 

risk categories is presented below. 

C.1 Manufacturing Risks 

With the growth of wind industry, little concern is now being given towards quality 

control as manufacturers focus on mass production to meet the demand for new wind 

turbines [43]. Successful working of wind turbines is essential to ensure reliable operation 

of a wind farm. Many wind energy projects, onshore and offshore, have been affected by 

the risks surrounding the industry. A reason being that various flaws develop with wind 

turbines; some of them occurring at the manufacturing stage itself. The list below 

indicates some flaws that can lead to failure of wind turbines to generate electricity, 

putting energy security at risk [43]: 

1) Cracks sometimes can appear soon after manufacturing, specifically in blades, 

2) Mechanical failure because of alignment and assembly error is common, 

3) Electrical sensors may fail due to sudden power surges, and 

4) The hydraulic braking system causes problem, although non-hydraulic braking system 

is more reliable. 

Manufacturing and installation risks for wind turbines are explained in detail through the 

following sub-categories. 

C.1.1 Shortage of Raw Materials 

The risk that wind turbine industry faces at the manufacturing level is the possible 

shortage of raw materials and consequently, their rising costs; for example, the rise in cost 

of some commonly used materials like steel, copper and permanent magnets that are 

important for manufacturing wind turbines. This can result in wind turbines and 

eventually, wind power becoming expensive. A study conducted by German Energy 

Agency in February 2005 found that increasing the amount of wind power could increase 

consumer costs by 3.7 times [44]. Tables II and III give a comparison of raw materials 

required for manufacturing different rating of wind turbines.  
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Table II Percentage raw material used in a 1.5 MW wind turbine [45]
 

 Weight 

(%) 

Permanent 

Magnet 

Concrete Steel Aluminum Copper GRP CRP Adhesive Core 

Rotor   

 Hub 6.0   100       

 Blades 7.2   2   78  15 5 

Nacelle  

 Gearbox 10.1   96 2 2     

 Generator 3.4   65  35     

Frame 6.6   85 9 3 3    

Tower 66.7  2 98       

(Total %) 100.0 0.0 1.3 89.1 0.8 1.6 5.8 0.0 1.1 0.4 
Notes: Tower includes foundation. GRP = glass fibre reinforced plastic. CRP = carbon fibre reinforced plastic. Core = 

forms the core of the blade and comprises of balsa wood or low-density polymer foam. 

Table III Percentage raw material used in a 4 MW wind turbine [45] 

 Weight 

(%) 

Permanent 

Magnet 

Concrete Steel Aluminum Copper GRP CRP Adhesive Core 

Rotor   

 Hub 6.0   100       

 Blades 7.6   2   68 10 15 5 

Nacelle  

 Gearbox 10.1   96 2 2     

 Generator 2.7 3  93  4     

Frame 6.6   85 9 3 3    

Tower 67.0  2 98       

(Total %) 100.0 0.08 1.34 89.6 0.8 0.51 5.37 0.76 1.14 0.38 
Notes: Tower includes foundation. GRP = glass fibre reinforced plastic. CRP = carbon fibre reinforced plastic. Core = 

forms the core of the blade and comprises of balsa wood or low-density polymer foam. 

From the tables above, it is evident that steel forms nearly 89% of the total turbine 

weight. Steel goes into every component of the wind turbine and rotor hub comprises all 

steel, irrespective of the turbine size. The size of steel castings for large turbines, 

especially the blade hub units, is one of the manufacturing challenges. The tower also 

comprises largely of steel and adding a tower height of additional 10 meters is 

approximately $10,000 investment. Rising cost of steel has been a concern as prices have 

doubled since 2004 [46]. 

Copper requirement for making generators has been extensive (35% for 1.5 MW turbine), 

whereas for high rating wind turbines this has been replaced by permanent magnets which 

is an advantage because the copper prices have been rising steeply, risen over 200% since 

2004 [46], but the shortage of rare-earth metals for making permanent magnets is a 
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potential future risk. As of 2010, China controls nearly 97% of the world’s processed 

rare-earth metals and is the leading maker of rare-earth permanent magnets [47]. 

Presently, China has reduced a massive 72% export quota for the second half of 2010 

raising concerns for leading manufacturers such as Siemens, Vestas and Goldwind that 

uses Permanent Magnet Generators (PMG) [47]. An estimate of 2,000 kg (4,400 lbs) of 

rare-earth or neodymium (used in making powerful magnets for generators) based alloy 

goes into a high energy PMG for a size of a 3.5 MW wind turbine [47]. 

As wind turbines get bigger in size, so does the turbine weight. Efforts are being made to 

make turbine components lighter and stronger, for example the turbine blades. Small 

turbine blades are made of steel or aluminum, but are heavier [48]. Blades of large wind 

turbines are made from fibre-glass reinforced with polyester or epoxy resin. Lighter 

blades have less material requirement than do other wind turbine components, resulting in 

a lower overall cost. Moving from small wind turbines to multi-MW turbines, fatigue 

resistant performance is extremely important, with designers and manufacturers using 

more of glass or carbon fibre over the traditional polyester fibres [49]. However, the use 

of carbon composites requires more accuracy and increases manufacturing costs [48]. 

Increased prices of other raw materials including acrylonitrile (used in the production of 

carbon fibre) has gone up by 48% since 2004 [46]. Many major turbine manufactures 

produce their own blades and there may not be a shortage of supply at present, but the 

availability and price of carbon fibre—a major sub-component for larger blades—remains 

a problem [46]. 

C.1.2 Risks in Equipment Transportation 

With the growth of wind industry, it has become a common sight to see oversized 

transport loads moving wind turbine components from factory floor to the project sites. A 

basic risk that arises is the handling of these highly sensitive, high-tech and expensive 

components that weigh several tons and extend over 100 feet in length. Apart from 

getting attention from everyday road travelers, transportation of such massive 

components has never been easy and has resulted in project delays, equipment damages 

and even frustration and road-rage caused due to traffic delays.  
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The shipment of equipment can be sea-based, railroad or truckloads depending on where 

the wind turbine is being manufactured and the project site location. According to 

American Wind Energy Association (AWEA), 2008 alone saw an installation of 8,300 

MW wind energy in US, equivalent to 5,000 wind turbines and resulting in an estimated 

40,000 specialized transport hauls. A single turbine can require up to eight hauls – one 

nacelle, one hub, three blades and three tower sections [50]. The project size today is 

getting bigger, for example, projects as big as 4 GW are being planned for the future and 

are expected soon which will increase the transportation requirements across many 

nations. The risks associated with transporting the turbine equipments have resulted in the 

following incidents in the past [50]: 

1) In Idaho and Texas, oversized loads laden with tall turbine parts have slammed into 

interstate overpasses leading to hundred thousand dollar repairs and eventually project 

delays and cargo claims. 

2) States of New York, California and Wisconsin have suffered property damage and 

traffic tie-ups as result of dropped loads and miscalculated turns.  

3) In a severe accident in late 2008, a woman was killed when her mini-van was struck 

by an oversized load carrying wind turbine cargo.  

Wind turbines, already big enough, are expected to get even bigger in future. Some blades 

are already more than 50 yards long and those are reaching the limits of what can be 

shipped on interstate highways and rail cars [50]. The cost of transportation on per turbine 

basis varies from $100,000 to $150,000 and since wind-energy projects are getting 

bigger, the costs are likely to go up [51]. It is unclear whether getting bigger will 

eventually help making us energy secure or not, but more likely, it will be an addition to 

the risks that the industry is already facing. 

C.1.3 Risk of Shortage of Installation Vessels 

The shortage of installation vessels is a prime concern for offshore wind farms as many 

nations are eyeing for mega projects—UK Government’s aim to install 33 GW offshore 

wind capacity by 2020 is an example. In addition to the shortage of transport and 

installation vessels (TIVs), lack of sufficient wind turbines engineered for offshore 

environment, lack of appropriate grid capacity and interconnections, shortage of skilled 
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workers and slow planning process are some reasons that will affect the project 

development [52].  

The installation vessels play an important role in wind farm development as required for: 

1) Transporting wind turbines (3-5 MW range) to offshore locations, 

2) Erecting, installing and maintaining them throughout their service life, and 

3) Finally dismantling them. 

Wind turbines of modest size can be assembled on land and then taken by vessels out to 

sea, but carrying them upright raises stability issues and carrying them horizontally 

requires spacious deck. Wind industry facing a shortage of such vessels has entered into 

the practice of adapting vessels from the offshore oil and gas sector. This leads to further 

risk as the vessels may become scarce whenever oil prices rise and there is a need to 

decommission installations where oil and gas reserves have been fully exploited [52].  

The TIVs are heavy and complex—building one takes years rather than months and the 

investors seek strong assurance of potential profit before commissioning new vessels 

[52]. According to RWE Innogy (a firm for developing renewable energy in Europe), the 

plan towards manufacturing their own installation vessels would help them overcome one 

of the most important supply bottlenecks for constructing wind farms at sea [53]. Hence, 

the risk remains as the availability of vessels may lag behind the demand as more number 

of offshore projects are given green signal in the future. 

C.1.4 Installation Risks with High Voltage Cables 

As most wind farms are usually several kilometers away from the grids, they need to be 

connected through electric cables for power transmission. Offshore wind farms usually 

comprise high rating wind turbines (such as, 5 MW capacity) and are nearly 50-60 km 

away from the shoreline [53]. With more number of turbines getting installed, the 

requirements for electrical equipment increases and installing electric cables are seen as a 

challenge from manufacturing and installation perspectives [53]. HVDC (High Voltage 

Direct Current) transmission is considered more efficient way to transmit power because 

of heavy losses associated with AC (Alternating Current, ie having sinusoidal waveform 

pattern) transmission over any significant distance [53]. As claimed by Narec, ―80% of 
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the problems with offshore installation is the cables because it is very difficult to do it‖ 

indicates the concern with high voltage cable installations [53]. 

The risk involved with cable installation is high [53]. According to Ernst & Young LLP, 

projects are being held up by the shortage of construction vessels and high-voltage cables 

needed to link wind farms to the electricity grid [54]. Hence, the development of wind 

industry still needs to overcome various challenges and will require significant 

innovations to prove itself. 

C.2 Operational Risks 

Loss of production is often the greatest penalty of a wind turbine fault. Operational risks 

range from non-availability of the wind to the downtime of a wind turbine due to 

maintenance requirements. Minimizing operational risks is essential for high reliability of 

wind farms. This section discusses the operational risks that may arise due to any of the 

following reasons. 

C.2.1 Wind Variability 

A significant reason why wind energy is criticized is due to the variable nature of wind 

and becomes a potential risk in terms of failure to generate electricity—the main purpose 

for which wind turbines are installed for. Wind speed variability is a significant factor 

contributing towards a highly variable source of power from a wind farm which depends 

on changing climatic conditions [55]. Wind, does not necessarily blow when it is most 

needed and may not be close to the load centers [56]. As more wind capacity is added to 

the electrical network, wind reliability becomes a critical issue.   

Weather forecasting is useful as it can help the grid operator to schedule for the 

fluctuations of wind generated power by bringing in thermal generation or relying on 

pumped-hydro, but, on the other hand an inaccurate forecast can create havoc and cause 

wholesale prices to spike erratically [56].  

C.2.2 Gearbox Failure Issues 

Wind turbine gearbox failures have been a concern and the industry has been trying to 

improve gearbox reliability—a major and expensive component of wind turbines.  

Gearboxes, which are designed for a lifetime similar to that of wind turbines, have yet to 
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achieve the goal of surviving at least twenty years. Higher than expected failure of 

gearboxes (happening within three years after installation) are adding to the cost of wind 

energy [57]. Being a massive metal component, gearbox housings and shafts tend to bend 

due to changing winds and these deflections result in damaging gearbox bearings and 

affecting gear alignments [57]. Due to this, the lighter-built bedplates on which the 

gearboxes are mounted, the strength of which is affected by changing winds, aggravates 

the problem of early gearbox failures [57]. This kind of uncertainty is making wind 

turbines costlier since turbine manufacturers add large contingencies to the sales price to 

cover the warranty risk due to the possibility of premature gearbox failures [58]. 

A possible solution to gearbox failures is seen in using direct drive systems. Enercon 

claims that gearless, direct drive, variable speed technology is the way forward for the 

large turbines [59]. In direct drive systems, wind rotor hub is attached directly to the ring 

generator, which is carried on an axle having just two roller bearings, thus avoiding the 

multiple bearings and gears of competing products. 

C.2.3 Generator Failure Concerns 

With the wind turbine’s ongoing problems with gearbox failures, the problem of 

generator failures has added another concern for the industry. According to North 

American Wind Service Alliance, a network of independent wind energy equipment 

repair shops, widespread failure of generators in American wind farms is becoming an 

increasingly serious issue [60]. It has been observed that generators in wind turbines still 

under warranty fail as often, if not more so, than those in older units. Quality issues have 

been reported with some of the designs along with mechanical wear on bearings, which to 

an extent, is considered behind generator failures [60].  

The potential risk seen beyond failures is the shortage of generators for wind turbine 

retrofits, with almost no supply to the aftermarket third-party, repair industry [60]. The 

urgent need to overcome this risk is that the manufacturers get on top of the problem 

otherwise these failures will continue to add large sums to wind farm operation and 

maintenance costs. The price tag for a generator varies from $80,000-$120,000, while 

hiring a crane to lift multiple units can go up to $40,000 [60]. 

C.2.4 Maintenance Risks 
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Wind turbines must be available to generate electricity when the wind blows and it can 

happen only if the turbines are properly operated and maintained. Maintaining wind 

turbines is a major work including, working with machine tools, cranes, electricity, 

performing heavy mechanical repairs and working at height, which is all potentially 

dangerous [61]. Working on wind turbines is risky, and requires improved awareness of 

safety on the job. Following is a list of safety measures that should be kept in mind to 

mitigate risks during maintenance work [61]. 

C.2.4.1 Working with Cranes  

Before starting the maintenance work, a complete list of actions must be planned and 

discussed with all the workers, staff and operators (crane operator in this case). To make 

sure that the maintenance is done safely, the crane operator must have similar work 

experience, should understand the instructions clearly and if needed, must be aware of 

hand-signals used during the work. An inspection of the crane before starting the job is 

equally important because cranes can fall over resulting in severe damage. 

C.2.4.2 Climbing Gear  

It can be life saver if used properly, but at the same time it is bulky and cumbersome to 

use. If a worker is tied off incorrectly, the damage caused is as bad as not wearing the 

gear at all. It is important to tie off the gear to the tie off points which are approved to 

handle the load. Checking the gear of the fellow technicians is considered a good practice. 

C.2.4.3 Working with Electrical Systems 

Working with electricity on a metal structure is a job of a trained worker. The measuring 

instruments (eg. volt-ohm-meter) leads must be of higher rating than the working voltage 

level. For most of the wind turbines today, 600 volts insulation rating is replaced by a 

1000 volts insulated leads to avoid the unexpected danger of high working voltage levels. 

C.2.4.4 Weather Conditions  

Working on exterior of the wind turbine could be risky in extreme weather conditions. It 

is difficult to work in windy conditions, so climbing from outside should be avoided for 

wind speeds over 40 mph. Maintenance of turbines in colder regions have their own 

limitations. 
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C.2.4.5 Working as a Team  

Working on turbine maintenance is potentially dangerous and working alone should be 

avoided as it can help prevent accidents and injuries. 

C.3 Environmental Risks 

Since wind energy is believed to counter the twin challenges of energy security and 

climate change, certain environmental risks have been associated with it as the side-

impacts of increasing wind energy development, as claimed by environmentalists, various 

environmental groups and public. Some of these issues, not as big as component failures, 

do exist and are getting more attention with the rapid development of wind industry. 

Efforts are being made to address these problems through proper sitting, public education 

and with the use of improved technology, but the outcomes remain uncertain if the focus 

of the industry is not brought on these issues [62]. Some environmental issues are listed 

below. 

C.3.1 Wind Turbine Noise 

Source of wind turbine noise can be subdivided into mechanical and aerodynamic noise, 

of which noise due to gearbox and generator is comparatively less than the noise created 

by turning of blades. School of Medicine at University of Washington which conducted a 

detailed study, concluded that, apart from high frequency noise from mechanical 

components, wind turbine noise has infrasound component (sound below audible level) 

that could influence the physiology of the ear [63]. In most studies of wind turbine noise, 

low-frequency noise is neglected on the basis that the sound is not perceptible, but fails to 

take into account that Outer Hair Cells (OHC) are stimulated at the frequencies that are 

not heard [63]. 

C.3.2 Bird and Bat Killings 

A major environmental risk has been seen in killing of birds and bats as a result of 

collision with the structure or getting killed by the rotating blades. Many believe that 

killing of birds by vehicles, collision with tall buildings and from power transmission 

lines is much greater than killings from wind turbines, but adding another source of avian 
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killer is more of a concern. Research is being done on these issues and some of the 

findings are as follows [64]: 

 Wind farms kill millions of birds round the world, and high mortality rate of raptors is 

a particular concern. 

 Wind farms that fall in line of migratory routes are more dangerous and those which 

do not; they may come under that category because migratory routes can shift but 

wind sites cannot. 

 Collision probability models have been studied and rotor hub is found to be the most 

dangerous part rather than the rotor speed. 

 Observations have revealed that wind turbines can cause changes in (anti predator) 

behavior of squirrels interfering with their normal life. 

Bat killings by wind turbines have been known since 2004, with the assumption that their 

killing is similar to that of birds. An examination of 188 hoary and silver-haired bats 

killed at a wind farm in southwestern Alberta in Canada between July and September 

2007 showed no external injuries, as was expected, had the bats been smashed by the 

blades. The reason of killing was bursting of blood vessels in the lungs caused by air 

pressure difference due to spinning blades, rather than any sort of contact with them [65]. 

A research done at University of Calgary found that increasing the turbine height 

increases the bat killings exponentially [65]. Compared to killing of the birds, bats cannot 

withstand sudden pressure drops created by rotating blades as their blood capillaries are 

much weaker than that of birds, resulting in filling of lungs with fluids and blood. 

C.4 Financial Risks 

Energy comes for a price and its affordability becomes a prime concern in a situation 

where energy prices are not stable. Financial risks can be considered in two ways—first, 

investing huge sums of money for a technology that stands on a risky edge with the 

probability of incurring a loss and second, the risk of rising cost of wind electricity borne 

by the consumers. These risks can be explained on several basis like, high cost of 

equipment, frequent failures, turbines not producing output (during non-availability of 

wind), high maintenance costs, problems of integrating wind electricity, and need for 
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sufficient backup. All these actions are driven by monetary investments and a technology 

that still needs to prove itself, its worth asking—are we putting the money at risk? 

Harnessing wind energy involves large sums of money. Wind turbines, is where the 

majority of the money is invested—in manufacturing, operating and maintaining them 

throughout their service life. Other expenditures include connecting wind farms to the 

grids and providing backup during low or no wind periods. The sudden expansion of 

wind industry with limited manufacturers in the market has already made itself one of the 

fastest multi-billion dollar industry in a short span of time. With growth expected to 

increase further and order books already full for next couple of years, huge investments 

are expected to take place in this sector. Figure XXXI shows the expected future 

investments in wind industry. 

 

Figure XXXI Expected future investment by wind industry [7] 

The investments are expected to increase by more than three times the current level 

within next two decades. With the respect that wind industry is looking towards a huge 

expansion, high investments as shown above puts the industry into a financial risk. With a 

few global manufacturers like Vestas, Seimens, GE (General Electric) and Gamesa, 

whose products are considered reliable than others, have faced troubles with their wind 

turbines in terms of unpredicted failures. The risks discussed in previous sections describe 

what the industry already faces despite its continued growth. The major concern—which 
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will impact not only the manufacturers and grid operators, but consumers as well, is—are 

we ready to lose billions of dollars if the industry fails to perform? 

To overcome the financial risk, it is important that wind industry needs to balance its 

expansion with reliability of its product at the same time. The focus should be more 

towards overcoming the present challenges which can make wind industry better prepared 

for the future, rather than ending in a deep trouble by witnessing frequent failures and 

costly maintenance, when affordability can cause a set back to its further growth. 

 

 

 

 

 

 


