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ABSTRACT

This doctoral thesis extends analytical terramechanic modelling for small light-
weight mobile robots operating on sandy soil. Previous terramechanic models
were designed to capture and predict the mean values of the forces and sinkage
that a wheel may experience. However, these models do not capture the fluctua-
tions in the forces and sinkage that were observed in experimental data.

The model developed through the course of this research enhances existing ter-
ramechanic models by proposing and validating a new pressure-sinkage relation-
ship. The resulting two-dimensional model was validated with a unique high fi-
delity single-wheel testbed (SWTB) which was installed on a Blohm Planomat 408
computer-numerically controlled creepfeed grinding machine. The new SWTB
translates the terrain in the horizontal direction while the drivetrain and wheel
support systems are constrained in the horizontal direction but allowed to freely
move in the vertical direction. The design of the SWTB allowed for a counterbal-
ance to be installed and, as a result, low normal loads could be examined. The
design also took advantage of the grinding machine’s high load capacity and pre-
cise velocity control.

Experiments were carried out with the new SWTB and predictable repeating
ridges were found in the track of a smooth rigid wheel operating in sandy soil.
To ensure that these ridges were not an artifact of the new SWTB a mobile robot
was used to validate the SWTB findings, which it did. The new SWTB is a viable
method for investigating fundamental terramechanic issues.

A series of experiments at different slip ratios and normal loads were carried
out on the SWTB to validate the new pressure-sinkage relationship which explic-
itly captures and predicts the oscillations about the mean values for the forces
and sinkage values for both a smooth wheel and a wheel with grousers. The new
pressure-sinkage relationship adds two new dimensionless empirical factors to
the well known pressure-sinkage relationship for a rigid wheel. The first new fac-
tor accounts for changes in the local density of the terrain around the wheel and
the second factor accounts for the effects grousers have on the forces and sinkage.
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hb Grouser length m

i Slip ratio −−
j Soil deformation m

k Empirical coefficient −−
K Shear deformation modulus m

k̂ Fitting constant −−
kφ Friction modulus N/mn+2

k′φ Dimensionless friction modulus −−
k′a Pressure-sinkage modulus −−
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kc Cohesion modulus N/mn+1

k′c Dimensionless cohesion modulus −−
k′g Pressure-sinkage modulus −−
kp Organic stiffness of peat N/m3

l Length m

lc Contact length m

lqp Surcharge length m

m Mass kg

m̂ Fitting constant −−
Mm Strength of surface mat N/m3

n Sinkage exponent −−
n̂ Fitting constant −−

Nφ Flow value −−
ng Number of grousers −−
p Pressure Pa

q Surcharge Pa

r Radius m

R Resistance N

RMS Root-Mean-Square −−
T Torque Nm

t Time s

V Velocity m/s

Vs Volume of substance m3

Vv Total volume m3

w Width m

W Weight N

z Sinkage m
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αs Empirical relationship to the sinkage exponent deg

γ Weight density N/m3

η Rear of wheel sinkage relationship −−
θ Angle rad

σ Normal stress Pa

σ̄p Mean of the maximum passive stresses Pa

τ Shear stress Pa

Φ Phase shift rad

φ Internal angle of friction deg

ω Angular frequency or velocity rad/s
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CHAPTER 1

INTRODUCTION

In 1997 NASA’s Mars Pathfinder mission featured Sojourner, which was the first

planetary rover to traverse Mars. The mission is hailed as a success because it pro-

vided scientists with valuable information about the Red Planet; also, the mission

lasted for over twelve weeks when the original program was scheduled to last

less than four weeks. The next successful rover mission was in 2004 with NASA’s

Mars Exploration Rovers. These two rovers, named Spirit and Opportunity, have

had their fair share of hardships with the martian terrain. Spirit suffered from

an inoperative front wheel while Opportunity was entrenched in what is now re-

ferred to as the “Purgatory Dune”. However, the Mars Exploration Rovers have

also been wildly successful as they have led to a plethora of scientific discoveries.

They have even won the prestigious Science magazine’s “Breakthrough Of The

Year” in 2004 because Opportunity discovered salty, rippled sediments of an an-

cient shallow sea, and Spirit discovered a rock that once was so drenched it had

actually rotted [Ker04]. With the overall success of these missions many national

and international agencies have begun their own rover programs to explore both

Moon and Mars, such as the collaborative ExoMars program led by the Euro-

pean Space Agency (ESA). Also, Google has partnered with the X PRIZE founda-

tion for the “Google Lunar X Prize” which is a competition for privately funded

teams to land a robot on Moon and have it travel 500 metres over the surface

and send images and data back to Earth. To improve the design, simulation, and

optimization of the planetary rovers used in these missions, high-fidelity wheel-

soil interaction models are needed. Wheel-soil interaction models allow for de-

sign engineers and mission specialist to evaluate and improve the design of these

1
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lightweight mobile robots and more accurately predict their mobility capabilities

on the terrain. Moreover, a combination of multi-body dynamic simulators with

advanced wheel-soil models can also be used to assist the mission specialist in

developing strategies to free entrenched vehicles.

Wheel-soil models are typically based on the work of M.G. Bekker who devel-

oped classical terramechanics in the mid twentieth century [Bek69]. Terramechan-

ics is the study of vehicle-terrain interaction and Bekker’s work focussed on large

wheeled and tracked vehicles such as tanks, trucks and armoured personal car-

riers [Bek69]. His semi-emperical analytical models are still widely used to pre-

dict the ground pressure, sinkage and traction for these large vehicles. In recent

years Bekker’s theories and models have been applied to small lightweight mo-

bile robots, specifically planetary rovers [ID04]. However, Azimi et al. [AHG+10]

concluded that there is still a need for further validation and improvement of

these traditional terramechanic models. One of the features of Bekker’s classical

terramechanics is that it focuses on the mean values of the ground pressure, sink-

age and traction for a vehicle rather than the dynamic or transient effects about

these means. For large-scale vehicles these transient dynamic effects could be

negligible; however, for small lightweight vehicles these effects can play a signif-

icant role in their overall mobility.

To develop and validate advancements in terramechanic models, a single-wheel

testbed was constructed at Dalhousie University. Initial testing with a smooth

wheel in sandy soil revealed an oscillatory pattern in the track of the wheel and

in the measured drawbar pull — dynamic effects not captured by classical ter-

ramechanic models. Figure 1.1 shows the track of a 200mm diameter smooth

rigid wheel operating at a slip ratio of 0.25 with a 48N normal load. Slip ratio

is the difference between the tangential velocity of the wheel and the forward

motion of the wheel, normalized with respect to the tangential velocity. Figure

1.2 compares the corresponding experimental data for this case with simulation

results from a terramechanic model [IMNY07] for drawbar pull when plotted as

a function of time. In Figure 1.2 one will notice that the terramechanic model has

some difficulty predicting the mean sinkage. Such discrepancies are well-known

in the field and some researchers have added correction factors to better align
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analytical solution with the experimental results. For example, AS2TM [AES03],

a commercially available terramechanic model, has several correction factors to

better predict the means, and Meirion-Griffith and Spenko [MGS11] have modi-

fied Bekker’s original theories to better predict the sinkage for the small wheels

used for planetary rovers. Since the mean values can be corrected through empir-

ical and semi-empirical factors, the measured data can be represented in mean-

adjusted form as shown in Figure 1.3, so that the oscillatory pattern about the

mean values can be highlighted and examined more closely. Figure 1.3 clearly

shows that there are oscillations in the measurements that are not accounted for

in the current analytical terramechanic models for a smooth wheel. It appears

that the oscillations in the drawbar pull and the normal force have the same phase

and same low frequency period, suggesting that the oscillations are not random

noise but rather caused by the same phenomena and is likely linked to the repeat-

able ridges found in the track of the smooth wheel. Moreover, the phenomena

is not isolated to a single normal load or slip ratio and was observed by this re-

searcher for other slip ratio and normal load conditions. Since the ridges in the

sand and resulting oscillations in the measured wheel forces are not accounted

for in current terramechanic models and the phenomena is not isolated to a sin-

gle operating condition, further investigation into this phenomena is needed.

Figure 1.1: Track of a smooth wheel operating in loose sandy soil at a slip ratio of
0.25 with a 48N normal load
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Figure 1.2: Sinkage, drawbar pull, and normal force data from the single-wheel
testbed and a terramechanic model [IMNY07] for a smooth wheel with a 48N
normal load operating at a slip ratio of 0.25.

Initial testing of a grouser wheel also showed a repeatable oscillation pattern

which is caused by the grouser-soil interaction. The track of a 200mm diameter

wheel can be seen in Figure 1.4 which clearly shows the repeatable ridges in the

terrain after the wheel has passed. The wheel was operating at a slip ratio of 0.25

with a 64N normal load with 16, 10mm long grousers. Figure 1.5 compares the

resulting experimental data from a single wheel with simulation results from a

terramechanic model [IMNY07] for sinkage, drawbar pull and normal load when

plotted as a function of time. It is apparent that the terramechanic model is again

unable to model the variations about the mean. The oscillations and ridges in

the sand are also not accounted for in the terramechanic model and the present

author has observed that this phenomena is not isolated to a single operating

condition; therefore, further investigation into the phenomena is required.
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Figure 1.3: Mean-adjusted sinkage, drawbar pull, and normal force data from the
single-wheel testbed and a terramechanic model [IMNY07] for a smooth wheel
with a 48N normal load operating at a slip ratio of 0.25.

Given these observations, the objective of this research is to: develop a wheel-

soil interaction model for rigid wheels operating in sandy soil that can better predict

the oscillations observed in the measured data from the single-wheel testbed. The re-

sulting model could be used to assist future designers and motion planners of

lightweight mobile robots, specifically planetary rovers.

This thesis is divided into 7 chapters. Chapter 2 reviews various experimental

setups used to develop and validate wheel-soil interaction models. Chapter 3 re-

views terramechanic models and how an analytical model is implemented in this

research. The chapter also highlights the effect of various parameters found in

traditional analytical terramechanic models. Chapter 4 develops a new dynamic

terramechanic model for smooth wheels operating in sandy soil. Chapter 5 fur-

ther develops this new dynamic terramechanic model for a wheel with grousers
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Figure 1.4: Track of a grouser wheel operating in loose sandy soil at a slip ratio of
0.25
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Figure 1.5: Sinkage, drawbar pull, and normal force data from the single-wheel
testbed and a terramechanic model [IMNY07] for a wheel with 16 grouser, 10mm
long and a 66N normal load at a slip ratio of 0.25.
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operating in sandy soil. Chapter 6 examines a selection of experimental cases

studies and applications for the new model, while Chapter 7 summarizes the re-

sults and contributions.



CHAPTER 2

EXPERIMENTAL EQUIPMENT AND

DEVELOPMENT

This chapter reviews various designs of single-wheel testbeds (SWTB) and pres-

ents alternative implementations based on the work of others. For the purpose

of this doctorial research, a Blohm 408 Plamomat creepfeed machine was con-

verted into a SWTB. The chapter discusses the new SWTB that was designed and

built by the author and a selection of preliminary results for various testing con-

figurations. The chapter ends with some quantification of the new SWTB and

confirmation that observed ridges in the track of a smooth wheel presented in

Chapter 1 are not an artifact of the SWTB.

2.1 Review of Single-Wheel Testbeds

Most SWTB designs share the following characteristics: the terrain is prepared,

confined and stationary while the wheel is rotated and translated through the

terrain [IMNY07, INY09, AWHT03, SID05, IKSD04, ISD02, LHC+10, MRTG06,

BLB05, MFM+07, KTMS06, Ree65]. Figure 2.1 shows a schematic of a conven-

tional SWTB. The conveyance system incorporates an accurate control system to

ensure the speed of the wheel and associated support structure is maintained.

The relatively large translating structure, including wheel, drivetrain, and sen-

sors can make it challenging to simulate the relatively low normal loads which

a rover may experience on Mars or Moon. While a moving counterbalance is

possible, it may add dynamic effects and require larger actuators in the system.

8
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Figure 2.1: Typical SWTB design

A possible design of a SWTB with a counterbalance is shown in Figure 2.2. This

four-bar linkage design is based on images of DLR’s SWTB [MRTG06]. In this

testbed, the entire structure translates in the x-direction along the conveyance

slides. These slides may be ball screws, linear motors or actuators. The motor

and wheel assembly is fastened to the conveyance system by a set of ball joints

and links. On one of these joints a rotary encoder can be installed to determine

the sinkage that the wheel experiences. A counterbalance can be added at the

end of the link to adjust the normal load experienced by the wheel. If the rigid

link is not installed and joints A1,2 and B1,2 are purely rotational then the sinkage

of the wheel and the path of the counterbalance mass follow an arc in the zy-

plane, rather than moving only in the z-direction as desired. For small wheel

sinkage, this arc-effect is minimal and can be neglected; however, if the sinkage

is significant then this arc may need to be accounted for during the analysis. The

arcing sinkage can be circumvented if a revolute and prismatic joint is installed

at points A1,2 and B1,2 and a rigid link connects the back of the FMS housing

to the conveyance mount. This rigid link would need to have a fixed joint on

the back side of the FMS but have a prismatic joint on the conveyance mount at

point C1 which allows the mechanism to translate freely in the z-direction. The

addition of the revolute and prismatic joint with a rigid link would confine the
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Figure 2.2: Counterbalanced SWTB

sinkage to only occur in the zx-plane. A similar arrangement could be done for

the counter balance so that its motion is also confined to the zx-plane. With the

complex joints at points A1,2 and B1,2 one does have to be careful of added friction

forces that could be imparted on the FMS and cause one to misinterpret the force

readings.

Another SWTB implementation is a rotary system, shown schematically in Fig-

ure 2.3. This type of rotary SWTB was used by Mungas et al.[MFM+07] and

Shamah et al. [SARW98]. Instead of using conveyance slides as shown in Figure

2.2, Mungas et al. and Shamah et al. employed a rotary actuator with the terrain

contained in an annulus around the rotary actuator. In this design the wheel is

always skidding slightly and thus it is always experiencing small lateral forces. If

one were to use this SWTB for fundamental terramechanic research, interpreting

forces and torques from this setup may pose a challenge. The contact of the wheel

and soil is not a solitary point but rather a patch ahead and behind the drive axle.

In this configuration, as the wheel rotates, the leading half of the contact patch
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(ahead of the centreline) has its tangential velocity vt lead angled towards the cen-

tre of the SWTB. However, the trailing half of the contact patch (behind the cen-

treline) has its tangential velocity vt trail angled away from the centre of the SWTB.

Figure 3 shows these angles greatly exaggerated for graphical purposes. The net

effect of these two tangential velocities would cancel and result in a tangential ve-

locity that is perpendicular to that of the centreline. However, the displacement

vector of the sand particles under the wheel is far more complicated since they

would experience a change in direction from the leading to trailing halves of the

wheel. As a result the shear component of a terramechanic model can be difficult

to interpret since the shear stress would have a tangential and radial component

with respect to the xy-plane of the terrain as shown in Figure 2.3. Furthermore,

rotation of any counterbalances would impart dynamic effects across the system

that would need to be accounted for. As the system rotates the counterbalance

would try to force the system so that the centre of gravity on either side of the ro-

tary actuator is at the same z-coordinate. As a result the sinkage readings could

be affected. At very low speeds the dynamic effects mentioned may be minimal

and may not be above the resolution of the sensors. These rotary SWTBs are well

suited for concept designs, along with component and endurance testing.

Flippo et al. [FHM10, FM11] developed a SWTB shown in Figure 2.4 called

the Suspension and Wheel Evaluation and Experimentation Testbed (SWEET).

This design employs a wheel which is allowed to spin about its drive axle and

translate in the z-direction. A table positioned below the wheel is controlled by

three omni-directional motors that are 120◦ apart. This actuation setup allows for

the terrain (being supported by the moving table) to translate and rotate in the

xy-plane. The authors mentioned that there is a counter balance system in the

z-direction; however, no details are given on how it is implemented.

The researchers involved with SWEET intend to use it for traction, sinkage,

turning efficiency, compliancy and rolling efficiency studies for various wheel de-

signs in sand. In order to perform testing with sand, the omni-directional motors

must be extremely powerful since the density of sand is between 1200 and 1700

kg/m3 and the mass of a 1.8× 0.5× 0.15m terrain box can reach well over 300kg

with a support structure. Flippo et al. [FHM10] mention that SWEET has the
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Figure 2.3: Rotary SWTB

Figure 2.4: SWTB — Suspension and Wheel Evaluation and Experimentation
Testbed SWEET
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ability to measure forces and torques in a true turn. The researchers also intend

to study sloped terrain using this SWTB.

One could conceive of combining the SWEET design with designs based on

Figure 2.2 [MRTG06]. This concept can be seen in Figure 2.5. The conveyance

system in this case is allowed to move in the x and y-directions and rotate about

the z-axis while the terrain remains fixed. This system would have the potential

to examine extremely complex mobility issues under controlled conditions. To

successfully understand the measurements obtained from such a system would

require copious amounts of studies to understand the complex dynamic effects

that are imparted on the system which were previously mentioned.

Figure 2.5: Possible design of a SWTB

2.2 New Single-Wheel Testbed
The author has access to a Blohm 408 Planomat creepfeed grinding machine

which is extremely rigid and capable of supporting and translating as much as

800kg at rates ranging between 30 and 40,000mm/min. The maximum stroke of

the machine is 950mm and the machine’s Fanuc controller is easily capable of

duplicating experimental velocities and configurations. It was decided that the

grinding machine would be retrofitted to accommodate a SWTB such that the ma-

chine’s table supports and translates the sand while keeping the wheel support

stationary similar to the design use by Flippo et al. [FHM10, FM11].
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The transformation was accomplished by removing the grinding wheel and

associated housing so that the SWTB platform could be installed as shown in

Figure 2.6 and 2.7. The wheel is allowed to move freely up and down in the z-

direction along eight lubricated linear bearings. A linear potentiometer is used

to record the sinkage in the z-direction. To control the wheel rotational speed,

a closed-loop tachometer feedback control system was implemented. A JR3 6-

degrees-of-freedom transducer measured the wheel-soil interaction forces and

associated moments, while a FUTEK torque sensor recorded the wheel motor

torque directly on the geartrains output shaft. A National Instruments PCI-MIO-

16XE-10 board was used in conjunction with LabView to record all of the sensor

data.

Figure 2.6: The new SWTB with a counterbalance

To alter the slip ratio in the SWTB, the translational speed of the terrain was var-

ied, rather than the wheel rotational speed in order to take advantage of the high-

performance characteristics of the grinding machine’s control system. While the

wheel drive system is extremely reliable, the Fanuc controller offers more flexibil-

ity in the testing range without risk of overloading any sensors or drive compo-

nents. The test wheels were driven by a Dynetic Brushed motor that has a rated

torque of 0.155Nm. The motor is directly connected to a 231.59:1 gearhead that
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Figure 2.7: Experimental setup of the new SWTB

has a rated torque of 25Nm and a peak torque of 37Nm. The FUTEK torque sensor

is rated up to 20Nm. A Dynetic 750 series PWM servo amplifier with tachometer

feedback from the back shaft of the motor was used to keep the tangential wheel

speed of 0.1m/s (motor speed of∼3400rpm). This system worked extremely well

as there less than a 0.5% deviation from the specified velocity, even when a dis-

turbance caused by the wheel’s grousers was added. To avoid damaging any of

the drivetrain or sensors the torque output was continuously measured and dis-

played during the test so that an emergency stop could be tripped if the torque

grew beyond the specified safety limit. Figure 2.8 show a schematic of the control

and actuation systems of the SWTB.

To study small normal loads, such as those experienced on Mars or Moon, a

simple counterbalance was added to the SWTB as seen in Figure 2.6 and 2.7. The

velocity and acceleration of wheel sinkage is often taken as quasi-static in plan-

etary rover applications [KTMS06]. It was observed that the wheel sinkage and

corresponding counterbalance motion was slow enough to reasonably assume

that any dynamics associated with the motion of the counterbalance would not
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greatly affect the terramechanic outcomes of the experiments. Moreover, the dy-

namics of the counterbalance can also be modelled by taking advantage of multi-

body dynamic tools such as SimMechanics in MATLAB & Simulink.

Previous SWTBs [IMNY07, INY09, SID05, IKSD04, BLB05] used sand depths

of 12 to 15cm. For this doctorial research, the grinding machine’s high load ca-

pacity was taken advantage of and, therefore, a significantly deeper terrain was

used. A sandbox 172.5cm long by 52.5cm wide by 29cm deep was installed on the

grinding machine’s table. The 29cm of sand negated any wall effects, especially

at high normal loads, so that the terrain could be considered to be infinitely deep

and uniform. To neglect wall effects the normal stress at the bottom of the sand

box should be negligible and to calculate the stress through the depth of the sand

one can use the following equation [Won01]:

σ = po

⎛
⎜⎝1− 1(

1+
( r

z
)2
)2

⎞
⎟⎠ (2.1)

Where po is the surface pressure (F/A) from the contact, r is the radius of the

contact patch and z is the depth below the surface. Using a 7cm diameter contact

patch with an applied force of 19.62N (2kg), the normal stress at the bottom of the

new SWTB is 0.15kPa while other SWTBs can have up to 0.77kPa at the bottom

of their terrain—a percent difference of 136%.

Another advantage of using the Blohm 408 Planomat is that its conveyance

components are already sealed from the abrasive sand by virtue of the machine’s

intended application. Thus, one did not have to worry about spilling sand inside

Figure 2.8: Schematic of control and data acquisition systems
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of the machine and damaging any components while preparing the terrain for an

experiment. Prior to each experiment the terrain was mixed to remove any previ-

ous compaction from the prior run and then the terrain was levelled by dragging

a metal scraper along the edges of the terrain box. The end result was a uniformly

distributed random structure throughout the terrain. There is a trough running

along the outer edge of the terrain box to capture any excess spilled sand from

the leveling process. A sample image of the prepared terrain can be seen in Fig-

ure 2.7. Moreover, the mixing process and terrain preparation would allow for a

initial condition of the terrain density to be similar for each test.

2.3 SWTB Capabilities and Results

To compare how the new SWTB design would replicate various loading condi-

tions a few simplified calculations were carried out that approximated the curved

wheel as a flat plate. The pressure exerted by a static wheel of a full sized rover

(approximately equivalent to NASA’s MER rovers) can be found by using:

prover =
F

A⊙ =
mrovergmars/6

w× l
(2.2)

Where, w and l are the width and projected length of the contact patch of the

wheel. The pressure exerted by a static wheel on the SWTB can be found by using:

pSWTB =
F

A⊙ =
mappliedgearth

w× l
(2.3)

Here, mapplied was varied to replicate various loading conditions and to sim-

ulate different planetary conditions. Figure 2.9 illustrates the ground pressure

imposed by a full sized rover on Earth, Mars and Moon using Equation (2.2).

These pressures can then be compared to the pressures felt by the author’s test

wheel on the SWTB for various loading conditions by changing mapplied in Equa-

tion (2.3). As seen in Figure 2.9, the testing range of the SWTB is quite large and

it is capable of replicating Moon, Mars and (obviously) Earth scenarios.
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2.3.1 Testing and Procedures

Various preliminary studies were carried out to develop a standard experimental

method and to validate the SWTBs capabilities. Figure 2.10, 2.11 and 2.12 show

sample images taken of various rigid wheels mounted on the SWTB traversing

through the sandy soil. Figure 2.10 shows a rigid wheel with 32 grousers of height

10mm operating at a slip ratio of 0.90. It can be seen from this viewing angle that

there is considerable excavation of terrain occurring around the wheel. This ter-

rain material is being transported behind the wheel by the grousers. The resulting

crater that is created has walls approaching the angle of repose of the sand. Fig-

ure 2.11 shows the same wheel near the beginning of the 0.90 slip ratio test. From

this viewpoint, one can clearly see the massive amount of terrain material being

excavated by the grousers. The height of the resulting pile decreases from the ex-

treme level shown in the view as the test proceeds. The initial pileup is an artifact

of the testing procedure which starts each experiment with the wheel resting on

top of the sand. To start the SWTB, the terrain translation and wheel rotation com-

mence simultaneously. The large pile at the start of the test occurs as the wheel

excavates down to its nominal operating condition. These two viewpoints on the
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Figure 2.10: Front view of a rigid grouser wheel operating in sandy soil

SWTB can be used to visually quantify the behaviour and transportation of ter-

rain around the wheel that occurs. Figure 2.12 shows a smooth wheel operating

at 0.00 slip. This view can be used to visually determine sinkage and quantify any

bulldozing effects. It was observed that, for the wheels and the sandy soil used

in this research, there was minimal bulldozing and, therefore, bulldozing models

of Bekker, [Bek69], Hegedus [HU60] or Wilkinson [WD07] were not considered

for the wheel-soil interaction examined in this work.

Figure 2.13 shows the sinkage reading for an entire experiment of a 200mm di-

ameter wheel with 16, 10mm long grousers with a normal load of 48 N operating

at a slip ratio of 0.35. In region A of the graph, the wheel is locked in the stored

position, not touching the sand. The sand is mixed and levelled while the wheel

is in this position. The wheel is then lowered, region B, and allowed to come to

rest on the sand surface, region C. The table translation and the wheel’s rotation

are initiated and the experiment runs in region D. At the end of the run the table’s

motion is stopped but the wheel rotation continues momentarily resulting in an

increase in sinkage at the interface of region D and E. In region E the wheel is

returned to the locked, stored position.
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Figure 2.11: Rear prospective view of a rigid grouser wheel operating in sandy
soil

Figure 2.12: Side view of a smooth rigid wheel operating in sandy soil
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Figure 2.13: Sinkage vs. Time: 200mm diameter wheel with 16 grousers, 9.5mm
long with a normal load of 48N operating at a slip ratio of 0.35

Examining region D of Figure 2.13 one can see that the sinkage levels out to

an average of 15mm about half way through the experiment and continues at

that level for the remainder of the run. It was observed that the SWTBs 950mm

travel is sufficient to achieve steady state for a vast majority of test scenarios.

Region D also shows how the sinkage oscillates due to the presence of grousers.

As the grousers move under the wheel they push the wheel upwards causing

the sinkage to vary slightly. The period of these oscillations is a function of the

space between the grousers and the slip ratio. This oscillation is a similar result

to that of [BLB05, DGD+11] and is not explicitly modeled in the Ishigami et al.

[IMNY07] model that is based on traditional Bekker [Bek69] theory.

The presented data from the SWTB was sampled at 1kHz and post-processed

with a digital second order lowpass filter. The transfer function of the digital filter

in the z-domain is:

G(z) =
2.4 (10)−4 (z+ 1)2

(z2 − 1.956z+ 0.9565)
(2.4)

The filter was created by the butter command and implemented with the filter

in MATLAB. Figure 2.14 demonstrates the filter acting on a hypothetical signal

sin(4πt). The figure presents a simple low frequency sine wave and then the

same sine wave with uniformly distributed random noise of ± 0.5 is plotted as a

function of time. The time vector t is incremented in .001s steps, which is the same
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Figure 2.14: Filter analysis

as the SWTB data. The noisy signal (noise + sin(4πt)) is passed through the filter

(Equation 2.4) and plotted on the same axis. When comparing the filtered to the

original signal, it can be seen that there is no appreciable distortion of the signal’s

magnitude. The root-mean-square (RMS) of the noisy signal is 0.756, the filtered

signal has a RMS of 0.700 which is very close to the original signal which has an

RMS of 0.707. Since this filter removes the noise and leaves the magnitude of a

low frequency oscillation relatively unaffected it can be used to process the data

when examining the low frequency oscillations in the phenomena mentioned in

Chapter 1. The phase shift that the filter imposes on the data can be adjusted

in further post processing when aligning the experimental data with simulation

results.

Using Equation 2.4, Figure 2.15 shows typical experimental results for sinkage,

horizontal, and vertical forces plotted as a function of time for a smooth rigid

wheel and a wheel with grousers. The grouser wheel in the figure has 16, 10mm

long grousers and both wheels are operating at a slip ratio of 0.25 with a normal

load of 48N. One can visually see that the results from the SWTB are very con-

sistent between runs for both cases. There is some natural variation in the initial

conditions (time < 0) but after a few seconds all of the tests converge to a steady

state value for all of the measurements regardless of the initial conditions.
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Figure 2.15: Sinkage, horizontal and vertical forces for a Smooth wheel (Left) and
a grouser wheel (Right) both cases are for a 48N normal load operating at a slip
ratio of 0.25
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2.3.2 Experimental Data

Figures 2.16 to 2.23 present the average values for the sinkage, horizontal (Draw-

bar pull) and vertical forces (Normal force) as well as the 95% confidence inter-

vals plotted as a function of time for the various wheel designs and normal load

cases examined in this thesis. The relatively small confidence intervals in these

figures show that the new SWTB is very consistent for all of the smooth wheel

tests and for many of the cases examined with grouser wheels. The means were

calculated during steady state operation and averaged over 5 individual test runs.

The length of the steady state region varies based on the slip ratio. Since the ter-

rain’s linear velocity is altered to control the slip ratio, the amount of time it took

for the wheel to traverse the 950mm varied. A 0.00 slip experiment lasts a total

of 10 seconds with a steady state region of 2 to 5 seconds, while a 0.95 slip run

takes 207 seconds to complete with over 200 seconds of steady state operation and

over 200,000 data points or samples (sample rate was 1kHz). One will notice that

for a majority of the testing conditions the confidence intervals are very small;

however, for a few tests at the high slip ratios, there are large variations in the

measured data which is caused by the presence of grousers excavating the loose

sandy soil. At these high slip ratios the wheel did not reach a constant sinkage

during steady state, instead the wheel sinkage reached a steady state of increasing

sinkage. This continual increasing sinkage causes the 95% confidence intervals,

which is taken during the steady state region of operation, to be very large. A

confidence interval represents the range at which 95% of the data will fall within

of a subsequent test, during the period of steady state operation. Therefore, dur-

ing a period of a steady state increase, the confidence interval will span the range

of the increase and, as a result, the confidence interval can represent the degree

of the increase during steady state operation. Therefore, the confidence intervals

are not necessarily representative of the amplitude of the oscillations which were

mentioned in Chapter 1.
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Figure 2.16: Mean data from a smooth wheel with a 15N normal load
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Figure 2.17: Mean data from a smooth wheel with a 48N normal load
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Figure 2.18: Mean data from a smooth wheel with a 64N normal load
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Figure 2.19: Mean data from a smooth wheel with normal load of 15N and 16,
10mm grousers
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Figure 2.20: Mean data from a smooth wheel with normal load of 48N and 16,
10mm grousers
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Figure 2.21: Mean data from a smooth wheel with normal load of 64N and 16,
10mm grousers
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Figure 2.22: Mean data from a smooth wheel with normal load of 15N and 32,
10mm grousers
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Figure 2.23: Mean data from a smooth wheel with normal load of 15N and 16,
23mm grousers
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2.3.3 Comparison
A comparison was performed relating the new SWTB to a selection of previously

published work to help confirm that the new configuration and equipment is ca-

pable of high-fidelity terramechanic studies. Ishigami et al. [IMNY07] used a

traditional single-wheel testbed and lunar regolith simulant, equivalent to FJS-1

of Kanamori et al. [KUY+98], and were studying turning maneuvers. The data

from the new SWTB in Figures 2.21, is of a 200mm diameter wheel with 16, 10mm

grousers operating with a 64N normal load. This operating condition is compa-

rable to Ishigami et al.’s results which used a 180mm diameter wheel operating

with a 64.7N normal load and with and unspecified number of 10mm grousers.

Figure 2.24 shows experimental drawbar pull (horizontal force) data from the

new SWTB and similar tests performed by Ishigami et al.. The data from the

new SWTB had a wheel angled at 0◦ while Ishigami et al’s wheel was angled

at 5◦. Since Ishigami et al. were studying turning maneuvers their data is for a

wheel at an angle moving through the terrain. One can see that even though the

conditions are not identical the results show reasonable agreement.
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Figure 2.24: Comparison of published drawbar pull data and experimental draw-
bar pull data from the new SWTB

A comparison to a selection of Ding et al.’s [DGD+11] results to those produced

by the new SWTB is also presented in Figure 2.24. The work of Ding et al. concen-

trated on the determining influence of wheel size, wheel width, grouser height,

number of grousers, grouser inclination angles, vertical load, velocity and mul-

tipass effects. The data in Figure 2.24, which is from the study [DGD+11], is
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of a wheel measuring 314.7mm diameter and 165mm wide with 30, 10mm long

grousers. Moreover, Ding et al. reported periodic tracks which grousers produce

and the oscillations which grousers cause in the measured data. However, Ding

et al. do not explicitly model these fluctuations, rather the data was extensively

filtered to remove the oscillations as they were not the focus of the research. Once

again it can be seen that even though the conditions are not identical the results

show reasonable agreement.

The new SWTB also compares well to the work of Nakashima et al. [NFO+07]

who developed a simulation tool to examine the performance of grouser wheels

for lunar rovers. For all of their wheel designs, slip ratios and normal loads their

experimental Traction Load never exceeded 10N and is very comparable to the

drawbar pull results from the new SWTB for all of the wheel design, slip ratios

and normal loads presented in Figures 2.16 to 2.23.

Experimental values from the new SWTB were also comparable to Bauer et al.

[BLB05] who’s drawbar pull data has been collected and presented in Table 2.1

and did not exceed 12N. Exact details of the wheel were not published beyond

the number of grousers; however, the values are within reason when compared

to the data collected by the new SWTB and presented in Figures 2.19 to 2.23.

Table 2.1: Drawbar Pull from Bauer et al. [BLB05]
Drawbar pull [N]

9 Grousers 0.74 4.98 8.00 9.94 11.03 10.87 11.61
18 Grousers 0.39 3.92 5.95 7.46 7.30 8.56 9.00

slip ratio -0.04 0.12 0.25 0.37 0.48 0.57 0.66

There is no standardized test that can be performed to ensure that a new SWTB

is producing repeatable and “correct” results. However, one can see that the

published values from four different researchers, [BLB05, NFO+07, DGD+11,

IMNY07] are close to the experimental readings from the new SWTB lending

credibility to the new design of the single wheel testbed and the associated data

processing.
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2.3.4 Smooth Wheel Phenomena

As mentioned in Chapter 1 repeatable ridges were noticed in the track of a smooth

rigid wheel when preliminary testing was performed with the new SWTB. Since

all of the test equipment was new, confirmation was required to ensure that the

observed phenomena was not an artifact of the equipment. First the wheel was

measured with a coordinate measuring machine (CMM) to see if the drive axle

and the circumferential centre matched. It was found that the two centres were

within 42μm of each other, and such a small miss-alignment would not cause

such obvious ripples in the sand. Thus, a small micro rover was constructed

to determine if the phenomena was due to the unique arrangement of the new

SWTB.

The 1.6kg micro rover, seen in Figure 2.25, has four wheels. The rear wheels

are powered through a 505.9:1 geartrain allowing the wheels to rotate at 9.5rpm

which was recorded and monitored through an onboard tachometer. The front

wheels are unpowered and rotate freely. The diameter of the front and rear

wheels is 100mm. A rotary potentiometer is connected to a spool and is un-

wound as the rover travels. The signal from the rotary potentiometer is recorded

and used to determine the linear displacement of the rover. The data from the

tachometer and potentiometer were recorded via LabView and then later post-

processed by several custom MATLAB scripts to determine the slip ratio. The

post-processing turns the discontinuous saw-tooth signal from the rotary poten-

tiometer into a continuous increasing function so that the displacement and re-

sulting velocities can be found and the slip ratio can then be calculated. Due

to non-linearities of the rotary potentiometer some error may be incurred at the

transition from 360◦ to 0◦; however, no obvious non-linearities were noticed.

A consistent and repeatable slipping condition was produced by changing the

incline of the sand box to 3.5◦ which produced repeatable ridges in the sand and

a slip ratio of 0.8. An example of these ridges can be seen in the top right image

of Figure 2.25. The fact that these ridges occur during the operation of a powered

rover operating in loose sandy soil confirms that the phenomena is not an artifact

of the SWTB but rather an undocumented phenomena which is independent of

the testing setup. These ridges warrant further investigation into the cause of the
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phenomena and a possible mathematical model to account for them. The data

collected from the new SWTB will be used for the investigation due to its high

precision and repeatability.



37

Figure 2.25: Schematic and photographs of the experimental setup of the micro
rover. Top Left) 0◦ incline; Top Right) 3.5◦ incline sustained operation at a slip
ratio of 0.80; Bottom) Schematic of the experimental setup.
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2.4 Summary

The work presented in this chapter is summarized below:

1. A simple counter balance can add versatility to many SWTBs.

2. Translating the terrain in a SWTB, rather than the wheel support, is a viable

method of conducting terramechanics studies.

3. Over 300 individual experiments were performed on the SWTB, processed

and presented showing good repeatability.

4. The new SWTB results compare well to previously published data.

5. The ripple phenomena observed in the track of a smooth wheel is not a

function of the SWTB as it was confirmed with a micro rover.

The next chapter will review the literature regarding wheel-soil interaction and

the associated modelling techniques which could be used to explain the observed

phenomena.



CHAPTER 3

A REVIEW OF TERRAMECHANICS

Terramechanics is used to examine the wheel-soil interaction for the purpose of

determining the forces and moments acting on the wheels of an off-road vehi-

cle. These models have also been used to evaluate planetary rovers during their

development phase, such as, the European Space Agency’s rover chassis evalua-

tion tool (RCET) [MRTG06, PEA+06] and other high fidelity dynamic simulators

[JGL+03, SGKR10, BLB05]. Terramechanic models are also used to estimate soil

parameters once the vehicle is operational [IKSD04, ID04, HZSA06]. Moreover,

they can be used to assist in mobility control of planetary rovers and other light-

weight mobile robots [IGD99, IMNY07, INY09].

This chapter presents a literature review of relevant information related to

wheel-soil interaction and the associated modelling techniques which are perti-

nent to examining the phenomena presented in Chapter 1. This chapter is divided

into four key sections. The first section presents some of the work done with fi-

nite element methods to describe the wheel-soil interaction. The second section

discusses analytical terramechanic modelling. The next section of this chapter

presents an implementation of an analytical terramechanic model and the fourth

section presents a sensitivity analysis of an analytical terramechanic model for

the various model parameters.

3.1 Finite Element Modelling

Finite element analysis (FEA) is a powerful tool as it allows researchers to exam-

ine endless permutations of a configuration. However, Chiroux et al. [CFJ+05]

39
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identified the fact that FEA has been under-utilized in many engineering situa-

tions, including terramechanics. Due to the increase in advanced soil models and

contact models in FEA algorithms [Hal07, Lew04], more researcher are turning to

FEA in the field of terramechanics. In FEA it is possible to capture the dynamic

effects of the grousers since the full wheel and its contours can be modelled in

addition to the track left in the terrain by the wheel.

3.1.1 Review of Finite Element Work

The FEA work of Chiroux et al. [CFJ+05] focuses on the dynamic interaction

between a wheel and the soil for large rigid wheels, 1.372m in diameter and nor-

mal loads of 5.8 and 11.6kN. Their method provides a discrete time history for

the simulation and models the dynamic behaviour of the wheel-soil interaction.

However, the work concentrated on the stresses and the rebound effects for their

terrain. Their model predicted a 25% rebound of the total sinkage deflection;

however, for their terrain this rebound effect was not observed. Chiroux et al.

[CFJ+05] implemented a Drucker-Prager soil model [DP52] and based their soil

parameters data on “Norfolk Sandy Loam” as defined by Block [Blo91]. Chiroux

et al.’s work is promising and could be used to examine the oscillatory phenom-

ena which exists for the smooth rigid wheel.

Oscillations in the measured data were observed when grousers were present.

Grousers are “paddles” on wheels to provide extra traction and these grousers

can pose potential problems for FEA methods. Many FEA algorithms fail at sin-

gular points which are often referred to as singularities. Dundurs and Comninou

[DC79] say that sudden or abrupt changes in the boundary conditions can lead

to singularities. An example of a singular point in a wheel-soil model could be

the tip of a grouser on the wheel or at the base of the grouser when the blade

joins the wheel as shown in Figure 3.1. At these points the boundary conditions

can abruptly change—especially during the blade’s entrance and exit of the ter-

rain. But this issue is not insurmountable as Sinclair et al. [SBHS09] described

a method for identifying stress singularities by means of numerical divergence

checks with at least three meshes of increasing refinement. However, this mesh

refinement can be a large arduous task for the complex and dynamic wheel-soil

interaction.



41

Figure 3.1: Possible locations of singularities in finite element models of a grouser
wheel-soil interaction.

A way to avoid singular points with the wheel-soil interaction is the use of

Discrete Element Method (DEM) which has the ability to determine microscopic

flows or deformation. DEM is a meshless finite element technique and differs

from from typical FEA, which relies on an structured grid or mesh. The soil

in a DEM analysis is represented as lumped masses; each mass is attached to

its neighbour by a spring and damper and shown schematically in Figure 3.2.

A DEM algorithm solves the series of equations that are constructed from the

interaction of each of the lumped masses and, as a result, the computation time

can be very long. Horner et al. [HPC01] have shown that their high resolution 3D

DEM model of ten million elements can take up to 16000 CPU hours on a state-of-

the-art 256 processor Cray T3E supercomputer. To avoid these high computing

times many researches do not use such high resolution models and opt for lower

resolution 2D models consisting of 944 to 20,000 elements [NFO+07, KSJN07].

Nakashima and Oida developed an algorithm that marries FEA and DEM to

model the wheel-soil interaction [NFO+07, NO04]. The DEM analysis simulates

the wheel-soil interaction while an FEA simulation models the deeper layers of

the soil where the terrain deformation was not as significant. Nakashima et al.’s

model was used for the purpose of simulating different wheel designs for a micro
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Figure 3.2: Schematic of two lumped masses joined in DEM

lunar rover [NFO+07]. The researchers used conventional Coulomb friction for

the tangential forces in the simulation. They claim that no significant difference in

the performance was seen as the friction coefficient was varied. It was stated that

the DEM model was ‘sufficient’ in predicting the nominal operating conditions

of a planetary rover.

Li et al. [LHC+10] constructed a sophisticated DEM model to examine grouser

wheels on lunar soil and gravity. Their model was able to simulate and model the

repeatable ridges which were left in the track of the wheel which were noticed in

their experimental work. Li et al. did not plot their simulated or experimental

forces as a function of time so a clear assessment of the model’s ability to simulate

the fluctuations about the mean measurements remains uncertain. However, the

work shows that DEM has the potential to model the tracks of a grouser wheel.

Recently Schäfer et al. [SGKR10] developed a complex hybrid model which

is named Digital Elevation Model or DEM, not to be confused with the DEM

(Discrete Element Method) methods described above. Schäfer et al. use a mesh

geometry for an arbitrary wheel geometry and computes the stresses for the ge-

ometric wheel-soil interaction. The model is based on an animation technique

developed by Sumner et al. [SOH99]. Schäfer et al. do not report how com-

putationally expensive their technique is; however, their reference, Sumner et al.

[SOH99], reports that a 30 second animation of six wheels can take approximately

125 seconds on Silicon Graphics Power Challenge system with 16 195MHz MIPS

R10000 processors and 4GB of memory running in parallel (or approximately 300

seconds when running in series). Schäfer et. al [SGKR10] showed that their pre-

liminary results were able to simulate the dynamic effects caused by the grousers

in their torque measurements.

The following summarizes the key points from this review of state-of-the-art
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terramechanic finite element research:

1. Chiroux et al. [CFJ+05] have shown that FEA methods can be used to exam-

ine a smooth rigid wheel

2. Singularities can occur with wheels with grousers and Sinclair et al. [SBHS09]

have proposed methods to avoid these singularities.

3. DEM can be used to model the wheel-soil interaction for a grouser wheel

and is capable of modelling the ripples in the track of the wheel [LHC+10].

4. The hybrid method of Schäfer et al. [SGKR10] is able to model oscillations

in the torque measurements.

5. The computation time for a high resolution DEM model can reach 16000

CPU hours on a state-of-the-art Cray supercomputer [HPC01].

6. The estimated computation time for the hybrid method of Schäfer et al.

[SGKR10] can take over 30 minutes to simulate 30 seconds of animation

when operating on 16 CPUs running in parallel on a Silicon Graphics Power

Challenge system.

It appears that DEM or the hybrid method could be used to investigate the oscil-

lations observed in the preliminary results of the single-wheel testbed. However,

the computation time required to carry out an investigation into the oscillations

is prohibitive at this time. Moreover, Wong [Won10] reports that the use of DEM

for the “study of vehicle-terrain interaction is still in its developmental stage” as

there are many developmental and technical issues that need to be addressed

prior for DEM to become the defacto wheel-soil interaction analysis tool. In DEM

analysis there is considerable difficulty representing a soil’s cohesion and adhe-

sion as DEM does not easily model these tensile forces. Zhang and Li [ZL06]

and Asaf et al. [ARS06] have presented methods for modelling these forces but

it is not a trivial undertaking. Since finite element algorithms require powerful

computers to model the wheel-soil interaction, they are not ideal for end users

of motion planning, terrain estimation or multi-bodydynamic simulators. Thus,

analytical terramechanic models based on Bekker [Bek69], Wong [Won01] and
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Reece [Ree65] are still widely used for motion planning, terrain estimation and

multi-body dynamic simulations [DDG+11]. The next section will investigate

these analytical terramechanic models.

3.2 Analytical Terramechanic Modelling

Figure 3.3 presents the forces and stresses that an analytical terramechanic model

calculates. The smooth rigid wheel model described by Bekker [Bek69] assumes

that the pressure p under a wheel is an exponential function of the form:

p (z) = kzn (3.1)

where z is the sinkage, n is the sinkage exponent, and k is an empirical coefficient.

Bekker proposed that the coefficient k has the form:

k =
kc

b
+ kφ (3.2)

where kc and kφ are known as the cohesion modulus and friction modulus, re-

spectfully. Both terms need to be determined experimentally by a Bevameter

[Bek69].

3.2.1 Bevameter Testing

Two tests, a penetration and a shear test, combine to form bevameter testing. Fig-

ure 3.4 (left) shows a schematic of the in-field ring shear test which is used to

determine the shear deformation modulus K and the cohesion c of the terrain.

The test involves pressing a ring with grousers into the terrain and rotating the

ring. The stress-displacement curve can then be determined and the cohesion

and shear deformation modulus can be approximated by this empirical in-situ

testing method. The cohesion c is the y-axis intercept and the shear deformation

modulus K is the first order time constant of the ring-terrain interaction [Bek69].

Figure 3.4 (right) shows a schematic of the penetration system for a bevameter

test [Bek69]. The penetration testing allows one to calculate empirical soil con-

stants kc, kφ and n. The test involves two plates of known dimensions pressed

into the soil, and the pressures and the depth of penetration are recorded. The
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Figure 3.3: Forces and stress acting on a wheel which a typical terramechanic
model calculates

soil parameters kc, kφ and n can be calculated from a minimum of two tests with

two different diameter sized pressure plates, b1, b2. Bekker [Bek69] and Wong

[Won01] have shown that the equations can be written as:

log p1 = log
(

kc

b1
+ kφ

)
+ n log z (3.3)

log p2 = log
(

kc

b2
+ kφ

)
+ n log z (3.4)

These equations would result in two parallel straight lines of the same slope

on a log-log scale; a representation can be seen in Figure 3.5. The exponent of

deformation n can be calculated by taking the tan of αs as shown in Figure 3.5. At

a given finite sinkage (z = 1) the normal pressures of the two plates should not

be equal and one could say that:
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p1 |z=1 =

(
kc

b1
+ kφ

)
= a1 (3.5)

p2 |z=1 =

(
kc

b2
+ kφ

)
= a2 (3.6)

From the above equation there is now two unknowns and two equations which

can easily be solved for and kc, kφ become:

kφ =
a2b2 − a1b1

b2 − b1
(3.7)

kc =
(a1 − a2) b1b2

b2 − b1
(3.8)

Limitations of Bevameter Testing:

The Bevameter method assumes that the terrain is homogeneous within the

depth of interest. However, not all soils are homogeneous and can lead to varia-

tions in the pressure-sinkage lines on the log-log scale. To combat this limitation

is has been suggested by Bekker [Bek69] and Wong [Won01] to obtain kc, kφ, and

n at varying depths. Wong [Won80] has also suggest that one can also use a

weighted least squares method to determine these soil parameters.

Moreover, through empirical experimentation it has been shown that the small-

est plate that should be used is 5cm and typically 10cm is the lower limit. This

size issue creates a problem when trying to determine the values for planetary

rovers whose wheels are often in the lower ranges of the acceptable limits [Bek69,

MGS11].

To combat the issues associated with bevameter testing and parameter determi-

nation researchers have proposed various other pressure-sinkage relationships.

3.2.2 Alternative Pressure Sinkage Relationships

Wong [Won01] presents the following relationship for organic terrain:

p (z) = kpz+
4Mmz2

Dh
(3.9)
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Figure 3.4: Schematic of bevameter: Left) Ring shear; Right) Penetration plates
[Bek69]

Figure 3.5: Log-log representation of the pressure sinkage relationship [Bek69]
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The organic matter stiffness of the peat is considered and captured by the pa-

rameter kp while the strength of the surface mat is modeled by Mm. Dh is the

hydraulic diameter of the contact area. In snow and ice Wong [Won01] states that

the relationship again changes to:

p (z) = pω

[
− ln

(
1− z

zω

)]
(3.10)

where zω defines the asymptote of the pressure-sinkage curve while pω is an

empirical parameter taken as a third of the pressure where the sinkage is 95% of

zω. Reportedly this model had a 95.8% ‘goodness of fit’.

These pressure-sinkage relationships do not help to explain the observed phe-

nomena presented in Chapter 1 for lightweight mobile robots operating in sandy

soil. However, recently in 2011, Meirion-Griffith and Spenko [MGS11] proposed a

modified pressure-sinkage relationship which modifies Bekker’s pressure-sinkage

relationship so that it can be applied to wheels smaller than 50cm in diameter and

a normal load under 45N. The proposed model is:

P = k̂zn̂Dm̂ (3.11)

where D is the wheel diameter and k̂, n̂ and m̂ are fitting constants. The re-

searchers claim that including Dm̂ ensures that the curvature of the wheel is

considered. Meirion-Griffith and Spenko’s hypothesis of including a term that

considers the wheel’s curvature is borne from Bekker’s findings. Bekker states

[Bek69]:

Predictions for wheels smaller than 20 inches in diameter become less

accurate as wheel diameter decreases, because the sharp curvature of

the loading area was neither considered in its entirety nor is it reflected

in bevameter tests.

In rolling wheel tests, the modified pressure-sinkage relationship was found

to have an average improvement of 41.8% when predicting sinkage values. Be-

fore the Meirion-Griffith and Spenko pressure-sinkage model can be used further

work would need to be carried out to assess the model’s applicability in dynamic
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situations as the model was developed through a series of indentation tests and,

at this time, the model has not yet been applied to a slipping wheel.

The well used pressure sinkage relationship proposed by Reece [Ree65] modi-

fies Bekker’s pressure-sinkage relationship to the following form:

p (z) =
(

ck′c + γbk′φ
) ( z

b

)n
(3.12)

Here, k′c and k′φ are dimensionless soil parameters and replace Bekker’s kc and

kφ parameters. Wong [Won01] recommends that for frictionless clay, the k′φ term

should be negligible and for cohesionless sand, the k′c term should be negligible.

These recommendations made by Wong come from reviewing Reece’s original

work [Ree65].

3.2.3 Normal Stress

Wong and Reece [WR67] convert the cartesian pressure-sinkage relationship of

Equation 3.1 to a polar form and describe the normal stress field acting on the

wheel as:

σ(θ) =

⎧⎪⎪⎨
⎪⎪⎩

rnk(cos θ − cos θ f )
n (θm ≤ θ < θ f )

rnk
(

cos θ f − θ−θr
θm−θr

(θ f − θm)− cos θ f

)n
(θr ≤ θ < θm)

(3.13)

where θ f and θr are the wheel sinkage entry and departure angles of the wheel-

soil interaction. These angles are computed by:

θ f = cos−1 (1− z/r) (3.14)

θr = − cos−1 (1− ηz/r) (3.15)

where η is a parameter that relates the measured sinkage to the depth of the track

after the wheel has passed. Ishigami et al. [IMNY07] indicate that the value of η

is a function of the soil properties, slip ratio and wheel surface pattern (grousers).

The present authors have found no predictive analytical solution or method to

estimate a value for η. Therefore, the value must come from experience, estima-

tion, or through physical testing. The angle θm in Equation (3.13) is the angle at
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which the maximum normal stress occurs. Some researchers have approximated

this angle as the mid point between θ f and θr [SID05]. Wong and Reece [WR67]

proposed the following relationship:

θm = (b0 + b1i) θ f (3.16)

where b0 ≈ 0.4 and 0.0 ≤ b1 ≤ 0.3 and i is the slip ratio. The slip ratio i is defined

as:

i =
ωwr−Vx

ωwr
(3.17)

where ωw is the angular velocity of the wheel, r is the radius of the wheel, and

Vx is the translational velocity of the wheel centre. One must also account for the

shear stress acting in the wheel-soil interaction.

3.2.4 Shear Stress

The Janosi and Hanamoto equation as defined in [JH61], which is a modification

of the Mohr Coulomb failure criteria and accounts for the wheel slippage, is of-

ten used to determine the shear stress τ acting along the wheel-soil interface as

follows:

τ (θ) = (c+ σ (θ) tan φ)
[
1− e−j(θ)/K

]
(3.18)

where φ is the internal angle of friction, K is known as the shear deformation

modulus, and j has the form:

j (θ) = r
[
θ f − θ − (1− i)

(
sin θ f − sin θ

)]
(3.19)

where i is the slip ratio (Equation 3.17). The stresses can now be determined and

the forces can be deduced.

3.2.5 Forces

The area integrals of the stresses in the vertical direction yield the vertical force

Fz, while the area integrals of the stresses in the horizontal direction provide the

drawbar pull DP.

Fz = rb
∫ θ f

θr
(τ (θ) sin θ + σ (θ) cos θ) dθ (3.20)
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DP = Fx = rb
∫ θ f

θr
(τ (θ) cos θ − σ (θ) sin θ) dθ (3.21)

3.2.5.1 Drawbar Pull

The drawbar pull (DP) is a common traction performance metric and is the theo-

retical tractive thrust (H) minus any resistance (R) to the motion, such as friction,

towing resistance, compaction and bulldozing resistance [WD07]. The drawbar

pull can be directly computed from the stresses acting on the wheel-soil interface

(Equation 3.21); however, some researchers [EPR+05, Bek69] have used an alter-

native method to calculate the drawbar pull by means of the following equation:

DP = H −∑ R (3.22)

where the tractive thrust H given by the Bernstine-Bekker equation [EPR+05,

Bek69]:

H = A⊙c+W tan φ (3.23)

Where A⊙ is the area of the ground contact, c is the soil cohesion, W is the applied

weight to the wheel and φ is the internal angle of friction. According to Richter

and Hamacher [RH99] the dominant resistance is the Compaction Resistance, Rc

which is defined for a single wheel as:

Rc =
kc + bkφ

n+ 1
bzn+1 (3.24)

Calculating the drawbar pull with Equations 3.22, 3.23 and 3.24 neglect the ef-

fects of slip (Equation 3.17). Lightweight mobile robots, such as planetary rover

that are operating in sandy soil, will have wheels that are slipping. Since slip is

not accounted for in the drawbar pull calculation of Equation 3.22, this style of

analytical terramechanic modelling will not aid in the investigation of the phe-

nomena of the oscillations in the tracks and the measured data of a slipping wheel

in sandy soil.

To determine the feasibility and parameter sensitivity of an analytical model

which accounts for slip, Equations 3.12 and 3.13 to 3.21 were implemented in

MATLAB & Simulink. The following section describes the implementation and
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results of the analytical terramechanic model.

3.3 Analytical Model Implementation

The analytical terramechanic model was designed to model the same physical

scenario as the SWTB so that the full dynamics of the counter balance would not

be neglected. The terramechanic model needs to be solved numerically to predict

the sinkage, drawbar pull and normal force1. The solution methodology used to

simulate the model is as follows:

1. Input all model constants and constraints and prescribe the settled or static

sinkage value (i.e. 2 [mm]) for t = to.

2. Calculate θ f , θr and θm

3. Compute the normal stress value σ(θ) and shear stress τ(θ)

4. Integrate the stress from θr to θ f to compute the forces Fz and Fx.

5. Frictional damping Ff of the system must be applied to the vertical direc-

tion to account for any losses in the system. Sum the forces in the vertical

direction to calculate the sinkage acceleration and then integrate the sink-

age acceleration twice to obtain a new sinkage value for the next time-step

and return to Step 2 with the updated values.

Step 1 of the simulation is carried out within a MATLAB ∗.m file prior to calling

the Simulink ∗.mdl file which computes the remaining steps. Simulation steps

2 through 4 are handled by a Level-2 M file S-Function within the Simulink

model. The important outputs from the S-Function are the wheel sinkage (z),

drawbar pull (Fx) and normal force (Fz). Figure 3.6 shows a simplified schematic

representation of the single-wheel testbed pulley system and the corresponding

Simulink/Simscape representation of the system that computes step 5 of the sim-

ulation methodology. To compute this step one must take the normal force Fz

1In this thesis Normal Load refers to the applied force due to gravity (mg) acting on the wheel
while the Normal Force refers to vertical force which is acting on the wheel due to the terrain and
computed by the terramechanic model.



53

into the Simscape environment with an implementation of the pulley counterbal-

ance system where the masses on either side of the pulley are modeled along

with the pulley itself. As shown in Figure 3.6, on one side of the pulley there is

only the dead weight of counter balance mass. On the other side of the pulley

there is the mass of the SWTB rig and the wheel. A grounded translational

damper block in Simscape attached to the single-wheel testbed rig side accounts

for frictional losses in the vertical direction of the system. The viscous coefficient

for the damper was set to 800 [Ns/m]. The losses modelled by this damper can

come from the linear bearings, linear potentiometer and unaccounted for effects

in the terrain deformation. The normal force Fz from the S-Function becomes

the forcing function acting on the mass of the wheel side of the counter balance.

Simulink/Simscape computes the displacement of the wheel and this displace-

ment is the new sinkage value that is fed back into the soil model S-Function

for the next time-step. One will notice in Figure 3.6 that there is a 1:1 gear-

box and a zero input torque source between the two sides of the pulley in the

Simulink/Simscape model. These blocks were needed to explicitly state the re-

lationship between the two sides of the pulley. One could expand this Simscape

implementation to model a full rover with multiple wheels and degrees of free-

dom and even alter the acceleration due to gravity to simulate Mars or Moon

scenarios.

On average this implementation of the terramechanic model takes 2 seconds to

compute 1 second of simulation data. This 2:1 computation time is on a i7-Q740

laptop computer with 8GB of RAM running Windows 7, and MATLAB/Simulink

is not taking advantage of the multicore processors. In contrast to the speed

of most FEA techniques the 2:1 computation ratio lends itself well to motion

planning, terrain estimation or multi-body dynamic simulators. Next an anal-

ysis needs to be performed using the analytical model to identify any parameters

which may help to explain or model the observed phenomena.
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Figure 3.6: Left – Schematic of the SWTB; Right – Simulink/Simscape representa-
tion

3.4 Model Parameter Analysis

This section examines the sensitivity of selected soil parameters of the analytical

terramechanic model which was implemented with the numerical algorithm de-

scribed in the previous section. The parameters being examined are listed in Table

3.1 along with the values examined. Each parameter was examined by changing

its value while holding all other parameters constant at the “Benchmark”. The

benchmark values are denoted in Table 3.1 with an asterisk (∗). The hypothetical

wheel used in the analysis has a diameter of 200mm and a normal load of 64N.

Figures 3.7 and 3.8 show the sinkage and drawbar pull as a function of slip ratio

for the 5 values studied for each parameter. The normal force remained constant

at 64N for all of the scenarios and slip ratios examined. The purpose of this anal-

ysis is to examine if any of the parameters contained in the terramechanic model

could explain the observed phenomena which was presented in Chapter 1.

3.4.1 Cohesion c

The values of cohesion c were small (0, 0.5, 1.0, 1.5, and 1.75 kPa) and are in

the range for sandy soil conditions [Won01, HK81]. Figure 3.7 shows that as the

cohesion increases the drawbar pull increases and the sinkage decreases for a
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given slip ratio. The trend of the sinkage results is linear as a function of slip

ratio, and the sinkage decreases as the cohesion value increases. The trends for

the drawbar pull results appear to be a function of the slip ratio. The cohesion

of the terrain should be constant during an experiment as it is a fundamental

soil property and, therefore, it is not likely that a variation in the cohesion could

explain the observed phenomena.

3.4.2 Dimensionless Cohesion Modulus k′c
For the range of the dimensionless cohesion modulus k′c values studied (10, 20,

40, 80 and 160), Figure 3.7 shows that trends of the sinkage and drawbar pull

readings between two k′c values are relatively similar as a function of the slip ratio.

This initial examination suggests that variations in the k′c parameter could be used

to model the observed phenomena; however, there is no physical justification as

to how or why k′c can or would be varying while a wheel is moving through the

terrain.

3.4.3 Soil Weight Density γ

The range of the soil weight density γ examined in this sensitivity study is within

the typical range of many sands (12-16000 N/m3) [HK81]. Figure 3.7 shows that

there is a decrease in the sinkage as the density increases, which is intuitive: as

the soil becomes more dense, the harder it is to sink into the terrain. The figure

also shows that at the density increases, there is a small decrease in the drawbar

pull for a given slip ratio and the trends of the result do not vary as a function of

slip ratio.

Density of a granular material can vary if vibrated or shaken—this is how

crushed stone substrates for roadways are compacted prior to paving. It is possi-

ble that there are small vibrations which cause a slight variation in the density of

the loose sandy terrain as a wheel travels over it in the SWTB. This small varia-

tion in the density would result in small variations in the sinkage and the drawbar

pull for a given slip ratio. The results of this sensitivity analysis suggest that small

variations in the density could be playing a role in the phenomena observed in

Chapter 1. Moreover, a change in density compliments the domination of com-

paction resistance which Richter and Hamacher [RH99] identified for planetary

micro rovers, because compaction suggests a change in density.
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3.4.4 Dimensionless Friction Modulus k′φ
The results in Figure 3.7 of the analysis yielded virtually identical results to the

dimensionless cohesion modulus. Thus, it is possible that k′φ could be varying

during an experiment; however, for a given amplitude of oscillation the variation

is dependant on the original value of k′φ and there is no physical reason explaining

how or why k′φ is varying as the wheel travels through the terrain.

3.4.5 Shear Deformation Modulus K

For sandy soils the shear deformation modulus K is very small [HK81, Won01,

ID04]. Figure 3.8 shows that the drawbar pull values of the terramechanic model

is very sensitive to the value of the modulus, while the sinkage exhibits virtually

no variation as the values increase. This decoupling of the sinkage and drawbar

pull results suggest that it can be used to aid in tuning of a terramechanic model

so that the model can estimate the mean values of the sinkage and drawbar pull.

Ishigami et al. [IMNY07, Ish08] proposed four different empirical relationships

which related the shear deformation modulus as a function of the steering angle

(or slip angle) and the terrain. These relationships allowed for increased perfor-

mance to estimate the mean values of the drawbar pull for the new three dimen-

sional wheel-and-vehicle dynamic model. Due to the high sensitivity and the known

use of the shear deformation modulus being used as a parameter to model the

mean values for a terramechanic model, the shear deformation modulus is not

well suited to model the observed phenomena.

3.4.6 Sinkage Exponent n

Figure 3.8 shows that, as the sinkage exponent increases, the sinkage and the

drawbar pull also increase. The variation in the sinkage and drawbar pull ap-

pears to be linearly related to the change of the sinkage exponent. This result

suggests that variations in the sinkage exponent n could be used to model the ob-

served phenomena; however, there is no physical justification as to how or why

n is varying as the wheel travels through the terrain.

3.4.7 Internal Angle of Friction φ

Figure 3.8 shows that the drawbar pull increases as the internal angle of friction

increases. The sinkage exhibits no sensitivity to variations in the internal angle
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of friction for the values studied. Since the sinkage does not vary as a function

of the internal angle of friction, this parameter does not assist in explaining the

observed oscillations in the drawbar pull.

3.4.8 Rear of Wheel Sinkage Relationship η

Figure 3.8 shows that the drawbar pull and the sinkage are highly sensitive to

variations in the rear of the wheel sinkage relationship term η. Ishigami et al.

[IMNY07] stated that the value of η is a function terrain, slip ratio and the surface

of the wheel (grousers). It is possible that variations in η could explain or be used

to model the observed phenomena presented in Chapter 1. However, if one varies

η it is directly linked to the sinkage calculations of Equation 3.15, meaning, it does

not explain how or why the sinkage is changing—only that it is. The root cause

of the phenomena would remain unaccounted for. Moreover, varying η conflicts

with published work, as Iagnemma and Dubowsky [ID04] used experimental

observation and prescribe η to zero for various terrains. Ishigami et al. [IMNY07]

set η at values between 0.9 and 1.1 depending on the operating conditions but

did not mention that it varied during the course of an experiment. During testing

on the new SWTB it was difficult to quantify any variations of η as a function of

time and thus an empirical visual estimation was made for each test case.

Table 3.1: Soil Parameter Examined in Sensitivity Analysis
Parameter Test 1 Test 2 Test 3 Test 4 Test 5 Units

c 0 0.50 1.00∗ 1.50 1.75 kPa
k′φ 10 20 40∗ 80 160 –
k′c 10 20 40∗ 80 160 –
K 0.005 0.01 0.03∗ 0.05 0.06 m
φ 20 25 30∗ 35 40 Degrees
n 0.9 0.95 1∗ 1.05 1.1 –
γ 12000 13000 14000 ∗ 15000 16000 N/m3

η 0 0.15 .5 .75 1∗ –
∗ Benchmark value
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Figure 3.7: Sensitivity Analysis for cohesion c, dimensionless fiction and cohesion
modula k′c, k′φ and the internal angle of friction φ.
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K – Shear deformation modulus

0 0.2 0.4 0.6 0.8 1
0

10

20

30
S

in
ka

ge
 [m

m
]

K = 0.005
K = 0.01
K = 0.03
K = 0.05
K = 0.06

0 0.2 0.4 0.6 0.8 1

0

10

20

30

D
ra

w
ba

r [
N

]

Slip Ratio
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Figure 3.8: Sensitivity Analysis for the shear deformation modulus K, sinkage
exponent n, soil weight density γ and the rear of wheel sinkage relationship η.
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3.5 Discussion of Analytical model

The preceding section outlined a traditional terramechanic model for a slipping

wheel. The basis of this model is one of the most common forms of a terrame-

chanic model for modelling the wheel-soil interaction [Lya10]. Due to it’s macro

scale and speed, the analytical model is well suited for motion planning, multi-

body dynamic simulations and parameter estimation. However, this model does

not explicitly compute nor can it accurately compute the state of stress of a point

within the wheel or the terrain, especially when grousers are present.

Even though the traditional terramechanic model is not able to capture the full

dynamic response, researchers have adapted the model parameters to help esti-

mate the effect wheel grousers have on the mean values of the forces acting on

the wheel. For example, Iagnemma et al. [IBD04] proposed that increasing the

effective radius of the wheel can help account for the presence of grousers. The

rational for this suggestion stems from the fact that, when grousers are present,

the radius at which the shear stress acts is no longer at the wheel peripheral, as

assumed in the smooth rigid wheel model. Rather, the soil is now shearing at

some distance away from the wheel, typical past the grouser length, due to the

presence of the grousers. Ishigami et al. [IMNY07] indicate that the departure

angle (related to η) can be used to help model the grousers. The departure angle

is directly affected by the grousers since a grouser can transport material from be-

neath the contact interface and deposit the material behind the wheel. Ishigami

et al. [INY09] also indicate that the shear deformation modulus K can be adjusted

to represent the effects of grousers on the wheel because grousers will affect the

shear stress. While these methods can be used to help predict the mean values of

the wheel sinkage and forces when grousers are present, the observed dynamic

oscillations still remain unaccounted for. Ding et al. [DDG+11, DGD+08] has

stated that high-fidelity and high-speed simulation systems are a key resource for

designing planetary rovers. Therefore, to improve the fidelity of modelling the

wheel-soil interaction without sacrificing speed, analytical terramechanic mod-

elling will be advanced for this doctorial research.

The values for the soil parameters used in the analytical model throughout

this research were determined as follows: the internal angle of friction and the
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shear deformation modulus were experimentally determined through laboratory

testing to be 28◦ and 0.036m, respectfully. The internal angle of friction was

determined through a series of direct shear test while the shear deformation

modulus was determined through a series of ring shear tests. The unit weight

density of the dry loose sandy soil was measured to be 13734 N/m3 and based

on 5 tests. The rear of wheel sinkage relationship η was estimated through vi-

sual observations during testing on the SWTB and recorded. Many researchers

[Won01, Bek69, ID04] have stated that, for sandy terrain, the sinkage exponent

is or very close to unity; therefore, n has been set to 1. Citing Reece’s original

work [Ree65], Wong [Won01] suggests that for dry, cohesionless sand, k′c should

be negligible; therefore, k′c has been set to zero thus making the cohesion c value

irrelevant. Leaving only the dimensionless friction modulus as an empirical tun-

ing parameter. It was found that the manually tuned value of k′φ = 80 worked

sufficiently well for a majority of the cases studied in this research. These param-

eters are summarized in Table 3.2. The specific sandy soil used in this doctorial

thesis does not explicitly match a Mars terrain simulate discussed by Perko et

al. [PNG06]. However, the values of the soil parameters used in this thesis are

comparable to the range of soil properties discussed by Perko et al..

Table 3.2: Summary of Final Parameters
Parameter Value Unit

c 0.00 kPa
k′φ 80.00 –
k′c 0.00 –
K 0.036 m
φ 28 degrees
n 1 –
γ 13734 N/m3

η 0.6 - 1.10 –

The next chapter will examine how the analytical terramechanic model can be

modified to account for the observed dynamic oscillations.



CHAPTER 4

SMOOTH WHEEL MODEL

This chapter extends traditional terramechanic modelling for lightweight mobile

robots operating on sandy soil to incorporate the fluctuations in the forces ob-

served during experimental work with a smooth rigid wheel. To model these fluc-

tuations, a new dynamic pressure-sinkage relationship was developed. The re-

sulting two-dimensional model is validated with the unique single-wheel testbed

designed from a Blohm Planomat 408 computer-numerically-controlled (CNC)

creep-feed grinding machine. For the experimental conditions used in this re-

search, the resulting model is able to predict the mean and fluctuating values in

the sinkage, drawbar pull, vertical forces for a variety of slip ratios and normal

loads tested with a rigid smooth wheel operating in sandy soil.

4.1 Introduction

During testing of a smooth rigid wheel on the SWTB, a steady-state ripple pat-

terns was noticed in the wheel markings left in the sandy soil, along with dis-

tinct and repeatable oscillations in the measured wheel-soil interaction force and

torque data. The single-wheel testbed research supported by NASA and per-

formed by Apostolopoulos et al. [AWHT03] also revealed repeating ridges 5cm

wide and 3cm tall in the resulting wheel track. Apostolopoulos et al.’s [AWHT03]

wheel had a mass of 15.2 kg, a radius of 70cm along the compressed axis, and a

contact width of approximately 1m. In the images presented within Ishigami’s

PhD thesis [Ish08], similar repeating ridges were also noticed in the track of a

smooth rigid wheel operating in a Lunar simulant or Toyoura Sand. Ishigami’s

62
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work did not mention or focus on these ridges in the wheel track but rather the

overall terramechanics for lunar exploration robots.

Recent wheel-soil interaction models, such as Ishigami et al. [IMNY07], have

been developed to capture the mean forces acting on a wheel. Ishigami et al.

[IMNY07] refined the traditional Bekker formulation [Bek69] and referenced other

researchers in the field of terramechanics such as Wong [Won01], Reece [Ree65],

Hanamoto [JH61] and Hegedus [HU60] to validate a three-dimensional model

that accounts for slippage and lateral forces. However, the model does not ac-

count for the steady-state oscillations in the measured data observed by the present

author. Such variable loading is often detrimental to drivetrains and various ve-

hicle components; therefore, an advancement in the fidelity of current models

needs to be made to fully capture these effects and assist in the design of plane-

tary rovers and other lightweight mobile robots.

4.2 Model Development

The equations presented in this section appear also appear in Chapter 3; how-

ever, they have been repeated here for readability purposes. There are many

different methods of modelling the wheel-soil interaction including analytical

[Bek69, Won01, Lya10] and finite element [Fer04, NFO+07, KSJN07] models. The

present work is based on traditional analytical terramechanics approaches de-

scribed by Bekker [Bek69] and Wong [Won01]. As shown in Chapter 3 traditional

terramechanics approaches [Bek69, Won01] calculate the stresses and forces act-

ing on the wheel by assuming that the pressure p under a sinking wheel is an

exponential function as follows:

p(z) = kzn (4.1)

where z is the sinkage, n is the sinkage exponent, and k is an empirical coefficient.

The corresponding normal stress distribution under a moving wheel can be

represented by the following equation as described by Wong and Reece [WR67]:
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σ(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rn
(

ck′c + γbk′φ
) (

cos θ−cos θ f
b

)n
(θm ≤ θ < θ f )

rn
(

ck′c + γbk′φ
)(

cos θ f− θ−θr
θm−θr (θ f−θm)−cos θ f

b

)n
(θr ≤ θ < θm)

(4.2)

where θ f and θr are determined by the geometry as:

θ f = cos−1 (1− z/r) (4.3)

θr = − cos−1 (1− ηz/r) (4.4)

and η is a parameter that is related to the height of the terrain in the track formed

behind the wheel. Ishigami et al. [IMNY07] stated that the value of η can be a

function of the terrain, slip ratio and the surface of the wheel. For the present

study η was estimated through the observations of the experimental testing. The

angle θm is the angle at which the maximum normal stress occurs. Some re-

searchers have approximated this angle as the mid-point between θ f and θr [SID05].

Reece and Wong [WR67] proposed the following relationship:

θm = (b0 + b1i) θ f (4.5)

where b0 ≈ 0.4 and 0.0 ≤ b1 ≤ 0.3 and i is the slip ratio.

The shear stress acting along the full length of the wheel-soil interface is calcu-

lated by Janosi and Hanamoto’s equation [JH61]:

τ (θ) = (c+ σ (θ) tan φ)
[
1− e−j(θ)/K

]
(4.6)

where φ is the internal angle of friction, K is the shear deformation modulus, and

j can be written in the form used by Ishigami [IMNY07] as follows:

j (θ) = r
[
θ f − θ − (1− i)

(
sin θ f − sin θ

)]
(4.7)
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The corresponding slip ratio i is defined as:

i =
ωwr−Vx

ωwr
(4.8)

where ωw is the angular velocity of the wheel, r is the radius of the wheel, and

Vx is the translational velocity of the wheel centre. The resulting vertical force Fz,

drawbar pull DP and Torque T, are the area integrals of the stresses acting on the

wheel surface in the associated directions as follows:

Fz = rb
∫ θ f

θr
(τ (θ) sin θ + σ (θ) cos θ) dθ (4.9)

DP = Fx = rb
∫ θ f

θr
(τ (θ) cos θ − σ (θ) sin θ) dθ (4.10)

T = r2b
∫ θ f

θr
τ (θ) dθ (4.11)

4.3 Pressure-Sinkage Relationship

The traditional formulation described in the previous section needs to be further

developed to account for the steady-state oscillations in forces of a smooth rigid

wheel traversing in sandy soil. Figure 4.1 shows a sample of the ripples left in

the sandy soil behind the wheel for a slip ratio of 0.75 under 15N, 48N and 64N

normal loads. Examining the wheel track in Figure 4.1, it can be seen that the

distance from valley to valley in the ripples is between 20 and 25mm for all three

normal load cases. At a slip ratio of 0.75 the CNC grinding machine’s horizontal

motion was commanded to 54.15 in/min (23mm/s) by the FANUC controller–

which means that a sand ripple would be produced at an approximate rate of

once per second. Figure 4.2 shows the corresponding wheel torque and drawbar

pull plotted as a function of time for the 15N normal load, clearly showing the

resulting oscillatory pattern in both signals with a period of approximately 1 sec-

ond. The correlation between the ripple spacing and period of the oscillations in

the measured data was consistent for all other slip ratios and normal loads where

the ripples were noticed (positive drawbar pull conditions).
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Figure 4.1: Example of tread pattern at 75% slip: Top) 15N normal load; Middle)
48N normal load; Bottom) 64N normal load.
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Figure 4.2: Example oscillatory pattern in the torque and the drawbar pull for a
slip ratio of 0.75 and a 15N normal load

The observed steady-state oscillation in wheel torque implies that the shear

stress τ(θ) in Equation (4.11) must be periodically rising and falling. Shear stress

is a function of the normal stress σ(θ) as shown in Equation (4.6), and the normal

stress is related to the pressure-sinkage relationship shown in Equations (4.1) and

(4.17).

Many variations and alternative formulations of the pressure-sinkage relation-

ship have been presented over the years [Won01, Lya10]. A widely used solution

for k in Equation (4.1) is presented by Bekker [Bek69, Lya10] as follows:

k =
kc

b
+ kφ (4.12)

so that, from Equation 4.1

p(z) =
(

kc

b
+ kφ

)
zn (4.13)

where b is the smaller dimension of the wheel’s contact patch. As pointed out

by Wong [Won01], Equation (4.13) is an empirical equation, and Hambleton and

Drescher [HD08] has said that Bekker’s parameters kc, kφ are not ‘true’ soil con-

stants as their values depend greatly on the equipment and experimental condi-

tions used to obtain them.

Another very common variation of this relationship is the Reece [Ree65] formu-

lation which incorporates the density and cohesion of the soil as follows:
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p(z) =
(

ck′c + γbk′φ
) ( z

b

)n
(4.14)

where k′c and k′φ are dimensionless pressure-sinkage parameters that have modi-

fied the pressure-sinkage relationship, given in Equation (4.1). Reece’s model has

been verified by penetration tests using various aspect ratios and implies that the

pressure p is a function of the terrain’s standard material properties including

density γ and cohesion c, rather than purely empirical parameters obtained from

a Bevameter test. Note that Reece’s validated relationships between density and

pressure dictate that if the density varies in the terrain, the pressure changes and

the associated forces and stresses calculated from this pressure must also vary.

Citing Reece’s original work [Ree65], Wong [Won01] suggests that for dry, co-

hesionless sand k′c should be negligible; therefore, k′c has been set to zero in the

present work because of the dry sand used in the testing. The k′φ term has been

left as a manual tuning parameter for the terramechanic model.

It is well known that as the density of a substance increases, the more pressure

or force can be exerted on it before it fails. This phenomenon is especially true for

granular materials such as sands [HK81]. It is also known that as the void ratio of

a sand decreases, the strength of the sand increases [HK81], where the void ratio

e is defined as:

e =
Vv

Vs
(4.15)

where Vv is the volume of the voids and Vs is the volume of the substance.

Figure 4.3 shows the cumulative percentage of the grain-size from a standard

sieve test for the dry sand used in this work. The cumulative percentage graph

indicates a relatively normal distribution and such a grain-size distribution sug-

gests that smaller grains could fall into voids created by the larger grains. When

the sand is not fully compacted the void ratio would be relatively high—between

0.65 and 0.85 [HK81]; however, if a sample was densely packed the void ratio

could drop to 0.2 or lower. This change in the void ratio has a direct effect on the

density and strength of the sand [HK81].
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Figure 4.3: Cumulative percent of the grain size of the test sand

As the wheel traverses over the sand there are varying degrees of deforma-

tion occurring along the soil-wheel boundary and within the soil structure itself.

There is more deformation near the soil-wheel interface and less as one moves

farther away from the interfacing surfaces. It is hypothesized that this deforma-

tion allows some of the voids to be filled by moving sand particles, essentially

lowering the local void ratio, increasing the local density of the sand around the

wheel, and increasing the pressure and corresponding normal stress experienced

by the wheel (producing the observed oscillations in the measured data). Wong

[Won89] described how soils react with varying pressures for repetitive loading

of a tracked vehicle. The same theory can be applied to a generalized sample

of material that follows the Mohr-Coulomb relationship which is illustrated in

Figure 4.4. Referring to the left-hand graph of Figure 4.4 one can see that, as the

displacement increases for a given pressure (P1), the stress level will increase to

τ1. Now, if the pressure were to increase to (P2), due to a local increase in sand

density around the wheel, the stress level would be able to climb to a new level

which was not obtainable by the first confining pressure. Likewise if the pressure

were to increase further to (P3) the stress would be allowed to climb even higher.

This phenomena could explain the increasing stresses seen in Figure 4.2. To ac-

count for the decrease in stress one must look at the right-hand side of Figure 4.4.

If one was at stress level τ3 at a confining pressure of P3 and the pressure were
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Figure 4.4: Stress, Pressure and Displacement relationships [Won89]

to drop to P2, as the wheel continues to move forward into fresh (lower-density)

sand or due to an initial shear-stress induced failure and loosening of the soil,

the shear-stress would drop to the maximum allowable stress level at P2 (which

would be the plastic limit of the P2 curve). If the pressure were to drop again to

P1, the stress would drop to the plastic region of the P1 curve. The continuous

displacement of the sand around the wheel would cause the density to gradually

increase and the process would repeat. This cyclic loading and unloading due

to changes in the local sand density could explain how the shear stress levels are

able to fluctuate in the steady-state torque measurements of Figure 4.2. To cap-

ture this effect analytically, additional terms need to be added to the traditional

terramechanic model.
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4.4 Proposed Model Parameters

Given the previous discussion on how local density changes around the wheel

could be responsible for influencing the stresses experienced by a rigid wheel

traversing through sandy soil and producing the observed oscillations in wheel

forces, it is proposed that the following new pressure sinkage relationship is able

to capture the phenomenon:

p(z) =
(

ck′c + γbk′φ
) ( z

b

)n
+ A sin(ωt+Φ) (4.16)

This formulation takes the common Reece pressure sinkage relationship [Ree65]

and adds on an A sin(ωt + Φ) term to account for the dynamic changes which

oscillate about the mean pressure p =
(

ck′c + γbk′φ
) ( z

b
)n. The A sin(ωt+ Φ) is

a simple sine wave function; however, it is recognized that it could be replaced

with a more complex Fourier series. The A sin(ωt + Φ) was chosen as an ap-

proximation for the observed phenomena because it is simple to numerically in-

tegrate and characterize the new A, ω and Φ terms. While higher-order terms in

a Fourier series would be difficult to characterize from the current experiments,

future work could involve exploring these higher-order terms. The resulting new

normal stress equation from Equation (4.16) becomes:

σ(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rn
(

ck′c + γbk′φ
) (

cos θ−cos θ f
b

)n
...

+A sin(ωt+Φ) (θm ≤ θ < θ f )

rn
(

ck′c + γbk′φ
)(

cos θ f− θ−θr
θm−θr (θ f−θm)−cos θ f

b

)n
...

+A sin(ωt+Φ) (θr ≤ θ < θm)

(4.17)

The Φ term in the proposed model is a simple phase shift that can be used to

tune the model results with experimental data. It is proposed that the amplitude

A of the normal stress term in Equation (4.17) would be expected to be related to

the local change in weight density of the soil dγ around the wheel, as well as the

contact length lc since this length characterizes the interface between the wheel

and the sand that would cause the sand grains to move and fill in the voids. The
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resulting relationship is summarized as:

A ∝ lcdγ (4.18)

where lc is calculated by:

lc = (θ f + (−θr)) · r, or lc = θlc · r (4.19)

Note that the proposed relationship in Equation (4.18) also satisfies a dimensional

analysis since the change in weight density units [N/m3] and contact length units

[m] would result in an amplitude A with units [Pa] as desired.

To complete the new formulation, it is expected that the frequency ω in Equa-

tion (4.16) and (4.17) would be related to the relative motion between the wheel

periphery and the terrain. The slip ratio i in Equation (4.8) characterizes this rela-

tive motion resulting in the following proposed relationship:

ω ∝ i (4.20)

4.5 Results

4.5.1 Density

It was hypothesized in Section 4.3 that it is the local density change around the

wheel that causes the observed oscillations in wheel force and torque due to the

void ratio changing as a slipping wheel engages the sandy soil. Key to validating

this hypothesis is to demonstrate that the void ratio of the sand can alter quickly

when excited.

Figure 4.5 shows a schematic of the experimental setup used to verify that small

displacements can induce a density change in the experimental sandy soil. The

sand is contained in a ridge box which is excited by a linear actuator and powered

through a function generator. A Point-Grey Dragonfly2 digital camera is attached

to the sand box so that it always has the same view of the settling sand and the

scale markers inside the sand box. The vertical post in Figure 4.5 is attached to

the ground so that a fixed reference fame can be used to determine the horizontal
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movement. The camera captures images at a rate of 30 frames per second.

Figure 4.5: Schematic of experimental setup for the sand shacking experiments

Figure 4.6 shows time-lapse images of the experimental sand on a shaker table

providing 30Hz sinusoidal excitation with a displacement of 2mm. In the figure

the entire sandbox is oscillating in the horizontal direction along linear slides.

From Figure 4.6 is was found that within 0.5 seconds there is over a 6.5% percent

change in the volume (or density) and within 3 seconds there is a 14% percent

change in volume. Therefore, the experimental sand’s density is sensitive to rela-

tively small amounts of displacement lending credibility to the proposed model.

This result also demonstrates the importance of ensuring that, after each exper-

imental run with the SWTB, the sand be mixed before being leveled so that the

initial loose randomly packed structure and void ratio of the sand can be main-

tained and repeatability of the results can be achieved.

4.5.2 Contact length

Using the SWTB a series of tests were performed by adding mass to the SWTB

which resulted in three different normal load conditions (15N, 48N and 64N) for

the smooth wheel described in Table 4.1. These normal load conditions refer to

the weight of the test system. The 15N normal load case was used in this research

as a benchmark for the model development and experiments were carried out

with this loading condition for slip ratios of 0.25, 0.50, 0.60, 0.75 and 0.90. The

48N and 64N normal load tests were used for model validation and experiments
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Figure 4.6: Shaking Sand

were carried out with these loading conditions for slip ratios of 0.25, 0.50, 0.75

and 0.95. In each loading case, once the drawbar pull was positive, ripples were

noticed in the track of the wheel and corresponding oscillations were observed

in the experimental data. By examining the torque data it was found that the

measured amplitude of the oscillations grew as the slip ratio and normal load

increased. These results can be seen in Figure 4.7 (Top). The graph shows the

mean oscillatory amplitude values of the torque and the bounding bars indicate

the associated torque oscillation limits for each test case.

It was noticed that the mean of the oscillatory amplitude trend seen in Figure

4.7 (Top) was very similar to that for the sinkage values of the corresponding

normal load cases, as seen in Figure 4.7 (Bottom). The contact length lc is directly

related to the sinkage and varies as a function of the normal load, similar to the

way the sinkage does. Moreover, lc is the characteristic length which represents

the wheel-soil interface that would cause the sand grains to move and fill in the

voids. Plotting the amplitude of the torque as a function of the contact length
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Figure 4.7: Top) Amplitude of torque oscillations as a function of slip ratio. Bot-
tom) Sinkage data as a function of slip ratio

reveals a linear relationship as seen in Figure 4.8. One will also notice that the

slope of the fitted line for each normal load condition is very similar. The R2

value for the 15N, 48N and 64N normal loads are 0.91, 0.90 and 0.85, respectfully.

Therefore, it can be said that A is a function of the change in the local density

and the contact length and can be written as:

A = lc · dγ · k′a (4.21)

where k′a is a dimensionless amplitude factor which was tuned to a value of 2.0

for all test cases in this chapter.
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Figure 4.8: Amplitude of torque oscillations vs. the contact length

For terrains that do not exhibit the observed oscillations, k′a would be zero and,

as a result, one would be left with the traditional terramechanic model. It should

also be pointed out that if there is no change in density there would be no oscil-

lations and the additional term in the new pressure sinkage equation would be

zero. For the simulations carried out in this work a value of γ · 0.10 was used

for dγ, which implies that the density varied by 10% from the nominal value γ.

This change in density appeared reasonable for a slipping wheel given the 6.5%

change (0.5s) and 14% change (3.0s) observed in Figure 4.6.

Table 4.1: SWTB Parameters
Parameter Value Units

Wheel radius, r 100 mm
Wheel width, b 75 mm

Angular velocity of wheel, ωw 0.91 rad/s
Sand depth 29 cm

Horizontal travel 950 mm

4.5.3 Frequency

To develop a formulation for the new ω parameter, the frequency of the oscilla-

tions was plotted against the slip ratio. The 15N benchmark normal load was

used to develop the relationship between ω and i, while the other two normal
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loads of 48N and 64N were used as test cases. Figure 4.9 shows the relationship

between the frequency and slip ratio for all three normal load cases. A first or-

der least-squares fit was performed on the 15N normal load data, as proposed by

Equation (4.20) in Section 4.4, resulting in:

ω = −36.9i+ 36.5 (4.22)

With an R2 value of 0.94, this fitted curve reasonably approximates the frequency

of the oscillations for all normal loads and slip ratios studied. Even with an R2

value of 0.94 one must remember that Equation 4.22 is an empirical fit to the

given data and, as such, there will be some degree of error associated with the

approximation. To visualize the error, Figure 4.10 presents the averaged single

sided frequency spectrums of five test runs for a smooth ridge wheel operating

at a slip ratio of 0.75 for the three normal loads (15N, 45N and 64N). The oscilla-

tion frequency that Equation (4.22) predicts is higher than the actual oscillation

frequency from the experimental data. The oscillation frequency of interest is

distinguished by the noticeable peak in the FFT. The over prediction is not sur-

prising when one notices in Figure 4.9 that, at a slip ratio of 0.75, the fitted line is

higher than all three data points. The maximum error at this particular slip ratio

is 0.37Hz; therefore, it is expected that a phase shift will be noticed when over-

laying experimental and simulation data as a function of time. One will notice

that the actual frequency for all three cases in Figure 4.10 is very close to 1Hz,

which corresponds to a horizontal displacement of approximately 23mm at a slip

ratio of 0.75. Moreover, when examining the data from Figure 4.10 it can be seen

that the data does not produce a discrete peak at a specified frequency but rather

a distribution around a frequency. This distribution indicates that one will see

variations in the period of the oscillations in the measured data and the spacing

of the ripples. Returning to Figure 4.1, the figure shows that the spacing between

the ripples is approximately 23mm for all three normal loads, confirming that the

ridges in the sand correspond to a repeatable oscillation in the measured data and

that these oscillations are independent of the normal load. One will also notice

some degree of variation in the oscillations in the ripple spacing as predicted by
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Figure 4.9: Omega vs Slip Ratio curve fitting

the FFT data. The small changes in the frequency of the oscillations in the mea-

sured data and the ripples can be attributed to natural density variations in the

initial conditions of the terrain.

4.5.4 Simulation and Experimental Comparison

The numerical simulations were carried out in the MATLAB/Simulink environ-

ment by taking advantage of the Simscape blockset. The test equipment was

described in Chapter 2 and the numerical solution process is similar to what was

described in Chapter 3—the modified algorithm can be found in Appendix A.

Table 4.2 summarizes the model parameters used. The measurements of interest

for the present work are the sinkage, drawbar pull and vertical forces. The new

dynamic terramechanic model was calibrated with the tuning case of a 15N nor-

mal load and a slip ratio of 0.25 for these three measurements of interest. The

performance of the model was first examined by varying the slip ratio at the 15N

loading case. The model’s performance was then examined by increasing the

loading conditions to 48N and 64N while varying the slip ratio at these high nor-

mal loads. The model parameters that were tuned for the normal load of 15N and

a slip ratio of 0.25 were held constant throughout these simulations.

The only parameter that changed from one test to another is η. For the 15N

normal load, η was visually inspected from the experimental work. After a test
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Figure 4.10: Single sided frequency spectrums of a smooth rigid wheel operating
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run the height of the wheel track was compared to the sinkage and a value for η

was then calculated. It was found that η was 0.85 for the 0.25, 0.50, 0.6 and 0.75

slip ratio cases and 0.85 for the 0.90 slip ratio case. For the 48N normal load, η

was determined to be 0.5 for the 0.25, 0.50 and 0.75 slip ratio cases, and 0.85 for

the 0.95 slip ratio case. Lastly, for the 64N normal load, η was approximated at 0.6

for all slip ratio cases. Since the linear velocity of the terrain is altered to control

the slip ratio, the duration of the 950mm traverse varied. A 0.25 slip experiment

lasts a total of 13 seconds with a steady-state region of 2 to 7 seconds, while a 0.95

slip run will take 207 seconds to complete, with over 200 seconds of steady state

operation.

Table 4.2: Model Parameters
Parameter Value Units Comments

c 0.0 kPa Soil Cohesion
K 0.036 m Shear deformation modulus
φ 28 deg Internal angle of friction
k′φ 80 Pressure-sinkage modulus
k′c 0 Pressure-sinkage modulus
k′a 2 Pressure-sinkage modulus
γ 13734 kg/m2s2 Soil weight density
b0 0.4 Used to determine θm
b1 0.2 Used to determine θm

Ff riction/damping 800 Ns/m Vertical Viscous Friction

It is important to note that the model was tested over a wide range of slip con-

ditions which a planetary rover may encounter. While slip ratios of 0.75 and 0.95

are not ideal, they may be unavoidable. For example, NASA’s Mars Exploration

Rover, “Spirit”, was entrenched for several weeks and periodically operated in

high slip conditions [ABIB+10]. As exploration of Mars continues, rovers will

likely continue to find themselves in high slip conditions and, therefore, there

is a need to better model these operation conditions for designers and mission

specialists.

The proposed model is able to approximate the experimental data for many of

the test points and cases for the sinkage, drawbar pull and normal force. It should

be noted that the new terms in the proposed model which capture the observed

oscillations in the measured data do not influence the mean values predicted by
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the highly-developed and well-used terramechanic model on which this work is

based [Ish08, IMNY07, INY09, Bek69, Won01, Ree65, Lya10, WR67, SID05, IBD04,

ISD02, IKSD04, ID04, MGS11]; rather, the predicted oscillation are superimposed

onto the mean values. Figures 4.11 shows the sinkage, drawbar pull and nor-

mal force plotted as a function of time for a smooth rigid wheel operating at a

slip ratio of 0.25 with a normal load of 15N. Table 4.3 shows the RMS data for

the tuning case of a slip ratio of 0.25 with a normal load of 15N. One will notice

that the sinkage results are very appropriate while the drawbar pull and normal

force oscillations are slightly under predicted both visually in Figure 4.11 and in

the RMS data presented in Table 4.3. An increase to k′a would result in an im-

provement to drawbar pull and normal force oscillations but would significantly

compromise the sinkage oscillations results. To examine the effect of k′a, Figure

4.12 presents the mean adjusted sinkage, drawbar pull and normal force plotted

as a function of time for a smooth rigid wheel operating at a slip ratio of 0.25

with a normal load of 15N but with an increasing value of k′a (1.0, 2.0, 3.0 and

4.0). In these graphs, the mean of the experimental and simulation data has been

adjusted to zero for the displayed time frame so that the amplitude and phase

of the new model terms can be easily examined and compared. The plots show

that as k′a increases the amplitude of the oscillations increase in all three measure-

ments. When k′a is set to 3.0 and 4.0 the sinkage oscillations are over exaggerated.

Therefore, it was felt that setting k′a at 2.0 was appropriate by visually inspecting

the results of Figure 4.12 and the RMS delta difference was 0.016, 0.232 and 1.102

for the sinkage, drawbar pull and normal force, respectfully.

To highlight the contribution to the established terramechanic model, Figure

4.13 presents the mean adjusted overlays of the predicted and experimental sink-

age, drawbar pull and normal force plotted as a function of time. The slip ratios

in the figure are 0.25, 0.50, 0.75 and 0.95 for a normal load of 15N. The slip ratio

of 0.25 was used as a tuning case for other cases examined in this chapter. The

experimental data in these figures are for a single experiment since averaging the

data over several experiments would distort the amplitude and phase of the os-

cillations. RMS data comparing the simulations and the experimental results is

complied in Tables 4.3, 4.4 and 4.5 which numerically quantifies the model. The
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Figure 4.11: Simulation of a rigid wheel operating at 0.25 slip and a 15N normal
load overlayed with experimental data
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Figure 4.12: Mean adjusted simulation data of a smooth rigid wheel operating
at a 0.25 slip ratio with a 15N normal load overlayed with experimental data for
various values of k′a.
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table also presents the difference or delta between these two RMS calculations.

The RMS data confirms that the dynamic model is able to reasonably capture the

dynamic effects for a variety of test cases.

Figure 4.13 shows that the amplitude of oscillation in the sinkage is very low

and this observation is confirmed by the RMS values of the sinkage data pre-

sented in Table 4.3. It can be seen that the experimental sinkage data does not

clearly exhibit an oscillatory pattern. The lack of an oscillatory pattern could be

caused by friction or stiction in the linear bearing and potentiometer. Examining

the 0.75 slip case (Bottom Left of Figure 4.13) one notices that sinkage oscillations

are not present and there is almost no experimental variation for the time span

shown. One will also notice in the same test case that the amplitude of the nor-

mal force is under predicted. This coupled result suggests that there could be a

stiction phenomena which would explain why the wheel is not moving but the

normal force is able to vary. Stiction allows one to exert more force on an object

with no movement until the force has increased beyond the required break-away

force.

Figure 4.13 shows reasonable results for the 0.25 and 0.50 slip ratio cases which

is quantified by the RMS data of Table 4.3. The highest slip ratio case of 0.95

(Bottom Right of Figure 4.13) shows reasonable results for the drawbar pull and

normal force; however, the sinkage results do not correspond very well. The

model is predicting a peak-to-valley oscillation of approximately 0.6mm while

the experimental results are showing no indication of these oscillations. A fric-

tion phenomena may also be playing a role in these results. At the low normal

load of 15N the Coulomb friction model used in this work may not be sufficient to

model the full dynamic effects of a smooth rigid wheel operating in loose sandy

soil. There is likely a complex friction phenomena (stiction/friction) that is influ-

encing the results at these low normal loads and low speeds. A more complex

friction model may increase the accuracy of the terramechanic model; however,

further experimental testing would be needed to quantify the friction in the sys-

tem and this task is not simple or trivial. Adding a simple stiction model which

was mentioned previously would not be sufficient or realistic as a simple stiction

model would introduce discontinuities in the signals of interest and no noticeable
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discontinuities were present in the measured data.

There is, as expected, a phase shift between the simulated and experimental

results of Figure 4.13. This phase difference is due to the empirical relationship

described by Equation 4.22 which was developed. One will notice that the period

of the oscillations does increase as the slip ratio increases for both the simulated

and experimental results. Moreover, one will notice slight disturbances in the ex-

perimental oscillations. A very noticeable example of these disturbances would

be at 7.5 seconds in the 0.75 slip ratio case (bottom left of Figure 4.13) and at 11

seconds of the 0.25 slip ratio case (top left of Figure 4.13). These disturbances

could be caused by the sand’s natural and inherent local variability in the void

ratio and, hence, the density of the terrain is also variable prior to the wheel-soil

interaction. It is unrealistic to have a perfectly uniform void ratio in the sand

prior to a test even after the terrain preparation (described in 2.2). Therefore, if

there is a section with slightly more or slightly less voids in a specific area, then

the frequency and amplitude of the oscillations will vary since the sand has a pre-

existing condition. On average, the equations presented in Section 4.3 effectively

capture the overall phenomena. One could add stochastic variables to the model

if these delays or variations are of importance.

Figures 4.14 and 4.15 presents the mean adjusted overlays of the predicted and

experimental sinkage, drawbar pull and normal force plotted as a function of

time for slip ratios 0.25, 0.50, 0.75 and 0.95, for normal loads of 48N and 64N.

At both of these normal loads the model is able to reasonably predict measured

data for the 0.25 and 0.50 slip ratio cases; however, at the two higher slip ratios

the discrepancy between the predicted model results and the experimental data is

larger. It is important to keep in mind that previous terramechanic models would

not have predicted any oscillations in the data at these high slip ratios. Also note

that, while the dimensionless k′a term could be increased to better represent the

experimental data at these high slip ratios, the sinkage oscillations would also

greatly increase. Moreover, one must remember that this model was tuned at a

normal load of 15N and a slip ratio of 0.25 so it is not unreasonable to expect some

deviation from the predicted and experimental results. In general the model is

able to better capture the dynamic oscillations observed in the data in a predictive
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mode of operation for both normal load and slip ratio.

Table 4.3: RMS Data for 15N Normal Load

Sinkage in millimeters
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.251 0.011 0.027 0.016
.50 0.086 0.045 0.040
.75 0.03 0.096 0.067
.95 0.023 0.198 0.175

Drawbar Pull in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.251 0.309 0.076 0.232
.50 0.395 0.123 0.271
.75 0.554 0.156 0.397
.95 0.062 0.074 0.012

Normal Force in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.251 1.812 0.710 1.102
.50 1.616 0.699 0.917
.75 2.133 0.656 1.477
.95 0.382 0.238 0.144

1 Denotes the slip ratio which the model was tuned with
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Table 4.4: RMS Data for 48N Normal Load

Sinkage in millimeters
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 0.359 0.054 0.305

.50 0.100 0.084 0.016

.75 0.231 0.170 0.061

.95 0.167 0.273 0.106

Drawbar Pull in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 0.882 0.22 0.662

.50 1.032 0.214 0.818

.75 1.251 0.264 0.986

.95 1.215 0.137 1.079

Normal Force in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 2.558 1.562 0.996

.50 3.311 1.366 1.945

.75 4.666 1.21 3.456

.95 4.511 0.337 4.174
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Figure 4.13: Mean adjusted simulation data of a smooth rigid wheel operating
with a 15N normal load overlayed with experimental data. Top Left) 0.25 slip
ratio; Top Right) 0.50 slip ratio Bottom Left) 0.75 slip ratio; Bottom Right) 0.95
slip ratio
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Figure 4.14: Mean adjusted simulation data of a smooth rigid wheel operating
with a 48N normal load overlayed with experimental data. Top Left) 0.25 slip
ratio; Top Right) 0.50 slip ratio Bottom Left) 0.75 slip ratio; Bottom Right) 0.95
slip ratio
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Figure 4.15: Mean adjusted simulation data of a smooth rigid wheel operating
with a 64N normal load overlayed with experimental data. Top Left) 0.25 slip
ratio; Top Right) 0.50 slip ratio Bottom Left) 0.75 slip ratio; Bottom Right) 0.95
slip ratio
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Table 4.5: RMS Data for 64N Normal Load

Sinkage in millimeters
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 0.356 0.052 0.303

.50 0.184 0.106 0.078

.75 0.476 0.211 0.264

.95 0.437 0.311 0.126

Drawbar Pull in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 1.121 0.186 0.935

.50 1.245 0.337 0.908

.75 0.988 0.381 0.607

.95 1.135 0.196 0.939

Normal Force in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 3.784 1.761 2.023

.50 4.352 1.774 2.578

.75 5.248 1.513 3.734

.95 3.513 0.379 3.130
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4.6 Summary

This chapter presents a new dynamic pressure-sinkage relationship for modeling

the observed oscillations in drawbar pull and normal force for a smooth rigid

wheel on dry sand. The proposed model was validated over a wide range of slip

ratios and normal loads. The SWTB used for the validation is unique since the

terrain is translated instead of the wheel assembly. Also, the SWTB is capable of

very small normal loads because of the counterbalance system employed.

The experimental data showed a repeatable low frequency oscillation in the

force data that could be correlated to visual ripples in the track left by the wheel.

The proposed model accounts for this harmonic by adding an A sin(ωt+Φ) term

into the traditional pressure-sinkage relationship. The final form of the new dy-

namic pressure-sinkage relationship is:

p(z) =
(

ck′c + γbk′φ
) ( z

b

)n
+ dγlck′a sin(ω(i)t+Φ) (4.23)

The experimental results agree reasonably well with the drawbar pull data for

most slip ratio cases and normal loads tested. However, this model is for a smooth

wheel which means that there is no tread, grousers or any other traction aids on the

surface of the wheel. A smooth wheel model is more of a theoretical or academic

case and thus one must extend the knowledge built in this chapter to a wheel

with grousers.



CHAPTER 5

GROUSER WHEEL MODEL

Many planetary rovers have wheels with grousers, which are radial paddles on

the wheels that are used to improve the tractive effort of a wheel [LGD08]. An

example of a grouser wheel can be seen in Figure 5.1. The existing Bekker and

Wong terramechanic models do not inherently capture the dynamic effects (oscil-

lations) caused by grousers as seen in Figure 5.2. This figure shows experimental

data of the wheel sinkage, drawbar pull and normal load plotted as a function of

time, which has been superimposed over the simulation results of an existing ter-

ramechanic model for a rigid wheel. The experimental data was collected from

the single-wheel testbed (SWTB) described in Chapter 2 for a 200mm diameter

wheel having 16, 10mm long grousers, operating at 0.25 slip and a 66N normal

load. In Figure 5.2 the wheel begins from rest and then starts its traverse through

the loose sandy soil. One can clearly see the oscillations in the measurements

caused by the wheel’s grousers. As shown in Figure 5.2, the existing analytical

terramechanic model was developed to predict the mean values for the sinkage,

drawbar pull and normal load; however, the oscillations are not unaccounted for.

A summary of the soil and wheel parameters used in Figure 5.2 and for the rest

of this chapter can be found in Table 5.1.

This chapter builds on the dynamic smooth wheel terramechanic model of

Chapter 4 to develop a new analytical model that captures the dynamic effects

caused by the addition of grousers. The resulting proposed model is then vali-

dated by using experimental data collected from a SWTB.

93
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Figure 5.1: An example of a grouser wheel

Table 5.1: Summary of Parameters
Parameter Value Unit Comments

k′c 0 – Dimensionless cohesive modulus
k′φ 80 – Dimensionless frictional modulus
K 0.036 m Shear deformation modulus
n 1 – Sinkage exponent
γ 13734 N/m3 Soil weight density

dγ 0.1× γ N/m3 Change in soil weight density
r 0.1 m Radius of wheel
b 0.075 m Width of wheel
η 1.15 – Rear of wheel sinkage relationship
φ 28 deg Internal angle of friction
c 0 kPa Soil cohesion
hb 0.01 m Grouser length
Cf 800 Ns/m Viscous friction coefficient
k′g 0.06 – Dimensionless grouser amplitude coefficient
k′a 0.03 – Dimensionless density amplitude coefficient
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Figure 5.2: Experimental data of a rigid wheel with 16, 10mm long grousers, op-
erating at 0.25 slip and a 66N normal load overlayed with a typical terramechanic
model [IMNY07] for a rigid wheel

5.1 Proposed Dynamic Model

This researcher proposes that the oscillations seen in the sinkage, drawbar pull

and normal load caused by the grousers can be accounted for by enhancing the

dynamic pressure-sinkage relationship (Chapter 4) for a smooth wheel as follows:

p (z) =
(

ck′c + γbk′φ
) ( z

b

)n
+ A sin(ωt+Φ) (5.1)

where t is time and Φ is an optional phase shift that can be applied to the model

to account for the initial orientation of the grousers. The A term is the amplitude

of the oscillation and ω is the frequency at which they occur. Through the work

done in Chapter 4 a solution was presented as A = dγlck′a for a smooth wheel;

however, a new solution must be formulated for a wheel with grousers.
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Figure 5.3 shows the normal stress distribution that has been proposed by

Karafiath and Nowatzki [KN78] when grousers or lugs are present. A traditional

terramechanic model will attempt to estimate the average normal stress value as

shown in Figure 5.3. However, when the grousers are moving through the terrain

the location of the maximum normal stress and the value of the maximum and

mean normal stress will fluctuate as a function of time. The dynamic pressure-

sinkage model should estimate these fluctuations and variations in the pressure-

sinkage relationship that are caused by the presence of grousers. The following

sections present solutions of how to determine the two new terms ω and A in the

grouser specific model.

Figure 5.3: A wheel with grousers and the proposed stress distribution [KN78]

5.1.1 Frequency ω

It is reasonable to assume that the frequency ω is related to the spacing of the

grouser blades and the speed of rotation. As each blade comes into contact with

the soil there will be an increase in the stresses. Thus, the frequency term ω in

Equation (5.1) becomes:

ω =
ωw

ng
(5.2)
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where ng is the number of grousers and ωw is the angular velocity of the wheel

in radians per second.

5.1.2 Amplitude A

It is proposed that there are two main factors contributing to the amplitude term

A such that:

A = Aσ + Aγ (5.3)

where the first factor Aσ is related to the active and passive stresses which the ter-

rain experiences due to the presence of a grouser. The second factor Aγ is related

to the change in the local soil density around the wheel and grouser caused by

the soil deformation occurring as the wheel traverses over the terrain and builds

from the work done in Chapter 4.

5.1.2.1 Active and Passive Stresses; Aσ

Wong [Won10] outlines how active and passive stresses can be applied to a grouser

blade to calculate the maximum tractive effort it can deliver. It is proposed that

the amplitude of the oscillations in the pressure sinkage relationship can be re-

lated to these active and passive stresses. Both stresses act in the same direction

as the shear stress and, therefore, contribute additional components to the vertical

and horizontal forces. The passive stresses act on the face of the grouser coming

into contact with the terrain (the front face of the grouser). Active stresses may

be acting as the soil moves away from the grouser blade and, if present, would

act on the rearward side of the grouser (the back face of the grouser). The two

stresses act in opposite directions, hence their net sum adds to the forces acting

on the wheel if both stresses are present. Figure 5.4 shows the active and passive

failure stress zones on the front face and rear face of a grouser moving though

the terrain. The theory assumes that there is no stress acting perpendicular to

the active or passive stresses. For the grouser blade the theory would then as-

sume that there is no stress acting in the radial direction along the face of the

grouser blade. This assumption, however, is inaccurate for the sandy-soil con-

ditions used in the current study. Due to the flow of the sand grains there will

be some degree of stress acting on the faces of the grouser in the radial direction

which is perpendicular to the active and passive stress directions. Moreover, the
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Figure 5.4: Active and Passive stress zones on a wheel when grousers are present

stress field will not be perfectly triangular as shown in Figure 5.4 which has been

idealized by the active and passive theory. Wong [Won89] has shown the com-

plex flow fields of sand grains around a grouser blade and, in practice, the active

and passive stresses from the grousers can affect the normal and shear stress si-

multaneously. This research will use the theoretical calculations of the active and

passive stress to estimate the variations in the normal stress field, and the mod-

ified Mohr-Coulomb relationship will be used to determine the corresponding

shear stress. To examine the theoretical contribution of the active and passive

stresses, the two stresses were computed and added to the shear stress (Equation

3.18) at the appropriate angular position of the wheel grouser.

In this theoretical case-study the wheel is 10 cm in diameter with 3 grousers

in contact with the terrain. The grousers are 15mm long by 3mm thick and the

wheel is operating at a slip ratio of 0.4 with a sinkage of 5cm while η is 0.5. The re-

sults of this case-study are shown in Figure 5.5 which plots the calculated normal

and shear stress as a function of angular position along the wheel for an instant

in time. One can see the additional shear stress components from the active and

passive stresses on the faces of the grousers. Figure 5.5 shows that the passive

stresses are significantly larger than the active stresses and, therefore, the passive
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Figure 5.5: Normal and shear stress along the face of the wheel with active and
passive stress added to the shear stress for an instant in time

stresses will dominate the net effect of the additional shear stress. Moreover, for

active stresses to be acting on the rear of the grouser face, the rear blade face must

be in contact with the soil. In practice this may not always be true depending on

the wheel speed and terrain conditions [Won89]. As a result of this analysis, for

the sandy soil, used in this research it was found that the passive stress from the

grousers in contact with the terrain will dominate the active and passive stress

contributions to the amplitude term A in Equation (5.1). Passive stresses are com-

puted by [Won10]:

σp = γzNφ + qNφ + 2c
√

Nφ (5.4)

where the flow value Nφ is given by:

Nφ = tan2
(

45◦ + φ

2

)
(5.5)

In Equation (5.4), the parameter q is known as surcharge. The surcharge is the

additional pressure applied to the surface of the terrain from external sources. For

the wheel-soil interaction this surcharge would come from the normal stress of

the smooth wheel sections in between the grousers which is computed by using

the pressure-sinkage relationship. The length over which this surcharge acts is
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calculated by [Won10]:

lqp =
hb

tan2
(

45◦ − φ
2

) (5.6)

Equation (5.4) assumes that the surcharge is uniform across lqp; however, the

pressure sinkage relationship (Equation (5.1)) states that every depth of the wheel-

soil interface will experience a different pressure and, as a result, the surcharge

for the wheel-soil interaction is not uniform. Equation (5.4) also assumes that the

surcharge is evenly distributed along the length lqp; however, due to the curva-

ture of the wheel, this assumption is also not valid for the wheel-soil interaction.

To overcome these issues, it is proposed that the mean pressure from the pressure-

sinkage relationship acting along the wheel-soil interface bounded by lqp is used

to approximate the surcharge. The authors also propose that the mean of the

maximum passive stresses from the grousers in contact with the terrain σ̄p are

proportional to the amplitude term A in Equation (5.3). Thus,

Aσ = k′gσ̄p (5.7)

where k′g is an empirical dimensionless coefficient. Equation (5.7) can then be

used to estimate the variations in the normal stress amplitude caused by the pas-

sive stress of the grousers traveling though the terrain. Having presented a so-

lution for Aσ in Equation (5.3), a solution for Aγ is now needed to estimate the

changes in the normal stress amplitude caused by variations in the local terrain

density.

5.1.2.2 Change in Local Density; Aγ

As a grouser wheel travels through loose sandy soil there are varying degrees

of deformation occurring along the wheel-soil interface and within the soil struc-

ture itself. There is more deformation near the interface and the grousers, and less

deformation as one moves farther from the interfacing surfaces. It is hypothesize

that this deformation allows some of the voids in the random sand structure to be

filled by the moving sand grains. Decreasing the the local void ratio will increase

the density of the sand around the wheel. This change in density effectively in-

creases the strength of the sand and causes an increase in the normal and shear
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stress which the wheel can exert on the terrain. Thus, Aγ will have the same form

which was presented in Chapter 4:

Aγ = k′alcdγ (5.8)

where, k′a is an empirical dimensionless coefficient and the dimensional analysis

is satisfied.

5.2 Dynamic-Pressure Sinkage Model for Grouser Wheels

Substituting the previous solutions for frequency ω and amplitude A into Equa-

tion (5.1) yields the final proposed dynamic pressure-sinkage relationship for the

terramechanic model:

p(z) =
(

ck′c + γbk′φ
) ( z

b

)n
+ (k′gσ̄p + k′alcdγ) sin

(
ωw

ng
t+Φ

)
(5.9)

The proposed model was validated with the SWTB and the numerical simula-

tions were carried out in the MATLAB/Simulink environment by taking advan-

tage of the Simscape blockset. The test equipment was described in Chapter 2

and the numerical solution is similar to what was described in Chapter 3 with

the modified algorithm found in Appendix B. The next section will present and

discuss a selection of test cases for the experiments carried out with the SWTB

and the corresponding simulations that were performed.

5.3 Experimental Results

When examining the experimental data from the SWTB, the frequency relation-

ship relating the number of grousers to the angular velocity of the wheel (Equa-

tion 5.2) was confirmed by performing a fast fourier transform on the measured

data. Figure 5.6 shows the cumulative results of a single-sided frequency spec-

trum for the drawbar pull of a wheel with 16, 10mm grousers operating at vari-

ous conditions. The dominant and consistent peak at 2.1Hz is the frequency of

interest and matches the predicted frequency from Equation 5.2. To confirm the
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validity of Equation 5.2 a variety of operating conditions were examined. Using

(A) in Figure 5.6 as a baseline, the normal load was increased in (B) and (C) with

no appreciable change in the frequency or the expected result. Comparing (A)

with (D), the slip ratio was increased and again there was no appreciable change

in the frequency results. Comparing (A) to (E), the grouser length was increased

from 10 to 23mm and, as predicted, there was no change in the frequency. Finally,

the number of grousers were doubled from (A) to (F) and, as expected, one can

see that the frequency doubles. This testing confirms that Equation 5.2 correctly

predicts the frequency of the oscillations.

Figure 5.7 shows a digital image of the disturbed terrain on the SWTB after a

grouser wheel has passed through, along with a schematic of the point of view.

When grousers are present there is a repeatable ridge pattern which is left in

the sand after the wheel has traversed the terrain. These ridges correspond to

the grousers leaving the wheel-soil interface. It is interesting to note that the

ridges occur at the same frequency as the oscillations observed in the sinkage,

normal load and drawbar pull (2.1Hz). These types of ridges or waves have

been observed by grouser wheels on Mars [ABIB+10] and in other work here on

Earth performed by Ding et al. [DGD+11]. Models that can capture the observed

oscillations are needed so that mission specialists of future endeavors have access

to higher fidelity models to help determine the mobility capabilities of the rover.

Figure 5.8 shows the peak-to-valley amplitude of the drawbar pull as a func-

tion of normal load and slip ratio. The surfaces shown in the figure are inter-

polated for display purposes. One can see that as the normal load increases the

magnitude of the drawbar pull oscillations increases. To capture this amplitude

increase as a function of normal load, parameter A in Equation (5.1) or (5.3) will

need to increase as a function of the normal load. To better understand the data at

slip ratios higher than 0.5 one must examine the contact length of the wheel-soil

interface.

Figure 5.9 plots experimental results of the contact length as a function of nor-

mal load and slip ratio where the surfaces shown have been interpolated for dis-

play purposes. One will notice, particularly for the lowest normal load of 15N,

that there is a linear trend of increasing contact length until a slip ratio of 0.5, at
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Figure 5.6: Fast Fourier Transforms of a grouser wheel
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Figure 5.7: Digital image of the disturbed terrain on the SWTB and a schematic of
the point of view. The wheel has 16, 10mm long grousers, 15N normal load and
a slip ratio of 0.50

which point the contact length begins to rapidly increase. For the 48N and 66N

normal loads, tests were not carried out past a slip ratio of 0.75 and 0.5, respect-

fully, because the rate of excavation was too great and the possibility of damaging

the SWTB was deemed an unnecessary risk for the purpose of this work. How-

ever, the linear trend before a slip ratio of 0.5 is still present in all cases and the

increased excavation occurs after a slip ratio of 0.5. If one performs a three di-

mensional linear surface fit for contact length as a function of normal load and

slip ratio on all data below a slip ratio of 0.5, the result would yield a fit with an

R2 value of 0.98. If one repeats the linear fitting process but includes only the data

above 0.5 the fit yields an R2 value of 0.93. For the test sand used in this study

it is found that there is a distinct slip ratio, 0.5, for the three normal loads tested

after which the excavation rate increases.

To obtain a reasonable fit that includes all of the data, the order of the poly-

nomial fit must be increased. However, if one uses a higher order fit, the higher

order terms should have some physical meaning or theory to justify them. At

these high excavation rates other phenomena may be present and influencing the

wheel-soil interaction such as fluidization which was suggested by Ishigami et

al. [IMNY07]. Fluidization of the sand structure below the wheel caused by the
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Figure 5.8: Graphical representation of the peak-to-valley amplitude of the draw-
bar pull as a function of normal load and slip ratio

presence of grousers could explain the rapid increase in the excavation at higher

slip ratios. When a granular materials is subject to small displacements, either

through vibration or other means, the macroscopic property of the granular sys-

tem can change from a solid to a fluid [JN92]. Prior to fluidization, the material

would be able to resist shear and the wheel would gain traction by resisting the

shear applied by a grouser. If the sand becomes fluidized, the terrain will act

more as a fluid and is then unable to fully resist the applied shear stress from a

grouser. With the material’s inability to resist shear stress, the grousers on the

wheel will tend to excavate the material and the tractive effort of the wheel may

be compromised. Further research needs to be conducted to better predict and ac-

count for the excavation increase observed at higher slip ratios. Despite the pos-

sibility of unaccounted phenomena and the complex relationship between slip

ratio, normal load and the amplitude of the oscillations in the measured data,

values for the the new dimensionless factors k′a and k′g for the proposed dynamic

pressure sinkage relationship described by Equation (5.9) were determined. The

model was then manually fit to the data collected from the experimental setup to
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develop a semi-empirical model for researchers to advance and mission special-

ists to use.
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Figure 5.9: Graphical representation of the contact length as a function of normal
load and slip ratio

5.4 Results

Figure 5.10 compares experimental and simulation results using the new dynamic

model for sinkage, drawbar pull and normal load plotted as a function of time.

The simulation is of a wheel with 16 grousers, 10mm long, operating at 0.25 slip

and a 66N normal load (which are the same operating conditions as seen in Fig-

ure 5.2). In this study k′g and k′a were tuned to be 0.06 and 0.03, respectfully. The

simulation and experimental results show that the model is within 8.2% of the

experimental mean values for the wheel sinkage, drawbar pull and normal load.

When compared to experimental data the proposed model is able to capture the

peak-to-valley sinkage oscillation to within 0.25mm, the drawbar pull peak-to-

valley oscillation to under 5.6N and the normal load peak-to-valley oscillation

to under 8N. One can see from Figure 5.10 that the results for the sinkage and

normal load results are very good while the drawbar pull oscillations are under
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Figure 5.10: Simulation of a rigid wheel with 16, 10mm long grousers, operating
at 0.25 slip and a 66N normal load overlayed with experimental data

predicted for this testing condition.

For the remaining test cases the data will be presented as mean-adjusted plots

for a limited time span during a period of steady-state operation to focus on the

contribution of this work — the oscillations in the sinkage, drawbar pull and nor-

mal load. Furthermore, to test the model’s predictive capabilities, the model pa-

rameters tuned for the 0.25 slip and 66N normal load conditions shown in Figure

5.10 were held constant for the remaining test cases.

Figure 5.11 shows the mean adjusted plots for sinkage, drawbar pull and nor-

mal load plotted as a function of time for two different slip ratios (0.35 and 0.5)

and a normal load of 66N. For these new test cases, k′g and k′a remained at 0.06

and 0.03, respectfully (the same values used for the 0.25 slip ratio and 66N nor-

mal load case). One can see that the amplitude of the oscillations for these new
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Figure 5.11: Mean adjusted simulation data of a rigid wheel with 16, 10mm long
grousers, operating with a 66N normal load overlayed with experimental data.
Left) 0.35 slip ratio Right) 0.50 slip ratio

slip ratios are effectively captured by the proposed model.

Figure 5.11 also shows small discontinuities in the simulated force data. These

discontinuities are caused because the model does not account for the transition

of the grouser coming into contact with the terrain, or the gradual departure of

the grouser leaving the terrain. Although the exact shape of the oscillations are

not captured, perhaps due to phenomena such as fluidization, the model is able

to approximate the dominant dynamic trends in the measured data.

Table 5.2 presents the RMS experimental and simulated data for the three cases

mentioned above for the time spans shown in Figure 5.11. The table also presents

the difference or delta between these two RMS calculations. The RMS data con-

firms that the dynamic model is able to reasonably capture the dynamic effects.

Figure 5.12 shows the mean adjusted plots for sinkage, drawbar pull and nor-

mal load as a function of time for slip ratios 0.25, 0.35, 0.50 and 0.75 when the

normal load was changed to 48N. For all of these cases k′g and k′a were again un-

changed from the 66N normal load case. Table 5.3 presents the RMS experimental

and simulated data for the 48N normal cases. The RMS calculations were taken
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Table 5.2: RMS Data for 66N Normal Load

Sinkage in millimeters
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.251 0.553 0.657 0.104
.35 0.514 0.651 0.137
.50 0.315 0.651 0.336

Drawbar Pull in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.251 3.91 1.688 0.104
.35 2.174 2.041 0.133
.50 2.439 2.468 0.029

Normal Force in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.251 5.185 8.063 2.898
.35 5.541 7.996 2.455
.50 4.524 7.972 3.447

1 Denotes the slip ratio which the model was tuned with
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for the time spans shown in Figure 5.12. One can see that the RMS difference

between the experimental and the proposed model predictions is very good—

especially for the sinkage. However, when one examines the time history results

(Figure 5.12) one will notice that the model is not capturing the oscillations quite

as well as one might imagine when just the RMS data is examined. The RMS

calculation is independent of phase and, therefore, any experimental data drift

will affect the RMS averaging which can cause misinterpretation of the data. As

a result, it is important to note that one should not solely rely on the RMS data

as a metric to analyse this dynamic model and the corresponding experimental

results.

Figure 5.13 shows the mean adjusted plots for sinkage, drawbar pull and nor-

mal load plotted as a function of time for three slip ratios, 0.25, 0.35, 0.5 and

0.75 when the normal load is reduced to 15N. Again, for these cases k′g and k′a
remained unchanged from the tuning case (66N normal load at 0.25 slip, for this

study). One can see that the model is not able to estimate the oscillations as well

as before for all of the test cases, particularly in the drawbar pull measurements.

This result is expected since the 15N normal load test case is significantly differ-

ent than the 66N normal load test case for which the model was tuned. Table

5.4 presents the RMS experimental and simulated data for the 15N normal cases.

The RMS calculations were taken for the time spans shown in Figure 5.13. The

RMS data does a reasonably good job of indicating the model’s accuracy for most

of the test cases at this normal load when viewed in conjunction with the time

history data (Figure 5.13).

It is important to note that, although the dimensionless parameters k′g and k′a
remained unchanged for all of these test cases, the amplitude term A will vary

as a function of time and the operating conditions. In the amplitude term A

(Equation 5.3), the first term Aσ is a function of σ̄p which will vary as a function

of the normal load since σ̄p is the mean of the maximum passive stresses of the

grousers in contact with the terrain. The passive stresses are calculated from

the applied normal stresses which will vary as a function of the normal load.

The mean of the maximum passive stresses σ̄p will also vary as a function of

time since the location of the grousers are changing as a function of time and the



111

passive stresses are a function of the surcharge q. The time dependency comes

from the surcharge which is the normal stress acting just ahead of the grousers as

well as from the normal stress which is a function of the angular position. These

relationships imply that the passive stresses (σ̄p) will vary as a function of time.

Moreover, the sinkage is proportional to the applied load and slip ratio which, in

turn, will cause lc to be related to the operating conditions. Thus, the Aγ factor

of the amplitude term A (which uses lc) will vary as a function of the operating

conditions. As a result of the formulation of the proposed model, the amplitude

term A (Equation 5.3) is a function of time and the operating state during the

simulations and it, therefore, needs to be recalculated at each time-step during

the simulation.

To help graphically explain the discussion above, Figure 5.14 shows the calcu-

lated values of parameter A as a function of time for a wheel with 16, 10mm long

grousers for three normal loads, 15, 48 and 66N. For these three cases the dimen-

sionless parameters k′g and k′a remained constant at 0.03 and 0.06, respectfully,

but one will notice that the mean magnitude of A did increase as a function of

the normal load. The increase of the mean value is attributed to the fact that the

passive stresses and the contact length will vary as a function of the normal load.

One can also see how A varies as a function of time. The parameter dependency,

mentioned above, allows for the model to automatically adjust for different op-

erating conditions. Again one will notice discontinuities of the A term in Figure

5.14 which occur because the model does not account for the transition of the

grouser entering or departing contact with the terrain.
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Figure 5.12: Mean adjusted simulation data of a rigid wheel with 16, 10mm long
grousers, operating with a 48N normal load overlayed with experimental data.
Top Left) 0.25 slip ratio; Top Right) 0.35 slip ratio Bottom Left) 0.50 slip ratio;
Bottom Right) 0.75 slip ratio
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Table 5.3: RMS Data for 48N Normal Load

Sinkage in millimeters
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 0.632 0.506 0.126

.35 0.428 0.503 0.075

.50 0.220 0.500 0.279

.75 0.203 0.489 0.286

Drawbar Pull in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 2.344 1.228 1.117

.35 2.130 1.497 0.633

.50 1.578 1.838 0.260

.75 2.583 2.222 0.361

Normal Force in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 5.353 6.355 1.002

.35 4.746 6.310 1.564

.50 4.326 6.336 2.010

.75 4.645 6.232 1.587



114

9 9.2 9.4 9.6 9.8 10
−0.5

0

0.5

1

S
in

ka
ge

 [m
m

]

9 9.2 9.4 9.6 9.8 10
−5

0

5

D
ra

w
ba

r P
ul

l [
N

]

9 9.2 9.4 9.6 9.8 10
−10

0

10

N
or

m
al

 F
or

ce
 [N

]

Time [s]

0.25 Slip Ratio

Experimental Proposed Model

9 9.2 9.4 9.6 9.8 10
−0.5

0

0.5

1

S
in

ka
ge

 [m
m

]

9 9.2 9.4 9.6 9.8 10
−5

0

5

D
ra

w
ba

r P
ul

l [
N

]

9 9.2 9.4 9.6 9.8 10
−10

0

10

N
or

m
al

 F
or

ce
 [N

]

Time [s]

0.35 Slip Ratio

9 9.2 9.4 9.6 9.8 10
−0.5

0

0.5

S
in

ka
ge

 [m
m

]

9 9.2 9.4 9.6 9.8 10
−2

0

2

D
ra

w
ba

r P
ul

l [
N

]

9 9.2 9.4 9.6 9.8 10
−10

0

10

N
or

m
al

 F
or

ce
 [N

]

Time [s]

0.50 Slip Ratio

9 9.2 9.4 9.6 9.8 10
−0.5

0

0.5

S
in

ka
ge

 [m
m

]

9 9.2 9.4 9.6 9.8 10
−5

0

5

D
ra

w
ba

r P
ul

l [
N

]

9 9.2 9.4 9.6 9.8 10
−5

0

5

N
or

m
al

 F
or

ce
 [N

]

Time [s]

0.75 Slip Ratio

Figure 5.13: Mean adjusted simulation data of a rigid wheel with 16, 10mm long
grousers, operating with a 15N normal load overlayed with experimental data.
Top Left) 0.25 slip ratio; Top Right) 0.35 slip ratio Bottom Left) 0.50 slip ratio;
Bottom Right) 0.75 slip ratio
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Table 5.4: RMS Data for 15N Normal Load

Sinkage in millimeters
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 0.410 0.176 0.234

.35 0.341 0.173 0.168

.50 0.165 0.174 0.010

.75 0.065 0.172 0.108

Drawbar Pull in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 1.858 0.306 1.554

.35 1.126 .391 0.735

.50 1.399 0.492 0.906

.75 1.260 0.637 0.622

Normal Force in newtons
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 4.216 2.277 1.939

.35 4.214 2.269 1.945

.50 4.337 2.224 2.113

.75 2.531 2.220 0.311
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5.5 Summary

This chapter enhances the previous chapter’s dynamic pressure sinkage model to

explicitly account for grousers on a wheel. The new form of the dynamic pressure-

sinkage relationship is:

p(z) =
(

ck′c + γbk′φ
) ( z

b

)n
+ (k′gσ̄p + k′alcdγ) sin

(
ωw

ng
t+Φ

)
(5.10)

It is apparent from this study that the model improves traditional terrame-

chanic models when the dynamic effects of grousers are of importance. The addi-

tional terms in the model are based on existing soil mechanic theories that vary as

a function of soil properties, slip conditions, and vehicle loading. To tune the pro-

posed model only two new dimensionless empirical coefficients k′g and k′a need

to be adjusted as they do not affect the mean values of the sinkage, drawbar pull

or normal load.



CHAPTER 6

CASE STUDIES AND MODEL

APPLICATIONS

This chapter further investigates the dynamic pressure-sinkage relationship that

was developed in Chapter 4 and 5 to better capture periodic variations observed

in the sinkage, drawbar pull and normal force measurements as a rigid wheel

interacts with loose sandy soil. Several case studies are presented to help deter-

mine the applicability of this dynamic pressure-sinkage relationship. The first

case study examines how smooth wheels mounted on a 4-wheeled micro rover

testbed interact with sandy soil at different slip ratios as the rover navigates an

incline. The second case study investigates the influence of grouser height on the

wheel-soil interaction at different slip ratios using measurements from a single

wheel testbed. The third and fourth case studies also use a single wheel testbed

and focuses on how wheels with different length and number of grousers interact

with sandy soil at different slip ratios.

6.1 Case Study #1: Smooth-Wheel Rover Tests

The small four-wheel micro rover previously described in Chapter 2 was used

again for this case study. The micro rover has 100mm diameter smooth wheels

and was tested in the same sandy soil used throughout this research. The rear

wheels were driven through a 505.9:1 geartrain while the front wheels were free

118
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to rotate. Given the dynamic pressure-sinkage relationship presented in Chap-

ter 4, it is hypothesized that the rear wheels, when slipping, should produce re-

peatable ridges, and that the front wheel would leave a smooth track since their

drawbar pull would be negative. These predictions come from the results of the

smooth wheel testing performed on the SWTB and discussed in Chapter 2. A

tachometer was used to determine the angular velocity of the wheels and a po-

tentiometer was used to record the linear translation of the 1.6kg vehicle. The

rear wheels rotated at an average speed of 9.5rpm with a standard deviation of

0.21.

Figure 6.1: Micro rover at the end of a 6◦ slope climb

To achieve a repeatable and consistent slipping condition, hill climbing tests

were carried out at 3.5◦, 5◦ and 6◦ (maximum inclination which the rover could

climb) which corresponded to rear-wheel slip ratios of 0.8, 0.95 and 0.96, respec-

tively. Incline angles between 0◦ and 3.5◦ did not produce consistent or repeat-

able slip conditions. The reason for the irregular results at low inclines is likely

from the initial conditions of the test sand where, before each test, the sand was

manually mixed and leveled with a scraper tool. It is likely that the local density

was not perfectly uniform after this manual preparation process and, therefore,
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when the micro rover traversed the terrain, any small variations in the terrain in-

fluenced the mobility of the vehicle. Once the slip ratio increased to 0.8, however,

the micro rover’s rear wheels produced consistent and repeatable ridges in the

sand as predicted.

The results of these tests can be seen in Figure 6.1 which shows the micro rover

and its tracks with the ridges at a slip ratio of 0.96. Also, as predicted and shown

in Figure 6.1, the un-powered front wheel produced a smooth flat track. Figure

6.2 shows a selection of the tracks from the rear wheels for the three inclines (Slip

ratios) tested and, in this figure, heavy lines have been digitally superimposed

to help the reader identify the ridges. When a linear least squares curve fit was

performed on the three slip ratios tested, the data fell on a straight line with a

negative slope as shown in Figure 6.3. This linear trend from the micro rover case

study confirms earlier results found in Figure 4.9 of Chapter 4 which showed that

there is a linear relationship between the frequency of the oscillations and the slip

ratio when a smooth wheel was tested on a single-wheel testbed. The results of

this case study also confirm that the proposed dynamic pressure-sinkage model

should only be used when positive drawbar pull is established at a sustained

slipping state.

The micro rover was tested with smooth wheels; however, most wheels have

grousers to aid their tractive effort. The next cases studies will examine how well

the dynamic model works when grouser designs are altered.

6.2 Case Study #2: Dynamic Effect of Grousers

A series of experiments were carried out on a single-wheel testbed using a wheel

with grousers to build upon the previous work of Chapter 5 which presented a

dynamic pressure sinkage model specifically for grouser wheels.

A wheel with 16, 23mm long grousers operating at a slip ratio of 0.50 and a

normal load of 15N was used as a tuning case for the model. This operating

condition is the only tuning case used for the remainder of this chapter. The non-

dimensional coefficient k′c was set to zero as suggested by Wong [Won01, Won10].

The remaining parameters were manually tuned and their values can be found in



121

Figure 6.2: Tracks from the rear wheels of the micro rover (Digitally added lines
to help identify the ridges)
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Table 6.1. These parameters were held constant throughout all of the simulations

carried out for all work in this chapter. Figure 6.4 plots the sinkage, drawbar pull

and normal load as a function time and overlays experimental results with the

dynamic pressure-sinkage model described by Equation (5.9) and a traditional

terramechanic model which was described in Chapter 3. The traditional terrame-

chanic model was able to reasonably model the mean sinkage and normal force;

however, it under predicted the drawbar pull by 5N for this case. This under

prediction can be attributed to the fact that Bekker’s traditional terramechanics

model was originally developed for larger wheels [Bek69, Won01, MGS11]. It has

been recently shown by [MGS11] that smaller wheels tend to experience greater

sinkage than the predicted values from Bekker’s model which, in turn, can lead to

larger rolling resistances and reduced tractive performance. As a result, drawbar

pull would be underpredicted as confirmed by Figure 6.4. One will notice that

the dynamic pressure-sinkage model oscillates about the mean values predicted

by Bekker’s terramechanic model as expected and accurately predicts the ampli-

tudes and frequencies of the oscillations observed in the measured data. It should

be noted that, although any adjustments or improvements to the mean values in

Figure 6.4 using correction factors such as those discussed by [MGS11] would
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Table 6.1: Summary of Parameters

Parameter Value Unit Comments
k′c 0 – Dimensionless cohesive modulus
k′φ 80 – Dimensionless frictional modulus
K 0.036 m Shear deformation modulus
n 1 – Sinkage exponent
γ 13734 N/m3 Soil weight density

dγ 0.1× γ N/m3 Change in soil weight density
r 0.1 m Radius of wheel
b 0.075 m Width of wheel
η 1.35 – Rear of wheel sinkage relationship
φ 28 deg Internal angle of friction
c 0 kPa Soil cohesion

Cf 800 Ns/m Viscous friction coefficient
k′g 0.1 – Dimensionless grouser amplitude coefficient
k′a 0.05 – Dimensionless density amplitude coefficient

require re-tuning of the dynamic pressure-sinkage relationship, the resulting ac-

curacy of the predicted amplitudes and frequencies of the oscillations would be

maintained.

To further validate the predictive capabilities of the model, comparisons for slip

ratios of 0.15, 0.25, 0.35 and 0.75 can be seen in Figure 6.5, which presents the data

as mean-adjusted plots during steady-state operation so that the oscillations and

contribution of the dynamic pressure-sinkage relationship described by Equation

(5.9) can be easily compared. Note that the model parameters used for these

cases were the same as those used to manually tune the model (Table 6.1). The

gradual entrance and exit of a grouser from the terrain is not considered in this

work and one will notice small discontinuities in the simulated data from the

dynamic pressure-sinkage model in the presented data. The RMS data comparing

the simulated and experimental work is presented in Table 6.2 along with the

absolute difference or delta between these two calculations. The RMS values were

taken from the mean adjusted comparisons for the time periods shown in Figures

6.4 and 6.5. The RMS values indicate reasonable and consistent results when

compared to the time history results of Figures 6.4 and 6.5.
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Figure 6.4: Overlay of experimental data with the dynamic and classic models
for a rigid wheel with 16, 23mm long grousers, operating at 0.50 slip and a 15N
normal load

Figure 6.5 shows that the dynamic model is able to accurately predict the os-

cillations in the sinkage, drawbar pull and normal force for all cases except for

the 0.75 slip ratio case. At this high slip ratio the wheel is excavating the terrain

and the sinkage becomes smoother. When the excavation increases one will also

notice that the RMS delta (difference) values (Table 6.2) increase for all three mea-

surements. When examining the normal load RMS delta for the 0.75 slip ratio

case, the model is over predicted the amplitude and the resulting RMS delta is

1.338. A possible explanation for this reduction in the experimental oscillation

amplitude is that, at such high slip ratios, the terrain does not come to rest before

the next grouser comes into contact with it resulting in a more continuous flow

of sand material. Such a fluidization, which can occur when a granular material
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is excited by small displacements through vibration or other means, cause the

macroscopic property of the granular system to change from a solid to a fluid

[JN92]. This fluidization phenomena is not accounted for in the current terrame-

chanic model. The next case study investigates the ability of the new dynamic

model to predict oscillations in the sinkage, drawbar pull and normal force when

the grouser length is reduced from 23mm to 10mm.

Table 6.2: RMS Data for Case Study #2

Sinkage
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.15 0.478 0.339 0.139

.25 0.264 0.336 0.072

.35 0.317 0.337 0.020
.501 0.257 0.333 0.076
.75∗ 0.171 0.330 0.159

Drawbar Pull
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.15 1.679 0.896 0.783

.25 1.196 1.129 0.066

.35 0.957 1.330 0.374
.501 1.003 1.539 0.536
.75 1.099 1.807 0.708

Normal Force
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.15 4.187 4.342 0.155

.25 4.232 4.271 0.039

.35 3.811 4.254 0.443
.501 4.094 4.151 0.57
.75 2.792 4.130 1.338

1 Denotes the slip ratio which the model was tuned with
∗ Denotes measurements where the oscillations were diminished due to an un-modeled phenomena
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Figure 6.5: Mean adjusted simulation data of a rigid wheel with 16, 23mm long
grousers, operating with a 15N normal load overlayed with experimental data.
Top Left) 0.15 slip ratio; Top Right) 0.25 slip ratio Bottom Left) 0.35 slip ratio;
Bottom Right) 0.75 slip ratio
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6.3 Case Study #3: Length of Grousers

Building on the previous case study, SWTB experiments were carried out using

a 16 grouser wheel which had the length of each grouser reduced from 23mm to

10mm. Figure 6.6 plots the resulting mean-adjusted experimental and simulated

values for sinkage, drawbar pull and normal force as a function of time for slip

ratios of 0.25, 0.35, 0.50 and 0.60. The values used for this case study were, again,

kept the same as those used to originally tune the model (Table 5.1). For this case

study, Table 6.3 presents the RMS data for the experimental and simulated data.

The table also presents the difference or delta between these two calculations.

The RMS values were taken from the mean adjusted comparisons for the time

periods shown in Figure 6.6 and indicate reasonable and consistent results when

compared to the time history data of Figure 6.6.

One can see from Figure 6.6 that, for the 0.25 and 0.35 slip ratio cases, the os-

cillations in all of the measured data is accurately predicted by the model. As

observed in the previous section, at the higher slip ratios, particularly 0.60, the

model begins to lose its predictive capability for the oscillations in the sinkage.

This result is expected based on the previous case study (Section 6.2). As the

wheel begins to spin for longer periods of time in the same location, the wheel

appears to continuously excavate the surrounding terrain. Since the wheel lacks

appreciable forward movement into undisturbed terrain, the grousers cause the

sand in the vicinity of the wheel to be in constant motion. As previously men-

tioned, this fluidization phenomena is not accounted for in the dynamic pressure-

sinkage relationship to more accurately model these high-slip conditions.
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Figure 6.6: Mean adjusted simulation data of a rigid wheel with 16, 10mm long
grousers, operating with a 15N normal load overlayed with experimental data.
Top Left) 0.25 slip ratio; Top Right) 0.35 slip ratio Bottom Left) 0.50 slip ratio;
Bottom Right) 0.60 slip ratio
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Table 6.3: RMS Data for Case Study #3

Sinkage
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 0.419 0.312 0.107

.35 0.282 0.311 0.029

.50 0.150 0.308 0.158

.60 0.259 0.305 0.047

Drawbar Pull
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 1.691 0.948 0.743

.35 1.301 1.125 0.177

.50 1.145 1.340 0.195

.60 1.573 1.460 0.115

Normal Force
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 4.381 3.770 0.611

.35 4.240 3.759 0.481

.50 4.188 3.754 0.434

.60 4.461 3.764 0.697
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6.4 Case Study #4: Number of Grousers

For this final case study the number of 10mm long grousers were increased from

16 to 32 and SWTB experiments and corresponding model simulations were car-

ried out. Figure 6.7 show the resulting mean-adjusted overlay of experimental

and simulated sinkage, drawbar pull and normal force plotted as a function of

time for slip ratios of 0.25, 0.50, 0.60 and 0.75. The model parameters used for

this case study were again set using the original tuning case for a wheel oper-

ating with a 15N normal load at a slip ratio of 0.5 (Table 5.1). One will notice

from Figure 6.7 that all of the experimental sinkage results, including those at the

lowest slip ratio tested, did not present a noticeable oscillation. This observation,

given the resulting increase in flow of sand grains caused by a doubling of the

number of grousers, can likely be attributed to the same fluidization phenomena

which occurred in the previous test cases. When examining the drawbar pull re-

sults in Figure 6.7 one can see that the results are reasonable for slip ratios of 0.25

and 0.50; however, at the higher slip ratios of 0.6 and 0.75, the oscillations become

less significant in all three measured signals—again, likely due to fluidization as

the sand grains experience a constant flow at these higher slip ratios.

The RMS data comparing the simulated and experimental work is presented

in Table 6.3. The RMS values show a large over prediction from the model, espe-

cially in the normal force results where the minimum and maximum deltas are

1.778 and 3.187, respectfully. One will notice that the delta RMS values of the sink-

age results are very small, suggesting that the model is accurately predicting the

amplitude of the oscillations. However, examining the time history data in Figure

6.7 one will see that there are no oscillations in the sinkage measurements. There-

fore, examining only the RMS values as a measure of accuracy can be misleading.

If one examines Figure 6.7, the experimental data has some natural variation or

drift for all slip ratios during the time period shown in the figure. The ampli-

tude of the drift is very close to the amplitude of the model predicted oscillations.

Since RMS calculations are independent of phase and frequency, one cannot rely

solely on the delta RMS data to conclude if the results are accurate, reasonable

or valid. To correctly interpret the RMS results, one must also examine the time

history response to conclude if excessive excavation is occurring.
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Figure 6.7: Mean adjusted simulation data of a rigid wheel with 32, 10mm long
grousers, operating with a 15N normal load overlayed with experimental data.
Top Left) 0.25 slip ratio; Top Right) 0.50 slip ratio Bottom Left) 0.60 slip ratio;
Bottom Right) 0.75 slip ratio
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Table 6.4: RMS Data for Case Study #4

Sinkage
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25∗ 0.060 0.158 0.099

.35∗ 0.065 0.152 0.087

.50∗ 0.072 0.149 0.077

.75∗ 0.116 0.149 0.032

Drawbar Pull
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 0.862 1.062 0.200

.35 0.794 1.474 0.680

.50 0.615 1.581 0.966

.75 0.285 1.708 1.423

Normal Force
Slip Ratio RMS Experimental RMS Proposed Model |Δ| Difference

.25 2.237 4.015 1.778

.35 2.082 3.978 1.896

.50 1.790 3.940 2.150

.75 0.716 3.903 3.187
∗ Denotes measurements where the oscillations were diminished due to an un-modeled phenomena
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6.4.1 Discussion of the Excavation

To further elaborate on the excavation phenomena which occurs during high slip

or sustained slip, two figures are presented: Figure 6.8 which shows a rigid wheel

with 32, 10mm long grousers operating at slip ratio of 0.60, and Figure 6.9 show-

ing a rigid wheel with 32, 10mm long grousers operating at slip ratio of 1.00. One

can see in Figure 6.8 that there is excavation ahead of the wheel and from either

side of the wheel. As the wheel traverses forward the terrain is constantly being

milled away ahead of the wheel. This material deformation is not accounted for

in the terramechanic model and is a likely cause of the diminished oscillations in

the measurements. To further highlight the excavation process, Figure 6.9 depicts

the same wheel operating at slip ratio of 1.00 and shows the massive excavation

ahead of the wheel and from either side of the wheel. The time history data of the

sinkage, drawbar pull and normal force of the wheel operating at a slip ratio of

1.00 is shown in Figure 6.10. In this figure one can see the constant and increasing

sinkage of the wheel with no appreciative oscillations, suggesting that the terrain

is experiencing a continuous motion and excavation. Oscillations are still present

in the drawbar pull and normal force measurements and this is to be expected as

the grousers will still impact the terrain causing a change in the forces. However,

since the terrain is in constant motion, the change in force will not cause an os-

cillation in the sinkage but rather the grouser’s impact will aid in the continual

excavation process of the terrain ahead, beneath and adjacent to the wheel.

6.5 Summary

As a result of the case studies presented in this work, it has been shown that the

dynamic model previously proposed in Chapters 4 and 5 should only be imple-

mented when there is sustained slippage and positive drawbar pull. Case studies

which varied the number and length of the grousers on a wheel demonstrated

that the model is able to reasonably capture and predict the dynamic oscillations

observed in the drawbar pull and normal force measurements over a wide range

of slip ratios while using only one tuning condition. Under high-slip conditions,

and when the number of grousers on a wheel is relatively high, there appears
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Figure 6.8: Rigid wheel with 32, 10mm grousers operating at a slip ratio of 0.60

Figure 6.9: Rigid wheel with 32, 10mm grousers operating at a slip ratio of 1
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Figure 6.10: Time history data of a rigid wheel with 32, 10mm grousers operating
at a slip ratio of 1

to be an unaccounted for fluidization phenomena which reduces the amplitude

of the observed oscillations in the sinkage. Also, RMS data should be used in

conjunction with time history data to ensure the numeric quantification is appro-

priate and meaningful.



CHAPTER 7

CONCLUSIONS

The objective of this research was to develop a wheel-soil interaction model that

can better predict the oscillations in the sinkage, drawbar pull and normal force

for rigid wheels operating in sandy soil.

This chapter summarizes the main results and conclusions of each chapter. A

list of contributions that this doctorial work has made to the field of terrame-

chanics is also included as well as some brief suggestions of possible avenues for

future research.

7.1 Conclusions

CHAPTER 1 – INTRODUCTION

Chapter 1 presented the observed oscillatory pattern in the measured data cor-

responding and ripples in the tracks of a smooth wheel and a grouser wheel. The

chapter shows how existing analytical terramechanic models do not inherently

capture the observed phenomena.

CHAPTER 2 – EXPERIMENTAL EQUIPMENT AND DEVELOPMENT

Chapter 2 investigated several different single-wheel testbeds (SWTBs) and de-

scribed the new and novel SWTB which was built for the purpose of this research.

The new SWTB translated the terrain instead of the wheel support system. This

alternative arrangement was shown to be a viable method of conducting terrame-

chanic studies, as the results of the new equipment are in reasonable agreement

with the results from other researchers. It was found that the addition of a simple
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counter balance added versatility to a SWTB so that a variety of normal loads

could be studied. Over 300 individual experiments were performed on the new

SWTB, processed and presented in the chapter. The tests were conducted for a

variety of wheel configurations, slip ratios and normal loads. The chapter con-

cluded with confirmation that the ripples in the track of a smooth wheel are not

a function of the new SWTB, as the ripples were recreated with the testing of a

micro rover operating under its own power in the same sandy soil.

CHAPTER 3 – A REVIEW OF TERRAMECHANICS

Chapter 3 reviewed various finite element methods (FEM) that could be used to

model the observed phenomena; however, it was found that finite element meth-

ods and techniques are very computationally expensive and, therefore, not well

suited for motion planning, dynamic simulators and terrain estimation. Analyti-

cal terramechanic modelling techniques were examined and a numerical solution

algorithm was constructed in MATLAB & Simulink which replicates the full dy-

namics of the SWTB. The chapter then examines the influence of each parameter

contained in the analytical terramechanic model to determine which parameters

could explain the observed phenomena. It was also shown that the numerical so-

lution runs significantly faster than FEM. The chapter concludes by stating that

an analytical approach will be taken to examine the focus of the thesis.

CHAPTER 4 – SMOOTH WHEEL MODEL

Chapter 4 presented a new dynamic pressure-sinkage relationship for mod-

elling the observed oscillations in drawbar pull and normal force for a smooth

rigid wheel on dry sand. The final form of the new dynamic pressure-sinkage

relationship for a smooth wheel is:

p(z) =
(

ck′c + γbk′φ
) ( z

b

)n
+ dγlck′a sin(ω(i)t+Φ) (7.1)

The proposed model was validated over a wide range of slip ratios and normal

loads. The model adds one new dimensionless empirical coefficient k′a to a known

terramechanic model. The additional term does not affect the mean values of the
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sinkage, drawbar pull or normal load, but rather adds oscillations about the sim-

ulated means.

CHAPTER 5 – GROUSER WHEEL MODEL

Chapter 5 built on the smooth-wheel model and presented a new form for the

pressure-sinkage relationship to capture the dynamic oscillations observed for a

wheel with grousers:

p(z) =
(

ck′c + γbk′φ
) ( z

b

)n
+ (k′gσ̄p + k′alcdγ) sin

(
ωw

ng
t+Φ

)
(7.2)

The new model improves traditional terramechanic models when the dynamic

effects of grousers are of importance. The additional terms in the model are based

on existing soil mechanic theories that vary as a function of soil properties, slip

conditions, and vehicle loading. The model has two new dimensionless empirical

coefficients k′g and k′a. As in the smooth wheel model, the additional terms in the

new grouser wheel model do not affect the mean values of the sinkage, drawbar

pull or normal load.

CHAPTER 6 – CASE STUDIES AND MODEL APPLICATIONS

As a result of the case studies presented in Chapter 6, it was shown that the dy-

namic model should only be implemented when there is sustained slippage and

positive drawbar pull. Case studies which varied the number and length of the

grousers on a wheel demonstrated that the model is able to reasonably capture

and predict the dynamic oscillations observed in the drawbar pull and normal

force measurements using only one tuning condition. Also, RMS data should be

used in conjunction with time history data to ensure that the numeric quantifica-

tion is appropriate and meaningful.

7.2 Contributions to the Field

This doctorial thesis made the follow contributions to the knowledge in the field

of terramechanics:
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1. design of a new high fidelity single-wheel testbed which translates the ter-

rain and is capable varying the normal loads due to a simple counter bal-

ance. In addition, confirmation was presented that this new style of single-

wheel testbed produces appropriate results for small wheels operating in

sandy soil.

2. correlation of the ripples in the sand in the track of the smooth wheel to

the corresponding oscillations in the measured data. In addition, it was

confirmed that these ripples in the sand are not a function of the testing

equipment because the same ripples were observed on a powered micro

rover.

3. development of a dynamic pressure-sinkage model that can be used to model

the fluctuations in the drawbar pull and normal force of a smooth wheel op-

erating in sandy soil. In addition, analytical and empirical solutions were

presented for the new terms found in the new model.

4. development of a dynamic pressure sinkage model that can be used to

model the fluctuations in the sinkage, drawbar pull, and normal force of a

wheel with grousers operating in sandy soil. In addition, analytical and em-

pirical solutions were presented for the new terms found in the new model.

5. experimental validation that the new dynamic pressure-sinkage model for

a smooth wheel and a wheel with grousers produces reasonable results in a

predictive mode of operation.

7.3 Future Work

This thesis presents a viable solution that is built upon traditional terramechanic

theory and validated experimentally to capture a phenomena that researchers

have observed in testing of smooth and grouser wheels, but have not modelled.

Through the course of this work some interesting future avenues of research have

emerged:

1. development of a sophisticated method to model the accelerated excavation
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that appears at hight slip ratios (> 0.50). A method to model this excavation

will aid in the development of lightweight mobile robots and, in particular,

planetary rovers. The model would also help mission specialists determine

the mobility of their vehicles and aid in their path-planning/motion control.

This model would be of particular importance for vehicles that become en-

trench in loose sandy soil, such as NASA’s Spirt rover.

2. carry out a parametric study of different wheel configurations and terrains

so that further quantification can be made of the oscillations. Moreover,

once new experimental data exists for various terrains and wheels an in-

vestigation can be performed to determine correlations for the new dimen-

sionless parameters k′a and k′φ. The ability to predict k′a and k′φ a priori will

reduce the complexity of the soil-wheel interaction model and any required

tuning.

3. direct measurements of the stresses/pressures acting on the wheel and in

the soil, so that the accuracy of the new pressure-sinkage model can be

further validated. The modifications that this research made to the Reece

pressure-sinkage relationship was borne from force measurements. The re-

sulting pressure-sinkage relationship is an approximation of the true stresses

acting on the wheel-soil interface. While the approximation is capable of

modelling and predicting the forces and sinkage of a single wheel, in order

to model the actual stress field, direct stress measurements are required.

4. It would be very interesting to see how the new model can be integrated

into existing algorithms and simulators for the purpose of path-planning,

motion control and soil-parameter estimation.



APPENDIX A

SMOOTH WHEEL ALGORITHM

The solution methodology used to simulate the smooth wheel model is as fol-

lows:

1. Input all model constants and constraints and prescribe the settled or static

sinkage value (i.e. 2 [mm]) for t = to and calculate ω, as it is constant for a

SWTB simulation.

2. Calculate θ f , θr and θm.

3. Calculate the contact length lc and use this value to calculate A = k′alcdγ.

4. Compute the normal stress value σ(θ) and shear stress τ(θ) and include the

A sin(ωt+ φ) term.

5. Integrate the stress from θr to θ f to compute the forces Fz and Fx.

6. Frictional damping Ff of the system must be applied to the vertical direc-

tion to account for any losses in the system. Sum the forces in the vertical

direction to calculate the sinkage acceleration and then integrate the sink-

age acceleration twice to obtain a new sinkage value for the next time-step

and return to Step 2 with the updated values.

Step 1 of the simulation is carried out within a MATLAB ∗.m file prior to calling

the Simulink ∗.mdl file which computes the remaining steps. Simulation steps

2 through 5 are handled by a Level-2 M file S-Function within the Simulink

model. The important outputs from the S-Function are the wheel sinkage (z),
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drawbar pull (Fx) and normal force (Fz). Figure 3.6 shows a simplified schematic

representation of the single-wheel testbed pulley system and the corresponding

Simulink/Simscape representation of the system that computes step 6 of the sim-

ulation methodology. To compute this step one must take the normal force Fz

into the Simscape environment with an implementation of the pulley counterbal-

ance system where the masses on either side of the pulley are modeled along

with the pulley itself. As shown in Figure 3.6, on one side of the pulley there is

only the dead weight of counter balance mass. On the other side of the pulley

there is the mass of the SWTB rig and the wheel. A grounded translational

damper block in Simscape attached on the single-wheel testbed rig side accounts

for frictional losses in the vertical direction of the system. The viscous coefficient

for the damper was set to 800 [Ns/m]. The losses modelled by this damper can

come from the linear bearings, linear potentiometer and unaccounted for effects

in the terrain deformation. The normal force Fz from the S-Function becomes

the forcing function acting on the mass of the wheel side of the counter balance.

Simulink/Simscape computes the displacement of the wheel and this displace-

ment is the new sinkage value that is fed back into the soil model S-Function

for the next time-step. One will notice in Figure 3.6 that there is a 1:1 gear-

box and a zero input torque source between the two sides of the pulley in the

Simulink/Simscape model. These blocks were needed to explicitly state the re-

lationship between the two sides of the pulley. One could expand this Simscape

implementation to model a full rover with multiple wheels and degrees of free-

dom and even alter the acceleration due to gravity to simulate Mars or Moon

scenarios.



APPENDIX B

GROUSER WHEEL ALGORITHM

The solution methodology used to simulate the grouser wheel model is as fol-

lows:

1. Input all model constants and constraints and prescribe the settled or static

sinkage value (i.e. 2 [mm]) for t = to and calculate ω, as it is constant for a

SWTB simulation.

2. Calculate θ f , θr and θm.

3. Calculate the contact length lc and determine which grousers are in contact

with the terrain and calculate σ̄p.

4. Calculate A = k′alcdγ+ k′gσ̄p.

5. Compute the normal stress value σ(θ) and shear stress τ(θ) and include the

A sin(ωt+ φ) term.

6. Integrate the stress from θr to θ f to compute the forces Fz and Fx.

7. Frictional damping Ff of the system must be applied to the vertical direc-

tion to account for any losses in the system. Sum the forces in the vertical

direction to calculate the sinkage acceleration and then integrate the sink-

age acceleration twice to obtain a new sinkage value for the next time-step

and return to Step 2 with the updated values.

Step 1 of the simulation is carried out within a MATLAB ∗.m file prior to calling

the Simulink ∗.mdl file which computes the remaining steps. Simulation steps
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2 through 6 are handled by a Level-2 M file S-Function within the Simulink

model. The important outputs from the S-Function are the wheel sinkage (z),

drawbar pull (Fx) and normal force (Fz). Figure 3.6 shows a simplified schematic

representation of the single-wheel testbed pulley system and the corresponding

Simulink/Simscape representation of the system that computes step 7 of the sim-

ulation methodology. To compute this step one must take the normal force Fz

into the Simscape environment with an implementation of the pulley counterbal-

ance system where the masses on either side of the pulley are modeled along

with the pulley itself. As shown in Figure 3.6, on one side of the pulley there is

only the dead weight of counter balance mass. On the other side of the pulley

there is the mass of the SWTB rig and the wheel. A grounded translational

damper block in Simscape attached on the single-wheel testbed rig side accounts

for frictional losses in the vertical direction of the system. The viscous coefficient

for the damper was set to 800 [Ns/m]. The losses modelled by this damper can

come from the linear bearings, linear potentiometer and unaccounted for effects

in the terrain deformation. The normal force Fz from the S-Function becomes

the forcing function acting on the mass of the wheel side of the counter balance.

Simulink/Simscape computes the displacement of the wheel and this displace-

ment is the new sinkage value that is fed back into the soil model S-Function

for the next time-step. One will notice in Figure 3.6 that there is a 1:1 gear-

box and a zero input torque source between the two sides of the pulley in the

Simulink/Simscape model. These blocks were needed to explicitly state the re-

lationship between the two sides of the pulley. One could expand this Simscape

implementation to model a full rover with multiple wheels and degrees of free-

dom and even alter the acceleration due to gravity to simulate Mars or Moon

scenarios.
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LIST OF PUBLICATIONS
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doctorial thesis.

Journal

Irani, R. A., Bauer, R. J., Warkentin, A. A Dynamic Terramechanic Model for Small
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Journal of Terramechanics. (IN PRESS - May 2011)

Conference
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