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Abstract

We consider reaction-diffusion systems of two variables with Neumann boundary con-

ditions on a finite interval with diffusion rates of different orders. Solutions of these

systems can exhibit a variety of patterns and behaviours; one common type is called

a mesa pattern; these are solutions that in the spatial domain exhibit highly localized

interfaces connected by almost constant regions. The main focus of this thesis is to

examine three different mechanisms by which the mesa patterns become unstable.

These patterns can become unstable due to the effect of the heterogeneity of the

domain, through an oscillatory instability, or through a coarsening effect from the

exponentially small interaction with the boundary. We compute instability thresh-

olds such that, as the larger diffusion coefficient is increased past this threshold, the

mesa pattern transitions from stable to unstable. As well, the dynamics of the inter-

faces making up these mesa patterns are determined. This allows us to describe the

mechanism leading up to the instabilities as well as what occurs past the instability

threshold. For the oscillatory solutions, we determine the amplitude of the oscilla-

tions. For the coarsening behaviour, we determine the motion of the interfaces away

from the steady state. These calculations are accomplished by using the methods

of formal asymptotics and are verified by comparison with numerical computations.

Excellent agreement between the asymptotic and the numerical results is found.

viii
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Chapter 1

Introduction

The study of patterns that form as solutions of reaction-diffusion equations began

with Turing’s 1952 paper [77] on morphogenesis. Turing showed that for a reaction of

two substances with different diffusivities a homogeneous steady state could become

unstable and form spatially inhomogeneous patterns. Many years later, these patterns

were observed experimentally [64, 63, 4]. Turing’s methods are limited to patterns

that are close to the homogeneous steady state, but these reaction-diffusion models

can also exhibit patterns that are far from the homogeneous steady state. Pearson

and others [65, 41] showed, through numerical simulations, that reaction-diffusion

models could exhibit many complex spatially localized patterns. Examples of types

of patterns are spikes, fronts, stripes, spots, wriggled stripes and labyrinthine patterns

[8, 53, 52].

In this thesis, we consider a general class of reaction-diffusion systems

{
ut = ε2uxx + f(u,w)

τwt = Dwxx + g(u,w)
(1.1)

with Neumann boundary conditions on a bounded interval where ε and D are the

diffusion coefficients and τ is a non-negative constant. Let the initial conditions be

given by

u(x, 0) = uI(x), w(x, 0) = wI(x).

Reaction-diffusion systems of the general form (1.1) have been used to model many

diverse phenomena. Some examples are:

1
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• Model of the Belousov-Zhabotinskii (BZ) reaction in a water-in-oil microemul-

sion system [29, 80, 35, 28]. A simplified version of this model is ut = ε2uxx − f0
u− q
u+ q

+ wu− u2

τwt = Dwxx + 1− uw
, (1.2)

where f0 and q are problem dependent constants.

• Model of the Chlorite-Iodide-Malonic Acid-starch (CIMA) reaction [43, 56].

This model, also known as the Lengyel-Epstein model, can be written as
ut = ε2uxx + a− u− 4uw

1 + u2

τwt = Dwxx + u− uw

1 + u2

, (1.3)

where a is a constant.

• The Brusselator model (a model of an autocatalytic reaction) [67, 34, 37]. After

a change of variables the Brusselator may written as{
ut = ε2uxx − u+ uw − u3

τwt = Dwxx − β0u+ 1
, (1.4)

where β0 is a constant.

• The Gierer-Meinhardt model with saturation (a model of stripe patterns on

animal hides) [46, 47, 32, 38]. After some rescaling, the model is ut = ε2uxx − u+
u2

w(1 + κu2)

τwt = Dwxx − w + u2

, (1.5)

where κ is a constant.

In addition to modeling chemical reactions and animal stripe patterns, reaction-

diffusion systems can model gas discharge dynamics [19, 79], population dynamics

[1, 66], vegetation in arid regions [48], coexistence of competing species [49], chemo-

taxis [23] and phase separation in diblock copolymers [7].
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Figure 1.1: A 3-mesa pattern solution

The two dimensional analogue to (1.1) is{
ut = ε2∆u+ f(u,w)

τwt = D∆w + g(u,w)
. (1.6)

The two-dimensional versions of each of the models above have been studied as well;

see [28, 80, 29, 56, 36, 38] and references therein. Such a system has also been used to

model spreading depressions in the brain which play a major role in strokes [5]. For

thin domains (that is, where the length of the domain is much greater than its width),

the system (1.6) can be approximated by a one dimensional system with heterogenous

diffusion,  ut = ε2

h(x)
[h(x)ux]x + f(u,w)

τwt = D
h(x)

[h(x)wx]x + g(u,w)
, (1.7)

where h(x) is a positive function corresponding to the domain height. This reduc-

tion is known as an lubrication theory approximation on a slender geometry, see for

example [24, 76]. This will be considered in Chapter 3.

A common phenomenon observed in reaction-diffusion systems is the formation

of mesa patterns. These patterns consist of a sequence of highly localized interfaces

that connect regions where the solution is nearly constant. Such a solution can be

seen in Figure 1.1. In the limits

ε� 1 and D � 1, (1.8)

and under some general conditions on the functions f and g (that will be specified

in Chapter 2), the system (1.1) admits a solution for u that has the property that u
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is either u+ or u− for some constants u+ 6= u− everywhere except near the interface

location, where it has a layer of O(ε) connecting the two constant states u+ and u−.

A single mesa solution consists of two interfaces or fronts, one connecting u− to u+

and another connecting u+ back to u−. By mirror reflection a single mesa can be

extended to a symmetric K mesa solution consisting of 2K interfaces. Figure 1.1 has

u− ≈ −1 and u+ ≈ 1 with K = 3. These types of solutions have been extensively

studied. See, for example, [10, 17, 75, 30, 54, 53, 31, 60, 59, 70, 57] and works cited

there.

Patterns of reaction-diffusion systems can exhibit many different types of be-

haviour. The formations can coarsen as seen in Figure 1.2(a) and as seen in [34].

These patterns can also self-replicate. This is observed experimentally in the self-

replication of spots in an experiment involving ferrocyanide-iodide-sulfite [42] or in

the splitting of fronts in the BZ reaction [50]. Analytically, this is seen in the self-

replication of spots in the Gray-Scott model [69] or of mesas in the one-dimensional

Brusselator [37]. The patterns can oscillate, as seen experimentally in [21] or as an-

alyzed in [20] or [34]. Also, these patterns can exhibit spatio-temporal chaos [61].

In this thesis, we examine, in the regime where D � 1, some of the mechanisms by

which mesa patterns can become unstable: through a oscillatory instability, through

coarsening or due to domain heterogeneity, in the case of a thin domain.

1.1 Background

The general system (1.1) has been well studied. It is known that there exists a Dc of

O(1), such that for D > Dc, under certain conditions on f and g, a K mesa pattern

is stable for all K [59, 37]. As D → ∞, the system (1.1) with τ = 0 and x ∈ [a, b]

reduces to {
ut = ε2uxx + f(u,w0)∫ b

a
g(u,w0)dx = 0

, (1.9)

where w0 is a constant. This is called the shadow system. Equation (1.9) also includes

many models of phase separation such as the Allen-Cahn equation [70] as a special

case. Under the same general conditions on f and g, a single interface of the shadow

system is also stable; however, a pattern consisting of more than one interface is

known to be unstable [55]. Similar type of analysis has been done for a K-spike
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pattern (see for example [40]).

In [73], the authors study internal layer solutions of the generalized Ginzburg-

Landau equation, which models the slow propagation of an internal layer in a thin

channel

ut =
ε2

A
[Aux]x +Q(u) (1.10)

where A = A(x; ε) is the cross-sectional area of the channel. Here the function A is

perturbed from the uniform value A ≡ 1 by an exponentially small term depending on

ε. This equation is similar to the equations in the system (1.7). In [27], the authors

consider a spike solution of the shadow Gierer-Meinhardt model (that is, D → ∞)

where a weak spatially inhomogeneous diffusivity has been added,
ut = ε2

κ
[κux]x − u+ up

wq

w =
(
ε−1

2µ

∫ 1

−1
urdx

)1/(s+1)

, (1.11)

where µ > 0, the exponents r, s, p, q are assumed to satisfy

p > 1, q > 0, r > 0, s ≥ 0, 0 <
p− 1

q
<

r

s+ 1
,

and where κ is a function of x close to 1. A one spike solution which would be unstable

when κ is 1 can become stable for non-constant κ.

Patterns of reaction-diffusion systems can exhibit oscillatory or breather type be-

haviour, such as shown in Figure 1.2(b). Koga and Kuramoto first suggested that a

pattern in a reaction-diffusion system could destabilize and oscillate [33]. Since then

oscillatory behaviour has been examined in many other reaction-diffusion systems in

one and higher dimensions, see for example [6, 15, 19, 79, 20, 21, 26, 25, 74, 84, 22].

The onset of the oscillations for the system (1.1) is well understood in terms of a Hopf

bifurcation, see for example [33, 60]. The Hopf bifurcation occurs when τ is increased

beyond a critical threshold τh. For τ only slightly beyond τh, weakly nonlinear analy-

sis is possible [19, 20, 79, 60]. In [20], the Hopf bifurcation structure was determined

for a system of the form (1.1). In [79], for a specific three-component gas discharge

model, the oscillatory behaviour of fronts was observed from numerical simulations,

and, in [11], the authors determined analytically that the Hopf bifurcation leading

to this behaviour can either be subcritical (unstable limit cycle) or supercritical (sta-

ble limit cycle) depending on the choice of parameter. In [19], the normal form of
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Figure 1.2: (a) Coarsening process in Lengyel-Epstein model (1.3) (b) An example of
an oscillating single mesa pattern

a general reaction-diffusion system for oscillations close to the Hopf bifurcation was

determined. However, the constants in this normal form are not easily determined

analytically. In [6], the oscillation of spikes in the Gray-Scott model was analyzed.

The authors derived a reduced ODE-PDE Stefan problem with a moving source.

They rederived the Hopf bifurcation thresholds. Away from the Hopf bifurcation,

they solved the Stefan problem numerically.

1.2 Overview of Thesis

The main focus of this thesis is to examine the mechanisms that lead to mesa patterns

becoming unstable. In Chapter 2, we consider the system (1.1) with τ = 0. We

examine how a K mesa pattern transitions from the stable regime where D is of

O(1) to the unstable regime where D → ∞. For D = O(1), the stability of the K

mesa pattern of u comes from the stabilizing effect of the variable w [59]. As D is

increased, this effect is decreased and the pattern eventually becomes unstable. This

instability is caused by the exponentially small interaction between the interfaces of

the K mesa pattern of u, as D becomes exponentially large. We first construct the

steady state consisting of K mesas of the system (1.1). We analyze the eigenvalues

of the linearized problem and compute the instability threshold DK such that a K

mesa solution on a fixed domain size is stable if D < DK and is unstable if D > DK .
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The instability thresholds have an ordering

DK : D1 > D2 > . . . > DK .

In addition to considering the stability of the mesa patterns, we also study their

dynamics. For a K mesa pattern, we derive 2K ODEs that govern the motion of the

2K interfaces. These asymptotic results are compared with numerical simulations of

specific examples. We apply our results to the Belousov-Zhabotinskii model (1.2) and

to a cubic model {
ut = ε2uxx + 2u− 2u3 + w

τwt = Dwxx − u+ β
, (1.12)

which is a variation on a FitzHugh-Nagumo model used in [17, 52]. This cubic model

is one of the simplest systems of the form (1.1) making it a convenient model for

assessing our asymptotic results. It is found that the asymptotic results agree closely

with the numerical simulations. Note that all the results also generalize to the case

where τ is small, 0 < τ � 1
ε
. The results of Chapter 2 can be found in [44].

In Chapter 3, we examine how a K mesa pattern of (1.6) on a thin domain

becomes unstable by considering the equivalent one dimensional problem (1.7), for

the case where τ = 0. Here the instability comes from effects of the heterogenous

domain. We first show how we reduce (1.6) to the one dimensional problem (1.7) in

the case of a thin domain. Then, for τ = 0, as was done in Chapter 2, we determine

the eigenvalues of the linearized problem and thresholds for the stability of the mesa

patterns. These thresholds depend on the function h(x). Again, the results also hold

for sufficiently small τ . We use the cubic model (1.12) to verify our asymptotic results

against numerical simulations.

In Chapter 4, we examine how a mesa pattern of (1.1) can become unstable as we

increase τ , where τ is shown to be of O(D
ε

). Previously, as in [60, 11, 79], this has

been done by determining the Hopf bifurcation through spectral analysis. Here, by

assuming D is large, we can study the dynamics of the interfaces even far away from

the Hopf bifurcation. We begin by considering a single interface, or half-mesa pattern.

Similar to what was done in [6], we start by obtaining a reduced ODE-PDE system

for the motion of the interfaces. However, since we have assumed that D is large, we

can further approximate this reduced system by a weakly-forced harmonic oscillator.

Performing a multiple scales analysis, an equation for the amplitude of oscillations
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of the interface is obtained. From this amplitude equation, we determine the critical

value of τ at which the Hopf bifurcation occurs. Similarly, for one mesa, that is,

two interfaces, we determine an equation for the amplitude. We use the cubic model

(1.12) to verify our asymptotic results against numerical simulations. The results of

Chapter 4 can be found in [45]. We finish in Chapter 5, with our conclusions and

suggestions for future work.



Chapter 2

Instability Thresholds and

Dynamics of Mesa Patterns

In this chapter, we consider mesa pattern solutions of the system (1.1) with τ = 0{
ut = ε2uxx + f(u,w)

0 = Dwxx + g(u,w)
, (2.1)

with Neumann boundary conditions. In previous work, a K mesa pattern for D suffi-

ciently large, but of O(1), has been shown to be stable [59, 37]. For the corresponding

shadow system (1.9), a K mesa pattern is unstable for any K [55]. We examine how

a K mesa pattern transitions from the stable regime where D is of O(1) to the un-

stable regime where D → ∞. This instability is caused by the exponentially small

interactions between the interfaces of the K mesa solution of u as D becomes large.

Resolving these exponentially small terms is essential to determining how the tran-

sition to instability occurs and is the main result of this chapter, given in Principal

Result 2.2.1.

Linearizing around the steady state, constructed in Proposition 2.1.1, we obtain an

eigenvalue problem with Neumann boundary conditions. To determine these eigenval-

ues, we start by considering the eigenvalue problem with periodic boundary conditions

and then extend the result to the Neumann boundary problem. From these eigen-

values, we determine the stability of the mesa patterns. There exist exponentially

large instability thresholds DK : D1 > D2 > . . . > DK , such that a K mesa solution

on a fixed domain size is stable if D < DK and is unstable if D > DK . We also

derive a system of 2K ODEs to describe the motion of the interfaces. These results

9
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are verified by comparing the results of numerical computations with the asymptotic

results. We begin with the construction of the steady steady state solution having a

K mesa pattern.

2.1 Preliminaries: Construction of the K−Mesa Steady State

We start by constructing the steady state mesa-type solution to (2.1). The mesa (or

box) solution consists of two back-to-back interfaces. Thus we first consider the condi-

tions for existence of a single interface solution and review its construction. A solution

with a mesa pattern can then be constructed from a single interface by reflecting and

doubling the domain size. Similarly, a K-mesa pattern is then constructed by making

K copies of a single mesa. We summarize the construction as follows.

Proposition 2.1.1. Consider the steady state of the PDE system (2.1) satisfying{
0 = ε2uxx + f(u,w)

0 = Dwxx + g(u,w)
(2.2)

with Neumann boundary conditions and in the limit where

ε� 1 and D � 1. (2.3)

Suppose that u+, u−, w0 are constants that satisfy

∫ u+

u−

f(u,w0)du = 0; f(u+, w0) = 0 = f(u−, w0), (2.4)

with u+ 6= u−.

Define

g± := g (u±, w0) (2.5)

and suppose in addition that

fu (u±, w0) ≤ 0; and 0 <
g−

g− − g+

< 1. (2.6)

Then a single interface solution, on the interval [0, L] is given by

u(x) ∼ U0

(
x− l
ε

)
, w ∼ w0
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where U0 is the heteroclinic connection between u+ and u− satisfying
U0yy + f(U0, w0) = 0;

U0 → u− as y →∞; U0 → u+ as y → −∞;

f(U0(0), w0) = 0

(2.7)

and l is the location of the interface so that

u ∼

{
u+, 0 < x < l

u−, l < x < L
.

Moreover, l satisfies

l = l0 + εl1 +O(ε2) (2.8)

where

l0 =
g−

g− − g+

L (2.9)

and

l1 =

∫∞
0

[g(U0(y), w0)− g−] dy +
∫ 0

−∞ [g(U0(y), w0)− g+] dy

g− − g+

(2.10)

A single mesa solution on the interval [−L,L] is obtained by even reflection of the

interface solution on an interval [0, L] around x = 0. A K-mesa solution on the

interval [−L, (2K−1)L] is then obtained making K copies of the single mesa solution

on the interval [−L,L].

The construction of this solution is standard (see for example [37, 58]), but we

review the details here. First, consider a single interface located at x = l inside the

domain [0, L]. We assume that u ∼ u+ for 0 < x < l and u ∼ u− for l < x < L where

u± are constants to be determined. Since we assumed that D � 1, we expand

w = w0 +
1

D
w1 + · · ·

so that to leading order w ∼ w0 is constant. Near the interface we introduce inner

variables

x = l + εy; u(x) ∼ U0

(
x− l
ε

)
, w ∼ w0. (2.11)

Then U0(y) satisfies the system (2.7). Note that the last equation of this system is

to define the arbitrary constant of integration. In order for such a solution to exist,

u± must both be roots of f(u,w0) and U0 must be a heteroclinic orbit connecting
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u+ and u−. This yields the three algebraic constraints (2.4) which determine u± and

w0. To determine the location l of the interface, we integrate the second equation in

(2.2), and using Neumann boundary conditions we obtain∫ L

0

g(u,w0)dx = 0. (2.12)

Changing variables x = l + εy we estimate the above condition by

0 ∼ ε

∫ 0

−l/ε
g(U0(y), w0)dy + ε

∫ (L−l)/ε

0

g(U0(y), w0)dy;

0 ∼ lg+ + ε

∫ 0

−∞
[g(U0(y), w0)− g+] dy + (L− l)g− + ε

∫ ∞
0

[g(U0(y), w0)− g−] dy

Expanding l in ε as in (2.8) then yields (2.9) and (2.10). Since we must have 0 < l < L,

this yields an additional constraint, the second equation of (2.6). The first conditions

will be necessary below.

2.2 Stability of K−Mesa Pattern

Now we consider the stability of a K mesa pattern. We begin by stating the main

result

Principal Result 2.2.1. Consider the steady state consisting of K mesas on the in-

terval [−L, (2K− 1)L], with Neumann boundary conditions, as constructed in Propo-

sition 2.1.1. Suppose that

gw − gu
fw
fu

< 0 for all x, and

∫ u+
u−

fwdu

g− − g+

> 0. (2.13)

Let

α+ :=
2C2

+µ
3
+∫ u+

u−
fwdu

1

ε
exp

(
−2µ+

ε
l

)
; α− :=

2C2
−µ

3
−∫ u+

u−
fwdu

1

ε
exp

(
−2µ−

ε
(L− l)

)
(2.14)

where l is defined as in Proposition 2.1.1 and where we also define

µ± :=
√
−fu (u±, w0) ≥ 0, (2.15)

and define constants C± to be such that

U0(y) ∼ u− + C−e
−µ−y, y → +∞,

U0(y) ∼ u+ − C+e
µ+y, y → −∞.

(2.16)



13

Define

D1 ≡
Lg2
−

2 (g− − g+)α−
, (2.17)

and for K ≥ 2, define

DK ≡



Lg2−
2(g−−g+)α−

if α+ � α−

Lg2+
2(g−−g+)α+

if α− � α+

L

2(g−−g+)(g−2
+ α++g−2

− α−)

(
1
2

+

√
1
4
− 2α+α−(1−cosπ/K)g2+g

2
−

4(g2−α++g2+α−)
2

)−1

if O(α+) = O(α−)

(2.18)

then the K mesa pattern is a stable steady state of the time-dependent system (2.1)

if D < DK, and is unstable if D > DK .

Principal Result 2.2.1 follows from examining the eigenvalue problem that comes

from the linearization. We consider perturbations of the steady state of the form

u(x, t) ∼ u(x) + φ(x)eλt, w(x, t) ∼ w(x) + ψ(x)eλt

where u(x), w(x) denotes the K-mesa equilibrium solution of (2.2) on the interval

of length 2KL with Neumann boundary conditions, whose leading order asymptotic

profile was constructed in Proposition 2.1.1. For small perturbations φ, ψ we get the

following eigenvalue problem,{
λφ = ε2φxx + fu(u,w)φ+ fw(u,w)ψ

0 = Dψxx + gu(u,w)φ+ gw(u,w)ψ
, (2.19)

with Neumann boundary conditions. The sign of the real part of the eigenvalue λ

determines the stability: the system is said to be unstable if there exists a solution to

(2.19) with Re(λ) > 0 and it is stable if Re(λ) < 0 for all solutions λ to (2.19).

To analyse the stability for Neumann boundary conditions, the first step is to

consider periodic boundary conditions. The eigenvalues for the periodic boundary

problem are given in the following lemma.

Lemma 2.2.2. Consider the steady state consisting of K mesas on the interval

[−L, (2K − 1)L], as constructed in Proposition 2.1.1, and consider the linearized

problem (2.19) with periodic boundary conditions

φ (−L) = φ((2K − 1)L)
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The linearized problem admits 2K eigenvalues. Of these, 2K − 2 are given asymptot-

ically by

λ±θ ∼ (a± |b|)
∫ u+
u−

fwdu∫ 0

−L u
2
xdx

(2.20)

where

a = α+ + α− +
(g+ − g−)

D

L

1− cos θ
− g+l

D
(2.21)

|b|2 = α2
+ + α2

− + 2α+α− cos θ +
2 (g+ − g−)

D

[
L (α+ + α−)

1− cos θ
− lα+ − (L− l)α−

]
+

(g+ − g−)2

D2 (1− cos θ)2

[
L2 − 2 (1− cos θ) l(L− l)

]
(2.22)

with

α+ =
2C2

+µ
3
+∫ u+

u−
fwdu

1

ε
exp

(
−2µ+

ε
l

)
, α− =

2C2
−µ

3
−∫ u+

u−
fwdu

1

ε
exp

(
−2µ−

ε
(L− l)

)
(2.23)

and

θ = 2πj/K; j = 1, . . . , K − 1. (2.24)

The other two eigenvalues are λ = 0 and

λeven ∼ −
g− − g+

σ+l + σ−(L− l)

∫ u+
u−

fwdu∫ 0

−L u
2
xdx

(2.25)

where σ± are given in (2.35). In the case θ = π, the formula (2.20) simplifies to

λ−π =

(
2α− −

g2
−L

D(g− − g+)

) ∫ u+
u−

fwdu∫ 0

−L u
2
xdx

;λ+
π =

(
2α+ −

g2
+L

D(g− − g+)

) ∫ u+
u−

fwdu∫ 0

−L u
2
xdx

(2.26)

The eigenvalues given here are the critical eigenvalues [59]. There may exist non-

critical eigenvalues, but they all have negative real parts and thus do not affect the

stability of the mesa pattern solutions. For further reference, see [59].

Derivation of Lemma 2.2.2. The idea is to make use of Floquet theory. For

further discussion on Floquet exponents, see [18]. That is, instead of considering

(2.19) with periodic boundary conditions on [−L, (2K − 1)L], we consider (2.19) on

the interval [−L,L] with the boundary conditions

φ(L) = zφ(−L), φ′(L) = zφ′(−L); ψ(L) = zψ(−L), ψ′(L) = zψ′(−L), (2.27)
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for some z. We then extend such solution to the interval [L, 3L] by defining φ(x) ≡
zφ(x − 2L) for x ∈ [L, 3L] and similarly for ψ. This extension ensures the conti-

nuity of φ, ψ and φx, ψx at L. Since u,w are periodic with period 2L, it is clear

that φ, ψ extended in this way satisfies (2.19) on [−L, 3L] and moreover φ(3L) =

z2φ(−L). Repeating this process, we obtain the solution of (2.19) on the whole inter-

val [−L, 2KL− L] with φ(2KL− L) = φ(−L)zK . Thus, by choosing

z = exp (2πij/K) , j = 0, . . . , K − 1,

we have obtained a periodic solution to (2.19) on [−L, 2KL− L].

To solve (2.19) subject to (2.27), we estimate the eigenfunctions as

φ ∼ c±ux; ψ ∼ ψ (±l) when x ∼ ±l, (2.28)

where c± are unknown constants. Note that

0 = ε2uxxx + fuux + fwwx.

Multiplying (2.19) by ux and integrating by parts on [−L, 0] we then obtain

λc−

∫ 0

−L
u2
xdx ∼ ε2 (φxux − φuxx)0

−L +

∫ 0

−L
fw (ψux − φwx) dx.

We note that the integral term on the right hand side is dominated by the contribution

from x = −l. Using (2.28) we then obtain

λc−

∫ 0

−L
u2
xdx ∼ ε2 (φxux − φuxx)0

−L + (ψ(−l)− c−wx (−l))
∫ u+

u−

fwdu. (2.29)

Similarly on the interval [0, L] we get

λc+

∫ L

0

u2
xdx ∼ ε2 (φxux − φuxx)L0 − (ψ(+l)− c+.wx(−l))

∫ u+

u−

fwdu (2.30)

In matrix form, equations (2.29) and (2.30) become

λκ0

(
c+

c−

)
=

(
κ1 (−φuxx)L0 − ψ(+l) + c−wx(+l)

κ1 (−φuxx)0
−L + ψ(−l)− c−wx(−l)

)
(2.31)

where

κ0 =

∫ 0

−L u
2
xdx∫ u+

u−
fwdu

; κ1 =
ε2∫ u+

u−
fwdu

.
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We now transform (2.31) into an matrix eigenvalue problem. To do so, we will express

the boundary terms as well as ψ (±l) in terms of c±.

First, we determine ψ(±l). We start by estimating∫ u+

u−

gudu ∼ g+ − g−;∫ u−

u+

gudu ∼ g− − g+

where g± = g (u±, w0) . On the other hand, φ is dominated by the contribution from

the interfaces. Hence we estimate

guφ ∼ c− (g+ − g−) δ (x+ l) + c+ (g− − g+) δ (x− l) (2.32)

where δ is the delta function. Therefore we write

ψ (x) ∼ −(g+ − g−)

D
(c−η(x;−l)− c+η(x; l))

where η(x;x0) is a Green’s function which satisfies

η′′ +
σ(x)

D
η = δ (x− x0) (2.33)

with boundary conditions

η (L) = zη(−L), η′(L) = zη′(−L), z = exp (2πij/K) , j = 0 . . . K − 1 (2.34)

where

σ (x) ≡

{
σ+, |x| < l

σ−, l < |x| < L
; σ± ≡

(
gw − gu

fw
fu

)∣∣∣∣
u=u±,w=w0

. (2.35)

As will become evident, z = 1 is a special case and will be considered later. For now,

assume z 6= 1. Then to leading order, η must satisfiy

ηxx = 0; η
(
x−0 ;x0

)
= η

(
x+

0 ;x0

)
; η′

(
x+

0 ;x0

)
− η′

(
x−0 ;x0

)
= 1.

so that

η ∼

{
A+ (x+ L)B, x < x0

A+ (L+ x0)B + (1 +B)(x− x0), x > x0

.
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The constants A and B are to be chosen so that the boundary conditions (2.27) are

satisfied, which gives

A+ 2BL+ L− x0 = zA, 1 +B = zB.

We then obtain

B =
z − 1

(z − 1)2 , A =
2L+ (L− x0) (z − 1)

(z − 1)2 ,

η(l; l) = η(−l;−l) =
2Lz

(z − 1)2 , (2.36)

η(l;−l) =
2Lz + 2zl(z − 1)

(z − 1)2 , (2.37)

η(−l; l) =
2Lz + 2l(1− z)

(z − 1)2 = η(l;−l).

In summary, we obtain(
ψ (l)

−ψ (−l)

)
∼ (g+ − g−)

D

(
η(l; l) −η(l;−l)
−η(l;−l) η(l; l)

)(
c+

c−

)
(2.38)

where η(l; l), η(l;−l) are given by (2.36) and (2.37).

Next we compute the boundary terms. We start by estimating the behaviour of

ux and φ near −L. Since u′(−L) = 0, we have

u ∼ u− + A [exp(µ−z) + exp(−µ−z)] , z =
x+ L

ε
. (2.39)

The constant A is found by matching u to the heteroclinic solution as x→ −L

U (y) ∼ u− + C− exp (µ−y) ;

u(x) ∼ U

(
x+ l

ε

)
∼ u− + C− exp

(
µ−

x+ l

ε

)
. (2.40)

Matching (2.39) and (2.40) we then obtain

A = C− exp
(
−µ−
ε

(L− l)
)
.

Performing a similar analysis at x = 0 and at x = L we get:

u′′(±L) = 2C−
µ2
−

ε2
exp

(
−µ−
ε

(L− l)
)

; u′′(0) = −2C+

µ2
+

ε2
exp

(
−µ+

ε
l
)
.
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Next we estimate φ(−L). Near x ∼ −L we write

φ = C1 exp
(µ−
ε

(x+ L)
)

+ C2 exp
(
−µ+

ε
(x+ L)

)
where C1 and C2 are to be determined. Away from −L, we have φ ∼ c−u

′. Matching,

we then obtain

C1 = c−C−
µ−
ε

exp
(
−µ−
ε

(L− l)
)
.

On the other hand, near x ∼ +L we write

φ = C3 exp
(µ−
ε

(x+ L)
)

+ C4 exp
(
−µ+

ε
(x+ L)

)
;

as before, we get

C4 = −c+C+
µ+

ε
exp

(
−µ+

ε
(L− l)

)
.

The constants C2 and C3 are determined by using the boundary condtions (2.34),

which yields

C3 = zC1 and C4 = zC2

In summary, we get

φ(−L) ∼ C−
µ−
ε

exp
(
−µ−
ε

(L− l)
)[

c− −
1

z
c+

]
;

φ(L) ∼ C−
µ−
ε

exp
(
−µ−
ε

(L− l)
)

[zc− − c+] .

Performing a similar analysis at x ∼ 0, we obtain

φ(0) ∼ C+
µ+

ε
exp

(
−µ+

ε
l
)

[c− − c+] .

We thus obtain

(φuxx)
L
0 = 2C2

−
µ3
−

ε3
exp

(
−2µ−

ε
(L− l)

)
[zc− − c+] + 2C2

+

µ3
+

ε3
exp

(
−2µ+

ε
l

)
[c− − c+] ,

(φuxx)
0
−L = −2C2

−
µ3
−

ε3
exp

(
−2µ−

ε
(L− l)

)[
c− −

1

z
c+

]
− 2C2

+

µ3
+

ε3
exp

(
−2µ+

ε
l

)
[c− − c+] ,

so that [
κ1 (φxux − φuxx)L0
κ1 (φxux − φuxx)0

−L

]
=

[
α+ + α− −α+ − zα−
−α+ − 1

z
α− α+ + α−

][
c+

c−

]
(2.41)

where α± are given by (2.14).
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Finally, we estimate

w′(l) ∼ −g+l

D
∼ −w′(−l). (2.42)

Substituting (2.41), (2.42) and (2.38) into (2.31) we obtain

λκ0

(
c+

c−

)
=

(
a b

b̄ a

)(
c+

c−

)

where

a = α+ + α− +
(g− − g+)

D
η(l; l)− g+l

D
; b = −α+ − zα− −

(g− − g+)

D
η(l;−l).

It follows that

λκ0 = a± |b| .

Next we compute

a = α+ + α− +
2 (g− − g+)

D

Lz

(z − 1)2 −
g+l

D

b = −α+ − zα− −
2 (g− − g+)

D

Lz + zl(z − 1)

(z − 1)2

b̄ = −α+ −
1

z
α− −

2 (g− − g+)

D

Lz − l(z − 1)

(z − 1)2

|b|2 = α2
+ + α2

− + α+α− (z + z̄) + α+
2 (g− − g+)

D

(
2Lz

(z − 1)2 + l

)
+ α−

2 (g− − g+)

D

(
L (z2 + 1)

(z − 1)2 − l
)

+
4 (g− − g+)2

D2

(
z2L2

(z − 1)4 +
zl(L− l)
(z − 1)2

)
We write

z = eiθ, θ = 2πj/K, j = 0, . . . , K − 1

and note that
2z

(z − 1)2
=

1

cos θ − 1
;

(z2 + 1)

(z − 1)2 =
cos θ

cos θ − 1
.

Combining these computations, we obtain (2.20), (2.21), (2.22), provided that z 6= 1.

Next we consider (2.27) with z = 1, which corresponds to periodic boundary

conditions on [−L,L]. This admits two solutions. One is λ = 0 corresponding the

odd eigenfunction φ = ux, ψ = wx. The other eigenfunctions look like the derivative

φ = ux, ψ = wx near the interfaces, that is, in the inner variables, but this is not the



20

case outside the interfaces. The other eigenfunction corresponding to z = 1 is even.

This corresponds to imposing the boundary conditions

φ′(0) = 0 = φ′(L); ψ′ (0) = 0 = ψ′ (L) .

As before, we assume

φ ∼ ux; ψ ∼ ψ (l) when x ∼ l. (2.43)

and obtain

λ

∫ L

0

u2
xdx ∼ ε2 (φxux − φuxx)L0 − (ψ(l)− wx(l))

∫ u+

u−

fwdu. (2.44)

As before, we obtain

ψ (x) ∼ (g+ − g−)

D
η(x; l)

where η(x;x0) satisfies (2.33) with boundary conditions η′(0) = 0 = η′(L). We then

obtain

η ∼ 1∫ L
0
σ(x)dx

∼ 1

σ+l + σ−(L− l)
.

The boundary term is evaluated as previously, but is of smaller order. This yields the

formula (2.25) for the even eigenvalue.

At this juncture, we note that these results also hold provided τ is sufficiently

small, not just when τ = 0. The expression that changes from the addition of a

non-zero τ , that is, the addition of the τwt term, is

σ± = −λτ +

(
gw − gu

fw
fu

)∣∣∣∣
u=u±,w=w0

. (2.45)

To leading order, this is equal to (2.35) as long as λτ � 1. Provided that 0 < τ �
O(1

ε
), the results remain unchanged.

We now use Lemma 2.2.2 to determine the stability of the problem with Neumann

boundary conditions as follows. Suppose that φ satisfies Neumann boundary condi-

tions on [0, a]. Then we may extend φ by even reflection around the origin and then φ

becomes periodic on [−a, a]. From this principle, it follows that the eigenvalues of a K

mesa steady state solution satisfying Neumann boundary conditions form a subset of

the eigenvalues of 2K mesas with periodic boundary conditions. On the other hand,

if φ is an eigenfunction on [−a, a] with periodic boundary conditions then so is φ(−x)

and hence φ̂(x) = φ(x) +φ(−x) is an eigenfunction on [0, a] with Neumann boundary
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conditions, provided that φ̂(x) 6= 0. Since φ̂′(0) = 0 and φ satisfies a 2nd order ODE,

φ̂ 6= 0 if and only if φ̂(0) 6= 0 which only holds if φ(0) 6= 0. Verifying this condition

(and the same condition on ψ), we obtain the following result.

Lemma 2.2.3. Consider the steady state consisting of K mesas on the interval

[−L, (2K−1)L], with Neumann boundary conditions. The linearized problem admits

2K eigenvalues. Of these, 2K − 2 are given asymptotically by (2.20) to (2.23) of

Lemma 2.2.2, but with

θ = πj/K, j = 1 . . . K − 1. (2.46)

The additional two eigenvalues correspond to an even and odd eigenfunction with

Neumann boundary conditions on [−L,+L]. They are

λodd =

(
2α− −

g2
−L

D(g− − g+)

) ∫ u+
u−

fwdu∫ 0

−L u
2
xdx

, (2.47)

and

λeven = − g− − g+

σ+l + σ−(L− l)

∫ u+
u−

fwdu∫ 0

−L u
2
xdx

, (2.48)

with all the symbols as defined in Lemma 2.2.2.

Consider λodd given in (2.47). Note that α− is exponentially small with respect to

ε. So, as ε→ 0, this term goes to zero and λodd < 0. For ε larger (although still small),

as D is increased, the second term becomes very small, and λodd becomes positive.

Thus, we obtain a threshold for the instability of the mesa pattern. In a similar way,

λ±θ can become positive for sufficiently large D. The even eigenvalue λeven does not

depend on D. It is O(ε), and, thus, |λeven| is much larger than the other eigenvalues.

The conditions (2.13) guarantee that a single interface will be stable for any D � 1.

These conditions imply that λeven < 0. The second part of (2.13) guarantees that

λodd < 0 whenever 1 � lnD � 1
ε
. Therefore, if (2.13) holds, a single mesa will be

stable whenever 1� lnD � 1
ε
.

Critical Thresholds. To obtain instability thresholds, we set λ±θ = 0 in Lemma

2.2.2; we then obtain a2−|b|2 = 0. Using l = g−L
g−−g+ and after some algebra we obtain:

0 = 2α+α− (1− cos θ)D2 − 2L
g2
−α+ + g2

+α−
g− − g+

D + L2 g2
+g

2
−

(g− − g+)2 (2.49)
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which implies that λ+
θ = 0 if and only if D > D(θ) where

D(θ) ∼



Lg2
+

2 (g− − g+)α−
if α+ � α−

Lg2
−

2 (g− − g+)α+

if α− � α+

and more generally, without any assumptions on α− and α+,

D(θ) =
L

2 (g− − g+)
(
g−2
− α− + g−2

+ α+

) (1

2
+

√
1

4
− 2α+α− (1− cos θ) g2

+g
2
−

4 (g2
−α+ + g2

+α−)
2

)−1

.

It is clear that D(θ) is an increasing function of θ. It is also easy to verify that λ±θ < 0

if α± is decreased sufficiently, or equivalently, if D is sufficiently small. In this case

the formula (2.20) reduces to

λ±θ κ0 ∼
(g+ − g−)L

D2 (1− cos θ)

(
1±

√[
1− 2 (1− cos θ)

ld

L2

])
− g+l

D
. (2.50)

On the other hand, when K = 1, the eigenvalues are λodd and λeven, given by (2.47),

(2.48). It is clear that λeven < 0 for all D; on the other hand setting λodd = 0 yields

the threshold (2.17). This completes the derivation of Principal Result 2.2.1.

2.3 Dynamics

We now derive the equations of motion of the interfaces of the mesa patterns allowing

us to describe the dynamics of the fronts that are not necessarily in a symmetric

pattern.

We assume that the pattern consists of K mesas on the interval [−L, (2K − 1)L].

Each mesa is bounded by two interfaces located at xli and xri and we assume the

ordering

−L < xl1 < xr1 < xl2 < xr2 < · · · < xlK < xrK < (2K − 1)L.

Moreover to leading order we assume

u ∼

{
u+, if x ∈ (xli, xri) for some i ∈ (1, K)

u−, otherwise
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and near each interface,

u (xli + εy) ∼ U(−y), u (xri + εy) ∼ U(y), y = O(1), i = 1 . . . K,

where U is the heteroclinic orbit given in (2.7), with U(y) → u± as y → ∓∞. We

also suppose that xli, xri are slowly changing with time. In addition we define:

xci ≡
xli + xri

2
, i = 1 . . . K,

xdi ≡
xri + xl(i+1)

2
, i = 1 . . . K − 1,

xd0 ≡ −L,

xdK ≡ (2K − 1)L.

The equations of motions are derived from 2K solvability conditions about each in-

terface.

First consider the interface xl1. We expand

u(x, t) = u0(z) +
1

D
u1, w(x, t) = w0 +

1

D
w1

where w0 is given by (2.4) and

z = x− xl1(t); u0(z) = U (−z/ε) .

Expanding in terms of 1
D

we obtain

0 = εu0zz + f(u0, w0), (2.51)

−x′l1(t)Du′0 = ε2u1zz + fu(u0, w0)u1 + fw(u0, w0)w1, (2.52)

0 = w1xx + g(w0, u0). (2.53)

It will become evident later that x′l1 = O( 1
D

) so the above expansion is indeed con-

sistent. We multiply (2.52) by u′0 and integrate on x ∈ (−L, xc1). Upon integrating

by parts we obtain:

−x′l1(t)D

∫ xc1

−L
(u0x)

2 dx ∼ ε2 (u1zu0z − u1u0zz)
x=xc1
x=−L +

∫ xc1

−L
fww1dx.

The boundary term is evaluated similarly as in §2.2 and we obtain

ε2 (u1zu0z − u1u0zz)
x=xc1
x=−L =2D

(
−C+µ

2
+ exp

(
−µ+

ε
(xr1 − xl1)

)
+C−µ

2
− exp

(
−2µ−

ε
(L+ xl1)

))
.
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The integral terms are estimated as∫ xc1

−L
(u0x)

2 dx ∼ 1

ε

∫ ∞
−∞

(
dU

dy

)2

dy;

∫ xc1

−L
fww1dx ∼ w1(xl1)

∫ u+

u−

fw(w0,u)du.

Similar analysis is performed at each of the remaining interfaces. In this way, we

obtain the following system:
x′li(t) ∼

ε∫∞
−∞

(
dU
dy

)2

dy

(
(BT )li −

1
D
w1(xli)

∫ u+
u−

fw(w0,u)du
)

x′ri(t) ∼
ε∫∞

−∞

(
dU
dy

)2

dy

(
(BT )ri + 1

D
w1(xri)

∫ u+
u−

fw(w0,u)du
) , i = 1 . . . K

(2.54)

where

(BT )l1 = −2C−µ
2
− exp

(
−2µ−

ε
(L+ xl1)

)
+ 2C+µ

2
+ exp

(
−µ+

ε
(xr1 − xl1)

)
(2.55)

(BT )li = −2C−µ
2
− exp

(
−µ−
ε

(
xl1 − xr(i−1)

))
+ 2C+µ

2
+ exp

(
−µ+

ε
(xri − xli)

)
,

i = 2 . . . K − 1 (2.56)

(BT )ri = −2C−µ
2
− exp

(
−µ−
ε

(xri − xli)
)

+ 2C+µ
2
+ exp

(
−µ+

ε

(
xl(i+1) − xri

))
,

i = 2 . . . K − 1 (2.57)

(BT )rK = −2C−µ
2
− exp

(
−µ−
ε

(xrK − xlK)
)

+ 2C+µ
2
+ exp

(
−2µ+

ε
((2K − 1)L− xrK)

)
,

(2.58)

The constants w1(xli) and w1(xri) are obtained by recursively solving for w1 which

satisfies:

w′′1 =

{
g+, x ∈ [xli, xri], i = 1 . . . K

g− otherwise

w′1(−L) = 0 = w′1((2K − 1)L).

To simplify the expression for w1, we first define the interdistances

mi =


xl1 + L, i = 0

xl(i+1) − xri, i = 1 . . . K − 1

(2K − 1)L− xri, i = K

; pi = xri − xli, i = 1...K.
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We obtain the following expressions:

w′(xli) =

{
−g−m0, i = 1

w′(xr(i−1))− g−mi, i = 2 . . . K

w′(xri) = w′(xli)− g+pi, i = 1 . . . K;

w (xli) =

{
w(−L)− g−m

2
0

2
, i = 1

w
(
xr(i−1)

)
+ w′(xr(i−1))mi − g−m

2
i

2
, i = 2 . . . K

w(xri) = w(xli) + w′(xli)pi − g+
p2
i

2
, i = 1 . . . K.

Expanding, we obtain

w1(xl1) =w(−L)− g−
m2

0

2
,

w1(xr1) =w(−L)− g−
(
m2

0

2
+m0p1

)
− g+

p2
1

2
,

w1(xl2) =w(−L)− g−
(
m2

0

2
+m0p1 +m0m1 +

m2
1

2

)
− g+

(
p2

1

2
+ p1m1

)
,

w1(xr2) =w(−L)− g−
(
m2

0

2
+m0p1 +m0m1 +

m2
1

2
+m0p2 +m1p2

)
− g+

(
p2

1

2
+ p1m1 + p1p2 +

p2
2

2

)
,

and so on. The general expressions for xli and xri are

w(xli) =w1(−L)− g−

(
i−1∑
j=0

i−1∑
k=j+1

mjmk +
i−1∑
j=0

i−1∑
k=j+1

mjpk +
i−1∑
j=0

m2
j

2

)

− g+

(
i−1∑
j=1

i∑
k=j+1

pjpk +
i−1∑
j=1

i−1∑
k=j

pjmk +
i−1∑
j=1

p2
j

2

)
(2.59)

w(xri) =w1(−L)− g−

(
i−1∑
j=0

i−1∑
k=j+1

mjmk +
i−1∑
j=0

i∑
k=j+1

mjpk +
i−1∑
j=0

m2
j

2

)

− g+

(
i∑

j=1

i∑
k=j+1

pjpk +
i∑

j=1

i−1∑
k=j

pjmk +
i∑

j=1

p2
j

2

)
. (2.60)

It remains to determine the constant w1(−L). This is done by considering the con-

servation of mass (from (2.12)). Integrating the equation for w in (2.1) we obtain

that for all time t,

g−
∑

mj + g+

∑
pj = 0;



26

moreover
∑
mj = 2KL−

∑
pj so that∑

(xri − xli) =
2KLg−
g− − g+

. (2.61)

Differentiating (2.61) with respect to t and substituting into (2.54) we then obtain,

K∑
i=1

(BT )ri − (BT )li +
1

D
[w1(xri) + w1(xli)]

∫ u+

u−

fw(w0,u)du = 0. (2.62)

Substituting (2.55)-(2.58), and (2.59)-(2.60) into (2.62) then determines the constant

w1(−L).

Dynamics of a Single Mesa. For a single mesa, we define x0 = xl1+xr1
2

to be

the midpoint of the mesa. Due to mass conservation, we have

xl1 = x0 − l, xr1 = x0 + l; l =
g−

g− − g+

L. (2.63)

Substituting (2.63) and x′0 = (x′l1 +x′r1)/2 into (2.54) and after some algebra we then

obtain,

dx0

dt
=

ε

2
∫∞
−∞

(
dU
dy

)2

dy

(
−2C−µ

2
− exp

(
−2µ−

ε
(L− l + x0)

)

+2C+µ
2
+ exp

(
−2µ+

ε
(L− l − x0)

)
− 2

D

g2
−
∫ u+
u−

fw(w0,u)du

g− − g+

x0

)
Note that for the special case where C± = C0; µ± = µ0 the formula further simplifies

to

dx0

dt
=

ε

2
∫∞
−∞

(
dU
dy

)2

dy

(
C0µ

2
0 exp

(
−2µ0

ε
(L− l)

)
sinh

(
2µ0

ε
(x0)

)

− 2

D

g2
−
∫ u+
u−

fw(w0,u)du

g− − g+

x0

)
.

2.4 Numerical Simulations

In this section we compare our asymptotic results with a numerical simulation of

(2.1), as well as the linearized equations (2.19) for a specific choice of f and g. Let

us first describe the numerical methods used.

To perform the numerical simulation of the PDE system (2.1) we used the software

FlexPDE [72] with the default error tolerance of 10−5. To determine the solution to
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the linear problem (2.19), we have reformulated it as a boundary value problem by

adding an extra equation dλ
dx

= 0 as well as an extra boundary condition such as

ψ(−L) = 1. We used the asymptotic solution derived in §2.2 as our initial guess.

Maple’s dsolve/numeric/bvp routine was then used to solve the resulting boundary

value problem with the default error tolerance of 10−6.

2.4.1 The Cubic Model

We now specialize our results to the cubic model (1.12),

f = 2(u− u3) + w; g = β − u

where β is a parameter. Let us first consider a symmetric single mesa solution on

interval [−L,L], with its maximum at x = 0. For such a solution, we find

w0 = 0; u− = −1, u+ = +1; U(y) = − tanh (y) ; (2.64)

g+ = β − 1, g− = β + 1; (2.65)∫ ∞
−∞

U2
ydy =

4

3
;

∫ u+

u−

fwdu = 2; (2.66)

l0 =
β + 1

2
L; l1 = 0; (2.67)

µ± = 2; C± = 2; α± = 32
1

ε
exp

(
−2

ε
(1± β)L

)
. (2.68)

One of the advantages of using the cubic model as a test case is that due to symmetry,

l1 = 0. This means that the asymptotic results are expected to be very accurate for

small ε.

We obtain the following expressions for λodd and λeven:

λeven ∼ −12ε, (2.69)

λodd ∼ −
3 (β + 1)2

4

Lε

D
+ 96 exp

(
−2L

ε
(1− β)

)
. (2.70)

The even eigenvalue λeven is always negative whereas the odd eigenvalue λodd

becomes positive as D is increased past the critical threshold D1 given by

D1 =
(β + 1)2 Lε

128
exp

(
2L

ε
(1− β)

)
, (2.71)
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with λodd < 0 when D < D1 and with λodd > 0 when D > D1. In terms of D1, we

have

λodd ∼ −
3 (β + 1)2 Lε

4

(
1

D
− 1

D1

)
.

The equation of motion for a single mesa becomes

dx0

dt
=

3 (β + 1)2

4
Lε

(
1

D1

ε

4
sinh

(
4x0

ε

)
− 1

D
x0

)
, (2.72)

where x0 = xl1+xr1
2

is the center of the mesa. Note that

∂

∂x0

(
dx0

dt

)∣∣∣∣
x0=0

= λodd

so that the linearization of the equation of motion around the symmetric equilibrium

agrees with the linearization of the original PDE. That is, the results obtained from

the dynamics agrees with the results obtained from the eigenvalue problem. The

equilibrium x0 = 0 undergoes a pitchfork bifurcation and becomes unstable as D

increases past D1.

For K symmetric mesas on the interval [−L, (2K − 1)L], the thresholds (2.18)

become:

DK ∼

{
(1−β)2Lε

128
exp (2L (1 + β)) , if β ≤ 0;

(1+β)2Lε
128

exp (2L (1− β)) , if β > 0
; K ≥ 2 (2.73)

Finally, if we take the “inverted” mesa with u ∼ +1 near the boundaries, by changing

the variables u → −u, w → −w, the model remains the same except β is replaced

by −β. Thus the stability thresholds for the inverted mesa are

Di
1 =

(1− β)2 Lε

128
exp

(
2L

ε
(1 + β)

)
(2.74)

Di
K ∼


(1− β)2 Lε

128
exp (2L (1 + β)) , if β < 0;

(1 + β)2 Lε

128
exp (2L (1− β)) , if β > 0

; K ≥ 2 (2.75)

We now numerically validate our asymptotic results by comparison with a numer-

ical simulation of (1.12) with τ = 0.

Experiment 2.1: A Single Mesa.

First, we consider the dynamics (as in §2.3) of a single mesa. Choose L = 1, ε =

0.22 and β = −0.2. From (2.71) we then get Dc = 60.138. Now suppose that D = 20.
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Figure 2.1: (a) Dynamics of a single mesa for the cubic model (1.12) with τ = 0
and with β = −0.2; ε = 0.22, D = 20, L = 1. Vertical axis is time, horizontal
axis is space. The contour u = 0 is shown. Solid lines are the asymptotic results
derived in §2.3. Dots represent the output of the numerical simulation of (1.12) with
τ = 0 using FlexPDE. The initial conditions are given by (2.76) with x0 = 0.15. The
solution moves to the left and converges to a symmetric one-mesa pattern. (b) Same
as in (a), but x0 = 0.16. The solution moves to the right until it merges with the
boundary.

Then the ODE (2.72) admits three equilibria: xe = 0 (stable) and x± = ±0.156 (both

unstable). We now solve (1.12) with τ = 0. We take initial conditions to be

u(x, 0) = tanh

(
(x− x0) + l

ε

)
− tanh

(
(x− x0)− l

ε

)
− 1; w(x, 0) = 0. (2.76)

This corresponds to a mesa solution of length l centered at x0. If x0 ∈ (−0.156, 0.156)

then we expect the mesa to move to the center and stabilize there. On the other

hand, if x0 > 0.156 then the mesa will move to the right until it merges with the

right boundary. In Figure 2.1, we plot the numerical simulations for x0 = 0.150 and

x0 = 0.160. The observed behaviour agrees with the above predictions.

Experiment 2.2: Two Mesas.

Here we consider a two-mesa solution. We take the domain x ∈ [0, 4] (i.e. L =

1, K = 2) and take β = −0.3, ε = 0.13. From (2.67), we get l = 0.35 so that the

symmetric equilibrium location of the interfaces are 1±0.35 and 3±0.35 which yields

0.65, 1.35, 2.65, 3.35. According to (2.73), the two-mesa symmetric configuration is

stable provided that D < 82, and is unstable otherwise. To verify this, we solve the
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Figure 2.2: Similar to the Figure 2.1, we now consider two mesas. (a) Dynamics of two
mesas. The parameters are K = 2, L = 1 ( x ∈ [0, 4]); β = −0.3, ε = 0.13, D = 70.
Initial interface locations are 0.8, 1.5, 2.3, 3.0. The solution converges to the symmetric
two-mesa solution. (b) Same as (a) except that D = 85. The two-mesa solution is
unstable; the right mesa absorbs the left, eventually resulting in a stable one-mesa
pattern which slowly moves to the center.

system with initial conditions

u(x, 0) = tanh

(
x− 0.8

ε

)
− tanh

(
x− 1.5

ε

)
tanh

(
x− 2.3

ε

)
− tanh

(
x− 3.0

ε

)
− 1,

w(x, 0) =0.001.

These are relatively close to the symmetric equilibrium. We found that when D < 80,

such configuration converges to the symmetric two-mesa equilibrium; however it is

unstable if D > 80 – see Figure 2.2(a, b). This is in good agreement with the the

theoretical threshold D2 = 82.

Next we also compute the four eigenvalues for several values of D, and compare

them to asymptotic results, shown in Figure 2.3. An excellent agreement is once

again observed, including the crossing of zero for λ+
π/2 at D = 82.

Experiment 2.3: Eigenvalues.

Figure 2.4 shows the numerical computation (using Maple) of the four distinct

eigenvalues and eigenfunctions for the cubic model (1.12) with τ = 0 with K = 2.

Note that φ is localized at the interfaces and is nearly constant elsewhere; whereas ψ

has a global variation. An excellent agreement between the asymptotic results and

numerical computations is observed.

Experiment 2.4: Transitional Case of β = 0.
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Figure 2.3: The four eigenvalues of the two-mesa pattern of (1.12) as a function of D.
Other parameters are as in Figure 2.1(c,d). Circles represent numerical computations
of (2.19); lines are the asymptotic results given by (2.20). Excellent agreement is
observed, including the crossing of λ+

π/2 at D = D2 = 82.

This is the degenerate case for which the formula (2.73) does not apply. In this

case, α+ = α− and the formula (2.18) reduces to

DK ∼
L

256 cos2
(
π

4K

)ε exp(2L/ε); β = 0, K ≥ 1. (2.77)

(this formula is also valid when K = 1, as can be verified by comparing it to (2.71)).

Note that this is also qualitatively different from β 6= 0, in that DK clearly depends on

K when β = 0. To validate (2.77) numerically, we set ε = 0.17, L = 1, β0 = 0. Equa-

tion (2.77) then yields the asymptotic thresholds D1 = 170.8, D2 = 100.1, D3 = 91.

Next, we have computed the eigenvalues λodd and λ+
π/K explicitly using the formu-

lation (2.19) for K = 1, 2, 3 several different D values and for ε, L as above; these

are shown in Figure 2.5. An excellent agreement can be observed with the predicted

threshold values.

Experiment 2.5: Boundary Mesas versus Interior Mesas.

Let us now compare the stability properties of interior mesas versus patterns with

half-mesas attached to the boundary. The latter are equivalent to an “inverted mesa”

patterns. This situation is shown in the Figure 2.6.

Fix ε = 0.15, L = 1. Moreover choose β = −0.1 < 0 so that the roof of the

mesa occupies more space than its floor (l = 0.45 < 1/2). In this case, the instability

threshold for a single mesa given by (2.71), D1 ∼ 2223 and for the inverted mesa it is

given by (2.74), Di
1 = 230. Moreover the instability thresholds for K interior mesas

on the interval 2LK with K > 1 is also (2.73) DK ∼ 230. This threshold is also the

same for two boundary mesas or K inverted mesas as given by (2.75).
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Figure 2.4: Top row: steady-state with two mesas. The cubic model (1.12) was
used with L = 1, ε = 0.13, D = 40, β = −0.3. Bottom four rows: the four possible
eigenfunctions and the corresponding eigenvalues computed using Maple. Asymptotic
values (labeled with subscript a) are computed using (2.20). Excellent agreement is
observed.
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Figure 2.5: Instability thresholds of the K-mesa pattern in the cubic model with
K = 1, 2 and 3. (a) L = 1, ε = 0.17, β = 0. Circles show λ as computed by numerically
solving (2.19) for different values of D and the three different modes, as indicated.
Solid curves are the asymptotic approximations for λ as given by (2.20). The K-mesa
pattern is unstable for D > DK where D1 = 171, D2 = 100, D3 = 91. (b) The graph
of DK versus β with L = 1, ε = 0.17, as given by Principal Result 2.2.1.The insert
shows the zoom near β = 0.
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Figure 2.6: (a) Single Interior mesa (b) Two interior mesas (c) Double boundary half-
mesas, or an inverted single interior mesa (d) Two half-mesas at the boundaries and
one interior mesa, or an inverted two-mesa pattern. In all four cases, β = −0.1 and
ε = 0.15. The instability threshold for D is given above the graph. The case (a) has
the biggest stability range here since l < L/2.
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2.4.2 Model of B-Z Reaction in Water-in-oil Microemulsion
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Figure 2.7: (a) A stable two-mesa solutions to Belouzov-Zhabotinskii model (1.2).
Parameter values are D = 100, ε = 0.1, q = 0.001 and f0 = 0.61. Circles show the
numerical solution. The solid line shows the asymptotic approximation as computed
in Proposition 2.1.1, with the mesa half-length l computed to two orders. The dashed
line is the same approximation, except l1 is set to zero. (b) Time evolution in the
BZ model. Parameter values are the same as in (a), except for f0 = 0.63. Initial
conditions were given in the form of a two-mesa asymptotic solution, but shifted to
the left by 0.1. The two-mesa equilibrium is unstable, though the instability is very
slow and the two-mesa solution persists until about t ∼ 105. This is in good agreement
with the theoretical instability threshold of f0 ∼ 0.612.

The cubic model is unusual in the sense that due to the symmetry of the interface,

the correction to interface length l1 of Proposition 2.1.1 is zero. To see the more usual

case when it is not, we consider the Belousov-Zhabotinskii model (1.2):

f(u,w) = −f0
u− q
u+ q

+ wu− u2; g(u,w) = 1− uw; q � 1. (2.78)

As was done in [36], in the limit q � 1, the condition (2.4) reduces to∫ u+

0

(
−f0 + w0u− u2

)
du ∼ 0 ∼ −f0 + w0u+ − u2

+

and we obtain to leading order,

u− ∼ 0; u+ ∼
√

3f0; w0 ∼ 4
√
f0/3 as q → 0.
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(in fact, u− = O(q) � 1). To leading order, the profile U0 then solves U ′′0 − f0 +

4
√
f0/3U0 − U2

0 = 0 for y < 0; with U0(0) = 0 = U ′0(0) and U0(y) = 0 for y > 0 and

U0 → u+ as y → −∞. We then obtain

U0 ∼


√

3f0 tanh2
(

3−1/4f
1/4
0 2−1/2y

)
, y < 0

0, y > 0
.

and

g− = 1, g+ ∼ 1− 4f0

l0 =
L

4f0

.

Next we compute l1 using (2.10). We have∫ 0

−∞
[g(U0(y), w0)− g+]

=

∫ 0

−∞
4f0 − 4f0 tanh2

(
3−1/4f

1/4
0 2−1/2y

)
= 4f0

∫ ∞
0

sech 2
(

3−1/4f
1/4
0 2−1/2y

)
= 31/421/24f

3/4
0

so that

l1 = 31/421/2f
−1/4
0 .

Finally, we have

U0 ∼
√

3f0 tanh2
(

3−1/4f
1/4
0 2−1/2y

)
∼
√

3f0

(
1− 4 exp(3−1/4f

1/4
0 21/2y)

)
as y → −∞

so that

C+ = 4
√

3f0; µ+ = 3−1/4f
1/4
0 21/2;∫ u+

u−

fw =
u2

+

2
=

3f0

2
;

α+ = 64 · 3−3/4f
3/4
0 23/2 exp(−2µ+l1)

1

ε
exp

(
−2µ+

ε
l0

)
= 64 · 3−3/4f

3/4
0 23/2 exp(−4)

1

ε
exp

(
−2−0.53−0.25

εf 0.75
0

L

)
On the other hand, µ− = O (1/q)� µ+, so that the critical threshold given by (2.18)

becomes

DK =C0ε (1− 4f0)2 f−1.75
0 exp

(
2−0.53−0.25

εf 0.75
0

L

)
,

C0 ≡e430.752−10.5 = 0.085942, K ≥ 2 (2.79)
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To verify this formula numerically, we set D = 100, ε = 0.1, q = 0.001, L = 1 and

K = 2. Next we solved (2.1) for several different values of f0, with initial conditions

given by the two-mesa steady state approximation on the interval [−1, 3], perturbed

by a small shift of size 0.1. We found the two-mesa state was unstable with f0 = 0.62

or higher but became stable when we took f0 = 0.61 or lower. This is seen in

Figure 2.7. On the other hand, the threshold value as predicted by (2.79) with above

parameter values and DK = D is f0 = 0.6124. Thus we obtain an excellent agreement

between the asymptotic theory and direct numerical simulations.

In Figure 2.7(a), the approximation with and without l1 to the steady state is

shown. We remark that it was essential to compute the correction l1 to the mesa

width; if we were to set l1 = 0 the constant C0 = 0.085942 in (2.79) would be

replaced by 0.00157.

2.5 Discussion

We have examined in detail the route to instability of the K-mesa pattern of (2.1) as

the diffusion coefficient D is increased. The onset of instability occurs for exponen-

tially large D; it is well known that such solution is unstable for the shadow system

case D → ∞ [55]. We have computed instability thresholds DK given by Principal

Result 2.2.1. We have also determined the mesa dynamics when D is large.

The instability thresholds are closely related to the coarsening phenomenon. An

example of this type of phenomenon can be observed in the Lengyel-Epstein model

(1.3) and is seen in Figure 1.2(a). The time evolution of u is shown; with parameters

ε = 0.06, a = 10, D = 500, τ = 0.1, and domain size is 8. Starting with random initial

conditions, Turing instability leads to a formation of a three-mesa pattern at t ∼ 10.

However such pattern is unstable, even though this only becomes apparent much later

(at t ∼ 100). The resulting two-mesa pattern then drifts towards a symmetric position

where it eventually settles. A similar phenomenon for the Belousov-Zhabotinskii

model (1.2) is illustrated in Figure 2.7(b). It shows the time-evolution a two mesa

solution to (1.2) with D > D2, starting with initial conditions that consist of a slightly

perturbed two-mesa pattern. After a very long time, one of the mesas absorbs the

mass of the other, then moves towards the center of the domain where it remains as

a stable pattern.
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The coarsening phenomenon has been analyzed for the Brusselator model in [34].

The authors conjectured a formula for DK (for K > 1) which was given in Principal

Result 2.2.1. This was done without computing the eigenvalues, by constructing the

asymmetric patterns. When O(α+) 6= O(α−), DK does not depend on K, and so the

instability thresholds can be determined from the asymmetric patterns. In the case

µ+l = µ−(L − l), DK depends on K, and, thus, the calculation of the eigenvalues is

needed. The coarsening phenomenon observed in reaction-diffusion systems is also

similar of Ostwald ripening in thin fluids – see for example [16], [62] and references

therein.

There are some similarities between the instability thresholds for mesa patterns

computed here, and instability thresholds for Gierer-Meinhardt system computed in

[27], [78]. Note that in [27], a singular perturbation and matrix algebra approach

was used whereas in [78] an approach using Evans functions and Floquet exponents

was used. In the analysis here we used both singular perturbations and Floquet

exponents.

We remark that the GM model with saturation (1.5) exhibits mesa patterns when

the saturation is sufficiently large, but exhibits spikes when saturation is small. It is

an interesting open question to examine the mechanism by which a mesa can become

a spike and how the various instability thresholds change from being exponentially

large to algebraically large as saturation is decreased.



Chapter 3

Mesa Patterns on a Thin Domain

In this chapter, we consider the following two-dimensional system{
ut = ε2∆u+ f(u,w)

τwt = D∆w + g(u,w)
(3.1)

on the domain

Ω = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ H(x)} (3.2)

with Neumann boundary conditions

∂u

∂n
= 0,

∂w

∂n
= 0 on ∂Ω (3.3)

where ∂
∂n

is the normal derivative. We assume that the domain is thin, that is,

H(x) = δh(x) where 0 < δ � ε and h(x) = O(1). (3.4)

We approximate this problem to a one-dimensional problem with a dependence on

h(x).

Linearizing around the steady state, we obtain an eigenvalue problem with Neu-

mann boundary conditions. Using the same techniques as used in Chapter 2, we

determine the eigenvalues of this linearized problem: first by considering the eigen-

value problem with periodic boundary conditions and then extending the result to

the Neumann boundary problem. From these eigenvalues, we determine the stability

of the mesa patterns. For a particular h(x), there exists a large threshold value, Dc,

of O(1
ε
), such that the mesa patterns become unstable if D > Dc. Here we assume

that the effect of the boundary terms and interactions between interfaces is negligible.

In order for this assumption to be valid, we require lnD � O(1
ε
). The instability

38
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studied in this chapter arises from effects of the domain, whereas, in Chapter 2, the

instability arises from the exponentially small interactions between the interfaces and

the boundary.

3.1 Reducing the 2D Problem to 1D

Now we demonstrate how the two dimensional problem above can be approximated

by a one dimensional problem. This is a common lubrication theory approach; see

[24, 76]. The boundary conditions (3.3) can be written as

at y = δh(x) : δh′(x)ux = uy, δh′(x)wx = wy, (3.5)

at y = 0 : uy = 0, wy = 0. (3.6)

Let

ȳ =
y

δ
. (3.7)

Then (3.1) can be written as

ut =ε2

(
uxx +

1

δ2
uȳȳ

)
+ f(u,w), (3.8)

wt =D

(
wxx +

1

δ2
wȳȳ

)
+ g(u,w) (3.9)

and the domain Ω can be rewritten as

Ω = {(x, ȳ) : a ≤ x ≤ b, 0 ≤ ȳ ≤ h(x)}. (3.10)

We expand u and w in terms of δ2 (where δ is small)

u = u0 + δ2u1 + . . . , w = w0 + δ2w1 + . . . (3.11)

so that, substituting these expansions for u and w into (3.8), we have

ε2u0ȳȳ =0, (3.12)

u0t =ε2u0xx + ε2u1ȳȳ + f(u0, w0). (3.13)

From the expansion of u, the boundary conditions (3.5) and (3.6) yield

at ȳ = 0 : u0ȳ = 0, u1ȳ = 0, (3.14)

at ȳ = h(x) : u0ȳ = 0, u1ȳ = h′(x)u0x. (3.15)
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Note that (3.12) implies that u0 does not depend on ȳ, so u0 ∼ u0(x). Integrating

(3.13) with respect to ȳ from 0 to h(x), we obtain

− ε2

∫ h(x)

0

u1ȳȳdȳ =

∫ h(x)

0

(
ε2u0xx + f(u0, w0)− u0t

)
dȳ

=⇒− ε2h′(x)u0x =
(
ε2u0xx + f(u0, w0)− u0t

)
h(x).

Dividing by h(x) and simplifying, we obtain

u0t =
ε2

h(x)
[h(x)u0x]x + f(u0, w0). (3.16)

In a similar way, we obtain

τw0t =
D

h(x)
[h(x)w0x]x + g(u0, w0). (3.17)

Dropping the subscripts and letting τ = 0, we obtain the one-dimensional system ut = ε2

h(x)
[h(x)ux]x + f(u,w)

0 = D
h(x)

[h(x)wx]x + g(u,w)
(3.18)

with x ∈ [a, b] and Neumann boundary conditions.

3.2 Eigenvalue Problem for a Single Mesa Solution

As we did in Chapter 2, we consider mesa pattern solutions of (3.18). We begin by

considering a one interface solution of u, that is, a half mesa pattern of (3.18) on

[0, L]. As before we assume that D � 1.

For a single interface solution, we determine the location of the interface by inte-

grating the equation for w of (3.18)

0 =
D

h(x)
[h(x)wx]x + g(u,w) (3.19)

over the domain [0, L]. Then the interface l is defined implicitly by

− g+

∫ l

0

h(x)dx− g−
∫ L

l

h(x)dx = 0 (3.20)

where g+ = g(u+, w0) and g− = g(u−, w0). To show that such an l exists, we consider

the function

F (l) ≡ −g+

∫ l

0

h(x)dx− g−
∫ L

l

h(x)dx.
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Since h(x) is positive and continuous, we have that F (l) is continuous on [0, L]. We

have

F (0) = −g−
∫ L

0

h(x)dx, F (L) = −g+

∫ L

0

h(x)dx

where
∫ L

0
h(x)dx is a positive constant. Thus, if g− and g+ are opposite signs, that

is, g+g− < 0, by the Intermediate Value Theorem, F (l) = 0 at some x = l. Therefore

the interface l defined by (3.20) exists. Note that F ′(l) = −g+h(l) + g−h(l). Since

−g+, g− have the same sign and h(l) > 0, F (l) is monotonic on [0, L] and, thus, l is

unique.

Let (u,w) be the equilibrium solution. Linearizing around the steady state{
u(x, t) ∼ u(x) + eλtφ(x)

w(x, t) ∼ w(x) + eλtψ(x)
(3.21)

and substituting this into the system (3.18), we obtain λφ = ε
h(x)

[h(x)φx]x + φfu(u0, w0) + ψfw(u0, w0)

0 = D
h(x)

[h(x)ψx]x + φgu(u0, w0) + ψgw(u0, w0)
. (3.22)

For a symmetric single mesa solution, consisting of two interfaces located at ±l, we

now determine the eigenvalues of this linearized problem.

Principal Result 3.2.1. Consider a single mesa solution u of (3.18) in the limit

ε� 1, D � 1 (3.23)

on the interval [−L,L] with Neumann boundary conditions. Assume h(x) is positive,

differentiable and symmetric about x = 0. Also, assume

g+ · g− < 0, gw − gu
fw
fu

< 0, and

∫ u+
u−

fwdu

g− − g+

> 0. (3.24)

Then eigenvalues corresponding to the even and odd eigenfunctions of (3.22) are

λeven ∼−
ε

κ0

(g+ − g−)
h(l)∫ L

0
h(x)σ(x)dx

(3.25)

and

λodd ∼
ε

D

1

κ0

(g+ − g−)

(
g−

g+ − g−

∫ L

l

h(x)

h(l)
dx−

∫ l

0

h(l)

h(x)
dx

)
− ε2G′(l) (3.26)
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where l and −l are the locations of the interfaces and l is implicitly defined by

− g+

∫ l

0

h(x)dx− g−
∫ L

l

h(x)dx = 0 (3.27)

and

G(x) =
h′(x)

h(x)
. (3.28)

Also, as in Chapter 2, we define

σ(x) = gw −
fw
fu
gu =

σ+, |x| < l

σ−, l < |x| < L
, (3.29)

κ0 =

∫∞
−∞ U

2
0ydy∫ u+

u−
fw(u0, w0)du

, (3.30)

g± = g(u±, w0) and U0 is given by (2.7).

Derivation of Result 3.2.1.

First, consider the steady state equations 0 = ε2

h(x)
[h(x)ux]x + f(u,w)

0 = D
h(x)

[h(x)wx]x + g(u,w)
. (3.31)

From the steady state equations, we expand u and w in terms of 1
D

as follows

u = u0 +
1

D
u1 + . . . , w = w0 +

1

D
w1 + . . . . (3.32)

Then substituting (3.32) into (3.31), we obtain

0 =
ε2

h(x)
[h(x)u0x]x + f(u0, w0), (3.33)

0 =
ε2

h(x)
[h(x)u1x]x + u1fu(u0, w0) + w1fw(u0, w0, ) (3.34)

0 =
1

h(x)
[h(x)w0x]x, (3.35)

0 =
1

h(x)
[h(x)w1x]x + g(u0, w0). (3.36)

Let l be the location of the interface. We expand x as x = l + εy and write

h′(x)

h(x)
∼ h′(l)

h(l)
+

[
h′′(l)

h(l)
−
(
h′(l)

h(l)

)2
]
εy. (3.37)



43

Let G(x) be as in (3.28), so that G(x) ∼ G(l) +G′(l)εy. Then (3.33) becomes

0 = u0yy + ε (G(l) +G′(l)εy)u0y + f(u0, w0) (3.38)

and (3.34) becomes

0 = u1yy + ε (G(l) +G′(l)εy)u1y + u1fu(u0, w0) + w1fw(u0, w0). (3.39)

Near the interface x = l, we estimate

φ ∼ cu0x , ψ ∼ ψ(l). (3.40)

Note that ψ(l) is of O( 1
D

). Away from the interface, the diffusion term is negligible,

so we estimate

φ ∼ −fw(u0, w0)

fu(u0, w0)
ψ. (3.41)

Expanding as before in (3.32), the equation for φ becomes

λφ =ε2φxx + ε2G(x)φx + ψfw(u0, w0)

+ φ

(
fu(u0, w0) +

1

D
(fuu(u0, w0)u1 + fuw(u0, w0)w1)

)
. (3.42)

We multiply by u0x and integrate over the domain [0, L] to obtain∫ L

0

λcu2
0xdx =

∫ L

0

ε2φxxu0xdx+

∫ L

0

ε2G(x)φxu0xdx+

∫ L

0

u0xψfw(u0, w0)dx

+

∫ L

0

u′0φ

(
fu(u0, w0) +

1

D
(fuu(u0, w0)u1 + fuw(u0, w0)w1)

)
dx (3.43)

where we have replaced φ in the first integral as in (3.40). As before, we make a

change of variables: x as x = l + εy. After simplifying, we obtain

λc
1

ε

∫ ∞
−∞

u2
0ydy =

∫ ∞
−∞

φyyu0ydy +

∫ ∞
−∞

φu0yfu(u0, w0)dy +

∫ ∞
−∞

ψu0yfw(u0, w0)dy

+

∫ ∞
−∞

1

D
φu0y(fuu (u0, w0)u1 + fuw(u0, w0)w1) dy

+

∫ ∞
−∞

ε (G(l) +G′(l)εy)φyu0ydy. (3.44)

Integrating by parts, we obtain∫ ∞
−∞

φyyu0ydy ∼
∫ ∞
−∞

φu0yyydy (3.45)



44

where it has been assumed that the boundary terms that arise from integrating by

parts are sufficiently small that they are negligible.

Differentiating (3.33) with respect to y, we obtain

u0yyy + fu(u0, w0)u0y = −ε (G(l) +G′(l)εy)u0y − ε2G′(l)u0y. (3.46)

Similarly, differentiating (3.34), we obtain

u0y (u1fuu(u0, w0) + w1fuw(u0, w0)) =− u1yyy − ε (G(l) +G′(l)εy)u1y − ε2G′(l)u1y

− u1yfu(u0, w0)− w1yfw(u0, w0). (3.47)

Writing φ ∼ c1
ε
u0y, φy ∼ c1

ε
u0yy and using the expressions above, the equation for

the eigenvalue becomes

λc
1

ε

∫ ∞
−∞

u2
0ydy ∼

∫ ∞
−∞

c
1

ε
u0y

(
−ε (G(l) +G′(l)εy)u0y − ε2G′(l)u0y

)
dy

+

∫ ∞
−∞

ψfw(u0, w0)u0ydy +

∫ ∞
−∞

c
1

ε
u0yy (G(l) +G′(l)εy)u0ydy

+

∫ ∞
−∞

c
1

ε

1

D
u0y

[
−u1yyy − ε (G(l) +G′(l)εy)u1y − ε2G′(l)u1y

−u1yfu(u0, w0)− w1yfw(u0, w0)] dy (3.48)

Simplifying, as we did in Chapter 2, in the derivation of Principal Result 2.2.1, we

write
∫∞
−∞ u0yfwdy = −

∫ u+
u−

fwdu, then we have

λc

∫∞
−∞ u

2
0ydy∫ u+

u−
fwdu

= ε

(
c

1

D
w1x(l)− ψ(l)

)
− ε2cG′(l)

∫∞
−∞ u

2
0ydy∫ u+

u−
fwdu

. (3.49)

Define κ0 as in (3.30). Then

λκ0 = ε

[
1

D
w1x(l)− ψ(l)

]
− ε2G′(l)κ0. (3.50)

Next, we determine the terms in the square brackets above. For the term w1x(l),

we integrate (3.36) from 0 to x

h(x)w1x =

∫ x

0

−g(u0, w0)h(x)dx, (3.51)

from which we obtain

w1x(l) = −g+

∫ l

0

h(x)

h(l)
dx. (3.52)
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Next, let us determine ψ(l). From the equation for ψ in (3.22), we have

D

h(x)
[h(x)ψx]x + gu(u0, w0)φ+ gw(u0, w0)ψ = 0. (3.53)

Then we have

ψ(x) ∼ −(g− − g+)η(x; l) (3.54)

where η(x; l) is the solution of

D

h(x)
[h(x)ηx]x + σ(x)η = δ(x− l) (3.55)

where

σ(x) = gw − gu
fw
fu

=

σ+, |x| < l

σ−, |x| > l
.

Note that this is obtained in the same way as in Chapter 2 in equation (2.33).

Consider the odd eigenfunction corresponding to the boundary conditions

η(0) = 0, η′(L) = 0. (3.56)

Since D is large, (3.55) to leading order is

D

h(x)
[h(x)ηx]x ∼ δ(x− l). (3.57)

On the interval [l, L], η ∼ η0 where η0 is a constant. On the interval [0, l], η(x) ∼∫ x
0

A
h(x)

dx where A is a constant to be determined. The function η must be continuous

at the interface l which gives the condition η(l+) = η(l−). The jump condition at the

interface gives

η′(l+)− η′(l−) =
1

D
. (3.58)

Solving we obtain

A = −h(l)

D
. (3.59)

Then, we have

ψ(l) ∼ −(g− − g+)η(l; l) = (g− − g+)

∫ l

0

− 1

D

h(l)

h(x)
dx. (3.60)

Thus, we obtain (3.26) in Principal Result 3.2.1.

Next, consider the even eigenfunction corresponding to the boundary conditions

η′(0) = 0, η′(L) = 0. (3.61)
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Integrating (3.55) over the domain [0, L]

η(l) ∼ h(l)∫ L
0
h(x)σ(x)dx

. (3.62)

Therefore,

ψ(l) ∼ (g+ − g−)
h(l)∫ L

0
h(x)σ(x)dx

(3.63)

Note that ψ(l) is of O(1), so that, to leading order, (3.50) gives (3.25) in Principal

Result 3.2.1.

3.3 Eigenvalue Problem for Multiple Mesa Solution

Next we consider the stability of a K mesa pattern of (3.18), using the methods of

Chapter 2. The K mesa pattern is defined as before on the domain [−L, (2K − 1)L],

with the interfaces of one mesa located at ±l where the other K − 1 mesas are

obtained by extending the single mesa symmetrically. We assume that h(x) is positive,

differentiable and symmetric around x = 0 on the interval [−L,L]. Then, in order to

construct a symmetric K mesa solution, we assume that h(x) is extended periodically

to the entire domain [−L, (2K − 1)L].

Principal Result 3.3.1. Consider the steady state of (3.18) consisting of K mesas

on the interval [−L, (2K−1)L] with Neumann boundary conditions. Assume that the

assumptions (3.24) hold. Assume that h(x) is positive, differentiable and symmetric

around x = 0 on the interval [−L,L]. Also, assume that h(x) is extended periodically

to the entire domain [−L, (2K − 1)L]. The linearized problem (3.22) admits 2K

eigenvalues given by λeven and λodd in Principal Result 3.2.1 , and the other 2K − 2

eigenvalues given by

λ±θ = a± |b| (3.64)

where

a =
ε

κ0

g−
D

∫ L

l

h(x)

h(l)
dx− ε2G′(l) +

ε

κ0

g+ − g−
D

1

1− cos θ

∫ L

0

h(l)

h(x)
dx, (3.65)

|b|2 =
ε2

κ2
0

1

1− cos θ

(
g+ − g−
D

)2
{

2

(∫ l

0

h(l)

h(x)
dx

)2

− 2

(∫ l

0

h(l)

h(x)
dx

)(∫ L

0

h(l)

h(x)
dx

)

+

(
1

1− cos θ

)(∫ L

0

h(l)

h(x)
dx

)2
}

(3.66)
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where l is implicitly defined by (3.27) and where

θ =
jπ

K
, j = 1, . . . , K − 1. (3.67)

Also G(x) is given in (3.28), σ(x) in (3.29), κ0 in (3.30) and U0 in (2.7).

Derivation of Result 3.3.1.

As we did in Chapter 2, instead of considering (3.22) with Neumann boundary

conditions directly, we consider the linearized problem on the interval [−L,L] with

the boundary conditions

φ(L) = zφ(−L), φ′(L) = zφ′(−L), ψ(L) = zψ(−L), ψ′(L) = zψ′(−L), (3.68)

where, by choosing

z = exp(2πij/K), j = 0, . . . , K − 1, (3.69)

we obtain a periodic solution to the eigenvalue problem on [−L, (2K − 1)L]. This

result is extended to the case with Neumann boundary conditions, which then gives

Principal Result 3.3.1.

We begin by estimating

φ ∼ c±u0x, ψ ∼ ψ(±l) when x ∼ ±l. (3.70)

We proceed in a similar manner as we did for one mesa. We multiply the equation

for φ in (3.22) by u0x and integrate on [0, L], as we did in the derivation of Result

3.2.1, and as before, we obtain

λc+κ0 = ε

[
c+

1

D
w1x(l)− ψ(l)

]
− ε2G′(l)c+κ0. (3.71)

Similarly, by multiplying the equation for φ in (3.22) by u0x and integrating on [−L, 0],

we obtain

λc−κ0 = ε

[
ψ(−l)− 1

D
c−w1x(−l)

]
− ε2G′(−l)c−κ0. (3.72)

Now we determine the terms inside the square brackets. Integrating (3.36), we

estimate

w1x(l) ∼
1

h(l)
g−

∫ L

l

h(x)dx ∼ −w1x(−l) (3.73)

Next, we determine the terms ψ(±l). As in §3.2 we have the following equation for ψ

D

h(x)
[h(x)ψx]x + gu(u0, w0)φ+ gw(u0, w0)ψ = δ(x− l) + δ(x+ l), (3.74)
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so that

ψ(x) ∼ −(g+ − g−)

D
h(x) (c−η(x;−l)− c+η(x; l)) (3.75)

where η(x;x0) is the solution to

D

h(x)
[h(x)ηx]x + σ(x)η = δ(x− x0) (3.76)

with σ(x) as given in (3.29).

For z 6= 1, to leading order, we have the following problem
[h(x)ηx]x = 0

η(x−0 ;x0) = η(x+
0 , x0)

η′(x+
0 ;x0)− η′(x−0 ;x0) = 1

h(l)

Solving this, we obtain

η ∼

A+Bh(−L)
∫ x
−L

1
h(x)

dx, x < x0

A+Bh(−L)
∫ x0
−L

1
h(x)

dx+ (1 +Bh(−L))
∫ x
x0

1
h(x)

dx, x > x0

. (3.77)

Now, from the boundary conditions (3.68), we determine the constants A and B to

be

B =
1

h(−L)

1

z − h(−L)
h(L)

, (3.78)

A =
1

z − 1

(∫ L

x0

1

h(x)
dx+

h(−L)

h(L)

(
1

z − h(−L)
h(L)

)∫ L

−L

1

h(x)
dx

)
. (3.79)

Recall that h(x) is symmetric which allows us to simplify and we obtain

η(l; l) =
z

(z − 1)2

∫ L

−L

1

h(x)
dx (3.80)

η(−l;−l) =
z

(z − 1)2

∫ L

−L

1

h(x)
dx (3.81)

η(l;−l) =

(
z

z − 1

)∫ l

−l

1

h(x)
dx+

(
z

(z − 1)2

)∫ L

−L

1

h(x)
dx (3.82)

η(−l; l) =η(l;−l) (3.83)

Then, in matrix form,(
ψ(l)

−ψ(−l)

)
=

(g+ − g−)

D
h(l)

(
η(l; l) −η(l;−l)
−η(l;−l) η(−l;−l)

)(
c+

c−

)
. (3.84)
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Therefore, we obtain

λ

(
c+

c−

)
=

(
a b

b a

)(
c+

c−

)
. (3.85)

where a and b are given by

a =
ε

κ0

g−
D

∫ L

l

h(x)

h(l)
dx− ε2G′(l)− ε

κ0

(g+ − g−)

D

z

(z − 1)2

∫ L

−L

h(l)

h(x)
dx,

b =− ε

κ0

(
g+ − g−
D

)(
z

(z − 1)2
(z − 1)

∫ l

−l

h(l)

h(x)
dx+

z

(z − 1)2

∫ L

−L

h(l)

h(x)
dx

)
,

b =− ε

κ0

(
g+ − g−
D

)(
z

(z − 1)2

(
1

z
− 1

)∫ l

−l

h(l)

h(x)
dx+

z

(z − 1)2

∫ L

−L

h(l)

h(x)
dx

)
.

Then we obtain λ = a± |b| where

|b|2 =
ε2

κ2
0

(
g+ − g−
D

)2{
z

(z − 1)2

(∫ l

−l

h(l)

h(x)
dx

)(∫ L

−L

h(l)

h(x)
dx

)
− z

(z − 1)2

(∫ l

−l

h(l)

h(x)
dx

)2

+

(
z

(z − 1)2

)2(∫ L

−L

h(l)

h(x)
dx

)2
}
.

Let z = eiθ. Then
z

(z − 1)2
=

1

z + 1
z
− 2

=
1

2 cos θ − 2
.

Thus,

λ±θ = a± |b| (3.86)

where

a =
ε

κ0

g−
D

∫ L

l

h(x)

h(l)
dx− ε2G′(l) +

ε

κ0

g+ − g−
D

1

2− 2 cos θ

∫ L

−L

h(l)

h(x)
dx, (3.87)

|b|2 =
ε2

κ2
0

(
g+ − g−
D

)2(
1

1− cos θ

){
2

(∫ l

0

h(l)

h(x)
dx

)2

− 2

(∫ l

0

h(l)

h(x)
dx

)(∫ L

0

h(l)

h(x)
dx

)

+

(
1

1− cos θ

)(∫ L

0

h(l)

h(x)
dx

)2
}
. (3.88)

Note that the above does not hold when z = 1. For z = 1, we have

η(−L) = η(L), η′(−L) = η′(L).

Integrating (3.76) from −L to L

η(x0) ∼ h(x0)∫ L
−L σ(x)h(x)dx

. (3.89)
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Thus, we have

η(l; l) = η(−l;−l) = η(l;−l) = η(−l; l) =
h(x0)∫ L

−L σ(x)h(x)dx
= η0.

Therefore, (
ψ(l)

−ψ(−l)

)
= (g+ − g−)

(
η0 −η0

−η0 η0

)(
c+

c−

)
. (3.90)

Note that the ψ terms are of O(1), so that, to leading order,

λ

(
c+

c−

)
= − ε

κ0

(g+ − g−)

(
η0 −η0

−η0 η0

)(
c+

c−

)
(3.91)

where the eigenvalues are

λ ∼ 0, λ ∼ −2
ε

κ0

(g+ − g−)
h(l)∫ L

−L σ(x)h(x)dx
= λeven. (3.92)

As was done in Chapter 2, we can extend these results with periodic boundary

conditions to that of Neumann boundary conditions. This problem admits 2K eigen-

values with 2K − 2 eigenvalues given by (3.86)-(3.88) but with

θ =
πj

K
, j = 1, . . . , K − 1.

To determine the other two eigenvalues, we consider z = 1 and z = −1. Note that

λ = 0 does not satisfy the condition that φ(L) 6≡ 0, given in §2.2. Next, consider

z = −1, that is, θ = π, for which we have the two eigenvalues

λodd =− ε2G′(l) +
ε

D

1

κ0

(g+ − g−)

{
g−

g+ − g−

∫ L

l

h(x)

h(l)
dx+

∫ l

0

h(l)

h(x)
dx

}
(3.93)

and

λπ =− ε2G′(l) +
ε

D

1

κ0

(g+ − g−)

{
g−

g+ − g−

∫ L

l

h(x)

h(l)
dx+

∫ L

l

h(l)

h(x)
dx

}
(3.94)

Again, checking the condition that φ(L) 6≡ 0, we have that λπ does not form one of

the 2K eigenvalues. Thus, we have

λeven =− 2
ε

κ0

(g+ − g−)
h(l)∫ L

−L σ(x)h(x)dx
(3.95)

λodd =
ε

D

1

κ0

(g+ − g−)

(
g−

g+ − g−

∫ L

l

h(x)

h(l)
dx+

∫ l

0

h(l)

h(x)
dx

)
− ε2G′(l) (3.96)

which gives Principal Result 3.3.1.
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3.4 Stability of K Mesa Pattern

Now that we have determined the eigenvalues of (3.22), we consider the stability of

the mesa patterns. We know that a K mesa pattern is stable if and only if the real

part of each of the eigenvalues is negative. We note that λeven does not depend on

D. Thus, λeven < 0 assuming that (3.24) holds. The other eigenvalues can be written

as, for θ = π
K
, . . . , (K−1)π

K
,

λ±θ = −ε2G′(l) +
1

D
F±(θ) (3.97)

where

F±(θ) =
ε

κ0

(g+ − g−)

{
g−

g+ − g−

∫ L

l

h(x)

h(l)
dx+

1

1− cos θ

[∫ L

0

h(l)

h(x)
dx

((∫ L

0

h(l)

h(x)
dx

)2

± −2(1− cos θ)

∫ l

0

h(l)

h(x)
dx

(∫ L

0

h(l)

h(x)
dx−

∫ l

0

h(l)

h(x)
dx

))1/2
]}

, (3.98)

and

λodd = −ε2G′(l) +
ε

D

1

κ0

(g+ − g−)

{
g−

g+ − g−

∫ L

l

h(x)

h(l)
dx+

∫ l

0

h(l)

h(x)
dx

}
.

To determine whether the eigenvalues are negative, we first demonstrate that

F+(θ) is monotonically increasing and F−(θ) is monotonically decreasing on (0, π),

and then show the ordering of the eigenvalues. From this, we determine the stability

of a K mesa pattern, which will be given in Principal Result 3.4.1.

To show the monotonicity of F±, we begin by noting that on the interval (0, π),

since 1− cos θ is increasing, we have that the term under the square root is positive,

that is,(∫ L

0

h(l)

h(x)
dx

)2

− 2(1− cos θ)

∫ l

0

h(l)

h(x)
dx

(∫ L

0

h(l)

h(x)
dx−

∫ l

0

h(l)

h(x)
dx

)
> 0.

Also, since g+ · g− < 0, we have

g−
g+ − g−

∫ L

l

h(x)

h(l)
dx < 0.

Then, differentiating F+(θ) with respect to θ, we see that dF+

dθ
> 0 for all θ ∈ (0, π).

Similarly, differentiating F−(θ), we find that dF−

dθ
< 0 for all θ ∈ (0, π). Thus, F+(θ)
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and F−(θ) are increasing and decreasing, respectively. Since F+ is increasing, we

have the ordering

F+
( π
K

)
< F+

(
2π

K

)
< . . . < F+

(
(K − 1)π

K

)
< F+(π). (3.99)

Similarly, since F− is decreasing, we have

F−
( π
K

)
> F−

(
2π

K

)
> . . . > F−

(
(K − 1)π

K

)
> F−(π). (3.100)

Next, consider F±(θ) at the end points of the interval. It is easy to see that

F+(0)→ −∞. Using l’Hopital’s rule, as θ → 0, we have

F−(0)→ ε
(g+ − g−)

κ0

{
g−

g+ − g−

∫ L

l

h(x)

h(l)
dx+

∫ l
0
h(l)
h(x)

dx∫ L
0

h(l)
h(x)

dx

(∫ L

0

h(l)

h(x)
dx−

∫ l

0

h(l)

h(x)
dx

)}
.

(3.101)

Then, at θ = π, we obtain

F+(π) =ε
(g+ − g−)

κ0

{
g−

g+ − g−

∫ L

l

h(x)

h(l)
dx+

1

2

∫ L

0

h(l)

h(x)
dx

+
1

2

∣∣∣∣∫ L

0

h(l)

h(x)
dx− 2

∫ l

0

h(l)

h(x)
dx

∣∣∣∣} ,
and F−(π) =ε

(g+ − g−)

κ0

{
g−

g+ − g−

∫ L

l

h(x)

h(l)
dx+

1

2

∫ L

0

h(l)

h(x)
dx

−1

2

∣∣∣∣∫ L

0

h(l)

h(x)
dx− 2

∫ l

0

h(l)

h(x)
dx

∣∣∣∣} .
Note that one of these gives λodd. We can see that F−(π) > F+(π). Then, from

(3.99) and (3.100), we have

λ−π/K > . . . > λ−(K−1)π/K > λodd > λ+
(K−1)π/K > . . . > λ+

π/K . (3.102)

Using this ordering, we can determine the stability of a symmetric K mesa pattern.

This is given in Principal Result 3.4.1.

Principal Result 3.4.1. Let F+(θ) and F−(θ) be defined on (0, π) as given in (3.98).

Under the assumptions given in Principal Result 3.3.1, the behaviour of a K mesa

pattern is given by the following three cases:

(a) if G′(l) ≥ 0 and limθ→0 F
− (θ) < 0, where limθ→0 F

− (θ) is given by (3.101),

then a K mesa pattern is always stable for all D.
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(b) if G′(l) < 0 and F+(π) > 0, then a K mesa pattern is always unstable for all

D.

(c) if G′(l) < 0 and F+(π) < 0, then there exists a critical D value, DK, given by

DK =
1

ε2G′(l)
F−
( π
K

)
, (3.103)

such that for D < DK, a K mesa pattern is stable and for D > DK is unstable..

Derivation of Result 3.4.1.

If G′(l) ≥ 0 and limθ→0 F
− (θ) < 0, then F−(π/K) < 0, and thus λ−π/K is always

negative. From (3.102), it follows that all other eigenvalues are negative. Thus we

obtain case (a). If G′(l) < 0 and F+(π) > 0, then λodd > 0. Therefore, for all K, there

is a positive eigenvalue and thus, we obtain case (b). If G′(l) < 0 and F+(π) < 0,

then, as D becomes sufficiently large, 1
D
F+(θ) becomes small. If this term becomes

small enough, the eigenvalue becomes positive. From the ordering (3.102), we see

that λ−π/K is the first to become positive. Setting the expression for λ−π/K to zero and

solving for D, we obtain the critical value of D. Thus, we obtain the result in case

(c).

3.5 Numerical Simulations of the Cubic Model

We now apply these results to the cubic model (1.12),except now in the form (3.18), ut = ε2

h(x)
[h(x)ux]x + 2(u− u3) + w

0 = D
h(x)

[h(x)wx]x + β − u
. (3.104)

For this system, we have

u+ = 1, u− = −1, g+ = β − 1, g− = β + 1

and κ0 = 2/3. From (3.37), l is defined by

(β − 1)

∫ l

0

h(x)dx+ (β + 1)

∫ L

l

h(x)dx = 0. (3.105)

First consider the case when h(x) is constant. The system (3.104) becomes the

system studied in Chapter 2. From (3.105), we obtain l = β+1
2
L. Since h′(x) = 0

which implies that G′(l) = 0, we have

λodd ∼ −
3

4

ε

D
(β + 1)2L



54

and Principal Result 3.4 gives that a K mesa pattern is stable for all values of D.

This is consistent with the results of Chapter 2, assuming the effect of the boundary

terms is negligible, i.e. ln(D)� O(1
ε
).

Now, we examine the behaviour that can be exhibited when h(x) is a non-constant

function and G′(l) 6= 0.

Experiment 3.1: A Single Mesa.
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Figure 3.1: (a) The odd eigenvalue λodd of a single mesa for the cubic model where
h(x) = 1 − αx2, for varying α. Here D = 100, ε = 0.1, β = 0.3. The circles are
the numerical solution and the solid line is the solution from the asymptotic formula
(3.106). (b) The odd eigenvalue λodd of a single mesa for the cubic model for varying
D. Here h(x) = 1 − 0.1x2, ε = 0.1, β = 0.3. The circles are the numerical solution
and the solid line is the solution from the asymptotic equation (3.106).

In §3.2, we examined a single mesa solution of (3.18) which has two eigenvalues

corresponding to the even and odd eigenfunctions. For the cubic model, we consider

a single mesa solution of u on [−1, 1] where h(x) = 1 − αx2 and α is a parameter.

Here we have

λodd ∼ −3
ε

D

{
−
(
β + 1

2

)∫ L

l

h(x)

h(l)
dx

}
− ε2G′(l) (3.106)

where

G′(l) =
h′′(l)

h(l)
−
(
h′(l)

h(l)

)2

=
−2α

1− αx2
−
(
−2αx

1− αx2

)2

=
−2α(1 + αx2)

1− αx2
.
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t

x x x x
(a) (b) (c) (d)

Figure 3.2: Contour plots of u for the cubic model with ε = 0.1, β = 0.3 and
h(x) = 1− αx2 for (a)D = 60, α = 0.1 (b) D = 40, α = 0.1 (c) D = 100, α = 0.1 (d)
D = 100, α = −0.1

Note that h(x) is symmetric about x = 0 on [−1, 1]. As was discussed at the beginning

of §2.4, Maple is used to solve a boundary value problem that has come from the

reformulation of the linearized problem. We compare the results of the numerical

computation of λodd with that of the asymptotic formula of λodd given in (3.106). In

Figure 3.1(a), the value of α is varied while β, ε and D are held fixed. For this D

value, D = 100, we see that, for α ∼ 0.05, λodd becomes positive which implies that

the single mesa becomes unstable. We see that the λodd value from the asymptotic

formula agrees with the numerically computed value of λodd. In Figure 3.1(b), the

value of D is varied, while β, ε and α are held fixed. We can see that, as D is increased

past D ≈ 52, λodd becomes positive, and, thus, the mesa pattern becomes unstable.

From Figure 3.1(b), we have that, for α = 0.1, λodd < 0 for D < 52 and λodd > 0

for D > 52. Using FlexPDE [72] to simulate (3.104), for α = 0.1 and D = 40, in

Figure 3.2(b), we observe that the one mesa solution is stable, moving to the steady

state. For α = 0.1 and D = 60, in Figure 3.2(a), we observe that the one mesa

solution is unstable, with one interface moving to the boundary.

Similarly, from Figure 3.1(a), we have that, for D = 100, λodd < 0 for α < 0.05

and λodd > 0 for α > 0.05. For D = 100 and α = −0.1, in Figure 3.2(d), we observe

that the one mesa solution is stable, moving to the steady state. For D = 100 and

α = 0.1, in Figure 3.2(c), we observe that the one mesa solution is unstable, with one

interface moving to the boundary.
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λ

D D D

(a) (b) (c)

Figure 3.3: For the cubic model with h(x) = 1 + α cos(2πx), with α = 0.1, β = 0.4,
ε = 0.05 and L = 1, plots of (a) λodd (b) λ−π/2 (c) λ+

π/2 vs. D

Experiment 3.2: Two Mesas. Case (a)

Consider a two mesa solution on [−1, 3]. For the cubic model, let h(x) = 1 +

α cos(2πx) with α = 0.1, β = 0.4, ε = 0.05 and L = 1. Note that h(x) is symmetric

about x = 0 on [−1, 1] and is periodic on [−1, 3]. For this h(x) and the given

parameter values, l = 0.7155 and G′(l) = 0.4743 > 0. As well, F−(0) < 0, therefore,

these parameters give us case (a) in Principal Result 3.4.1. Plotting λodd, λ
−
π/2 and

λ+
π/2, from equations (3.97) and (3.106), in Figure 3.3, as we vary D, we observe that

the eigenvalues are always negative. Thus, the K = 2 mesa pattern is always stable

for these parameter values as predicted by Principal Result 3.4.1.

Experiment 3.3: Two Mesas. Case (b)

Again, for a two mesa solution and for the cubic model, let h(x) = 1 +α cos(2πx)

with α = 0.85, β = 0.05, ε = 0.05 and L = 1. Then l = 0.6135 and G′(l) =

−24.6543 < 0. As well, F+(π) = 0.02416 > 0, therefore, these parameters give us

case (b) in Principal Result 3.4.1. Plotting λodd, λ
−
π/2 and λ+

π/2, in Figure 3.4, as we

vary D, the eigenvalues are always positive. Thus, the K = 2 mesa pattern is always

unstable for these parameter values. This agrees with the predicted behaviour of case

(b).

Experiment 3.4: Two Mesas. Case (c)
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Figure 3.4: For the cubic model with h(x) = 1 + α cos(2πx), with α = 0.1, β = 0.3,
ε = 0.05 and L = 1, plots of D vs. (a) λodd (b) λ−π/2 (c) λ+

π/2

For the cubic model with h(x) = 1 + α cos(2πx) with α = −0.95, β = 0.2,

ε = 0.04 and L = 1, we have l = 0.5517. We obtain G′(l) = −19.7092 < 0 and

F+ (π) = −0.3561 < 0, and therefore these parameters, again, give us case (c) in

Principal Result 3.4.1 with D2 = 6.30. Plotting λodd, λ
−
π/2 and λ+

π/2, in Figure 3.5, as

we vary D, the eigenvalues are cross the axis. Thus, the K = 2 mesa pattern becomes

unstable as D is increased. Simulations of the system 3.104 for these parameters are

given in Figure 3.6 for D = 3 and D = 9 where we have shown the contour plot of the

solution u. We see that for D = 3 < D2, the solution moves towards the symmetric

steady state and for D = 9 > D2, the solution is unstable and one of the interfaces

moves to the boundary.

Experiment 3.5: Three Mesas. Case (a)

For the same parameters as in Experiment 3.2, we consider initial conditions of

six interfaces, that is, a three mesa solution, given by

u(x, 0) = tanh

(
x+ 0.5369

ε

)
− tanh

(
x− 0.5369

ε

)
+ tanh

(
x− 1.4631

ε

)
− tanh

(
x− 2.5369

ε

)
+ tanh

(
x− 3.4631

ε

)
− tanh

(
x− 4.5369

ε

)
− 1

In this case, all the eigenvalues are negative for all D. In Figure 3.7, we can see that,
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λ

D D D

(a) (b) (c)

Figure 3.5: For the cubic model with h(x) = 1+α cos(2πx), with α = −0.95, β = 0.2,
ε = 0.04 and L = 1, plots of D vs. (a) λodd (b) λ−π/2 (c) λ+

π/2. We see that λ−π/2 > 0
for D ≈ 6.

x x

(a) (b)

t

Figure 3.6: For the cubic model with h(x) = 1+α cos(2πx), with α = −0.95, β = 0.2,
ε = 0.04 and L = 1, a contour plot of the solution u for (a) D = 3 and (b) D = 9.
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x

t

Figure 3.7: For the cubic model with h(x) = 1 + α cos(2πx), with α = 0.1, β = 0.4,
ε = 0.05 and L = 1, the contour plot of u with initial condition of 6 interfaces for
D = 1500.

as was predicted by Principal Result 3.4.1, this solution is stable, even for D large.

3.6 Discussion

In this chapter, we have considered a two-dimensional reaction-diffusion system. By

assuming the spatial domain is a thin domain, we have approximated the problem

with a one-dimensional reaction-diffusion system, with a dependence on the width of

the domain. This is a well-known lubrication theory approach [24, 76]. After reducing

the problem to one dimension, we consider mesa patterns, as considered in Chapter

2, except we assume that the interaction with the boundary and the interaction

between interfaces are sufficiently small that they are negligible. For a symmetric K

mesa pattern, we determine the stability of these patterns from the eigenvalues of the

linearized problem. The stability depends on the sign of the term G′(l) where

G′(l) =
h′′(l)

h(l)
−
(
h′(l)

h(l)

)2

as well as integrals involving h(x) and thus the stability in dependent on the function

h(x). For a particular h(x), an instability threshold, DK , exists, where D < DK

implies that a K mesa pattern is stable and D > DK implies it is unstable.
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There are many avenues to further this work. In this chapter, we have only

considered the case were h(x) is a symmetric function on the domain [−L,L]. It

remains to determine the stability of the case where h(x) is not symmetric or where

h(x) is not extended periodically to the whole domain [−L, (2K − 1)L]. Since the

condition that h(x) is symmetric has been used throughout the calculation to simplify

the analysis, it remains to be seen what could be said about the non-symmetric case.

Although we have considered a two-dimensional domain, the results are obtained

by making the assumption that the two-dimensional domain is a thin domain, thus

reducing the problem to one dimension. For the two-dimensional problem on a domain

that is not thin, instabilities arise due to the curvature of the domain. It remains

an open problem to calculate instability thresholds for the general two-dimensional

problem.



Chapter 4

Oscillations of Mesa Patterns

In this chapter we again consider mesa pattern solutions to the system (1.1) with

Neumann boundary conditions. In Chapter 2 we studied what occurs when τ = 0

or τ is small, but now we consider τ large. As discussed in the introduction, as τ

is increased beyond a certain critical threshold τh, these interface solutions can be

destabilized due to a Hopf bifurcation. Under the assumption that D is large, we

study the dynamics of these oscillatory fronts. We show, in this chapter, that there

exists a second threshold, denoted τc, exists such that when τh < τ < τc, a solution

consisting of periodically oscillating interfaces with constant amplitude exists. As

τ is increased further, that is when τ > τc, the oscillation eventually exceeds the

spatial domain. Note that τc may be infinite. First, we consider the case of a solution

for u with one interface, that is, a half-mesa pattern. We start by making a series

of approximations of the PDE system (1.1) leading to a second-order ODE. Then,

using multiple scales analysis, an equation for the amplitude of the oscillations of

the interface is determined. From this amplitude equation we obtain the value of τ ,

namely τh, at which the Hopf bifurcation occurs. Next, we consider a single mesa

pattern, as constructed in §2.1. In this case, we are concerned about the location

of the mesa within the spatial domain, as well as the amplitude. We determine

a similar result to what was obtained for a half-mesa. To verify these asymptotic

results, we compare them to numerically computed solutions. Because of the nature

of the solutions (there exist multiple spatial and temporal scales), the numerical

computation of these solutions is not straightforward and we use numerical software

that features adaptive error control in both space and time.

61
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4.1 Oscillation of a Single Interface

In this section we consider the solution to (1.1) consisting of a single interface. We

derive an equation for the amplitude of its oscillations. This allows us to obtain

the Hopf bifurcation threshold, τh, as well as to describe in detail the behaviour of

solutions when τ is well beyond the Hopf bifurcation. This is accomplished by first

approximating (1.1) to a system consisting of a PDE and an ODE which describes

the dynamics of the interface, then approximating this system to a system of ODEs.

This system of ODEs can be written as a second-order ODE, on which a multiple

scales analysis is performed to determine the amplitude equation [2, 58].

First, note that we will use much of the notation defined in 2.1. Define u+, u− and

w0 so that the conditions (2.4) are satisfied. Define g± as given in (2.5). Also assume

that conditions (2.6) are satisfied. Then a single interface steady state solution, on

the interval [0, 1], is given by

u(x) ∼ U(y) = U

(
x− l0
ε

)
, w ∼ w0 (4.1)

where U(y) is the heteroclinic connection between u+ and u− satisfying

Uyy + f(U,w0) = 0, f(U(0), w0) = 0 (4.2)

U → u± as y → ∓∞ (4.3)

and l0 is the equilibrium location of the interface given by(2.9) so that

u ∼

u+, 0 < x < l0,

u−, l0 < x < 1
. (4.4)

Now we state the main result, describing the oscillation of the single interface.

Principal Result 4.1.1. Consider a single interface solution u of (1.1) in the limit

(2.3) on the interval [0, 1] with Neumann boundary conditions. Let

τ0 =
ε

D
τ. (4.5)

Assume that

0 < l0 < 1; (g− − g+)

∫ u+

u−

fwdu > 0;

(
gw −

fw
fu
gu

)∣∣∣∣
u=u±,w=w0

< 0, (4.6)
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where w0, u±, g± and l0 are as defined by (2.4),(2.5), (2.9) Then the location of the

interface l evolves according to

l(t) = l0 + A(t̂) cos


(

(g− − g+)
∫ u+
u−

fwdu

τ0

∫∞
−∞ U

2
ydy

)1/2

φ+ φ0

 (4.7)

where

t̂ =
ε

D
t; φ =

ε√
D
t; (4.8)

φ0 is given below by initial conditions, l0 is given by (2.9) and where A(t̂) is the

amplitude of the oscillation of the interface; A(t̂) is the solution of the ODE

dA

dt̂
=

1

2

∫ u+
u−

fwdu∫∞
−∞ U

2
ydy

{
σ̂−(1− l0) + σ̂+l0 −

g2
− (6l20 − 6l0 + 1)

3l20(g− − g+)

}
A

−
(g− − g+)

∫ u+
u−

fwdu

4
∫∞
−∞ U

2
ydy

A3 (4.9)

where

σ̂± :=
1

τ0

∫∞
−∞ U

2
ydy∫ u+

u−
fwdu

(
gw −

fw
fu
gu

)∣∣∣∣
u=u±,w=w0

. (4.10)

The initial conditions are
A(0) cosφ0 = l(0)− l0

−
√
g− − g+A(0) sinφ0 =

√
τ0D

( ∫ u+
u−

fwdu∫∞
−∞ U2

ydy

)1/2

(w(0)− w0)
. (4.11)

Suppose that ∣∣∣∣l0 − 1

2

∣∣∣∣ < √3

6
. (4.12)

Then there exists a supercritical Hopf bifurcation which occurs as τ0 is increased past

τ0h where

τ0h =
3
∫∞
−∞ U

2
ydy

(g− − g+)
∫ u+
u−

fwdu

l0

(
gw − fw

fu
gu

)∣∣∣
u=u+

+ (1− l0)
(
gw − fw

fu
gu

)∣∣∣
u=u−

(6l20 − 6l0 + 1)
, (4.13)

Otherwise there is no Hopf bifurcation and A→ 0 as t̂→∞ for any τ0 > 0.

Derivation of Principal Result 4.1.1. The derivation consists of a series of

approximations, whereby the original system (1.1) is first reduced to a coupled ODE-

PDE system, then to a system of ODE, then to a weakly forced harmonic oscillator

on which the method of multiple scales is applied to obtain the amplitude equations.
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First, we will reduce (1.1) to an ODE-PDE system. We scale τ as in (4.5) where

τ0 is O(1). Since we have assumed D � 1, we expand

u = u0 +
1

D
u1 + . . . , w = w0 +

1

D
w1 + . . . .

For w, we have

w0xx = 0 (4.14)

therefore, to leading order, w ∼ w0(t) is a constant in space. Expanding in terms of

1
D

, from the equation for u in (1.1), we obtain

0 = ε2u0xx + f(u0, w0), (4.15)

Du0t = ε2u1xx + fu(u0, w0)u1 + fw(u0, w0)w1, (4.16)

where u0t = O
(

1
D

)
which will become evident with the scaling below. Consider a

single interface located at x = l in the domain [0, 1]. Let l = l(t) and

u0(x, t) = U

(
x− l
ε

)
= U(y) (4.17)

where U is defined (4.1). Multiplying (4.16) by u0x , using (4.17), and integrating by

parts over the domain, we obtain

− l′(t)
∫ 1

0

u2
0xdx =

1

D

∫ 1

0

fww1u0xdx. (4.18)

Note that the boundary terms from integration are negligible because u0 decays ex-

ponentially at the boundary. In the inner variables, we approximate w1 ∼ w1(l).

Rearranging, we now have an equation for the dynamics of the interface

lt =
ε

D

∫ u+
u−

fwdu∫∞
−∞ U

2
ydy

w1(l).

Expanding in 1
D

, from the equation for w in (1.1), we obtain

τ0

ε
w1t = w1xx + g(u0, w0) +

1

D
gu(u0, w0)u1 +

1

D
gw(u0, w0)w1 (4.19)

Away from the interface, we can neglect the diffusion term, u1xx , so that

u1 ∼ −
fw(u0, w0)

fu(u0, w0)
w1.
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Then we have

τ0

ε
w1t = w1xx + g(u0, w0) +

1

D

(
gw −

fw
fu
gu

)∣∣∣∣
u=u±,w=w0

w1.

Therefore, we obtain the following ODE-PDE system of l(t) and w1(x, t)

lt =
ε

D

∫ u+
u−

fwdu∫∞
−∞ U

2
ydy

w1(l), (4.20)

τ0

ε
w1t = w1xx + g(u0, w0) + σw1 (4.21)

where

σ =

σ+, 0 < x < l

σ−, l < x < 1
, (4.22)

with

σ± =
1

D

(
gw −

fw
fu
gu

)∣∣∣∣
u=u±,w=w0

. (4.23)

Scaling the time variable and w1 allows us to clearly see that the ordering given

for u0t is consistent. Let this scaling be

s =
ε

τ0

ε̂t; W = ε̂w1 (4.24)

where

ε̂ =

√
1

D

(
τ0

∫ u+
u−

fwdu∫∞
−∞ U

2
ydy

)1/2

. (4.25)

Then the scaled system is

ls =W(l), (4.26)

Wxx = ε̂Ws − ε̂g(u0, w0)− ε̂2σ̂W , (4.27)

where

σ̂ =

σ̂+, 0 < x < l

σ̂−, l < x < 1
(4.28)

with σ̂± as given by (4.10).

Next, we reduce the ODE-PDE system (4.26)- (4.27) to a system of three ODEs.

Expanding W in terms ε̂,

W =W0(s) + ε̂W1(x, s) + ε̂2W2(x, s) + . . . , (4.29)
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we obtain

ls =W0(s) + ε̂W1(l, s), (4.30)

W0xx = 0, (4.31)

W0s =W1xx + g0, (4.32)

W1s = σ̂W0 +W2xx. (4.33)

where

g0 =

g+, x < l,

g−, x > l
(4.34)

with g± as in (2.5). Equation (4.31) implies that W0 =W0(s). From (4.32), we have

the solvability condition ∫ 1

0

W1xxdx =

∫ 1

0

(W0s − g0)dx

so that

W0s =

∫ 1

0

g0dx. = (g+ − g−)l − g−. (4.35)

Also, from (4.32),

W1xx =

W0s − g+, x < l,

W0s − g−, x > l.
(4.36)

Substituting (4.35) into (4.36), integrating and imposing continuity of W1 at x = l,

we obtain

W1 =

(g+ − g−)(l − 1)
(
x2

2
− l2

2

)
+K(s), x < l

(g+ − g−)l
(
x2

2
− x− l2

2
+ l
)

+K(s), x > l
(4.37)

where K(s) is to be determined as follows. From (4.33), we have the solvability

condition ∫ 1

0

W1sdx =

∫ 1

0

σ̂W0dx.

Substituting (4.37) into this, we solve for Ks to obtain

Ks = (g+ − g−)ls

{
2l2 − 2l +

1

3

}
+ (σ̂+ − σ̂−)W0l + σ̂−W0.
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We then obtain a system of three ODE’s that capture the motion of the interface,

ls =W0(s) + ε̂K(s), (4.38)

W0s = (g+ − g−)l + g−, (4.39)

Ks =W0

{
(g+ − g−)

(
2l2 − 2l +

1

3

)
+ (σ̂+ − σ̂−)l + σ̂−

}
. (4.40)

Next, we now approximate the system (4.38) – (4.40) by a weakly linear oscillator.

We start by changing the variables

l = l0 + y =
g−

g− − g+

+ y (4.41)

to shift the equilibrium of (4.39) to zero. Then

ys =W0 + ε̂K, (4.42)

W0s = (g+ − g−)y, (4.43)

Ks =W0

{
2(g+ − g−)y2 + (σ̂+ − σ̂−)y − 2(g+ + g−)y

+σ̂−(1− l0) + σ̂+l0 −
g2
− (6l20 − 6l0 + 1)

3l2(g− − g+)

}
. (4.44)

Differentiating (4.42) and substituting (4.43) and (4.44), we obtain

yss =W0s + ε̂Ks (4.45)

= (g+ − g−)y + ε̂W0

{
2(g+ − g−)y2 + (σ̂+ − σ̂−)y − 2(g+ + g−)y

σ̂−(1− l0) + σ̂+l0 −
g2
− (6l20 − 6l0 + 1)

3l2(g− − g+)

}
. (4.46)

From (4.42) we have W0 = ys + O(ε̂). Keeping only O(1) and O(ε̂) terms we then

obtain

yss =(g+ − g−)y + ε̂ys

{
2(g+ − g−)y2 + (σ̂+ − σ̂−)y − 2(g+ + g−)y

σ̂−(1− l0) + σ̂+l0 −
g2
− (6l2 − 6l + 1)

3l2(g− − g+)

}
+O(ε̂2). (4.47)

Now, we perform a multiple scales analysis on (4.47), see for example [2, 58]. We

expand y(s) = y0(s, τ̂) + ε̂y1(s, τ̂) + . . ., where τ̂ = ε̂s is the slow variable. We then
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obtain, to two orders,

y0ss + ω2y0 = 0, (4.48)

y1ss + ω2y1 = −2y0sτ̂ + (σ̂+ − σ̂−) y0y0s − 2(g+ + g−)y0y0s + 2(g+ − g−)y2
0y0s

+

{
σ̂−(1− l0) + σ̂+l0 −

g2
− (6l20 − 6l0 + 1)

3l2(g− − g+)

}
y0s (4.49)

where we defined

ω :=
√
g− − g+.

From (4.48) we obtain

y0 = A(τ̂) cos (ωs+ φ(τ̂)) . (4.50)

Substituting into (4.49), we obtain

y1ss + ω2y1 =
{
−2ω(g+ − g−)A3 − ωA (σ̂−(1− l0) + σ̂+l0

−
g2
−(6l20 − 6l0 + 1)

3l20(g− − g+)

)}
sin(ωs+ φ) + 2ωAφτ̂ cos(ωs+ φ)

− 2ω(g+ − g−)A3 sin3(ωs+ φ)

− ω {(σ̂+ − σ̂−)− 2(g+ + g−)}A2 cos(ωs+ φ) sin(ωs+ φ).

Eliminating the resonance terms (that is, the cosine and sine terms) , we obtain the

system of equations

2A
dφ

dτ̂
= 0 (4.51)

2
dA

dτ̂
= −

(
g− − g+

2

)
A3 +

{
σ̂−(1− l0) + σ̂+l0 −

g2
− (6l20 − 6l0 + 1)

3l2(g− − g+)

}
A (4.52)

Equation (4.51) implies φ = φ0 where φ0 is a constant. Rewriting in terms of the

original time variable t, the equation for the amplitude of the motion of the interface

(4.52) yields

dA

dt
=

ε

D

∫ u+
u−

fwdu∫∞
−∞ U

2
ydy

{
−(g− − g+)

4
A3 +

1

2
{σ̂−(1− l0) + σ̂+l0

−
g2
−(6l20 − 6l0 + 1)

3l20(g− − g+)

}
A

}
(4.53)

The initial condition A(0) and the constant φ0 are determined from the initial condi-

tions of the original problem (1.1). From (4.50),

y0(0) =A(0) cosφ0,

y0s(0) =− ωA(0) sinφ0.
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From (4.41), we also have

y0(0) = l(0)− l0.

Beginning with (4.42) and tracing backwards,

y0s(0) ∼ W0(0) ∼ ε̂w1(0) ∼ εD(w(0)− w0) (4.54)

which yields the equations (4.11).

From (4.9), the bifurcation of τ0 occurs when the coefficient of A changes from

positive to negative. Setting to zero and solving for τ0 yields (4.13). Assuming

τ0h > 0, we can see that the term inside the curly brackets in (4.9) is negative for

τ < τ0h provided that the assumptions (4.6) hold. This implies that the bifurcation

is supercritical. From (4.13) (and the assumptions is (4.6)), τ0h is positive when

6l20 − 6l0 + 1 < 0. This is true when

1

2
−
√

3

6
< l0 <

1

2
+

√
3

6
(4.55)

which gives condition (4.12).

We note that the oscillation of the interface must be contained in the domain

[0, 1]. To satisfy this, we must have

l0 + A < 1, l0 − A > 0.

This may impose additional thresholds on the parameters. We will discuss this further

in the context of the cubic model (1.12) in §4.3

4.2 Oscillations of a Single Mesa

Now we consider a solution consisting of one mesa, that is, two interfaces, for the

general system (1.1). We state a similar result to that obtained in §4.1 for one

interface.

Principal Result 4.2.1. Consider a single mesa solution u of (1.1) in the limit (2.3)

on the interval [−1, 1], with Neumann boundary conditions, having the general form

u ∼

u+, x ∈ (xl, xr)

u−, x ∈ [−1, 1]\(xl, xr).
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and assume that the conditions (4.6) hold with w0, u±, g±, l0 as defined in Principal

Result 4.1.1. Here, xl = xl(t), xr = xr(t) are time-dependent locations of the left and

right interface, respectively, with −1 < xl < xr < 1. Define

x0 :=
xr + xl

2
(4.56)

and

l :=
xr − xl

2
. (4.57)

Then l evolves according to (4.7) where t̂, φ, ω are as given in Principal Result 4.1.1,

and A and x0 satisfy a coupled ODE system

dx0

dt̂
=−

(g− − g+)
∫ u+
u−

fwdu∫∞
−∞ U

2
ydy

x0

(
A2

2
+ l20

)
(4.58)

dA

dt̂
=

∫ u+
u−

fwdu

2
∫∞
−∞ U

2
ydy

{
σ̂−(1− l0) + σ̂+l0 −

g2
− (6l20 − 6l0 + 1)

3l20(g− − g+)
− (g− − g+)x2

0

}
A

−
(g− − g+)

∫ u+
u−

fwdu

4
∫∞
−∞ U

2
ydy

A3 (4.59)

where σ̂± is defined as in (4.10). A supercritical Hopf bifurcation occurs when τ0 = τ0h

where τ0h is given by (4.13).

Before deriving this result, we consider how this result differs from our previous

result. From (4.58), as t̂ → ∞, x0 → 0 so that (4.59) becomes (4.9). Thus, the

Hopf bifurcation occurs at the same critical τ0 value as for the one interface case,

as given in (4.13). Since x0 → 0, the mesa solution exhibits in-phase oscillations,

that is, the oscillation is in the distance between interfaces. In [26], out-of-phase

oscillations are also shown (see Figures 1.7, 1.10 and 1.11). Since we have assumed

that the interaction between the interfaces and the boundary is negligible, there are

no out-of-phase oscillations and these are not examined here. Further discussion of

this is found in §4.4 .

Derivation of Principal Result 4.2.1. The derivation is similar to Principal

Result 4.1.1. As before, we scale τ as (4.5) and we expand

u = u0 +
1

D
u1 + . . . and w = w0 +

1

D
w1 + . . . (4.60)
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we then obtain the reduced ODE-PDE system,

xrt =
ε

D

∫ u+
u−

fwdu∫∞
−∞ U

2
ydy

w1(xr),

xlt =− ε

D

∫ u+
u−

fwdu∫∞
−∞ U

2
ydy

w1(xr),

τ0

ε
w1t = w1xx + g(u0, w0) + σw1

where σ and u0 is given by

σ =

σ+, x ∈ (xl, xr)

σ−, x ∈ (−1, xl)
⋃

(xr, 1)
; u0 =

u+, x ∈ (xl, xr)

u−, x ∈ (−1, xl)
⋃

(xr, 1)
(4.61)

with σ± given by (4.23). We scale t and w1 as before, in (4.24) where ε̂ is given by

(4.25). Then

Wxx = ε̂Ws − ε̂g(u0, w0)− ε̂2σ̂W ,

xrs =W(xr),

xls = −W(xl)

where σ̂ is

σ̂ =

σ̂+, x ∈ (xl, xr)

σ̂−, x ∈ (−1, xl)
⋃

(xr, 1)
(4.62)

with σ̂± given in (4.10). Expanding W = W0(x, s) + ε̂W1(x, s) + ε̂2W2(x, s) + . . .,

similar to (4.30) – (4.33), we now have the system

xrs =W0(s) + ε̂W1(xr, s), (4.63)

xls = −W0(s)− ε̂W1(xl, s), (4.64)

W0s =W1xx + g(u0, w0), (4.65)

W1s = σ̂W0 +W2xx. (4.66)

We integrate (4.65) over the domain to obtain

W0s = (g+ − g−)

(
xr − xl

2

)
+ g−. (4.67)

We rewrite xl, xr in terms of x0, l as defined in (4.56, 4.57) so that

xl = x0 − l and xr = x0 + l.
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Then, in terms of l and x0, we obtain

x0s =W0 + ε̂W1(x0 + l, s)− ls (4.68)

ls =W0 + ε̂W0 + ε̂(x0 − l, s)− x0s (4.69)

W0s = (g+ − g−)l + g− (4.70)

W1s = σ̂W0 +W2xx (4.71)

As before, we integrate (4.65), impose continuity of W1 at the interfaces xl and xr,

and substitute (4.67) to obtain

W1 =


(g+ − g−)l

(
x2

2
+ x
)

+ (g+ − g−) (x0−l)2
2

+K(s), −1 < x < x0 − l

(g+ − g−)(l − 1)
(
x2

2

)
+ (g+ − g−)x0x+K(s), x0 − l < x < x0 + l

(g+ − g−)l
(
x2

2
− x
)

+ (g+ − g−) (x0+l)2

2
+K(s), x0 + l < x < 1

Integrating (4.71) over the domain, we have the solvability condition∫ 1

−1

(W1s − σ̂W0) dx = 0.

Solving this, we have the following equation for Ks

Ks = −1

2
(g+−g−)ls

(
−x2

0 − l2 + 2l − 2

3

)
−(g+−g−)x0x0s(1−l)−W0(σ̂+l+σ̂−(l−1)).

Then, as for one interface, we obtain the following ODE system

x0s =ε̂(g+ − g−)x0l
2, (4.72)

ls =W0 + ε̂
1

2
(g+ − g−)(x2

0(l + 1) + l3 − l2) + ε̂K(s), (4.73)

W0s = (g+ − g−)l + g−, (4.74)

Ks =
1

2
(g− − g+)ls

(
−2

3
− x2

0 − l2 + 2l

)
− (g− − g+)x0x0s(l + 1)

−W0(σ̂+l + σ̂−(l − 1)). (4.75)

As before, we let l = l0 + y to shift the equilibrium of (4.74) and eliminate the K and

W0 equations to obtain the approximate system

x0s =ε̂(g+ − g−)x0 (l0 + y)2 , (4.76)

yss =(g+ − g−)y + ε̂ys

{
2(g+ − g−)y2 + (σ̂+ − σ̂−)y − 2(g+ + g−)y

−(g− − g+)x2
0 + σ̂−(1− l0) + σ̂+l0 −

g2
− (6l20 − 6l0 + 1)

3l20(g− − g+)

}
. (4.77)
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We again follow with a multiple scales analysis. Let y ∼ y0(s, τ̂) + ε̂y1(s, τ̂) where

τ̂ = ε̂s. Also, expand x0 = x00(s, τ̂) + ε̂x01(s, τ̂). This expansion gives

x00s = 0, (4.78)

x01s = −x00τ̂ − ω2x00 (y0 + l0)2 , (4.79)

y0ss + ω2y0 = 0, (4.80)

y1ss + ω2y1 = −2y0sτ̂ + 2(g+ − g−)y2
0y0s + ((σ̂+ − σ̂−)− 2(g+ + g−))y0y0s

+

(
σ̂−(1− l0) + σ̂+l0 − (g− − g+)x2

0 −
g2
− (6l20 − 6l0 + 1)

3l20(g− − g+)

)
y0s (4.81)

where

ω =
√
g− − g+.

From (4.80), y0 = A(τ̂) cos(ωs + φ(τ̂)) and (4.78) implies that x00(s, τ̂) = x00(τ̂).

Eliminating the resonance terms for x01 then yields

dx00

dτ̂
= −ω2x00

(
A2

2
+ l20

)
. (4.82)

Eliminating the resonance terms in (4.80), we obtain

2
dA

dτ̂
= −

(
g− − g+

2

)
A3 +

(
σ̂−(1− l0) + σ̂+l0 − (g− − g+)x2

0 −
g2
− (6l20 − 6l0 + 1)

3l20(g− − g+)

)
A

(4.83)

Rescaling, we obtain (4.59). As t → ∞, x0 → 0 so that (4.59) becomes (4.9). Thus,

the Hopf bifurcation occurs at the same critical τ0 value as for the one interface case,

as given in (4.13). This completes the derivation of the Principal Result 4.2.1.

4.3 Numerical Simulations

It is important to be able to verify the asymptotic results we have derived, thus, it is

important to numerically simulate the system (1.1). In this section, we first consider

the cubic model (1.12): {
ut = ε2uxx + 2(u− u3) + w

τwt = Dwxx − u+ β
.

We apply the principal results of §4.1 and §4.2. Then we discuss the numerical

software used in computing the solution to the PDE system. Finally, we compare

numerically the solution of the PDE system with that of the asymptotic amplitude

equations.
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4.3.1 Applying Principal Results (4.2.1) and (4.2.1) to the Cubic Model

We illustrate our results for the cubic model (1.12). We consider the initial conditions

consisting of a single interface on x ∈ [0, 1] for the solution u, such as shown in

Figure 4.1(a). For the system (1.12), such a solution has the leading-order profile

u(x, t) ∼ tanh((l(t)− x)/ε), w ∼ 0, where l(t) represents the interface position that

changes slowly with time as given in (4.7).

For the system (1.12):

f(u,w) = 2(u− u3) + w; g(u,w) = β − u. (4.84)

From (2.4) we obtain

w0 = 0; u− = −1, u+ = +1; U(y) = − tanh (y) ; (4.85)

g+ = β − 1, g− = β + 1; l0 =
1 + β

2
, (4.86)

and then ∫ ∞
−∞

U2
ydy =

4

3
;

∫ u+

u−

fwdu = 2; (4.87)(
gw −

fw
fu
gu

)∣∣∣∣
u=u±,w=w0

= −1

4
, (4.88)

so that the necessary conditions (4.6) hold, provided that |β| < 1.

The interface position is given by l(t) ∼ l0 + A
(
t̂
)

cos(
√

3/τ0φ(t) + φ0). Here, l0

is the position of the interface at the equilibrium given by l0 = (1 + β)/2. The initial

conditions A(0) and φ0 are determined by the initial positions of l(0) and w(l(0), 0),

as given by (4.11).

Applying Principal Result 4.1.1 to the cubic model, we obtain that the oscillation

envelope A satisfies the ODE

dA

dt̂
=

(
1

4
(1− 3β2)− 1

8τ0

)
A− 3

4
A3. (4.89)

The Hopf bifurcation threshold for τ can then be easily determined by looking at

the sign of the expression in brackets in (4.89). It is clearly negative for small (but

positive) τ0 but crosses zero when τ = τh = D
ε
τ0h with τ0h given by

τ0h =

{
1

2(1−3β2)
if |β| < 1√

3
;

∞ otherwise
.
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For τ0 < τ0h, the interface settles at the position l ∼ l0 whereas for τ0 > τ0h, the

interface exhibits a periodic motion that converges to l ∼ l0 + A∞ cos(
√

3/τ0φ+ φ0)

where A∞ is given below by (4.93). The periodic motion of the interface converges as

above provided that l remains within the domain; that is l0+A∞ < 1 and l0−A∞ > 0.

Otherwise, the interface will eventually merge with the boundary. Note that, since

τ0 > 0, if |β| > 3−1/2 then there is no Hopf bifurcation. These behaviours are

described, for the cubic model, in Proposition 4.3.1.

For the cubic model, for a single mesa, the Principal Result 4.2.1 yields the system

dx0

dt̂
= −3

2
x0

(
A2

2
+ l20

)
, (4.90)

dA

dt̂
=

(
1

4
(1− 3β2)− 1

8τ0

− 3

2
x2

0

)
A− 3

4
A3. (4.91)

Recall that x0 decays as t̂→∞, thus, (4.91) approaches (4.89) as t̂→∞.

As mentioned above, depending on the values of τ0 and β, the solution u can

exhibit several different behaviours. For the cubic model (1.12) we summarize this as

follows.

Proposition 4.3.1. Consider a single interface solution of the form (4.1) for the

cubic system (1.12). Define

β1 :=
3

15
+

2
√

6

15
≈ 0.52659 and β2 :=

1√
3
≈ 0.57735

The system (1.12) exhibits the following three distinct regimes:

1. If |β| < β1 then define

τ0h :=
1

2− 6β2
; τ0c :=

1
1
2

+ 3 |β| − 15
2
β2
. (4.92)

(a) If τ0 < τ0h then l→ l0 in the limit t̂� 1.

(b) If τ0 ∈ (τ0h, τ0c) then, in the limit t̂ � 1, the interface exhibits periodic

oscillations of the form

l(t) ∼ l0 + A∞ cos(
√

3/τ0εD
−1/2t+ φ0)

where

A∞ =

√
1

3
(1− 3β2)− 1

6τ0

. (4.93)
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(c) If τ0 > τ0c, then eventually the interface merges with the boundary and the

periodic oscillations cease.

2. If |β| ∈ (β1, β2), then define τ0h as in (4.92) and τ0c = ∞. Cases 1(a) and (b)

above hold.

3. If |β| > β2, then l→ l0 in the limit t̂� 1, for all τ0 > 0. Case 1(a) above holds.

Similar results as in Proposition 4.3.1 hold for two interfaces.

4.3.2 BACOL

The numerical software that we use for the treatment of the cubic model is a recently

developed package called BACOL (see [83, 82, 81]). This software uses B-spline col-

location for the discretization of the spatial domain. The PDE system together with

the boundary conditions is approximated by a system of differential algebraic equa-

tions which is solved using DASSL [3]. DASSL uses adapative methods to estimate

and control the temporal error. A key feature of BACOL is the adaptive spatial error

control which allows the software to efficiently compute numerical solutions that have

sharp interfaces to a desired accuracy. We will apply the results given in the previ-

ous sections and then compare them to the numerically computed solutions obtained

using BACOL.

4.3.3 Numerical Simulations of the Cubic Model

We now examine our results and compare them with numerically computed solutions.

First, we consider the half mesa solution (a single interface), then the single mesa

solution (two interfaces).

Experiment 4.1: Single Interface, β = 0. We choose β = 0, ε = 0.01, D =

150 from which it follows that l0 = 1/2. Proposition 4.3.1 yields τ0h = 0.5, τ0c = 2,

so that for 0.5 < τ0 < 2, the interface oscillates and approaches an amplitude of

A∞ =
√

1
3
− 1

6τ0
. We then computed a numerical solution of the cubic model (1.12)

using BACOL, starting with the initial conditions given by

u(x, 0) = − tanh

(
x− l0 − 0.1

ε

)
, w(x, 0) = 0.01. (4.94)
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Figure 4.1: Simulations of the cubic model (1.12) with β = 0, ε = 0.01, D = 150
and τ = D/ε, that is, τ0 = 1.0. Left column shows the solution consisting of a single
interface on the domain [0, 1]. Right column shows a two-interface solution on the
domain [−1, 1]. (a) The profile of u and w at time t = 55001. The initial condition for
u consisted of a single interface located at l(0) = 0.6, given by (4.94). (c) The contour
plot of u showing the oscillation of the interface in time. Dark colour corresponds to
u ≈ −1 and light to u ≈ +1. The dashed white line denotes the amplitude of the
oscillation as determined from our asymptotic results. (e) Zoom of (c) where l(t), the
location of the interface, is denoted by the dashed red line. (b,d,f): similar to (a,c,d)
but for two-interface solution on the domain [−1, 1]. Initial conditions consisted of
two interfaces located at −0.4 and 0.8, given by (4.96).
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The numerical solution is shown as a contour plot in Figure 4.1(c,e) along with

the amplitude A as given by (4.89) and the location of the interface l as given by

(4.7).

The white dashed line in Figure 4.1(c,e) shows the oscillation envelope which was

derived in Principal Result 4.1.1 for the general system (1.1). The dashed red line is

the location of l(t) as determined by (4.7). It is observed that the results from the

asymptotic formulas for A and l agree very well with the numerical solution of (1.12).
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Figure 4.2: Comparison of numerical simulations of (1.12) with asymptotics. Param-
eter values are β = 0, D = 100, ε = 0.001; initial conditions are given by (4.95).
Dashed line indicates the oscillation envelope A(t). Solid line indicates the location
of the interface of the computed solution u(x, t). (a) τ0 = 0.4 (b) τ0 = 1 (c) τ0 = 3.
(See Experiment 4.1)

We next choose β = 0, ε = 0.001 and D = 150 and, again, l0 = 0.5. For τ0 <

τ0h = 0.5, the oscillations eventually die out leading to a stable interface located at l0,

whereas for τ0 > τ0c2, the interface eventually hits the boundary. These three possible

behaviours are illustrated in Figure 4.2. The dashed line indicates the oscillation

envelope A(t) and the solid line indicates the location of the interface of the computed

solution u(x, t)In Figure 4.2(a) we took τ0 = 0.4 < τ0h. As expected, the oscillations

damp out leading to a stable interface located at l0 = 0.5. In Figure 4.2(b) we took

τ0 = 1 so that τ0h < τ0 < τ0c. After a long transient, the solution converges to a

periodically oscillating interface whose amplitude approaches A∞ ≈ 0.3958. Finally

in Figure 4.2(c), we have taken τ0 = 3 > τ0c. As expected, the interface eventually
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Figure 4.3: Comparison of numerical simulations of (1.12) with asymptotics. Param-
eter values are β = 0.5, D = 80, ε = 0.001; initial conditions are given by (4.95).
Dashed line indicates the oscillation envelope A(t). Solid line indicates the location
of the interface of the computed solution u(x, t). (a) τ0 = 0.4 (b) τ0 = 3 (c) τ0 = 9.
(See Experiment 4.2)

merges with the boundary and disappears.

Experiment 4.2: Single Interface, β = 0.5. Next, we take β a little further

from zero. We took β = 0.5, ε = 0.001 and D = 80 giving l0 = 0.75. Here, we have

taken the initial conditions as

u(x, 0) = − tanh

(
x− l0 − 0.01

ε

)
, w(x, 0) = 0.01. (4.95)

(Note that we have taken l(0) = l0 + 0.01). Proposition 4.3.1 yields τ0h = 2, τ0c = 8,

so that for 2 < τ0 < 8, the interface oscillates and approaches an amplitude of A∞ =√
0.0833− 1

6τ0
. In Figure 4.3, for these parameters, the location of the interface of the

computer solution is plotted for three different values of τ0. Figure 4.3 demonstrates

similar three behaviours as given in Figure 4.2. Note in Figure 4.3(c) the numerical

solution merges with the boundary at t = 6× 105.

Experiment 4.3: Single Interface, Hopf Bifurcation Structure. In this

experiment, we compare the predicted value of A∞ given by (4.93) with the value

obtained from numerical simulations. We take β = 0, ε = 0.01, and vary τ0 from

0.2 to 0.75 (recall τ0h = 0.5 for these parameters). For each fixed value of τ0 in that

range, we numerically solve the system (1.12) until time t = 106 and then read off
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Figure 4.4: Comparison of A∞ for the model (1.12) using parameter values β = 0,
ε = 0.01, D = 150, with τ0 as indicated on the horizontal axis. Solid curve is given
by (4.93). Dashed curve is obtained by numerically integrating (1.12) up to t = 106

starting with initial conditions (4.94). (See Experiment 4.3)

the amplitude at that time. The resulting bifurcation diagram is shown in Figure 4.4.

As expected, a good agreement is observed. Also as expected, the agreement with

the numerical results is poor very close to the bifurcation point τ0 = 0.5 : near the

bifurcation, the amplitude changes very slowly. If we were to continue the numerical

computation, in this case, for larger t values, we would see better agreement near

τ0 = 0.5 in Figure 4.4.

Experiment 4.4: Two Interfaces, β = 0. Here, we consider the two-interface

solution on the domain [−1, 1]. We take ε = 0.01, D = 150, β = 0, and τ0 = 1. For

initial conditions, we take

u(x, 0) = tanh

(
x− (−0.4)

ε

)
− tanh

(
x− 0.8

ε

)
− 1, w(x, 0) = 0.01. (4.96)

so that the initial conditions correspond to two interfaces located at −0.4 and +0.8.

Figure 4.1(d,f) shows the numerical computations as well as the theoretical prediction

given by (4.90), (4.91) and l given by (4.7). Very good agreement is observed.

Experiment 4.5: Two Interfaces, β = 0.1. We took β = 0.1, ε = 0.01 and

D = 150. As before, the value of τ0 is varied and the location of the interfaces of the

computed solution u(x, t) is plotted in Figure 4.5. We obtain similar results to those

in Experiment 4.2.
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Figure 4.5: Comparison of numerical simulations of (1.12) with asymptotics. Param-
eter values are β = 0.1, D = 150, ε = 0.01. Dashed line indicates the oscillation
envelope A(t). Solid line indicates the location of the interfaces of the computed
solution u(x, t). (a) τ0 = 0.4 (b) τ0 = 1 (c) τ0 = 3. (See Experiment 4.5)

4.3.4 Turing Instability

From our numerical simulations of the cubic model, we have observed that when

the interface merges with the boundary, as in Figures 4.2(c), 4.3(c) and 4.4(c), the

interface disappears. We consider whether Turing instability (as discussed in the

Introduction) can arise here to lead to chaos. For a detailed discussion of Turing

instability, please see [54].

Suppose that (u0, w0) is a stable steady state of

{
ut = f(u,w)

τwt = g(u,w)
(4.97)

Linearizing with u(t) = u0 + eλtη, w(t) = w0 + eλtξ, we obtain

λ

[
η

ξ

]
=

[
fu(u0, w0) fw(u0, w0)

1
τ
gu(u0, w0) 1

τ
gw(u0, w0)

][
η

ξ

]
(4.98)

Here, (u0, w0) is a stable steady state if the trace of the matrix on the right-hand side
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is negative and the determinant is positive, that is,

fu(u0, w0)gw(u0, w0)− fw(u0, w0)gu(u0, w0) > 0 (4.99)

fu(u0, w0) +
1

τ
gw(u0, w0) < 0. (4.100)

Now consider (1.1). Linearize u ∼ u0 + cos(mx)eλtη, w ∼ w0 + cos(mx)eλtξ. We

now obtain

λ

[
η

ξ

]
= M

[
η

ξ

]
(4.101)

where

M =

[
−m2ε2 + fu(u0, w0) fw(u0, w0)

1
τ
gu(u0, w0) −m2 1

τ
D + 1

τ
gw(u0, w0)

]
. (4.102)

For stability, we must have trM < 0 and detM > 0, that is,

(ε2gw +Dfu)
2 − 4(ε2D)(fugw − fwgu) ≥ 0 (4.103)

ε2gw +Dfu ≥ 0 (4.104)

Let r = D
ε2

, then we have

r2f 2
u + r(4fwgu − 2fugw) + g2

w ≥ 0 (4.105)

gw + rfu ≥ 0. (4.106)

Thus, there will be an instability that develops if r is sufficiently large and fu(u0, w0) >

0. We note that we have r = D
ε2

is very large, so instability develops for our system if

fu(u0, w0) > 0. (4.107)

For the cubic model (1.12), the steady state (u0, w0) = (β,−2β(1−β2)) is a stable

steady state if

fu(u0, w0) < 0 =⇒ 2− 6β2 < 0, (4.108)

that is,

β < −
√

1

3
, β >

√
1

3
. (4.109)

To have mesa pattern solutions, we have assumed that |β| <
√

1
3

and thus, the

condition above is never satisfied. Therefore for the cubic model, we can never have

Turing instability in the regime where mesas oscillate beyond the boundary.
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4.4 Discussion

In this chapter, we have examined how a one or two interface solution of (1.1) can have

oscillatory behaviour for particular values of τ . We also found that the oscillations

correspond to a supercritical Hopf bifurcation, provided that the conditions (4.6) hold.

These conditions are the same ones that are needed to guarantee the existence and

stability of a single interface when τ = 0 (shown in Chapter 2). The determination of

this supercritical Hopf bifurcation was done by studying the ODE that describes the

amplitude of the oscillations. This was accomplished by approximating the original

PDE system to a system consisting of an ODE and a PDE, and then approximating

this system to a system of ODEs. Finally, reducing the system of ODEs to a second

order ODE, we performed a multiple scales analysis to determine an equation for

the amplitude of the oscillations of the sharp interfaces of the solution of u. When

comparing these asymptotic results with numerical simulation of the cubic model

(1.12), excellent agreement was observed.

We found that no oscillations exist when τ < O(ε/D), either for one or two-

interface solutions. For a solution that consists of two interfaces (a single mesa so-

lution), it was shown in Chapter 2 that even when τ = 0, a two-interface solution

is stable provided that 1 � ln(D) � 1/ε but is destabilized when D becomes expo-

nentially large in ε. Such instability is due to a positive (but real) small eigenvalue

that arises due to translation invariance; it induces a monotonic motion of the mesa

towards one of the boundaries. On the other hand, we have implicitly assumed in

this chapter that ln(D) � 1/ε, so that the boundary terms in (4.18) arising from

the integration were negligible. It is an open question to examine how the results in

this paper would change if ln(D) becomes sufficiently big, or equivalently, when the

distance between interfaces, 2l0, becomes sufficiently small.

For some parameter regimes, oscillations can eventually exceed domain size (see

for example Proposition 4.3.1, subcase (c) and the accompanying Figures 4.2(c), and

4.3(c)). Numerically, when the interface collides with the boundary, it typically dis-

appears and the system gets “reset” to a nearly-uniform steady state. A natural

question is whether this can lead to “chaos” via a subsequent destabilization of the

homogeneous steady state through a Turing instability. We have found that this is

not the case for the variety of models we tried. For example, it is easy to show that
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no Turing instability is possible when g(u,w) = g(u), as is case of the cubic model

(1.12). For the general system, it is possible that chaos could develop, but we could

not determine this.

We have shown that an unstable two interface solution exhibits in-phase oscil-

lations, whereby the two interfaces eventually oscillate in opposite directions about

the center of the domain (also so-called breather instability). On the other hand,

numerical simulations in [26] show that a different mode of instability is also possi-

ble when the two interfaces are close together; namely the two interfaces can exhibit

out-of-phase oscillations, whereby they oscillate in the same direction. We think that

this effectively corresponds to the regime where the two interfaces interact sufficiently

strongly or where the interfaces interact with the boundary, and this interaction must

be taken into account. It is remains an open question to study this regime using meth-

ods of formal asymptotics.

Numerically, tracking the interface oscillations is a challenging problem. This

is because there are two different temporal scales as well as two spatial scales. The

software that we employ for the computation of the numerical solutions features adap-

tive error control in time and space and is therefore able to efficiently and accurately

compute a numerical solution even when it exhibits rapid changes.

It would be interesting to extend this work to study solutions consisting of more

than two interfaces. Indeed, as we have seen earlier in the thesis, the symmetrical

oscillations of a single interface on the domain of size 1 can be trivially extended

by reflections to a K interface solution on the domain of size K. However there are

other oscillatory modes that could potentially lead to an instability (there are as

many modes as there are interfaces). Which mode dominates for K interfaces is an

open question. Finally, the analogous oscillations in two or higher dimensions remain

unexplored.



Chapter 5

Conclusion

In this thesis, we have examined three different mechanisms in which solutions of

reaction diffusion equations consisting of sharp interfaces, so-called mesa patterns,

become unstable. We began by considering K mesa pattern solutions for(1.1) with

Neumann boundary conditions on a finite interval with τ sufficiently small. For D

of O(1), under certain additional conditions on f and g, a K mesa pattern is stable

and for the shadow system, D → ∞, it is unstable. These two regimes have been

previously studied (see [59, 55, 26, 31]). The instability arises from the exponentially

small interaction between the interfaces or from the interaction of an interface with

the boundary. For the Brusselator model (1.4), in [34], the authors showed that,

for D not exponentially large, a K mesa pattern is stable. By constructing asym-

metric patterns, the authors determine instability thresholds for K mesa patterns of

the Brusselator model, without actually computing the eigenvalues. Unlike previous

works, we explicitly computed the eigenvalues of the linearized system corresponding

to the general system (1.1) to determine instability thresholds. These eigenvalues

were found by extending the result on the linearized problem with periodic bound-

ary conditions to the linearized problem with Neumann boundary conditions. The

threshold for D for which K mesas transition from a stable pattern to an unstable

pattern was obtained. As well, we studied the dynamics of the interfaces when D is

in this regime; that is, where D is exponentially large, allowing us to examine the

mechanism leading to the instability.

Next, we considered the two-dimensional analogue of (1.1) with τ sufficiently

small. On a thin domain, this problem can be approximated by (1.7) with Neumann

boundary conditions. For equations similar to those making up the system (1.7),
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the stability of a front solution and a single spike solution has been studied where

the function h(x) was perturbed with an exponentially small term from h(x) = 1

[73, 27]. In this thesis, we considered the stability of a K mesa solution (as opposed

to a solution with just one interface) for h(x) of a more general form. We assume

that the height of the domain is represented by h(x) which is positive, differentiable

and symmetric on [−L,L] about x = 0 as well as periodic on the entire domain

[−L, (2K−1)L]. Here the instability arises from the effects of a heterogenous domain.

Instability thresholds were determined which have a dependence on h(x).

As mentioned in §1.1, oscillatory behaviour of (1.1) has been studied extensively.

As τ is increased past a critical threshold, the interfaces oscillate in-phase with a

constant amplitude. This instability occurs through a supercritical Hopf bifurcation.

For τ near τh, the structure [20] and the normal form [19] of the Hopf bifurcation have

been determined, however, the constants in this normal form are not easily determined

analytically. Unlike these previous works, we have examined the dynamics of the

oscillating mesa pattern, even away from the bifurcation and the equation for the

amplitude of the oscillation of the interface is explicitly computed. The amplitude

equation is determined through a careful set of approximations followed by multiple

scale analysis.

It is important to note that throughout this work, we have used methods of formal

asymptotics to derive our results as opposed to rigorous proofs. There are techniques

available to provide formal justification such as the renormalization group method

[68, 9] or a method based on Liapunov-Schmidt reduction [85]. It is an open problem

to apply these rigorous methods to the problems studied in this thesis.

There are many directions for further work. Although in Chapter 3 we considered

a two-dimensional analogue of (1.1), since we made the assumption of considering

the problem on a thin spatial domain, in this work, all of our analysis has been

in one spatial dimension. In two dimensions, another instability occurs for radially

symmetric spot solutions, see for example [36], [52], [51]. However the instability

computed there is initiated because of the curvature of the spot and the instability

thresholds occur when D = Dc = O(1/ε), with the spot being stable if D > Dc

and unstable if D < Dc. Such instability leads to the deformation of the spot into a

peanut-like shape and has no analogy to the one dimensional instabilities studied in
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this thesis. Yet, as is the case in one dimension, it is expected that an interior two-

dimensional spot is unstable for the shadow system. This suggests that there exists in

two dimensions a number Dc′ > Dc such that one spot is stable when D ∈ (Dc, Dc′)

and is unstable otherwise. We anticipate that as in one dimension, Dc′ would be

exponentially large. The computation of this threshold remains an open problem.

A similar calculation has been performed for a spike in the Gierer-Meinhardt model

[39].

It is an open problem to extend the method of determining the amplitude equation

for breather behaviour, as studied in Chapter 4, to the two-dimensional problem.

Another possible extension of this work is to add delay into the reaction terms of

(1.1).

The analytical techniques in this thesis can be applied to systems that describe

various ecological and physical phenomena [49, 14, 71] that exhibit solutions that

consist of patterns as discussed. One possible avenue of research is to extend the

previous techniques to models that involve non-local interaction, such as a model for

animal group formation and movement [14, 12, 13] or a model for cell aggregation

and cancer invasion [71].
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