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Abstract

Differential Global Positioning System (dGPS) sensors provide a way for an outdoor

wheeled mobile robot to achieve better localization that results in improved naviga-

tion and control of outdoor Wheeled Mobile Robots (WMR). This thesis proposes

an approach for path following of outdoor WMR. The primary focus of the approach

is to use dGPS technology as the only sensing device for localization. Filter estima-

tion techniques are also considered to account for measurement inaccuracies. The

Extended Kalman Filter (EKF) is chosen and implemented as part of this approach

for improved results. A secondary focus of the approach, is to incorporate a modified

Potential Field Path Planning (PFPP) as an integral part of the proposed technique.

The dGPS-based proposed path following approach is first simulated in the simulation

environment. After which, it is applied and tested on a WMR experimental platform

for a set of experimental cases.
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Chapter 1

Introduction

Mobile robotic vehicle research has become an emerging research area motivated by

the increase in efficient automated systems in the human work environment. The

interactions between a robot, its task and the environment are primarily what mobile

robots research is focused on. Examples of this can be found in the manufactur-

ing, agriculture and tourism sectors. Research has also focused on how intelligent

autonomous vehicles can be used for search, rescue and terrestrial applications [53].

Search robot teams can be used in hazardous environments to collaborate and per-

form dangerous tasks, such as searching for mines in a mine field (Fig. 1.1). A team

of multiple robots can also be employed to explore and map an unknown area.

Figure 1.1: Collaboration of Unmanned Vehicles (Space and Naval Systems Center,
San Diego)[53]

1.1 Background

Coordination and control of wheeled mobile robots (WMR) autonomously can be

classified into two parts, Navigation and Learning [2]. Navigation of a WMR includes

self localization, mapping, path planning and recovery. Learning aspects encompass

1
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reactive behaviours such as reasoning and intelligent perception-based response. This

thesis contribution is focused on self localization, recovery and the path planning

aspect of navigating and controlling a WMR autonomously. A general WMR control

architecture is shown in Fig. 1.2.

Figure 1.2: General WMR Control

1.1.1 Wheeled Mobile Robots and Sensors

In order for a WMR to autonomously navigate from one position to another, it

must first have a desired path or end goal. Secondly, it must be able to obtain

information of its location as it tries to follow the path within the confines of a given

environment. A desired path is generated using a path planning module (examples

of which can be found in [4]). Given the reference trajectory qdes(r(t)), and using

the general WMR control architecture shown in Fig. 1.2, a control law can then be

developed and controller designed. The controller is used to ensure that the error

eq(t) = (qcur(t) − qdes(r(t))) between the actual WMR’s current pose qcur(t) and

the desired qdes(t) converges to a fixed value (or zero). In this case q = [x, y, θ]T ,

and qcur(t) and qdes(t) are vectors associated with the robot pose and reference path

respectively. Fig. 1.3 shows the relationship between current and desired trajectory

during path following for a single robot. Sensors mounted on the robot are used to

estimate and obtain information about the position of the robot. These sensors are

classified as either proprioceptive (i.e. optical encoder, gyroscope) or exteroceptive

(i.e. sonar, GPS) [34]. The former provides information of the robot’s condition while

the latter provides information of the environment condition.
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Figure 1.3: Path Following

1.1.2 Path Following

For path following control, the dynamic and kinematic models of a wheeled mobile

robot must first be explored and known. Guy Champion et. al. addresses this in [5]

by introducing concepts such as the degree of mobility and the degree of steeribility

and formulating a set of equations that take into account structural restrictions such

as nonholonomic (differential) constraint. Using this formulation Champion is able

to develop a generalized set of state space models that are useful in understanding

the behaviors of wheeled mobile robots (WMR). The kinematics and dynamics of

the WMR types considered are Type (2,0) “differential drive” mobile robots shown

in Fig. 1.4. A kinematic WMR model uses a higher-level control scheme which

doesn’t concern itself with the forces that generate the control velocities to achieve

the desired position. The generalized ideal posture kinematic model for a WMR is

written in terms of q̇ = S(q)u, where q is the global pose vector, u is the WMR

velocity and steering components, and S(q) is a transformation matrix that relates

the two[5]. For Type (2,0) WMR this equation becomes:

⎛
⎜⎜⎝
ẋ

ẏ

θ̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
sin(θ) 0

cos(θ) 0

0 1

⎞
⎟⎟⎠

(
v

w

)
. (1.1)

where input u corresponds to the manipulated linear and angular control velocities

(v, w)T respectively. A dynamic WMR model uses a higher-level and low-level control
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Figure 1.4: Type (2,0) WMR

scheme that concerns itself with the forces that generate the control velocities to

achieve the desired position. The generalized posture dynamic model from [5] and [6]

can be written as Equation (1.2) and (1.3).

q̇ = S(q)u (1.2)

M̄(q)u̇+ V̄m(q, q)u+ F̄ + τ̄d = B̄(q)τ (1.3)

where q is the global pose vector, u is the WMR velocity and steering components,

S(q) is a transformation matrix, M̄(q) is a symmetric positive definite inertial matrix,

V̄m(q, q) is the centripetal and coriolis matrix, F̄ is the surface friction, τ̄d is the

bounded unknown disturbances and B̄(q) is the input transformation matrix.

1.1.3 Localization

For WMR localization, sensor data from both exteroceptive and proprioceptive sen-

sors [34] is used. There are some inherent issues associated with localization estimates

based on sensors. The accuracy of a localization sensor in estimating the position can

vary depending on sensor limitations and environmental conditions. Issues such as

sensor noise, poor calibration, loss of signal, nonlinearity, corrupt data and drift all

can lead to poor localization [36]. Sensor fusion is a concept that is used to decrease
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the effects of inaccurate sensor data by allowing use of more than one type of sensor

to estimate a WMR’s position. Relying on odometric sensors alone, such as encoders

used in dead reckoning estimation of position, can lead to errors in localization espe-

cially in cases where there is uneven terrain or loss of traction or wheel slippage during

the WMR’s motion. Similarly, accelerometer and gyroscope sensors used in Inertial

Measurement units (IMU) can drift and lead to errors that grow over long periods

of time, if not corrected. Global Positioning Systems (GPS) exist as a localization

sensor alternative that can offer a better estimate on the position over long periods of

time. For more accurate positioning specialized GPS units such as differential GPS

(dGPS) are used although they are expensive and require unobstructed line of sight

to the satellites.

1.2 Relevant Applications

Path following control for outdoor WMR’s is relevant for autonomous vehicles in

military, space and traffic control applications. For military use this includes searching

an unexplored hazardous unknown environment for explosives. This can also be

extended to space and interplanetary exploration such as exploring the Mars planet

and collecting samples for analysis. For the case of traffic control applications, path

planning and following cases have been noted in the tests conducted by Google using

the Google test vehicle shown in Fig. 1.5. Other funded research, such as ‘road train’

research done by the European Commission [54] or DARPA challenge [29] done by

various universities, has also focused on autonomous vehicles use in traffic control.

The move towards autonomous vehicles on the road in the future could lead to more

efficient driving which could result in reduced traffic congestion, fuel consumption

and the number of road accidents.

1.3 Motion Control Techniques

There are several controller designs that have been proposed for WMR’s path follow-

ing. Path following control in [8] focuses on both trajectory tracking [16] and point

stabilization [23]. These controllers are based on the nonlinear nature of the kinematic

model in Equation (1.1). Other controller used are dynamic feedback linearization in
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Figure 1.5: Google Test Car [28]

[7] [8], sliding mode control by Aguilar et. al. proposed in [11] and backstepping con-

trol proposed by Fierro et. al. in [6] [24], and controllers that are based on Lyapunov

stability criterion [18]. Although some of these controllers are robust in nature they

are based on simulations where the position of the WMR can be obtained at all times

and has minimal to no inaccuracies. Due to inaccuracies associated with localization

sensors as noted in Section 1.1.3, Bayesian estimation and prediction techniques, such

as Extended Kalmann Filter (EKF) and Unscented Kalman Filters (UKF), can be

used to improve position estimate of an outdoor WMR.

1.4 Path/Motion Planning

Path planning for WMR is either global or local. Global path planning is a map-

based approach that uses world environment data, such as GPS data on a world map,

to determine a path [4]. Local path planning is a reactive approach where a path

is determined based on the current situation. An example of local path planning is

when a WMR, using sonar data, determines a collision free path when it encounters

an obstacle in its vicinity. Some considerations when developing and using a path

planning approach are: (1) if the environment is known or unknown and (2) if the
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path planning calculations will be done online (as the robot moves) or offline (before

the robot starts moving). When using local path planning, unknown environments

can increase computation time during motion. In local path following the WMR

requires an array of proximity sensors to be able to sense its immediate environment

and plan a path accordingly. Global path planning is often used for offline known

environments.

Path planning techniques [37] are classified as either general “sample-based” or

specific “non-sample based alternative”. Examples of general path planning are Prob-

abilistic Roadmap Method (PRM) and Rapidly Exploring Random Tree (RRT). Ex-

amples of specific path planning are Cell Decomposition and Potential Field Path

Planning. A general technique is often more robust than the alternatives while a

specific technique can often be more efficient with faster computation time, as is the

case for potential field path planning (PFPP).

1.5 Thesis Contribution

The primary contribution in this thesis is to propose a dGPS-based Path Following

approach. The approach uses a motion control technique based on a controller in

[16] with the addition of online EKF. A secondary contribution is to incorporate a

modified Potential Field Path Planning (PFPP) [4] technique specifically for dGPS

localization path following. This approach will be experimentally tested on an outdoor

WMR platform.

Figure 1.6: General WMR Control with Thesis Focus Highlighted
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Fig. 1.6 shows the focus area of this work which includes path planning the desired

path, obtaining the current pose, and calculating the wheel control velocities using

the control unit. An experimental platform with this system architecture will be

set-up to test and validate this approach.

1.6 Thesis Organization

The thesis paper is structured as follows. In Chapter 2 we present a literature review of

the previous work done using Potential Field Path Planning(PFPP) and dGPS-based

localization for Path Following of WMR. Our proposed dGPS-based Path Following

approach for WMR coordination and control is then explained in detail in Chapter

3. Following the explanations, simulations of our approach are conducted in Chapter

4. In Chapter 5, using our WMR mobile platform, we test the approach and show

experimental results for a set of cases. These test cases are then also analyzed and

compared with simulation. Lastly we conclude in Chapter 6 and suggest some future

direction for this work.



Chapter 2

Literature Review of Path Following for Wheeled Mobile

Robots

Outdoor WMR research has recently focused on application areas such as agricultural

farming [10], reconnaissance and rescue operations [12], and intelligent vehicles [13]

[14] [15] [17]. With the emergence of affordable GPS [19] technology and slightly

more accurate and expensive differential GPS (dGPS), much research has focused on

combining that sensing ability into WMR’s localization and path following control.

The sections that follow in Chapter 2 consider literature in the area of (1) motion

control using dGPS localization sensing, and (2) potential field path planning for

path following purposes. In the final discussion section the limitations of both dGPS

localization sensors and potential field path planning are discussed.

2.1 dGPS-based Motion Control for WMR in Path Following

Although odometric sensors such as compass, gyros and IMU’s are useful in obtaining

position information for outdoor and indoor WMR they tend to drift with time and

can be noisy. The effect can be more significant for outdoor WMR where terrain may

be uneven and, for longer distances, errors may build-up. This drift can result in erred

measurements and in turn erred pose estimate. As well as environmental influences,

inexpensive less accurate instruments, can also lead to significantly inaccurate position

estimate. To decrease this effect and improve position estimate, the integration of

GPS and or dGPS sensors as well as using sensor filters with mobile platform (i.e.

WMR) is often considered.

Global Positioning system is a type of global navigation satellite systems (GNSS)

which was developed by the U.S Department of Defence originally in the 1970’s [55].

The GPS system works on the concept of line of sight. With at least 24 GPS satellites

in orbit, GPS receivers use four or more satellite to determine their position on the

earth’s surface. A GPS unit receives standard GPS string data messages such as

9
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National Marine Electronics Association (or NMEA) 0183 data from which a user can

obtain position data such as latitude and longitude. The string data also includes

other information such as coordinated universal time (UTC), quality of the GPS fix,

the number of satellites, and altitude. Table 2.1 shows the different types of GPS

NMEA 0183 data strings that can be programmed for a Hemisphere GPS receiver.

Table 2.1: Types of NMEA 0183 Data Strings [66]

Message Description

GPGNS Fixes data for single or combined satellite navigation systems

GPGGA GPS fix data

GPGLL Geographic position - latitude/longitude

GPGSA GNSS(Global Navigation Satellite System) DOP and active satel-
lites

GPGST GNSS pseudo range error statistics

GPGSV GNSS satellite in view

GPRMC Recommended minimum specific GNSS data

GPRRE Range residual message

GPVTG Course over ground and ground speed

GPZDA Time and date

GRS Supports the Receiver Autonomous Integrity Monitoring (RAIM)

RD1 SBAS diagnostic information (proprietary NMEA 0183 message)

The accuracy of a users position is very dependent on number of satellites avail-

able and line of sight to the receiver on earth. Given ideal conditions GPS technology

can have less than 10 meter accuracy. Differential GPS is an augmentation technique

that reduces the GPS positioning error resulting in more accurate position. There
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are several dGPS forms such as Space Based Augmentation Systems (SBAS) and

Local-Area Differential GPS (LAGPS) that are used for more accurate position mea-

surement. For these specific types of dGPS, the users receiver obtains corrections

from a known reference stations along with the GPS satellite position data.

Figure 2.1: Wide Area Augmented System (WAAS)

Fig. 2.1 illustrates the use of SBAS system of differential GPS. This SBAS type

is referred to as the Wide Area Augemented System (WAAS) and it is frequently

used for commercial aviation purposes. The position accuracy of a WAAS differential

GPS is less than 1 meter which is improvement over the normal GPS accuracy. For

more accurate position data (less than 0.1 meter) a LAGPS system called ‘Real

Time Kinematic (RTK)’ can be used. The more accurate the GPS sensor the more

expensive it cost.

Given the sensor noise and varying pose inaccuracies associated with GPS tech-

nologies, estimation techniques are often used for an improved estimate of the po-

sition. The most popular approach is to use Bayesian Estimation and Prediction

techniques [30] some of which are shown in Table 2.2. These techniques are often
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Table 2.2: Examples of Bayesian Techniques used in WMR localization Applications
Name Abbreviation Noise Assumption References
Kalman Filter KF Gaussian [22]

Extended Kalman Filter EKF Gaussian [25] [26] [31] [32]
and[14]

Unscented Kalman Filter UKF none [21] [17]

Particle Filter PF none [43]

used to estimate the position based on all sensor measurements. If the WMR collects

data from more than one sensor for localization it is referred to as sensor fusion. In

[20] this is done using a low cost GPS; In [21] the GPS is combined with IMU mea-

suring devises using a UKF; In [22] the second experiment uses a KF and combines

odometry with indoor GPS; In [25] [26] [31] and [14] an EKF is used to integrate

dGPS with other sensors; In [32] inexpensive GPS is used in sensor fusion with EKF;

In [33] an adaptive KF is used that combines GPS with other sensors.

As is noted in Table 2.2 a Kalman Filter and its variants have frequently been used

in research for estimation. The Kalman Filter (KF) [34] [43] was first proposed in 1960

by R.E. Kalman [35] as a filter used in the estimation of discrete linear stochastic noisy

systems. Since then, extensive research has been conducted that resulted in producing

variants of the Kalman filter such as the Extended Kalman Filter (EKF) and the

Unscented Kalman Filter (UKF). The EKF assumptions make it more applicable to

linearized nonlinear state space system models in [46] with Gaussian distributed noise.

For nonlinear systems with non-Gaussian noise distribution the UKF was proposed

in [47].

Given the nonlinear nature of the WMR kinematic model (shown in Equation 1.1)

the use of EKF and UKF in localization schemes has recently garnered attention. An

EKF architecture, similar to that found in [43], is shown in Table 2.3. The system im-

proved pose estimate x̂k and covariance Pxk
are determined using measurements (zk)

along with predicted (x̂−
k , P

−
xk
), and prior ( ˆxk−1, Pxk−1

) state and covariance matrices

respectively.
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Table 2.3: EKF Architecture
Given

nonlinear
stochastic
Equation

xk = f(xk−1, uk−1, ωk−1)

where xk uk are the state and in-
put vector respectively

ωk is random
process noise

measurement zk = h(xk, vk) where vk is
random mea-
surement noise

Initial Condi-
tons /Assump-
tions

x̂0, Px0 = E((x0−x̂0)(x0−x̂0)
−1) State estimate

and covariance
matrix are
known

Prediction
Step

Compute the
process model
Jacobians

Fx = ∇x(f(x̂k−1, uk, ω̂k−1)) Fx associated
with the process
state variable

Gω = ∇ω(f(x̂k−1, uk, ω̂k−1)) Gω associated
with the process
noise variable

Compute the
predicted state

x̂−
k = (f(x̂k−1, uk, ω̂k−1))

and covariance
matrix

P−
xk

= FxPk−1F
T
x +GωRωG

T
ω

Correction
Step

Compute
observation
model Jacobian

Hx = ∇xh(x̂
−
k , v̂k)

Calculate
Kalman Gain

Kk = P−
xk
HT

x (HxP
−
xk
HT

x +Rv)
−1

Update state
estimate

x̂k = x̂−
k +Kk[zk − h(x̂−

k , v̂)]

Update covari-
ance estimate

Pxk
= (I −Kk)P

−
xk



14

2.2 Potential Field Motion Planning used for Path Following

Potential Field Path Planning is a ‘non-sample’ type of path planning algorithm

that can be used for path following purposes. The concept of Potential Field Path

Planning (PFPP) was originally proposed by Khatib in [38] as a collision avoidance

scheme for a manipulator. When applied to WMR, a robot is treated as a particle

with an artificial field that is attracted to the goal but repelled by an obstacle as

shown in Fig. 2.3. As a particle, the robot faces attractive Fatt and repulsive force

Figure 2.2: Artificial Potential Field Example

Frep due to the goal and obstacle respectively. From [39] [48] the attractive potential

field Uatt and resulting attractive force Fatt due to the goal are given by Equations

(2.1) and (2.2)

Uatt =

{
1
2
ξρ2goal, ρgoal = q − qgoal if q > qgoal

0 if q < qgoal
(2.1)

Fatt = −∇Uatt = −ξ(q − qgoal). (2.2)

where q = f(x, y), ξ is a gain coefficient, and ρgoal is the relative position between

robot and goal.

Similarly, the repulsive potential field Urep and resulting attractive force Frep due

to the obstacle are given by Equations (2.3) and (2.4)

Urep =

{
1
2
η(1

ρ
− 1

ρo
)2 if ρ < ρo

0 if ρ > ρo
(2.3)
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Frep = −∇Urep = −η(
1

ρ
− 1

ρo
)2 · ( 1

ρ2
) · q − qc

‖q − qc‖ . (2.4)

where q = f(x, y), η is a gain coefficient, ρ is the minimum position between robot

and obstacle, and ρo is the distance of goal influence.

Summing both attractive and repulsive force vectors results in a total force vector.

The total force vector Ftot acting on the robot particle governs the path planned for

the WMR’s motion. The particle moves a step size δi, in the direction indicated by

the resultant force calculated from Equation (2.5).

Ftot = Fatt + Frep (2.5)

Table 2.4: PFPP Pseudo Code Example (Similar to [48])
Given: qstart, qgoal where q = f(x, y),

i = 0, q0 = qinit
1. If qi �= qgoal

Solve for: 
Ftot and ‖
Ftot‖
then qi+1 = qi + δi

�Ftot

‖�Ftot‖
2. else stop
3. Iterate: i = i+ 1 repeat step 1

This process, shown in Table 2.4, is iterative and continues until the goal is reached

as shown in Fig. 2.3 or the particle gets stuck in a local minimum position. When a

robot particle gets stuck in a local minimum scenario the robot has a minimum force

value equal to the absolute minimum value associated with reaching goal position.

Yet in terms of location the position does not coincide with the goal position. Various

strategies in literature have been proposed for dealing with this issue.

2.3 Discussions

GPS and dGPS technology is very dependent on number of satellites and Line of

Sight to GPS satellites. Urban environments with tall buildings can influence the

data collected. dGPS improvements are also dependent on the proximity of the

receiver to the ground reference station. The longer the distance the less improved

the accuracy. Although dGPS receiver obtains more accurate position data when
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Figure 2.3: Artificial Potential Field Path Planning (PFPP)

compared to a normal GPS, it still contains some level of inaccuracy (less than 1m).

This inaccuracy in measurement can influence localization results especially in cases

of small distance travel. Therefore, using an estimation technique from Table 2.3 for

these cases, can still provide an improved estimate of position. Given the nonlinear

nature of the WMR kinematics and the uneven terrain associated with outdoor WMR,

using KF and EKF techniques which assume linearized models and Gaussian noise

has limitations. Although the use of UKF and PF with no noise assumptions (noted

in Table 2.2) can result in better estimate, the tradeoff is increased computation time.

This time increase can then result in a slower response for the WMR.

Due to its simplicity and speed of computation PFPP is very advantageous for

online and offline obstacle avoidance. An issue that arises with PFPP is dealing with

local minimums. Several solutions are proposed in literature, such as using simulated

annealing technique proposed by Park et. al in [49] or considering the path connecting

the start and the goal as a rubber band in order to avoid local minimum scenarios

proposed by Tang et. al in [50]. Sekiguchi et. al. in [51] proposes a Lyapunov

candidate that covers the non-goal local minimum cases thereby erasing them and
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ensuring only goal position is the minimum. Shi et. al. in [39] proposes an improved

repulsive and attractive potential functions to overcome local minimums. All these

techniques are useful in dealing with local minimum issues with PFPP.

2.4 Chapter Summary

In this chapter we reviewed literature that focuses on two areas: motion control using

dGPS localization sensing, and potential field path planning for path following. A

general overview of dGPS localization sensor is presented and the previous research

work on using dGPS localization for WMR is explored. Similarly as part of Section

2.2 the PFPP algorithm is shown in detail. Finally in the last section the benefits

and limitations of both dGPS localization and PFPP algorithm are discussed.

In the next chapter we propose a dGPS based approach that encompasses the

two area focused on in this chapter. The aim of our work is tackle dealing with a

more accurate GPS sensor as the primary (and only) localization sensor for Outdoor

WMR. Although much research has been conducted with using GPS and odometric

localization sensors, and similarly using Kalman Filters (KF) and its variants for es-

timation of WMR positions, there is not many experimental research work focused

on using dGPS as a primary sensor combined with an EKF estimator. Similarly, en-

corporating path planning algorithm specifically to address sensor localization issues

has yet to be explored as an integral part of path following.



Chapter 3

Proposed dGPS-based Path Following Approach

In this chapter, a dGPS-based approach for path following is proposed. It builds

upon some of the previous literatures discussed in Chapter 1 and 2. In the problem

formulation Section we consider two issues that this approach is aiming to address

and contribute upon. This is followed by the dGPS-based path following Section

where the system architecture of this approach is presented and each component is

elaborated upon. The use and extension of this approach to other applications such

as multiple robots is then briefly investigated. Finally the Chapter is concluded with

a summary discussion.

The contribution focus of this work is on dealing with a more accurate GPS sensor

as the primary (and only) localization sensor for Outdoor WMR. MuchWMR research

has been conducted with GPS and odometric localization sensors, and similarly the

use of Kalman Filters (KF) and its variants for estimation of WMR positions. To our

knowledge, not many experimental research works are out there that consider dGPS

as a primary sensor combined with an EKF estimator. Similarly, given the minimal

inaccuracies associated with the dGPS alone, path planning algorithm specific to

sensor localization issues has yet to be explored as an integral part of path following.

3.1 Problem Formulation

dGPS-based localization for WMR’s with KF or its variant (EKF,UKF) has been

researched in the following literatures [14] [17] [25] [26] [31]. In [31] it has been

shown that sensor fusion with a more accurate dGPS (vs. GPS) produces a better

localization estimate. Criteria such as urban environment influences and multiple

robots use of dGPS signals have also been researched in [26] and [17] respectively.

An area that this thesis aims to investigate and contribute on is how dGPS as a

primary sensor performs in localization of WMR. Although dGPS has been integrated

with other odometric sensors such as IMU and compass for localization ([21] [31])

18
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not much works exist that consider dGPS only primary sensor or dGPS with dead

reckoning ‘encoder only’ sensor fusion. Another secondary focus this thesis aims to

incorporate is path planning scheme as part of dGPS-based Path Following. For

the path following purposes, a desired path is often generated by a path planning

algorithm [4]. Based on its simplicity and computation speed, the potential field path

planning (PFPP) is ideal for the proposed dGPS-based path following approach.

3.2 dGPS-based Path Following

Figure 3.1: WMR with WAAS dGPS receiver

The path following approach is composed of (1) a modified PFPP and (2) a motion

control based on Extended Kalman Filtered (EKF) pose estimates from the dGPS

localization sensor measurements. The differential GPS technology used is a WAAS

type and has an accuracy of less than 1m. The WAAS receiver in the set-up shown

in Fig. 3.1 obtains GPS string data from the GPS satellites as well as the reference

ground station Geosynchronous (GEO) GPS data. The receiver, using the GEO GPS

data, applies corrections to its GPS satellite data to obtain a more accurate dGPS

position.
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3.2.1 System Architecture

The path following control architecture is shown in Fig. 3.2. The path (xdes, ydes, θdes)

Figure 3.2: Path Following Flow Control Architecture

is generated using the modified PFPP offline. This path is then used duringWMRmo-

tion as a reference for path following. From the dGPS signal we obtain (latitude, longitude)

pose information. Using the Haversine formula [45] and given a reference coordinate,

(x0, y0) (corresponding to (lat0, long0)), the (latitude, longitude) values are then con-

verted to a (xgps, ygps). The Haversine formula, shown in Equation (3.1), is very useful

for calculating the distance between two points on a circular surface like the earth.

δlat = lat2 − lat1

δlong = long2 − long1

a = sin2(
δlat
2

) + cos(lat1) cos(lat2)sin
2(
δlong
2

) (3.1)

c = 2 · atan2(√a,
√
1− a)

d = R · c

where the earth radius R = 6371 km, and the angles are in radians.

Unlike the Spherical Law of Cosines, the Haversine formula works well even for

small distances which are the cases considered in this thesis. As the WMR moves,

angle θgps for each time instant is calculated using previous WMR position data.
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With (xdes, ydes, θdes) and (xgps, ygps, θgps) known for a given time instance, an EKF

is used to estimate the robot’s current state and calculate the wheel control velocity

values (vc, wc) required to move it to its desired future state. These control velocities

are feed through an internal low level PID controller to produce the desired torque

and actuate the wheel motors to achieve the wheel velocities.

3.2.2 Modified Potential Field Path Planning (PFPP) Algorithm

The desired path is generated offline using slight variant of the PFPP proposed by

Khatib et al [38]. Unlike the improved PFPP proposed by Shi et al. [39] that is

more efficient in dealing with local minimum, the proposed PFPP scheme does not

focus on local minimum cases for this thesis. If a local minimum is encountered the

solution used is based on a less efficient ‘weighted random choice’ alternative as shown

in Fig. 3.3. In this solution, a new artificial secondary goal (Xi, Yg) or (Xg, Yi) is

randomly chosen to overcome the local minimum case. If it proves successful the goal

is then reassigned to be the primary (Xg, Yg). If it proves unsuccessful the third set

of artificial goals (Xi −Xg, Yg) or (Xg, Yi − Yg) are tested to try to overcome getting

stuck at the local minimum.

Figure 3.3: Weighted local minimum solution

The following proposed approach considers the step size δ argument in Table 2.4.

Given that the areas or objects of interest during motion are qstart, qgoal, as well as qo in

the vicinity of the obstacle, this approach aims to include more points along the path
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within these radius boundaries. In concentrating more points in the area of interest

we ensure that, even with dGPS level inaccuracies, the robot start pose and goal

pose are known well. The technique also ensures that an obstacle can be avoided. To

accomplish this the step sizes are adjusted when the robot particle transits into these

areas of interest. The technique uses geometric progression mathematical equation

δn = δconst · rn−1 where δn is the step size, and r is a constant ratio. The step size

δn depends on the proximity of the robot to the boundary of influence of the start,

obstacle and goal positions.

Figure 3.4: PFPP with boundary of influence to the object of interest

The artificial potential field depicted in Section 2.2 Fig. 2.3 therefore becomes Fig.

3.4. In this case the WMR is still considered a circular point particle attracted to the

circular goal and repelled by the square obstacle but all the start, obstacle, and goal

positions have boundaries of interest associated with them. The boundary is shown

as a circular external boundary (rs,ro,rg). This boundary dictates the activation of

the geometric progression PFPP shown in Table 3.1.

Table 3.1 shows the pseudo code logic for the geometric progression PFPP pro-

posed algorithm. The result is a smaller size δn is used inside the radii, and then once

out of the boundary, the standard larger step size δconst is used.
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Table 3.1: Geometric Progression PFPP Pseudo Code
Given: qstart, qgoal where q = f(x, y),

q0 = qinit

and where i = 0, j = 5, r = 0.5

1. If qi �= qgoal
If ρ < ρinfluence,

δj = δmax · rj−1 >= δmin

j = j − 1 >= 1

else δj = δmin · (r−1)j−1 <= δmax

j = j + 1 <= 5
end

Solve for: 
Ftot and ‖
Ftot‖ using Eqn. (2.1)-(2.5)

then qi+1 = qi + δi
�Ftot

‖�Ftot‖

2. else stop
3. Iterate: i = i+ 1, repeat step 1

3.2.3 Numerical Methods (NM) Based Algorithm

The controller design we use in this proposed approach is a modification of the one

proposed by Gustavo et. al. in [41]. It is a numerical methods approach based on the

the controller proposed by Kanayama et al. [16]. In [41], four WMR controller are

proposed. Each controller depends on how much information is available regarding

the desired path (xdes, ydes, θdes) and speed (vdes, wdes) for the WMR path. In [41],

these controllers are used for WMR indoor path following cases based on odometry

sensors. For our purposes we are using a modification of one of the four controllers for

Outdoor WMR path following with dGPS. The outdoor environment terrain and use

of dGPS measurement sensor provide a new dynamic to be considered in simulation

and testing.

From Equation (1.1), we know the kinematic model for an ideal Type (2,0) WMR.

If we consider process model noise due to uneven terrain and non-slipping criteria this

equation can be written as:

⎛
⎜⎜⎝
ẋ

ẏ

θ̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
sin(θ) 0

cos(θ) 0

0 1

⎞
⎟⎟⎠

(
v

w

)
+Δ. (3.2)
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where Δ is the process noise variable.

Using Euler’s first order integration approximation and assuming non-zero process

noise [46], the vectorial form of the kinematic model shown in Equation 3.3 can be

obtained. ⎛
⎜⎜⎝
xn+1

yn+1

θn+1

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎝
xn

yn

θn

⎞
⎟⎟⎠+ Ts

⎛
⎜⎜⎝
sin(θ) 0

cos(θ) 0

0 1

⎞
⎟⎟⎠

(
vn

wn

)
+

⎛
⎜⎜⎝
Δx

Δy

Δθ

⎞
⎟⎟⎠ . (3.3)

where Ts is the sampling time.

To solve this equation for the linear vn and angular wn control velocity expres-

sions the desired trajectory should be known. The current (xdes, ydes) and future

(xdes+1, ydes+1) desired pose can be calculated based on the geometric progression

PFPP algorithm shown in Section 3.2.2. Using these two points and Equation (3.4),

the orientation θdes+1 can also be calculated.

θdes+1 = arctan 2(
ydes+1 − ydes
xdes+1 − xdes

). (3.4)

After the desired trajectory (xdes+1, ydes+1, θdes+1) is known, it can then be substi-

tuted into Equation (3.3) for (xn+1, yn+1, θn+1).

Solving for vn and wn using the technique shown in [41] we obtain Equation (3.5)

(
vn

wn

)
=

(
kv(

xdes+1−(xn+Δx)

Ts
cos(θdes+1) +

ydes+1−(yn+Δy)

Ts
sin(θdes+1))

kw
θdes+1−(θn+Δθ)

Ts

)
. (3.5)

where constants kv and kw are positive controller gains between [0,1] that control the

performance of the controller. This formulation is similar to Equation (15) in [41] and

the Equation proposed by Kanayama et. al [16]. It ensures that the desired path is

the target trajectory to be followed. The discrete nature of the proposed architecture

and simplicity of the controller makes this controller desirable for use in this scheme.

Also the platform on which this controller was tested on, Pioneer 2DX indoor WMR,

is similar to the Pioneer 3AT outdoor WMR used in this thesis work.

3.2.4 Extended Kalman Filter (EKF)

The EKF has previously been used in WMR pose estimation research as noted in

Chapter 2. For the discrete controller shown in Equation (3.5) the Extended Kalman
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Filter pose estimate can be applied and used for smoother control. The EKF architec-

ture steps shown in Table 2.3 are used to implement the EKF on a WMR kinematic

model shown in Equation (3.4). For our application these steps include: (1) identify-

ing the initial conditions for the pose state estimate x̂0 and state covariance matrix

P0 given, then (2) using a known WMR model, predicting the next (or future) state

estimate x̂−
k+1 and covariance P−

xk+1
, and finally (3) with the predicted variables, as

well as the dGPS measurement and measurement covariance matrix at time Tk+1,

solving for the improved estimates (x̂k+1, Pxk+1
).

Given

The given initial state estimate and covariance are shown in Equation (3.6)

x̂0 =

⎛
⎜⎜⎝
x̂0

ŷ0

θ̂0

⎞
⎟⎟⎠ , Pk = E((xk − x̂k)(xk − x̂k)

−1). (3.6)

where k = 0.

Prediction Step

The prediction step considers the kinematic (or process) model shown in Equation

(3.2) where Δk = [Δx,Δy,Δθ] is an independent bounded process noise vector. The

process jacobians calculated as part of this step are GΔk
and Fx̂k

. The jacobian

variable associated with the process noise GΔk
therefore becomes:

GΔk
=

⎛
⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ . (3.7)

While the Fx̂k
jacobian term becomes:

Fx̂k
=

⎛
⎜⎜⎝
1 0 −Ts · v sin(θ̂k)
0 1 Ts · v cos(θ̂k)
0 0 1

⎞
⎟⎟⎠ . (3.8)

Since the process noise Δk is bounded and independent a covariance matrix RΔ exists

for this vector. The form of this non-zero process noise covariance matrix is shown
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in Equation (3.11).

RΔ =

⎛
⎜⎜⎝
RΔx 0 0

0 RΔy 0

0 0 RΔθ

⎞
⎟⎟⎠ . (3.9)

where RΔx, RΔy, RΔθ are the process covariances associated with process noise vari-

ables Δx,Δy,Δθ respectively. As is noted in previous literature, the starting point

for these values is very hard to obtain prior to testing therefore the values were all

set to zero initially (i.e. RΔx = 0, RΔy = 0, RΔθ = 0). These zero parameter values

are applied in Chapter 4 simulations and Chapter 5 preliminary experimental tests.

Lastly in the prediction step, the predicted state estimates and covariance matrix

are computed using Equation (3.10) and (3.11) respectively.

⎛
⎜⎜⎝
x̂−
k+1

ŷ−k+1

θ̂−k+1

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎝
x̂k

ŷk

θ̂k

⎞
⎟⎟⎠+ Ts

⎛
⎜⎜⎝
cos(θ) 0

sin(θ) 0

0 1

⎞
⎟⎟⎠

(
vk

wk

)
. (3.10)

P−
xk+1

= Fx̂k
PkF

T
x̂k

+GΔk
RΔk

GT
Δk

. (3.11)

Correction Step

Initially as part of corrections step matrix parameters Hk and Rv are defined. These

values along with the predicted covariance are then used to obtain the Kalman gain

Kk. The Kalman gain along with dGPS measurement pose values are then used to

update the estimates. Since all states are assumed to be measurable the jacobian of

h(xk, vk) is equal to an identity matrix as shown in Equation (3.12) below.

Hk =

⎛
⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ . (3.12)

Rv is non-zero measurement noise covariance matrix shown in Equation (3.13).

Rv =

⎛
⎜⎜⎝
σ2
xgps

0 0

0 σ2
ygps 0

0 0 σ2
θgps

⎞
⎟⎟⎠ . (3.13)
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where σxgps , σygps , σθgps are the standard deviation of x, y, θ. To determine the Rv’s

matrix parameters 60 stationary dGPS data points were first collected. This sta-

tionary data set was collected in the WMR test environment with a Crescent R110

Hemisphere dGPS sensor. A plot of the the Rv parameter dataset is shown in Fig-

ures 3.5 to 3.7. These plotted values correspond to σxgps , σygps , σθgps equal to 0.0073m,

0.00621m, 0.705rad respectively. While this measurement covariance Rv data is as-

sumed constant and used for all the simulations and tests, it should be noted that as

the robot moves the measurement covariance may vary from location to location.

Figure 3.5: Variance Data for σxgps variable in Measurement Covariance Matrix Rv

Using the previous parameters and predicted state, the kalman gain Kk is calcu-

lated with Equation (3.14).

Kk = P−
xk+1

HT
k (HkP

−
xk
HT

k +Rv)
−1 (3.14)

Finally to obtain the improved estimates (x̂k+1, Pxk+1
) Equation 3.15 is used.

x̂k+1 = x̂−
k+1 +Kk[zk − h(x̂−

k+1, v̂)]

Pxk+1
= (I −Kk)P

−
xk+1

(3.15)
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Figure 3.6: Variance Data for σygps variable in Measurement Covariance Matrix Rv

Figure 3.7: Variance Data for σθgps variable in Measurement Covariance Matrix Rv
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where zk is associated with the dGPS measurement (xgps, ygps, θgps). And the θgps

term in zk is calculated using Equation (3.4) rather than using and additional heading

sensor such as compass. This θgps value is obtained using the two consecutive points

(xgps, ygps) and (xgps−1, ygps−1) and Equation (3.4).

Using the complete online EKF, the final form of control law from Equation (3.5)

then becomes:(
vn+1

wn+1

)
=

(
kv(

xdes+2−x̂k+1,1

Ts
cos(θdes+2) +

ydes+2−x̂k+1,2

Ts
sin(θdes+2))

kw
θdes+2−x̂k+1,3

Ts

)
. (3.16)

where (x̂k+1,1, x̂k+1,2, x̂k+1,3) are the (x̂n+1, ŷn+1, θ̂n+1) respectively.

3.3 Extension to Multiple Robots

The previous two sections of this chapter have concentrated on defining the proposed

approach for a single WMR. In this section we consider how this approach may be

extended to the path following control of more than one (or multiple) WMRs. In

extending the dGPS-based path following approach to multiple WMRs both path

generation by the proposed modified PFPP Algorithm and motion control based on

dGPS localization must be considered. The current proposed path planning com-

ponent to the approach consider ‘prioritization only’ for generating a path. A path

is generated for the first assigned WMR (Fig. 3.8(a)) and then a path is generated

for the WMR’s that follow using the previous paths as obstacles (Fig. 3.8(b)). This

is unlike the PFPP for multiple WMR particles proposed in previous literature [42]

which considers both space and time as well as prioritization. Similarly based on

the multiple robotic control scheme, which can either be cooperative or distributive

control, the EKF can still be applied for pose estimation and motion control. An

example of estimation technique being applied to multiple WMR can be found in [17]

where UKF is applied.

A big concern when dealing with multiple WMR is developing online avoidance

schemes and communication network between WMR to ensure collision-free path fol-

lowing. Some works that address these issue for multiple robots are [15], [17] and [44].

Although challenges exist when considering multiple WMR, multiple robot control

is feasible and ‘doable’. Certainly this proposed approach, with some modifications,

can be translated to multiple WMR use.
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3.4 Chapter Summary

In the following chapter we proposed a dGPS-based path following approach that

uses a modified PFPP and a NM motion control based on Extended Kalman Filtered

(EKF) pose estimates. The aim of the approach is to handle the minimal inaccuracies

that might be associated with using dGPS sensing as the primary (and only) local-

ization sensor for Outdoor WMR path following control. The system architecture is

outlined for the approach followed by a comprehensive explanation of the path plan-

ning and motion control components. Finally the use of this approach for Multiple

WMR control is briefly explored at the end of this chapter.

In the next chapter, we simulate several cases of this path following approach for a

single WMR. The first set of simulations are to test the functionality of the approach

for linear and curvilinear trajectory paths. The later simulations are experimental

test cases which are more specific and geared to compare with the experimental work

presented in Chapter 5.
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Figure 3.8: Applying Geometric Progression PFPP to Multiple WMR (number of
robots = 2)



Chapter 4

Simulation Results

The simulations for the proposed algorithm presented in the previous Chapter are

conducted using both Matlab 7.11 and MobileSim 0.5.0 simulation environments.

The kinematic WMR’s model is programmed in Matlab and simulations are run for

both the motion planning and the motion control parts of the proposed algorithm.

MobileSim, shown in Fig. 4.1, is a Pioneer MobileRobots Simulator software that is

useful to test C++ executable program. This software package is a useful debugging

tool to check aspects of program executable code on a simulated Pioneer WMR prior

to applying the algorithm to the experimental Pioneer WMR platform for testing.

Figure 4.1: MobileSim Simulation (screen capture) for a Linear Path using Odometric
Sensor

The simulations that follow focus on the two areas of the proposed Path Following

32
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algorithm: (1) Motion planning based on geometric progression (or modified) PFPP

and (2) Motion control using the Numerical Methods (NM) controller with Extended

Kalman Filter (EKF).

4.1 Motion planning based on geometric progression (or modified)

PFPP Method

The cases considered for the proposed geometric progression PFPP are (1) linear tra-

jectory without obstacles, and (2) curvilinear trajectory with obstacles. Considering

these cases allows for future algorithm expandability as most planned paths can be

a combination of both linear and curvilinear trajectories. The path planning dis-

tance travel at each time step is dictated by maximum δmax (and minimum δmin) step

sizes. These calculated values ensure the WMR control velocities do not exceed the

maximum values (vmax, wmax). The values also ensure the WMR can achieve motion

within the sample time period Ts.

In order to better plan a path in a real world environment, a pixel map image is

also incorporated in the latter simulations to aid in charting the path of the robot

in its test environment. The pixel image, shown in Fig. 4.6 for example, is a Bing

image [64] on which path planned simulations are overlaid. The image map’s four

corner pixel coordinates match the corresponding GPS coordinates for those specific

locations. This map image enables a path to be planned that considers the test site

location. The test environment is the Dalhousie University Sexton Campus parking

lot where all the experimental test cases were conducted.

4.1.1 Simulation Results

A. Modified PFPP Linear and ‘Obstacle Filled’ Curved Path

Linear trajectory path planning using the proposed modified PFPP is simulated for

a straight line with a distance travel of less than 20m. The generated straight line

path follows the technique from Table 3.1 in Chapter 3, where the modified PFPP

gain coefficients, from Equations (2.1)-(2.5), are ξ = 1 and η = 10 . The boundary of

influences which are depicted in Chapter 3 Fig. 3.4 for this linear trajectory case are

rs = rg = 0.6m and ro = 0m (since there is no obstacle). The maximum δmax and
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Figure 4.2: Modified PFPP Linear Path 1

minimum δmin step sizes are 0.07m and 0.004375m respectively. The path planning

results of the simulation are shown in Fig. 4.2. Fig. 4.3 shows the corresponding

artificial resulting force (Ftot) responsible for modified PFPP path generation. The

artificial force is initially larger and decreases to zero as the robot ‘particle’ approaches

the goal.

A curvilinear trajectory path planning of less than 20m travel, is generated using

the proposed modified PFPP. As was the case with the linear trajectory path plan-

ning, the maximum δmax and minimum δmin step sizes for curvilinear trajectory path

planning are 0.07m and 0.004375m respectively. Similarly the modified PFPP gain

coefficients are ξ = 1 and η = 10. For this simulation case though, the boundary of

influences are changed compared to the previous linear trajectory with rs = 1.0m,

rg = 1.5m, and ro = 2.5m. The simulation resultant planned path is shown in Fig.

4.4, and is based on artificial force result shown in Fig. 4.5. The artificial force vector

at each time step results in a path generated in a direction that avoids the obstacle as

the particle moves from start to goal position. Similar to linear path in Fig. 4.3, the

artificial force for a curved path is initially larger and decrease to zero as the robot
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Figure 4.3: Artificial Resulting Force (Ftot) for Modified PFPP Linear Path 1

‘particle’ approaches the goal. As the robot particle moves close to an obstacle the

artificial force experiences a relative minimum (or valley). For the case considered

in the simulation, the relative minimum artificial force does not reach the absolute

minimum force associated with the goal position. If however the relative minimum

did approach absolute minimum force values, the local minimum strategy proposed

in Section 3.2.2 and depicted in Fig. 3.3 would be invoked.

Comparing the linear and curved paths of similar distance travel, the step number

is significantly greater for the curved ‘obstacle-filled’ path (Fig. 4.5) than for the linear

path (Fig. 4.3) which is in part due to the obstacle.

B. Modified PFPP with Map Image Overlay

In the following simulation a Bing map image is used to aid in path planning purposes.

The simulation is for a curvilinear trajectory path with a travel distance greater than

20m. The threshold boundaries of start, obstacle and goal boundaries of interest are

increased from the previous section to rs = 2.0m, rg = 2.0m, ro = 2.0m. Since the

robot particle is traveling a longer distance travel, the maximum δmax and minimum

δmin step sizes for curvilinear trajectory path planning are increased to 0.35m and

0.0219m respectively. Similarly the modified PFPP gain coefficients for longer dis-

tances are changed to ξ = 1 and η = 800. The path planning simulation result is
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Figure 4.4: Modified PFPP Curved Path 2
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Figure 4.5: Artificial Resulting Force (Ftot) for Modified PFPP Curved Path 2
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shown in Fig. 4.6. A corresponding artificial force plot is shown in Fig. 4.7. For this

case the repulsion force is higher due to the high value coefficient η. This stronger

repulsive force is chosen to ensures the robot ‘particle’ does not enter the obstacle

boundary of influence ro. For a robot particle, such a large obstacle would result in

numerous path planning data points that would translate to slow motion which is not

desirable for a longer travel distance. Hence in the vicinity of the obstacle shown in

Fig. 4.6 there is no decrease in distance travel as observed in previous simulations.

The higher η also provides added safety factor in absence of boundary of influence

effects. The points plotted for the path in Fig. 4.6 and the corresponding Ftot in Fig.

4.7 are every 10th point. This is done in order to reduce congestion and observe the

trend more clearly.
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Figure 4.6: Modified PFPP Curved Path 3
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Figure 4.7: Artificial Resulting Force (Ftot) for Modified PFPP Curved Path 3
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Figure 4.9: Modified PFPP Linear Path 4 (Zoomed Profile)

C. Experimental Test Case Simulations

Based on the previous path planning simulation results in part A and B of this

Section two cases were simulated for eventual testing purposes. These test cases

are short distance (1) linear trajectory and (2) curvilinear trajectory modified PFPP

paths. Certain general parameters are set for consistency between the two test case

simulations. These are step sizes, boundary of influence radii and gain coefficients.

The maximum δmax and the minimum δmin step sizes for both cases are equal to

0.35m and 0.0219m. Similarly for both cases, the boundary of influences values rs,

rg, ro are 0.5m, 0.5m, 1.5m respectively. These boundary influence radii ri’s (start

rs and goal rg) are chosen to allow the robot to have defined slow movements within

a bound that also coincides with dGPS sensor accuracy concern area of less than

1m. As with the previous simulation in Fig. 4.6, η is chosen to be higher and ensure

no obstacle boundary of interest ro influences on the path planning. The modified

PFPP gain coefficients for both test cases are ξ = 1 and η = 300. Linear trajectory

path planning test case results are shown in Figures 4.8 and 4.9. The zoomed profile,

shown in Fig. 4.8, is useful for close analysis and comparison with experiment tests.
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Similarly for curvilinear trajectory path planning the results are shown in Figures

4.10 and 4.11.
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Figure 4.10: Modified PFPP Curved Path 5

4.2 dGPS-based Motion Control NM Algorithm with EKF for Path

Following

The cases considered for the motion control part of the path following algorithm

correspond to the trajectories planned in Section 4.1. NM controller parameters such

as maximum limits and gain values are constant for these simulations. The EKF

process from Equation (3.6) to (3.16) is used for all NM with EKF simulations in

Matlab. With the prospect of migrating to the robot platform for testing the NM

with EKF is also simulated using MobileSim. The EKF constant parameters Gw, Hk,

Rv, Rw are assigned as defined in Chapter 3 for these simulations.

The calculated control velocities vn, wn from Equation (3.5) are limited by the

maximum absolute translational and angular velocities (vn = 700mm/s, wn = 2.0rad/s)

which is set for the WMR safety. Starting controller gains 0 < kv < 1, 0 < kw < 1 are

chosen for the simulation based on Scaglia et. al values in [41]. As in [41], Fig. 4.12
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Figure 4.11: Modified PFPP Curved Path 5 (Zoomed Profile)

shows that kv, kw = 0.2 produces a good results when initial conditions (x̂0, ŷ0, θ̂0) are

equal to desired initial condition (xdes, ydes, θdes).

Similar to the Matlab simulations, MobileSim simulations can be used to test the

program code prior to applying it to the WMR platform. Therefore prior to testing

the NM controller with EKF shown in Equation (3.16) with dGPS measurement on

the robot, the NM controller with EKF is simulated using MobileSim and simulated

dead reckoning sensors. Fig. 4.13 shows the result obtained from the MobileSim

straight line trajectory path following simulation using NM with online EKF. The

initial conditions for the MobileSim simulations were x̂0 = xref (0), ŷ0 = yref (0),

θ̂0 �= θref (0). The error observed in the results indicates that initial conditions affect

the results when using this control approach.

4.2.1 Simulation Results

There are a total of five simulations run in this section corresponding to the five paths

planned in the previous section. The simulations run are the following: (A) linear

without obstacles and curvilinear with obstacles, (B) Curvilinear with map image
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Figure 4.12: Comparing controller gain values of kv, kw using Mobilesim and Equation
(3.5)

overlay and, (C) experimental linear and curvilinear test cases. These simulations are

conducted in Matlab where the parameters are set for simulated dGPS measurement,

sampling time and initial conditions.

A Matlab random noise function generator randn(.) is used to simulate a dGPS

measurement with gaussian noise distribution bounded by the dGPS instrument ac-

curacy (< 0.60m at 95% confidence). Using the standard deviation σ calculated from

the instrumentation manual, a bound value of 0.212 m on measurement noise in the

north-south σy and east-west σx is obtained based on the dGPS instrument accuracy

information. Propagating the error through atan function a value of σθ = 0.401 rad

is obtained. These values are then multiplied by the Matlab randn(.) function to

produce a simulated noisy gaussian dGPS measurement. For each simulation the

sampling time and initial condition criteria are consistent throughout. The sampling

time (Ts), in the NM controller Equation (3.16), is equal to 1 second. This sampling

time was selected as a base value because it would allow enough time for computation

during testing. In the case of initial conditions criteria, x̂(0) is equal to the simulated

gps xgps(0). The desired or reference pose parameters (xdes, ydes, θdes) are obtained



43

Figure 4.13: MobileSim using EKF with θ̂(0) �= θref (0)

from Section 4.1. The initial covariance matrix P0 is P0 = (xdes−x̂(0))(xdes−x̂(0))−1.

A. Linear and ‘Obstacle Filled’ Curved Path

The first simulation run is a straight line trajectory short distance simulation. The

dGPS measurement is simulated using the Matlab random function. A reference

vehicle is assumed to lie on the reference path which is planned in the previous Section

as shown in Fig 4.2. The simulation Figures 4.14 and 4.15 show the result. The state

x and state estimate x̂ pose vectors in Fig. 4.14 are in agreement while the simulated

Gaussian distributed dGPS measurement fluctuates. The control velocities in Fig.

4.15, also show agreement between state estimate and simulated robot state. The

simulated robot state plot represents how a simulated robot would ideally respond

with no sensor noise. For the straight line motion, linear velocity subplot in Fig. 4.15

indicates smaller translational velocities at the start and end of the simulation and

larger velocities in between. The changing velocities corresponds to the changing step

sizes as the robot ‘particle’ moves from start to goal positions shown in Fig. 4.14. As

shown in Section 4.1, the boundary of interest ro and rg is set to dictate when the
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change in velocities occurs.
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Figure 4.16: NM Path Following Control using EKF (Path 2)

The second simulation is a curved line trajectory simulation. The reference path

for this simulation is planned using the results from the previous Section, shown in

Fig 4.4. Similar to the first simulation, the results in Fig. 4.16, show agreement

between the state estimate and the state. Likewise the simulated measurement are

observed to fluctuate but within the accepted bound. From the control velocities plot

in Fig. 4.17, the linear velocity subplot follows and increasing and decreasing trend

which translates to changing distances between consecutive data points observed in

Fig. 4.16. This trend is very much the aim of this proposed technique with decreased

velocity in the vicinity of the object of interest (i.e. start, obstacle and goal).

B. Map Image Overlay

The third simulation run is a curved trajectory simulation with a travel distance

greater than 20m. By considering a longer travel distance we can determine if there

are any error growth issues with the NM with EKF controller. The reference path

is planned using the results from the previous map image overlay section, shown in
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Figure 4.17: Control Velocities vc, wc (Path 2)

Fig 4.6. This path 3 simulation results are shown in Figures 4.18 and 4.19. For the

position plot in Fig. 4.18, overall the estimate and simulated state are in agreement.

There is a slight error between reference and state estimate as it nears the goal

position. As for comparing control velocities between estimate and reference, Fig.

4.19 also agrees with only a slight difference in the control translational velocity.

C. Experimental Test Case Simulations

The fourth and fifth simulations are experimental linear and curvilinear test case sim-

ulations. In the simulation an EKF motion control is applied on the two experiment-

ready path planned cases shown in zoomed profile Figures 4.9 and 4.11 from Section

4.1 . As was the case with the previous three simulations in this section, the exper-

imental test (1) linear and (2) curvilinear simulations include the simulated dGPS

measurement, the reference vehicle on the reference trajectory, an ideal WMR state

and an EKF estimate. The position and control velocities for the linear test case are

shown in Figures 4.20 and 4.21. Both plots show fluctuations when using simulated

dGPS Measurement for both localization and velocity control. For the curvilinear

test case, the position and control velocity results are in Fig. 4.22 and Fig. 4.23
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Figure 4.18: NM Path Following Control using EKF (Path 3)
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Figure 4.19: Control Velocities vc, wc (Path 3)
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respectively. Unlike the previous simulations, the position simulation plots for both

linear (Fig 4.20) and curvilinear (Fig. 4.22) show a slight error between final robot

position and desired goal position. The curved path shown in Fig. 4.22 also has some

error during motion along the curved section of path. Similarly the control velocities

Figures 4.21 and 4.23 are more gradual than the reference vehicle velocities.
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Figure 4.20: NM with Online EKF Control for Linear Path 4 Path Following

4.3 Summary

Modified (or geometric progression) PFPP and Motion control using NM with EKF

are both simulated in this Chapter.

As was noted in Section 4.1 and observed in the simulation results for linear and

curvilinear path planning, the modified (or geometric progression) PFPP component

of the path following approach concentrates more points in the area of interest. For

path planning the boundary of influences (rs, rg, ro) and step sizes (δmax,δmin) param-

eters are adjustable. The boundary of influence values are set to be under 2 meters

in all simulated cases. In the case of obstacle boundary variable ro, the boundary
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Figure 4.21: Control Velocities vc, wc (Path 4)
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Figure 4.22: NM with Online EKF Control for Curved Path 5 Path Following
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Figure 4.23: Control Velocities vc, wc (Path 5)

influence effect can be negated using a stronger repulsive force coefficient η as is ob-

served in the Figures 4.6 and 4.10. For experimental testing purposes, the distances

simulated were short and located in places that could be easily tested. A longer dis-

tance travel curvilinear trajectory, shown in Fig. 4.6, was also explored to determine

if the NM controller with EKF still holds. For all experimental-ready test cases, the

map image overlay provides a useful guide for path planning in the test environment

where known stationary obstacles such as cars can be planned for and avoided.

As part of the path following approach, motion control using NM with EKF was

simulated with Matlab. The simulations for the Linear and Curved Path with NM

control and EKF in parts A, B, and C show good agreement between the estimated

state and the simulated robot. There are some slight errors observed in all the parts A,

B and C but overall the trend is good. For experimental test cases (part C), the state

estimate control velocities (as shown in Figures 4.21 and 4.23) are much smoother

than the equivalent simulated dGPS measurement velocities. This smoother trend

tends to be better for the WMR control as it results in less fluctuating velocity

commands for the WMR motors. In Section 4.2 the parameters such as step size δmax

and δmin and sampling time Ts are set. These parameters dictate the translational
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control velocities observed in all simulations. The result for the experimental test

cases is Ts = 1s, δmax = 0.35m and δmin = 0.0219m. Combined, these values ensure

that the resulting translational control velocity vn does not exceed the maximum set

limits of vmax = 700mm/s.

In Chapter 5, we consider experimental test cases simulated in this Chapter and

conduct some preliminary tests of the approach with the current parameters. The

tests are conducted in the parking lot test environment using a research mobile plat-

form. After the preliminary tests some parameters are fine-tuned and a second set of

tests is conducted. Finally the Chapter 5 is concluded with performance comparison

and analysis of the algorithm.



Chapter 5

Experimental Studies

In this Chapter the experimental set-up is first presented. The hardware and software

section includes details on the mobile platform, its environment, and a procedure

on how the WMR path following experiments are conducted. In Section 5.2 we

conduct preliminary tests for the two experimental cases presented first in Section

4.1.1, then again in Section 4.2.1. The preliminary experimental results are used as a

base to fine-tune the process covariance RΔ parameter of the EKF. Simulations and

experiments are conducted with the new parameter for two new experimental test

cases in Section 5.3. The final Section in this Chapter is for analysis of the proposed

approach simulation and experimental results.

5.1 Hardware and Software Setup

Figure 5.1: Hardware, Software and Testing Setup

The testing experiments are conducted using a Toshiba Laptop running Windows

XP with Visual Studio C++ Express 2008 and Aria C++ Class Library. The Aria

C++ library for the Pioneer WMR has extensive functionality for the robot and

52
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any additional accessories such as GPS sensors. It is used to communicate with the

WMR. The GPS Unit and the WMR are connected to the laptop via a serial to

USB cable. The GPS unit used in these experiments is a R110 Crescent Hemisphere

receiver with an antenna capable of obtaining a dGPS SBAS (WAAS) signals from

the surrounding GPS and GEO satellites, as shown in Fig. 3.1. In order to set the

GPS unit to receive the correct GPS string, a GPS software ‘PocketMaxPC’ is used to

configure the receiver. PocketMaxPC also provides a quick and easy way to test dGPS

status and ensure that a GPS string is being received through the correct serial/usb

port. The closest WAAS ground reference station to the test site is located in Gander

Newfoundland, Canada. As noted in [62] , the reference station communicates with

the Telesat (ANIK-1fR, W107.3 deg, PRN -138 (51)) GEO satelitte in order to provide

the user with differential WAAS GPS capabilities. The WMR is a Pioneer 3AT

Outdoor research platform WMR developed by Adept MobileRobots. It is a research

platform used for navigation in [44] and is similar to the Pioneer 2DX Indoor WMR

used for path following in [41] by Scaglia et. al to test the NM control algorithm.

The Pioneer 2DX is also used in [51] by Houshangi et. al. to test the UKF method

for accurately determining the position of a WMR. Unlike the Pioneer 2DX, the

Pioneer 3AT has four larger ‘outdoor-ready’ wheels and no onboard computer. A

frame (Appendix A.1) is designed and built to house the GPS unit receiver and

antenna. Both laptop and WMR are powered by rechargeable unit specific batteries.

The GPS receiver is powered by a 18V drill battery. Fig. 5.1 shows the complete

mobile platform used to test the dGPS based path following approach.

The Dalhousie Sexton Campus parking lot shown in Fig. 5.2 is the testing site

for the experiment trials. The lot is paved and in fairly good condition with minimal

cracks and slopes. In order to manoeuvre the WMR to a desired location for testing a

Wiimote game controller was used for tele-operation. The Wiimote can communicate

with the Laptop via bluetooth communication. A C++ program was created to

combine the Wiimote [65] and Aria class libraries. This combination allows the user

to then teleoperate the Pioneer 3AT WMR.

For testing the experimental cases visual markers, such as mini pylons, were used

to mark the locations of the start, obstacle and goal positions. Fig. 5.4 shows a test

sequence of the WMR Platform in motion as the robot moves from start to finish.
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Figure 5.2: Testing Environment with Stationary Point Test Data Sets

Prior to proceeding with the path following algorithm the robot obtains its current or

initial angle θgps within the test environment using a 1 meter forward and backward

motion. Since the current dGPS can only provide information on (xgps, ygps), using

the previous position and current position the current heading information can then

be calculated. After determining θgps, the robot then proceeds to follow a path using

the proposed approach. For the EKF filter, the initial state estimate conditions are

x̂0 = xgps, ŷ0 = ygps, θ̂0 = θgps.

5.1.1 Procedure

The procedure for the testing trials follow these steps:

• First, using PocketMaxPC software ensure the receiver is receiving the correct
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Figure 5.3: Wiimote Teleoperation

Figure 5.4: Testing Run Sequence Path 5

NMEA 0183 message strings. (GPGGA and GPRMC) and that there is SBAS

differential lock.

• Then run a C++ program (gpsStationary.cpp) to acquire 60 data points for

latitude and longitude of starting, obstacle and goal stationary. (Saved in a

text file)

• Using the text file, run a Matlab program (LL to xy.m) to calculate the mean

(x̄s, ȳs) and standard deviation (σx, σy) for start, obstacle and goal.

• Using the mean values for start, obstacle and goal positions, run a Matlab

program (PF 031911a.m) to generate the modified PFPP path (Saved in a text

file)

• With this generated path, run a Matlab program (NM 031911a.m) to simulate
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the NM with online EKF path following

• Finally, using the generated planned path text file (.txt), run the C++ path

following program (p2dxFollower06.cpp) on the Outdoor WMR platform until

the whole text file is read.

As previously mentioned, the robot first obtains its bearing or heading using a

short back and forth motion before it begins following the path. During autonomous

motion the robot uses the generated text file as the reference. The WMR moves in

a discrete manner and at each time-step (Ts = 1s) it calculate a new state estimate

(x̂n, ŷn, θ̂n). The robot number of steps are limited by the number of data points in

the path text file.

5.2 Preliminary Experimental Results

For the preliminary experiment, the test cases considered are those simulated in part

C of Chapter 4. These two previously described cases are linear and curvilinear short

distance trajectories. The control velocities generated by the EKF estimate (as per

proposed approach in Eqn (3.16)) are used to move the WMR autonomously during

a test trial run. Prior to conducting these experiments a set of tests were run to

determine how controller gains kv and kw influence the test. Figure 5.5 shows the

results. Controller gain of kv = kw = 0.2 is chosen for all experiments based on this

comparison.

5.2.1 Case 1: Rectilinear Motion

The straight trajectory experimental result is shown in Fig. 5.6. There are four data

sets plotted in this figure. The first dataset shown in the plot legend is the dGPS

measurement which is represented by a ‘circle’. This measurement data indicates the

location the dGPS receiver registers as the WMR moves. The second line of interest

is the ‘solid line’ which represents the reference trajectory or planned path for path

following. This path is calculated from part C of the linear trajectory in the previous

Chapter. The third dataset is a ‘dash-dot’ line and it represents the simulation ideal

WMR response. Lastly, the final dataset, indicated by a ‘+’, represents the EKF
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Figure 5.5: Comparing Controller gains experimentally (without EKF)

estimate of the location of the robot. This EKF position estimate is then used to

generate control velocities to drive the WMR platform.

From Fig. 5.6, we note the difference between the ideal WMR simulated robot

response versus the results observed in Fig. 4.20. This is primarily in part due to

the difference in initial conditions between the plots. Even with the collected and

averaged fixed position points using the procedure in Section 5.1.1, there is a shift in

starting points for the experiment. This results in a position error between simulated

robot and reference path. Fig. 5.6 shows that the measurement and state estimate

also have an error associated with the reference path. They also deviate slightly from

each other during initial motion but are in close agreement as the path following

continues. The increased points associated with the proposed approach are observed

more clearly at the start position in Fig. 5.6 rather than at the goal position. From

the plot we can infer that the experiment path step max number is reached prior to

reaching the goal area and slowing down.

This trend is also observed in the linear velocity subplot of Fig. 5.7. The estimate

control velocity values in Fig. 5.7 are used to move the robot while the simulation and
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Figure 5.6: NM with Online EKF Control for Linear Path 4 Path Following (Zoomed
Profile)

reference plots are for comparison purposes. Although the trend is similar between

simulation and estimate, the estimate control velocities in Fig. 5.7 overshoot and

undershoot the simulation robot response in a number of locations on the plot.

5.2.2 Case 2: Curvilinear Motion

For the curvilinear trajectory path, experimental results are shown in Fig. 5.8. Similar

to the dataset legend in experimental case 1, the dGPS measurement is represents

by a ‘circle’. Both the reference and simulated robot plots are represented by a ‘solid

line’ and ‘dash-dot’ respectively. Lastly the EKF position estimate, which is also used

to generate control velocities shown in Fig 5.9, is indicated by a ‘+’ symbol.

Since the simulated robot initial conditions are not equal to the reference initial

conditions, the simulated robot results in an error at the start of motion. Fig. 5.8

shows that the measurement and state estimate also have an errors with respect to

the reference path and to each other. The error observed between state and dGPS

measurement is more significant in a curved path than in the previous linear path
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Figure 5.7: Control Velocities vc, wc (Path 4)

results. The increased points associated with the proposed approach are observed at

the start and goal positions in Fig. 5.8.

In Fig. 5.9, the trend of the estimate calculated velocities is similar to the sim-

ulated robot velocities shown in ‘dashed’ lines. Errors between the simulation and

estimate velocities are more pronounced at the start position with overshoots and

undershoots but become minimal as the robot moves.

5.2.3 Summary

The results for a straight line path shown in Fig. 5.6 show some agreement of the

position between state estimate and dGPS data. For the curved path in Fig. 5.8, the

results are less agreeable with state estimate overestimating its location compared to

where the dGPS sensor knows the robot position to be. This could be attributed

to simplifications in the process model section of the EKF by setting process noise

covariance RΔ = 0. The ideal kinematic model with EKF does not take into account

experimental factors such as non-flat terrain test site and minimal skidding of Pioneer

3AT WMR.

Comparing the simulation and experiment measurements, the fluctuations of the
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Figure 5.8: NM with Online EKF Control for Curved Path 5 Path Following (Zoomed
Profile)
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Figure 5.9: Control Velocities vc, wc (Path 5)
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actual dGPS measurement are less aggressive and bound appears (visually) to be

smaller in Fig. 5.6 and Fig. 5.8 than the simulated gaussian dGPS measurement in

Fig. 4.20 and Fig. 4.22. This indicates that the dGPS measurement can be more

accurate than the maximum instrument accuracy of less than 0.6m used in simulation.

The fluctuations while small also do not clearly exhibit a gaussian trend which is used

in simulation.

In order to compare with a norm, a set of experiments were conducted using

direct dGPS measurement (xgps, ygps, θgps) for linear and curvilinear trajectory. These

experiments bypass the EKF component shown in Fig. 3.2 which corresponds to using

Equation (3.5) instead of (3.16). The linear and curvilinear path results are plotted

in Figures 5.10 and 5.11.
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Figure 5.10: NM without Online EKF Control for Linear Path 4 Path Following
(Zoomed Profile)

Table 5.1 summarizes the position error results for path 4 and 5 simulation (Fig-

ures 4.20 and 4.22) and preliminary experimental (Figures 5.6, 5.10, 5.8, and 5.11)

work.

This table shows that the errors obtained are larger for experimental results versus
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Figure 5.11: NM without Online EKF Control for Curved Path 5 Path Following
(Zoomed Profile)

Table 5.1: Preliminary Position Error Comparisons
Simulated
dGPS

Experiment
dGPS

Linear (Path 4) with EKF Con-
trol

without
EKF

with EKF Con-
trol

without
EKF

Start Position Error (m) 0.07 0.07 0.47 0.22
Goal Position Error (m) 0.60 0.90 1.32 0.98

Max Error (m) 1.40 1.77 1.87 1.87
Curvilinear (Path 5) with EKF Con-

trol
without
EKF

with EKF Con-
trol

without
EKF

Start Position Error (m) 0.35 0.35 1.47 0.48
Goal Position Error (m) 0.36 0.41 0.59 0.54

Max Error (m) 1.38 1.85 1.69 2.01
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the simulation results. The maximum errors with EKF Control are less than those

without EKF Control on average.

Secondly the result for curvilinear Fig. 5.8 show a large error between offline EKF

and the dGPS measurement. This could be attributed to model simplification and

EKF RΔ parameter. In the section that follows, we use results shown in Fig. 5.8

and Fig. 5.11 to fine-tune the RΔ term in our EKF and apply it to a new set of

experiments.

5.3 Experimental Results

Since the preliminary experiments produced results that are not so agreeable for a

curvilinear path. It is determined that an assumption of RΔ does not fully represent

the model of outdoor WMR. The value can be tuned offline using data collected

from preliminary curvilinear tests with and without EKF control. After tuning the

parameter value a new set of experiments linear and curvilinear is then conducted.

These tests are conducted in the environment location of the previous preliminary

experiments.

5.3.1 Tuning RΔ parameter

To determine an acceptable value for RΔ, a set of simulations are done, where the

diagonal RΔ matrix terms are increased. The EKF calculations for these simulations

are offline but the data used is data that was collected from the preliminary curvilinear

motion experiments with and without EKF. In these simulations RΔx = RΔy = RΔθ =

CR, where CR is a constant that is manipulated. CR values for these simulations are

1.0−10, 1.0−8, 1.0−7 and 1.0−6. The results for varying CR term in the EKF Estimate

are plotted in Figures 5.12 and 5.13. The dGPS measurement, Simulated robot

data and EKF estimate from the figure legend were previously determined in the

preliminary experiments with RΔ = 0. The big dot plots represent the the offline

EKF estimates obtained by changing CR. From the results in Figures 5.12 and 5.13

we can see that as CR is increased the EKF Estimate is much closer towards the

dGPS measurement. Based on these simulations, an optimal value of CR = 1.0−7 is

selected for the next set of experiments. The new experiments are conducted in the
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Figure 5.12: Tuning RΔ NM with Online EKF Control for Curved Path 5 Path
Following (Zoomed Profile)
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Figure 5.13: Tuning RΔ NM without Online EKF Control for Curved Path 5 Path
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same environment and with the start, obstacle and goal positions close to those used

in the preliminary experimental tests.

5.3.2 Case 1: Rectilinear Motion

Prior to conducting a experimental test for linear trajectory, a simulation was con-

ducted for the linear path with new value for EKF parameter RΔ. The matlab code

for the simulation can be found in Appendix B.

The result for the path with simulated dGPS measurement is shown in Fig. 5.14.

Similar to the preliminary simulations, the simulated gaussian dGPS measurements
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Figure 5.14: Linear Simulation Path 6 Path Following

has larger fluctuations compared to the EKF estimate. There is also an error between

the actual final position and the desired final position which is also noted in the

previous linear experimental test trajectory simulations from Section 4.2.1.

The linear experiment conducted to test the new improved EKF resulted in path

6 shown in Fig. 5.15. Path following of path 6 shows the robot EKF state and

dGPS measure are initially far apart but eventually converge. The EKF Estimate

and dGPS measurement have a smaller error thatnthat observed in the preliminary
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linear trajectory experiment. The associated velocity profile is shown in Fig. 5.16.

The simulated robot and EKF estimate robot velocity profiles have some differences

at the start but are more similar as the robot moves.
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Figure 5.15: NM with Online EKF Control for Linear Path 6

5.3.3 Case 2: Curvilinear Motion

A simulation for a curvilinear path using simulated dGPS measurement was run with

the new improved EKF. The result is shown in Fig. 5.17. It performs very similar to

the previous preliminary experimental test curvilinear simulation.

Following the simulation, an experiment to test the improved EKF for curvilinear

trajectory is run. This experiment resulted in Figures 5.18 and 5.19. From the path

profiles in Fig. 5.18 the EKF estimate and dGPS measurement are much closer to

each other throughout the robot motion cycle. This is unlike the preliminary case for

curvilinear trajectories where they are much further apart. The velocity results for

this path are shown in Fig. 5.19. There is agreement between simulated robot and

state Estimate with slight deviations at the start and midway.
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Figure 5.16: Control Velocities vc, wc (Path 6)

5.3.4 Summary

The improvement in EKF for online EKF control results in more closely connected

EKF estimate and dGPS measurement. This in turn results in a better control of

the WMR as it moves. The linear trajectory case shows close path following with the

WMR dGPS measurement and EKF estimate points following on the reference path

line. The velocity profiles for the linear case also agrees very closely to the simulation

robot. One concern for the linear trajectory case is that the vehicle does not reach

its final position in the allotted time steps. This can easily be adjusted by inserting

a condition in the program such that the robot continues to move until an ‘arrival

at destination’ condition is achieved. Another concern is that the simulated robot

performs slightly different resulting in an error between simulated robot and EKF

estimate. This can be attributed to simplified model simulation response.

For the curved trajectory case there is an improvement in error between dGPS

measurement and EKF estimate when compared to the preliminary test curvilinear

trajectory. The curvilinear trajectory velocity is smooth and follows the simulation

results closely but has slightly less agreement in terms of linear velocity. There is

also an error between simulated robot and EKF estimate during the curved motion.
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Figure 5.17: Curvilinear Simulation Path 7 Path Following

This error is likely due to either environmental factors such as uneven terrain or due

to process model simplifications that do not accounting for four wheel skid steering

WMR.

5.4 Data Analysis and Comparisons

Using the set-up with tuned RΔ a new set of experiments that just use direct dGPS

measurements (without EKF) for control were run. These test runs served as a norm

that our approach (with EKF) was compared against. Criteria such as how control

velocity compare to measured encoder velocity were also investigated for the two

experimental cases with EKF control.

5.4.1 Case 1: Rectilinear Motion dGPS without EKF

For linear path following, an experiment is conducted using direct dGPS localization.

The results of the experiment are shown in Fig. 5.20. From the results we note that

there is an error between the dGPS measurement and both the simulation robot path

and the reference path. This error is smaller than that observed in the previous case
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Figure 5.18: NM with Online EKF Control for Curved Path 7
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Figure 5.19: Control Velocities vc, wc (Path 7)
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with EKF control. The error with dGPS only without EKF control is smaller than

the error observed in the equivalent EKF result.
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Figure 5.20: NM without Online EKF control for Linear Path 6

The resulting control velocities for linear Path 7 using dGPS measurements for

control is shown in Fig. 5.21 . For the angular velocity, the dGPS measurement trend

is quite similar in profile to that observed in the case with EKF estimate. There is an

initial peak followed by a gradual decrease of angular velocity to zero. In the case of

the linear velocity, the dGPS measurement calculated term tends to fluctuate more

significantly than the linear velocity case than was observed with EKF in Fig. 5.16.

With the EKF the linear velocity is much smoother.

5.4.2 Case 2: Curvilinear Motion dGPS without EKF

A curved path with dGPS control is also tested. The path following and velocity

control results are shown in Fig. 5.22 and 5.23 respectively. The dGPS measurement

path following in Fig. 5.22 is initially inline with the reference path but slowly veers

towards the simulated robot path before veering off that path and concluding to the

left side of the reference path.
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Figure 5.21: Control Velocities vc, wc (Path 6)
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Figure 5.22: NM without Online EKF Control for Curvilinear Path 7
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Figure 5.23: Control Velocities vc, wc (Path 7)

The angular and linear velocity results in Fig. 5.23 show slight dGPS measurement

fluctuates when compared to the simulation. This is unlike the smooth trend found

in EKF equivalent in Fig. 5.19. This reiterates that the EKF is useful in smoothing

out the velocity profiles.

5.4.3 Comparisons of dGPS localization with active EKF control

Another criteria that was investigated was how well the control velocity signals rep-

resent the actual felt velocities. Investigating this was done by collecting data of the

velocity values after each sample time Ts during the experiment for Paths 6 and 7

with or without active EKF control.

Figures 5.24 and 5.25 show the linear and angular velocities of path 6 with EKF

respectively. The ‘solid’ line for both figures is the control signal while the ‘dash-dot’

line is the measured velocity from the robot. It is obtained using Aria C++ functions

getV el() and getRotV el(). From tFigures 5.24 and 5.25 we note that although the

control velocity represents the velocity we would expect the robot to experience during

motion, in some cases they are instances where the control and measured velocities
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don’t match up for linear trajectory motion (Path 6).
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Figure 5.24: Velocity vc (Path 6)

In the case of curvilinear trajectory this trait is also observed as is shown in Figures

5.26 and 5.27. Similar to the previous figures, the ‘solid’ line represents the control

signal while the ‘dash-dot’ line is the actual velocity measurement from the robot.

The differences are more significant for the angular velocities shown in Fig. 5.27.

5.5 Summary

Overall the experiments show that the dGPS data fluctuates less than predicted and

in a non-gaussian manner. The non-gaussian nature of data fluctuations was expected

as previous literature suggests this trend. Gaussian noise was used in simulation as

the filter used was a EKF that assumes a gaussian distribution. For non-gaussian

assumption a UKF would be ideal and can likely be explored in future work. The

minimal fluctuations with dGPS data during path following suggests a better accuracy

than the maximum instrument accuracy rating of less than 0.6m. The preliminary

results show that the ideal kinematic model requires noise process noise (RΔ) consid-

eration for completeness of the EKF aspect of the proposed technique. After tuning

the (RΔ) parameter, the path following results were much more representative of the
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Figure 5.25: Velocity wc (Path 6)
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Figure 5.26: Velocity vc (Path 7)
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Figure 5.27: Velocity wc (Path 7)

expected outcome with regards to EKF control. When comparing EKF with dGPS

direct control the results for velocity indicate the EKF control is smoother. The ex-

periments are very dependent on initial conditions which fluctuate based on dGPS

data. Table 5.2 summarizes the position error results for path 5 and 6 simulation

Table 5.2: Position Error Comparisons
Simulated
dGPS

Experiment
dGPS

Linear (Path 6) with EKF Con-
trol

without
EKF

with EKF Con-
trol

without
EKF

Start Position Error (m) 0.40 0.40 1.27 0.02
Goal Position Error (m) 0.62 0.50 1.14 1.11

Max Error (m) 1.42 1.83 1.78 1.81
Curvilinear (Path 7) with EKF Con-

trol
without
EKF

with EKF Con-
trol

without
EKF

Start Position Error (m) 0.03 0.35 1.62 0.68
Goal Position Error (m) 0.34 0.19 0.53 0.67

Max Error (m) 1.38 1.84 2.06 1.87

(Figures 5.14 and 5.17) and experimental (Figures 5.15, 5.20, 5.18 and 5.22) work.

This table shows that the errors obtained are larger for experimental results versus
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the simulation results which was previously observed in the preliminary results. The

maximum errors without EKF is similar for simulated and experimental results. The

error for experimental results are also shown in Figures 5.28 and 5.29.
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Figure 5.28: Experiment Position Error (Path 6)

For the path following the results for linear trajectory were better with EKF. As for

curvilinear trajectory the results were comparable. The EKF control for curvilinear

trajectory Path 7 shown in Fig. 5.18 does not perform as well as the simulated robot

but this is likely due to process noise not modelled in the simulated robot. Process

noise can either be due the terrain, or due to the skid steering robot. Similarly the

difference between control and actual velocity, as shown in Fig. 5.26 and Fig. 5.27,

play a part in increasing the error.
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Figure 5.29: Experiment Position Error (Path 7)



Chapter 6

Conclusion

The application of a dGPS-based Path Following Approach in the Matlab simulation

environment produced favourable results. The experimental results varied and were

very depended on the initial conditions of the WMR, which varied quite frequently

based on the dGPS measurement. Based on the initial conditions, there tends to

be a disagreement and slight error in path following between reference and actual

estimate.

When the algorithm was applied to the experimental platform with tuned process

noise covariance, the results for linear path following, based on the proposed approach,

were good. Both the dGPS measurement and EKF estimate fall on the reference

path. The EKF online control provides smooth velocity profile unlike the fluctuating

experimental dGPS only velocity profile.

The curvilinear trajectory experimental results, using the proposed approach, are

much closer to the WMR simulated robot case at the start and goal positions. During

the curved shape the simulated robot(or process model) and EKF are in disagreement

which could be due to using a simplified process model. Another factor that influences

the result is the differences between control signal and measured velocities.

6.1 Future Work

6.1.1 Model and Simulation

Some future work proposed to improve and obtain better results with the current

EKF control set-up, would be to perform a system identification to determine an

improved kinematic model that is more representative of the WMR skid steering

and environmental factors. Some of these terms will likely be represented by process

model noise. As the noise associated with the dGPS is non-gaussian using another

filter technique such as UKF may provide more representative simulations. Since data

78



79

has already been collected from the experiments, UKF can be applied offline using

the data to test. Computation time can then be investigated to see if applying online

UKF control to the proposed approach is beneficial. Comparison between UKF and

EKF performance can then be made to assess benefits.

Once an acceptable model has been obtained, another area worth improving will

be to improve the controller as it is very dependent on initial conditions. Given the

initial condition dGPS fluctuations and initial orientation fluctuation, a more robust

controller able to handle these variabilities is necessary.

6.1.2 Experiment

Testing the approach in a degrading dGPS signal location should be conducted espe-

cially if the degradation is in the location of start, obstacle or goal, such as in close

proximity to a building or under a canopy. During testing the robot was stopped at

every time step to calculate the new online EKF value. This can produce a jerky

motion, therefore using a shorter stop time or eliminating the stop time completely

would improve this.

The experimental procedure is very time consuming to initially run. So improving

it by incorporating a Graphical User Interface (GUI) to easily perform all the tasks

would be very beneficial for testing. The C++ program can also be improved with

efficient programming techniques for faster computation.

6.1.3 Expansion

This proposed technique uses an offline obstacle avoidance scheme. Expanding to

include online avoidance recognition based on sensors such as sonar may aid in cases

where the WMR gets too close to the offline obstacle. The use of online obstacle

avoidance will also aid in identifying unknown obstacles and avoiding them.

After considering online obstacle avoidance, multiple vehicle or different robotic

platforms can be explored for future use in a more generalized case. Figure 6.1 shows

the other robotic platforms within the research group that may be considered.
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Figure 6.1: ACM Lab Research Robotic Vehicles



Appendix A

Engineering Drawings

Figure A.1: Mounting Platform Assembly
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Appendix B

Matlab Code

The following is the matlab code used for simulating the proposed technique for both

linear and curvilinear trajectories. It is configured for path 6 and 7 simulations.

clear;

clc;

close all;

n=200; %number of steps

Ts=1; %sampling time in seconds

%----------------------------********************File names

thisfilename=’NM_EKF_031911a’;

pftxtfile=’PFpath_WeightedStep061111.txt’;

pdatalimit=’limitdata061111.txt’;

%Note: Units for text document are in METERS

r=dlmread(pftxtfile);%

b=size(r);

r=r’;

r(3,1) = atan2(r(2,2)-r(2,1),r(1,2)-r(1,1));

for j=1:b(1)-1

r(3,j+1) = atan2(r(2,j+1)-r(2,j),r(1,j+1)-r(1,j));

vvr(1,j+1)= sqrt((r(1,j+1)-r(1,j))^2 +(r(2,j+1)-r(2,j))^2)/Ts;

vvr(2,j+1)= (r(3,j+1)-r(3,j))/Ts;

end

k=1; %counter

j=1;%counter 2

%----------Initial condn Mobile Robot Model (m)

c(1,1)=r(1,1);

c(2,1)=r(2,1);

82



83

c(3,1)=r(3,1);

%----------Initial Measurement (Noisy Model) (m)

%Simulated noisy system output

xn=c(1,1) +.212*randn(); %m .6

yn=c(2,1) +.212*randn(); %m .6

thn=c(3,1) +.401*randn(); %m .06

cn(:,k)=[xn;yn;thn];

%----------Control parameters and Othe

kv=0.25;

kw=0.25;

vmax =0.7; %m robot max is 700mm/s 3AT and 1400mm/s 3DX

wmax =2; % 2.44 rad/s 3AT and 5.235rad/s 3DX

%//Allocating memory for arrays

Tm = zeros(3,3);

error = zeros(3,1);

error2 = zeros(3,1);

%Kalman Filter Initialization Estimates (m)

%States

xh(:,k)=cn;

%Prediction Covariance Matrix

P(:,:,k)=(cn-c)*(cn-c)’;

%Measurement noise convariance Matrix (set to 0)

%W=45.0;

W=[5.3e-5,0,0;0,3.8e-5,0;0,0,0.497]; %m^2, m^2, rad^2 0.497

%Unmodeled System source Covariance Matrix (set to 0)

V=[0.0000001,0,0;0,0.0000001,0;0,0,0.0000001];

%V=[0.,0,0;0,0.,0;0,0,0.];

origin(1)=0; %x
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origin(2)=0; %y

%while abs(r(:,k)-c(:,k))>range

while (k<b(1))

%----------Error transformation and Controller Implementation

time(k)=k*Ts -Ts;

%Real Model (no noise)

error = r(:,k)-c(:,k);

%Noisy Model

errorn = r(:,k)-xh(:,k);

%Noisy Model with sim gps measurement error control

errorn2 = r(:,k)-cn(:,k);

%Determine control velocities---------------------------------

vvc(1,k) = kv*(error(1)*cos(r(3,k))/Ts + error(2)*sin(r(3,k))/Ts); %m/s

vvc(2,k)=kw*(error(3)/Ts); %rad/s

%Determine control velocities (State Estimate Model)-----

vvcn(1,k) = kv*(errorn(1)*cos(xh(3,k))/Ts

+ errorn(2)*sin(xh(3,k))/Ts);%m/s

vvcn(2,k)=kw*(errorn(3)/Ts); %rad/s

%Determine control velocities (State Estimate Model)-----

vvcn2(1,k) = kv*(errorn2(1)*cos(cn(3,k))/Ts

+ errorn2(2)*sin(cn(3,k))/Ts);%m/s

vvcn2(2,k)=kw*(errorn2(3)/Ts); %rad/s

%Check to ensure Velocity does not exceed max (V,W)

if (abs(vvc(1,k))>vmax)

vvc(1,k)=vmax;%*sign(vvc(1,k));

end

if (abs(vvc(2,k))>wmax)

vvc(2,k)=wmax*sign(vvc(2,k));

end

%Check Velocity does not exceed max (V,W) for Noisy State
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if (abs(vvcn(1,k))>vmax)

vvcn(1,k)=vmax;%*sign(vvc(1,k));

end

if (abs(vvcn(2,k))>wmax)

vvcn(2,k)=wmax*sign(vvcn(2,k));

end

if (abs(vvcn2(2,k))>wmax)

vvcn2(2,k)=wmax*sign(vvcn2(2,k));

end

%Check Velocity does not exceed max (V,W)

if (abs(vvcn2(1,k))>vmax)

vvcn2(1,k)=vmax;%*sign(vvc(1,k));

end

if (abs(vvcn2(2,k))>wmax)

vvcn2(2,k)=wmax*sign(vvcn2(2,k));

end

%KALMAN FILTER*******

%Predicted State Estimate and Covariance-------------------------

xmid(3,1)=vvcn(2,k)*Ts + xh(3,k);

xmid(1,1)=cos(xmid(3,1))*vvcn(1,k)*Ts + xh(1,k);

xmid(2,1)=sin(xmid(3,1))*vvcn(1,k)*Ts + xh(2,k);

F=[1,0, -sin(xh(3,k))*vvcn(1,k)*Ts;

0,1,cos(xh(3,k))*vvcn(1,k)*Ts;

0,0,1];

Pk=F*P(:,:,k)*F’ + V; %V=0 small

%----------Mobile Robot Kinematic Model (i.e Measurement)

%Simulated noisy system output

x=Ts*vvcn(1,k)*cos(cn(3,k));

xn=x +.212*randn(); %m 0.6

y=Ts*vvcn(1,k)*sin(cn(3,k));

yn=y +.212*randn(); %m 0.6
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th=Ts*vvcn(2,k);

thn=th +.401*randn(); %m 0.06

%simulated measurement (m)

cn(1,k+1) = c(1,k) + xn;

cn(2,k+1) = c(2,k) + yn;

cn(3,k+1) = c(3,k) + thn;

%------------------------------------------------------

%real state output (m)

c(1,k+1) = c(1,k) + Ts*vvc(1,k)*cos(c(3,k));

c(2,k+1) = c(2,k) + Ts*vvc(1,k)*sin(c(3,k));

c(3,k+1) = c(3,k) + Ts*vvc(2,k);

%Update---------------------------------------------------

H=[1,0,0;0,1,0;0,0,1];

S=H*Pk*H’+W;

R= Pk*H’*inv(S); %Kalman Gain

v=cn(:,k+1)-H*xmid;

xh(:,k+1)= xmid + R*v;

P(:,:,k+1)=Pk - R*H*Pk;

%------------------------------------------------------

k=k+1;

end

figure(1)

subplot(2,1,1)

plot(time,vvcn2(2,:),’r.’,tvvr,vvr(2,:),’k’,time,vvcn(2,:),’k+’,

time,vvc(2,:),’b--’,’LineWidth’,2);

ylabel(’Angular velocity (rad/s)’);

grid on;

legend(’Measurement’,’Reference’,’Estimate’,’State’);

subplot(2,1,2)

plot(time,vvcn2(1,:),’r.’,tvvr,vvr(1,:),’k’,time,vvcn(1,:),

’k+’,time,vvc(1,:),’b--’,’LineWidth’,2);
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ylabel(’Linear Velocity (m/s)’);

xlabel(’Time(s)’);

grid on;

legend(’Measurement’,’Reference’,’Estimate’,’State’);

figure(2)

hold on

ymax=85.62;%m

xmax=87.03;%m

xscale=[0;xmax];

yscale=[ymax;0];

axis([0 xmax 0 ymax])

%axis([16 36 30 54])

hold on

ch = imread(’mapTrial.jpg’);

image(xscale,yscale,ch);

hold on

grid on

plot(cn(1,:),cn(2,:),’r.’,r(1,:),r(2,:),’k’,xh(1,:),xh(2,:),’k+’,

c(1,:),c(2,:),’b-.’,c(1,1),c(2,1),’ks’,c(1,k-1),

c(2,k-1),’ks’,’LineWidth’,2);

hold on

xlabel(’East-West Distance(m)’);

ylabel(’North-South Distance(m)’);

grid on;

legend(’Simulated Measurement’,’Ref Vehicle’,

’Estimate (State)’,’Actual (State)’,’"Start" and "Finish" Points’);
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