
ANALYSIS OF PROKARYOTIC METABOLIC NETWORKS

by

Caroline Urquhart

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia

March 2011

c© Copyright by Caroline Urquhart, 2011

DALHOUSIE UNIVERSITY

DEPARTMENT OF MATHEMATICS AND STATISTICS

The undersigned hereby certify that they have read and recommend to

the Faculty of Graduate Studies for acceptance a thesis entitled “ANALYSIS OF

PROKARYOTIC METABOLIC NETWORKS” by Caroline Urquhart in partial

fulfillment of the requirements for the degree of Master of Science.

Dated: March 30, 2011

Supervisors:

Reader:

ii

DALHOUSIE UNIVERSITY

DATE: March 30, 2011

AUTHOR: Caroline Urquhart

TITLE: ANALYSIS OF PROKARYOTIC METABOLIC NETWORKS

DEPARTMENT OR SCHOOL: Department of Mathematics and Statistics

DEGREE: M.Sc. CONVOCATION: May YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions.

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than brief excerpts requiring
only proper acknowledgement in scholarly writing) and that all such use is clearly
acknowledged.

Signature of Author

iii

I would like to dedicate this thesis to my parents, Donald and Diane

Urquhart, who taught me the value of education. I am deeply

indebted to them for their continued support and unwavering faith

in me.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

Abstract . ix

Acknowledgements . x

Chapter 1 Introduction . 1

1.1 The Cartography of Complex Networks 1

1.2 Some Basic Concepts on the Measures of Complex Networks 3

1.3 Metabolism & Metabolic Networks 5

1.4 Biological Modularity, Module Structure &Module Identification Meth-

ods . 10

1.5 Thesis Overview . 14

Chapter 2 Methods & Computing 16

2.1 Biological Modularity Revisited . 16

2.2 Simulated Annealing (SA) . 17

2.2.1 The Basic Iteration . 18

2.2.2 Acceptance Probabilities . 18

2.2.3 Computational Temperature 19

2.3 A Schematic Searching (SS) Algorithm 20

2.3.1 The Inspiration Behind the SS Algorithm 20

2.3.2 Methodology . 21

2.3.3 The Basic Iteration . 22

2.3.4 Pseudo-code for the SS Algorithm 24

2.4 The SS Algorithm Versus SA Algorithm 25

Chapter 3 Application of the SS Algorithm 27

3.1 Simulated Data . 27

v

3.1.1 Results for Simulated Data . 30

3.2 Real Genomic Data . 36

3.2.1 Results for Real Genomic Data 36

Chapter 4 The Relationship Between Metabolic Topology & Genome

Evolution in Species of the Pathogenic Bacterium Lis-

teria monocytogenes . 41

4.1 Ecology & Pathogenicity of L. monocytogenes 42

4.2 Evolutionary Genomics . 43

4.3 Materials & Methods . 44

4.3.1 Genomic Data . 44

4.3.2 Is Divergent Selection Pressure Related to Metabolic Structure? 47

4.3.3 Logistic Regression for Multinomial Responses: Relating Best

Hypothesis for Diversifying Selection to Network Structure . . 48

4.3.4 Results & Discussion . 49

Chapter 5 Thesis Conclusion . 55

Appendix A R Scripts . 59

A.1 R Script for Calculating the Modularity of a Network 59

A.2 R Script for Performing Individual Node Movements 61

A.3 R Script for Performing Collective Node Movements 63

A.4 R Script for SS Algorithm . 65

A.5 R Script for Removing Singleton Nodes from Sparse Networks 67

A.6 R Script for Converting Networks from SS Format to SA Format . . . 68

A.7 R Script for Converting Networks from SA Format to SS Format . . . 69

Appendix B Histograms of Modularity Scores for Random-Networks 70

Appendix C Modular Models of the Simulated & Listeria Monocy-

togenes Networks . 71

C.1 Simulated Networks . 71

C.2 Listeria monocytogenes . 77

Bibliography . 79

vi

List of Tables

Table 3.1 Selected Results from SS and SA Algorithms for Simulated Data 34

Table 3.2 Summary Statistics for Modularity Scores of Random Networks 35

Table 3.3 Selected Results from SS and SA Algorithms for the Listeria
monocytogenes Metabolic Network 39

vii

List of Figures

Figure 1.1 The Metabolic Network of the Bacterium Pseudomonas 8

Figure 1.2 Role-Specific Regions in the Z-P Parameter Space 9

Figure 4.1 A Cartographic Representation of the GSC of the L. monocy-
togenes Metabolic Network . 46

Figure 4.2 A Genome-Scale Estimate of the Listeria Phylogeny 47

Figure 4.3 A Cartographic Representation of the GSC of the L. monocy-
togenes Metabolic Network with Module 16 Expanded 54

Figure B.1 Histograms of Modularity Scores for Random-Networks with
the MaximumModularity Score for the Corresponding Structured-
Network Superimposed . 70

Figure C.1 A Modular Model of a “Dense” Structured-Network 71

Figure C.2 A Modular Model of a “Dense” Random-Network 72

Figure C.3 A Modular Model of a “Fuzzy” Structured-Network 73

Figure C.4 A Modular Model of a “Fuzzy” Random-Network 74

Figure C.5 A Modular Model of a “Sparse” Structured-Network 75

Figure C.6 A Modular Model of a ”Sparse” Random-Network 76

Figure C.7 A Modular Model of the Listeria monocytogenes Bacterial
Network (SS) . 77

Figure C.8 A Modular Model of the Listeria monocytogenes Bacterial
Network (SA) . 78

viii

Abstract

Establishing group structure in complex networks is potentially very useful since

nodes belonging to the same module can often be related by commonalities in their

biological function. However, module detection in complex networks poses a chal-

lenging problem and has sparked a great deal of interest in various disciplines in re-

cent years [5]. In real networks, which can be quite complex, we have no idea about

the true number of modules that exist. Furthermore, the structure of the modules

may be hierarchical meaning they may be further divided into sub-modules and so

forth. Many attempts have been made to deal with these problems and because the

involved methods vary considerably they have been difficult to compare [5]. The

objectives of this thesis are (i) to create and implement a new algorithm that will

identify modules in complex networks and reconstruct the network in such a way

so as to maximize modularity, (ii) to evaluate the performance of a new method,

and compare it to a popular method based on a simulated annealing algorithm, and

(iii) to apply the new method, and a comparator method, to analyze the metabolic

network of the bacterial genus Listeria, an important pathogen in both agricultural

and human clinical settings.

ix

Acknowledgements

I wish to thank Dr. Hong Gu and Dr. Joseph Bielawski, without whose guidance

and encouragement, this thesis would not have been possible. I would also like to

thank Dr. Katherine Dunn who has offered me technical assistance many times

throughout.

x

Chapter 1

Introduction

1.1 The Cartography of Complex Networks

When studying the structure of complex networks, knowing the manner in which

the components of the system are connected is crucial [8]. It is practical to think

in terms of network structure when studying complex networks since the topology

of these networks defines the interactions, which in turn, provides insight into the

function and evolution of the network’s components. However, due to the large

sizes and complexities of these networks, such insight is often difficult to discern [8].

Examples of complex networks include the internet, food webs, social networks, and

metabolic networks to name a few [19].

To extract relevant information from the structure of large complex networks, it

is useful to depict these networks as graphs with a set of nodes (vertices) and links

(edges) between couples of nodes. To demonstrate this point, consider forming a

network of all of the cities and towns within a country and all the roads that con-

nect them. The cities and towns are represented by nodes and the roads by links.

It is impractical to have a map that represents the cities and towns by circles of

a fixed size and the roads by lines of a fixed width. Instead, real maps highlight

1

2

capitals and main lines of communication so that one can obtain scale-specific infor-

mation at a glimpse. Likewise, attempting to extract information from a network

comprised of hundreds or even thousands of nodes and links is almost impossible un-

less the information about nodes and links is displayed in a scale-specific context [8].

Social network analysis and statistical modeling are common analytical methods

used for modeling real-world networks. A great deal of the terminology of social

network analysis, such as path lengths, cliques, and connected components, to men-

tion a few, were either directly taken from or adapted from the field of graph theory,

to deal with questions pertaining to status, influence, cohesiveness, social roles, and

identities in social networks. Thus, over and above the role graph theory plays in

describing abstract models, graph theory became a functional tool for analyzing em-

pirical data [18]. Traditional tools of social network analysis are more useful in cases

where networks are poor candidates for statistical modeling. An example of such a

network is the network of contacts between terrorists studied by Krebs [14]. It is a

poor candidate for statistical modeling because the questions of interest in this net-

work are not statistical in nature [18]. Nevertheless, statistical models can be very

successful and informative when applied to real world networks [18]. Statistical mod-

els and techniques that are commonly used in network analysis are the small-world

model which is motivated by clustering algorithms, random graph models which in-

clude Poisson random graphs and generalized random graphs, degree distributions,

and clustering coefficients to name a few (for a review, see references [25] [11] [18]).

Other complex approaches exist but are beyond the scope of this thesis, as they are

not applicable to metabolic networks.

3

Whether networks are biological or artificial in nature, the science of measuring

the structural features of a network, constructing a map of its structural and func-

tional components, and measuring how they are connected (i.e., the topology of the

network) is referred to as “cartography”.

1.2 Some Basic Concepts on the Measures of Complex Net-

works

Many measures of complex networks have been proposed in recent years. Among

the most significant are (i) average path length, l, (ii) average node degree, <k>,

(iii) clustering coefficient, Ci, and (iv) degree distribution (gamma value). Below

I review each one, and provide an interpretation within the context of metabolic

networks, as these are the focus of this thesis.

Average path1 length is defined as the shortest distance averaged over all pairs

of nodes in a network, where distance is defined as the minimum number of edges

between nodes [25]. For instance, shorter average path length, in a metabolic net-

work, means that metabolic end-products can be produced in a shorter average

number of steps, thus, using a smaller amount of energetic resources [16]. For a

random network (i.e., obtained from starting with a set of n isolated nodes and

adding edges between randomly chosen pairs), the average expected path length is

given by:

lrand =
ln(n)

ln < k >
(1.1)

where n is the number of nodes and <k> is the average degree2 per node in the

network. This equation is used to compare the average path length of a real or

1A path is defined as any route along the edges of a graph
2The degree of a node i is defined as the total number of its connections

4

simulated network to a random network with the same n and <k> [24].

The average node degree, <k>, is the average number of links of a node in a net-

work. For a metabolic network, low average node degree implies that fewer cellular

resources are devoted to the processing of each metabolite3 [16].

The clustering coefficient Ci for a node i is defined by Watts and Strogatz [26] as

the proportion of links between the nodes within its neighbourhood divided by the

number of links that could possibly exist between them. The clustering coefficient

is given by:

Ci =
2Ei

ki(ki − 1)
(1.2)

where Ei is the number of links among all neighbours4 of node i and ki is the degree

of node i. If node i has a clustering coefficient of 1, each of its neighbour nodes

are directly connected to each other. In the context of metabolic networks, node

i therefore increases redundancy in the network by providing alternate pathways

between neighbouring metabolites [16]. The clustering coefficient for the whole

system is given as the average of Ci over all n nodes:

C =
1

n

n
∑

i=1

Ci (1.3)

The average clustering coefficient only ever equals 1 when the network forms a com-

plete graph. That is, when every node connects with every other node.

The spread of node degrees across a network is referred to as the degree distri-

bution. The degree distribution is characterized by a distribution function P (k),

3An organic compound that is a starting material, an intermediate in, or an end product of
metabolism [17]

4If two nodes are connected by a link, they are called neighbours

5

which is the probability that a node, chosen at random, has precisely k edges [25].

The degree distribution for many networks can be described by a power law5, of the

form P (k) ∼ k−γ, where γ represents the rate of the decay. High values of γ indicate

a higher rate of decay (i.e., a smaller fraction of high-degree nodes). Networks that

follow a power-law degree distribution are referred to as scale-free networks [25].

1.3 Metabolism & Metabolic Networks

Metabolic processes are the basis of life, allowing cells to grow and reproduce, main-

tain their structures, and respond to their environments. The process of metabolism

involves breaking down certain materials to provide energy for vital cellular pro-

cesses, as well as producing other materials that are necessary for the maintenance

of life [11].

A metabolic network is an abstract representation of cellular metabolism, which

depicts all the interactions occurring between metabolites and biochemical reactions

within a living cell. Studying cellular metabolism through the analysis of metabolic

networks, can help us understand and make use of cellular metabolic processes in

order to promote development in the medical industry [11].

In metabolic networks, nodes represent metabolites and two nodes i and j are

connected by a link if there is a chemical reaction in which i is a substrate6 and j

a product7, or vice versa. Figure 1.1 shows a cartographic model of the metabolic

network of the bacterium Psuedomonas.

5The probability P(k) that a node in the network connects with k other nodes is roughly
proportional to k

−γ

6a molecule which is acted upon by an enzyme
7a substance found at the end of a chemical reaction

6

It is conceivable that the nodes in a modular8 metabolic network are connected

based on the biological role they fulfil [7]. Hence, nodes with the same biologi-

cal role could have similar topological roles. The participation coefficient and the

within-module degree of a node can determine its topological role (or “node” role)

to a great extent. Nodes with similar roles are expected to have similar relative

within-module connectivity. If ki is the number of links of node i to other nodes in

its module si, ksi is the average of k over all the nodes in si and σksi
is the standard

deviation of k in si, then:

Zi =
ki − ksi

σksi

(1.4)

is referred to as the Z-score [7]. The within-module degree Z-score is a measure of

how well node i connects with other nodes within its module. High values of Zi,

more specifically Z ≥ 2.5, indicate high within-module degrees and are classified as

hub-nodes. Lower values of Zi (i.e., Z < 2.5) are classified as non-hub nodes.

The participation coefficient Pi measures how uniformly the links of node i are

distributed among different modules. The participation coefficient Pi of a node i is

defined by Guimerà and Amaral [7] as:

Pi = 1−
Nm
∑

s=1

(
kis
ki

)2 (1.5)

where Nm is the number of modules in the network, kis is the number of links of

node i to nodes in module s, and ki is the total degree of node i. The participation

coefficient of a node is therefore close to 1 if its links are evenly distributed among

all the modules and 0 if all its links are within its own module.

8A modular representation of a network depicts groups of nodes, which are presumed to be
related in their functionality, as circular modules

7

Guimerà and Amaral [7] define seven different role classifications, three of which

are assigned to hub-nodes and the remaining four are attributed to non-hub nodes.

Each role is defined by a region in the Z-P parameter space (see Figure 1.2). Hub-

nodes can be classified as (i) provincial hubs - hubs that have most of their links

within their module (P ≤ 0.30)); (ii) connector hubs - hubs with many of their links

going to most of the other modules (0.30 < P ≤ 0.75); and (iii) kinless hubs - hubs

with links distributed uniformly among all modules (P > 0.75). Non-hub nodes can

be classified as (i) ultra-peripheral nodes - nodes with all their links within their

module (P ≤ 0.05); (ii) peripheral nodes - nodes with the vast majority of their

links within their module (0.05 < P ≤ 0.62); (iii) non-hub connector nodes - nodes

with many links to other modules (0.62 < P ≤ 0.80); and (iv) non-hub kinless nodes

- nodes with links distributed uniformly among all modules P > 0.80).

8

(a) A cartographic model of the Pseudomonas metabolic network

(b) A modular model of the Pseudomonas metabolic network

Figure 1.1: The metabolic network of the bacterium Pseudomonas. (a) A carto-
graphic model of the Pseudomonasmetabolic network. The nodes represent metabo-
lites (i.e., products and substrates) and the links represent genes (enzymes). Node
colour represents module assignment. (b) A modular representation of (a). Each
circle in the network represents a module, which is a set of nodes that are grouped
together based on similarities in their connectivity patterns [7]. The modules in this
network are computationally defined to aid in module identification.

9

Figure 1.2: Role-specific regions in the Z-P parameter space. Node roles are deter-
mined by the within-module degree, Z, and the participation coefficient, P. Nodes
with Z ≥ 2.5 are classified as module hubs and nodes with Z < 2.5 as non-hubs.
Non-hub nodes can be classified into four different roles:(i) ultra-peripheral nodes,
(ii) peripheral nodes, (iii) non-hub connector nodes, and (iv) non-hub kinless nodes.
Hub-nodes can be classified as (i) provincial hubs, (ii) connector hubs, and (iii)
kinless hubs [7].

10

1.4 Biological Modularity, Module Structure &Module Iden-

tification Methods

Biological networks appear to exhibit modularity in topological structure. In the

field of network biology, nodes and edges are defined according to the type of net-

work being examined. As mentioned earlier, metabolic networks contain metabolite

nodes and edges represent the enzyme-catalyzing reactions that connect them. Mod-

ularity in biological networks is believed to allow network sub-groups to function

semi-autonomously. Hence, modularity could give a certain degree of evolvabil-

ity to a network by enabling sub-groups to undergo changes without substantially

altering the functionality of the whole system [22]. This would suggest that the

metabolic pathways between-modules are relatively more constrained than those

within-modules.

The modular structure of complex networks is believed to play a crucial role in

their functionality. It is therefore necessary to develop algorithms to identify mod-

ules accurately [8]. The goal of module determining algorithms is to maximize a

given modularity function, thus uncovering the configuration that maximizes mod-

ularity in the network. A good network partition consists of many within-module

links and as few as possible between-module links. However, by strictly minimiz-

ing the number of between-module links or equivalently maximizing the number of

within-module links, the most favourable partition of the network will be composed

of a single module and no between-module links [8].

Guimerà and Amaral [7] identify modules by maximizing the network’s modular-

ity function. For a given partition of the nodes of a network into modules, the

11

modularity M of this partition is

M =
Nm
∑

s=1

[
ls
L
− (

ds
2L

)2] (1.6)

where Nm is the number of modules in the network, L is the total number of links in

the network, ls is the number of links between nodes in module s, and ds (
∑

ki) is

the sum of the degree of the nodes in module s. The quantity ls
L
is the proportion of

links within module s and the quantity (ds
2L
)2 is the estimated proportion of links one

would expect within module s from chance alone. The logic behind this modularity

definition is that, in a modular network, links are not uniformly distributed, thus a

partition with a high modularity is such that the density of within-module links is

significantly higher than the random expectation of that density [10].

They identify modular structure of metabolic networks through the use of simulated

annealing [7], which is a probabilistic algorithm designed to locate a good approx-

imation to the global optimum of a given function in a search space. Simulated

annealing will be discussed in further detail in chapter 2.

Newman [19] defines modularity as the number of links falling within-groups mi-

nus the expected number in the equivalent network with links placed at random.

This modularity can take on a positive or negative value with positive values indi-

cating the possible presence of modular structure. Newman used this framework to

search for modular structure within ecological networks by looking for divisions of

a network that have positive, and preferably large values of modularity. A review

of Newman’s modular concept and a discussion about it is given below.

For a network with n nodes and a particular division of the network into two groups,

12

the modularity function, Q, is given by:

Q =
1

4L

∑

ij

(Aij −
kikj
2L

)(sisj) (1.7)

where si = 1 if node i belongs to group one and si = −1 if node i belongs to group

two. Let the number of links between nodes i and j be Aij (these are the elements

of the adjacency matrix), which normally takes values of 0 or 1, although larger

values are possible for networks having multiple links between nodes. The expected

number of links between nodes i and j, if links are placed at random, is
kikj
2L

where

ki and kj are the degrees of the nodes and L = 1
2

∑

i ki is the total number of links in

the network. The fraction 1
4L

is a multiplicative constant included for compatibility

with the previous modularity definition [20].

It is noteworthy that the quantity
kikj
2L

can be larger than 1, thus when Aij takes

values of 0 or 1, this quantity cannot be the expected number of links between nodes

i and j, as possibly intended by the definition originally. Thus, the above function

may not be properly defined. The effect of maximizing the sum of the first term,

Aij, in the function Q, is to maximize the difference between the total number of

links within-groups and the total number of links between-groups. If we let x denote

the total number of links in group one, let y denote the total number of links in

group two, and let z denote the total number of links between the two groups, then

the sum of the first term in (1.7) can be re-written as:

∑

ij

Aij(sisj) = 2(x+ y − z) (1.8)

13

The sum of the second term in (1.7) is equal to
∑

i

(kisi)
2

2L
, which can be interpreted

as:

(
∑

i kisi)
2

2L
=

1

2L

(

∑

i∈grp1

ki −
∑

i∈grp2

ki

)2

=
1

2L
(2x− 2y)2

=
4(x− y)2

2L

Thus, (1.7) can be re-written as:

Q =
1

4L

[

2(x+ y − z)−
4(x− y)2

2L

]

(1.9)

Since L in equations (1.7) and (1.9) denotes the total number of links in the network,

L = x+ y + z. Substituting this quantity into 1.9 yields:

Q =
4xy − z2

2L2
(1.10)

Thus, maximizing Q is equivalent to maximizing 4 times the product of the number

of within-group links minus the square of the total number of links between-groups.

This is not a bad function to maximize, but it is not necessarily the best. This is an

equivalent function to maximize for the two module case in (1.6), in the sense that

both functions will identify the same modules. The relationship between functions

Q and M in the two module case is as follows. If the term ds in (1.6) is the sum

of the degree of all nodes in group s (for s ∈ 1 : 2) and if the term kisi in (1.7) is

the product of the degree of node i and its respective group membership (si = ±1),

then the relationship between ds and kisi is:

∣

∣

∣

∑

i

kisi

∣

∣

∣
=

{

d1 if si = 1

d2 if si = −1

14

At the same time, if the term ls in (1.6) is the total number of links in group s (for

s ∈ 1 : 2) and the term
∑

ij Aij(sisj) in (1.7) is the difference between the total

number of within-module links, x + y, and the total number of between-module

links, z, then the relationship between ls and
∑

ij Aij(sisj) is:

∑

ij

Aij(sisj) =

{

l1 + l2 if sisj = 1

−z if sisj = −1

It is noteworthy that Newman’s method may be extended to networks with more

than two groups. The standard approach is the repeated division of the groups into

two. Newman proposes that modularity can be expressed in terms of eigenvalues and

eigenvectors of a characteristic matrix for the network, called a modularity matrix

and that this expression leads to a spectral algorithm for community detection. For

a more detailed review of this algorithm, refer to [19].

1.5 Thesis Overview

The preceding sections of this chapter are intended to provide the reader with a basic

understanding of complex networks, biological modularity, and cellular metabolism.

Also included are reviews of two ubiquitous modularity functions commonly used for

maximizing modularity in complex networks. In Chapter 2, I revisit the concept of

biological modularity and discuss why simulated annealing can be used to maximize

this quantity in metabolic networks. I then introduce a new method for detecting

group structure in complex networks. In Chapter 3, I compare the new method

for detecting biological modularity with a method using simulated annealing, as

implemented by Guimerà and Amaral [7]. Simulated annealing was chosen for com-

parison because it is a widely used method for calculating biological modularity and

15

identifying group structure. The evaluation is done by comparing results for both

simulated data and the metabolic network of the bacterium Listeria monocytogenes,

an important pathogen in both agricultural and clinical settings. In Chapter 4, I em-

ploy regression analysis to decipher the relationship between a purely cartographic

definition of modularity and the functional features of a biological network. Chapter

5 concludes this thesis and discusses plans for future work.

Chapter 2

Methods & Computing

In this chapter, I will briefly revisit the concept of biological modularity and discuss

the importance of developing algorithms that give insight into the complex rela-

tionships that exist in biological networks. I then provide an overview of simulated

annealing, a popular module identification method that strives to maximize the

modularity of complex networks. I then introduce and provide a detailed overview

of a method for uncovering modular structure and maximizing modularity in com-

plex networks. The chapter concludes with a comparison of the two methods.

2.1 Biological Modularity Revisited

As discussed in §1.2, biological networks appear to exhibit modularity in topological

structure. Studying the modular topology of complex networks can provide insight

about the important relationship that exists between network structure and biolog-

ical function. Therefore, it is important to develop and implement algorithms to

uncover a network’s modularity with accuracy1 and computational efficiency. Many

methods have been proposed in recent years to uncover modular structure in com-

plex networks but many have failed due to high computational costs and lack of

accuracy [5].

1By accuracy we mean a program’s ability to correctly classify nodes into modules.

16

17

In the previous chapter, I introduced the method of Guimerà and Amaral [7] which

identifies modules by maximizing the network’s modularity through the use of simu-

lated annealing. Simulated annealing is currently a widely used method for module

identification in complex networks and will be discussed in the next section. For

a more detailed review of simulated annealing, refer to Kirkpatrick et al. [13] or

Johnson et al., [12].

2.2 Simulated Annealing (SA)

Simulated annealing (SA) is an approach, developed by Kirkpatrick et al. [13], used

to approximate the solution to complex combinatorial optimization problems [12].

The SA algorithm is designed to find the global maximum of an objective (cost)

function [13] which, in this case, is the maximization of the modularity function

(1.6) described in Chapter 1.

The name and inspiration comes from the physical annealing process, which is best

described in terms of the physics of crystal growth [12]. The technique for growing

a crystal involves melting and controlled cooling of the raw materials used to make

the crystal. The high temperatures enable the atoms to become unstuck from their

initial positions allowing them to drift randomly through states of high internal en-

ergy. The gradual cooling gives the atoms opportunities to find arrangements with

lower internal energy than the initial state of the system. If the temperature is low-

ered too quickly (this is often referred to as rapid quenching), the resulting crystal

will have many defects and the trapped energy level will be much higher than in a

perfectly structured crystal [12].

18

By algorithmic analogy to this physical process, the rapid quenching is analogous

to the physical system getting stuck in local optima. The states of the physical

system relate to the solutions of the optimization problem, and the internal energy

of the state relates to the cost of the solution (i.e., the cost function). Lastly, when

the physical system is in its ground state (i.e., in a state of minimum energy), this

corresponds to the optimal (global) solution [12].

2.2.1 The Basic Iteration

The basic iteration of the SA algorithm is that at each step, it considers some neigh-

bour s’ of the current state s, and probabilistically decides whether the configuration

of the current state is retained or not [13]. The probabilities are chosen such that the

system ultimately moves to lower states of energy (i.e., it makes downhill moves).

However, to avoid entrapment in poor local optima, the occasional uphill move (i.e.,

moving to a state of higher internal energy) is allowed [12].

2.2.2 Acceptance Probabilities

The probability of transitioning from the current state s, to the neighbouring state,

s’, is a function P (△E, T) of the change in the energy (△E) of the system (i.e., the

change in energy between s and s’) and the temperature (T). The random part of

the SA algorithm is implemented by randomly generating numbers from the uniform

[0,1] distribution. One such number is selected and compared with P (△E, T). If

it is less than P (△E, T), the new state, s’ is accepted; if not the original state, s

is used to initiate the next step [13]. This means that the system may move to a

new state even if it costs more energy than the current state. It is this feature that

prevents the method from becoming stuck in local minima.

19

2.2.3 Computational Temperature

Initially, temperature is set to a high value and as the simulation proceeds, the

temperature is gradually reduced at each step in the annealing schedule until it

reaches a final temperature of zero. As the temperature goes to zero, the transition

probability tends to zero if △E > 0 and is a positive value if △E ≤ 0. That way,

for sufficiently small values of T, the system will increasingly favour lower energy

values and avoid higher energy values. When T=0, the procedure will only make a

move if it is at low cost.

For the particular simulated annealing program (modulesSA) provided to us by

Roger Guimerà, when identifying modules, the cost associated with moving the sys-

tem from state s to state s’ is C = −M , where M is the modularity as defined in

(1.6). At each temperature, T, these random updates are accepted with probability:

P =







1 if Cf ≤ Ci

exp
(

−
Cf−Ci

T

)

if Cf > Ci

where Cf is the cost after the update and Ci is the cost before the update. Guimerà

and Amaral [7] propose at each T, Ni = fn2 individual node movements are made

from one module to another, where n is the number of nodes in the network. They

also propose Nc = fn collective movements, which entails either the merging of two

modules or the splitting of a module. The number f is the iteration factor which

has a recommended range of f ∈ [0.1, 1]. However, larger values of f (1 or larger)

will generally give better results. After the movements are evaluated at a certain

T, the system is cooled down to a new temperature T’ = cT, where c is the cooling

factor. This cooling factor must be strictly larger than 0 and strictly smaller than

1. In general, values closer to 1 will result in better results and longer execution

20

times. The recommended values for cooling factor are c ∈ [0.990, 0.999]. This step

is repeated until the system reaches a satisfactory state, or until the number of it-

erations has been exhausted.

Although SA is one of the more accurate methods, it is computationally expensive

and thus its use is not recommended for larger networks (in the order of 105) [5]. In

the next chapter, I describe a new method for module identification, which I hope

will yield comparable results in a computationally efficient manner.

2.3 A Schematic Searching (SS) Algorithm

2.3.1 The Inspiration Behind the SS Algorithm

The inspiration for the SS algorithm comes from a data mining paper entitled Fully

Automatic Cross-Associations [4]. This method takes a binary matrix, which repre-

sents associations between row and column objects, and it simultaneously groups the

row and column objects so that similar objects are grouped together into rectangular

regions called cross-associations. These cross-associations reveal the fundamental

structure or patterns associated with the binary matrix. Essentially, this approach

takes as input a binary matrix and automatically determines a good number of row

groups, k, and column groups, l, and rearranges the rows and columns to uncover

the hidden structure of the matrix. A method of this sort is ideal for uncovering

structure in complex networks and thus the SS algorithm is strongly motivated by

the methods used in [4]. The SS algorithm is described in detail in the sections

that follow.

21

2.3.2 Methodology

For a metabolic network consisting of n metabolites, let A = [ai,j] be a n × n

binary symmetric matrix that contains information about the associations between

all metabolites in the network, where

aij =

{

1 if ∃ a link between i and j

0 if ∄ a link between i and j

It is noteworthy that ai,j = 0 when i = j. That is, all diagonal entries of A are

zeros as a node cannot be linked to itself. Now, let us index the rows and columns

of A as 1, 2, . . . , n. To gain further information about the modular structure, let us

rearrange the underlying matrix such that all nodes corresponding to group one are

listed first, followed by nodes in group two, and so on. Since the matrix is symmet-

ric, the new row and column index of A will be identical. Such a rearrangement

subdivides A into smaller sub-matrices called modules that, in an ideal situation,

contain more within module links and few between module links.

In real complex networks, the true number of modules, m, is unknown. However,

in general the number of modules that exist in a network are substantially fewer

than the total number of nodes, n, that it possesses. This algorithm requires that

one specifies the largest possible number of modules a priori. Since we are unsure

of the true number of modules, we start off with m = n. In other words, a starting

index 2 is created in which each node is assigned its own module. We find that after

the first iteration, the number of modules decreases substantially thus allowing for

the algorithm to progress at a faster rate.

2The starting index for an n × n network matrix is of length n and states which module each
node belongs to.

22

2.3.3 The Basic Iteration

To calculate the starting modularity score for a given network, the modularity func-

tion (refer to Appendix A.1) takes as input the network matrix, the starting index

for the network - which is defined by specifying the largest possible number of mod-

ules, and the total number of network links; it calculates its current modularity

score and records it. I use the modularity definition from Guimerà and Amaral [7]

to calculate the modularity of networks. Since each node is within its own module,

one should expect to see a modularity score hovering around zero. The implementa-

tion of the basic iteration algorithm is comprised of a modularity function and two

other important functions which will be described in detail below.

The first function takes the starting index for the network and changes the group

membership of the ith node (for i ∈ 1 : n) to the jth group (for j ∈ 1 : m). Each time

the group membership of node i changes, a new modularity score is calculated for the

‘new’ index and is recorded into a vector of length m. When a node has exhausted

all possible groupings, that node will change its group membership to the group that

yields the highest modularity score. The program then moves on to the next node

and this entire process is repeated again. An iteration of this function is complete

once every node in the index has changed its group membership to the group that

yields the highest modularity score (including the possibility of keeping its original

group membership). This process of individual node movements continues until ei-

ther the index or the modularity score remains unchanged during an entire iteration.

The second function in the algorithm takes the converged index resulting from the

23

first function and collectively moves a complete set of nodes from one group into an-

other group. There are
(

m

2

)

possible group merges in total. Each time a set of nodes

in group j merges with nodes in group k, for j ∈ 1 : (m− 1) and k ∈ (j+1) : m, the

modularity score for the changed index is recorded into a
(

m

2

)

+ 1 column vector,

along with its corresponding index recorded in an n × (
(

m

2

)

+ 1) matrix. It should

be noted that a one is added to hold the modularity score of the input network ma-

trix and the starting index, respectively. Once all possible group merges have been

made, the iteration is complete and the index that yields the best modularity score

is output and then taken as input to the first function. This process of iterating

between the two functions described above continues until either the index or mod-

ularity score remains unchanged. The end result of the program is the converged

modularity score and the converged index which places each node in the network

into the best possible module.

This is a hill-climbing algorithm. A change in the group membership of a node

will only be accepted if its corresponding modularity score is larger than the mod-

ularity score preceding the change. It is this feature that allows us to find a good

partition of the network into modules. There are drawbacks, however, to hill climb-

ing algorithms. Hill-climbing algorithms can be susceptible to finding sub-optimal

peaks, meaning that the algorithm may only be finding the local best solution in-

stead of the global best solution. Further discussion of hill-climbing algorithms will

take place in §2.4.

24

2.3.4 Pseudo-code for the SS Algorithm

The following pseudo-code implements the SS algorithm as described above starting

with a given network and its starting index. The main function in the program

is called ‘mod.opt’. It consists of functions for individual node movements (inm)

and for collective node movements (cnm). The function ‘modularity’ was created

to calculate the modularity score for a network, and is called within the ‘inm’ and

‘cnm’ functions. Refer to Appendices A.1-A.4 for the R scripts for all of the afore-

mentioned functions.

1: Read the network matrix and the initial assignment of nodes to groups

2: for each of n nodes in the network do

3: for each of k groups do

4: Change group membership of node i to group k

5: Compute modularity score

6: Save modularity score

7: end for

8: Change group membership of node i to group that yields highest modularity

score

9: end for

10: for each group of nodes do

11: for each remaining group of nodes do

12: Merge groups

13: Compute modularity score for each merge

14: Save modularity score and node assignments to groups

15: end for

25

16: Merge the pair of groups that yields the largest increase in modularity score

17: Save modularity score and node assignments to groups

18: end for

19: repeat

20: 2 through 18

21: until either (i) modularity score remains unchanged, or (ii) the assignment of

nodes to groups does not change

2.4 The SS Algorithm Versus SA Algorithm

The SA and the SS algorithms are both iterative improvement algorithms. Ac-

cording to Russell and Norvig [23], SA falls in a class all of its own, whereas the

SS algorithm falls under the class of hill-climbing algorithms (specifically, steepest-

ascent version). The differences between SA and the SS algorithm are as follows.

SA randomly moves a node from one group to another and allows the search to

accept lower modularity scores in order to avoid entrapment at a sub-optimal score.

If the move actually improves the modularity score, it is always executed. Otherwise,

the algorithm makes the move with some probability less than 1 (refer to section

2.2.3). When the temperature is high, “bad” moves are more likely to be allowed.

As the temperature tends to zero, they become more and more unlikely, until the

algorithm behaves more or less like a hill-climbing algorithm. The benefit to using

the SA algorithm is that if given a long enough cooling schedule, SA will find a

global optimal solution [23]. The downfalls of SA are (i) to apply the algorithm to

a real dataset, the user is faced with the problem of having to choose the values of

the parameters, such as the iteration factor, cooling factor, final temperature and

number of iterations, and (ii) depending on the annealing schedule (i.e., the rate at

26

which the temperature is lowered), execution times will be much longer [23] [12].

The SS algorithm does not explore the effect of a random move. Nodes are sys-

tematically moved (in either singletons or collectively) into each possible group and

a change in the group membership of a node (or group of nodes) will only occur if

it yields a higher modularity score. In other words, we don’t waste time making

random jumps to groups. Instead, we cover all possible jumps for each node or

each group of nodes. The benefit to using a hill-climbing algorithm is that it often

converges to a solution much faster as it is usually quite easy to improve a bad

state [23]. The drawback is the risk of getting stuck at a sub-optimal solution. One

solution to this problem is to restart the search from a different starting point [23].

In this case, this means restarting with a new set of starting indices. By doing so,

a reasonably good solution can often be found after a small number of restarts. It

is noteworthy that the SS algorithm does not require a lot of parameters to execute

the program. The only choice the user is faced with is the choice of a starting set

of indices.

In the next chapter, I discuss the results from the SS algorithm and SA under

both simulated networks and the real world network of Listeria monocytogenes. I

then compare the efficiency and accuracy of both approaches in these examples.

Chapter 3

Application of the SS Algorithm

The first section of this chapter discusses the criteria used to construct the simulated

networks, followed by a discussion of the results for these networks using both the

SS and SA algorithms. The second section of this chapter discusses the results of

both algorithms when applied to the real world network of the L. monocytogenes

bacterium. Cartographic representations of all networks discussed in §3.1.1 and

§3.2.1 are available in Appendix C. The network visualization software, Pajek, was

used to draw all networks.

3.1 Simulated Data

To test the performance of the SS algorithm on different types of networks, I sim-

ulated eleven networks under each of three classes (denoted “dense”, “fuzzy”, and

“sparse”) of binary symmetric networks. The networks under each class contain

the same number of nodes, but one network has known modular structure and the

remaining ten have random structure with about the same connectivity. The ran-

dom networks are generated as follows: each link is included in the network with

fixed probability p and with the presence or absence of any two links in the network

being independent. The fixed probability p, is chosen such that the connectivity

of the random network is about the same as that of the structured network. The

27

28

rationale for generating ten randomizations under each class is to ensure that if

any differences exist in the modularity between the structured network and its ran-

dom counterparts, they aren’t just occurring by chance. The first class of networks

has very “dense” within-module connections. The network with known structure

contains a high percentage (85-90%) of within-module connections and a very low

percentage (1%) of between-module connections. The second class of networks is

called a “fuzzy” network because the division of the network into distinct modules

is not as clear. For the network with known modular structure, there is a high per-

centage (85-90%) of within-module connections and a moderate percentage (25%) of

between-module connections. The third class of network is “sparse”, having within-

module connection rates of about 8% and between-module connection rates of about

0.2% for the network of known structure. Note that the percentage of within- and

between-module connections should not add up to 100%. The percentage of within-

module links is defined as the fraction of links within the module over of all possible

within-module links that can exist (i.e.,
(

n

2

)

); the percentage of between-module

links is similarly defined. It is also noteworthy that sparsely connected networks

usually contain many singleton nodes. The modulesSA program only takes into

consideration the links between nodes, subsequently classifying singleton nodes into

their own module. Hence, for a fair comparison, I developed an R script (refer to

Appendix A.5) to remove all zero rows and columns (i.e., singleton nodes) from

our sparse network matrices. This way each singleton node can be later counted

as a module for both methods. The simulated networks were initially constructed

in matrix format suitable for the SS algorithm and I developed an R script (refer

to Appendices A.6 and A.7) for converting data between the format of the SS al-

gorithm and the format suitable for the modulesSA program provided by Guimera

29

and Amaral.

To analyze the networks using the SS algorithm, the program requires the user

to enter the network matrix and a starting index for the network in the modularity

optimization function. Recall that the starting index of a network states the initial

assignment of nodes to groups. As mentioned in §2.4, because the SS algorithm is

a hill-climbing algorithm, it is wise to restart the algorithm with different starting

indexes to avoid finishing with a sub-optimal partition of the network. This can be

done through the use of batch jobs, with each job starting the search with a different

starting index. The effect of restarting the search with a new starting index could

lead to the same partition in differing amounts of time or it could lead to a different

partition of the network altogether. Since the true number of groups in real complex

networks is unknown, when confronted with analyzing a network for the first time,

it is recommended that the starting index is set such that the number of groups in

the network is equivalent to the number of nodes in the network (i.e., m=n). Any

subsequent starting indexes may be generated by taking a random sample of groups

ranging from m=2 up to m=n.

The simulated networks are also analyzed using the modulesSA program. The pro-

gram prompts the user for the following parameters: (i) A random generator seed

which must be a positive integer. Since the algorithm is stochastic, different runs

will generally give slightly different partitions of the network. Two runs with the

same seed should give the same results. (ii) The network file. (iii) The iteration

factor, f, which at each temperature of the simulated annealing, the program per-

forms fn2 individual node updates and fn collective updates. Large values of f (1

30

or larger) will generally give better results, albeit longer execution times. I chose

an iteration factor of 3 as this was recommended by the authors of the program.

(iv) The cooling factor, c, which is the rate at which the system is cooled, must

be strictly larger than 0 and strictly smaller than 1. In general, values close to 1

will result in better partitions of the network and longer execution times. I chose

a cooling factor of c = 0.999 for all networks. (v) The number of randomizations

gives the option to calculate the value of the modularity in a random network with

the same connectivity as the original network. Calculation of the modularity for a

random network will take approximately the same amount of time as for the original

network. I did not run any randomizations therefore this parameter was always set

to zero.

3.1.1 Results for Simulated Data

Table 3.1 shows selected results (i.e., the highest modularity scores achieved) from

the simulated data for the SS and SA algorithms. For the structured network with

“dense” connections within-modules and sparse connections between-modules, both

algorithms converged to the same result. For the SS algorithm, initiating each search

with a different starting index did not result in different partitions of the network,

although, it did affect the run-time of the algorithm in that decreasing the starting

number of modules resulted in shorter run-times. Even when the search was initi-

ated with each node as a module of its own, the SS algorithm ran substantially faster

than the SA algorithm. For a random network of the same size and connectivity

as its densely connected and structured counterpart, both algorithms converged to

very low modularity scores, which is to be expected for a network with no inherent

structure. Such results indicate that the modularity of the structured network is

significant, although to be certain, I calculate summary statistics (i.e., minimum,

31

maximum, mean, and standard deviation) and ranges (i.e., mean ± 1σ, 2σ, or 3σ)

for the ten random networks in this class to see how much the maximum modularity

of the structured network deviates from the mean modularity of the random net-

works. I also plot a histogram of the modularity scores of the ten random networks

and superimpose the maximum modularity score of the structured network on this

plot (refer to plot A in Appendix B). I then check whether the maximum modu-

larity score achieved for the structured network (refer to Table 3.1) falls outside of

the computed ranges. Since the maximum modularity score for the structured net-

work falls far more than three standard deviations above the mean modularity score

for the ten random networks, this indicates that the modularity of the structured

network is significant. For visualizations of the structured and a random densely

connected networks (analyzed by the SS algorithm) refer to Appendix C.1.

For the “fuzzy” structured-network with dense connections within-modules and

moderate connections between-modules, the modularity scores resulting from both

algorithms are quite low, indicating that extracting discernible modular structure

in such networks is difficult. It is noteworthy that for the SS algorithm, differences

in the starting index did result in different partitions of the network and also in

different run-times. Table 3.1 shows the highest modularity score attained by each

method. SA did yield slightly better results, but the run-time was substantially

slower. For a random network of same size and connectivity as its “fuzzy” con-

nected and structured counterpart, both algorithms converged to lower modularity

scores than those of the structured network. It is not as clear here whether the

modularity scores for the random and structured networks are significantly differ-

ent, since the modularity scores for both network types are quite low. I want to

32

see how much the maximum modularity of the structured network deviates from

the mean modularity of the random networks. The test is carried out in the same

manner as mentioned above and I find that the maximum modularity for the struc-

tured network (refer to Table 3.1) falls more than three standard deviations above

the mean modularity for the ten random networks (refer to Table 3.2 and plot B

in Appendix B). This gives strong evidence that the modularity of the structured

network is significant. For visualizations of the structured and a random densely

connected networks (analyzed by the SS algorithm) refer to Appendix C.2.

For the structured network with “sparse” connections within- and between-modules,

both algorithms converged to very similar results. The modularity score from the

SA algorithm was marginally higher than that of the SS algorithm and the run-time

for the SS algorithm was considerably longer. In theory, since the SS algorithm is

a hill-climbing algorithm, it should converge to a solution much faster than the SA

algorithm, yet in this case the SS algorithm failed to do so. This suggests that the

SS algorithm is not as efficient at analyzing “sparse” networks as it is at analyzing

networks with “dense” or “fuzzy” connections between nodes. The longer run-time

could be due to inefficiencies in the program’s code. Nonetheless, the SS algorithm

is promising in that it gives comparable results to SA. In fact, more than half of

the modules identified by SS are identical to modules identified by SA and many

of the remaining modules have a high percentage of nodes in common. Again, it is

noteworthy that for the SS algorithm, differences in the starting index did result in

different partitions of the network and also in different run times. Table 3.1 shows

the highest modularity score attained by each method. For a random network of

33

same size and similar connectivity as its sparsely connected and structured coun-

terpart, I found that the modularity scores attained from both methods were very

similar to the modularity scores for the structured version. Since the modularity

scores are very similar, I want to see how much the maximum modularity of the

structured network deviates from the mean modularity of the random networks. The

test is carried out in the same manner as mentioned in the two previous paragraphs

and I find that the maximum modularity for the structured network (refer to Table

3.1) barely falls three standard deviations outside of the mean modularity for the

ten random networks (refer to Table 3.2 and plot C in Appendix B). This gives only

marginal evidence that the modularity of the structured network is significant. In

a situation such as this, where the difference in modularity between the structured

and random networks is not so clear, this could imply that either the current defi-

nition is not appropriate for calculating modularity in sparsely connected networks,

or that the randomizations for the sparse networks are indeed highly structured.

Guimerà and Amaral [9] demonstrate both numerically and analytically that, due

to fluctuations in the establishment of links, random graphs have high modularity.

For visualizations of the structured and a random densely connected networks (an-

alyzed by the SS algorithm) refer to Appendix C.2.

In the next section, I test the performance of the SS algorithm and the SA algorithm

on the metabolic network for L. monocytogenes.

34

T
ab

le
3.
1:

S
el
ec
te
d
R
es
u
lt
s
fr
om

S
S
an

d
S
A

A
lg
or
it
h
m
s
fo
r
S
im

u
la
te
d
D
at
a

N
et
w
or
k

C
la
ss

“T
ru
e”

M
o
d
S
co
re

P
ro
gr
am

U
se
d

S
ta
rt
in
g
#

G
ro
u
p
s

C
on

ve
rg
ed

M
o
d
S
co
re

E
st
im

at
ed

#
G
ro
u
p
s

R
u
n
T
im

e

n
o
d
es
:
12
0

gr
ou

p
s:

3
“d

en
se
”

0.
64
13
28

S
S

12
0

0.
64
13
28

3
25
.6
9
se
c

w
it
h
in
:
85
-9
0%

S
A

n
/a

0.
64
13
28

3
29
.3
7
m
in

b
et
w
ee
n
:
1%

to
ta
l
li
n
k
s:

21
02

n
o
d
es
:
12
0

ra
n
d
om

st
ru
ct
u
re

“d
en
se
”

u
n
k
n
ow

n
S
S

12
0

0.
11
85
92
4

6
35
.1
5
se
c

co
n
n
ec
ti
on

ra
te
:
30
%

S
A

n
/a

0.
12
74
32

5
41
.5
7
m
in

to
ta
l
li
n
k
s:

21
02

n
o
d
es
:
20
0

gr
ou

p
s:

25
“f
u
zz
y
”

0.
07
74
06
04

S
S

25
0.
10
25
88

7
61
.6
9
se
c

w
it
h
in
:
85
-9
0%

S
A

n
/a

0.
10
85
49

5
4.
02

h
rs

b
et
w
ee
n
:
25
%

to
ta
l
li
n
k
s:

55
14

n
o
d
es
:
20
0

ra
n
d
om

st
ru
ct
u
re

“f
u
zz
y
”

u
n
k
n
ow

n
S
S

20
0

0.
09
34
23
16

7
3.
54

m
in

co
n
n
ec
ti
on

ra
te
:
27
.5
%

S
A

n
/a

0.
10
31
05

5
2.
68

h
rs

to
ta
l
li
n
k
s:

55
14

n
o
d
es
:
60
0

gr
ou

p
s:

90
“s
p
ar
se
”

0.
26
34
66
2

S
S

40
0

0.
83
08
52
8

34
14
.3
6
h
rs

w
it
h
in
:
8%

S
A

n
/a

0.
83
81
78

33
4.
54

h
rs

b
et
w
ee
n
:
0.
23
%

to
ta
l
li
n
k
s:

56
5

n
o
d
es
:
60
0

ra
n
d
om

st
ru
ct
u
re

“s
p
ar
se
”

u
n
k
n
ow

n
S
S

51
7

0.
82
16
08
2

41
16
.8
3
h
rs

co
n
n
ec
ti
on

ra
te
:
0.
30
%

S
A

n
/a

0.
83
12
51

39
3.
76

h
rs

to
ta
l
li
n
k
s:

56
7

35

T
ab

le
3.
2:

S
u
m
m
ar
y
S
ta
ti
st
ic
s
fo
r
M
o
d
u
la
ri
ty

S
co
re
s
of

R
an

d
om

N
et
w
or
k
s

S
u
m
m
ar
y
S
ta
ti
st
ic
s

“D
en
se
”
R
an

d
om

“F
u
zz
y
”
R
an

d
om

“S
p
ar
se
”
R
an

d
om

M
in

0.
11
04

0.
09
05
6

0.
80
14

M
ax

0.
11
86

0.
09
61
8

0.
82
16

M
ea
n

0.
11
48

0.
09
31
1

0.
81
21

S
D

0.
00
24
79

0.
00
17
45

0.
00
71
78

M
ea
n
±

S
D

(0
.1
12
3,

0.
11
72
)

(0
.0
91
36
,0
.9
48
5)

(0
.8
04
9,

0.
81
93
)

M
ea
n
±

2*
S
D

(0
.1
09
8,

0.
11
97
)

(0
.0
89
62
,
0.
09
66
0)

(0
.7
97
7,

0.
82
64
)

M
ea
n
±

3*
S
D

(0
.1
07
3,

0.
12
22
)

(0
.0
87
87
,
0.
09
83
4)

(0
.7
90
6,

0.
83
36
)

36

3.2 Real Genomic Data

To test the performance the SS algorithm on a real genomic network, I chose the

bacterial network of L. monocytogenes which is a bacterium commonly found in

water and soil and is the cause of listeriosis in humans - a serious infection that is

fatal if left untreated. The structural model of the Listeria metabolic network was

derived from the substrate, product, and enzyme code information within the Ma

and Zeng [15] database [6]. This network was found to contain 657 metabolite nodes

and 697 genes (which encode enzymes that are represented by links), making it a

sparse network. Note that not all biochemical reactions between metabolite nodes

in the Listeria network are reversible, unlike our simulated networks. However, in

this application I will treat the directed links as undirected under both methods

of analysis (SS and SA) because the modularity formula given in (1.6), which is

employed in both the SS and SA algorithms, treats networks as symmetric. The L.

monocytogenes network will be discussed in more detail in Chapter 4.

3.2.1 Results for Real Genomic Data

Table 3.3 shows the best partition achieved by each method for the L. monocytogenes

network. As can be seen from the table below, the SS and SA algorithms partitioned

the Listeria network into 95 and 92 modules, respectively. The SS algorithm resulted

in a slightly smaller modularity score as compared to the modularity score resulting

from the SA algorithm and the run-time for the SS algorithm was substantially

longer. The latter was not surprising; I deduced from the results in §3.1.1 that

the SS algorithm does not perform as efficiently when analyzing sparsely connected

networks. Since the modularity scores resulting from the two methods are relatively

close, it is interesting to know what similarities and what differences exist between

37

the two partitions of the network. To determine the similarity of the results from

the two methods, a two-way table of the modules as determined by each method

was constructed. The table, unfortunately too large to be displayed in this thesis,

will be described in detail here. The table is arranged such that the main diagonal

entries show the number of metabolite nodes that the modules from each method

have in common. The majority of the off-diagonal entries are zeros indicating that

module j from the SS algorithm has no nodes in common with module k from the

SA algorithm (where j 6= k). Ten non-zero off-diagonal entries were found; they

represent nodes that were classified into one module by one method and split into

two or more modules by the other method. I found that the network partitions

from the two methods share 82 identical modules. The smallest modules are of

size two (there are 52 of these) and the largest shared module contains 47 nodes.

Recall that SA and SS partitioned the Listeria network into 92 and 95 structural

modules, respectively, leaving ten SA modules and 13 SS modules that differ from

one another. Examples of these differences are as follows: of the ten SA modules,

four of them are subsets of SS modules and the remaining six SA modules have their

nodes split between one or more SS modules. Of the 13 SS modules, six of them

are subsets of SA modules and the remaining seven have their nodes split between

one or more SA modules. It is important to note that between the two methods,

all but two modules (one module from each method) have between 59-94% of their

nodes in common. This, along with the results from the simulated data, indicates

that the SS method gives comparable results to SA and that the SS method has

merit, albeit it is less efficient at analyzing sparse complex networks. Fortunately,

the efficiency of the code can be improved, although this task falls under future

work. For visualizations of the Listeria network, as partitioned by both methods,

38

refer to Appendix C.2.

In summary, I have tested the performance of the SS algorithm on both simulated

and real world networks as well as to test its performance against that of SA in

this chapter. In Chapter 2, I established that the SS algorithm is a hill-climbing

algorithm and that these types of algorithms often make rapid progress toward a

solution since improving a “bad” state is usually quite easy. I also established,

however, that hill-climbing algorithms are susceptible to getting “stuck” in local

maxima. One resolution to this problem is to restart the search using a new set

of starting indices. By doing so, a reasonably good partition of the network can

often be found after a small number of restarts. That being said, we expected the

SS algorithm to always converge to a good solution more quickly than SA, but that

the result may or may not be the global optimal solution. The tests confirmed

the aforementioned expectation to be partially true; SS did find reasonably good

partitions of the networks, however, SA resulted in slightly better partitions in

some cases. Nonetheless, I have concluded that the SS algorithm yields comparable

results to SA since the differences in modularity scores are marginal and because

the network partitions are quite structurally similar. The SS algorithm proved

to be more efficient than SA at analyzing “dense” and “fuzzy” networks, but not

at analyzing “sparse” networks. It is interesting that the modularity scores of the

structured and random networks are very similar under the sparse class of networks.

In a random network one would expect that there is no obvious modularity score

or structure to converge to. The fact that the modularity score for the structured

network is so similar to that of the random network implies that there is not an

obvious point for the sparse structured network to converge to either. This is quite

39

T
ab

le
3.
3:

S
el
ec
te
d
R
es
u
lt
s
fr
om

S
S
an

d
S
A

A
lg
or
it
h
m
s
fo
r
th
e
L
is
te
ri
a
m
on

oc
yt
og
en

es
M
et
ab

ol
ic

N
et
w
or
k

N
et
w
or
k

“T
ru
e”

M
o
d
S
co
re

P
ro
gr
am

U
se
d

S
ta
rt
in
g
#

G
ro
u
p
s

C
on

ve
rg
ed

M
o
d
S
co
re

E
st
im

at
ed

#
G
ro
u
p
s

R
u
n
T
im

e

L
.
m
on

oc
yt
og
en

es
n
o
d
es
:
65
7

u
n
k
n
ow

n
S
S

65
7

0.
88
99
46
1

95
2.
02

d
ay
s

st
ru
ct
u
re
:
u
n
k
n
ow

n
S
A

n
/a

0.
89
05
24

92
5.
72

h
rs

to
ta
l
li
n
k
s:

67
8

40

possibly the reason why the SS algorithm is not as efficient at analyzing sparse

networks. I do believe, however, this problem can be rectified through the use

of a more efficient program. In the next chapter, I employ statistical analyses to

explore the relationship between a purely cartographic definition of modularity and

the functional components of a real biological network.

Chapter 4

The Relationship Between

Metabolic Topology & Genome

Evolution in Species of the

Pathogenic Bacterium Listeria

monocytogenes

Thus far, this thesis has focused on the topological features of metabolic networks

and the use of module determining algorithms, such as SA and the newly introduced

SS method, to identify modular structure in metabolic networks. We have seen that

it is reasonable, when studying metabolic networks, to think in terms of their topol-

ogy as this helps us to identify sets, or modules, of interactions. Such information

can provide us with insight into the function and evolutionary history of the com-

ponents of the system. The question remains, however, do the structural features of

metabolic networks have any biological relevance? More specifically, is there a con-

nection between the evolutionary (selective) pressures exerted by the environment

on an organism and the topology of a metabolic network? In this chapter, I will use

regression analysis to explore possible associations between the metabolic structure

41

42

of the L. monocytogenes network and the evolutionary features of the genes.

The structure of Chapter 4 is as follows: the first section of this chapter describes

the L. monocytogenes bacterium in greater detail than previously discussed. The

second section presents an overview of evolutionary genomics. The third and fourth

sections introduce the data and methods, respectively, and in the final section I

discuss the results.

4.1 Ecology & Pathogenicity of L. monocytogenes

L. monocytogenes is a food-borne pathogen that causes a highly invasive disease

called listeriosis in both humans and animals. Persons most susceptible to listerial

infections are pregnant women, newborns, and individuals with weakened immune

systems. In humans, listeriosis is often clinically manifested as meningitis, encephali-

tis, late-term spontaneous abortion, and septicemia. In animals, this pathogen has

been linked to invasive diseases in more than 40 species of mammals and birds. L.

monocytogenes has the ability to survive and multiply outside of mammalian hosts

for long periods of time and can withstand stressful environmental conditions that

would otherwise kill many other food-borne bacterial pathogens [21].

There are many different strains of the L. monocytogenes bacterium, and several

different strain-typing methods (more commonly referred to as sub-typing methods)

may be used to identify the various strains within a bacterial species or subspecies.

The two main types of methods are conventional (or phenotypic) sub-typing meth-

ods and DNA-based sub-typing methods, with the latter being the more superior

of the two, as it allows for more sensitive discrimination of different strains [27].

Through the use of DNA-based sub-typing methods, it has been shown that L.

43

monocytogenes can be grouped into two major lineages, referred to as lineages I and

II [27]. Night et al. [21] state that “Lineage I isolates appear to have significantly

greater pathogenic potential...while lineage II strains may represent an environmen-

tally adapted lineage”, although lineage II is still capable of invasive disease. These

two lineages represent ecologically divergent pathogens, meaning they “differ in their

evolutionary history and population structure” [6]. It is noteworthy that L. innocua,

a closely related species which is non-pathogenic, represents an even larger level of

ecological divergence from lineages I and II of L. monocytogenes [6]. A comparative

genomic analysis of L. innocua and lineages I and II of the L. monocytogenes bac-

terium (hereafter referred to as L.m-L1, and L.m-L2, respectively) is presented in

the next section.

4.2 Evolutionary Genomics

Recall that metabolic networks are abstract representations of metabolism. In §3.2,

we established that the metabolic network of L. monocytogenes is a product-reactant

centred network. That is, the metabolites are represented by nodes and the genes

encode enzymes that are represented by the links. Since we are interested in how

ecology-specific selection pressure relates to metabolism and metabolic structure, a

gene-specific measure of the strength and direction of selection pressure called the

dN/dS ratio (ω) was computed for each member of the Listeria core genome1.

Here, L. innocua and lineages I and II of L. monocytogenes are ecologically diver-

gent, so the dN/dS ratio was independently estimated for each of these groups.

A non-synonymous substitution is a change between codons2 that leads to a change

1The core genome is defined here as the set of genes found across all strains of a species.
2A codon is a combination of three nucleotides in a row, that can take one of four states (i.e., one

for each of the four nucleotide bases A, C, G, or T occurring in DNA) at each position producing

44

in amino acid sequence, whereas a synonymous substitution is a change between

codons that does not. The rate of non-synonymous substitution within a given gene

sequence is denoted by dN , and the rate of synonymous substitution is denoted by

dS. The ratio dN/dS (also denoted as ω) is employed as a measure of the strength

and direction of selection pressure. It is used to infer whether natural selection is

acting to promote the fixation of advantageous mutations (i.e., positive selection)

or to remove deleterious mutations (i.e. purifying selection) [2]. In general:

ω < 1 : negative (purifying) selection

ω = 1 : neutral selection

ω > 1 : positive (diversifying) selection

That is, when synonymous substitutions occur at a faster rate than non-synonymous

substitutions, the ratio of non-synonymous to synonymous substitutions (i.e., ω

value) is less than one. When synonymous substitutions occur at about the same rate

as non-synonymous substitutions, the ratio of non-synonymous to synonymous sub-

stitutions (i.e., ω value) is approximately one. When non-synonymous substitutions

occur at a faster rate than synonymous substitutions, the ratio of non-synonymous

to synonymous substitutions (i.e., ω value) is greater than one.

4.3 Materials & Methods

4.3.1 Genomic Data

Dunn et al. [6] examined one genome of L. innocua and four genomes of L. monocy-

togenes, having complete genome sizes ranging from 2,821-3,111 genes. These data

are the subject of the analyses presented in this chapter. Only those genes that

were present in all five genomes and that were greater than or equal to 100 codons

(300 nucleotides) in length were considered for further analysis. In total, there were

a total of 43 = 64 possible combinations.

45

1,905 genes that met this criterion and maximum likelihood (ML) estimates of ω

were obtained for each gene. As mentioned in §3.2, the metabolic relationships

for L. monocytogenes was extracted from the Ma & Zeng database [15], a publicly

available database for metabolomic data [6]. The undirected version of the Liste-

ria metabolic network, which was analyzed in Chapter 3, contains 657 metabolite

nodes and 678 genes. For the purposes of the statistical analysis in this chapter, I

will use the 92 structural modules that were identified by SA in Chapter 3, since this

method achieved a slightly better result. Furthermore, I will only consider the 388

genes that comprise the giant strong component (GSC) as it is the most complex

and core part of the network. The GSC is shown in Figure 4.1. Each enzyme in the

network is also classified according to a traditional biochemical pathway as specified

by the Kyoto encyclopedia of genes and genomes (KEGG)3 database. A total of 70

traditional biochemical pathways were found to be associated with the 388 genes of

the GSC.

A genome-scale phylogeny (Figure 4.2) was estimated via ML from the combined

set of 1,905 genes. ML also was employed to estimate a tree topology individually

for each gene. Of the 1,905 genes, 1,309 showed a topology identical to the genome-

scale phylogeny.

The strength and direction of natural selection pressure (i.e., values of ω) was esti-

mated for each member of the Listeria core genome using a Markov model of codon

evolution. Several hypotheses (denoted H1 to H3) for divergent selection pressure

were tested. The null hypothesis (H0), assumed uniform selection pressure across

3The KEGG database is a collection of online databases for understanding and simulating
higher order biological functions of the cell or the organism from its genome information [3].

46

Figure 4.1: A cartographic representation of the GSC of the L. monocytogenes
metabolic network. The GSC represents the most interconnected part of the net-
work. The nodes represent the metabolites and their colour represents module
assignment. The lines represent the genes that encode the enzyme-catalyzing reac-
tions.

the entire evolutionary history, with one ω parameter for all branches in the genome

tree. H1 assumed divergent selection pressure between pathogens (L.m-L1 and L.m-

L2) and non-pathogen L. innocua, with each having an independent ω parameter.

H2 assumed that L.m-L1 was subject to different selection pressure than the other

lineages and H3 assumed that L.m-L2 was subject to different selection pressure

than the other lineages. A depiction of H1 to H3 models of selection pressure are

presented in Figure 4.2 below.

Likelihood ratio tests (LRTs) were used to determine if H1, H2, or H3 models of

47

Figure 4.2: A genome-scale estimate of the Listeria phylogeny. The null model
assumes that selection pressure is homogeneous across all branches. H1 is based
on the idea of divergent selection pressure between pathogens (L.monocytogenes:
ω2 = ω3) and non-pathogens (L.innocua: ω1). H2 is based on the idea that only
L.m-L2 (ω2) was subject to divergent selection; therefore, L.m-L1 maintains the
ancestral level of selection pressure, with ω1 = ω3. H3 is based on the idea that
only L.m-L1 (ω3) was subject to divergent selection; therefore, L.m-L2 maintains
the ancestral level of selection pressure, with ω1 = ω2 [6]

selection pressure fit the data better than H0 for each of the 1,309 genes. Through

the use of the LRTs, 351 of the 1,309 genes were identified as having a signal for

divergent selection pressure (i.e., different levels of selection intensity between eco-

logically divergent lineages of Listeria) and of those 351 genes, 249 were present in

the GSC.

4.3.2 Is Divergent Selection Pressure Related to Metabolic Structure?

The purpose of the analysis is to decipher how ecologically divergent selection pres-

sure relates to metabolic structure. In order to formulate this into a statistical anal-

ysis problem, we must first form the variables to label types of selection pressure,

the structural modules and the traditional biochemical pathways of the metabolic

48

network for each gene. The type of selection pressure that a gene is subject to

is labelled by a discrete (nominal) variable taking on the values of 0, 1, 2, or 3.

It gives information about the best hypothesis found, where a 0 implies that the

null hypothesis best describes type of selection pressure acting on a particular gene

and a 1, 2, or 3 implies that H1, H2, or H3 hypothesis best describes type of se-

lection pressure acting on a particular gene, respectively. The structural modules

obtained through the use of SA and the traditional biochemical pathways obtained

from the KEGG database are also denoted by discrete (nominal) variables; a gene is

assigned a binary variable (0 or 1) depending on whether it belongs to a structural

module of the metabolic network or a traditional biochemical pathway. The prob-

lem is then formulated by describing the type of divergent selection pressure (H1,

H2, H3) in terms of the structural modules and traditional biochemical pathways

of the metabolic network. Since divergent selection pressure is a multinomial vari-

able, logistic regression for multinomial responses is used to describe the relationship

between biological function and network topology.

4.3.3 Logistic Regression for Multinomial Responses: Relating Best

Hypothesis for Diversifying Selection to Network Structure

4.3.3.1 Review of logistic regression for multinomial responses

Multicategory responses use multinomial GLMs. For the purposes of this thesis we

will focus on logistic regression for nominal response variables. Let Y be a cate-

gorical response with J categories. Multicategory logit models for nominal response

variables simultaneously describe log odds for all
(

J

2

)

pairs of categories.

49

4.3.3.2 Baseline-category Logits

Let πj(x) = P (Y = j | x) for the given explanatory variables, x, with
∑

j πj(x) = 1.

The counts of the J categories of Y is assumed to follow a multinomial distribution

having probabilities π1(x), . . . , πJ(x). The baseline-category logit models contrast

each response category with a baseline-category, often the last one or the most

common one. The model:

log
πj(x)

πJ(x)
= αj + βT

j x, j = 1, . . . , J − 1 (4.1)

simultaneously describes the effects of x on these J-1 logits. These J-1 equations

determine parameters for logits with other pairs of response categories, since

log
πa(x)

πb(x)
=

πa(x)

πJ(x)
−

πb(x)

πJ(x)
(4.2)

With categorical predictors, χ2 or G2 goodness-of-fit statistics provide a model check

when data are not sparse. When predictors are continuous or the data are sparse,

such statistics are suitable for comparing nested models differing by relatively few

terms [1].

4.3.4 Results & Discussion

A multinomial regression analysis was performed using R statistical software. The

dependent variable in this analysis (model of divergent selection pressure) was taken

as a discrete variable (H0, H1, H2, H3) and the independent variables were the struc-

tural modules of the metabolic network and the KEGG biochemical pathways. Each

gene in the GSC was assigned a binary variable (0 or 1) that indicated whether a

gene belonged to one of 76 different structural modules and 70 different biochemical

pathways. Data for divergent selection pressure are available only for the subset of

genes in the GSC that have a gene tree topology corresponding with the genome tree

50

(249 genes). With the removal of those genes in the GSC that did not show signal for

divergent selection pressure, singularities arose in the filtered dataset. Singularities

arise when the data matrix contains variables which are not linearly independent.

This indicates that one or more of the independent variables are redundant with

one another and should be removed from the data set as they do not add any pre-

dictive power. I identified 20 singularities in the dataset; with the removal of these

singularities and any modules and pathways containing none of the 249 genes, we

are left with 46 modules and 57 pathways for a total of 103 predictor variables left

for analysis.

It is not practical to fit a statistical model containing 103 independent variables.

Identifying and omitting those independent variables that were not associated with

the response variable was the first step in the analyses. In the case of a multinomial

response variable and binary independent variables, this can be achieved through

the use of a standard χ2 text for independence; thus, in the first step I used Pear-

sons χ2 tests to find those structural modules and biochemical pathways that are

significantly associated with the best hypothesis for divergent selection pressure.

Results from the χ2 tests showed that the model of divergent selection pressure was

significantly associated with the following seven independent variables: module 16,

module 84, module 86, KEGG pathway 220, KEGG pathway 230, KEGG pathway

710 and KEGG pathway 3030.

I then fit a baseline-category logit model for nominal responses. The initial step

in the multinomial regression was to define the regression model; in the case at

hand, the model included the above seven independent variables plus all possible

51

interactions among these variables. This model is over-saturated (i.e., it serves as

a baseline for comparison with other model fits) because there are more regression

coefficients (33) than there are distinct data patterns. I want to fit the model which

provides the maximum explanatory power by using as few parameters as possible.

To accomplish this I performed a parameter elimination procedure based on the

deviance between the fit of a simplified model relative to the baseline (or saturated)

model. The deviance is a likelihood-ratio statistic, which is two times the difference

in the likelihood of the saturated and simplified models. It is typically denoted by

G2. G2 approximately follows a χ2 distribution with df = N − p where N is the

number of observations and p is the number of model parameters. Therefore, G2 was

used to identify the most parsimonious regression model while still maintaining the

same explanatory power as the saturated model. I removed those variables where

I observed a large p-value for G2 (p ≥ 0.05), because in those cases the simplified

model fit the data just as well/almost as well as the saturated model.

Box 4.1: Details of the Multinomial Regression Analysis (Includes Portion of R Summary Output)

The simplified model:

log   0H

H i
 ~ module16 + module84 + module86 + pathway220 + pathway230 + pathway3030

where ()iH represents the probability that hypothesis Hi is the best model.

Portion of R summary output:

Coefficients:

 (Intercept) x16 x84 x86 pw220 pw230 pw3030

1 -1.5324 1.53238 -4.8414 -0.17719 2.2255 -26.11201 -0.45435

2 -2.3102 0.70084 -2.7715 1.10078 -16.5406 -0.85470 -11.11059

3 -2.0545 -23.34415 42.5549 0.33603 -18.0752 -1.05154 3.51132

Std. Errors:

 (Intercept) x16 x84 x86 pw220 pw230 pw3030

1 0.23508 6.7473e-001 1.0867e-013 0.50190 8.9737e-001 2.9073e-010 5.5847e-010

2 0.32829 1.1435e+000 2.9790e-014 0.48494 1.2427e-007 1.0673e+000 8.8991e+002

3 0.29341 3.1194e-011 1.3802e-018 0.53004 2.7182e-009 1.0600e+000 1.3710e+000

Residual Deviance: 447.5932

AIC: 489.5932

The fitted model is :

 log (ʌH1/ʌH0) = -1.532361 + 1.5323820module16 - 4.841401module84 - 0.1771939module86 +

 2.225524pathway220 - 26.1120139pathway230 - 0.4543482pathway3030

 Equations for log (ʌH2/ʌH0) and log (ʌH3/ʌH0) are similar to above.

Fitted probabilities for best hypothesis as determined by the best multinomial regression model. Probabilities were

obtained by setting each predictor variable to a value of 1 and all other predictors to a value of 0:

Best

Hypothesis

Module

16

Module

86

Pathway

220

Pathway

230

Module

84

Pathway

3030

H0 0.4545 0.6029 0.3333 0.9199 0.0000 0.4000

H1 0.4545 0.1091 0.6667 0.0000 0.0000 0.0000

H2 0.09092 0.1799 0.0000 0.03882 0.0000 0.0000

H3 0.0000 0.1081 0.0000 0.04132 1.0000 0.6000

Predicted odds ratios:

Odds(Y=Ha)

Module

16

Module

84

Module

86

Pathway

220

Pathway

230

Pathway

3030

Odds(ʌH1) 1.00 1.71e-3 0.181 2.00 9.87e-13 0.137

Odds(ʌH2) 0.200 6.21e-3 0.272 6.20e-9 0.0422 1.48e-6

Odds(ʌH3) 9.32e-12 3.88e17 0.179 1.81e-9 0.0448 4.29

Odds(ʌH1)/Odds(ʌH2) 5.00 0.275 0.666 3.07e8 2.34e-11 9.24e4

Odds(ʌH1)/Odds(ʌH3) 1.07e11 4.39e-21 1.00 1.10e9 2.20e-11 0.0320

Odds(ʌH2)/Odds(ʌH3) 2.15e10 1.60e-20 1.52 3.59 0.943 3.46e-7

53

Based on this analysis, I identify three structural modules (16, 84, and 86) and

three traditional biochemical pathways (KEGG pathway numbers 220, 230, and

3030) in the L. monocytogenes bacterium that are significantly associated with a

given model of divergent selection pressure (H1, H2, H3). For example, in structural

module 16 (refer to Figure 4.3), the odds of observing divergent selection pressure

between pathogens (L.m-L1 and L.m-L2) and non-pathogen L. innocua (i.e., model

H1) is five times higher than the odds of observing unique selection pressure within

ecotype L.m-L1, while ecotype L.m-L2 maintains the ancestral level of selection

pressure (i.e., model H2). The odds ratios for the remaining five predictor variables

are interpreted in a similar fashion.

Admittedly, the regression model is a highly idealized portrayal of a reality that

is quite complex. However, the results from this analysis show that a connection ex-

ists between gene-level evolution and complex metabolic phenotypes (i.e., metabolic

network topology) of the L. monocytogenes bacterium. Although this result needs

to be tested on other complex biological networks, this is a very important discovery

from a biological standpoint, as these results provide evidence, albeit indirect, that

natural selection is acting on these higher-level complex phenotypes.

54

Figure 4.3: A cartographic representation of the GSC of the L. monocytogenes
metabolic network with an expansion of structural module 16. The GSC represents
the most interconnected part of the network. The nodes represent metabolites and
their colour represents module assignment. The links represent the genes that encode
the enzyme-catalyzing reactions.

Chapter 5

Thesis Conclusion

The problem of module detection in complex metabolic networks is challenging and

has been the subject of much discussion in systems biology in recent years. The

existing literature on complex networks and the use of module identification meth-

ods demonstrates that many complex networks are found to divide naturally into

communities or modules. It also demonstrates that studying the topology of com-

plex metabolic networks is potentially very useful since nodes belonging to modules

can often be related by commonalities in their biological function. Therefore, it is

necessary to develop algorithms that uncover a network’s modularity with accuracy

and computational efficiency. One of the main goals of this research was to create

a new algorithm that identifies modules in complex networks and reconstructs net-

works in such a way so as to maximize modularity. Other goals were to evaluate

the performance of the new method, and compare it to a popular method based on

a simulated annealing algorithm, and to apply the module determining methods in

conjunction with a statistical analysis to decipher a relationship between a purely

cartographic definition of modularity and the functional and evolutionary features

of a metabolic network.

The SA method is a widely used method for detecting community structure in

55

56

complex networks. Dannon et al. [5] demonstrate that SA has a computational cost

of order O(m2n), where m is the number of links and n is the number of nodes in

the network. A method of this order is considered to be computationally expensive;

however, it generally produces accurate partitions of a complex network. It was

my goal to develop an algorithm that produces comparative results to SA, but in a

fraction of the time. I decided that, like the SA algorithm, the SS algorithm would

be an iterative improvement algorithm, but that it would be a strictly hill-climbing

algorithm, as an algorithm of this sort often converges to a reasonably good solu-

tion much faster. The statistical software program, R, was used to program the

SS algorithm. The SA algorithm was provided to us by Guimerã and Amaral. I

tested the performance of the SS algorithm on simulated networks and on the ge-

nomic network for L. monocytogenes. Additionally, I tested its performance against

that of SA. I expected that because the SS algorithm is a hill-climbing algorithm, it

would converge to a good solution more quickly than SA, but that the result may

or may not be the global optimal solution. I found that SS did find reasonably good

partitions of the networks; however, SA resulted in slightly better partitions in some

cases. Nonetheless, I concluded that the SS algorithm yields comparable results to

SA since the differences in modularity scores were marginal and because the network

partitions were structurally similar. The SS algorithm proved to be more efficient

than SA at analyzing densely and fuzzy connected networks, but not at analyzing

sparsely connected networks.

I was also interested in using statistical analysis in conjunction with the results

from the module identification methods to explore possible relationships between

57

the topology of the L. monocytogenes metabolic network and the evolutionary (se-

lective) pressures exerted on the Listeria core genome. In Chapter 3, the structural

model of the metabolic network for L. monocytogenes was partitioned into modules

by using the SS and SA algorithms. For the purposes of the statistical analysis in

Chapter 4, I used the structural modules that were identified by SA in Chapter

3, since this method achieved a slightly better result in terms of modularity score.

Data for divergent selection pressure are available only for those genes in the Lis-

teria core genome that have a gene tree topology congruent with the genome tree.

Therefore, those genes identified as having non-genome trees were removed from

the data, leaving 249 genes for regression analysis on divergent selection pressure.

The dependant variable (model of divergent selection pressure) in this analysis was

taken as a discrete variable (H0, H1, H2 or H3). The independent variables in the

regression were the structural modules of the metabolic network and the KEGG

biochemical pathways. Accordingly, I carried out a multinomial regression analysis

using R statistical software. I found three structural modules and three biochemical

pathways that were significantly enriched or deficient with respect to a given model

of divergent selection pressure. This implies that a connection exists between gene-

level evolution and complex metabolic phenotypes (i.e., metabolic network topology)

of the L. monocytogenes bacterium. This result needs to be tested on other complex

biological networks, however, this is a very important discovery from a biological

standpoint, as these results provide evidence that natural selection is acting on these

higher-level complex phenotypes.

The results indicate that it is reasonable to use statistical analysis in combina-

tion with network theory to investigate the relationship between the topology of

58

metabolic networks and the biological and evolutionary functioning of an organ-

ism. However, current modularity definitions employed in module determining al-

gorithms seem to only focus on the purely topological features of complex networks.

This may be sufficient for investigating community structure of networks in other

disciplines, but as far as systems biology is concerned, in order to gain more in-

sight into the function and evolution of these very complex metabolic networks, a

modularity definition must be defined with biological criteria in mind. The creation

of such a definition could lead to major advancements in the field of systems biology.

I have made comparisons between the SS and SA algorithms but the reader should

know that these algorithms are not qualitatively comparative. The SS algorithm

is coded in R programming language whereas the SA algorithm is coded in C pro-

gramming language. The expectation is that an algorithm coded in R is slower in

its implementation than an algorithm coded in C. The fact that the SS algorithm

is substantially faster at analyzing “dense” and “fuzzy” networks implies that qual-

itatively the SS algorithm is an improvement on the SA algorithm.

Future work on this project could look into: (i) Developing a more efficient pro-

gram for the SS algorithm, as we have seen that this method has merit but it is

not efficient at analyzing sparsely connected networks. (ii) Developing a modularity

definition that incorporates one or more biological covariates, as studying purely

topological features alone offers limited insight into the functional and evolutionary

components of metabolic networks.

Appendix A

R Scripts

A.1 R Script for Calculating the Modularity of a Network

modularity <-

Description:

This function calculates the modularity for a network

Arguments:

x: A network matrix which is binary and symmetric and must have zeros

along the main diagonal.

index: Identifies the group membership of each node

total.links: Total number of links in the network.

function(x, index, total.links){

index.unique <- unique(index)

ls <- ds <- NULL

for(i in index.unique){

ls <- c(ls, sum(x[index==i, index==i])/2)

ds <- c(ds, sum(x[index==i,]))

59

60

}

modularity <- sum((ls/total.links) - (ds/(2*total.links))^2)

return(modularity)}

61

A.2 R Script for Performing Individual Node Movements

inm <-

Description:

inm makes individual node movements from one group to another.

Each time the group membership of a node changes, a modularity

score is calculated and recorded. The group membership of a

node is changed to the group that yields the highest modularity score.

default epsilon = 0.001

Arguments:

x: A network matrix which is binary and symmetric and must have zeros

along the main diagonal.

index: Identifies the group membership of each node

function(x, index, epsilon = 0.001){

now <- proc.time()[1:2]

total.links <- sum(x)/2

n <- length(index)

M.new <- modularity(x, index, total.links)

M.old <- 0

index.old <- rep(0,n)

no.ite <- 0

mod.vec <- NULL

current.index <- index

62

while(abs(M.new-M.old) > epsilon | abs(sum(index-index.old)) != 0){

index.old <- index # assign index.old the most current index

M.old <- M.new # assign M.old the most current M.new

for(j in 1:n){

index.unique <- unique(index)

no.grps <- length(index.unique)

mod.vec <- NULL # ’clean’ mod.vec

current.index <- index

for(i in index.unique){

current.index[j] <- i

M.new <- modularity(x, current.index, total.links)

mod.vec <- c(mod.vec, M.new)

}

index[j]<- index.unique[(1:no.grps)][mod.vec==max(mod.vec)][1]

M.new <- max(mod.vec)

}

no.ite <- no.ite + 1

}

speed <- proc.time()[1:2]

run.time.in.sec <- speed[1]

retval <- list(M.new = M.new, index = index, no.ite = no.ite,

run.time.in.sec = run.time.in.sec)

return(retval)}

63

A.3 R Script for Performing Collective Node Movements

cnm <-

Description:

cnm is used to move a collection of nodes from one module into

another module. Each time two modules merge, the modularity score is

calculated and recorded. The grouping that yields the highest modularity

score is kept.

Arguments:

x: A network matrix which is binary and symmetric and must have zeros

along the main diagonal.

index: Identifies the group membership of each node

function(x, index){

total.links <- sum(x)/2

index.unique <- unique(index)

no.grps <- length(index.unique)

n <- length(index)

new.indexes.mat <- matrix(0, n, choose(no.grps, 2) + 1)

new.index <- index

new.mods.mat <- matrix(0, choose(no.grps, 2) + 1, 1)

new.mods.mat[1,] <- modularity(x, index, total.links)

new.indexes.mat[,1] <- index

counter <- 2

64

for(j in 1:(no.grps - 1)){

for(k in (j + 1):no.grps){

index <- new.index

index[index == index.unique[j]] <- index.unique[k]

M.new <- modularity(x, index, total.links)

new.mods.mat[counter,] <- M.new

new.indexes.mat[,counter] <- index

counter <- counter + 1

}

M.new <- max(new.mods.mat)

best.col.index <-

c(1:(choose(no.grps, 2) + 1))[new.mods.mat==max(new.mods.mat)][1]

index <- new.indexes.mat[, best.col.index]

}

retval <- list(M.new = M.new, index = index, best.col.index = best.col.index)

return(retval)}

65

A.4 R Script for SS Algorithm

mod.opt <-

#Description:

mod.opt re-arranges a network such that it optimizes the networks

modularity.

default epsilon: 0.001

Arguments:

x: A network matrix which is binary and symmetric and must have zeros

along the main diagonal.

index: Identifies the group membership of each node

function(x, index, epsilon=0.001){

now <- proc.time()[1:2]

total.links <- sum(x)/2

init.results.inm <- inm(x, index)

index.old <- index.current <- init.results.inm$index

M.old <- init.results.inm$M.new

no.ite <- 0

best.col.index <- 2 #initialize

while(best.col.index > 1){

index.old <- index.current

init.results.cnm <- cnm(x, index.old)

index.current <- init.results.cnm$index

66

M.new <- init.results.cnm$M.new

best.col.index <- init.results.cnm$best.col.index

no.ite <- no.ite + 1

}

index <- index.current

while(M.new-M.old > epsilon | abs(sum(index-index.old)) != 0){

results.inm <- inm(x, index)

index.old <- results.inm$index

M.old <- results.inm$M.new

results.cnm <- cnm(x, index.old)

index <- results.cnm$index

M.new <- results.cnm$M.new

}

group.dim <- as.vector(table(index))

no.grps <- length(group.dim)

speed <- proc.time()[1:2] - now

run.time.in.sec <- speed[1]

retval <- list(M.new = M.new, index = index, no.grps = no.grps,

group.dim = group.dim, no.ite = no.ite, run.time.in.sec = run.time.in.sec)

return(retval)}

67

A.5 R Script for Removing Singleton Nodes from Sparse

Networks

This script removes all zero rows/columns from an nxn symmetric matrix

leaving only rows/columns that contain links.

rowcol.rem <- NULL

for(i in 1:(dim(x)[1])){

if(sum(x[i,])==0) rowcol.rem <- c(rowcol.rem, -i)

}

x.new <- x[rowcol.rem, rowcol.rem]

68

A.6 R Script for Converting Networks from SS Format to

SA Format

link2nodes.vec <- NULL

for(i in 1:(dim(x)[1]-1)){

for(j in (i + 1):dim(x)[1]){

if(x[i,j]==1) link2nodes.vec <-c(link2nodes.vec, i)

}

}

link2nodes.vec1 <- NULL

for(i in 1:(dim(x)[1]-1)){

for(j in (i + 1):dim(x)[1]){

if(x[i,j]==1) link2nodes.vec1 <-c(link2nodes.vec1, j)

}

}

SA.prod.react <- matrix(c(link2nodes.vec, link2nodes.vec1), ncol=2)

write.table(SA.prod.react, "filename.txt", row.names=F, col.names=F, sep="\t")

69

A.7 R Script for Converting Networks from SA Format to

SS Format

prod.react.list <- read.table("filename.txt", sep="\t")

SS.network <- matrix(0, n, n) # n is the number of nodes in the network

a <- prod.react.list[,1]

b <- prod.react.list[,2]

for(i in 1:length(a)){

SS.network[a[i],b[i]]<-1

}

SS.sym.network <- SS.network + t(SS.network) # ensures symmetry

sum(SS.sym.network) - sum(t(SS.sym.network))

SS.sym.network[SS.sym.network==2]<-1

diag(SS.sym.network) <- c(rep(0, n))

write(SS.sym.network, "filename.txt", ncol=n, sep="\t")

Appendix B

Histograms of Modularity Scores

for Random-Networks

Figure B.1: The blue histogram in each plot (A, B, and C) represents the modu-
larity scores of the ten “dense”, “fuzzy”, and “structured” networks, respectively.
The red line in each plot represents the maximum modularity score of the corre-
sponding structured network. A: Since the red line is far away from the histogram,
this indicates that the modularity of the structured network is significant. B: Since
the red line is a reasonable distance away from the histogram, this indicates that
the modularity of the structured network is significant. C: Since the red line is
relatively close to the histogram, this implies that the modularity of the structured
network is only marginally significant.

70

Appendix C

Modular Models of the Simulated

& Listeria Monocytogenes

Networks

C.1 Simulated Networks

Figure C.1: A modular model of a “dense” structured-network. The modules, as
shown in this drawing, were identified by the SS algorithm. The network is parti-
tioned into three modules and the modularity score for this network is M = 0.641328.

71

72

Figure C.2: A modular model of a “dense” random-network. The modules, as shown
in this drawing, were identified by the SS algorithm. The network is partitioned into
six modules and the modularity score for this network is M = 0.1185924.

73

Figure C.3: A modular model of a “fuzzy” structured-network. The modules, as
shown in this drawing, were identified by the SS algorithm. The network is parti-
tioned into seven modules and the modularity score for this network is M = 0.102588.

74

Figure C.4: A modular model of a “fuzzy” random-network. The modules, as shown
in this drawing, were identified by the SS algorithm. The network is partitioned into
six modules and the modularity score for this network is M = 0.09617799.

75

Figure C.5: A modular model of a “sparse” structured-network. The modules, as
shown in this drawing, were identified by the SS algorithm. The network is parti-
tioned into 34 modules and the modularity score for this network is M = 0.8308528.
This network is not fully connected; it is comprised of a giant strong component
(GSC), which is the most interconnected part (i.e., the core) of the network, and 15
smaller modules around the outside that are isolated from the GSC.

76

Figure C.6: Amodular model of a ”sparse” random-network. The modules, as shown
in this drawing, were identified by the SS algorithm. The network is partitioned
into 41 modules and the modularity score for this network is M = 0.8216082. This
network is not fully connected; it is comprised of a giant strong component (GSC),
which is the most interconnected part (i.e., the core) of the network, and 22 smaller
modules around the outside that are isolated from the GSC.

77

C.2 Listeria monocytogenes

Figure C.7: A modular model of the Listeria monocytogenes bacterial network.
The modules, as shown in this drawing, were identified by the SS algorithm. The
network is partitioned into 95 modules and the modularity score for this network
is M = 0.8899461. This network is not fully connected; it is comprised of a giant
strong component (GSC), which is the most interconnected part (i.e., the core) of
the network, and 77 smaller modules around the outside that are isolated from the
GSC.

78

Figure C.8: A modular model of the Listeria monocytogenes bacterial network.
The modules, as shown in this drawing, were identified by the SA algorithm. The
network is partitioned into 92 modules and the modularity score for this network
is M = 0.890524. This network is not fully connected; it is comprised of a giant
strong component (GSC), which is the most interconnected part (i.e., the core) of
the network, and 77 smaller modules around the outside that are isolated from the
GSC.

Bibliography

[1] Agresti, A. (2002). Logit models for multinomial responses. In: Categorical data
analysis, 2nd Ed. New Jersey: John Wiley & Sons, Inc. pp 267-288.

[2] Bielawski, J.P., Yang, Z. (2005). Maximum likelihood methods for detecting
adaptive protein evolution. In Rasmus Nielson (Ed.), Statistical methods in
molecular evolution (p 103). New York: Springer Science+Business Media, Inc.

[3] Brock, G., Goode, J. (Eds.). (2002). ‘In silico’ simulation of biological processes
(p 91). Chichester, West Sussex, UK: John Wiley & Sons Ltd.

[4] Chakrabarti, D., Modha, D.S., Papadimitriou, S., Faloutsos, C. (2004). Fully
automatic cross-associations.

[5] Danon, L., Dı́az-Guilera, A., Duch, J., and Arenas, A. (2005). Comparing
community structure identification. Journal of Statistical Mechanics: Theory
and Experiment, 2005(09):P09008.

[6] Dunn, K.A., Bielawski, J.P., Ward, T.J., Urquhart, C., Gu, H. (2009). Rec-
onciling ecological and genomic divergence among lineages of listeria under
an “extended mosaic genome concept”. Moleculary Biology and Evolution,
26(11):2605-2615.

[7] Guimerà, R., Amaral, L.A.N. (2005). Functional cartography of complex
metabolic networks. Nature, 433(7028):895-900.

[8] Guimerà, R., Sales-Pardo, M., and Amaral, L.A.N. (2005). Cartography of com-
plex networks: Modules and universal roles. Journal of Statistical Mechanics
(Online), 2005(P02001):P02001+.

[9] Guimerà, R., Sales-Pardo, M., and Amaral, L.A.N. (2004). Modularity from
fluctuations in random graphs and complex networks. Physical Review E,
70(2):025101+.

[10] Guimerà, R., Sales-Pardo, M., and Amaral, L.A.N. (2007). Module identifica-
tion in bipartite and directed networks. Physical Review. E, Statistical, Non-
linear, and Soft Matter Physics, 76(3 Pt 2).

[11] Jing, Z., Hong, Y., Jianhua, L., Cao, Z.W., Yi-Xue, L. (2006). Complex
networks theory for analyzing metabolic networks. Chinese Science Bulletin,
51(13):1529-1537.

[12] Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C. (1989). Optimization
by simulated annealing: An experimental evaluation; part i, graph partitioning.
Operations Research, 37(6):865-892.

79

80

[13] Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P. (1983). Optimization by simu-
lated annealing. Science, 220(4598):671-680.

[14] Krebs, V.E. (2002). Mapping networks of terrorist cells. Connections, 24:43-52.

[15] Ma, H., Zeng, A-P. (2003). Reconstruction of metabolic networks from genome
data and analysis of their global structure for various organisms. Bioinformat-
ics, 19(2):270-277.

[16] Morine, M.J. (2007). Functional topology and evolution in prokaryotic metabolic
networks (Master’s thesis). Dalhousie University, Halifax, NS.

[17] (2008). Metabolite. The Columbia encyclopedia, 6th Ed. Retrieved from
http://www.encyclopedia.com/doc/1E1-metabolit.html

[18] Newman, M.E.J., Barabasi, A-L., Watts, D.J. (2006). The structure and dy-
namics of complex networks. New Jersey: Princeton University Press. pp 3-6.

[19] Newman, M.E.J. (2006). Modularity and community structure in networks.
PNAS, 103(23):8577-8582.

[20] Newman, M.E.J., Girvan, M. (2004). Finding and evaluating community struc-
ture in networks.

[21] Nightingale, K.K., Windham, K., Wiedmann, M. (2005). Evolution and molec-
ular phylogeny of listeria monocytogenes isolated from human and animal lis-
teriosis cases and foods. Journal of Bacteriology, 187(16):5537-5551.

[22] Reichle, A., Hildebrandt, G.C. (2009). Principles of modular tumor therapy.
Cancer Microenvironment, 2(Suppl 1):S227S237.

[23] Russell, S., Norvig, P. (1995). Artificial intelligence: A modern approach Pren-
tice Hall, Inc.

[24] Smith, R.D. (2008). Average path length in complex networks: Patterns and
predictions.

[25] Wang, X.F., Chen, G. (2003). Complex networks: Small-world, scale-free and
beyond.

[26] Watts, D.J., Strogatz, S. (1998). Collective dynamics of ’small world’ networks.
Nature, 393:440442.

[27] Wiedmann, M. (2002). Molecular subtyping methods for listeria monocyto-
genes. Journal of AOAC International, 85(2):524-532.

