
ANALYSIS OF A MINE-MILL PRODUCTION SYSTEM USING

SIMULATION AND INTEGER PROGRAMMING

by

Jun Zhou

Submitted in partial fulfillment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

November 2010

c© Copyright by Jun Zhou, 2010

Dalhousie University

Faculty of Engineering

Department of Industrial Engineering

The undersigned hereby certify that they have examined, and recommend to the

Faculty of Graduate Studies for acceptance, the thesis entitled “Analysis of a Mine-

Mill Production System Using Simulation and Integer Programming”

by Jun Zhou in partial fulfillment of the requirements for the degree of

Master of Applied Science.

Dated: November 30, 2010

Supervisor:
Dr. Eldon Gunn

Co-supervisor:
Dr. John Blake

Examiners:
Dr. Don Johns

ii

Dalhousie University

Faculty of Engineering

DATE: November 30, 2010

AUTHOR: Jun Zhou

TITLE: Analysis of a Mine-Mill Production System Using

Simulation and Integer Programming

DEPARTMENT OR SCHOOL: Department of Industrial Engineering

DEGREE: M.A.ScCONVOCATION: May YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to have copied for

non-commercial purposes, at its discretion, the above thesis upon the request of individuals

or institutions. I understand that my thesis will be electrically available to the public.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or otherwise reproduced without the author’s written
permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than brief excerpts requiring only proper
acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

iii

Table of Contents

List of Tables viii

List of Figures ix

Abstract xi

List of Abbreviations Used xii

Acknowledgements xiii

Chapter 1 Introduction 1

1.1 A Canadian Mining Company .1

1.2 Mill Complex Operation .1

1.2.1 Overview of Mill Production System1

1.2.2 Mill Production Planning Problem6

1.3 Production Scheduling - Draw Scheme and Campaign9

1.4 Project Background .10

Chapter 2 Literature Review 13

2.1 Simulation in the Mining Industry13

2.1.1 The History of Simulation .14

2.1.2 Current Status of Mining Simulation and New Development .15

2.1.3 Mining Simulations Around the World17

2.2 Application of Mining Simulation .22

2.2.1 Using Operation Process Simulation for a Six Sigma Project of

Mining and Iron Production Factory22

2.2.2 Concurrent Simulation and Optimization Models for Mining

Planning .23

2.3 Mill Optimization Model .25

iv

2.3.1 Economic Optimization of an Ore Processing Plant with a Con-

strained Multi-Objective Evolutionary Algorithm25

2.3.2 Crushing Plant Optimization by Means of a Genetic Evolution-

ary Algorithm .26

2.4 MIP of Mine Production Planning .28

Chapter 3 Formulation of Integer Programming Model to Calculate

Draw Scheme and Campaign Schedules 30

3.1 Blending Model .30

3.1.1 Formulation of Blending Model31

3.1.2 Numerical Results of Blending Optimization Model34

3.2 Mill Optimization Model .34

3.2.1 Mill Optimization Model Parameters35

3.2.2 Mill Optimization Model Formulation35

3.2.3 Model Implementation .40

3.2.4 Numerical Results of Mill Optimization Model40

Chapter 4 Development of Simulation Model 42

4.1 Formulation of the Problem .42

4.1.1 Problem of Interest .42

4.1.2 System Configuration .44

4.2 Model Definition .45

4.2.1 Definition of Key Terms .45

4.2.2 Simulation Model Assumptions46

4.2.3 Operating Procedures .48

4.3 Construction of the Simulation Model50

4.3.1 Modelling Approach .50

4.3.2 Implementation in VBA .52

4.3.3 Interface Design .56

4.3.4 Running Environment .60

4.4 Output Analysis .63

v

4.4.1 Steady-State Analysis .63

4.4.2 Replication Length and Number of Replications66

4.4.3 Simulation Model Verification and Validation68

Chapter 5 Machine Failure Data Analysis 74

5.1 Selection of Most Frequently Failed Machines74

5.2 Failure Data Analysis .76

5.2.1 Types of Failure .76

5.2.2 Mean Time Between Failure and Mean Time to Repair78

5.3 Failure Consequence-Partial Failure80

5.3.1 Definition of Partial Failure80

5.3.2 Failure Efficiency Implementation80

Chapter 6 Simulation - Based Sensitivity Analysis for Examining

Alternatives 82

6.1 Base Model .83

6.2 Sensitivity Analysis of MTTR and MTBF83

6.3 Sensitivity Analysis of Increased Arrival Ore85

Chapter 7 Conclusion and Future Studies 87

Bibliography 90

Appendices 94

Appendix A LP of Mill Optimization Model - GUSEK Code 94

Appendix B LP of Mill Optimization Model - External Data File 96

Appendix C LP of Mill Optimization Model - Output File 101

Appendix D LP of Blending Model - GUSEK Code 103

Appendix E LP of Blending Model - Solution Output File 105

vi

Appendix F Standard Module Code 107

Appendix G Sample Code of Class Module - Blender 110

vii

List of Tables

4.1 Sample Data .65

4.2 Sample Data .67

4.3 Scenario Analysis 1 .69

4.4 Scenario Analysis 2 .70

4.5 Scenario Analysis 3 .70

4.6 Scenario Analysis 4 .72

4.7 Scenario Analysis 5 .73

5.1 Stations in Simulation Model76

5.2 Mean Time Between Failures (in Days)79

5.3 Mean Time to Repair (in Minutes)80

5.4 Percentage of Time Machine Completely Broke81

5.5 Failure Efficiency Distribution81

6.1 Input Parameters of Uniform Distribution for MTTR and MTBF

Sensitivity Analysis .85

6.2 Results of Selectivity Analysis of MTTR and MTBF86

6.3 Scenario Analysis: Increased arrival of Ore86

viii

List of Figures

1.1 Mill Process Map .2

1.2 Mill Crushing Process Flow Block Diagram4

1.3 Mill Grinding Process Flow Block Diagram6

4.1 Block Diagram of Mill Operation46

4.2 Flow control for the discrete-event simulation51

4.3 Simulation Parameters Input56

4.4 Campaign Parameters Input57

4.5 Draw Scheme Input .57

4.6 Blender Scheme Input .58

4.7 System Parameter output .58

4.8 Ore Output .59

4.9 Blender Output .59

4.10 Station Output .60

4.11 Statistic Output .61

4.12 Pivot Chart of Current Station Level61

4.13 Pivot Chart of Accumulated Station Level62

4.14 Pivot Chart of Station Level62

4.15 Welch Method .66

4.16 Flow Chart of Draw Scheme in Scenario Analysis 169

4.17 Flow Chart of Draw Scheme in Scenario Analysis 270

4.18 Flow Chart of Draw Scheme in Scenario Analysis 371

4.19 Flow Chart of Draw Scheme in Scenario Analysis 472

4.20 Flow Chart of Draw Scheme in Scenario Analysis 573

5.1 Most Frequently Failed Machines75

5.2 Most Frequently Failed Machines76

5.3 Simulation logic for applying failure efficiency81

ix

6.1 Process flow chart of base model84

x

Abstract

Mine-mill production faces several operational difficulties, such as fluctuations in ore

delivery from mines, random failure of machines, usage of stockpiles and storage

bins, and changeover time when switching products. This study was initiated at a

particular Canadian mining company. However, changes in the economic condition in

the mining industry during 2008 have meant that circumstances have changed to the

extent that this work should be seen as an illustration of methods rather than a study

of the specific situation at the mining company. This mining company will remain

unnamed throughout this thesis. The purpose of this research is to develop a series

of production campaigns, each of which uses a specific draw scheme to coordinate the

receiving of ore, maintenance planning and product scheduling.

The approach includes a combination of mathematical programming model and

a simulation model. The solution from the integer programming model is a set of

campaigns that minimize the inventory levels of unprocessed ore, the number of days

on shutdown, and the number of active piles required at any point in time. The

simulation model uses this solution as its production scheduling input with integrated

stochastic elements to evaluate mill system performance.

In this thesis, the formulation of the mathematical programming model and con-

struction of the simulation model, as well as the maintenance data analysis used as

stochastic element of the model is discussed.

xi

List of Abbreviations Used

DES Discrete Event Simulation

FOB Fine Ore Bin

GLPK GNU Linear Programming Kit

IP Integer Programming

LHD Load Haul Dump

MIP Mixed-Integer Programming

MTBF Mean Time Between Failure

MTTR Mean Time to Repair

ODBC Open Database Connectivity

OLE Object Linking and Embedding

ROM Run of Mine

VBA Visual Basic Application

xii

Acknowledgements

First, I thank my co-supervisor Dr. Eldon Gunn for his continuous support in the

Master of Applied Science program. He helped me to understand the overall control

framework and campaign draw scheme concepts. He showed me the formulation of

integer programming model and helped me to implement the model using GUSEK

and the GNU Linear Programming Kit. Dr. Gunn was always there to listen and to

give advice. Without him, this thesis would not have been possible.

A special thanks goes to my co-supervisor, Dr. John Blake, who is most responsible

for helping me implement the simulation model in Visual Basic as well as complete the

output analysis. He introduced the station concept used in the simulation model and

made me a better programmer. Without his encouragement and constant guidance,

I could not have finished this thesis.

Dr.Don Jones from Mining Department, Dalhousie University provided me with valu-

able feedback about my thesis. I appreciated his help in suggesting changes that made

this thesis more readable.

Besides my supervisors, I would like to thank several personnel from the mining com-

pany: Mr.Peter R, who supervised my work at the Mill and evaluated the simulation

model and gave helpful feedback, Mr. Chris L and Ms. Marta B, who advised on

mill operation policies.

I am thankful to Dr. Claver Diallo , for helping me analyze the maintenance data

during the research. Let me also say thanks to the following people at Industrial

Engineering Department of Dalhousie University: Cindi Slaunwhite and Mary-Anne

Wensley for their kind support.

I would like to show my gratitude to the work done by GNU group for helping the

development of free software, and particularly GLPK Project. And thanks to the

GUSEK project for providing an open source LP/MILP IDE for Win32, packing a

custom version of the SciTE editor linked to the GLPK standalone solver.

Last, but not least, I thank my parents: Xuenian Zhou, and Zhengyi Lu, for their

xiii

supporting me during my studies in Halifax, Canada and for unconditional under-

standing and encouragement to pursue my interests in the field of engineering.

xiv

Chapter 1

Introduction

1.1 A Canadian Mining Company

This research project was conducted at a Canadian mining company. Nickel and

copper are the primary metals, but cobalt and precious metals such as platinum are

also produced by the company. In 2008, the market for nickel changed dramatically.

The mining company closed several mines in the study area and reduced its operation

to nickel copper mines, a mill complex and a smelter.

1.2 Mill Complex Operation

1.2.1 Overview of Mill Production System

The mill complex receives ore from mines and produces two concentrate streams: a

copper concentrate and nickel concentrate, which are transported to a smelter for

processing into nickel metal and copper metal. Currently, the basic flow of material

starts from the mines, where ore, crushed (depending on the mine), is trucked to the

mill site. The ore is then either stockpiled in several stockpile or fed directly into

one of the three feeders at the mill. The feeders are the entry points for the ore into

the mill. The ore is carried by conveyor to the crushing process where it is initially

screened. Particles fine enough to bypass the crushing process go directly onto the

grinding process, while, large pieces of ore are crushed by the initial crusher and

screened through two screens. If the ore is still oversize, it gets sent to one of two

secondary crushers and continues in this cycle until the particles are fine enough to

pass through the screen and enter the grinding process. Once the ore is sufficiently

fine, it is conveyed to the fine ore bins and stored in one of five ore bins. The three

1

2

Double Deck
Screen 1 & 2

Conveyor
No.3 Crusher

(Secondary Crusher)

No.2 Surge Bin(200 tonnes)

Double Deck
Screen 4 & 5

Double Deck
Screen 6 & 7

No.4 Crusher
(Tertiary Crusher)

No.5 Crusher
(Tertiary Crusher)

FOB 1 FOB 2 FOB 3 FOB 4 FOB 5

P-13P-13

Grinding Mill A Grinding Mill C
Grinding Mill B

Flotation

No.1 Feeder

No.1 Surge BinNo.2 Feeder

Figure 1.1: Mill Process Map

grinding circuits (A, B and C) have the flexibility of processing fine ore from any of the

fine ore bins. Currently, in order to reduce the planning complexity, only two circuits

(A and B) and four fine ore bins (FOB 1-4) are used. Moreover, circuit configurations

specified for FOB 1 and 2 feed into circuit A while FOB 3 and 4 feed into circuit B

under current operating policy. The grinding circuit consists of a rod mill, in which

the fine ore is ground to a finer size and mixed with water to form slurry. If it does

not meet the size requirements, it is sent to a ball mill and is screened again. The

ball mill process is repeated until the material meets the size requirements for the

floatation process. The floatation process separates minerals by taking advantage of

differences in their hydrophobicity prior to refinery process. The following section

explains in detail the different process units within the mill. The mill process map is

presented in Figure 1.1:

3

Mine Product

There are three different types of “products” being processed in the mill complex:

copper ores, nickel ores and custom feed. Copper and nickel ores comes from the mines

operated by the mining company. Custom feed includes ore from other companies’

mines. Custom feed can be broken into various subproducts. One product cannot be

mixed with another; the entire circuit, from the feeder to the fine ore bin, has to be

emptied whenever it processes a different type of product.

Stockpile

Stockpiles are used to store crushed or un-crushed ore. The stockpiles are all located

on the mill site property and are in close proximity. One concern is to minimize

the number of stockpiles being used. Less number of active piles can speed up the

movement of the ore and affect the “shelf life” of ore. Shelf life refers to the maximum

time ore can be exposed to air before significant deterioration of the sulphide in the

ore due to oxidation.

Feeder

There are two feeders feeding material into the mill. The No. 1 feeder is the main

entry point of material, with a 400-tonnes-per-hour transfer rate. The No. 2 feeder

feeds only from the No. 2 stockpile by loader.

Crushing

The mill circuit starts with the secondary crushing process. All material, either from

the No. 2 feeder or the No. 1 feeder, goes through the secondary crusher (No. 3

Crusher). The surge bin (No. 1 Surge bin) associated with the secondary crusher has

a capacity of 200 tonnes. Before material enters the secondary crusher, it is screened

through a double-deck screen (Screens 1 and 2). Ore that is fine enough to pass the

screens is allowed to bypass the crushing process and go directly to the fine ore bin.

The rest of the ore on the screens goes through the secondary crusher.

4

Screen
#1&2

No.24 CONVFINE ORE

No.3
CRUSHERCOARSE ORE CONV

No.2
Surge Bin

No.4A
CRUSHER

No.5B
CRUSHER

Screen
#6&7

Screen
#4&5

COARSE ORE

CORSE ORE

FINE ORE

FINE ORE

Grinding Process

Feeder

Figure 1.2: Mill Crushing Process Flow Block Diagram

All material, after being crushed in the secondary crusher, get conveyed by con-

veyor to another surge bin (No. 2 Surge Bin) which has a capacity of 200 tonnes.

This surge bin feeds material to two sets of screens (Screens 4 & 5 and Screens 6

& 7). Material that is fine enough to pass through these screens is conveyed to the

fine ore bin. Otherwise, the ore is sent to the tertiary crusher (No. 4A and No.

5B crushers) for further crushing. All material, after passing through the tertiary

crusher, is sent back to the No. 2 Surge Bin and Screens 4 & 5 and Screens 6 &

7 again. This process is repeated until the material is fine enough to pass through

the screens. The crushing process is presented in the process block diagram (Figure

1.2). Physically, the input to the crushing process is ore received from either mines

or customer feed. The outputs are crushed ore that meet the required size of grinding

process. There are two fundamental activities in crushing process: screening and

crushing. The crushing process loops between these two activities until ore is fine

enough. The looping process is implemented by applying an essential control policy

5

for crushing operation: once ore enters a crushing process, either at surge bin, screen

or crusher, only the type of ore can be processed until it leaves the system entirely.

In other words, crushing process can only process one type of ore at a time.

From Figure 1.2, the looping process starts from the first screen set (1& 2), and

ends at the conveyors before grinding circuits. The decision that need be made

is which and how much material should be fed into the crushing process and what

throughput can be expected from this process. As a consequence, reduced throughput

is expected from crushing loop process. In the later chapter and simulation model,

instead of focusing on analyzing the complexity of crushing process, the crushing

process is aggregated into one production unit.

Fine Ore Bins

There are five fine ore bins in the mill, four of which are in use. Each bin has a

capacity of between 2,500 and 2,800 tonnes, for an overall storage capacity of 10,000

tonnes. Each bin can contain only one product at any time. Therefore, bins must be

completely emptied before they can be filled with a different type of product. One

conveyor moves back and forth to fill all the bins. Each bin must be completely filled

with product before another bin is started.

Grinding Circuit

While there are three grinding circuits in the mill, only A and B are presently in use.

Circuits A and B are basically identical, with a throughput of 400 tonnes per hour

each. Grinding circuits A and B consist of a rod mill where the fine ore is made into

a slurry-type mixture. The slurry is then screened. If it does not meet floatation

requirements, the material is cycled through the filter again and goes on to the rod

mill until it is broken down sufficiently enough.

The future configuration of the grinding circuit will include the fifth fine ore bin

and grinding circuit C. The fifth fine ore bin will feed grinding circuit C. Ordinarily,

bins 1 and 2 feed grinder A only, and bins 3 and 4 feed grinder B only. Grinding

circuit C will consist of a ball mill only. Material leaving the mill will be screened, and

6

FOB 1

FOB 2

FOB 3

FOB 4

FOB 5

Grinder A

Grinder B

Grinder C

Crushing Flotation

Figure 1.3: Mill Grinding Process Flow Block Diagram

oversize material will be sent back through the C ball mill again. This process will be

repeated until all material is appropriate for flotation. In general, each FOB in the

grinding process has the capability to feed material into any grinder. Planning in the

mill currently uses the configuration in Figure 1.3 to reduce the level of complexity.

Under this configuration, it is preferable to keep the same product in both fine ore

bins 1 and 2. This also applies for bins 3 and 4. If need be, bins 1 and 2 can contain

different products, but one must completely empty and go through the grinding circuit

before the ore in other bin is moved.

1.2.2 Mill Production Planning Problem

Mill production planning is very important. “Planning” means “Predictability”, since

it is necessary to verify if a plan can be executed or not, is in agreement with the avail-

able resources, given fluctuations in receiving, and has the largest possible throughput.

7

Below are listed some issues and challenges faced by the mill in its operation planning.

Oxidized Material

The “shelf life” relates to the oxidation of ore as a result of exposure to oxygen in

the air. If the ore is exposed to air for extended periods of time, the oxidized ore

in the slurry (during the floatation process) will have a lower PH value which will

negatively affect the mineral recovery, due to change in chemistry of mineral surface.

As a result, lime must be added into the floatation circuit to increase PH to maintain

selectivity of the valuable minerals. This increases lime consumption and can create

environmental issues for the mill. Currently, the ore can be exposed to air for two

weeks without significant oxidation.

The importance of limiting oxidation is related to mill production scheduling. The

key point is to ensure that the ore received is processed in a timely manner. Since the

mill operates with a range of mill runs(campaigns), feed for the different campaigns

are stored separately. The issue of delay in processing ore results in a backlog of ore

being stored in the stockpile area for longer periods of time, resulting in increased

oxidation. The target of mill production scheduling is to process all of the material

that is available in the stockpiling area. However, it is difficult to achieve this target

due to unpredictable machine failures in the mill process. If one type of product is

not used up entirely and the next campaign, with a different product, goes ahead

as scheduled, a backlog of ore in the stockpiling area is created. More importantly,

the newly-arrived fresh ore is often stored in front of a previous pile, thus blocking

access to bring the older ore piles to the mill. As of January 2007, the mill had

approximately 10,000 tonnes of oxidized ore that had been stored in the stockpiling

area since June 2006. It is important to have production scheduling and campaign

schedules set up so that the fluctuations affecting the circuit are minimized.

Blending Option

Currently, the mill complex has two options to blend ore: the stockpile area and the

fine ore bin. At the stockpile area, ore that is piled on the stack will be the first

8

taken out to be fed to the mill. As the truckloads of ore from the different mines

arrive, they are dumped in the stockpile area in discrete rows depending on the type

of ore. A second row is created in front of the first row. A loader moves the second

row towards the first one so that blending takes place. A third row is thus created

on the opposite side of the first row.

Within the grinding circuit, the target for blending in the rod mill is where the

ratio of Cu and Ni content is 1:1. The mill has an automated system where the speed

of the conveyor is adjusted so that the feed rates of the copper and nickel ores with

different grades going into the rod mill are adjusted to meet the target 1:1 Cu:Ni

ratio.

The blending option is another important aspect for mill production. The stock-

pile blending option has more flexibility than fine ore bin blending since it is done on

the surface and requires only a loader to finish the blending. The mixed ore can then

be fed into the mill without worrying about fine ore bin allocation. The entire circuit

only has one type of product in this case. Fine ore bin blending offers the control-

lability of which type of ore feed to which grinding circuit. The biggest challenge in

using this blending strategy is finding the best way to empty the fine ore bins when

switching between different types of feed.

Partial Failure

An interesting aspect of mill operation is that when a machine breaks down, the

throughput of the machine is typically not zero. Often it runs at partial throughput

until it is taken off-line and repaired. The throughput levels during this period will

be less than 100% and vary based on the nature of the machine failure. When the

failure efficiency is zero, the machine is completely down, with zero throughput. Any

other number indicates that the machine is running at a percentage of full availability.

The reason to emphasize failure efficiency is its impact on the transfer rate. When a

machine works without a failure, the transfer rate is 100% of its regular transfer rate;

otherwise, the transfer rate is reduced. The detailed discussion of partial failure is

discussed in Chapter 5.

9

1.3 Production Scheduling - Draw Scheme and Campaign

The mill production process has many issues and challenges, some of which are dis-

cussed above. Some of these are stochastic, some are deterministic. Some of the

issues that impact on production include:

i)Received material from different mining areas has different ore types and

grades.

ii)The need to extract correct quantity of material from each stockpile to

reach the desired quality (grades) and quantity.

iii)The number of types of ore in the circuits is limited by the configuration

of the circuit and the feed.

iv)The fine ore bins and grinding mill limit grinding circuit’s flexibility.

v)Random failures of equipment.

vi)Maintenance schedules.

There are several essential levels of production control exerted within the mill. These

include:

i)Control of the overall global ore type being fed through the surge bin and

crusher.

ii)Control of the overall draw of material due to the choice of how the grinders

are being fed from the fine ore bins.

iii)Control of which of the fine ore bins (FOBs) to direct the current feed to.

iv)Maintenance schedules and policies.

The solution to mill production planning in this research introduces the concept of

a campaign and its draw scheme. A draw scheme consists of specifying, for each

grinder, either an ore of a given type or a blend of a given ratio from two or more

10

fine ore bins. The campaign is defined as a consecutive number of days for which we

use the same draw scheme. We expect that the overall planning horizon will contain

several potential campaigns, and that each campaign uses one draw scheme only

during the entire campaign period. This situation can be modelled as an optimization

module, focused at defining the length of campaigns and the draw scheme used for

each campaign, while estimating inventory level of stockpiles.

A discrete-event simulation model is used to reproduce the randomness of the

equipment availability. This makes simulation a great tool to check the feasibility of

the mill production schedules. But the simulation tool itself is not able to precisely

select the decision logic used to choose the best campaign and related draw scheme.

To develop the campaign concept requires an optimization model. The proposed

solution is the integration of both tools: discrete-event simulation and optimization.

1.4 Project Background

When the research project was originally started, the initial intention was to solve

the issue of operating the mill at a very high level of throughput. The target was to

process approximately 3.4 million tonnes of ore per year through the mill. The main

focus of the research project was to improve the utilization of the grinding circuit

to ensure that the mill had the ability to process the larger amount of material it

received.

A significant change happened about 8 months later. As a result of the world-wide

drop in price of nickel, there were only two mines in production. The mill revised plans

to process less than 1.5 million tonnes annually. The emphasis for the project changed

from higher utilization of the grinding circuit to scheduling production campaigns and

interspersing these with shutdown periods to improve production efficiency.

The purpose of this research project was defined as developing an integrated ap-

proach to combine simulation modelling with scheduled optimization to analyze the

throughput of the mill complex. The research was to focus on the development of a

suite of tools that would permit the company to model and control the dynamics of

11

ore delivery, sequence and mill operation and thus to make better operational deci-

sions, which would result in increased yields and greater margins. The goal of this

research was to:

i)Conduct a literature review on mining simulation, mill production planning

and mine production optimization.

ii)Construct an integer programming model to calculate draw schemes and

campaign schedules for the comminution processes in the mill.

iii)Provide a simulation model to evaluate a given scheme of controls at the

mill. The model was to provide insight to coordinate ore delivery, mainte-

nance planning, and product schedules.

iv)Test the simulation model and report on results.

The original outcome of the project was to develop a specific application for this

specific mining company. Due to the significant changes at the company, the people

who originally started the project are no longer involved. This changed the research

project to the extent that this work should now be seen as an illustration of methods,

rather than a study of the specific situation for a specific mining company. Hopefully,

this project can be of interest to others and used as a starting point in their analysis

of mill production systems.

Based on confidentiality agreements with the company, the data used in the re-

search are made up for analytical purpose. Readers should be aware that number

presented in this thesis do not represent the data that originated at the company.

In addition, readers should not assume that the physical layout or the situations de-

scribed actually represent either the existing or previous situation of the company.

The company, while we were working with it, was considering various alternative de-

signs for the mill complex. The system represented here is meant to be a realistic

possible configuration but may not necessarily represent the actual mill or any of the

planned modifications.

The next chapter presents a literature review on topics of mining simulation and

mining production scheduling. The remainder of this thesis is organized as follows. In

12

Chapter 3, formulation of integer programming model is presented. The development

of the simulation model is presented in Chapter 4. Chapter 5 presents simulation input

data analysis of machines failure. Chapter 6 presents a simulation-based sensitivity

analysis. Chapter 7 draws conclusion for this research and propose a direction of

future study.

Chapter 2

Literature Review

In this chapter,a discussion of the history, current status and future development of

the application of simulation in the mineral industry is given. Several case studies

completed in Europe, South Africa and Canada are reviewed. The second section

discusses in detail two simulation case studies completed at the Ervei Khuder Mine

and the Vale Aguas Claras Mine to demonstrate how a simulation model is applied

for production scheduling and planning purposes. The third section reviews the mod-

elling and optimization of a crushing plant. A review of evolutionary algorithms used

to optimize a crushing plant’s performance with specific objectives and constraints

is provided. Finally, the fourth section provides the review of a paper describing the

determination of a production schedule at the LKAB Kiruna Mine by mixed-integer

programming.

2.1 Simulation in the Mining Industry

Simulation has gained increased attention as a technique for planning and analyzing

mining operations, or modifying and improving existing ones. Simulation can study

the behaviour of a mining system before it is implemented. It evaluates design alter-

natives, identifies improvements, eliminates problems and justifies costs. Sturgul and

Li [19] emphasized that the advantages of simulation in the mining industry are not

only to provide management with a detailed look into the future but also to allow

the company to make critical decisions and understand a variety of issues about the

system.

13

14

2.1.1 The History of Simulation

Simulation in the mining industry has a close relationship with the development of

the personal computer. Lynch and Morrison [13] reviewed the history of simula-

tion in the mineral process along with milestones in PC development history. Early

modelling (prior to 1960) is concerned with the design and optimization of circuits.

Models focused on minimizing costs per tonne through increasing mineral recovery

or productivity. However, little simulation progress was made at the time on the

formulation of models, due to the lack of powerful computers to perform intensive

and repetitive calculations. From 1960 to 1980, simulation studies focused on pro-

cess analysis and control, in particular ball mill-hydro cyclone circuits. Since 1962,

funding has increased and simulation projects have expanded to include all mineral

processes. From 1980 to 2000, the combination of lower grades, rising mineral de-

mands, and the requirement of high-capacity circuits to reduce unit costs led to the

development of circuits with high-capacity, as well as rapid growth in machine sizes

and power consumption. During this time, computers were already being used in

plants, enabling simulation programs to be tested thoroughly. Because of this situa-

tion, many companies improved their working efficiency by using simulation models

to improve process productivity and verify circuit design. According to Sturgul and

Li [19], “the development and improvement of simulation tools increased interest in

the mineral industry for simulation models.” The authors listed several widely-used

simulation tools employed in the mining industry:

i) GPSS/H and Proof Animation: the most widely-used classical general

purpose simulation language.

ii) SIMAN/Cinema/Arena: the first major simulation language to be avail-

able for microcomputers which has both discrete and continuous modeling

capabilities. Arena adds a graphical interface to SIMAN simulation.

iii) SLAM/SLAMSYSTEM/AweSim: SLAMSYSTEM is the first simula-

tion language with graphical model building capability supported by the

Windows platform.

15

iv) MODSIM III: An object-oriented, general purpose, high level program-

ming simulation language.

v) WITNESS: has been used to develop an underground hard rock mining

model. It has the ability to import 3D graphics files.

2.1.2 Current Status of Mining Simulation and New Development

Lynch and Morrison [13] suggested that there are two main reasons for simulation

modelling successes: the availability of PCs since about 1985 and the comprehensive

process data that had been collected in mineral processing plants over this time

period.

On the other hand, Sturgul and Li [19] reviewed the most recent developments in

simulation technology, listing four major advances in simulation technologies:

i)“Visualization and animation: the recent development in graphic mod-

elling avoids complex programming in animation. Animation provides the

ability to communicate the essence of a simulation model or the simu-

lation itself to managers and other key project personnel, increasing the

model’s credibility. In addition, the use of visualization provides a more

user-friendly interface and facilitates the process of simulation modelling

for aspects such as debugging.

ii)Model reusability: differing from programming languages and general-

purpose simulation languages, object-oriented simulation tools developed

in recent years increase a module’s reusability. This feature allows a

developer-level user to construct the model, an analyst-level user to ex-

tend and reuse it, and an end level user to do experiments.

iii)Parallel simulation: for a large, complex simulation, parallel simulation

is used for many large discrete event simulations such as communication

systems, traffic systems, computer networks, and computer systems.

16

iv)Application integration: the development of Open Database Connectivity

(ODBC) and Object Linking and Embedding (OLE)technology offers the

ability to use simulation with other planning applications such as spread-

sheets, CAD systems, databases, etc.”

Lynch and Morrison [13] suggested that future research areas in simulation mod-

elling in the mineral industry could include flotation, fine grinding and dry grinding.

These authors concluded that simulation of flotation system has made progress on

the prediction of concentrate grades but requires enormous and costly data collec-

tion surveys. The requirement for modelling dry grinding circuits is the same as for

many other types of circuit. Fine grinding is coming into common use for re-grinding

concentrates and improving recovery by leaching from refractory gold minerals. The

authors also mentioned that economic factors have become more important in recent

simulation modelling. Consideration for the cost of items such as equipment, power,

labor, suppliers, and of the contract conditions for sales of products are used in sim-

ulation to improve economic performance. Lynch and Morrison [13] highlighted the

following trends in simulation use in mining:

i)More flexible and user-friendly simulation languages that provide on-screen

model building.

ii)Web-based simulation models.

iii)Integration of mining simulation and animation with mine design and plan-

ning applications.

In conclusion, mining simulation has been and will be improved in parallel with the

rapid development of computer technology. With more powerful, flexible and user-

friendly software development, simulation is a useful tool for system design, planning,

and operations analysis in the mineral industry.

17

2.1.3 Mining Simulations Around the World

Mining Simulations in Europe

According to Panagiotou [17], European engineers have been pioneers in mining sim-

ulation since the late 1950s. The dramatic reduction in large-scale mine development

in recent years, due to environmental issues and lack of profitable deposits, has had

an impact on the application of simulation studies in Europe. Panagiotou [17] inves-

tigated several completed mine simulation studies in Europe. The early simulation

studies in Europe focused on underground haulage systems. The first mine simulation

is the transportation system for LKAB’s Kiruna underground iron mine. The model

consists of a trackway plan, ore storage bin, the signal system, train movement and

dispatching. The simulation was done by hand in the late 1950s. In 1970, Wilke [25]

developed a model for train transportation in underground coal mines in Germany.

The objective was to optimize the underground traffic from three mines to one shaft.

A simulation package called SIGUT was developed for this study. It is capable of

handling the stochastic nature of mining data. The program was concerned with the

material flow of both the belt system and truck haulage. The early simulation was

further extended and Panagiotou [17] listed as follows:

i)Panagiotou developed a series of FORTRAN programs to simulate opencast

mines operating with conveyors and stackers.

ii)Agioutantis [1] developed a simulator to study the performance of surface-

mining equipment, which includes production subsystems, waste material,

conveyor subsystems and dumping systems.

iii)Wilke [26] developed a program to minimize truck haulage cost which in-

volves determining the optimum fleet haul size, organization of haul system,

the best dispatching scheme and reliable maintenance and servicing system.

iv)Vagenas [22] developed METAFORA, a simulator for dispatch control in

surface mines.

18

v)Panagiotou [16] presented a suite of programs to plan and analyze truck-

/shovel operations in opencast mines and quarries.

vi)Medved [14] developed a simulation model in GPSS to study the truck

transportation system which consists of traffic patterns, truck utilization

operation costs,etc.

vii)Erdem [3] developed simulation models as part of an expert system for

dragline and stripping method selection in surface coal mines.

viii)Mutagwaba [15] developed a model, written in C++, for simulating mine

transportation systems.

In conclusion, simulation models for studying complex mining system is well accepted

in Europe. The dynamic and stochastic nature of any mining system frequently makes

simulation the only practical method for studying such systems.

Mining Simulations in South Africa

Turner [21] described a selection of simulation case studies and approaches in the

mining fields in South Africa. The first example uses simulation as an aide to an

on-line mining environment. South Africa is using a real time transport tracking and

scheduling system in its mining industry. Simulation provides valuable input during

various phases of an operational mine management system’s life cycle. Turner [21]

summarized that general simulation model purposes as followed:

i)Pre-implementation analysis: based on operational rules, the model is built

and then verified to perform a what-if analysis for the decision-maker. The

simulation results address improvements in availability and utilization as

well as efficiency.

ii)Benchmarking of existing operations: the simulation model is used to estab-

lish a benchmark for measuring and quantifying operational improvements.

19

iii)Verification of assignments and operational logic: the simulation ensures

optimal operational dispatching within constraints.

iv)What-if analysis: in a virtual mine simulation environment, what-if analysis

assesses the impact of an altered pit or equipment configuration and/or

operational rules.

Turner [21] also discussed several simulations of planning and operations in mineral

processing in South Africa mining operations. The author lists numerous simulation

models to evaluate operational alternatives:

i)De Beers Finsch Diamond Mine Quadrant Mining Simulation: implemented

scheduled maintenance for both production and ground handling system.

The simulation model evaluated the feasibility of operational options by

obtaining the most suitable sequence in which the quadrant should be taken

out of production.

ii)De Beers Block-Cave Mining Simulation: simulation of underground activ-

ities for a planned new block-cave development. Simulation compared the

time and efficiency between two mining methods: drill-and-blast mining

and high-speed continuous mining.

iii)Kimberly Mines Dump Relocation Simulation: simulation evaluated differ-

ent logistic options and measured their consequence on the transport from

mine dumps to the proposed new treatment plant.

Turner [21] discussed another simulation case study completed by JCI Gold and Ura-

nium Division. The simulation model integrated traditional mine planning systems,

mining and transport simulations, and financial costing systems. The model consisted

of four sub-models:

i)Mining model: included all mining rules and was the heart of the entire

simulation. Its output included a plan of how, where and when the ore

body is to be mined.

20

ii)Financial model: associated various costs such as labour, stores, utility and

others to each mining activity, with results being accumulated over time.

Other business parameters such as revenue, inflation, interest, and gold

price were also included.

iii)Capacity model: was used to report utilization of various ore transport

routes to transport ore mined underground to the surface.

iv)Logistics model: a simulation model of the movement of people, material

and ore between levels and shafts.

Turner [21] also mentioned that SASOL Limited, one of the world’s largest coal mining

operations, used simulation in their design and implementation of coal transport,

storage and blending systems. This simulation focused on ensuring a long-term supply

of coal from various mines to its Secunda Synthetic fuel operations. The model was

used to evaluate marketing of coal production as export steam coal versus conversion

to synthetic fuel operation. The option was to expand one of the existing mines.

The objective was to minimize the disruption of other current mining operations.

The simulation model evaluated the design of new mining, transport and handling

systems for this expanded mine.

ISCOR Limited, a mining company producing iron ore, coal and heavy miner-

als, has used simulation extensively for mining and process investigations. Iron ore

crushing and blending plants at the Sishen mine used simulation for planning. The

blending system was described as one primary crusher at one end of the process and a

feed to the process plant at the other. In between were a number of screening sections

and two blenders. The simulation studied stockpile operation policies to determine

best practices for the blending, stacking and material reclaim operations.

Turner [21] summarized that simulation has and is being used extensively in min-

ing industry in South Africa. Increasingly, simulation incorporates the use of economic

models into traditional dynamic models to assess the economic impact of operations.

Overall, simulation in mining in South Africa is a growth industry.

21

Mining Simulation in Canada

Vagenas [23] explained that, through the 90’s, the Canadian mining industry demon-

strated increased awareness and interest in the application of discrete-event simulation

software packages for both open-pit and underground mining operation. In Canadian

open-pit operations, simulation modelling was primarily focused on analyses of mate-

rials handling systems. This application was related to truck/shovel dispatch systems

and real-time management information systems. In underground mining, simulation

studies have mostly focused on the equipment systems and the extraction rates of

entire ore bodies or a section of a mine for development and production scheduling.

Vagenas [23] described trends in the use of simulation in the Canadian mining

industry as follows:

i)Use of three-dimensional animation to visualize entire ore bodies - 3-D an-

imation/simulation package such as AutoMod and Witness were preferred

by mining engineers and consulting firms in Canada.

ii)Integration of reliability assessment analyses of mining equipment systems

in simulation models.

iii)Integration of simulation with real-time mine management systems and

spatial databases.

iv)Development of both strategic and tactical mine simulation models to pro-

vide insight into long and short-term requirements of mine operations.

Vagenas [23] concluded that simulation in the mining industry provides the abil-

ity to achieve “Lean Mining”, which aims to minimize throughput time, stockpiles,

wastage and rework. Three-dimensional animation was predicted by Vagenas [23] to

be a dominant operational research tool for evaluation and comparison of current and

future mining systems.

22

2.2 Application of Mining Simulation

2.2.1 Using Operation Process Simulation for a Six Sigma Project of

Mining and Iron Production Factory

Chinbat and Takakuwa [2] state that the fundamental objective of Six Sigma method-

ology was the implementation of a measurement-based strategy that focuses on pro-

cess improvement and variation reduction. Design for Six Sigma (DFSS) is a system-

atic methodology utilizing tools, training and measurement to design products and

processes that meet customer expectations at a Six Sigma quality level.

The author discussed two Six Sigma sub-methodologies: DMAIC (define, mea-

sure, analyze, improve, control) and DMADV (define, measure, analyze, design, ver-

ify). Simulation models for improving the current conditions of the process use the

DAMIC methodology. The development of an optimized “to-be” model uses DAMDV.

The case study was conducted at the Ervei Khuder Mining Iron Production Factory

(MIPF). As the main problem was process lead time, the goal was to increase factory

capacity and remove bottlenecks.

The process at MIPF consists of two parts: mining and iron production. These

two types of production can be treated as two sub-models. The mine sub-model

includes drill, blast, load and transport utilizing truck haulage. The outcome of

mine sub-model was to satisfy the demand of the iron production sub-model, which

contained four processes in series:

i)The ore was crushed by two crushers (primary and secondary crusher)and

then screened.

ii)The third crusher crushes the ore to a fine ore.

iii)The magnetic ore is separated from the fine ore.

iv)The separated usable iron is cleaned by two machines and sent to the end-

point.

23

Collected data were analyzed by an Arena Input analyzer to perform distribution

fit analysis of input parameters. An “as-is” model was built to simulate the existing

process. The model was then verified and validated.

One important part of this Six Sigma project was to establish the Critical-to-

Quality (CTQ) characteristics as performance metrics. Chinbat and Takakuwa [2]

decided that non-value added times such as wait time, truck utilization were the

main metrics for this simulation model. The simulation model was altered to de-

velop the “to-be”models. The “to-be” models were then evaluated by comparing the

performance metrics to select the “best” options available for meeting the goals to

increase factory capacity and diminish bottlenecks.

Chinbat and Takakuwa [2] summarized the importance of the role simulation

played in this Six Sigma project:

i)Senior management noticed that the simulation provided the Six Sigma

team with a clear view of the process bottlenecks and problems and the

ability to visually understand the optimization with a numerical demon-

stration.

ii)The use of Arena software for the OPS (Operation Process Simulation) for

optimization of current Mining Iron Production Factory (MIPF) and de-

signing the new MIPF allowed for the ability to measure, analyze, improve

and design the process with minimal post design rework, with realistic out-

puts.

2.2.2 Concurrent Simulation and Optimization Models for Mining Plan-

ning

Fioroni et al. [4] present a case study of how simulation and optimization models were

combined to achieve a feasible, reliable and accurate solution for a short-term mining

plan. Discrete event simulation tools are not suitable for directly solving complex

optimization problems like a mining plan. In this research, the authors combine an

optimization model with a simulation model to solve a mine planning problem. The

24

objective was to provide a feasible solution for quality and quantity production of

ROM (Run of Mine) iron. The author further discussed, in two separate parts of the

project, the simulation and optimization model.

The ROM (Run of Mine) iron is described by authors as follows: each mining

area has used a truck/shovel combination to transport ore. Ore was carried to the

main stockpile and primary crusher. Each mining area had a different grade of iron

ore; therefore the correct quantity of ore in each area must be extracted to reach the

desired quality (grade) and quantity at the ROM stockpiles. In other words, the mill

receives ore from several mines, which deliver different grades of ore, and stores the

ore in stockpiles. To meet output requirements or customer demand, a certain amount

of ore should be pulled from the stockpile and fed to the mill circuit for processing.

The real ROM iron has some variable effects on the system: loader maintenance,

truck maintenance, exhaust of ore/waste at the mining area, etc. Averages do not

precisely reflect truck operation’s loading and transportation variations. Discrete

event simulation is a suitable tool to reproduce this randomness and to evaluate the

feasibility of the plan.

The optimization part of this problem focused on truck allocation and determines

if truck fleets are assigned to correct areas. It estimates the number of trips for each

truck to provide the desired ore grade at the ROM pile.

After explaining the simulation and optimization models, the authors outlined how

these two models were combined in a run: “The simulation model initially runs with

the optimized plan from the optimization model. The simulation runs until the system

state changes due to an “event” such as equipment failure or truck maintenance.

After the “event” happens, the optimization model is called and recalculates the

new optimized plan. The simulation model continues with this new plan until the

next “event” happens.” This approach is a good integration of both tools instead of

a post- or pre-simulation run. The number of interactions between simulation and

optimization depends on the mining area number, the qualities, and total mass of

ore; it also depends on the shovel and truck fleet availability.

The simulation model was developed in Arena using Visual Basic Application

25

(VBA) for communication between simulation and optimization models. The objec-

tive of this simulation model was to test the viability of the simulation of the mining

plan proposed by the optimizer, presenting utilization and production. The simu-

lation model also included equipment breakdown and re-planning or extraction in

several areas in its evaluation.

The authors concluded that the project’s objective was achieved by reducing min-

ing costs through a combination of simulation and optimization. For daily planning,

it supplied a tool which allow the decision maker to discuss the mine plan prior to

execution; increase the trustworthiness of the mine plans; allow equipment utiliza-

tion analysis; and make possible the analysis of several scenarios within a short time

interval.

2.3 Mill Optimization Model

2.3.1 Economic Optimization of an Ore Processing Plant with a Con-

strained Multi-Objective Evolutionary Algorithm

The principle parameter used in most optimization model is profit, which combines

minimizing investment and operating costs and maximizing return on investment,

throughput and efficiency. Hubandi et al. [9] demonstrated, using multi-objective

evolutionary algorithms (EAs) in a case study, an approach to optimize the design of

a comminution plant. The two real-world complications are included in this model:

risk management and complex feasibility conditions.

In the case study, the author defined the comminution circuit as a collection of

physical processes that can be applied to a stream of ore to reduce the size of the

particles in the stream. It includes primary, secondary and tertiary crushers; primary

and secondary screens; coarse ore stockpiles; fine ore bins; milling and leaching. The

milling lines in this case study have a pre-defined order in which they are utilized.

Material is fed into the preferred line until that line reaches capacity, after which

excess material is fed into the subsequent line(s).

The design parameters in this case study include feed variation, placement and

26

types of mills, and the feed order of the milling lines. There are four independent

objectives were used to evaluate the overall system design.

The solution procedure used an evolutionary algorithms to solve the problem. As

a result, it identified a number of operational changes that could add significantly

to total earnings over the life of the project without any additional investment. At

the same time, the optimal solution also fully utilized available crushing plant hours.

However, the gains in overall project value achieved were relatively modest compared

to the original plant design and operation.

2.3.2 Crushing Plant Optimization by Means of a Genetic Evolutionary

Algorithm

The objective of plant modelling is to make a plant runs as efficiently as possible.

Within a crushing plant it is difficult to know how each individual production unit

affects the efficiency of whole plant. It is difficult to predict how a change in one

particular parameter will influent the overall system’s performance. Svedensten and

Evertsson [20] developed software in Visual C++ to solve this type of problem. It

has a graphical interface for crushing plant modelling and uses a “drag and drop”

concept. Optimization parameters for various units can be easily selected via the

dialog boxes.

The authors described the crushing plant as an unknown black box which consists

of a configuration of the plant and mathematical constraints. Design parameters were

input into the “the crushing plant” box and the output is a cost function of input

parameters. The crushing plant model consists of four major parts:

i)Production unit: describes the transformation of the rock material as it

passes through the unit.

ii)Rock material model: contains information about the rock properties that

affect production.

iii)Economic model: cost function for evaluating the performance of the crush-

ing plant from the perspective of the owner.

27

iv)Customer demand model: the requirement to generate an adequate level

of product quality. User is able to adjust the levels of over- and undersize

percentages of a product to accommodate customers’ demand.

The author further discusses how the production unit can be broken down into

more specific units such as crushers, separators, transporters, and storage. Storage

consists of stockpiles and storage bins. Each of these units has a number of variable

parameters that can vary between upper and lower limits, and static parameters. A

variable can be optimized during a computer simulation run, or fixed, and therefore

not included in the optimization.

The economic model contains a cost function to evaluate each production unit.

The cost can be divided into two types: cost per ton (variable cost) and cost per hour

(fixed cost). When a simulation runs, these two costs in every unit are calculated

as a single cost per ton Ctot,i(X) using the total mass of rock mrock,i(X) material pass

through the unit i per hour, as follows where x is a input vector:

Ctot,i(X) = Cton,i + Chouri/mrock,i(X)

The total cost per ton is then accumulated against the rock material model and sent

to the next production unit mode in the crushing plant model.

The objective of the model is to maximize the gross profit of the crushing plant.

The solution must meet the customer’s demand constraints as well. There are two

types of constraints in the optimization: 1) some production units have a combination

of optimization parameters that cannot be used due to incompatibility; 2) constraints

related to product quality. The simulation optimization contains two components: a

subroutine for generating parameter values and a simulation subroutine for evaluating

the values generated.

The author concluded that crushing plant optimization model not only includes

the performance of the different production units but also the economic aspects.

28

2.4 MIP of Mine Production Planning

Kuchta et al. [12] noted that mathematical programming has been used for pro-

duction scheduling in underground mines. While heuristic algorithms may produce

usable schedules, they do not necessarily find the best schedule because the solution

is compared to the current modus operandi. Mixed-Integer Programming (MIP) has

been used to generate an optimized production schedule. However MIP can be time-

consuming due to the large number of decision variables, with many of them restricted

to assume integer values. The case study done by Kuchta et al. [12] demonstrated a

new mixed-integer programming model developed for the Kiruna Mine.

Kuchta et al. [12] described LKAB’s Mine as having two types of ore bodies and

delivering three types of ore product based on phosphorous content delineated as B1,

B2 and D3 products. The mine provides one post-processing mill with B1 ore, two

mills with B2 ore, and one mill with D3 ore. Electric Load Haul Dump (LHD) units

transfer ore from the production drift to the ore passes, which extends further down

to the transportation level. Then the ore is transported to the underground main

crusher by a large train and hoisted to the surface.

The MIP model determines the starting date for various machine placements such

that the required B1, B2 and D3 ores can be produced each month to meet demand.

In other words, the mining production schedule must provide a mining sequence

that takes into account the physical limitation of the mine and meets the required

quantities of each raw ore type for each time period.

The objective of the model was to minimize the production deviation for each

type of ore during each month. The operational constraints are described by authors

as follows:

i)Accounting constraints that track the amount of each ore type mined on

each month.

ii)Vertical and horizontal sequencing constraints that preclude mining a ma-

chine placement under a given machine placement until at least 50% of the

given machine placement has been mined.

29

iii)Shaft group constraints that restrict the number of LHDs active within a

shaft group at any one time to a predetermined maximum, usually two or

three.

The MIP is implemented using the AMPL programming language and the CPLEX

solver 7.0. The first version of this problem required 50,400 integer variables.

In the second version, Kuchta et al. [12] replaced the binary variable indicating

whether the production block is mined in time period t with a binary variable indi-

cating whether a machine placement starts to be mined in time period t. In this case,

about twelve production blocks can be aggregated into a single machine placement,

using both an earliest-possible start date and a latest-possible start date for each

machine placement. With this reformulation, the number of integer variables is then

reduced to 650 and a complete five-year schedule can be obtained in 300 seconds.

The author explained that the number of integer variables can be further reduced by

assigning earliest- and latest- possible start dates to machine placements based on

the sequencing logic and demand constraints and bounds on a reasonable deviation

between demand and production.

The implementation of this model brings major advantages to a company. Com-

pared to previous manual scheduling, it was estimated that cost savings for the time

spent generating schedules was about 25% of the scheduler’s salary. In addition to

this, mine planners also have the ability to compare various production schedules so

that they can plan for changing demands or other contingencies.

Chapter 3

Formulation of Integer Programming Model to Calculate

Draw Scheme and Campaign Schedules

The purpose of the Integer Programming (IP) model is to help plan the mill produc-

tion campaigns and to define a proper draw scheme for each campaign period. The

“Draw Scheme” specifies the type and proportions of ore that the mills draw from

the fine ore bins. The draw scheme is constant during a given period. A null draw

scheme indicates a shutdown of the mill. “Campaign” means a consecutive number

of days which use the same draw scheme. The timing of switch-over from one draw

scheme to another, which is also called “Campaign Switch-Over”, is calculated by the

IP model. The shortest period of time to be considered in this model is best thought

of one day. If different time interval is desired, this can be substituted.

The outputs of the model are: 1) the length of each campaign; 2) the draw

scheme to be used for each particular campaign. The overall objective of the IP

model is to allow the decision maker to calculate a set of campaigns that minimizes

some combination of 1) excess inventory levels of unprocessed ore; 2) the number of

days on shutdown 3) the number of active piles required at any point in time.

3.1 Blending Model

A draw scheme amounts to a way of blending ores to proceed through the mill. This

blending can occur either outside the mill, in the ore piles, or inside the mill via the fine

ore bins feed to the mills. For each defined draw scheme, it has a precalculated draw

rate (Dot) for each type of ore. The draw rate is used to calculate total draw based

on number of time units had for this draw rate. The draw rate (Dot) and blending is

influenced by the following: 1) For a copper (or nickel) ore, the mills have a nominal

feed rate for each ore at a nominal grade of Cu%(Ni%). If the total metal content

30

31

of the ore feed exceeds this percentage, the rod mill can be throttled to maintain a

metal feed rate equivalent to the rate at the nominal Cu%(Ni%). However, the mill

can only be throttled back to about 75% of the nominal feed rate. Alternatively, ores

can be blended by using two fine ore bins to feed the mill. The principle of blending

is to have an equal metal content of Ni and Cu in the blending process. The blend

ore is treated as a Ni ore for feed rate purposes and throttling back of the mill, if

necessary, is as if the feed were Ni.

A small linear programming model has been developed that can calculate a blend-

ing formula and corresponding draw scheme for any combination of input ores. The

main idea of this model are: there are different types of ore received by mill. Each

type of ore has Cu and Ni grade. If all these ores can be allocated to proper FOB for

blending purpose without exceeding the maximum number of blender in mill system,

it is not necessary to perform pre-blending in the ore piles. The objective of this

blending model is to minimize the total number of ore blending in FOB. For this

particular problem, since there are two grinding circuits exists, if number of blending

is less than two, all blending can be done in the mill. The solution from this blending

model provide a blending formula of how much ore should be allocate to each FOB

by obeying the equal metal content rule.

3.1.1 Formulation of Blending Model

The model is developed by using GUSEK and showed as followed:

Sets:

Blender Set of blenders

Ore Set of Ores

Indexes:

o ∈ Ore Type of Ore

32

b ∈ Blender Blender

Parameters:

nOre number of different types of ore

nBlender number of blender in the mill system

CuGradeo Copper grade of ore type o

NiGradeo Nickel grade of ore type o

FOBRatio Maximum blending ratio between FOBs

MinNi The minimum output of nickel from the system

Decision Variables:

xob amount of ore type o in blender b

yob binary variable, yob = 1 means ore types o is blended in blender b.

zb total amount of ore in blender b.

CuContent total copper content in all blenders.

NiContent total nickel content in all blenders.

Objective Function:

Minimize
∑

o∈Ore,b∈Blender

yob (3.1)

Subject to:

xob ≤ yob o ∈ Ore, b ∈ Blender (3.2)

∑
o

xob = zb o ∈ Ore (3.3)

33

∑
b

zb = 1 b ∈ Blender (3.4)

CuContent =
∑
b

xob × CuGradeo b ∈ Blender (3.5)

NiContent =
∑
b

xob ×NiGradeo b ∈ Blender (3.6)

CuContent = NiContent (3.7)

z[b] ≤ FOBRatio× z[b+1] b ∈ Blender (3.8)

z[b+1] ≤ FOBRatio× z[b] b ∈ Blender (3.9)

NiContent ≥ MinNi (3.10)

NiContent ≤ MaxNi (3.11)

The meaning of each constrain is:

(3.18) If there is any amount of ore in blender b, blender b should be used;

(3.19) summation of different ore type in blender b should be equal to total amount

of ore in blender b;

(3.20) It was assume there is one tonne of ore are processed in the system. Summa-

tion of all ores in all blenders should be one tonne;

(3.21) Calculate the copper content in all blenders;

(3.22) Calculate the nickel content in all blenders;

34

(3.23) Equal metal content of Ni and Cu;

(3.24,3.25) Make sure the maximum blending ratio between two FOBs are achieved;

(3.26,3.27) Total nickel content in all blenders should at least equal to the desired

output of nickel.

3.1.2 Numerical Results of Blending Optimization Model

Formulation of a sample problem in GUSEK is showed in App.D and solution for the

this problem was found within .218 seconds. The output solution file generated from

GUSEK showed in App. E.

The solution generated from this blending model can be considered as a blending

formula which defines several specifications: 1) yob defines which type of ore should

be blended in specific blender b; 2) xob defines how one tonne of ore are allocated to

different blenders according yob.

The blending formula is part of campaign draw development but only focuses on

the control of the draw scheme at the blender and FOBs. The campaign scheme

discussed earlier has a wider control scheme for the overall system.

3.2 Mill Optimization Model

The mill optimization model works as follows: mill receive different types of ores

from dummy mines. Arrival rate of each ore varies daily. This accommodate the

uncertainty from mines production. Once mill receives ores, it stays at stockpiles.

Each stockpile can only store one type of ore at a time. It is possible to have a small

number of active stockpiles outside of mill. The mill starts to pull ore from stockpiles

based the campaigns and draw scheme solution. The draw scheme defines the draw

rate for each type ore and campaign defines how long should this draw lasts. This

type of campaign is defined as operation campaign with a campaign length constraint.

Campaign schedules should keep the inventory level of each ore as low as possible.

At the same time, meet the draw requirement for each draw scheme. Shutdown

35

campaign is a special campaign with zero draw rate. During shutdown, it can be

performed maintenance tasks or waiting for ore coming. It is encourage to have as

many shutdowns as possible during total planning horizon.

3.2.1 Mill Optimization Model Parameters

The optimization model’s main data includes:

• Forecast ore arrivals in each day;

• A list of potential draw schemes;

• Draw rate of each ore type for each draw scheme in each day;

• Maximum and minimum total inventory limits;

• Maximum and minimum inventory of each type of ore;

• The weight applies to the objectives: γ and β;

3.2.2 Mill Optimization Model Formulation

The optimization model is detailed below:

Sets:

T Set of days

D Set of draw schemes

O Set of Ores

H Number of days of planning horizon

36

Indexes:

k ∈ D draw scheme used for particular campaign. kSD = 0 means shutdown

o ∈ O Particular type of ore

i ∈ H campaign starts at the beginning of day i

j ∈ H campaign ends at the beginning of day j

t ∈ T time period in day t

Parameters:

N number of campaigns to be used for planning horizon

Lmax maximum campaign length in days

Lmin minimum campaign length in days

Imax
tot maximum total inventory allowed on day t

Imin
tot minimum total inventory allowed on day t

Imax
ot maximum inventory allowed for ore type o on day t

Imin
ot minimum inventory allowed for ore type o on day t

Aot the arrival of ore type o on day t

Dok the draw rate for ore type o under draw scheme k

NPmaxmaximum number of active piles allowed on day t

γ weight of parameter zSD (indicates the relative importance of

number of shutdown during campaign period)

β weight of variable VNP (indicates the relative importance of

number of active piles)

Decision Variables:

xij binary variable, xij = 1 means campaign starts at the beginning of

day i and ends at the beginning of day j

yijk binary variable, yijk = 1 means draw scheme k is used during

37

campaign day from i to j

dot draw of ore type o on day t

iot ending inventory of ore type o at the end of day t

V +
t measure of the violation of the upper bound on total ending

inventory occurring on day t

V −
t measure of the violation of the lower bound on total ending

inventory occurring on day t

v+ot measure of the violation of the upper bound on ending inventory

occurring on day t for ore type o

v−ot measure of the violation of the lower bound on ending inventory

occurring on day t for ore type o

zot binary variable, zot = 1 means ore type o pile is active on day t

V NP maximum number of active piles on each day t

zSD number of days on shutdown during the planning horizon

Objective Function:

Minimize
∑
t=1,t

(V +
t + V −

t +
∑
o∈O

(v+ot + v−ot))− γzSD + βV NP (3.12)

The model is considered as weighted goal programming problem. The objective of

this model are: 1) minimize the excess total inventory level and inventory level for all

types of ores; 2) maximize the number of shut down days during the planning horizon;

3) minimize the number of active piles. Because it is difficult to attain all these goals

at the same time, then the weight factor γ and β in the objective function are used

to encourage more shutdown days by increasing γ or to discourage active piles by

increasing β. The user can assign a different weight to each specific objective. For

example, if γ is greater than β, it means that having more shut down time is more

important than reducing the number of active piles in overall optimization.

38

Subject to:

Campaign definition constraints:

xij = 0 ∀ j − i > Lmax (3.13)

xij = 0 ∀ j − i < Lmin (3.14)

H−1∑
i=1

H∑
j=i+1

xij = N (3.15)

∑
m=1,i−1

xmb =
∑

n=i+1,H

xbn ∀ b = 2, H − 1 (3.16)

H∑
j=i+1

x1j = 1 ∀ i = 2, H − 1 (3.17)

∑
k

yijk = xij (3.18)

zSD =
∑

i=1,H−1

∑
j=i+1,H

(j − i)yijkSD (3.19)

Material flow and inventory constraints:

dot =
∑
i≤t

∑
j>t

∑
k

Dokyijk (3.20)

iot = iot−1 + Aot − dot (3.21)

Imin
tot ≤

∑
o=1,O

iot − V +
t + V −

t ≤ Imax
tot t ∈ T (3.22)

Imin
ot ≤ iot − v+ot + v−ot ≤ Imax

ot t ∈ T, o ∈ O (3.23)

39

dot ≥ 0 iot ≥ 0 v+ot ≥ 0 v−ot ≥ 0 V +
t ≥ 0 V −

t ≥ 0 (3.24)

Active piles constraints:

iot ≤ (
∑
t=1,t

Aot) ∗ zot (3.25)

dot ≤ (max
k

(Dok)) ∗ zot (3.26)

∑
o=1,J

zot ≤ NPmax + V NP (3.27)

The meaning of each constraint is:

(3.2) Campaign starts from the beginning of day i and ends at the beginning of day

j. The length of campaign j-i should be smaller than the maximum length of

campaign allowed Lmax;

(3.3) The length of campaign (j-i) should be greater than the minimum length of

campaign allowed Lmin;

(3.4) total number of campaigns required for planning horizon should equal the pre-

specified N.

(3.5) The number of campaigns starting from day t equal the number of campaigns

that end at the beginning of day t;

(3.6) One campaign starts on day 1;

(3.7) Only one draw scheme can be used in each campaign;

(3.8) The number of shutdown days is the sum of the days in those campaigns that

use the shutdown campaign type kSD;

(3.9) The draw on day t for ore o is equal to the draw rate of the draw scheme k

that is in use during the campaign active on day t;

40

(3.10) Ending inventory on day t for ore o is equal to the ending inventory of ore o

of the previous day plus the arrival of ore o in day t minus the draw of ore o;

(3.11) At the end of day t, the total inventory should be between lower and upper

bound; V +
t and V −

t means the violation of these bounds;

(3.12) At the end of day t, the inventory of each ore type o should be between the

specified upper and lower bounds for that ore type on day t;v+ot and v−otmeans

the violation of these bounds;

(3.13) Draw and inventory level should be greater than zero;

(3.14) Ending inventory of specific ore pile o should be less than cumulated arrival

of ore type o if pile is active; zot indicate that ore pile of type o is active;

(3.15) draw from a pile should be less than maximum draw rate over all draw scheme

if pile is active;

(3.16) total number of active piles should be less than the maximum number of

active piles allowed in any period. The variable V NP measures the violation of

this limits.

3.2.3 Model Implementation

The open source GNU [6] Linear Programming Kit (GLPK) [5] has been used to

implement the model. It is a software package intended for solving large-scale linear

programming , mixed integer programming, and other related problems, and is a

part of GNU project. GUSEK [8]provide an open source LP/MILP IDE for Win32,

packing a custom version of the SciTE [18] editor linked to the GLPK standalone

solver.

3.2.4 Numerical Results of Mill Optimization Model

The mill optimization model was developed using the GUSEK code as shown in

App.A. The model used external .dat files as its input file and generated an output

file when the model was successfully processed.

41

The external data file, as showen in App.B summarizes the model input as shown

below:

i)Total length of planning horizon is 20 days with at most 4 campaigns re-

quired for this time period.

ii)The length of each campaign ranges from minimum of 2 days to maximum

of 7 days.

iii)There are three types of ores being processed.

iv)There are four blending draw schemes available to be chosen for a campaign

including one shutdown draw scheme.

v)The maximum number of active ore piles is five.

The model is able to find an integer optimal solution and generate the results

shown in App.C. A separate detailed output file can be generated as well after the

model has been successfully processed. The results for this sample problem indicate:

i)Campaign one: Day 1 to Day 6 using draw scheme 1;

ii)Campaign Two: Day 7 to Day 12 using draw scheme 3;

iii)Campaign Two: Day 13 to Day 17 using draw scheme 1;

iv)Campaign Two: Day 18 to Day 20 shut down;

It was observed that the mill optimization model has the capability to solve sim-

ple problems within a reasonable time. The proposed campaign and draw scheme

generated from the model is the anticipated solution. By altering some input param-

eters of the model such as number of shutdown and number of campaigns, the model

was able to solve the problem correspondingly. Further sensitivity analysis of input

parameter was recommended.

Chapter 4

Development of Simulation Model

Theoretically, it should be possible to run a simulation with all potential campaign

and draw scheme combinations to find mill production system that achieves the best

throughput performance. However, this approach is not feasible since it leads to a

very large number of simulation runs. The mathematical model does not capture the

complexity of mill production system.

In this research, the objective is to develop a dynamic, stochastic discrete-event

simulation model for a decision-maker to evaluate a mill process system with stochas-

tic conditions. This discrete event simulation model has been adopted in order to

evaluate the actual system performance for a specific campaign and draw scheme

developed from the IP model.

Several important steps in the simulation development are included in this chapter:

Section 4.1 discusses the problem of interest and system configuration; section 4.2

discusses the system structure and its operating procedures; section 4.3 explains the

way to construct a model in Visual Basic for Application (VBA); and section 4.4

discusses output analysis. Data analysis will be discussed in Chapter 5. Simulation -

based sensitivity analysis will be presented in Chapter 6.

4.1 Formulation of the Problem

4.1.1 Problem of Interest

This research focuses on the development of a suite of tools that will allow a decision

maker to model and control the dynamics of ore receiving, sequencing and comminu-

tion operation of the mill to make better operational decisions, resulting in increased

yields and greater margins. For a complex system, like a mill operation, simulation

42

43

is often the only feasible method to investigate the problem and evaluate alternative

operational conditions. The characteristics of discrete-event simulation are as follows:

i) Dynamic Simulation: Instead of focusing on the representation of a system

at a particular time, a dynamic simulation model represents a system over

time.

ii) Deterministic/Stochastic Combined Simulation: The deterministic element

of the simulation is material transfer. The transfer activity can be “deter-

mined” by input quantities, specific equations and certain transfer control

policies. The mill model also has random elements such as machine fail-

ures which gave rise to stochastic simulation elements. Since stochastic

inputs produce random outputs as well, simulation models can be treated

as an estimate of the real system. This is the reason why verification and

validation is critical to any simulation model.

iii) Discrete Simulation: Although, in general, continuous simulation is more

appropriate for simulating material flow, in this research project, the simu-

lation model concerns the material movement between “stations” that have

characteristics. In other words, material flow is not only “determined” by

defined equations, but more importantly depends on a series of control poli-

cies of a “station”. For example, if a “station” is receiving status, a certain

amount of material will be delivered to it. As a result, its current inventory

variable updates and this “station” changes its status to delivery status. In

such case, the simulation uses Discrete Event Simulation (DES) approach,

in which the state of a system changes only with an event occurs at dis-

crete points in time. Maintenance and machine failure in the real world are

simulated as stochastic elements in the model.

The simulation model is implemented in VBA in Microsoft Excel instead of using

a commercial simulation package. The advantages of using VBA are as follows:

i) Flexibility : Engineers usually have strong working knowledge of the Mi-

crosoft Office suite of products. It is thus easy for them to alter a set of

44

parameters in the simulation model to perform an experimental run and

generate the results.

ii) Relative low cost : Excel is widely adopted within many organizations. A

specific simulation software may require additional cost to purchase the

software and training for the users.

iii) Reusability : the simulation source code can be used again by developers

with solid knowledge of programming to add new functionalities with slight

modifications.

4.1.2 System Configuration

There are two main issues associated with the system configuration: the level of model

detail and the relationship between subsystems.

The level of detail included in the simulation model is dependent on the scope of

the project. Because the entire mill operation involves many machines and processes,

it is almost impossible to simulate them all. Likewise, it is very difficult to obtain

data, such as failures for every machine. Consequently, it is important to set a

level of detail that is neither too high (whereby the analysis may ignore important

relationships between subsystems) or too low (which might result in spending too

much time understanding precise configurations of a subsystem). Rather, the overall

system should be partitioned into subsystems. Each subsystem should be defined so

it can be reused, redesigned and is flexible. Block diagrams are typically used to show

relationships between subsystems at a high level.

The core concept of this simulation model is to represent a subsystem as a “sta-

tion”. A subsystem in mill production system can be mine, crusher, surge bin or

grinding circuit. It is possible to create several subsystem categories to accommodate

these. An efficient way to define all different subsystems into one single module is

implemented in simulation by introducing the “station” concept. In this case, the

station is a module that receives input and delivers output to the next station. The

connection between stations creates material flow for simulation purpose. All station

45

shares the same properties among all subsystem. The user is able to define these

properties to distinguish station from each other. In the later section, a detailed

discussion of how the “station” is coded as class module in VBA is presented.

One advantage of using the station concept is its flexibility to customize material

flow. By understanding from the structure of the mill operation, we are able to

define the station and its predecessor stations and successor stations. Material is

then simulated as flow between “stations”. The mill operation includes two phases:

surface and circuit. Surface processes include mines, initial ore piles, and primary

crushers. Material received from mines is stored at the initial piles and may be

crushed by the primary crusher before being sent to the circuit. The circuit process

includes the surge bin, crusher, fine ore bins and grinding circuit. Based on Figure

1.2 and 1.3, a block diagram of mill operation is developed by applying the station

concept as shown in Figure 4.1 and explanations of each station are as follows:

i) Mine 1-3 : Dummy mines which deliver ore to the mill.

ii) Initial Piles 1-6 : store un-crushed ores.

iii) Primary Crusher : primary crusher crushes ore before mill process.

iv) Stockpiles 1-6 : store crushed ore for mill process.

v) Surge bin:No.1 surge bin before the crushing process.

vi) Crusher : entire crushing process.

vii) FOB 1-5 : fine ore bin in the grinding circuit.

viii) Grinding Mill A,B and C : three grinding circuits A, B and C.

4.2 Model Definition

4.2.1 Definition of Key Terms

This section provides short definitions of some of the central terms and, will link the

discussion of key concepts.

46

Mine 1

Mine 3

Mine 2

Initial Pile 1

Initial Pile 6

…... Primary
Crusher

Stock Pile 1

Stock Pile 6

…... Surge Bin

Crusher
FOB 1

FOB 5

FOB 2

FOB 3

FOB 4

Grinding Mill A

Grinding Mill B

Grinding Mill C

Figure 4.1: Block Diagram of Mill Operation

i) Blender Scheme: A “recipe” specifying, for blending, the draws of ore of

a given type from one fine ore bin (or more than one) and their ratio (if

mixing two types of ore).

ii) Station Scheme: consists of specifying, for all stations except blending, rock

type, transfer rate, predecessor, successor, and so on.

iii) Campaign: a consecutive number of days which use the same “Campaign

Scheme”.

iv) Campaign Scheme: scheme combines the “Blender Scheme” and “Station

Scheme”.

4.2.2 Simulation Model Assumptions

Before discussing the operational procedures of the comminution portion of the mill,

it is important to ensure that the model’s assumption are correct and complete. This

helps to focus the project objective and avoid significant reprogramming later. The

assumptions are as follows:

i)It is assumed that production from the mine has no effect on the mill pro-

cess. In other words, the “Mine Station” has infinite material which its

47

successor can draw from and the availability of its ore type is not con-

strained. There are three individual mines in the model which can deliver

up to three different types of ore into the mill within one campaign period.

Mines also can be modified as receiving ore according to specific ore deliv-

ery schedule from mines which is similar to the ore arrival rate in the mill

optimization model. This delivery schedule can be further linked to the

mine production schedule.

ii)There are six initial piles and six stockpiles in the model, each of which is

a storage place for any type of ore. In reality, it is better to keep a small

number of active stockpiles. The optimization on usage of these piles is not

included in the simulation.

iii)There are six pre-defined types of ore in the model: low-grade of Ni and

Cu, medium-grade of Ni and Cu and, high-grade of Ni and Cu.

iv)There are five Fine Ore Bins in the model. The rock type in the FOB is

defined in the “Station Scheme”.

v)There are three blenders (A, B and C) in the model, and their properties

are defined in the “Blender Scheme”.

vi)In order to match the real-world system, the simulation model is constrained

by which of the 5 fine ore bins is used to feed the grinding mills; FOB 1

and 2 feed grinding rod mill A; FOB 3 and 4 feed grinding rod mill B, and

FOB 5 feeds grinding ball mill C.

vii)There are no screening systems in the simulation model. The particles

from the crusher are assumed to always pass the screening system without

additional re-crushing. In the real world, large rocks are sent to a secondary

or tertiary crusher to meet the desired size of the particle. In the simulation

model, this could easily be done by assigning a certain percentage of product

to go to a re-grinding process and the rest to go to the next station in the

process. Since not enough data is available about screening efficiency, the

re-grinding process is not included in the simulation.

48

4.2.3 Operating Procedures

Operating procedures are critical for the simulation model. They transfer real-world

operational policies into model logic. The material flow control logic in the simulation

model is key to making the model run. In general, it defines two things: when a

receiving or a delivering event happens and the amount being transferred. During a

simulation run, each “station” follows its operating policy and continuously evaluates

certain variables to update the “station” state or to execute an “event”. There are

many types of “stations” in the model, some have similarities and some are unique.

The operating procedures for “station” are described as follows:

i) Mine Station: Since the mine is the initial starting point of the model, it

can only deliver material downstream to the initial pile. It delivers to the

specific initial pile according to the type of ore extracted at the mine.

ii) Initial Plies and Stockpile Stations : Each pile is allocated to store one

specific type of ore according to the rock type parameters defined in the

“Station Scheme”.

iii) Crusher Station: the crusher can only process one type of material at a

time. Before receiving the next type of material, the crusher has to be

emptied.

iv) Surge Bin: The inventory control policy plays an important role in exe-

cuting the receiving and delivering action of an event. Like the crusher,

the surge bin can only store one type of material at a time and must to be

emptied before receiving a different type of material.

v) Fine Ore Bin Station: In a “push” system, the unique policy for the FOB

is its emptying strategy. The model first compares the number of ore types

in the current system with the number of ore types coming for the following

campaign. It decides whether some FOBs need to be emptied or not, when

the current system can not accommodate all different types of ore from

next campaign. Then it decides which FOB(s) in the current campaign

49

has (have) to be reduced to zero inventory to accommodate the additional

types of ore. The FOB with the least material is selected to be emptied

first. In a “pull” system, quantities of material required to meet demand is

pre-calculated so that there will be no material left in the FOB at the end

of each campaign.

vi) Grinding Mill Station: The grinding mill follows the blender scheme as its

operating policy. It pulls material from the FOBs and mixes them according

to a defined ratio to achieve an acceptable grade of feed to the mill flotation

circuit.

Besides stations, general control policies applied to the simulation model to ensure

material flow through the entire system:

i) Crushing Circuit : The crushing circuit includes two stations in the simu-

lation model: the surge bin and the crusher. The crushing process control

policy forces these two stations to process the same type of ore. At any-

time, if crushing need to process a different type of ore, these two stations

must be both emptied before the new ore comes. In the simulation model,

the ore type in the crushing process is defined as “global ore type”. When

ore waiting to be processed for crushing process differs from the global ore

type, nothing can enter the crushing process.

ii) Global Ore Type Switch: To perform a switch of the global ore type for the

surge bin, the global ore type is updated, if necessary, when the surge bin

cycles. At every time step, a subfunction is called to determine the global

ore type. It calculates the run-out time, including the time to empty both

the surge bin and the crusher, and then sets the ore type with the lowest

run-out time to be the global ore type.

iii) FOB and Grinding Mill : The FOB is a special station in the simulation

model. It is associated with a grinding mill. The simulation model has the

flexibility for a grinding mill to pull ore from two FOBs with two differ-

ent types of ore at any blending ratio. These configuration are defined in

50

blending scheme. The amount of ore that can be transferred is determined

by the ore type and inventory level of the grinding mill.

4.3 Construction of the Simulation Model

In this section, the modelling approach, details of the programming code, and the

input and output interface are discussed.

4.3.1 Modelling Approach

The mill operation is modelled by using two main concepts: Stations and Blenders.

A station is a class object which takes in material that has been pushed to it from

an upstream station and outputs this material to a downstream station according

to certain control rules. A blender is another class object that takes material from

one or more upstream stations in fixed proportions and pushes it to a downstream

station.

The simulation model runs as a “pull system” and is a customer-demand-driven

model. In this case, the last station blender pulls material from its upstream FOB

according to the Blender Scheme; then the FOB pulls material from its upstream

crusher. The whole process continues until demand is met.

When the process map of material flow is defined by using station and blender

concepts, the next important element is the modelling approach. There are two

principal approaches that have been suggested for simulation model: next-event time-

advance and fixed-increment time-advance. Since the fixed increment is a special case

of the first one, next-event time-advance approach can be used for all discrete event

simulation models, including the mill model.

Kelton and Law [10] summarized next-event time-advance approach as followed:

“the simulation clock is initialized to zero and the times of occurrence of future

events are determined. The simulation clock is then advanced to the time of the

occurrence of the most imminent (first) of these future events, at which point the

state of the system is updated to account for the fact that an event has occurred,

51

0:Invoke the initialization routine
1:Invoke the timing routine
2:Invoke event rounte

1:Devermine the next event type
2:Advance the simulation clock

1:Update the system state
2:Update statistical counters
3:Generate future events and
add to event list

1:Set simulation clock=0
2:Initilize system state and
statistical counters
3:Initilize event list

Initialization routine Main program

Event routine

Timing routine

Figure 4.2: Flow control for the discrete-event simulation

and our knowledge of the times of occurrence of future events is also updated. Then

the simulation clock is advanced to the time of the (new) most imminent event, the

state of the system is updated, and future event times are determined, etc.” The time

from one event to another is skipped in next-event time advance approach. In this

case, the simulation clock jumps from one event to the next event. The standard flow

control for next-event time-advance approach is shown in Figure 4.2.

Kelton and Law [10] described fixed-increment time-advance approach as follows:

“the simulation clock is advanced in increments of exactly ∆t time units for some

appropriate choice of ∆t. After each update of the clock, a check is made to determine

if any events should have occurred during the previous interval of length ∆t. If one

or more events were scheduled to have occurred during this interval, these events are

considered to occur at the end of the interval and the system state (and statistical

counters) are updated accordingly.” The fixed-increment time-advance can be realized

when using the next-event time-advance approach by artificially scheduling “events”

to occur every ∆t time units.

One key element of fixed-increment time-advance approach is the ∆t which is

defined as time step in the mill model. At the end the each time step, it will have

only one event “waiting to be executed”. After this event is executed, several system

states are updated according to the execution of that event. The primary use of this

approach is for systems where it can reasonably be assumed that all events actually

52

occur at one of the times n∆t for an appropriately chosen ∆t. Thus, this approach is

more appropriate for approximating a system that system states changes continuously

over time.

The mill model is now illustrated in detail using the fixed-increment time-advance

approach: All events actually occur at the end of one time step. To prevent simulation

deadlock, the entire simulation model is run from back to front, which is similar to

the pull system operating policy. In this case, the simulation model starts from the

last station, which is the grinding station. If the grinding process predecessor, which

is the FOB station, has enough material to transfer to grinding station and both

grinding circuit and FOB stations meet the requirements for transferring (such as

inventory level limits and status of machine), then this transfer event is assumed to

take place. Otherwise, the grinding process will not pull material from FOB station.

If FOB does not have enough material, it will pull material from its predecessor and

repeat at each time step until it has enough material. In general, all stations pull

material from their predecessors instead of pushing to successors, so that all stations

receive material from their predecessors before they send material out. This is the

key point to prevent simulation deadlock.

4.3.2 Implementation in VBA

Visual Basic for Applications, or VBA, is a computer programming language that is

used as a macro language for all Microsoft products, including Excel. VBA controls

Microsoft Excel by means of macros which are also called procedures. The mill simula-

tion model contains two parts: the simulation run module and reporting routine. The

simulation is programmed by following the next-event time-advance approach. The

reporting routine summarizes data and presents them in charts, that are generated

after the simulation run.

Module

Two types of modules are widely used in the programming code. Standard Modules

store procedures and functions and can be either Private or Public. It can be accessed

53

either from within that module only (Private) or from anywhere in the project (Pub-

lic). Standard modules are used to store variables, constants and declarations that

needed in the project. This availability makes it easy to split the entire procedure

into different modules for organization and ease of maintenance. The mill simulation

model was broken into several standard modules as follows:

i) modSim: contains initialization, timing routine, statistics collection and

the main simulation run. It serves as the base for simulation models which

interact with all other modules.

ii) modCampaign: a module that deals with transition between campaigns.

iii) modDowntime: simulates machine failure events according to Mean Time

Between Failure (MTBF) and Mean Time to Repair(MTTR) by using a

next-event time advance approach.

iv) modDisplay : updates every time-step to display outputs from the simula-

tion.

v) modADO : creates a statistics report and bar charts at the end of the sim-

ulation run.

vi) Variates : generates random variates from probability distributions.

vii) modSchedules - optional : specifies the production schedule of the mine,

which includes operating time and production volume.

viii) modTrucking - optional : uses trucks to transfer material between some

stations.

A detailed discussion of a sample “Standard Module” is given in App. F.

Class Module is another type module used frequently within the simulation model.

It allows for the creation of objects which can have their own properties and methods

like any other object. There are three major class modules, defined as follows:

54

i) Rock Type Class Module: the entity of the simulation model. The entire

process is described as “Rock” flows through stations. Properties associated

with rock class modules are records like “attributes” during the simulation

run, and are listed as follows:

• Run-out time of the rock type: is the time to clear the rock type from

entire system, also called pipeline time.

• Current rate at which this rock type is being consumed.

• Volume in the pipeline/surge bin attempting to be put into the FOBs.

• Current volume of rock type in the system.

ii) Station Class Module: takes in material that has been pushed to it from

an upstream station and outputs this material to a downstream station

according to certain control rules. Attributes associated with station are

listed as follows:

• Station name and number.

• The rocktype the station is running.

• Maximum and minimum capacity level of station.

• Output rate in tonnes/time unit.

• Next station number defines successor and previous station number

which defines its predecessor

• Whether the station is in working condition or not.

• Current station inventory level and previous (one time) step inventory

level.

• The global rock type.

• Cumulative material flow through the station.

iii) Blender Class Module: takes material from one or more upstream sta-

tions(FOB) in fixed proportions and pushes it to a downstream station. In

this simulation model, up to two different types of ore can be mixed in the

55

blender and are named as Rock Type A and B. Attributes associated to

the blender are listed as follows. A detailed discussion of “Blender Class

Module” is given in App. G:

• A collection of FOBs assigned to the mill.

• Type of Rock Type A and B.

• The percent of Rock Type A and B being mixed.

• The time to run out of Rock Type A and B.

• The rate of consumption of Rock Type A and B.

• The amount of Rock Type A and B to transfer.

Instead of using a single Class Module, a collection in VBA provides a convenient

way to refer to a group of objects and collections as a single object. A collection

is a series of single objects where each object shares the same characteristics and

methods. In other words, all objects can be described the same way. In the mill

model, collections are used widely to refer to group of similar items. Collections

are manipulated by different Methods to perform different tasks. Standard methods

includes adding/removing an object to/from a collection; counting the number of

items in a collection and accessing an item in a collection. Several collection used in

this model are described as followed:

i)station collection: A collection of stations that share same characteristics

of “station” object. Sub collections in this category includes blender collec-

tion, FOB collection etc. For example, the FOB collection specifies which

FOBs feeds material to which blender.

ii)rock-type collection: A collection of rocks. There are six different types of

rocks grouped as one rock-type collection.

iii)campaign collection: refers to group of campaigns planned during plan-

ning horizon and are arranged in ascending order of starting time of the

campaign. Once one campaign finished, it is removed from the collection.

56

Figure 4.3: Simulation Parameters Input

4.3.3 Interface Design

The principle on which the interface design for the mill simulation model is based is

that it should be simple to use. The entire simulation model is implemented in VBA

rather than in a commercial specialized simulation software. Since the model focuses

on the simulation of a process rather than the graphical presentation of a problem,

the entire interface is simplified and includes two main sections: input parameter and

output results.

Input Parameters

• Simulation Parameter Input (Figure 4.3)defines the control parameter to run

the simulation model and includes “Run Time” (simulation replication length),

“Time Step” (simulation advance step), “Warm-up Time”, “Num Reps” (num-

ber of replications), “Animation” (option to turn screen updates on or off), and

“Start Day and Time” (simulation clock).

• Campaign Parameters Input (Figure 4.4) defines the parameter of campaigns

planned during a simulation run. It includes “Campaign” (index of each cam-

paign), “Draw Scheme Index” (index of draw and blender schemes used for this

campaign), “Start and End Time” (start and end time of each campaign in

57

Figure 4.4: Campaign Parameters Input

Figure 4.5: Draw Scheme Input

hours), and “Mine 1, 2 and 3” (arrival from each mine during each campaign).

• Draw Scheme Input (Figure 4.5) lists several potential draw schemes a campaign

can choose from. Each draw scheme specifies 1) the rock a current station has

and its target rock type, 2) whether the station is in use or not, and 3) the

station transfer rate. A new draw scheme can be added to the draw scheme list

here.

• Blender Scheme Input (Figure 4.6) lists several potential blender schemes a

campaign can choose from. It specifies which rock type of A and B is to be used

for each blender, the percentage of rock type A to be mixed in each blender,

the associated grinding mill for each blender, and the associated FOB for each

blender. The blender scheme index is associated with the draw scheme index.

Once the campaign selects the draw scheme index, it automatically selects the

blender draw scheme index as well.

58

Figure 4.6: Blender Scheme Input

Figure 4.7: System Parameter output

Output Results

The output of a simulation model includes screen updates during a simulation run

and a report generated after a simulation run.

• System Parameters (Figure 4.7): includes replication index, simulation real-time

clock, simulation date, global rock type and Bypass status.

• Ore Output (Figure 4.8): includes run-out time and throughput for each type

of ore.

• Blender Output (Figure 4.9): presents blender scheme information for the cur-

rent and upcoming campaigns.

• Station Output (Figure 4.10): the current station status presents the current

inventory level at each station, while the cumulative station status presents the

59

Figure 4.8: Ore Output

Figure 4.9: Blender Output

60

Figure 4.10: Station Output

cumulative amount of material flow through each station.

• Statistical Results for Throughput (Figure 4.11): presents mean and standard

deviations of ore throughput among different replications. Includes real running

time to complete the entire simulation run as well.

• Pivot Chart for Current Station Level Data(Figure 4.12): presents a pivot table

of current station levels in pivot chart format. The user is able to select “Name

of station”, “Rock Type” and “Replication Index”.

• Pivot Chart of Accumulated Station Level Data(Figure 4.13): presents a pivot

table of current station levels in pivot chart format. The user is able to select

“Name of station”, “Rock Type”, and “Replication Index”.

• Pie Chart of Maintenance Data(Figure 4.14): presents a pie chart of the percent-

age of breakdowns of a particular machine. The user is able to select different

types of machines.

4.3.4 Running Environment

The model is developed in Microsoft Excel 2007 with Microsoft Visual Basic for

Application 6.5. The testing environment is Windows XP Professional with Service

61

Figure 4.11: Statistic Output

Figure 4.12: Pivot Chart of Current Station Level

62

Figure 4.13: Pivot Chart of Accumulated Station Level

Figure 4.14: Pivot Chart of Station Level

63

Pack 3. There are several compatibility issues regarding using different versions of

software for the simulation model:

i)Pivot chart and pivot table: In Excel 2007, a PivotTable report supports

1,048,576 unique items per field, but in earlier versions of Excel, only 32,500

items per field are supported. In Excel 2007, you can quickly format a

PivotTable report by applying a theme-based PivotTable style. In earlier

versions of Excel, you can only format a PivotTable report manually. This

is one possible reason why users cannot use drop-down menus on pivot

charts.

ii).xslm format: Saving the simulation model to .xls (earlier version of Excel

2003) in Excel 2007 increases the file size by 5x. The model is originally

programmed in Excel 2007 and then converted to 2003 version. The file

size increased dramatically after converting. A possible reason is: the new

file type(.xlsm) is a much more compact set of files that are then zipped

together. When it is saved back to (.xls), the graphics and features for both

versions are put together in the old format.

iii)Windows 7 does not generate the “Save” message window properly when

users want to save a .txt output data file.

4.4 Output Analysis

4.4.1 Steady-State Analysis

A system state which is independent of initial starting conditions is defined as steady-

state. The period the system state response depends on the initial starting condition,

defined as a transient period or warm-up period. It is necessary to find this period to

be able to determine the simulation run length. The simplest and most general tech-

nique for determining the warm-up period is the Welch Method. Law and Kelton[10]

described how Welch’s procedure is based on making n independent replications of

the simulation and selecting the moving average with proper window size.

64

For the mill model,the following recommendation was made for choosing the pa-

rameters associated with the Welch method analysis:

i)The draw scheme in this steady-state analysis should be selected to be as

simple as possible. Thus, it has only one type of ore in the entire grinding

circuit, one FOB, and grinding circuit A without any blending option.

ii) The average current inventory level of a grinding mill is selected as a per-

formance measure. The simulation model records the inventory level of the

grinding mill every 15 minutes, which is the time step of the model. The

average inventory level is then calculated correspondingly.

iii)Select n = 5 replications.

iv)select m = 30 days. Since the project is interested in a planning horizon of

three months, 30 days is a larger than anticipated value for a warm-up pe-

riod and also large enough to allow infrequent events to occur a reasonable

number of times.

v)Try several values of window w (w = 3, 5 and 7) and choose the smallest

value of w for which the corresponding plot is “reasonably smooth”.

The sample data collected for the average current level of grinding mill A is presented

in Table 4.1, as follows:

65

Table 4.1: Sample Data

Time step Average moving average moving average moving average
(15 minutes) w=3 w=5 w=7
1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00
5 0.00 0.00 0.25 0.25
...
10 4.00 3.72 3.98 4.24
...
15 9.17 8.93 8.63 8.14
...
20 11.75 11.67 11.61 11.50
...
30 15.18 15.17 15.14 15.10
...
40 17.41 17.37 17.34 17.30
...
50 18.64 18.63 18.62 18.60
...
100 21.42 21.41 21.41 21.40
...
200 22.56 22.55 22.55 22.54
...
250 22.66 22.66 22.65 22.65
...
288 22.66 22.66 22.66 22.66

In Figure 4.15 we plot the average current level of grinding mill A with different

window sizes of w = 3, 5 and 7. It was found that the selection of window size does

not significantly affect the smoothness of the graphic, and therefore its influence is

omitted. In conclusion, the warm-up period is selected as 200 time steps, which is

200 ∗ 15 minutes = 50 hours.

66

Figure 4.15: Welch Method

4.4.2 Replication Length and Number of Replications

The company does most of its performance analysis on a monthly basis, which includes

production forecasting, maintenance scheduling, etc. On the other hand, within a one-

month simulation run, it is reasonable that several campaign runs and several machine

failures may occur. It was arbitrarily decided the simulation replication length at one

month.

However, it is necessary to run the simulation model for enough replications to

achieve a desired level of accuracy. There are two approaches to determine the number

of replications required: Absolute Error and Relative Error.

The relative error method is used in this analysis. Law and Kelton[10] give an

approximate expression for the number of replications, n∗
r(γ), required to obtain a

relative error of γ :

n∗
r(γ) = min{i ≥ n :

ti−1,1−α/2

√
S2(n)/i

| ¯X(n)|
≤ γ

1− γ
}

The simulation setting for this analysis is the same as for the previous one, except

for a change in the replication length to 770 hours and in the warm-up period to 50

67

hours. The simulation model was initially run for five replications. The estimated

mean and variance showed as follows:

X̄(5) = 21.5526, V ar(5) = 1.4027

in order to have a relative error of no more than 5% with a confidence interval of

90%. From the five available replications, it was determined that

n∗
r(0.1) = min{i ≥ 5 :

ti−1,0.95

√
1.4027/i

|21.5526|
≤ 0.05

0.95
}

= min{i ≥ 5 : ti−1,0.95

√
1.4027/i} ≤ 1.1343

Table 4.2 shows results when trying different values of i:

Table 4.2: Sample Data

i Degree of freedom t CI half
2 1 6.31 5.288
3 2 2.92 1.997
4 3 2.35 1.393
5 4 2.13 1.129
6 5 2.02 0.974
7 6 1.94 0.870
8 7 1.90 0.794
9 8 1.86 0.734
10 9 1.83 0.687
11 10 1.81 0.647
12 11 1.80 0.614
13 12 1.78 0.585
14 13 1.77 0.561
15 14 1.76 0.539

Note that the total number of replications actually required is 5, which is same as

the initial number of replications tried, thus no additional replications are required.

In the future analysis, the simulation model is run by using replication/deletion

approach. This approach was basically the suggested technique for getting n inde-

pendent runs of the simulation by running the simulator n times with different initial

random seeds. In each replication, an appropriately selected warmup period is re-

moved before the data collection is started. For the observed intervals after the warm

68

up period, data is collected and processed for point estimates of the variables being

observed. The replication/deletion method is simple and easy to use.

In the mill simulation model, the user is able to set warmup period and number of

replications to perform replication/deletion approach. Thus, roughly 50 hours are are

used for warm up. The model runs for another 720 hours (30 days) in steady-state.

4.4.3 Simulation Model Verification and Validation

One of the greatest difficulties in simulation is verification and validation. Verification

means to ensure that a simulation model performs as desired, while validation means

to determine whether a simulation model truly and accurately presents the actual

system.

The guidelines for verification and validation of the mill simulation model follows

some general perspectives, as described by Kelton and Law [10]:

i)“A simulation model should always be developed for a particular set of

purposes. Indeed, a model that is valid for one purpose may not be for

another.” The mill simulation model is interested in evaluating the “Cam-

paign and Draw Scheme” solution from the mill optimization model. In

other words, the verification of this model should focus observing whether

the mill system performs as desired.

ii)“The measure of performance used to validate a model should include those

factors that the decision maker will actually use for evaluating system de-

signs.” Since the mill model does not have many built-in data collection

methods for statistics during a simulation run, the performance measure-

ment of the model will be based on the throughput of each type of ore.

iii)“The ease or difficulty of the validation process depends on the complex-

ity of the system being modelled and on whether a version of the current

exists.” The mill model intends to evaluate/predict proposed system be-

haviours. Verification will based on comparing performance of two cam-

paign runs of the same length with similar potential draw scheme.

69

FOB 1

FOB 3

Grinding Mill A

Grinding Mill B

Ore 1 Ore 1 Ore 1

Ore 3 Ore 3 Ore 3

Exp 1.1

Exp 1.2

Figure 4.16: Flow Chart of Draw Scheme in Scenario Analysis 1

The following sections demonstrate verification of the simulation model by per-

forming several scenario analysis.

Scenario Analysis 1

One type of ore is processed through one grinding mill which uses one fine ore bin

as storage. Draw schemes 1 and 2 are selected in this analysis and their process flow

charts are shown in Figure 4.16. The results are shown in Table 4.3.

Table 4.3: Scenario Analysis 1

Ore Type FOB Grinding Mill Draw Scheme Index Throughput
Exp 1.1 1 1 A 1 76806.00± 65.13
Exp 1.2 3 3 B 2 76815.00± 37.91

The throughput results indicate that there are no significant differences between

the two configurations. Grinding mill A and B are identical when processing one type

of ore using only one FOB.

Scenario Analysis 2

One type of ore is processed through one grinding mill and uses two FOBs as storage

at the same time. Draw schemes 3 and 4 are selected in this analysis and their process

flow charts are shown in Figure 4.17. The results are shown in Table 4.4.

70

FOB 1

Grinding Mill A Ore 1Exp 2.1

Exp 2.2

FOB 2

Ore 1 Ore 1

FOB 3

Grinding Mill B Ore 3

FOB 4

Ore 3 Ore 3

Figure 4.17: Flow Chart of Draw Scheme in Scenario Analysis 2

Table 4.4: Scenario Analysis 2

Ore Type FOB Grinding Mill Draw Scheme Index Throughput
Exp 2.1 1 1 and 2 A 3 76796.00± 93.10
Exp 2.2 3 3 and 4 B 4 76815.00± 22.36

The throughput results indicate that there are no significant differences between

two configurations. Grinding mill A and B are identical when processing one type of

material using more than one FOB. Comparing results between Exp 1.1 and Exp 2.1,

FOB allocation does not matter for one type of ore processed at one grinding mill.

Scenario Analysis 3

Two types of ore are processed through two separate grinding mills and use single

FOBs for each type of ore as storage. Draw schemes 5 and 6 are selected in this

analysis and their process flow charts are shown in Figure 4.18. The results are

shown in Table 4.5.

Table 4.5: Scenario Analysis 3

Ore Type FOB Grinding Mill Draw Scheme Index Throughput
Exp 3.1 1 1 A 5 72443.00± 150.15

3 3 B 72093.00± 159.48
Exp 3.2 2 2 A 6 72620.00± 73.65

3 3 B 71945.00± 87.32

71

FOB 1 Grinding Mill AOre 1 Ore 1 Ore 1

Exp 3.1

FOB 3 Grinding Mill BOre 3 Ore 3 Ore 3

FOB 2 Grinding Mill AOre 2 Ore 2 Ore 2

Exp 3.2

FOB 3 Grinding Mill BOre 3 Ore 3 Ore 3

Figure 4.18: Flow Chart of Draw Scheme in Scenario Analysis 3

The throughput results indicate that there are no significant difference between

the two configurations. It can thus be concluded that grinding circuit A and B can

potentially perform the same under both draw schemes. By comparing results from

Exp 1.1, Exp1.2 and Exp3.1, we can see that the throughput is less when there is

more than one type of ores being processed at the mill than when compared to one

type of ore being processed. This is because crusher and surge bins can only process

one type of ore at a time. When another type of ore comes into these two stations,

the station has to be emptied first (run to zero inventory). This changeover delay

causes a drop in throughput.

Scenario Analysis 4

Two types of ore are processed through one grinding mill with a blending option and

use a single FOB for each type of ore as storage. Draw schemes 7 and 8 are selected

in this analysis and their process flow charts are shown in Figure 4.19. The results

are shown in Table 4.6.

72

FOB 1

Grinding Mill A

Ore 1 Ore 1

Exp 4.1

FOB 2Ore 2 Ore 2

Exp 4.2

Ore 1 : Ore 2 = 1:1

FOB 1

Grinding Mill A

Ore 1 Ore 1

FOB 2Ore 2 Ore 2

Ore 1 : Ore 2 = 3:1

Figure 4.19: Flow Chart of Draw Scheme in Scenario Analysis 4

Table 4.6: Scenario Analysis 4

Ore Type FOB Blending Grinding Mill Draw Scheme Throughput
Ratio Index

Exp 4.1 1 1 1:1 A 7 37365 ± 1445.86
2 2 37365± 1445.86

Exp 4.2 1 1 3:1 A 8 56381.25± 128.54
2 2 18793.75± 42.85

The total throughput of both draw scheme indicate there are no significant differ-

ences between the two configurations. It was found that when the blending option is

involved, the grinding circuit’s throughput does not decrease significantly. The total

throughput from one grinding circuit is slightly less than for the throughput in Exp

1.1.

Scenario Analysis 5

Three types of ore are processed through two grinding mills. Two types of ore are

blended at one grinding mill and one type of ore is processed in another grinding

mill. Draw scheme 9 is selected in this analysis and its process flow chart is shown in

Figure 4.20. The result is shown in Table 4.7.

73

FOB 1

Grinding Mill A

Ore 1 Ore 1

Exp 5.1

FOB 2Ore 2 Ore 2

Ore 1 : Ore 2 = 1:1

FOB 2 Grinding Mill BOre 3 Ore 3

Figure 4.20: Flow Chart of Draw Scheme in Scenario Analysis 5

Table 4.7: Scenario Analysis 5

Ore Type FOB Blending Grinding Mill Draw Scheme Throughput
Ratio Index

Exp 5.1 1 1 1:1 A 9 35075.0± 142.52
2 2 A 35075.00± 142.52
3 3 B 64330.00± 125.50

Draw scheme 9 likely combines Exp 1.1 and Exp 4.1 in one campaign run. It was

observed that both grinding circuit’s throughput decreased due to three types of ore

being processed in the mill system.

The mill simulation model is verified based on running several campaign runs

with similar draw schemes. The potential draw scheme in this verification analysis is

created based on the simulation assumption and the complexity level of the problem.

The simulation model is used to evaluate a proposed mill system. Once a campaign

and a draw scheme concept have been implemented at the mill for a sufficient time,

and output data from the system has been collected, the simulation model could be

validated by comparing the actual performance with the simulation model’s predic-

tion. At that time, the confidence of the “validity” of the model can be increased.

Chapter 5

Machine Failure Data Analysis

Almost all real-world systems contain one or more sources of randomness. In mill

operations, machine failure and machine repair are the main sources of randomness.

In the simulation model, all activities are performed at a “station”, which represents

a place where one or many processes are performed in the real situation. Machine

failure has dramatic impact on system performance; however, the unpredictability of

machine failure is what causes difficulty in machine reliability analysis.

The mill simulation model has the capability of analyzing stochastic elements such

as machine failure. It is important to relate physical machines to “stations” in the

simulation model so that their failure behaviors can be simulated. The approach for

solving this problem is selecting machines contributing the most failures among all

machines and trying to categorized them into simulation “stations”. These machines’

failure data are further fit to the “best” probability distribution as model inputs.

5.1 Selection of Most Frequently Failed Machines

The 80/20 rule is described as roughly “80% of the effects come from 20% of the

causes”. In our case, this means it is conceivable that 20% of the total number of

machines contribute to 80% of total failures. In this failure analysis, the “80/20” rule

was applied to find the equipment that failed most frequently instead of analyzing all

equipments.

The failure data are extracted from the company’s database source. The data

available for this analysis was limited to a one-year data sample ranging from Jan 1st,

2008, to Dec 31st, 2008. In total, the data set recorded 2,123 failure observations from

a total of 95 different machines. Figure 5.1 shows the results of the most frequently

failed machines by applying the “80/20” rule. According to the above data, 28 types of

74

75

Figure 5.1: Most Frequently Failed Machines

machines contributed 1724/2123 = 81.2% of total failures. The purpose of selecting

the most frequently failed machines is to narrow down the data set and focus on

critical machines of the mill operation system. From the Figure 5.1, it is found

that crushing, grinding circuit, crusher are the three most frequent types of machine

failure; and they all had associated “stations” in the simulation model. It is realized

that some of the selected machines such as No. 2 Thickener can not be found in a

corresponding station in the simulation model. In this case, they are removed from

this list. The next step was to explore the relationship between the machines and

to simulate machine failure in the model. A block diagram is developed to show the

relationship between the selected machines.

These selected machines were then related to the “station” in the simulation

model, as follows (Table 5.1):

76

Figure 5.2: Most Frequently Failed Machines

Table 5.1: Stations in Simulation Model

”Station” in Simulation Model Equipment Name
Primary Crusher No.3 Crusher
Surge Bin No.2 Surge Bin
Crusher include No.4A Crusher and No.5B Crusher
Grinder A Grinding A Circuit
Grinder B Grinding B Circuit

It was observed that some conveyors are not categorized into any “station”. Failure

data showed that if the operation is blocked either upstream or downstream (due

to, for instance, conveyor breakdown), it is defined as an operating standby failure.

Although conveyors do not have a “station” in the simulation model, their failures

are still counted as upstream or downstream equipment failure. A final simplified

block diagram is shown in Figure 5.2.

5.2 Failure Data Analysis

5.2.1 Types of Failure

There are four types of failure collected in the maintenance data set:

i) Scheduled Maintenance: Includes two types of maintenance work. One is

periodically repeated maintenance work such as preventive maintenance.

Another is one-time scheduled work for major repairs, cleaning, and so on.

77

This type of maintenance is scheduled and is planned and controlled by

maintenance personnel.

ii) Unscheduled Maintenance: Unscheduled maintenance is related to a ran-

dom failure of a machine due to a mechanical problem. This type of failure

is unpredictable.

iii) Operating Problem: There are operational interruptions caused by external

factors which can not be controlled by maintenance groups, such as poor

quality of incoming material, lack of trucks, and so on. In this case, the

operation has to be interrupted until the problem is solved.

iv) Operating Standby : This involves operation interruptions caused by a block

originating either from upstream or downstream, such as no feed from the

upstream or failure of downstream. In this case, equipment has to wait for

a certain amount of time or is to run at low speed.

In the simulation logic, if a “station” is in breakdown mode, its upstream

cannot deliver material to this station which causes the upstream station

station to be in standby status; if a “station” reaches its maximum or

minimum inventory level, it cannot receive or deliver ore to its upstream

or downstream, this causes the upstream and downstream to be in standby

statuses. Since the simulation model accommodates operating standby fail-

ure as part of its operating logic, this type of failure is excluded from fur-

ther failure analysis to avoid double-counting the failures. It was found

that Grinding A circuit that 139/222 = 62.6% of the failures are operating

standby; Grinding B circuit 136/194 = 70.1%. However, other machines

such as No. 4A and 5B crusher has no operating standby failure and No.

2 surge bin has 3.4% of total failures belong to operating standby failures.

Each failure has its own characteristics and should be treated independently. It is

ideal to perform failure analysis for each type of failure for each type of machine. A

large amount of data is required to perform this type of analysis. However, based

on Figure 5.1, it was found that most equipment fails less than 50 times per year.

78

If these failures are further divided into the four categories according to four failure

types, only a small data sample is available for each type of failure. Since statistical

distributions was used as simulation model input, small data samples usually not fit

an acceptable distribution.

Assumptions were thus made to overcome this situation:

i)Failure data analysis includes three types of failures: Scheduled Mainte-

nance, Unscheduled Maintenance and Operating Problem.

ii)Since the only interest is in MTTR and MTBF for machines, three types of

failures: Scheduled Maintenance, Unscheduled Maintenance and Operating

Problem were pooled for failure data analysis purposes.

5.2.2 Mean Time Between Failure and Mean Time to Repair

There are two types of failure data which are used in the simulation model as in-

put: Mean Time Between Failure (MTBF) and Mean Time to Repair (MTTR). The

software “ExpertFit” was used to perform the distribution fitting process for this

work. Distribution fitting is the procedure of selecting a statistical distribution that

best fits a data set. In most cases, it fits two or more distributions, compares the

results, and selects the most valid model based on Chi-square, Kolmogorov-Smirnov,

or Anderson-Darling goodness-of-fit tests.

Mean Time Between Failure

The definition of MTBF depends on the definition of system failure. In this analysis,

all four types of failures are considered as system failures. MTBF is the elapsed time

between failures of a system during operation. MTBF is therefore mean “UP” time

between any two failures.

Within the recorded maintenance data set, when a repair work lasts longer than

one shift, the maintenance recording system treats it as two or more consecutive failure

records. In this case, all these sequenced failures have to be manually combined into

one failure. The distribution fit results are presented in Table 5.2.

79

Table 5.2: Mean Time Between Failures (in Days)

MTBF Distribution Distribution Parameters Mean Standard
Station Type Location Scale Shape Deviation
No.3 Crusher Weibull 0.79 6.70 0.76 7.29 9.95
No.2 Surge Bin Weibull 1.18 5.489 0.62 8.77 11.34
No.4A Crusher Weibull 1.02 10.55 0.60 16.51 22.22
No.5B Crusher Weibull 1.27 6.59 0.66 9.51 8.93
Grinding Mill A Gamma 0.00 22.38 0.44 5.03 10.76
Grinding Mill B Gamma 0.00 13.86 0.66 9.10 9.28

To select proper distribution type for input data samples, a related score which is

a number between 0 and 100 that gives an indication of how well a fitted distribution

represents a data set. In this case, the distribution type with the highest related

score was considered first. If random variable generator for this type distribution

was available in the simulation model, it was used. Otherwise, the next type of

distribution with highest score was considered next. The results indicated that most

MTBF follows either a Weibull or Gamma distribution. Scale, location and shape,

as distribution parameters, are used as inputs for the simulation model.

Mean Time to Repair

MTTR measures the average time to repair a failure. In this analysis, due to lack

of detailed information, the MTTR may include lead time for parts not available,

maintenance group response time, and other downtime. The definition of MTTR is

the elapsed time starting from equipment breakdown until it is fixed and back to

operational status.

Similarly, when a major failure requires more than one shift to repair, the repair

is recorded as several separate repair records. In this case, repair time should be

summed. The distribution fit results are presented in Table 5.3.

80

Table 5.3: Mean Time to Repair (in Minutes)

MTTR Distribution Distribution Parameters Mean Standard
Station Type Location Scale Shape Deviation
No.3 Crusher Weibull 22.00 248.41 0.45 758.83 2330.76
No.2 Surge Bin Lognormal 0.00 243.47 0.84 343.45 304.54
No.4A Crusher Weibull 16.00 58.58 0.42 174.37 348.89
No.5B Crusher Weibull 23.97 1084.11 0.51 1965.90 3245.16
Grinding Mill A Weibull 106.11 1698.31 0.70 2253.60 2927.88
Grinding Mill B Weibull 0.00 932.32 0.684 1,255.71 2378.54

5.3 Failure Consequence-Partial Failure

5.3.1 Definition of Partial Failure

When machine experiences partial failure, the throughput levels during this period

will be less than 100%. Failure Efficiency is defined, as follows, to represent this

phenomenon:

FailureEfficiency = 1− (
EffectiveDowntime

FailureStart− FailureEnd
)

The transfer rate of any station should be calculated as follows:

TransferRate = RegularTransferRate× FailureEfficiency

When a station works without a failure, the transfer rate is 100% of its regular transfer

rate; otherwise, the transfer rate is reduced. Figure 5.3 demonstrates the way failure

efficiency is applied in the simulation model.

5.3.2 Failure Efficiency Implementation

To implement the failure efficiency concept in the model, the first step was to find

the percentage of time when the failure has zero throughput (p indicated in Figure

5.3). The result of this step is presented in Table 5.4.

The next step was to find the “best” distribution to generate failure efficiency “x”,

which is indicated in Figure 5.3 and Table 5.5. Results are not available for “No.4A

Crusher” due to the lack of data.

81

Complete
Down or
Partial?

“station”
throughput = 0Complete (p)

Partial (1-p)
Generate failure
efficiency x from

distribution

“station” througput
=

full throughput * x

Figure 5.3: Simulation logic for applying failure efficiency

Table 5.4: Percentage of Time Machine Completely Broke

No.3 No.2 No.4A No.5B Mill A Mill B
Crusher Surge Bin Crusher Crusher

Total Down 88 58 23 211 222 194
Completely Down 82 35 21 102 183 151
Partially Down 6 23 2 109 39 43
% of completely Down 93.18% 60.34% 91.30% 48.34% 82.43% 77.84%
% of Partial Down 6.82% 39.66% 8.70% 51.66% 17.57% 22.16%

Table 5.5: Failure Efficiency Distribution

Distribution Type Distribution Parameters
Station Location Scale Shape
No.3 Crusher Gamma 0 0.0127 55.386
No.2 Surge Bin Gamma 0 0.013 50.970
No.4A Crusher - - - -
No.5B Crusher Weibull 0 0.723 7.129
Grinding Mill A Weibull 0.3739 0.4879 4.8549
Grinding Mill B Gamma 0 0 130.9159

Chapter 6

Simulation - Based Sensitivity Analysis for Examining

Alternatives

In general, the optimization model focuses on finding an optimal solution that mini-

mizes or maximizes a linear objective function from millions of possible alternatives,

while meeting given constraints. It simplifies the representation of real world prob-

lems. This simulation model was found to be able to handle a highly complex system

which contains nonlinear and stochastic elements. One feature of simulation is that

the parameters of a simulation model can be changed easily to observe system perfor-

mance under different sets of parameters. Therefore, simulation-optimization can be

defined as a method to ascertain a set of parameters that determine optimal solution

for the system performance.

A simulation model usually has controllable and uncontrollable factors. In the

mill simulation model, the campaign schedule and its draw scheme are considered

as uncontrollable factors since they are believed to be the best alternatives found

through the IP model. Then simulation-based sensitivity analysis of the mill finds

the combination of controllable factors that optimizes the simulation response. Since

the draw scheme includes many fixed control policies for the mill, the simulation is

used as an evaluation tool rather than an optimization tool.

In this section, simulation-based sensitivity analysis is used to look at a few con-

trollable factors. At the same time, the interest is in single factor response. The

analysis is scenario-based optimization and is described as follows:

i)Select the Base Model (6.1) for this analysis. Throughput is the perfor-

mance measure.

ii)Experiment One: Sensitivity analysis of MTTR and MTBF.

82

83

iii)Experiment Two: Sensitivity analysis of increased arrivals.

6.1 Base Model

It is assumed that the base model has four campaigns and no machine failures. The

process flow charts are shown in Figure 6.1. Results of base model are compared with

other scenarios and shown in Table 6.2.

6.2 Sensitivity Analysis of MTTR and MTBF

Scenario Analysis 1: Maintenance Implemented Model

The second scenario analysis include MTTR and MTBF for machines. At this point,

only grinding circuit A experiences failures. The input distribution in this sensitivity

analysis is selected as a uniform distribution. The uniform distribution is good esti-

mation when only information available about the a parameter X is that it between

limits a and b. In this case, MTTR and MTBF is the mean value of the uniform

distribution. The input distribution are shown in Table 6.1

Scenario Analysis 2: Increased Mean Time Between Failure

It is assumed that the MTBF can be increased by roughly 10% which means better

machine availability is achieved. In this case, MTBF from scenario one is increased

by 10% The new input of this analysis are shown in Table 6.1.

Scenario Analysis 3: Reduced Mean Time to Repair

It is assumed that the MTTR can be reduced by roughly 10% which means better

machine availability is achieved. In this case, MTTR from scenario one is reduced by

10%. The new inputs of this analysis are shown in Table 6.1.

The overall results of the sensitivity analysis of MTTR and MTBF are shown in

Table 6.2. By comparing all three scenarios’ result to the base model, we can see

84

FOB 1

Grinding Mill A

Ore 1
 5000 tonnes

Ore 1

FOB 2Ore 2
5000 tonnes

Ore 2

Ore 1 : Ore 2 = 1:1

FOB 1

Grinding Mill A

Ore 1
7,500 tonnes

Ore 1

FOB 2Ore 2
2,500 tonnes

Ore 2

Ore 1 : Ore 2 = 3:1

FOB 1

Grinding Mill A

Ore 1
2,500 tonnes

Ore 1

FOB 2Ore 2
2,500 tonnes

Ore 2

Ore 1 : Ore 2 = 1:1

FOB 2 Grinding Mill BOre 3
5,000 tonnes Ore 3

FOB 3 Grinding Mill BOre 3Ore 3
10,000 tonnes Ore 3

Campaign 1 - Draw Scheme 7

Campaign 2 - Draw Scheme 8

Campaign 3 - Draw Scheme 9

Campaign 4 - Draw Scheme 2

Figure 6.1: Process flow chart of base model

85

Table 6.1: Input Parameters of Uniform Distribution for MTTR and MTBF Sensi-
tivity Analysis

MTBF MTTR
Para 1 (a) Para 2 (b) Mean Para 1 (a) Para 2 (b) Mean

Scenario 1 90 100 95 10 30 20
Scenario 2 100 110 105 10 30 20
Scenario 3 90 100 95 9 27 18

that the throughput fluctuates more when machines experience failure. Note, larger

MTBF means machines experience less failures during their life time. During the

four campaign runs, it was observed that only few failures occured. This indicated

that there are no significant differences between all three scenarios and the base

model. Comparing scenario 2 and 3 to the scenario 1, fluctuations in throughput

are observed. However, improved machine availability in Scenario 2 and 3 did not

resulted in significantly different throughput.

The sensitivity analysis of MTTR and MTBF presented here is a basic guide for

future analysis. Although scenario-based optimization may not include all alterna-

tives, it does provide a method for a decision maker to use the simulation model as

a tool for conducting similar sensitivity analysis. Future analysis could include ap-

plying MTTR and MTBF to all machines; using more accurate MTTR and MTBF

from a larger data sample; and machine availability and reliability analysis.

6.3 Sensitivity Analysis of Increased Arrival Ore

Evaluating the sensitivity of increased arrivals is one way to test the system’s capacity.

It is assumed that arrival of each type of ore from each mine is increased by 10%. The

result is compared to the base model and shown in Table 6.3. It is observed that the

output of each type of ore from the base model and the scenario 4 model is less than

the input of ore. In other words, the mill system is “saturated” due to its limited

capacity. It was also realized that increased ore arrival may change the “sequence”

with which ores are processed. This is the reason of output of ore type 3’s dropped

from 11000 in base model to 7700 in scenario 4 model.

86

Table 6.2: Results of Selectivity Analysis of MTTR and MTBF

Total Input Total Output
Mean Mean St Dev

Base Model Ore Type 1 15000 11306 0
Ore Type 2 10000 7069 0
Ore Type 3 15000 11000 0

Scenario 1 Ore Type 1 15000 13467.5 1452.5
Ore Type 2 10000 8092.5 2024.7
Ore Type 3 15000 7042.0 2836.0

Scenario 2 Ore Type 1 15000 14606.5 2247.2
Ore Type 2 10000 7562.5 236.3
Ore Type 3 15000 5845.0 2570.5

Scenario 3 Ore Type 1 15000 12880.1 2146.9
Ore Type 2 10000 7662.0 1110.8
Ore Type 3 15000 7155.0 1496.1

Table 6.3: Scenario Analysis: Increased arrival of Ore

Input of Ore Output of Ore Total Throughput
Base Model Ore Type 1 15000 11306

Ore Type 2 10000 7069
Ore Type 3 15000 11000 29375

Scenario 4 Ore Type 1 16500 14606.2
Ore Type 2 11000 8518.8
Ore Type 3 16500 7700.0 30825

Chapter 7

Conclusion and Future Studies

In this research, simulation and mathematical programming are combined for opti-

mization purposes. The simulation runs at a small fraction of real-time, and the

mathematical programming guides the search for good solutions without the need

to evaluate all possibilities. The approach can be briefly described as followed: the

mill integer programming model evaluates and selects the “best” solution subject to

certain constraints. The outcome of the model is a series of campaigns with specific

draw scheme that minimize the excess inventory levels of unprocessed ore and the

number of days on shutdown and the number of active piles required at any point in

time. The simulation model then takes this solution as its input and evaluate system

performance and perform certain simulation - based sensitivity analysis.

As a first useful result, the champaign and draw schemes problem has been for-

mulated as an integer programming problem implemented in GLPK language using

GUSEK. A small set of numerical experiments has been carried out. The potential

draw schemes and other required data were made up to solve the problem. The

sample problem is to define 4 campaigns during a 20 day planning horizon, and to

choose a draw scheme from 4 potential draw schemes that includes one shutdown draw

scheme. The results demonstrated that the IP model is able to solve the relatively

simple problem within a reasonable execution time. The proposed IP model can be

expanded in the future to include the selection of more complicated draw schemes;

the model should be tested with real data.

The simulation model was constructed by following the “station” concept. A

“pull system” concept ensures a continuous material flow simulation model can be

represented by a discrete-event simulation model. The completed mill simulation

model includes features such as campaign and draw scheme; integrated random failure

87

88

and scheduled maintenance; integrated mine production delivery; multiple types of

ore and customer-demand driven approach. The verification analysis of the simulation

model tested ten potential draw schemes that ranged from a scenario which processed

one type of ore to processing three types of ore with a blending option. The model

was verified by comparing the throughput of the mill against different draw schemes.

The output analysis of the simulation model included determination of the length of

warm-up period and number of replications. The proposed simulation model was used

to perform simulation - based sensitivity analysis. The analysis measures changes in

throughput by improving the equipment uptime ratio and increased arrival rate of

ore. The next step for simulation model might be to include more complicated draw

schemes, which involve more types of ores in the system, and running changeovers

between campaigns.

Lastly, as a part of input data analysis for simulation model, maintenance data was

analyzed. The data was first filtered by selecting the most frequently failed machines

as analysis targets. The MTTR and MTBF for each machine was then analyzed

according to different types of failures. Statistical software was used to find the best

distribution. The results indicated that most MTTR follows the Weibull distribution

and MTBF follows either the Weibull or Gamma distribution. The maintenance data

analysis gives a basic idea of how to interpret failure data and relate it to reliability

engineering concepts. A continuing analysis and follow-up when further data become

available is recommended.

Overall, these two models can be used not only by the Canadian mining com-

pany, but also for others. The mill optimization model can be a general production

planning tool for any mine-mill operation. The model is flexible enough to have

different types of ores, arrival rates from mine production, and inventory capacity

limits. The objective function of this model gives the decision maker the ability to

emphasize on inventory control, shutdown planning and/or stockpiles usage. This

can be implemented by assigning proper weight factors to these three goals in the

objective function. Besides the mill optimization model, the blending model can be

used individually with consideration of ore grade along with draw scheme develop-

ment. Secondly, the mill simulation model provides a basic framework for modelling

89

mill ore process. Draw schemes and campaigns are the two essential elements in the

model. The user is able to create their own draw scheme and simulate the ore process-

ing using the simulation and thus evaluate the throughput. The use of a draw scheme

provides an easy way to change the routine of ore processing. It can be treated as an

input to the simulation model which thus enhances the flexibility of the simulation

model. On the other hand, a campaign can be defined either as one long campaign or

series of campaigns depend on the decision maker’s interest. One long campaign can

be used to investigate influence of fluctuating factors on the mill throughput. How-

ever, series of campaigns gives an idea of the impact of transitions between campaigns

to those interested in campaign changeover.

In summary, the achievements obtained from this research work include:

i)Production planning is implemented by the introduction of the campaign

concept: a consecutive number of days which use the same draw scheme, to

configure and control the mill production system considering throughput

as the performance measures.

ii)A novel simulation model, implemented in VBA using Excel as the interface

has been developed. This simulation uses a very flexible object oriented

model based on the concept of station. Stations transfer material according

to certain control rules. The model is essentially a continuous time model

where the user has the option to specify the calculation time step. The

concept is flexible enough that it is possible to simulate a variety of mill

configurations.

iii)The proposed production plan generated from the IP model is evaluated by

the simulation model to include random machine failures and changeovers.

When failure are included, the IP model could be used to generate a new

feasible production plan based on feedback from the simulation model.

Bibliography

[1]Agioutantis Z.G., & Stratakis A.(1998). Simulation of a Continuous Surface Min-
ing System Using the Micro Saint Visual Simulation Package, In Information
technology in the mineral industry. Panagiotou, G.N. & T.N. Michalakopoulos
(eds.). Rotterdam: Balkema, p.85 and CD-ROM.

[2]Chinbat, U., & Takakuwa, S. (2008), Using Operation Process Simulation for a
Six Sigma Project of Mining and Iron Production Factory. Paper presented at
the WSC’08: Proceedings of the 40th Conference on Winter Simulation, Miami,
Florida. 2431-2438.

[3]Erdem, B., Celebi, N., & Pasamehmetoglu, A.G. (1997). A Computer Simulation
Model for Gragline Stripping in Surface Coal Mines with One Flat-lying Seam. In
Mine Simulation. Panagiotou, G.N. & J.R. Sturgul (eds.), Rotterdam: Balkema,
p.3 and CD-ROM.

[4]Fioroni, M. M., Franzese, L. A. G., Bianchi, T. J., Ezawa, L., Pinto, L. R., & de
Miranda, J.,Gilberto. (2008). Concurrent Simulation and Optimization Models
for Mining Planning. Paper presented at the WSC ’08: Proceedings of the 40th
Conference on Winter Simulation, Miami, Florida. 759-767.

[5]GLPK (GNU Linear Programming Kit). Retrieved Sep 20, 2010, from
http://www.gnu.org/software/glpk/.

[6]GNU Operating System. Retrieved Sep 20, 2010, from http://www.gnu.org/.

[7]Gunn,E.A. (2009)Collaborative research and development (CRD) grants progress
report. 6-7.

[8]GUSEK (GLPK Under Scite Extended Kit). Retrieved Sep 20, 2010, from
http://gusek.sourceforge.net/gusek.html.

[9]Huband, S.,While, L., Tuppurainen, D., Hingston, P., Barone, L. & Bearman, T.
(2006) Economic Optimisation of an Ore Processing Plant with a Constrained
Multi-objective Evolutionary Algorithm. In A.Satter and B.H. Kang (Eds),AI
2006: Advances in Artificial Intelligence, Vol 4304 (pp. 962-969)

[10]Kelton, W. D., & Law, A. M. (1982). In Simulation Modelling and Analysis.
McGraw-Hill series in industrial engineering and management science. New York:
McGraw-Hill. (8, 78, 243-244, 501-502, 509)

[11]Kutcha, M., Newman, A., & Topal, E. (2003). Production Scheduling at LKAB’s
Kiruna Mine Using Mixed Integer Programming.

90

91

[12]Kuchta, M., Newman, A., & Topal, E. (2004). Implementing a Production Sched-
ule at LKAB’s Kiruna Mine.

[13]Lynch, A.J. & Morrison, R.D. (1999) Simulation In Mineral Processing History,
Present Status And Possibilities. Western Cape Branch Conference: Mineral
Processing ’99 Aug. 1999.

[14]Medved, B. & Runovc, F., (1997). Computer Analysis of Truck Transport in
Uranium Mine. In Mine Simulation. Panagiotou, G.N. & J.R. Sturgul (eds.),
Rotterdam: Balkema, p.102 and CD-ROM.

[15]Mutagwaba, W. & Durucan, S. (1993) . Object-oriented Simulation in Mine
Transportation Design. In Mine Mechanization and Automation. Almgren, G.,
U. Kumar, & N. Vagenas (eds.), Rotterdam: Balkema, pp.591-600.

[16]Panagiotou, G.N. & Michalakopoulos, T.N., (1997). STRAPAC2: A Tool for
Planning and Analysis of Shovel-Truck Operations. In Mine simulation. Pana-
giotou, G.N. & J.R. Sturgul (eds.), Rotterdam: Balkema, p.7 and CD-ROM.

[17]Panagiotou, G. N. (1999). Discrete Mine System Simulation in Europe.13(2), 43.

[18]SciTe: a free cource code editor for Win32 and X. Retrieved Sep 20, 2010, from
http://www.scintilla.org/SciTE.html.

[19]Sturgul, J. R., & Li, Z. (1997). New Developments in Simulation Technology and
Applications in the Minerals Industry.11(4), 159.

[20]Svedensten, P., & Evertsson, C. M. (2005). Crushing Plant Optimisation by
Means of a Genetic Evolutionary Algorithm. Minerals Engineering, 18(5), 473-
479.

[21]Turner, R. J. (1999). Simulation in the Mining Industry of South Africa. Inter-
national Journal of Mining, Reclamation and Environment, Volume 13, Issue 2
1999, 47 - 56.

[22]Vagenas, N. & Forsman, B., (1992). METAFORA: A Simulator for Dispatch
Control of Truck/shovel Systems in Surface Mines. Simulation Conf. and An-
nual Meeting of the Scandinavian Simulation Society (SIMS 92), June 10-12,
Lapeenranta, Finland.

[23]Vagenas, N. (1999). Applications of Discrete-event Simulation in Canadian Min-
ing Operations in the Nineties.13(2), 77.

[24]Venter, J.J., Bearman, R.A., & Everson, R.C.(1997). A Noval Approach to Cir-
cuit Synthesis in Mineral Processing. Mineral Engineering 10(3), 99.287-299.

92

[25]Wilke, F. L. (1970) : Simulation Studies of Computer Controlled Traffic Under-
ground in Large Coal Mines, 9th Int. Symp. on Decision Making in the Mineral
Industry, Can IMM, sp. vol.12, pp 344-351.

[26]Wilke, F.L. & Keck, K. (1982). Simulation Studies of Truck Dispatching, 17th
APCOM Processings, Col. School of Mines, Golden, CO and pub. by SME,
Littleton, CO, pp 620-626

[27]While, L., Barone, L., Hingston, P., Tuppurainen, D., & Bearman, R., (2004).
A Multi-objective Evolutionary Algorithm Approach for Crusher Optimization
and Flowsheet Design. Mineral Engineering 17 (11/12), pp. 287-299.

Appendices

93

Appendix A

LP of Mill Optimization Model - GUSEK Code

/∗ Mi l l Op t im i za t i on Model∗/
/∗ Writ ten in GNU MathProg∗/

/∗Def ine ∗/
/∗ 1 . Campaign∗/
param nDays , i n t e g e r ; /∗Number o f days o f p l ann ing ho r i z on ∗/
param nDrawSchemes , i n t e g e r ; /∗Number o f p o t e n t i a l draw schemes ∗/
param CLmax, i n t e g e r ; /∗Maximum campaign l e n g t h in DAYS∗/
param CLmin , i n t e g e r ; /∗Minimum campaign l e n g t h in DAYS∗/
param N, i n t e g e r ; /∗Number o f Campaigns r e q u i r e d ∗/

s e t Days , default { 1 . . nDays } ; /∗ Set o f days ∗/
s e t Arcs := { (i , j) in {Days c r o s s Days } : i <= nDays−CLmin and j>= CLmin and (j−i)>= CLmin and (j−i)<=CLmax} ;

s e t DrawSchemes , default { 0 . . nDrawSchemes } ; /∗Draw schemes se t , 0 means shutdown ∗/
var Zsd , i n t e g e r ; /∗The number o f days on shutdown dur ing t h e p l ann ing hor i z on ∗/
var x{(i , j) in Arcs } , b inary ; /∗ x [i j] = 1 means campaign s t a r t s a t t h e b e g i nn in g

o f day i and ends a t t h e b e g i nn in g o f day j ∗/
var y{(i , j) in Arcs , k in DrawSchemes } , b inary ; /∗ y [i j k] =1 means draw scheme k

i s used dur ing campaign i to j ∗/

/∗ 2 . Ma t e r i a l f l ow and p i l s l i m i t ∗/
param nOres , i n t e g e r ; /∗number o f d i f f e r e n t t y p e s ore ∗/
s e t Ores , default { 1 . . nOres } ; /∗ Set o f Ores∗/

param Itot max{ t in Days } ; /∗Maximum t o t a l i n v en t o r y a l l owed dur ing pe r i od t ∗/
param Itot min { t in Days } ; /∗Minimum t o t a l i n v en t o r y a l l owed dur ing pe r i od t ∗/
param Iore max{o in Ores , t in Days } ; /∗Maximum inv en t o r y a l l owed f o r ore t ype o dur ing pe r i od t ∗/
param Iore min {o in Ores , t in Days } ; /∗Minimum inv en t o r y a l l owed f o r ore t ype o dur ing pe r i od t ∗/
param a{o in Ores , t in Days} , >=0;/∗ Ar r i v a l o f ore t ype O in pe r i od t ∗/
param D{o in Ores , k in DrawSchemes} , >=0;/∗Draw ra t e per day f o r ore t ype O under draw scheme k∗/

var d{o in Ores , t in Days} ,>=0;/∗draw o f ore t ype O in pe r i od t ∗/
var inv{o in Ores , t in Days} ,>=0;/∗ Ending i n v en t o r y o f ore t ype O at t h e end pe r i od t ∗/
var Vtot upper{ t in Days} ,>=0;/∗ Vio l a t i o n on upper o f t o t a l end ing i n v en t o r y l i m i t dur ing pe r i od t ∗/
var Vtot lower{ t in Days} ,>=0;/∗ Vio l a t i o n on lower o f t o t a l end ing i n v en t o r y l i m i t dur ing pe r i od t ∗/
var Vore upper{o in Ores , t in Days} ,>=0;/∗ Vio l a t i o n on upper o f t o t a l end ing

i n v en t o r y l i m i t f o r rock t ype o dur ing p e r i od t ∗/
var Vore lower{o in Ores , t in Days} ,>=0;/∗ Vio l a t i o n on lower o f t o t a l end ing

i n v en t o r y l i m i t f o r rock t ype o dur ing p e r i od t ∗/

/∗ 3 . Ac t i v e p i l e s ∗/
var z{ o in Ores , t in Days} , b inary ; /∗ z [o t] = 0 means ore t ype o p i l e a c t i v e w i t h i n pe r i od t ∗/
var Vnp ; /∗ v a r i a b l e o f maximun number o f a c t i v e p i l e s a l l owed in any p e r i o d s ∗/
param NPmax; /∗maximun number o f a c t i v e p i l e s a l l owed in any p e r i o d s ∗/
param Gamma;

param Beta ;

/∗ Ob j e c t i v e f u n c t i o n ∗/

94

95

minimize obj : sum{ t in Days} Vtot upper [t] + sum{ t in Days}Vtot lower [t] +

sum{o in Ores , t in Days}Vore upper [o , t] + sum{o in Ores , t in Days}
Vore lower [o , t] − Gamma∗Zsd + Beta∗Vnp ;

/∗Cons t ran t s ∗/
/∗ 1 . Campaign∗/
s . t . CampaignRequired : sum{(i , j) in Arcs} x [i , j] = N; /∗Tota l campaign r e q u i r e d f o r pa lnn ing horzon ∗/
s . t . Equal{b in 2 . . nDays−1: b > 2} : sum{(m, b) in Arcs} x [m, b] = sum{(b , n) in Arcs} b [k , n] ; /∗ b>2 i s en forcement ∗/
s . t . StartDay : sum { j in Days : (1 , j) in Arcs} x [1 , j] =1;

/∗Make sure t h e campaign s t a r t from day 1∗/
s . t . OneDrawScheme{(i , j) in Arcs } : sum {k in DrawSchemes} y [i , j , k] = x [i , j] ;

/∗Choose one draw scheme in each campaign pe r i od ∗/
s . t . Shutdown : Zsd = sum{(i , j) in Arcs , k in DrawSchemes : k=0} y [i , j , k] ∗ (j−i) ;

/∗Confirm t o t a l # o f shutdown days ∗/

/∗ 2 . Ma t e r i a l f l ow and p i l e l i m i t s ∗/
s . t . Draw{o in Ores , t in Days } : d [o , t] = sum {(i , j) in Arcs , k in DrawSchemes : i<=t and j>t} D[o , k]∗ y [i , j , k] ;

/∗Dai l y draw e q u a l s pre−c a l c u l a t e d draw ra t e /day i f draw schem k used ∗/
s . t . Inventory {o in Ores , t in Days : t >1}: inv [o , t]= inv [o , t−1]+a [o , t]−d [o , t] ;

/∗Ending Inv = Ending Inv o f p r e v i o u s day +Ar r i v a l − Draw∗/

s . t . TotalInvLimit { t in Days } : I to t min [t] <= sum{o in Ores} inv [o , t]−
Vtot upper [t] + Vtot lower [t] <=Itot max [t] ;

/∗At any end o f g i v i n day , t o t a l i n v en t o r y shou l d btw lower and upper bound ∗/
s . t . OreInvLimit{o in Ores , t in Days } : Iore min [o , t] <= inv [o , t] −
Vore upper [o , t] + Vore lower [o , t] <= Iore max [o , t] ;

/∗At any end o f g i v i n day , f o r each t ype o f ore , i n v en t o r y shou l d btw lower and upper bound ∗/

/∗ 3 . Ac t i v e p i l e s ∗/
s . t . P i l e Inv {o in Ores , t in Days } : inv [o , t] <= z [o , t]∗ sum{p in 1 . . t} a [o , p] ;

s . t . PileDraw {o in Ores , t in Days } : d [o , t]<= z [o , t]∗ max{k in DrawSchemes} D[o , k] ;

s . t . NumActive{ t in Days } : sum{o in Ores} z [o , t] <= NPmax + Vnp ; /∗Tota l number o f a c t i v e p i l e s ∗/
s . t . Numbershutdown : Zsd >=1;

s o l v e ;

d i sp l ay {(i , j) in Arcs , k in DrawSchemes : y [i , j , k]=1} y [i , j , k] ;

end ;

Appendix B

LP of Mill Optimization Model - External Data File

data ;

param nDays:= 20 ;

param nDrawSchemes :=3;

param CLmax:=7;

param CLmin:=2;

param N:=4;

param nOres :=3;

param NPmax:=5;

param Gamma:=24;

param Beta :=1 . 2 ;

param a:=

1 1 80

1 2 80

1 3 80

1 4 80

1 5 80

1 6 70

1 7 70

1 8 70

1 9 70

1 10 70

1 11 70

1 12 70

1 13 70

1 14 70

1 15 70

1 16 70

1 17 70

1 18 80

1 19 80

1 20 90

2 1 70

2 2 70

2 3 70

2 4 70

2 5 70

2 6 80

2 7 80

2 8 80

2 9 80

2 10 80

2 11 70

2 12 70

2 13 80

2 14 90

2 15 80

2 16 90

96

97

2 17 70

2 18 70

2 19 70

2 20 70

3 1 90

3 2 90

3 3 60

3 4 80

3 5 80

3 6 70

3 7 60

3 8 80

3 9 80

3 10 70

3 11 70

3 12 70

3 13 70

3 14 70

3 15 70

3 16 65

3 17 65

3 18 65

3 19 65

3 20 65

;

/∗D{o in Ores , k in DrawSchemes}∗/
param D:=

/∗draw scheme 0 : shutdown ∗/
1 0 0

2 0 0

3 0 0

/∗draw scheme 1 ∗/
1 1 40

2 1 50

3 1 30

/∗draw scheme 2∗/
1 2 50

2 2 30

3 2 40

/∗draw scheme 3 ∗/
1 3 30

2 3 40

3 3 50

;

param Itot min :=

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

98

14 0

15 0

16 0

17 0

18 0

19 0

20 0

;

param Itot max :=

1 1000

2 1000

3 1000

4 1000

5 1000

6 1000

7 1000

8 1000

9 1000

10 1000

11 1000

12 1000

13 1000

14 1000

15 1000

16 1000

17 1000

18 1000

19 1000

20 1000

;

param Iore max :=

1 1 300

1 2 300

1 3 300

1 4 300

1 5 300

1 6 300

1 7 300

1 8 300

1 9 300

1 10 300

1 11 300

1 12 300

1 13 300

1 14 300

1 15 300

1 16 300

1 17 300

1 18 300

1 19 300

1 20 300

2 1 300

2 2 300

2 3 300

2 4 300

2 5 300

2 6 300

2 7 300

2 8 300

2 9 300

99

2 10 300

2 11 300

2 12 300

2 13 300

2 14 300

2 15 300

2 16 300

2 17 300

2 18 300

2 19 300

2 20 300

3 1 300

3 2 300

3 3 300

3 4 300

3 5 300

3 6 300

3 7 300

3 8 300

3 9 300

3 10 300

3 11 300

3 12 300

3 13 300

3 14 300

3 15 300

3 16 300

3 17 300

3 18 300

3 19 300

3 20 300

;

param Iore min :=

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

1 6 0

1 7 0

1 8 0

1 9 0

1 10 0

1 11 0

1 12 0

1 13 0

1 14 0

1 15 0

1 16 0

1 17 0

1 18 0

1 19 0

1 20 0

2 1 0

2 2 0

2 3 0

2 4 0

2 5 0

2 6 0

2 7 0

2 8 0

2 9 0

100

2 10 0

2 11 0

2 12 0

2 13 0

2 14 0

2 15 0

2 16 0

2 17 0

2 18 0

2 19 0

2 20 0

3 1 0

3 2 0

3 3 0

3 4 0

3 5 0

3 6 0

3 7 0

3 8 0

3 9 0

3 10 0

3 11 0

3 12 0

3 13 0

3 14 0

3 15 0

3 16 0

3 17 0

3 18 0

3 19 0

3 20 0

;

end ;

Appendix C

LP of Mill Optimization Model - Output File

GLPSOL: GLPK LP/MIP So lver 4 .38

Reading model s e c t i on from Mi l l v5 .mod . . .

81 l i n e s were read

Reading data s e c t i on from Mi l l v5 . dat . . .

276 l i n e s were read

Generating obj . . .

Generating CampaignRequired . . .

Generating Equal . . .

Generating StartDay . . .

Generating OneDrawScheme . . .

Generating Shutdown . . .

Generating Draw . . .

Generating Inventory . . .

Generating TotalInvLimit . . .

Generating OreInvLimit . . .

Generating P i l e Inv . . .

Generating PileDraw . . .

Generating NumActive . . .

Generating Numbershutdown . . .

Model has been s u c c e s s f u l l y generated

i pp ba s i c t e c h : 15 row (s) and 33 column (s) removed

ipp reduce bnds : 4 pass (es) made , 258 bound (s) reduced

i pp ba s i c t e c h : 131 row (s) and 58 column (s) removed

i pp r educ e c o e f : 1 pass (es) made , 0 c o e f f i c i e n t (s) reduced

g l p i n t op t : p re so lved MIP has 306 rows , 716 columns , 4655 non−z e ro s

g l p i n t op t : 439 i n t e g e r columns , 438 o f which are binary

Sca l ing . . .

A: min | a i j | = 1.000 e+000 max | a i j | = 9.000 e+001 r a t i o = 9.000 e+001

GM: min | a i j | = 6.174 e−001 max | a i j | = 1.620 e+000 r a t i o = 2.623 e+000

EQ: min | a i j | = 3.934 e−001 max | a i j | = 1.000 e+000 r a t i o = 2.542 e+000

2N: min | a i j | = 2.500 e−001 max | a i j | = 1.094 e+000 r a t i o = 4.375 e+000

Crashing . . .

S i z e o f t r i a n gu l a r part = 305

So lv ing LP r e l a xa t i on . . .

0 : obj = −2.368840000 e+004 i n f e a s = 6.094 e+004 (1)

200 : obj = 2.591960000 e+004 i n f e a s = 2.041 e+003 (1)

400 : obj = 2.779960000 e+004 i n f e a s = 5.000 e−001 (1)

∗ 404 : obj = 2.778960000 e+004 i n f e a s = 1.945 e−013 (1)

∗ 562 : obj = 3.009600000 e+003 i n f e a s = 5.094 e−013 (1)

OPTIMAL SOLUTION FOUND

Int ege r opt imizat i on beg ins . . .

Gomory ’ s cuts enabled

MIR cuts enabled

Cover cuts enabled

Cl ique cuts enabled

Creat ing the c o n f l i c t graph . . .

The c o n f l i c t graph has 2∗435 v e r t i c e s and 114261 edges

+ 562 : mip = not found yet >= − i n f (1 ; 0)

101

102

+ 4365: >>>>> 1.713360000 e+004 >= 1.058360000 e+004 38.2% (9 ; 0)

+ 6057: >>>>> 1.195960000 e+004 >= 1.067667317 e+004 10.7% (9 ; 2)

+ 8091: >>>>> 1.191960000 e+004 >= 1.187960000 e+004 0.3% (4 ; 14)

+ 14583: mip = 1.191960000 e+004 >= 1.188667726 e+004 0.3% (33 ; 51)

+ 15714: mip = 1.191960000 e+004 >= tr e e i s empty 0.0% (0 ; 187)

INTEGER OPTIMAL SOLUTION FOUND

Time used : 10 .2 s e c s

Memory used : 3 .4 Mb (3512890 bytes)

Display statement at l i n e 79

y [1 , 7 , 1] = 1

y [7 , 1 3 , 3] = 1

y [1 3 , 1 8 , 1] = 1

y [1 8 , 2 0 , 0] = 1

Model has been s u c c e s s f u l l y proces sed

Writing MIP so l u t i on to ‘ Mi l l v5 . out ’ . . .

>Exit code : 0 Time : 10 .402

Appendix D

LP of Blending Model - GUSEK Code

param nOre ;

param nBlender ;

s e t Ore , default { 1 . . nOre } ; /∗ Set o f Ores∗/
s e t Blender , default { 1 . . nBlender } ; /∗ Set o f B l ender s ∗/

param CuGrade{o in Ore } ; /∗Ore ’ s copper grade ∗/
param NiGrade{o in Ore } ; /∗Ore ’ s N i c k e l grade ∗/

param FOBRatio ;

param MinNi ; /∗Same f o r MinCu ∗/
param penalty ;

var x{o in Ore , b in Blender } ,>=0;

var y{o in Ore , b in Blender } , b inary ;

var z{b in Blender } ,>=0;

var CuContent ,>=0;

var NiContent ,>=0;

var del1 ,>=0;

var del2 ,>=0;

minimize obj : (de l1+de l2)∗ penalty + sum{o in Ore , b in Blender} y [o , b] ;

s . t . OreBinUsed{o in Ore , b in Blender } : x [o , b] <= y [o , b] ;

s . t . Bin{b in Blender } : sum{o in Ore} x [o , b] = z [b] ;

s . t . OneTon : sum{b in Blender} z [b] =1;

s . t . CopperContent : CuContent = sum{o in Ore , b in Blender} x [o , b]∗CuGrade [o] ;

s . t . NickelContent : NiContent = sum{o in Ore , b in Blender} x [o , b]∗NiGrade [o] ;

s . t . EqualMetal : NiContent <= CuContent + de l1 ;

s . t . EqualMetal 1 : CuContent <= NiContent + de l1 ;

s . t . BlendingRatio{b in Blender : b>=1 and b<nBlender } : z [b] <= FOBRatio∗z [b+1] ;

s . t . BlendingRat io 1{b in Blender : b>=1 and b<nBlender } : z [b+1] <= FOBRatio∗z [b] ;

s . t . MinimumNi : NiContent + de l2 >= MinNi ;

s . t . MinimumCu : CuContent + de l2 >= MinNi ;

s o l v e ;

data ;

param nOre :=3;

param nBlender :=2;

param CuGrade:=

1 6 .1

2 2 .6

3 1 . 4 ;

param NiGrade:=

1 1 .7

2 2 .2

3 2 . 6 ;

param FOBRatio:= 2 ;

param MinNi :=2 . 8 ;

103

104

param penalty :=1000;

end ;

Appendix E

LP of Blending Model - Solution Output File

Problem : Blend

Rows : 18

Columns : 18 (6 in tege r , 6 binary)

Non−z e ro s : 58

Status : INTEGER OPTIMAL

Object ive : obj = 395.8571429 (MINimum)

No . Row name Act iv i ty Lower bound Upper bound

−−−−−− −−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−
1 obj 395.857

2 OreBinUsed [1 , 1]

−0.785714 −0

3 OreBinUsed [1 , 2]

0 −0

4 OreBinUsed [2 , 1]

0 −0

5 OreBinUsed [2 , 2]

0 −0

6 OreBinUsed [3 , 1]

−0.547619 −0

7 OreBinUsed [3 , 2]

−0.666667 −0

8 Bin [1] 0 −0 =

9 Bin [2] 0 −0 =

10 OneTon 1 1 =

11 CopperContent

0 −0 =

12 NickelContent

0 −0 =

13 EqualMetal 0 −0

14 EqualMetal 1 0 −0

15 BlendingRatio [1]

0 −0

16 BlendingRat io 1 [1]

−1 −0

17 MinimumNi 2 .8 2 .8

18 MinimumCu 2 .8 2 .8

No . Column name Act iv i ty Lower bound Upper bound

−−−−−− −−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−
1 x [1 , 1] 0 .214286 0

2 x [1 , 2] 0 0

3 x [2 , 1] 0 0

4 x [2 , 2] 0 0

5 x [3 , 1] 0 .452381 0

6 x [3 , 2] 0 .333333 0

7 y [1 , 1] ∗ 1 0 1

105

106

8 y [1 , 2] ∗ 0 0 1

9 y [2 , 1] ∗ 0 0 1

10 y [2 , 2] ∗ 0 0 1

11 y [3 , 1] ∗ 1 0 1

12 y [3 , 2] ∗ 1 0 1

13 z [1] 0 .666667 0

14 z [2] 0 .333333 0

15 CuContent 2.40714 0

16 NiContent 2 .40714 0

17 de l1 0 0

18 de l2 0.392857 0

In t eg e r f e a s i b i l i t y cond i t i on s :

KKT.PE: max . abs . e r r = 2.44 e−014 on row 1

max . r e l . e r r = 3.70 e−017 on row 10

High qua l i t y

KKT.PB: max . abs . e r r = 1.97 e−016 on row 12

max . r e l . e r r = 1.97 e−016 on row 12

High qua l i t y

End o f output

Appendix F

Standard Module Code

Subroutine RunSim is the starting point of the simulation. The first part of RunSim

is initialization. It clears the output content on the Excel output sheet; sets the

simulation clock; and asks user to save the output file; The next step uses a loop to

go through different replication (For i = 1 To intReps): at the beginning of each loop,

several sub routines runs first to perform initialization to downtime, schedule etc.

Then subroutine simRummer is called to run one replication of the simulation. At

the end of each replication loop, statistic are calculated and displayed on the output

sheet.

Publ ic Sub RunSim ()

%Dim intReps As In t ege r

Dim i As In t ege r

Dim c l sRe s u l t s () As RepResult

Dim objDia log As Object

Dim in tResu l t As In t eg e r

Dim iFNumber As In t eg e r

Dim lrow As Double

intReps = Range (”rngNumReps”)

ReDim c l sRe su l t s (−2 To intReps)

Set c l sR e s u l t s (−1) = New RepResult %Wil l s t o r e sum of r e s u l t s

Set c l sR e s u l t s (−2) = New RepResult %Wil l s t o r e (sum of r e s u l t s)ˆ2

%Nov 2009

Sheets (” s t a t s S tnLeve l ”) . Range (”A:ZZ”) . ClearContents

%Pop up Windows F i l e Dialog Window to save txt f i l e

MsgBox ”Save r e s u l t f i l e as . txt f i l e ”

Set objDia log = CreateObject (”UserAccounts . CommonDialog”)

objDia log . F i l t e r = ”Text F i l e s | ∗ . txt | Al l F i l e s | ∗ .∗ ”

objDia log . F i l t e r I ndex = 1

objDia log . I n i t i a l D i r = ”C: ”

in tResu l t = objDia log . ShowOpen

I f i n tResu l t = 0 Then

Exit Sub

End I f

107

108

sFName = objDia log . FileName

%Get F i l e Di rec tory with F i l e Name − Nov 2009

Set c o l l R e s u l t F i l e s = Nothing

Dim currentFileName As Resu l tF i l e

Set currentFileName = New Resu l tF i l e

currentFileName . GetFileName = sFName

c o l l R e s u l t F i l e s .Add currentFileName

%MsgBox currentFileName . GetFileName

%I f output . txt ex i s t s , d e l e t e i t f i r s t

I f Len (Dir$ (sFName)) > 0 Then

MsgBox ” F i l e ” & currentFileName . GetFileName & ” Ex i s t s . About to Delete ”

K i l l sFName

End I f

%Set Simulat ion Star t Time

sngStart = Timer

For i = 1 To intReps

%Get a new r e s u l t c l a s s i n s tance

Set c l sR e s u l t s (i) = New RepResult

%Output to sc r een

Appl i cat ion . StatusBar = ”Rep l i c a t i on ” & CStr (i) & ” o f ” & CStr (intReps)

Range (” rngRep l i ca t i on ”) = i

%Clear the c o l l e c t i o n s

C l ea rCo l l e c t i on c o l l S t nL i s t

C l ea rCo l l e c t i on co l lB l ende r

C l ea rCo l l e c t i on collDowntime

%Read campaign in format ion

Cal l i n i t i a l i z eCampa ign

%I n i t i a l i z e v a r i a b l e s

Cal l i n i t i a l i z e

%I n i t i a l i z e the downtime elements

Cal l InitDowntime

%I n i t i a l i z e mines schedu le

Cal l In i tMinesSchedule

%I n i t i a l i z e the schedu le e lements

Cal l I n i t S chedu l e s

%Run a r e p l i c a t i o n o f the s imu lat i on

Cal l SimRunner (c l sR e s u l t s (i))

%Update the r e p l i c a t i o n number

c l sR e s u l t s (i) . intRepNumber = i

%Sum of squares

c l sR e s u l t s (−2). dblLowNiOutput = c l sRe su l t s (−2). dblLowNiOutput + c l sRe su l t s (i) . dblLowNiOutput ˆ 2

c l sR e s u l t s (−2).dblLowCuOutput = c l sRe s u l t s (−2).dblLowCuOutput + c l sRe s u l t s (i) . dblLowCuOutput ˆ 2

c l sR e s u l t s (−2). dblMedNiOutput = c l sRe s u l t s (−2). dblMedNiOutput + c l sRe s u l t s (i) . dblMedNiOutput ˆ 2

c l sR e s u l t s (−2).dblMedCuOutput = c l sRe su l t s (−2).dblMedCuOutput + c l sRe su l t s (i) . dblMedCuOutput ˆ 2

c l sR e s u l t s (−2). dblHighNiOutput = c l sRe s u l t s (−2). dblHighNiOutput + c l sRe s u l t s (i) . dblHighNiOutput ˆ 2

109

c l sR e s u l t s (−2). dblHighCuOutput = c l sRe s u l t s (−2). dblHighCuOutput + c l sRe s u l t s (i) . dblHighCuOutput ˆ 2

%Sum of va lues

c l sR e s u l t s (−1). dblLowNiOutput = c l sRe su l t s (−1). dblLowNiOutput + c l sRe su l t s (i) . dblLowNiOutput

c l sR e s u l t s (−1).dblLowCuOutput = c l sRe s u l t s (−1).dblLowCuOutput + c l sRe s u l t s (i) . dblLowCuOutput

c l sR e s u l t s (−1). dblMedNiOutput = c l sRe s u l t s (−1). dblMedNiOutput + c l sRe s u l t s (i) . dblMedNiOutput

c l sR e s u l t s (−1).dblMedCuOutput = c l sRe su l t s (−1).dblMedCuOutput + c l sRe su l t s (i) . dblMedCuOutput

c l sR e s u l t s (−1). dblHighNiOutput = c l sRe s u l t s (−1). dblHighNiOutput + c l sRe s u l t s (i) . dblHighNiOutput

c l sR e s u l t s (−1). dblHighCuOutput = c l sRe s u l t s (−1). dblHighCuOutput + c l sRe s u l t s (i) . dblHighCuOutput

Next i

%Get the mean and stdev

%Sheets (”Model”) . S e l e c t

I f intReps > 0 Then

Range (”rngLowNiOutput”) . O f f s e t (0 , 0) = c l sR e s u l t s (−1).

dblLowNiOutput / intReps

Range (”rngLowNiOutput”) . O f f s e t (0 , 1) = GetSTD(c l sRe s u l t s (−1). dblLowNiOutput , c l sR e s u l t s (−2).

dblLowNiOutput , intReps)

Range (”rngLowCuOutput”) . O f f s e t (0 , 0) = c l sR e s u l t s (−1).

dblLowCuOutput / intReps

Range (”rngLowCuOutput”) . O f f s e t (0 , 1) = GetSTD(c l sR e s u l t s (−1).dblLowCuOutput , c l sR e s u l t s (−2).

dblLowCuOutput , intReps)

Range (”rngMedNiOutput”) . O f f s e t (0 , 0) = c l sRe s u l t s (−1).

dblMedNiOutput / intReps

Range (”rngMedNiOutput”) . O f f s e t (0 , 1) = GetSTD(c l sR e s u l t s (−1). dblMedNiOutput , c l sR e s u l t s (−2).

dblMedNiOutput , intReps)

Range (”rngMedCuOutput”) . O f f s e t (0 , 0) = c l sR e s u l t s (−1).

dblMedCuOutput / intReps

Range (”rngMedCuOutput”) . O f f s e t (0 , 1) = GetSTD(c l sR e s u l t s (−1).dblMedCuOutput , c l sR e s u l t s (−2).

dblMedCuOutput , intReps)

Range (”rngHighNiOutput”) . O f f s e t (0 , 0) = c l sR e s u l t s (−1).

dblHighNiOutput / intReps

Range (”rngHighNiOutput”) . O f f s e t (0 , 1) = GetSTD(c l sR e s u l t s (−1). dblHighNiOutput , c l sR e s u l t s (−2).

dblHighNiOutput , intReps)

Range (”rngHighCuOutput”) . O f f s e t (0 , 0) = c l sRe s u l t s (−1).

dblHighCuOutput / intReps

Range (”rngHighCuOutput”) . O f f s e t (0 , 1) = GetSTD(c l sR e s u l t s (−1). dblHighCuOutput , c l sR e s u l t s (−2).

dblHighCuOutput , intReps)

End I f

%Co l l e c t Stats− Nov 2009

Cal l Stat s

Appl i cat ion . StatusBar = ””

%Set model end time

sngEnd = Timer

Sheets (” stats Summary”) . Range (”c7”) . Value = Format (sngEnd − sngStart , ”Fixed”)

End Sub

Appendix G

Sample Code of Class Module - Blender

1. Part A: Declare the properties for Blender Class Module. These values will be

stored in private variables within the class which they cannot be accessed outside the

class module.

2. Part B: Declare Property procedures to allow these variables to be read from and

written to. This is done with Property Get and Property Let functions. The “Get”

procedure is used to return a value out of the class, and the “Let” procedure is to

put a value into the class. A property can be made read-only simply by omitting the

Let procedure, such as “Number” property.

3. Part C: Function in class module behaves as a method of the object like any public

function procedure. A function is a method that can generate a return value. Sample

function code “setPercent” calculate blending ratio between rock type A and B. It

reads value from properties and return the value to “blenderPercentA” and “blender-

PercentB”.

4. Part D: Set up collection in a class module gives user control over interaction

with the collection, and the code is encapsulated into a single module that makes

it more transportable and easier to maintain. The standard collection’s methods

(Add,Count,Item, and Remove) cannot be use in the class module. Sample code

“RemoveStation” and “AddStation” demonstrated the own method for Add and Re-

move methods in the class module.

5. Part E: Creating blender collection in a standard module. At the top of the

standard module, collBlender is declared to be a new collection and blnCurrent is

declared as a new blender class object. After properties are assigned to blnCurrent

class module, it is added to the collBlender and then set to nothing. Do while ...

Loop is used to add all blender to the collBlender.

110

111

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Part A∗∗
This c l a s s ob j e c t i s a b lender − i t s i t s between the FOBs and the Grind m i l l s

These are the p r op e r t i e s o f a b lender

Pr ivate blenderName As St r ing Name

Pr ivate blenderNumber As In t ege r Number

Pr ivate b l ende rMi l l As Stat ion The ac tua l gr ind m i l l

Pr ivate collFOB As New Co l l e c t i on A c o l l e c t i o n to keep track o f the

FOBs as s i gned to the m i l l

Pr ivate blenderOutputRange As Range The output range (assume n i c k e l)

ROCK TYPE SPECIFIC VARIABLES

Pr ivate blenderRockTypeA As In t eg e r The type o f rock A i s .

Pr ivate blenderPercentA As S ing l e The percent o f rock type A being mixed

Pr ivate collFOBRockTypeA As New Co l l e c t i on A c o l l e c t i o n to keep track o f the Rock Type A FOBs

Pr ivate blenderRunOutA As S ing l e The time to run out o f Rock Type A

Pr ivate blenderRateA As S ing l e The ra t e o f consumption o f Rock Type A

Pr ivate blenderAmountA As S ing l e The amount o f Rock Type A to t r a n s f e r

Pr ivate blenderRockTypeB As In t ege r The type o f rock B i s .

Pr ivate blenderPercentB As S ing l e The percent o f rock type B being mixed

Pr ivate collFOBRockTypeB As New Co l l e c t i on A c o l l e c t i o n to keep track o f the Rock Type B FOBs

Pr ivate blenderRunOutB As S ing l e The time to run out o f Rock Type B

Pr ivate blenderRateB As S ing l e The ra t e o f consumption o f Rock Type B

Pr ivate blenderAmountB As S ing l e The ammount o f Rock Type B to t r a n s f e r

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Part B∗∗
%Gets index o f rocktypeA for blender

Publ ic Property Get RockTypeA () As In t ege r

RockTypeA = blenderRockTypeA

End Property

%Gets index o f rocktypeB for blender

Publ ic Property Get rockTypeB () As In t ege r

rockTypeB = blenderRockTypeB

End Property

%These func t i on s w i l l need deve lop ing as we int roduce new rock types

Publ ic Property Let RockTypeA(intRockType As In t eg e r)

blenderRockTypeA = intRockType

End Property

Publ ic Property Let rockTypeB (intRockType As In t eg e r)

blenderRockTypeB = intRockType

End Property

%This ge t s the name

Publ ic Property Get Name() As St r ing

Name = blenderName

End Property

%This property s e t s the name

Publ ic Property Let Name(strBlenderName As St r ing)

blenderName = strBlenderName

End Property

%This ge t s the number

Publ ic Property Get Number () As In t eg e r

Number = blenderNumber

112

End Property

%This property s e t s the number

Publ ic Property Let Number(intNumber As In t eg e r)

blenderNumber = CStr (intNumber)

End Property

%This property ge t s the gr ind m i l l for t h i s b lender

Publ ic Property Get Mi l l () As Stat ion

Set Mi l l = b l ende rMi l l

End Property

%This property s e t s the gr ind m i l l for t h i s b lender

Publ ic Property Let Mi l l (s tnMi l l As Stat ion)

Set b l ende rMi l l = s tnMi l l

End Property

%This method adds an FOB to the FOB c o l l e c t i o n

Publ ic Sub AddFOB(stnFOB As Stat ion)

collFOB .Add stnFOB

End Sub

%Gets the output range for the b lender

Publ ic Property Let OutputRange (rngRange As Range)

Set blenderOutputRange = rngRange

End Property

%Sets the output range for the b lender

Publ ic Property Get OutputRange () As Range

Set OutputRange = blenderOutputRange

End Property

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Part C∗∗
Function se tPercent (intRockType As Integer , sngPercent As S ing l e)

%Check to see i f rocktype A i s the mentioned rock type

I f blenderRockTypeA = intRockType Then

%Set the percent for Rock Type A, then 100% − [t h i s %] for B

blenderPercentA = sngPercent

blenderPercentB = 1 − sngPercent

E l s e I f blenderRockTypeB = intRockType Then

%Set the percent for Rock Type B, then 100% − [t h i s %] for A

blenderPercentB = sngPercent

blenderPercentA = 1 − sngPercent

%I f t h i s i s not one o f the rock types being blended we have an e r r o r

End I f

End Function

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Part D∗∗
%This method removes a s t a t i on from a c o l l e c t i o n . I t i s i n t e r n a l to the

%c l a s s ob j e c t

Pr ivate Sub RemoveStation (c o l l C o l l e c t i o n As Co l l e c t i on , s tnLoca l As Stat ion)

Dim i As In t ege r

Dim stnCurrent As New Stat ion

For i = 1 To c o l l C o l l e c t i o n . count

Set stnCurrent = c o l l C o l l e c t i o n (i)

113

I f stnCurrent .Name = stnLoca l .Name Then

c o l l C o l l e c t i o n . Remove (i)

Exit Sub

End I f

Next i

End Sub

%This method adds a s t a t i on to a c o l l e c t i o n in dec r ea s ing order o f

%cu r r e n t l e v e l . I t i s i n t e r n a l to the c l a s s ob j e c t

Pr ivate Sub AddStation (c o l l C o l l e c t i o n As Co l l e c t i on , s tnLoca l As Stat ion)

Dim i As In t ege r

Dim in tS t a r t As In t eg e r

Dim stnCurrent As New Stat ion

i n t S t a r t = 1

I f c o l l C o l l e c t i o n . count > 0 Then

Set stnCurrent = c o l l C o l l e c t i o n (1)

%I f the cur rent s t a t i o n i s on the top o f the l i s t and has product , continue to draw

%from i t & ex i t the sub

I f stnCurrent .Name = stnLoca l .Name And stnCurrent . CurrentLevel > stnCurrent . MinLevel Then

Exit Sub

%I f the s t a t i on on the top o f the l i s t has product , continue to draw from i t and

%put the new s t a t i on onto the l i s t s t a r t i n g at the 2nd s t a t i on

E l s e I f stnCurrent . CurrentLevel > stnCurrent . MinLevel Then

i n tS t a r t = 2

End I f

%Remove the s t a t i o n from the l i s t to keep from having dup l i c a t e s

Cal l RemoveStation (c o l lC o l l e c t i o n , s tnLoca l)

End I f

For i = i n tS t a r t To c o l l C o l l e c t i o n . count

Set stnCurrent = c o l l C o l l e c t i o n (i)

I f stnCurrent . CurrentLevel < s tnLoca l . CurrentLevel Then

c o l l C o l l e c t i o n .Add stnLocal , , i

Exit For

End I f

Next i

I f i > c o l l C o l l e c t i o n . count Then

c o l l C o l l e c t i o n .Add stnLoca l

End I f

End Sub

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Part E∗∗
Publ ic Sub I n i t i a l i z eB l e n d e r ()

Dim co l lB l ende r As New Co l l e c t i on

Dim i , j As In t ege r

Dim rngCopy As Range

Dim rngDest inat ion As Range

Dim int Index As In t ege r

Dim b lnLoca lL i s t () As Blender

Dim blnCurrent As New Blender

%se t c o l lB l ende r

114

Set co l lB l ende r = Nothing

Set co l lNextBlender = Nothing

%Loop through the b lender input parameter sheet and s t o r e the va lues in

%Blender Class Module p r op e r t i e s .

in t Index = 1

Do While Range (” rngBlenderDef ”) . O f f s e t (0 , in t Index) <> ””

ReDim Preserve b lnLoca lL i s t (int Index)

blnCurrent .Name = Range (” rngBlenderDef ”) . O f f s e t (0 , in t Index)

blnCurrent . Number = Range (” rngBlenderDef ”) . O f f s e t (1 , in t Index)

blnCurrent . OutputRange = Range (Range (” rngBlenderDef ”) . O f f s e t (2 , in t Index))

blnCurrent . RockTypeA = Range (” rngBlenderDef ”) . O f f s e t (4 , int Index)

blnCurrent . rockTypeB = Range (” rngBlenderDef ”) . O f f s e t (5 , int Index)

Cal l blnCurrent . s e tPercent (blnCurrent . RockTypeA ,

Range (” rngBlenderDef ”) . O f f s e t (3 , int Index))

blnCurrent . Mi l l = GetStat ion (Range (” rngBlenderDef ”) . O f f s e t (6 , in t Index))

j = 1

Do While Range (” rngBlenderDef ”) . O f f s e t (j + 6 , int Index) <> ”” And j <= 10

blnCurrent .AddFOB GetStat ion (Range (” rngBlenderDef ”) . O f f s e t (j + 6 , int Index))

j = j + 1

Loop

Set b lnLoca lL i s t (int Index) = blnCurrent

Cal l AddBlenderToCollection (blnCurrent , c o l lB l ende r)

Set blnCurrent = Nothing

int Index = int Index + 1

Loop

	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	A Canadian Mining Company
	Mill Complex Operation
	Overview of Mill Production System
	Mill Production Planning Problem

	Production Scheduling - Draw Scheme and Campaign
	Project Background

	Literature Review
	Simulation in the Mining Industry
	The History of Simulation
	Current Status of Mining Simulation and New Development
	Mining Simulations Around the World

	Application of Mining Simulation
	Using Operation Process Simulation for a Six Sigma Project of Mining and Iron Production Factory
	Concurrent Simulation and Optimization Models for Mining Planning

	Mill Optimization Model
	Economic Optimization of an Ore Processing Plant with a Constrained Multi-Objective Evolutionary Algorithm
	Crushing Plant Optimization by Means of a Genetic Evolutionary Algorithm

	MIP of Mine Production Planning

	Formulation of Integer Programming Model to Calculate Draw Scheme and Campaign Schedules
	Blending Model
	Formulation of Blending Model
	Numerical Results of Blending Optimization Model

	Mill Optimization Model
	Mill Optimization Model Parameters
	Mill Optimization Model Formulation
	Model Implementation
	Numerical Results of Mill Optimization Model

	Development of Simulation Model
	Formulation of the Problem
	Problem of Interest
	System Configuration

	Model Definition
	Definition of Key Terms
	Simulation Model Assumptions
	Operating Procedures

	Construction of the Simulation Model
	Modelling Approach
	Implementation in VBA
	Interface Design
	Running Environment

	Output Analysis
	Steady-State Analysis
	Replication Length and Number of Replications
	Simulation Model Verification and Validation

	Machine Failure Data Analysis
	Selection of Most Frequently Failed Machines
	Failure Data Analysis
	Types of Failure
	Mean Time Between Failure and Mean Time to Repair

	Failure Consequence-Partial Failure
	Definition of Partial Failure
	Failure Efficiency Implementation

	Simulation - Based Sensitivity Analysis for Examining Alternatives
	Base Model
	Sensitivity Analysis of MTTR and MTBF
	Sensitivity Analysis of Increased Arrival Ore

	Conclusion and Future Studies
	Bibliography
	Appendices
	LP of Mill Optimization Model - GUSEK Code
	LP of Mill Optimization Model - External Data File
	LP of Mill Optimization Model - Output File
	LP of Blending Model - GUSEK Code
	LP of Blending Model - Solution Output File
	Standard Module Code
	Sample Code of Class Module - Blender

