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Abstract

Networked control systems (NCSs) are feedback control systems with the feedback
control loops closed via network. The origin of the term NCSs is from industrial
systems where the plant and controller are often connected through networks. The
applications of NCSs cover a wide range of industries, for example, manufactory
automation, domestic robots, aircraft, automobiles and tele-operations.

The research activities in NCSs are focused on the following three areas: control
of networks, control over networks and multi-agent systems. Control of networks is
mainly concerned with the problem of how to efficiently utilize the network resource
by controlling and routing the network data flows. Control over networks is mainly
concerned with the design of feedback control strategies of control systems in which
signals are transmitted through unreliable communication links. Multi-agent sys-
tems deal with two problems: how the topology of the network connections between
each component influences global control goals and how to design local control law
describing the behavior of each individual to achieve the global control goal of the
whole systems. The objective in this thesis is to deal with control over networks and
multi-agent systems.

The most challenging problem in the control over networks field is that the un-
reliable communication channels can degrade system performance greatly. The main
unreliable properties of networks are delays and packet loss. In order to deal with
this problem, a Lyapunov-based method has been used to design the sampled-data
stabilization control strategy for a networked single system by choosing proper delay
and packet loss dependent Lyapunov functional candidates. Linear matrix inequal-
ity techniques have been used to find the sufficient and necessary conditions for the
controller design. Furthermore, the consensus formation control problem of multiple
robotic vehicle systems has been investigated. The consensus-based design scheme
has been applied to the formation control of multiple wheeled mobile-robot group
with a virtual leader. A novel delay-dependent Lyapunov functional candidate has
been constructed to investigate the convergence of the system states. The proposed
control strategy is experimentally implemented for multiple wheeled mobile robots
under neighbor-to-neighbor information exchange with group communication delays
involved. In conclusion, through the simulation results and experimental validations,
the proposed new Lyapunov-based control methods can effectively deal with the net-
worked control systems discussed in this thesis.
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Chapter 1

Introduction

1.1 Research Motivation

Networked control systems(NCSs) are feedback control systems with control loops

closed through real time network communication channels. In recent decades NCSs

have gained increasing attention and have become one of the main research focus in the

field of controls as well as in industrial applications. Gaining attention is due to their

advantages they have in reducing the complexity of wiring connections, decreasing

the costs of cables and power, simplifying the installation and maintenance of the

whole system and increasing the reliability. As a result of extensive research and

development, several network protocols for industrial control have been realized, such

as Control Area Network developed by Robert Bosch Company in 1983. NCSs also

have been used in many other industrial control applications, such as automobiles,

manufacturing plants and aircraft. However, insertion of network communication

channels make the analysis and design of NCSs complicated and hence raises new

interesting and challenging problems such as quantization, time delays and packet

losses. Traditional control theory framework is about the study of interconnected

dynamical systems linked via ideal channels, whereas for NCSs we need to study the

1
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transmission of information over imperfect channels. As a result, a combination of

these two frameworks is needed to model NCSs which means the traditional control

theories must be re-evaluated before applying them to NCSs. These new interesting

and challenging problems regarding NCSs are the motivation of the works presented

in this thesis.

1.2 Networked Control Systems Overview

For Networked control systems there are two main configurations called “Direct Struc-

ture” and “Hierarchical Structure” respectively. The direct structure of NCSs is com-

posed of a controller and a remote system with a physical plant, sensor and actuators.

As shown in Fig.1.1, the controller and the plant are located at different places and

are directly connected by the network to perform remote closed-loop feedback con-

trol. Before being sent to the remote plant via the network, the control signals will

first be encapsulated into packets by the controller. Similarly the system states of

the plant measured by the sensors will be put into packets before being sent back to

the controller. Hierarchical structure is composed of a main controller and a remote

closed-loop system as shown in Fig.1.2. The task of the main controller is to send the

packeted reference signals to the remote closed-loop system through the network. By

processing the reference signals the remote system can perform local closed-loop feed-

back control and send the system outputs back to the main controller. Teleoperation

control is a famous application of this structure.

Main activities in the area of NCSs generally contain three major fields [1]: 1)

control of networks, which is mainly concerned with developing new technology to
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Figure 1.1. Framework of networked control system: direct structure

improve the performance to a network data flow so that the network resources can

be efficiently and fairly utilized; 2) control over networks, which deals with designing

feedback control strategies to stabilize the remote systems with network induced com-

munication constraints; 3) multi-agent system, which is concern with the problem that

how the network architecture and interactions between network components influence

global control goals and how local laws describing the behavior of the individual agents

influence the global behavior of the whole system.

1.2.1 Control of Networks

A basic network system can be treated as a feedback mechanism in which the data

transfer through the internet with predefined internet protocol is controlled. Control

of networks is a very large research area. The basic topic in control of networks include

controlling congestion across network links, routing the data flow in the network
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Figure 1.2. Framework of networked control system: hierarchical structure

channel, power control, and resource allocation problems.

Some specific challenges in this field are related to issues, such as how to deal with

the extremely large scale of the system; how to make local decisions quickly only by

using local information; how to tackle the uncertainty and variation in the network

caused by the unpredictable changes of network topology, transmission channel char-

acteristics, traffic demand and available resources and how to deal with the various

traffic characteristics of the network.

Those challenges make it extremely difficult to model and analyze the control of

network problem. Computing, storage and transmission must be managed in this

complicated environment with the given available resources. Researchers in this area

pay more attention on the investigation of mathematical theory that can offer possible

improvements in this field.
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The research works in [2] [3] show significant progress in the theoretical studies of

network congestion control by explicitly modelling the congestion measurement and

posing the network flow control as an optimization problem. The main objective of

this work is to find the optimal conditions to maximize the total resource utility and

solve the rate control problem in a decentralized manner. Recent works related to this

area focus on developing mathematical models for flow control under diverse inter-

net protocols [4]; developing scalable and distributed optimization algorithms for the

control systems [5]- [8] and investigating the effects of time delays and nonlinearities

in the network flow models [9].

1.2.2 Control over Networks

For control over networks, the key issue is how to reduce the effects caused by the

characteristic features of the network communication channel in the feedback control

strategy. Those drawbacks include channel band limit, time delay and packet dropout.

A network communication channel has band limit since any network channel can

only carry a finite amount of information per unit of time. In many applications,

this limitation results in significant constraints for the operation of NCSs, such as in

unmanned air vehicles, sensor networks, underwater vehicles and large arrays of micro

actuators and sensors.

Because the data has been transferred via a network, there is a network induced

delay between the controller and the remote system in addition to the controller

processing delay. The network induced delays in the control loop is shown in Fig.1.1,

where u and x are the control input signal and system state respectively, and τ is the
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Figure 1.3. Timing diagram of network time delay propagations

time delay value. Fig.1.3 shows the corresponding timing diagram of network time

delay propagations. From the data transferring direction, network time delays of NCSs

can be categorized as the sensor-to-controller delay τ sc and the controller-to-actuator

delay τ ca. Existence of network time delays in NCSs is a significant challenging

problem which is needed to be tackled. First it can degrade system performance of

a NCS. Second, which is even worse, it can destabilize the system by reducing the

system stability margin. So reducing the effects caused by network induced time delay

is one of the main tasks regarding NCSs.

In order to deal with time delays in NCSs, in some recent works predictor-based

control approach has been applied. The time delays in both constant and variable

form have been modelled by dynamical ordinary differential equations to predict the

delayed states in NCSs. A successful designed predictor can efficiently reduce the

effects of time delays in this way. Another approach is concerned with applying

robust control theory into NCSs to deal with time delays. In robust control approach,

time delays are translated into uncertainties in the system, then the robust stability

conditions for the NCSs are investigated and the bound of the time delay is estimated.
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Another significant nature of NCSs is the possibility that data may be lost during

transmission through the network. Typically, packet loss can cause transmission errors

in physical network links, which happens more in wireless than wired network, and

buffer overflows due to congestion in the network communication channel. Long time

delays may cause packet dropout when the receiver ignores outdated arrivals. Some

reliable network transmission protocols, such as TCP/IP protocol, guarantee that

the packets dropped during transmission will be retransferred again. However, these

protocols are not appropriate for NCSs since the retransmission of outdated data is

not very useful. Similar to network induced transmission delay, reducing the effects

of packet loss is another essential challenging task regarding NCSs.

In recent works, the Bernoulli packet loss effect between the sensor and the esti-

mator has been considered in the modelling of packet loss. In some situations, packets

received after the bound of time delays are considered as packet loss, so packet losses

can be modeled as additional time delays in some recent works [21].

1.2.3 Multi-agent Systems

The current key issues associated with multi-agent systems deal with consensus based

control. For example, for multiple mobile autonomous robots, teams of autonomous

agents coupled via network, are required to implement some global control aim. Those

team agents are expected to become economically feasible and complete a variety of

spatially distributed sensing tasks, such as search, rescue, surveillance, environmental

monitoring and exploration. Performing team tasks requires all mobile autonomous

agents to be able to coordinate and cooperate with each other. Such cooperative tasks
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for teams of autonomous agents include, for example, searching a region of interest,

moving with special team formation and converging to a common point.

The challenging task for multi-agent system is concerned with the design of dis-

tributed control strategies that can be applied into the multi-agent cooperative control

applications.

1.3 Applications

In this section some applications regarding the NCSs are given. All the examples

are taken from recent existent works. The whole section is divided into three parts:

control of networks, control over networks and multi-agent systems.

1.3.1 Application of Control of Networks

Recently, significant progress in the theoretical investigation of network congestion

control has been made. In this progress, the congestion measure signal feedback

to the source has been modelled. The network flow control has been posed as an

optimization problem where the objective is to maximize the total source utility. See

the following example proposed by [3].

In this work, an optimization approach to flow control has been proposed. The

objective is to maximize the aggregate source utility over their transmission rates.

The logic topology of a network is shown in Fig.1.4. Consider a network that consists

of a set L = {1, . . . , L} of unidirectional links of capacity cl, l ∈ L. The network

is shared by a set S = {1, . . . , S} of sources. Source S is characterized by four

parameters: the first one L(s) ⊆ L is a set of links that source S uses; the second
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one Us is a utility function; the other two ms ≥ 0 and Ms < ∞ are minimum and

maximum transmission rates, respectively, required by source S. Source S attains a

utility Us(xs) when it transmits at rate xs that satisfies ms ≤ xs ≤ Ms. For each link

l let S(l) = {s ∈ S|l ∈ L(s)} be the set of sources that use link l.

Figure 1.4. Logical topology. Source S1 transmits to destination Di, i = 1, 2, 3

The objective of this work is to choose source rates x = (xs, s ∈ S) so that:

max
xs∈Is

∑
s

Us(xs) (1.1)

subject to

∑

s∈S(l)

xs ≤ cl, l = 1, . . . , L. (1.2)

Solving this problem directly requires coordination among possibly all sources and is

impractical in real networks. The key to a distributed and decentralized solution in

this work is to solve the dual problem by using gradient projection algorithm.
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Figure 1.5. Diagram of networked RLC system

1.3.2 Application of Control over Networks

A predictor-based networked repetitive learning control (RLC) approach has been

introduced in [10].

As shown in Fig.1.5, a repetitive learning controller is designed to repetitively

stabilize the plant located in a distant place via network communication channel.

Since there is network induced time delay, the system performance is affected by the

time delay. In order to reduce the effect caused by the time delay, a predictor is

designed on the controller side to predict the system states. The diagram of the new

system is shown in Fig.1.6. In this work, the sufficient conditions for predictor design

are derived. If the predictor is designed properly and meets the sufficient conditions,

it can predict the system states accurately. With accurate predicted information,

the repetitive learning controller can calculate and send correct control signals to the

plant. The effects caused by network induced time delay is, therefore, reduced.
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Figure 1.6. Diagram of predictor-based RLC system

1.3.3 Application of Multi-agent Systems

A novel distributed control scheme has been applied to formation control of multiple

robotic vehicles in [11]. In this work, several mobile robots are considered to move on

a plane. The objective is to make the robotic vehicle group form some formations.

The basic idea is from the consideration of a simple case where two mobile robots

are free to move on one-dimensional space as shown in Fig.1.7. These two robots,

labelled as R1 and R2 respectively, try to make some relative distance between them.

Mathematical formula is designed for R1 to guide R1 to make its relative distance to

R2 d1. For R2, another mathematical formula is designed to guide R2 to make the

relative distance to R1 d2, d1 > d2. When the current relative distance d0 is longer

than d1, both of them try to get close to each other. When d0 is shorter than d2,

then both of them keep away from each other. Finally d0 is kept to be shorter than

d1 and longer than d2 and both of them keep moving at some velocity determined by
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d1 and d2. d1 and d2 are used as the control input in the distributed control scheme

designed for both of robots to deal with physical features of this robotic system, such

as stability of the robots and the relative distance between them quantitatively.

Figure 1.7. Relative distance between mobile robots

The simple case described above is expanded into a more general case where several

(n) mobile robots are free to move on plane. They try to make group formations on

this two dimensional space. Each robot is labelled as Ri and a two dimensional vector

(dxi, dyi) called the “formation vector” are given. This “formation vector” physically

specifies the relative position of Ri to other robots sensed by Ri on the plane. A

distributed control scheme for making formations of mobile robot groups is proposed.

Each robot in the group can sense and control its relative position to other robots.

The motion of each robot is determined by rules given as mathematical formulas

including the formation vector.

The robot groups are considered in two types of configuration which are called as
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Figure 1.8. Mobile group configuration: (a) closed loop; (b) open loop

closed and open chain configuration respectively. These two configurations are shown

in Fig.1.8. The proposed distributed control scheme is applicable in cases where the

groups have other configurations. However, considering only these two configurations

is practical because groups in other configurations easily get tangled.

1.4 Thesis Objectives and Contributions

The objectives of this thesis can be summarized as follows: 1) develop feedback control

strategies to stabilize a class of linear systems controlled by the remote controller

through network with natural communication constraint; 2) develop consensus based
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design methodologies for the distributed multi-agent formation control with group

communication delays; 3) apply the consensus based design methodologies to the

distributed formation control problem for a team of multiple wheeled differentially

driven mobile robots.

The first contribution of this thesis is the design of a stabilization control ap-

proach for a class of linear NCSs with natural networked induced communication

constraints. The networked induced communication constraints have been monitored,

modeled and considered in designing the feedback stabilization control strategies. Net-

worked induced communication constraint-dependant Lyapunov-based methodologies

have been proposed. Linear matrix inequality (LMI) techniques has been utilized to

find the sufficient conditions for the stabilization controller design. The second con-

tribution is the design of consensus based formation control strategy for distributed

cooperation control problems of multi-agent system with group communication delay.

A novel consensus tracking control algorithm has been posed. The convergence of the

tracking errors has been analyzed by utilizing delay-dependent Lyapunov approach.

Comparison between multiple agent group performance with and without group com-

munication is posed by simulation works. This comparison addresses the importance

of information exchange in multi-agent system. The third contribution is applying

the consensus based design methodology to the distributed formation control of the

multiple mobile robot vehicle group with group communication delay. The kinematic

model of the nonholonomic differentially driven mobile robots has been studied and

analyzed. A new delay-dependent multiple Lyaponov-based methodology has been

developed to analyze the convergence of the tracking errors. LMI technology has
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been used to provide sufficient conditions of the controller design. An experimental

platform for distributed multi-vehicle cooperative control has been built. Experiments

have been done to test the feasibility of the proposed approaches.

1.5 Thesis Outline

The thesis outline is structured as follows: In Chapter 2, a literature review regarding

control over network and multi-agent system is accomplished and advances in NCSs

research area are introduced. In Chapter 3 the important issues of network commu-

nication channels such as delays and packet losses are introduced. In Chapter 4, the

design of a stabilization control approach for sampled-data NCSs is introduced. In

Chapter 5, the design of the consensus based formation control strategy for distributed

cooperation control problems of multi-agent system with group communication delay

is demonstrated. In Chapter 6, the consensus based design methodology for the dis-

tributed formation control of the multiple mobile robotic vehicle group with group

communication delay is presented. In Chapter 7, the simulation works are proceeded

to test the feasibility of the proposed approaches in the previous three chapters. In

Chapter 8, the experimental results regarding the main works represented in Chapter

4 and Chapter 6 are shown. Chapter 9 presents the conclusions and future work.



Chapter 2

Advances in Networked Control
Systems

2.1 Introduction

In this chapter, the advance achievements regarding control over network and multi-

agent system have been reviewed. In control over network part, improved techniques,

determination of NCS stability and control synthesis are introduced. For multi-agent

system area, consensus-based cooperative control synthesis are analyzed and reviewed.

2.2 Challenges in NCSs

Network control systems (NCSs) are spatially distributed systems in which the com-

munication between sensors, actuators and controllers occurs through a shared band-

limited digital communication network [12]. Fig.2.1 shows the general architecture of

NCSs.

NCSs lie at the intersection of control and communication theories. Traditional

control theory focuses on the the traditional dynamic systems connected via “ideal

channels”. Communication theory focuses on data transmission via practical or im-

perfect channels. The studies of NCSs is a combination of these two frameworks.

16
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Figure 2.1. General NCS architecture

This combination brings NCSs unique challenges which are different with traditional

feedback control systems such as:

1) Band-Limited Channels; band-limit is due to the amount limitation of infor-

mation per unit that the communication network can carry. In some applications of

NCSs, significant constraints on the operation of NCSs are posed by this limitation.

These applications include unmanned air vehicles (UAVs), power starved vehicles,

long-endurance energy limited systems, underwater vehicles and large arrays of micro

actuators and sensors. Significant research efforts have been devoted to the problem

of determining the maximum bit rate that a communication channel can carry and the

minimum bit rate that is needed to stabilize a linear system through feedback over a

finite capacity channel. Some recent work are also related to solving the finite capac-

ity stabilization problem for nonlinear systems and for linear systems with unknown
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Figure 2.2. Signal loop NCS architecture

parameters. 2) Sampling and Time Delay; before being transmitted over a network,

the signal must be sampled and encoded in a digital format. After the transmission

the data must be decoded at the receiver side. This process is significantly different

from the usual periodic sampling in digital control. The overall network induced time

delay can be highly variable because it depends on highly variable network conditions

such as congestion and channel quality. Significant research efforts are devoted to

the problem of stabilization control strategy design and characterizing the maximum

upper bound on the sampling interval that can guarantee the stability of NCSs. 3)

Packet Dropout; data dropout is another significant difference between NCSs and

traditional feedback control. Many reasons can cause a data dropout happen, such

as transmission errors in physical network links or buffer overflows due to congestion.

Packet reordering due to lone transmission delays sometimes are treated as a packet



19

dropout if the receiver discards outdated arrivals. Recently the stabilization problems

of NCSs with data dropouts are more and more considered in the control strategy

design. 4) System Architecture; the general architecture of a NCS is shown by Fig.2.1.

The main tasks of encoders are mapping measurements of continuous time signals into

streams of “symbols” that can be transmitted across the network. Two problems are

tackled by encoders: when to sample a continuous time signal for transmission and

what to send through the network. Conversely the main tasks of decoders is mapping

the streams of symbols received from the network into continuous actuation signals.

Recently simpler structures are considered in most of the research on NCSs. For

example, some controllers may be collocated with the corresponding actuators. The

signal feedback loop as shown in Fig.2.2 is also often considered. Although it is sim-

pler than the one shown in Fig.2.1, the main challenges of NCSs, such as bandwidth,

time delays and packet dropouts, are still needed to be considered in this architecture.

2.3 Control Over Networks

The research and developments of feedback control system with data transmission

supported by a shared communication network have a long history. Principle data

networks such as ALOHAnet and ARPAnet, have been developed around 30 − 40

years ago. Network provides several benefits on linking data points like computers

and enable remote data transfers among different nodes conveniently.

Control over networks is one of the main activities in NCSs area. It is mainly

concerned with the design of feedback control strategies adapted to control systems

in which data packets are transferred through unreliable communication links. The
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study of this area raises the following new interesting and challenging problems: i)

Data transmission through a communication network unavoidably introduces time

delays in the control loops; ii) Data traffic congestion, data collision or interference

can cause packet loss.

One of the most important issues in NCSs is the problem of losing data which

occurs because of limited bandwidth and too many data packet transmitted over one

line. For the real industrial applications, a good design of the feedback controller using

the most fresh information to stabilize the NCS is very essential. Another common

issue is the network-induced delay effect on the control loop. For real applications,

delays and packet loss could become the potential sources of instability and poor

performance of NCSs due to the critical real-time requirements in control systems.

Recently in the study of NCSs, the impact of packet loss and time delay have been

paid increased attention such as shown in the literature: [13] - [27].

In [28], an overview regarding recent advances of time delay system is given, classi-

cal and predictor-based control laws are introduced. Several works about teleoperation

control with constant time delay can are given by [29]- [31]. For more complicated

case of time varying delays, [32] [33] proposed the predictor based approach for tele-

operation by assuming that a dynamical ordinary differential equation model of the

delay is available.

In [13], the issue of data packet loss is modelled as a Markovian process, but it

dealt with the delay which is less than one sampling time interval. In [34], the maxi-

mum packet-loss rate under which the overall system remains stable was investigated.

In [18], the NCS has been formulated as a Markovian jump system with known packet
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loss rate, the techniques developed for Markovian jump systems are applied in the

work. [17] presented a solution to the problem of stabilization of NCSs with the effect

of one sampling delay and arbitrary switching packets dropout in which the theory

of switched systems has been applied to stabilize the NCSs. However, only one com-

munication channel from the sensor to controller has been considered. The controller

was supposed to be connected to the actuator directly and no packets were lost or

delayed through the communication between them. In [21], the packet loss process

has been defined as the sequence of the time intervals between consecutively success-

fully transmitted data and categorized into two types called the arbitrary packet loss

process and the Markovian packet loss process, respectively. However, only one-step

time delay has been considered in the design, analysis and synthesis methods are pro-

vided based on pure discrete-time model. The effect caused by network induced time

varying delay has not been considered.

In next three subsections some existent works about stabilization control method-

ologies for NCSs with networked communication constraints are reviewed.

2.3.1 Lyapunov-Based Control Approaches

For control over network area, it is well-know that the choice of an appropriate

Lyapunov-Krasovskii functional (LFK) is crucial for deriving stability and bounded

real criteria. Choosing an LFK can obtain a solution to various control problems of

NCSs. The general form of LKF has been used by many authors [35]- [38].

In [20], the sufficient conditions for stability of the linear system with uncertain

delay via a new complete nominal LKF has been derived. This new nominal LKF
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along the trajectories of the nominal system which depends on the state. The state

derivative allows a less conservative treatment of the delay perturbation. In their

design, the uncertain delay includes two terms: the constant term and the varying

term. It has been modeled by

τ(t) = h + η(t), (2.1)

where h > 0 is a nominal constant value and η(t) is a time-varying perturbation with

an artificial constraint that

|η(t)| ≤ µ ≤ h, (2.2)

where µ is the known upper bound of the varying term. By choosing a new complete

nominal LKF, the sufficient conditions for stability of the nominal system are given

in their work. All algorithms are given in terms of linear algebraic operation, definite

integral and linear matrix inequalities (LMIs).

In [39], it presents a new delay system approach, which is based on a new time-

delay model to NCSs. New results on stability are proposed for systems with two suc-

cessive delay components by exploiting a new LKF and by using some new techniques

for the time delay system. They consider the following system with two successive

delays

ẋ = Ax + Adx(t− d1(t)− d2(t)), (2.3)

where x(t) is the state vector, A and Ad are known matrices with appropriate di-

mensions, d1(t) and d2(t) represent the two delay components in the state with the
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assumption that

0 ≤ d1 ≤ d̄1 < ∞

0 ≤ d2 ≤ d̄2 < ∞

ḋ1 ≤ τ1 < ∞

ḋ2 ≤ τ2 < ∞, (2.4)

and d̄ = d̄1 + d̄2, τ = τ1 + τ2.

A Lyapunov-Krosovski functional has been defined as

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (2.5)

where

V1(t) = xT (t)Px(t)

V2(t) =

∫ t

t−d1(t)

xT (s)Q1x(s)ds +

∫ t−d1(t)

t−d(t)

xT (s)Q2x(s)ds

V3(t) =

∫ t

t−d̄

xT (s)Rx(s)ds

V4(t) =

∫ 0

−d̄1

∫ 0

β

ẋT (t + α)Z1ẋ(t + α)dαdβ

+

∫ −d̄1

−d̄

∫ 0

β

ẋT (t + α)Z2ẋ(t + α)dα

+

∫ 0

−d̄

∫ 0

β

ẋT (t + α)M ẋ(t + α)dα, (2.6)

The stability condition under which the system (2.3) is asymptotically stable for

all delays d1(t) and d2(t) satisfying (2.4) are derived by finding the conditions for

which the derivative of the LKF (2.5) is negative.

Similar works have been accomplished in [40], the authors divide the delay interval
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into two subintervals. A new LKF,

V (t) =
4∑

i=1

Vi(t), (2.7)

where

V1(t) = xT (t)Px(t)

V2(t) = η

∫ 0

−η

∫ t

t+β

ẋT (α)Z1ẋ(α)dαdβ

+(h− η)

∫ −η

−h

∫ t

t+β

ẋT (α)Z1ẋ(α)dαdβ

V3(t) =

∫ t−η

t−h

xT (s)Q1x(s)ds +

∫ t

t−η

xT (s)Q2x(s)ds

V4(t) = 2
m∑

i=1

λi

∫ σ

0

fi(α)dα, (2.8)

with P > 0, Q1 > 0, Q2 > 0, Z1 > 0, Z2 > 0. V2 and V3 in (2.8) splits the whole delay

interval [−h, 0] into two sub-internals which is [−h,−η] and [−η, 0] such that each

sub-internals has a different Lyapunov matrix. Some new delay dependent stability

criteria for the system are given by choosing the new LFK in (2.7).

The theoretic definition with constructing a LKF for linear time delay system has

been investigated in [41]. In this work the following linear system with delayed states

has been considered:

ẋ(t) = A0x(t) +
k∑

i=1

Aix(t− τi), (2.9)

the initial condition x(θ) = φ(θ), θ ∈ [−τ, 0], where τ = max{τ1, . . . , τk}. A0 and

Ai, i = 1, . . . , k are known real constant matrices with appropriate dimensions. The

following LKF theorem is given in this work to prove asymptotic stability of the above

system.
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Theorem 2.1. The system described by Eq.(2.9) is asymptotically stable if there exists

a bounded quadratic Lyapunov functional V (xt) such that for some ε > 0, it satisfies:

V (xt) ≥ ε‖xt(0)‖2 (2.10)

and its derivative along the system trajectory satisfies

V̇ (xt) ≤ −ε‖xt(0)‖2. (2.11)

An example of a LKF that would yield a delay-independent condition is given

first:

V (xt) = xt(0)T Pxt(0) +

∫ 0

−τ

xt(s)
T Sxt(s)ds. (2.12)

To compare with the structure in (2.12), the complete LKF which is necessary and

sufficient for delay-dependent stability of the linear system in (2.9) is given as follows:

V (xt) = xT
t (0)Pxt(0) + xT

t (0)

∫ 0

−τ

P1xt(θ)dθ

+

∫ 0

−τ

xT
t (θ)P T

1 (θ)(θ)dθxt(0)

+

∫ 0

−τ

∫ 0

−τ

xT
t (θ)P2(θ, s)xt(s)dsdθ

+

∫ 0

−τ

xT
t (θ)Qxt(θ)dθ (2.13)

with appropriate continuity conditions on P , P1 and P2. The sufficient and necessary

conditions for the asymptotic stability of the nonlinear system have been derived by

considering the conditions in Theorem.2.1.
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Another construction of LKF for time varying delay systems has been proposed in

[42]. In this work the following linear time varying delay system has been considered:

ẋ(t) = Ax(t) + Adx(t− h(t)),∀t ≥ 0,

x(t) = φ(t),∀t ∈ [−hm, 0], (2.14)

where x(t) ∈ <n is the state vector, A,Ad ∈ <n×n are known constant matrices and

φ is the initial condition. The delay h(t) is assumed to be a time-varying continuous

function that satisfies

0 ≤ h(t) ≤ hm, (2.15)

where hm > 0 may be infinite if delay independent conditions are looked for. In order

to get the sufficient and necessary conditions for asymptotic stability of the system

(2.14), the following LKF has been defined in this work:

V =
5∑

i=1

Vi(x) (2.16)

where

V1 = xT (t)Px(t),

V2 =

∫ t

t−h(t)/2

[
x(s)

x(s− h(s)/2)

]T

Q1

[
x(s)

x(s− h(s)/2)

]
ds,

V3 =

∫ t

t−h(t)

xT (s)Q0x(s)ds,

V4 =

∫ t

t−hm/2

∫ t

s

ẋt(θ)R1ẋ(θ)dθds,

V5 =

∫ t

t−hm

∫ t

s

ẋt(θ)R0ẋ(θ)dθds, (2.17)
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In this subsection, some examples of choosing an appropriate LKF have been re-

viewed. It is well known that the choice of an appropriate LKF is crucial for deriving

stability and bounded real criteria and, as a result, for obtaining a solution to various

NCS problems. In the next subsection, robust control approaches are reviewed and

discussed.

2.3.2 Robust Control Approaches

When the concerned networked control system contains uncertainty parameters or

disturbance or both, robust control method is needed to stabilize the system. The

basic idea for robust control in NCSs is investigated. Consider the following uncertain

system with time-varying delay:

ẋ(t) = (A + ∆A)x(t) + (Ad + ∆Ad)x(t− τ(t)) + Bu(t) + B$$(t)

z(t) = Cx(t) + D$$(t) + Cdx(t− τ(t)) + Du(t)

x(t) = φ(t), (2.18)

where x(t) is the state vector; u(t) is the control input; $(t) is the disturbance input

that belongs to L2[0,∞); z(t) is the controlled output. φ(t) is the initial condition

of the system. A and B are constant matrices with appropriate dimensions. ∆A and

∆B denote the parameter uncertainties satisfying that

[∆A, ∆B] = MF (t)[Ea, Eb], (2.19)

where M , Ea and Eb are constant matrices with appropriate dimensions; F (t) is an

unknown time-varying matrix satisfying that F T (t)F (t) ≤ I. The varying time delay



28

τ(t) satisfies that

0 ≤ τ(t) ≤ τM , |τ̇(t)| ≤ d ≤ 1, ∀t ≥ 0, (2.20)

where τM and d are constants. The definition of robust stability is addressed by the

following definition:

Definition 2.1. The system (2.18) is robustly asymptotically stable with an H∞ norm

bound γ if the following conditions hold:

1) For the system with $(t) ≡ 0, the trivial solution (equilibrium point) is globally

asymptotically stable if limt→∞ x(t) = 0;

2) Under the assumption of zero initial condition, the controller output z(t) satis-

fies

‖z(t)‖2 ≤ γ‖$(t)‖2 (2.21)

for any nonzero $(t) ∈ L2[0,∞).

The key problem for robust control in NCSs is to find under what condition the sys-

tem (2.18) is robustly asymptotically stable with an H∞ norm bound γ. The potential

approach regarding this problem can be classified into two categories: delay-dependent

criteria and delay-independent criteria. Since delay-dependent criteria make use of in-

formation on the length of delays, it has less conservative than the delay-independent

one. The main objective of the delay-dependent H∞ control is to design a control

approach that allows a maximum delay size for a fixed H∞ performance bound or

achieves a minimum H∞ performance bound for a fixed delay size. The analysis is

usually processed based on the common assumption (2.20) that the time delay has

a bound. The main challenge of the delay-dependent H∞ control is how to reduce
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the conservation of delay-dependent conditions for system stabilization as much as

possible. LKF still plays an important role in this area.

In the past few years, some approaches have been proposed to reduce the con-

servation of delay-dependent conditions by using new bounding for cross terms or

choosing new LKF. Park’s inequality for bounding cross terms is proposed in [43]

to investigate the delay-dependent stability criterion and reduce the conservation of

delay-dependent conditions. However, some matrix variables must be limited to a

certain structure form to obtain control synthesis conditions in terms of LMIs. And

some conservatism has been brought in by this limitation. In [44], the authors propose

a new inequality, which is more general than the one in [43], for bounding cross terms.

By using this new bound in derivative of the proposed LKF, the authors present a

delay-dependent robust H∞ control which has less conservative than that in [43] for

uncertain linear system with state delays. The drawback of this work is that the

term x(t− τ) is replaced with x(t)− ∫ t

t−τ
ẋ(s)ds in the expression 2xT (t)PA1ẋ(t), but

not with τ ẋT (t)Zẋ(t). Since both x(t − τ) and x(t) − ∫ t

t−τ
ẋ(s)ds affect the result,

there must be some relationship between the two terms and there must exist optimal

weighting matrices for those terms. The authors select some fixed weighting matrices

without giving a method for determining them.

Besides bounding for cross terms, the conservatism can be further reduced by

taking a new LKF. In [45], the authors combined a descriptor model transformation

with Park’s inequality to produce less conservative criteria. However, since the basic

idea is based on the substitution of x(t)− ∫ t

t−τ
ẋ(s)ds for x(t− τ) , the conservatism

of the approach in [43] is still there.
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In [46], the authors proposed a new LKF to avoid some kind of model transfor-

mation and bounding of cross terms. A less conservative delay-dependent robust H∞

control is proposed for uncertain linear systems with a state-delay and parameter

uncertainties base on the new LKF. A new delay-dependent bounded real lemma for

the system is derived in terms of LMIs. The condition for the proposed robust H∞

control is given in terms of nonlinear matrix inequalities to obtain less conservatism.

Similar work has been accomplished in [44].

In [47], the authors develop an approach in which neither model transformation

nor free weighting matrix variables are employed in the proposed LKF. A tighter

bounding technology for cross terms is employed in the proposed LKF to reduce the

conservative. The proposed approach in their work can lead to a improvement in

system analysis and synthesis for a large class of delay systems.

In [48], the authors present some delay-dependent stability criteria for linear sys-

tems with time-varying delays. In their work, first the asymptotical stability of a

linear system with time-varying delays which has fixed system matrices (system does

not have any disturbance) has been investigated. The upper bound of time-varying

delays has been found by deriving a LKF. In the derivative of the LKF, the term ẋ(t)

is remained. However, the relationship among the terms in the systems equation is

expressed by some free weighting matrices. Moreover, the relationship between x(t),

x(t−d(t)) and
∫ t

t−d(t)
ẋ(s)ds is expressed in terms of free weighting matrices. The dif-

ficulties in the handling of the LKF is avoided by the introducing those free weighting

matrices. LMI techniques are used to obtain all of the parameters numerically. Sec-

ond, this idea is applied to a time-varying system with polytopic-type uncertainties.
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A less conservative criterion is obtained.

In [49], the authors introduce the new free-weighting matrices to estimate the

upper bound of the derivative of LKF without ignoring some useful terms. This new

types of LKF brings less conservative delay-dependent stability criteria for systems

with time-varying delays. The resulting criteria are extended to the stability analysis

for systems with time-varying structured uncertainties.

In [50], the authors present a new criteria with some new advantages, such as there

is not any system transformation so that the conservatism of such transformation can

be avoided and the Park’s inequality is not be used to estimate the upper bound

of the cross term. It can reduce the conservatism in the derivation of the stability

conditions. Some free weighting matrices, which are determined by solving LMIs, are

employed to the system.

In [51], the authors propose a new criteria for the robust control approach of

uncertain NCSs. They introduce slack matrix parameters to the derived criteria for

reducing the conservative results. The lower bound of the network-induced delay is

employed to derive the criteria to obtain less conservative results especially for the

case where the lower bound of the delay is nonzero.

2.4 Networked Multi-agent Systems

Recently the study on the area of coordinated and cooperative control of multi-agent

systems has been paid more attention due to its wide potential application back-

ground, such as platooning of vehicles in urban transportation [52] [53], the operation

of the multiple robots [54], autonomous underwater vehicles [55] [56] and formation
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of aircrafts in military affairs [57] [58].

Figure 2.3. Agents in schools

Investigation for multi-agent systems begins with studying the behavior of a large

number of interacting agents with a common group objective. These agents include

fish, ants and birds (Fig.2.3). In a flock of fish, the desired track for each agent in

the group has been already decided according to some external elements. Each agent

should track the existent desired trajectory and acquire some information, such as

the velocities and relative positions from its neighbors in order to: i) stay a proper

distance to nearby flock-mates; ii) avoid collisions; iii) match velocity with each other.

Then all agents asymptotically move with the same velocity and form a cohesive flock

without collisions. This phenomena is called consensus. Notice that in the whole

group movement there is no one performs as the“leader”. Animal behavior scientists

believe that“schools need no leaders” [59].
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Consensus problems have a long history in automata theory. In multi-agent sys-

tems, consensus means that the states of all agents reach an agreement asymptotically

regarding a certain quantity of interest that depends on the state of all agents. Gen-

erally speaking, when multiple agent agree to the value of a variable of interest, they

are said to reach consensus. For example, in many applications involving multi-agent

or multi-vehicle systems, groups of agents need to agree upon certain quantities of

interest. Such quantities might or might not be related to the motion of the individual

agents. So in order to achieve consensus, there must be a shared variable of interest,

called the information state, as well as appropriate algorithmic methods, called con-

sensus algorithms, for negotiating to reach consensus on the value of that variable.

The most common continuous time consensus algorithm is given by:

ẋ(t)i = −
n∑

j=1

aij(t)[xi(t)− xj(t)], i = 1, . . . , n, (2.22)

where aij(t) is the (i, j) entry of adjacency matrix A ∈ Rn×n, xi is the information

state of the ith agent. aij = 0 means agent i cannot receive information from agent

j. The key problem to investigate when the information states of all of the agents

converge to a common value (consensus)?

A good literature review for the consensus problem can be found in [60]. The

most often used method to tackle the consensus problem with multi-agent systems

is called graph theory (graph Laplacians) [61] [62]. It plays a crucial role in the

convergence analysis of consensus. In [11] [63], the authors used graph theory to

tackle the formation stabilization for groups of linear agents. For this method, the
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consensus algorithm in (2.22) is rewritten in matrix form as

ẋ(t) = −Lnx(t), (2.23)

where x = [x1, . . . , xn] is the information state and Ln is the Laplacian matrix. Con-

sensus is achieved by a team of agents if |xi(t)− xj(t) → 0| as t →∞. The key idea

for graph theory is to investigate the conditions of the Laplacian matrix Ln that can

make the whole team achieve consensus.

Another approach is to use Lyapunov method to derive sufficient conditions for

stabilization controllers. This Lyapunov function also can be renamed as the dis-

agreement function which is a measure of group disagreement in a network. In [64] a

common Lyapunov function that guarantees asymptotic convergence to a group de-

cision value in networks is proposed. Similar analysis idea was used in [65]. First the

authors introduced two control algorithms which included the relative position term,

the relative velocity term and the navigational feedback term. Then the disagreement

functions were used to analyze the stability of the whole system. Compared with the

graph method, Lyapunov stability analysis is more control theoretic, it can visually

give the sufficient conditions for stabilizations and be closer to real applications. In

this thesis work LKF method is used to tackle the problem in this thesis.

For coordinated and cooperative control of multi-agent systems, information ex-

change becomes a central issue. For some applications, e.g. multi-vehicle system is

required to observe on the same target. All vehicles should agree as what changes

took place in the environment. To agree to the same interest, each vehicle need to

share information with others so that the environment change can be captured and
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known by the whole team.

Figure 2.4. Robot group formation

Formation control is an important application of consensus-based design method-

ologies for cooperative control (Fig.2.4). There are several advantages for formation

control such as increased feasibility, robustness, efficiency and probability of success.

The approaches regarding formation control can be categorized into leader-follower

and virtual leader (structure) approaches. In the leader-follower approach, one of the

agents is designated as the leader, and others as followers. The basic idea is that

the followers track the position and orientation of the leader with some prescribed

offset. The key problem is to find an appropriate consensus-based algorithm that can

make the information states of all agents converge to the common prescribed value of

interest.

The first study on leader-follower strategies is in [66]. The formation control strate-

gies are discussed in this work. In [67], the formation control strategies for keeping
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desired formation and relative attitude alignment based on nearest neighbor tracking

error are proposed. In [68], a leader-following technique is use to control a group of

mobile robots to move an objective cooperatively. In [69], nonholonomic robots are

used for leader-follower. In addition, the formation configuration is described as a

directed graph. The shape of the formation is changed when the graph is changed.

Another work regarding multiple nonholonomic robot formation control is represented

in [70].

In the virtual leader and virtual structure approach, the entire formation is treated

as a single structure. The basic idea is, first define the desired dynamics of the virtual

leader; second, translate the virtual leader and virtual structure into the desired

motion for each vehicle; last design a consensus-based tracking control strategy for

each agent. In [71], the authors use the virtual structure approach to acquire high

precision formation control for mobile robots. In [72], the virtual structure is applied

to formation control of spacecraft in free space. In [73], the virtual leader approach is

applied to formation control of mobile robots. In [74], a Lyapunov formation function

is used to define a formation error and formation feedback is incorporated in the

virtual leaders through parameterized trajectories.

2.5 Summary

In this chapter, the works related to control over network have been reviewed in section

2.3 which include two areas: 1) Lyapunov-based control approach; 2) robust control

approach. In section 2.4, existence works regarding consensus problem and consensus

based formation control for multi-agent system have been reviewed and summarized.



Chapter 3

Network Communication Channel:
Issues and Modeling

This chapter begins with introducing the process of network communication. Now

take a simple network program as an example. As shown in Fig.3.1, the simple

program is used by some clients to login to a remote system just like login in locally.

The commands are sent by a local computer and all other activity is happening on the

remote computer. There is a similar issue between human beings and computers that

they all need to “speak” the same language in order to communicate. For computers,

the communication is carried out in a pre-defined manner, called a “protocol”. The

computer protocols determine how each side behaves and how it should react to

behavior by its counterpart. Generally speaking even the interaction between the

computer and the hardware, such as the hard disk, can be considered as a “protocol”.

The most common protocols used today is Transmission Control Protocol/ Internet

Protocol (TCP/IP ) and the User Datagram Protocol (UDP ). TCP/IP is the most

important internetworking protocol suite in the world. Because it actually consists

of several different protocols, it is more accurate to call TCP/IP a “protocol suite”.

37
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Figure 3.1. Network configuration

TCP/IP is connection-oriented and can retransmit any dropped packets and buffer

out-of-order packets to be able to deliver the original data stream in the proper order to

the receiver. However, re-sending the out-of-date packets is usually not a big help for

NCSs. UDP is another important internet protocol suite designed by David P. Reed

in 1980. UDP uses a simple transmission model without dialogues for guaranteeing

reliability, ordering or data integrity. Thus, the datagrams may arrive out of order,

appear duplicated or get lost with UDP protocol. It is better to be used in some

real-time applications such as voice and video transmissions since a lost packet will

not be retransmitted with UDP protocol. For these reasons, UDP is chosen here as

the investigative objective.

The main issues regarding the network communication channel with UDP protocol

is time delays and packet losses. So these two issues are considered to the modelling of
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the UDP link. The time delays are not explicitly modelled, but the upper bounds of

delays are considered in some models of network links. The packet losses are modelled

by using Markov Chains which will be discussed more in Chapter 8. These models

are used in the control gain designs, but not for the simulations or experiments. In

the simulations and experiments discussed in Chapter 7 and 8, the real networked

communication environment is applied. In the next subsection, some general issues

regarding network communication channels are discussed.

3.1 Bounded Time Delays

In some real applications of NCSs, out-of-date packets are usually discarded. So there

is a common assumption regarding NCSs that the delay is bounded. This assumption

can be imposed in network communication links by dropping these packets which

are received at the times that exceed the delay bounds. The bound of delay can be

determined by measuring networked induced delays.

Fig.3.2 shows the time delays of up to 6000 continuous packets transferred in a

real network communication link. From this picture, most of the packets can be

received in 50 ms. So the upper bound of delays in the simulation and experiment

is set to τbound = 50ms. In another model, the packet, whose delay τi is larger than

the summation of sampling time Ts and the next packet delay τi+1, is dropped. This

condition can be expressed by the following equation:

τi > τi+1 + Ts. (3.1)
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Figure 3.2. Time delay vs numbers of data packet

Dropping out-of-order packets results in changing the delay distribution and in-

creasing packet loss rate. More details are discussed in Chapter 8.

3.2 Deterministic and Stochastic Packet Dropout

Packet dropouts can be modeled either as deterministic or stochastic phenomena. It

is also often assumed that when the packet containing xk is dropped, the NCS use

the previous value of x̂k as represented in the following equation:

x̂k = θkxk + (1− θk)x̂k−1, (3.2)

where θk = 1 where there is no packet dropout, θk = 0 when there is packet dropout.

In [34], the authors present a deterministic dropout model with packet dropouts
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occurring at an asymptotic rate define by the following time average:

r = lim
T→∞

1

T

k0+T−1∑

k=k0

(1− θk),∀k0 ∈ N (3.3)

In [75] and [18], the authors consider stochastic data dropout. In their formulation,

θk is a Bernoulli process that the probability of dropout (θk = 0) is equal to ρ ∈ [0, 1).

Under this stochastic data dropout model, the system (3.3) is a special case of a

discrete-time Markovian jump linear system. The index θk in (3.3) is the state of

a discrete-time Markov chain with a finite number of states and a given transition

probability matrix. In Bernoulli process, the Markov chain only has two states and

the transition probability between the two states is shown in Fig.3.3.

Figure 3.3. Transition probability for stochastic data dropout

3.3 Summary

In this chapter, the network communication protocols were introduced and discussed.

The main issues for network communication links were generally introduced. The as-

sumption regarding the bounds of the delay was discussed. Deterministic and stochas-

tic model of the packet dropout were studied and discussed.



Chapter 4

Stochastic Stabilization of
Sampled-data Networked Control
Systems

This chapter mainly investigated a sampled-data control approach to deal with the

stabilization problem of Networked Control Systems (NCSs) with packet losses and

bounded time varying delays. A new Lyapunov-Krasovskii functional candidate is con-

structed to analyze the stability of the overall system with bounded random packet

losses and time varying delays. As a result, the stabilizing sampled-data controller is

designed based on the stability conditions. A real-time network measurement system

has been developed based on MATLAB applications. Instrument Control toolbox

was used to implement communications between two computers with MATLAB ap-

plications via the internet. Experiments were done to demonstrate the real network

properties. A real-time networked control system has been constructed to test the

stabilizing ability of the controller design in a real network environment. Experimen-

tal results illustrate the effectiveness of the proposed approach, a good combination

of the theory and the real applications.

42
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4.1 Introduction

In this work, first a real-time network induced delay and packet loss measurement

system was built to study the real network property. With the experimental mea-

surements, the characters of time varying delays and packet losses in the real network

were figured out, which was applied to the stochastic stabilization analysis. Since

in many practical systems, such as computer-based control systems, the continuous-

time system is controlled by a sampled-data controller with sample and hold devices,

the control objective is set to design a sampled-data stabilizing controller via com-

munication channels with Markovian packet losses and bounded time varying delays.

To solve the problem on the stochastic stabilization of the NCSs with the effect of

Markovian packet loss only, stability conditions are derived via Lyapunov approach

and the corresponding stabilizing sampled-data controller design techniques are also

given based on the conditions. Then the effects of both Markovian packet loss and

time varying delays occurring in both channels are considered. The delays and packet

losses that were measured during the network experiments are firstly replayed for

the simulation. A real-time networked control system has been built based on MAT-

LAB programming environment to test the stabilizing ability of the controller. The

experimental results illustrate that the controller works well under real situation.

Notations: λ(D) denotes the eigenvalue of the matrix D, where D ∈ Rn×n. E(·)

is the expectation. ρ(A) =
√

λmax(AT A).
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4.2 Review of the Sampled-data System

In many practical control system, such as computer-based control systems, the continuous-

time system is controlled by a digital controller. The advantages offered by digital

controllers include improved sensitivity, better reliability, less effect due to noise and

disturbance and less cost and weight. Fig.4.1 shows the block diagram of the digital

control system. The plant is part of the whole system. It accepts continuous-time

signals as inputs and gives out continuous-time signals as outputs. The sample-and-

hold device (S/H) can convert continuous signals into a train of amplitude-modulated

pulses and maintain the value of the pulse for a prescribed time duration. And then

the converted signals can be read by digital controllers.

Figure 4.1. Block diagram of digital control system

Sampled-data control formulation is a direct design method for digital controllers.

Modelling of continuous-time systems with digital control in the form of continuous-

time systems with delayed control input is introduced in [76]. The delayed digital

control law can be represented as follows:

u(t) = ud(tk) = ud(t− τ(t)), (4.1)
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where tk ≤ t < tk+1 and τ(t) = t − tk is the varying time delay, τ ≤ tk+1 − tk, ud

is a discrete-time control signal. Based on such a model, for small enough sampling

intervals tk+1 − tk, asymptotic approximations of the trajectory can be constructed.

In [77], a new approach is suggested to solve the problem for a continuous-time

system with uncertain but bounded time-varying delay in the control input. The

system can be expressed as follows:

ẋ(t) = Ax(t) + Bu(t), (4.2)

where x(t) is the state vector, u(t) is the control input. A sampled-data control law

of the form:

u(t) = ud(tk), tk ≤ t ≤ tk+1, (4.3)

where ud is a sampled-data control signal and tk is the sampling instant. In this work,

a state-feedback controller

u(t) = Kx(tk), (4.4)

has been designed to stabilize the system (4.2).

4.3 Mathematic Model of Communication Chan-

nels with Random Packet Loss

NCSs with pure Markovian packet-loss are considered first in this section. Specially,

a linear continuous-time system is studied,

ẋ(t) = Ax(t) + Bu(t), (4.5)
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where x(t) ∈ <n and u(t) ∈ <m represent the system state and control input, respec-

tively. x0 = x(0) is the initial state. A and B are two known constant matrices of

appropriate dimensions.

Figure 4.2. Block diagram of the sampled-data NCSs

As shown in Fig.4.2, the plant communicates with the sampled data controller

via the networks on both channels, which are called controller-actuator and sampler-

controller channels. The controller in the the system is assumed to be time driven.

Let ` = {n1, n2, . . .} be a subsequence of 1, 2, 3, . . ., which denote the sequence

of time points of successful data transmissions from the sampler to the controller.

S = maxnJ∈`(nJ+1−nJ) is the maximum packet-loss upper bound. In order to capture

the nature of packet loss in the network, the following concept and mathematical

models are first introduced.

Definition 4.1. Packet-loss process in the communication channel is modelled as

η(nJ) = nJ+1 − nJ : nJ ∈ `, (4.6)

which takes values in the finite state space ζ = {1, 2, . . . S} where S is a positive
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integer.

Definition 4.2 (11). Packet-loss process (4.6) is said to be Markovian if it is a

discrete-time homogeneous Markov chain on a complete probability space, and takes

values in ζ with known transition probability matrix Π = (πij) ∈ <S×S, where

πij = Pr(η(nJ+1) = j|η(nJ) = i) ≥ 0 (4.7)

for all i, j ∈ ζ, and
∑S

j=1 πij = 1 for each i ∈ ζ.

An illustrative example of data flow with packet loss is shown in Fig.4.3.

In order to catch the random packet loss properties, experiments have been done in

real network environment. All the experimental data has been recorded and analyzed

to derive the transition probability matrix Π in the real case.

Figure 4.3. Data flow diagram of the Markovian Packet loss

Definition 4.3. For system (4.5) with Markovian packet-loss process (4.6), the equi-

librium point 0 of x is stochastically stable if, for every initial state x0, the following
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holds:

E{
∞∑

J=0

xT (nJ)x(nJ)|η(n0)} < ∞. (4.8)

Throughout this chapter, the sampled-data controller is designed as a state-feedback

controller

u(t) = u(nJTs) = Kx(nJTs), (4.9)

where K ∈ <m×n is designed as constant matrix with suitable dimension. The initial

control input is set to zero: u(0) = 0. Then the closed-loop system becomes

ẋ(t) = Ax(t) + BKx(nJTs), nJ ∈ `. (4.10)

Definition 4.4. System (4.5) with Markovian packet-loss process (4.6) is stochasti-

cally stable if, for every initial condition x0 and u0, there exists a sampled-data linear

feedback control law u(t) = u(nJTs) = Kx(nJTs) such that the closed-loop system

ẋ(t) = Ax(t) + BKx(nJTs), nJ ∈ `, (4.11)

is stochastically stable.

Lemma 4.1. - Jensen Inequality [26] For any constant matrix E ∈ <n×n, E = ET >

0, vector function ω : [0, τ ] → <n such that the integrations concerned are well defined,

then,

τ

∫ τ

0

ωT (s)Eω(s)ds ≥
[∫ τ

0

ω(s)ds

]T

E

[∫ τ

0

ω(s)ds

]
. (4.12)

The control objective is to design the controller (4.9) so that the system (4.10)
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with Markovian packet-loss process (4.6) is stochastically stable.

4.4 Controller Design and Stability Analysis

4.4.1 NCSs with Markovian Packet Losses

Now the stability property of NCSs will be analyzed. For NCSs with Markovian

packet-loss process, the stability condition is established by analyzing the theory from

Markovian jump linear systems. The conditions are given in the following theorem.

Theorem 4.1. Consider the NCS (4.10) with Markovian packet-loss process (4.6),

u(0) = 0 and x(n0Ts) = x(0). If there exist symmetric positive definition matrices

Pi = P = P T , i ∈ ζ, matrices Q > 0, S > 0, X and Y , scalar β > 0 such that




XT AT + AX BY

Y T BT −R


 < 0, (4.13)

and




−X ∗ ∗ ∗
Φ X −G ∗ ∗
Φ 0 −X ∗
X 0 0 −β−1I




< 0, (4.14)

with Φ =
∑S

i=1 πij · j ·BY + X, X = P−1, R = XT SX, G = XT A−T QA−1X, hold,

then the system is stochastically stable with the controller gain designed as K = Y X−1.

Proof. Given that x(n0Ts) = x(0) and n1 − n0 = i, from the system (4.10)

x(n1Ts)− x(n0Ts) =

∫ n1Ts

n0Ts

ẋ(s)ds

=

∫ n1Ts

n0Ts

Ax(s)ds +

∫ n1Ts

n0Ts

BK · x(n0Ts)ds



50

= A

∫ n1Ts

n0Ts

x(s)ds + BK · x0

∫ n1Ts

n0Ts

ds

= A

∫ n1Ts

n0Ts

x(s)ds + BK · x0 · iTs, (4.15)

then the difference between the system state and its expectation can be expressed as,

E[x(n2Ts)|n1 − n0 = i]− x(n1Ts)

= A

∫ n2Ts

n1Ts

x(s)ds + ΣS
j=1πij · jTsBKx(n1Ts). (4.16)

Similarly,

E[x(nJTs)|nJ−1 − nJ−2 = i]− x(nJ−1Ts)

= A

∫ nJTs

nJ−1Ts

x(s)ds + ΣS
j=1πij · jTsBKx(nJ−1Ts). (4.17)

Now take the packet-loss dependent Lyapunov functional candidate as

V1(t) = xT (t)Pix(t) + (nJ+1Ts − t)xT (nJTs)Sx(nJTs), (4.18)

where Pi = P ∈ <n×n are singular positive definition matrices, and S ∈ <n×n > 0.

Then the derivative of V1(t) becomes

V̇1(t) = ẋT (t)Pix(t) + xT (t)Piẋ(t)− xT (nJTs)Sx(nJTs)

= [Ax(t) + BKx(nJTs)]
T Pix(t) + xT (t)Pi[Ax(t) + BKx(nJTs)]

−xT (nJTs)Sx(nJTs)

= xT (t)AT Pix(t) + xT (nJTs)K
T BT Pix(t) + xT (t)PiAx(t)

+xT (t)PiBKx(nJTs)− xT (nJTs)Sx(nJTs)

= xT (t)[AT Pi + PiA]x(t) + xT (nJTs)K
T BT Pix(t)

+xT (t)PiBKx(nJTs)− xT (nJTs)Sx(nJTs)
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=




x(t)

x(nJTs)




T 


AT Pi + PiA PiBK

KT BT Pi − S







x(t)

x(nJTs)


 < 0. (4.19)

The inequality above holds if the following inequality is satisfied:




AT Pi + PiA PiBK

KT BT Pi − S


 < 0, (4.20)

for symmetric positive definite matrices Pi = P, P = P T . Define X = P−1, M =

diag(X,X) and Y = KX. Then by pre-multiplying the inequality in (4.20) by MT

and post-multiplying by M , we can obtain the following inequality,




XAT + AX BY

Y T BT −R


 < 0, (4.21)

where R = XT SX. If (4.21) holds, then the closed loop system (4.10) is asymptotically

stable.

In order to achieve the condition for stochastic stability of the closed loop system

(4.10), here take another packet-loss dependent Lyapunov function as

V2(t) = xT (t)Pix(t) + (nJ+1Ts − t)

∫ nJ+1Ts

nJTs

xT (s)Qx(s)ds, (4.22)

where Pi are the same matrices as in V1(t), and Q ∈ <n×n is symmetric positive

definiton matrix. Then from (4.17) and Lemma 4.1

E[V2(nJ+1Ts)|nJ − nJ−1 = i]− V2(nJ)

= E[x(nJ+1Ts)|nJ − nJ−1 = i]T PjE[x(nJ+1Ts)|nJ − nJ−1 = i]

−xT (nJTs)Pix(nJTs)− (nJ+1Ts − nJTs)

∫ nJ+1Ts

nJTs

xT (s)Qx(s)ds
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= [A

∫ nJ+1Ts

nJTs

x(s)ds + (
S∑

j=1

πij · jTsBK + I)x(nJTs)]
T Pj[A

∫ nJ+1Ts

nJTs

x(s)ds

+(
S∑

j=1

πij · jTsBK + I)x(nJTs)]− xT (nJTs)Pix(nJTs)

−(nJ+1Ts − nJTs)

∫ nJ+1Ts

nJTs

xT (s)Qx(s)ds

= [

∫ nJ+1Ts

nJTs

x(s)ds]T AT PjA[

∫ nJ+1Ts

nJTs

x(s)ds]

+[

∫ nJ+1Ts

nJTs

x(s)ds]T AT Pj[(
S∑

j=1

πij · jBK + I)]x(nJTs)

+xT (nJTs)[
S∑

j=1

πij · jBK + I]T PjA[

∫ nJ+1Ts

nJTs

x(s)ds]

+xT (nJTs)[
S∑

j=1

πij · jBK + I]T Pj[
S∑

j=1

πij · jBK + I]x(nJTs)

−xT (nJTs)Pix(nJTs)− (nJ+1Ts − nJTs)

∫ nJ+1Ts

nJTs

xT (s)Qx(s)ds (4.23)

then

E[V2(nJ+1Ts)|nJ − nJ−1 = i]− V2(nJ)

= [

∫ nJ+1Ts

nJTs

x(s)ds]T AT PjA[

∫ nJ+1Ts

nJTs

x(s)ds] + [

∫ nJ+1Ts

nJTs

x(s)ds]T AT Pj

[(
S∑

j=1

πij · jTsBK + I)]x(nJTs) + xT (nJTs)[
S∑

j=1

πij · jTsBK + I]T PjA

[

∫ nJ+1Ts

nJTs

x(s)ds] + xT (nJTs){[
S∑

j=1

πij · jTsBK + I]T Pj

[
S∑

j=1

πij · jTsBK + I]− Pi}x(nJTs) + βxT (nJTs)x(nJTs)

−(nJ+1Ts − nJTs)

∫ nJ+1Ts

nJTs

xT (s)Qx(s)ds− βxT (nJTs)x(nJTs)
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≤ [

∫ nJ+1Ts

nJTs

x(s)ds]T AT PjA[

∫ nJ+1Ts

nJTs

x(s)ds] + [

∫ nJ+1Ts

nJTs

x(s)ds]T AT Pj

[(ΣS
j=1πij · jTsBK + I)]x(nJTs) + xT (nJTs)[Σ

S
j=1πij · jTsBK + I]T PjA

[

∫ nJ+1Ts

nJTs

x(s)ds] + xT (nJTs){[ΣS
j=1πij · jTsBK + I]T Pj

[ΣS
j=1πij · jTsBK + I]− Pi}x(nJTs) + βxT (nJTs)x(nJTs)

−[

∫ nJ+1Ts

nJTs

x(s)ds]T Q[

∫ nJ+1Ts

nJTs

x(s)ds]− βxT (nJTs)x(nJTs). (4.24)

If the following inequality holds,




Z1

Z2




T 


∆ + βI ΞT PjA

AT PjΞ AT PjA−Q







Z1

Z2


 < 0, (4.25)

where

Ξ =
S∑

j=1

πij · j ·BK + I

∆ = [
S∑

j=1

πij · j ·BK + I]T Pj[
S∑

j=1

πij · j ·BK + I]− Pi

Z1 = x(nJTs), Z2 = [

∫ nJ+1Ts

nJTs

x(s)ds], (4.26)

then it means

E[V2(nJ+1Ts)|nJ − nJ−1 = i]− V2(nJ) < −βxT (nJTs)x(nJTs). (4.27)

The following inequality is satisfied by Schur complement of (4.25) as,




βI − Pi ΞT PjA ΞT Pj

AT PjΞ AT PjA−Q 0

PjΞ 0 −Pj




< 0, (4.28)
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if there exists symmetric positive definition matrices Pi = P, P = P T . Define X =

P−1, W = diag(X,A−1X, X) and Y = KX. Then by pre-multiplying the inequality

in (4.28) by W T and post-multiplying by W , the following inequality can be obtained,




XT βIX −X ∗ ∗
∑S

j=1 πij · j ·BY + X X −G ∗
∑S

j=1 πij · j ·BY + X 0 −X




< 0. (4.29)

The inequality (4.29) could be represented as the form in (4.14) by Schur complement.

Notice that the inequality in (4.14) is a sufficient condition for the solvability of (4.25)

based on the derivation.

If (4.27) holds, then

E[V2(nJ+1Ts)|nJ − nJ−1 = i]− V2(nJTs)

V2(nJTs)
≤ −βxT (nJTs)x(nJTs)

V2(nJTs)
. (4.30)

Define 0 < α = 1− β min{ 1
λ max(Pi)

} < 1, it is obvious that

−βxT (nJTs)x(nJTs)

xT (nJTs)Pix(nJTs)
≤ −β min{ 1

λ max(Pi)
} = α− 1. (4.31)

From (4.30), there exist a positive γ with α ≤ γ < 1, such that

E[V2(nJ+1Ts)|nJ − nJ−1 = i]− V2(nJTs)

V (nJTs)
≤ γ − 1. (4.32)

Then





E[V (nJ+1Ts)|nJ − nJ−1 = i] ≤ γV (nJTs),

...

E[V (n2Ts)|η(n1) = i] ≤ γV (n1Ts),

E[V (n1Ts)|η(n0) = i] ≤ γV (n0Ts).

(4.33)



55

Taking the expectation E[·|η(n0) = i] on both sides of (4.33)

E[V2(n2Ts)|η(n0) = i] ≤ γE[V2(n1Ts)|η(n0) = i]

≤ γ2V2(n0Ts). (4.34)

By iterative derivation,

E[V2(nJ+1Ts)|η(n0) = i] ≤ γE[V2(nJTs)|η(n0) = i] ≤ . . . ≤ γJ+1V2(n0Ts). (4.35)

From (4.35), the summation of E[V2(·)|η(n0) = i] when J = 0 ∼ N becomes

E[
N∑

J=0

V2(nJ+1Ts)|η(n0) = i] ≤ 1− γN

1− γ
V2(n0Ts).

As a result,

lim
N→∞

E[
N∑

J=0

V2(nJ+1Ts)|η(n0) = i] = lim
N→∞

E[
N∑

J=0

xT (nJ+1Ts)Pjx(nJ+1Ts)|η(n0) = i]

≤ 1

1− γ
V2(n0Ts). (4.36)

From (4.36),

lim
N→∞

E[
N∑

J=0

xT (nJ+1Ts)x(nJ+1Ts)|η(n0) = i] ≤ 1

max ρ(Pj)(1− γ)
V2(n0Ts).(4.37)

The limit of the expectation in (4.37) is bounded, this completed the proof for the

stochastic stability of the closed loop system.

Remark 4.1. In Theorem.(4.1), Eq.(4.13) and Eq.(4.14) are used to get the feasi-

ble solution of the control gain K. Then the system is stochastically stable with the

existence of random packet loss in both of the transmission channels.
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In this section a sampled-data controller has been designed to stabilize the NCSs

with pure Markovian packet loss process, packet-loss dependent Lyapunov functional

candidates are used to establish the stabilization conditions. In the next section,

network induced time varying delays are taken into account too.

4.4.2 NCSs with Bounded Delays and Stochastic Packet Losses

Network-induced time delay is also an important issue. Normally network-induced

delay is varying during the data transmission process. In this work, the time delay

is considered as varying with a known upper bound. The system considered here is

assumed to be a simple linear continuous-time system with time varying delay of the

form,

ẋ(t) = Ax(t) + Bu(t− d2(t)), (4.38)

where x(t) ∈ <n and u(t) ∈ <m are the system state and control input, respectively.

d2(t) is the time varying delay with a certain bound. x0 = x(0) is the initial state. A

and B are two constant matrices of appropriate dimensions. d2(t) is the controller to

actuator delay. S = maxnJ∈`(nJ+1 − nJ) is the maximum packet-loss upper bound.

One example of data flow of the NCSs with random time varying delays and packet

losses is shown as follows. In Fig.4.4, the data flow of NCSs with time varying delay

and packet loss is shown with d1(t− d2(t)) being the sampler to controller delay.

The actuator and controller considered in this work are both time driven and

d1(t − d2(t)) + d2(t) = mJTs where mJ ∈ {1, 2, ...Mb} with a known positive integer

Mb. The sampled-data controller is designed as a static state-feedback controller and
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Figure 4.4. Data flow diagram of NCSs with time varying delay and packet loss

it can be represented as

u(t− d2(t)) = Kx[t− d2(t)− d1(t− d2(t))]

= Kx(nJTs −mJTs), (4.39)

where K ∈ <m×n is to be designed. The initial control input is set to be zero: u(0) = 0.

Ts is the sampling time of the sampled-data controller. Then the closed-loop system

becomes

ẋ(t) = Ax(t) + BKx(nJTs −mJTs), nJ ∈ `. (4.40)

The objective is to design the controller (4.39) so that the closed loop system (4.40)

with Markovian packet-loss process (4.38) is stochastically stable.

Theorem 4.2. Consider the system (4.40) with Markovian packet-loss process (4.6),

u(0) = 0 and x(n0) = x(0). If there exists symmetric positive definition matrice

S > 0, P =




P1 P2

P T
2 P3


 > 0, Q =




Q11 0

0 Q22


 > 0, R =




R11 0

0 R22


 > 0,

matrices Pi = P̂ = P̂ T ∈ <+, i ∈ ζ, Q̂ = Q̂T > 0, Ŝ > 0, X and Y with appropriate
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dimensions and scalars β > 0, Mb > 0 such that the following two inequalities holds,




H11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
H21 H22 ∗ ∗ ∗ ∗ ∗ ∗
H31 H32 H33 ∗ ∗ ∗ ∗ ∗
H41 H42 H43 H44 ∗ ∗ ∗ ∗
H51 H52 H53 H54 H55 ∗ ∗ ∗
H61 H62 H63 0 0 H66 ∗ ∗
H71 H72 H73 H74 H75 H76 H77 ∗
H81 H82 H83 H84 H85 H86 H87 H88




< 0, (4.41)

where

H11 = Q11 −MT
1 A− AT M1 + MbTsR11, H21 = P T

2 + N1 −MT
2 A

H22 = N2 + NT
2 + S, H31 = P1 + M1 −MT

3 A, H32 = NT
3 + M2

H33 = Q22 + MbTsR22 + MT
3 + M3, H41 = −MT

4 A− P T
2

H42 = NT
4 , H43 = M4, H44 = −Q11, H51 = −MT

5 A

H52 = P3 + NT
5 , H53 = P T

2 + MT
5 , H54 = −P3, H55 =

−1

MbTs

R11

H61 = −MT
6 A, H62 = NT

6 , H63 = MT
6 , H66 =

−1

MbTs

R22

H71 = −N1 −MT
7 A, H72 = −N2 + NT

7 , H73 = −N3 + MT
7

H74 = −N4, H75 = −N5, H76 = −N6, H77 = −NT
7 −N7

H81 = −N1 −MT
8 A−KT BT M1, H82 = NT

8 −N2 −KT BT M2

H83 = −N3 + MT
8 −KT BT M3, H84 = −N4 −KT BT M4

H85 = −N5 −KT BT M5, H86 = −N6 −KT BT M6,

H87 = −NT
8 −N7 −KT BT M7,

H88 = −S −NT
8 −N8 −M8BK −KT BT M8
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and




−X ∗ ∗ ∗
∑S

i=1 πij · j ·BY + X X − Ê ∗ ∗
∑S

i=1 πij · j ·BY + X 0 −X ∗
X 0 0 −β−1I


 < 0, (4.42)

with Ê = XT A−T Q̂A−1X, then the system is stochastically stable with the controller

gain K = Y X−1.

Proof. As shown in Fig.4.4, at the beginning of data transmissions, the equation

(n1 −m1)− (n0 −m0) = i, (4.43)

holds. From the system (4.40), we have

x[(n1 −m1)Ts]− x[(n0 −m0)Ts] =

∫ (n1−m1)Ts

(n0−m0)Ts

ẋ(s)ds

=

∫ (n1−m1)Ts

(n0−m0)Ts

Ax(s)ds +

∫ (n1−m1)Ts

(n0−m0)Ts

BK · x[(n0 −m0)Ts]ds

= A

∫ (n1−m1)Ts

(n0−m0)Ts

x(s)ds + BK · x[(n0 −m0)Ts]

∫ (n1−m1)Ts

(n0−m0)Ts

ds

= A

∫ (n1−m1)Ts

(n0−m0)Ts

x(s)ds + BK · x[(n0 −m0)Ts] · iTs, (4.44)

then we can get

E[x[(n2 −m2)Ts]|n1 − n0 = i]− x[(n1 −m1)Ts]

= A

∫ (n2−m2)Ts

(n1−m1)Ts

x(s)ds +
S∑

j=1

πij · jTsBKx[(n1 −m1)Ts]. (4.45)
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By the iterative derivation we get the following formulation:

E[x((nJ+1 −mJ+1)Ts)|nJ − nJ−1 = i]− x[(nJ −mJ)Ts]

= A

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds +
S∑

j=1

πij · jTsBKx((nJ −mJ)Ts). (4.46)

Now take the Lyapunov Krasovskii functional candidate

V1 = xT (t)P1x(t) +

Mb−1∑

l=0

2xT (t)P2[

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]

+

Mb−1∑

l=0

[

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]T P3[

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]

+

Mb−1∑

l=0

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

[xT (s), ẋT (s)]Q




x(s)

ẋ(s)


 ds

+

∫ t

nJTs

[xT (s), ẋT (s)]Q




x(s)

ẋ(s)


 ds

+
L∑

l=0

∫ (nJ−mJ+l+1)Ts

(nJ−mJ+l)Ts

x(s)Sx(s)ds

+

Mb−1∑

l=0

∫ −(Mb−l−1)Ts

−(Mb−l)Ts

∫ t

nJTs+θ

[xT (s), ẋT (s)]R




x(s)

ẋ(s)


 dsdθ. (4.47)

With appropriate dimensions, the following two zero equations hold:

φ1 = 2zT N

{
x(nJTs)−

L∑

l=0

∫ (nJ−mJ+l+1)Ts

(nJ−mJ+l)Ts

ẋ(s)ds− x[(nJ −mJ)Ts]

}

= 0

φ2 = 2zT M {ẋ(t)− Ax(t)−BKx[(nJ −mJ)Ts]} = 0

L = mJ − 1, (4.48)
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where

z = [xT (t),xT (nJTs), ẋT (t),xT [(nJ −Mb)Ts],

Mb−1∑

l=0

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

xT (s)ds,

Mb−1∑

l=0

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

ẋT (s)ds,

L∑

l=0

∫ (nJ−mJ+l+1)Ts

(nJ−mJ+l)Ts

ẋT (s)ds,xT [(nJ −mJ)Ts]]
T

N = [NT
1 , NT

2 , NT
3 , NT

4 , NT
5 , NT

6 , NT
7 , NT

8 ]T

M = [MT
1 ,MT

2 , MT
3 ,MT

4 ,MT
5 ,MT

6 ,MT
7 ,MT

8 ]T . (4.49)

Then the derivative of the Lyapunov function candidate is as follows:

V̇1 = V̇1 + φ1 + φ2

= ẋT (t)P1x(t) + xT (t)P1ẋ(t)

+2ẋT (t)P2[

Mb−1∑

l=0

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]

+2xT (t)P2[x(nJTs)− x[(nJ −Mb)Ts]] + [x(nJTs)

−x[(nJ −Mb)Ts]]
T P3[

Mb−1∑

l=0

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]

+[

Mb−1∑

l=0

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]T P3[x(nJTs)− x[(nJ −Mb)Ts]]

+[xT (t), ẋT (t)]Q




x(t)

ẋ(t)


 + xT (nJTs)Sx(nJTs)

−[xT [(nJ −Mb)Ts], ẋ
T [(nJ −Mb)Ts]]Q




x[(nJ −Mb)Ts]

ẋ[(nJ −Mb)Ts]




−xT [(nJ −mJ)Ts]Sx[(nJ −mJ)Ts]

+MbTs[x
T (t), ẋT (t)]R




x(t)

ẋ(t)




−
Mb−1∑

l=0

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

[xT (s), ẋT (s)]R




x(s)

ẋ(s)


 ds



62

+2zT N [x(nJTs)−
L∑

l=0

∫ (nJ−mJ+l+1)Ts

(nJ−mJ+l)Ts

ẋ(s)ds− x[(nJ −mJ)Ts]]

+2zT M [ ˙x(t)− Ax(t)−BKx[(nJ −mJ)Ts]] (4.50)

Using Lemma 4.1 and (4.50), we have

V̇1 ≤ ˙xT (t)P1x(t) + xT (t)P1ẋ(t)

+2ẋT (t)P2[

Mb−1∑

l=0

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]

+2xT (t)P2[x(nJTs)− x[(nJ −Mb)Ts]]

+[x(nJTs)− x[(nJ −Mb)Ts]]
T P3[

Mb−1∑

l=0

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]

+[

Mb−1∑

l=0

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]T P3[x(nJTs)− x[(nJ −Mb)Ts]]

+[xT (t), ẋT (t)]Q




x(t)

ẋ(t)




−[xT [(nJ −Mb)Ts], ẋ
T [(nJ −Mb)Ts]]Q




x[(nJ −Mb)Ts]

ẋ[(nJ −Mb)Ts]




+xT (nJTs)Sx(nJTs)− xT [(nJ −mJ)Ts]Sx[(nJ −mJ)Ts]

+MbTs[x
T (t), ẋT (t)]R




x(t)

ẋ(t)




− 1

MbTs

Mb−1∑

l=0

[

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]T R11[

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

x(s)ds]

− 1

MbTs

Mb−1∑

l=0

[

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

ẋ(s)ds]T R22[

∫ (nJ−Mb+l+1)Ts

(nJ−Mb+l)Ts

ẋ(s)ds]

+2zT N [x(nJTs)−
L∑

l=0

∫ (nJ−mJ+l+1)Ts

(nJ−mJ+l)Ts

ẋ(s)ds− x[(nJ −mJ)Ts]]

+2zT M [ẋ(t)− Ax(t)−BKx[(nJ −mJ)Ts]]

= zT Hz, (4.51)
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where H was shown in (4.41).

If (4.41) holds, then from (4.51), we have V̇1 ≤ 0 which means that the closed loop

system (4.40) is asymptotically stable. In order to achieve the condition for stochastic

stability of the closed system, here consider the Lyapunov functional candidate

V2 = xT (t)Pix(t) + [(nJ+1 −mJ+1)Ts − t]

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

xT (s)Q̂x(s)ds. (4.52)

Then take the expectation of the Lyapunov functional candidate,

E[V2[(nJ+1 −mJ+1)Ts]|nJ − nJ−1 = i]− V2[(nJ −mJ)Ts]

= E[x[(nJ+1 −mJ+1)Ts]|nJ − nJ−1 = i]T PjE

[x[(nJ+1 −mJ+1)Ts]|nJ − nJ−1 = i]− xT [(nJ −mJ)Ts]Pix[(nJ −mJ)Ts]

−[(nJ+1 −mJ+1 − nJ + mJ)Ts]

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

xT (s)Q̂x(s)ds

= [A

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds + (
S∑

j=1

πij · jTs ·BK + 1)x[(nJ −mJ)Ts]]
T Pj

[A

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds + (
S∑

j=1

πij · jTs ·BK + 1)x[(nJ −mJ)Ts]]

−xT [(nJ −mJ)Ts]Pix[(nJ −mJ)Ts]− [(nJ+1 −mJ+1 − nJ + mJ)Ts]∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

xT (s)Q̂x(s)ds

= [

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds]T AT PjA[

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds]

+2[

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds]T AT Pj(
S∑

j=1

πij · jTs ·BK + 1)x[(nJ −mJ)Ts]

+x[(nJ −mJ)Ts]
T (

S∑
j=1

πij · jTs ·BK + 1)T Pj(
S∑

j=1

πij · jTs ·BK + 1)

x[(nJ −mJ)Ts]− xT [(nJ −mJ)Ts]Pix[(nJ −mJ)Ts]

−[(nJ+1 −mJ+1 − nJ + mJ)Ts]

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

xT (s)Q̂x(s)ds
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≤ [

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds]T AT PjA[

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds]

+2[

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds]T AT Pj(
S∑

j=1

πij · jTs ·BK + 1)x[(nJ −mJ)Ts]

+x[(nJ −mJ)Ts]
T [(

S∑
j=1

πij · jTs ·BK + 1)T Pj(
S∑

j=1

πij · jTs ·BK + 1)− Pi]

x[(nJ −mJ)Ts]− [

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds]T Q̂[

∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts

x(s)ds]

≤ −βxT [(nJ −mJ)Ts]x[(nJ −mJ)Ts] ≤ 0. (4.53)

(4.53) holds if the following inequality is satisfied:

ẑT




φT Pjφ− Pi + β · I ∗
AT Pjφ AT PjA− Q̂


 ẑ < 0. (4.54)

where φ = (
∑S

j=1 πij · jTs · BK + 1),ẑ =




x(nJTs −mJTs)
∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts
x(s)ds


, with Pi = P̂ ,

using Schur complement, (4.54) is equivalent to




β · I − P̂ ∗ ∗
AT P̂ φ AT P̂A− Q̂ ∗
P̂ φ 0 −P̂




< 0. (4.55)

Define X = P̂−1,W = diag(X, A−1X,X), Y = KX. Then pre-multiplying (4.55) by

W T and post-multiplying by W , using schur complement, we can obtain the inequality

(4.42). With suitable values of X and Y , the LMI (4.42) holds, then we have

E[V2(nJ+1Ts −mJ+1Ts)|nJ − nJ−1 = i]− V2(nJTs −mJTs)

V2(nJTs −mJTs)
≤

−βxT (nJTs −mJTs)x(nJTs −mJTs)

xT (t)Pix(t) + (nJ+1Ts −mJ+1Ts − t)
∫ (nJ+1−mJ+1)Ts

(nJ−mJ )Ts
xT (s)Q̂x(s)ds

. (4.56)
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Define 0 < α = 1− β min{ 1

λ max(P̂i)
} < 1, it is obvious that

−βxT (nJTs −mJTs)x(nJTs −mJTs)

xT (nJTs −mJTs)Pix(nJTs −mJTs)
≤ −β min{ 1

λ max(P̂i)
} = α− 1. (4.57)

From (4.56) and (4.57), there exists a γ with α ≤ γ < 1 such that

E[V2(nJ+1Ts −mJ+1Ts)|nJ − nJ−1 = i]− V2(nJTs −mJTs)

V2(nJTs −mJTs)
≤ γ − 1, (4.58)

Then we obtain





E[V2(nJ+1Ts −mJ+1Ts)|nJ − nJ−1 = i] ≤ γV2(nJTs −mJTs),

...

E[V2(n2Ts −m2Ts)|η(n1) = i] ≤ γV2(n1Ts −m1Ts),

E[V2(n1Ts −m1Ts)|η(n0) = i] ≤ γV2(n0Ts −m0Ts).

(4.59)

Taking E[·|η(n0) = i] on both sides of (4.59), we have

E[V2(n2Ts −m2Ts)|η(n0) = i] ≤ γE[V2(n1Ts −m1Ts)|η(n0) = i]

≤ γ2V2(n0Ts −m0Ts). (4.60)

By iterative derivation we can obtain

E[V2(nJ+1Ts −mJ+1Ts)|η(n0) = i] ≤ γJ+1V2(n0Ts −m0Ts). (4.61)

Then

E[
N∑

J=0

V2(nJ+1Ts −mJ+1Ts)|η(n0) = i] ≤ 1− γN

1− γ
V2(n0Ts −m0Ts), (4.62)
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and the limit of (4.62) is

lim
N→∞

E[
N∑

J=0

V2(nJ+1Ts −mJ+1Ts)|η(n0) = i]

= lim
N→∞

E[
N∑

J=0

xT (nJ+1Ts −mJ+1Ts)Pjx(nJ+1Ts −mJ+1Ts)|η(n0) = i]

≤ 1

1− γ
V2(n0Ts −m0Ts). (4.63)

From (4.63) we obtain that

lim
N→∞

E[
N∑

J=0

xT (nJ+1Ts −mJ+1Ts)x(nJ+1Ts −mJ+1Ts)|η(n0) = i]

≤ 1

max ρ(Pj)(1− γ)
V2(n0Ts −m0Ts). (4.64)

The limit of the expectation in (4.64) is bounded, this completed the proof. Hence

the closed loop system (4.40) is stochastically stable.

Note that the LMI condition in (4.41) is non-convex and hence the following

theorem is proposed to be the sufficient condition of (4.41).

Theorem 4.3. For given scalars θi, i = 1, 2, ..., 8, and a given upper bound of the

time varying delay MbTs, if there exist symmetric positive definite matrices S̄ > 0, P̄ =


P̄1 P̄2

P̄ T
2 P̄3


 > 0, Q̄ =




Q̄11 0

0 Q̄22


 > 0, R̄ =




R̄11 0

0 R̄22


 > 0, matrices X̄ and
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Ȳ with appropriate dimensions such that the following inequality holds,




H̄11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
H̄21 H̄22 ∗ ∗ ∗ ∗ ∗ ∗
H̄31 H̄32 H̄33 ∗ ∗ ∗ ∗ ∗
H̄41 H̄42 H̄43 H̄44 ∗ ∗ ∗ ∗
H̄51 H̄52 H̄53 H̄54 H̄55 ∗ ∗ ∗
H̄61 H̄62 H̄63 0 0 H̄66 ∗ ∗
H̄71 H̄72 H̄73 H̄74 H̄75 H̄76 H̄77 ∗
H̄81 H̄82 H̄83 H̄84 H̄85 H̄86 H̄87 H̄88




< 0, (4.65)

where

H̄11 = Q̄11 − θ1AX̄ − θ1X̄
T AT + MbTsR̄11

H̄21 = P̄ T
2 + N̄1 − θ2AX̄, H̄22 = N̄2 + N̄T

2 + S̄

H̄31 = P̄1 + θ1X̄
T − θ3AX̄, H̄32 = N̄T

3 + θ2X̄
T

H̄33 = Q̄22 + MbTsR̄22 + θ3X̄
T + θ3X̄, H̄41 = −θ4AX̄ − P̄ T

2

H̄42 = N̄T
4 , H̄43 = θ4X̄, H̄44 = −Q̄11, H̄51 = −θ5AX̄

H̄52 = P̄3 + N̄T
5 , H̄53 = P̄ T

2 + θ5X̄, H̄54 = −P̄3, H̄55 =
−1

MbTs

R̄11

H̄61 = −θ6AX̄, H̄62 = N̄T
6 , H̄63 = θ6X̄, H̄66 =

−1

MbTs

R̄22

H̄71 = −N̄1 − θ7AX̄, H̄72 = −N̄2 + N̄T
7 , H̄73 = −N̄3 + θ7X̄

H̄74 = −N̄4, H̄75 = −N̄5, H̄76 = −N̄6, H̄77 = −N̄T
7 − N̄7

H̄81 = −N̄1 − θ8AX̄ − θ1Ȳ
T BT , H̄82 = N̄T

8 − N̄2 − θ2Ȳ
T BT

H̄83 = −N̄3 + θ8X̄ − θ3Ȳ
T BT , H̄84 = −N̄4 − θ4Ȳ

T BT ,

H̄85 = −N̄5 − θ5Ȳ
T BT H̄86 = −N̄6 − θ6Ȳ

T BT ,

H̄87 = −N̄T
8 − N̄7 − θ7Ȳ

T BT

H̄88 = −S̄ − N̄T
8 − N̄8 − θ8BȲ − θ8Ȳ

T BT
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and (4.42) is satisfied. Then under the static controller with gain obtained by

K = Ȳ X̄−1. (4.66)

then the system is stochastically stable.

Proof. In order to transform the nonconvex LMI in (4.41) into a solvable LMI, assume

that Mi = θiM0 where θi is known and given. Define X̄ = M−1
0 ,

Ŵ = diag(X̄, X̄, X̄, X̄, X̄, X̄, X̄, X̄)

and Ȳ = KX̄. Then by pre-multiplying the inequality in (4.41) by Ŵ T and post-

multiplying by Ŵ , we can obtain the inequality (4.65).

Remark 4.2. Eq.4.65 in Theorem.4.3 and Eq.(4.42) in Theorem.4.2 are used to de-

sign K. Eq.(4.65) is a sufficient condition of Eq.(4.41) in Theorem.4.2 due to the

simplification of Mi matrices.

4.5 Summary

This chapter mainly dealt with the stabilization problem of NCSs with bounded time

varying delays and Markovian packet loss via sampled-data control approach. The

system can be stochastically stabilized according to the proper design of the static

feedback controller. Lyapunov method and LMI techniques were applied to ensure

the stochastic stability of the networked control systems. A real-time network in-

duced delay and packet loss measurement system has been built and experiments

were proceeded to get the real network characteristics.



Chapter 5

Distributed Consensus Formation
Control of Networked Multi-agent
Robotic Systems with Time Delays

5.1 Introduction

Figure 5.1. Consensus of multiple agent system

Investigation for multi-agent systems begins with studying the behavior of a large

number of interacting agents with a common group objective. These agents include

fish, ants and bees. Take the fish in a flock as an example, the desired track for each

agent in the group has been already decided according to some external elements.

69
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Each agent should track the existent desired trajectory and acquire some information,

such as the velocities and relative positions, from its neighbors in order to: i) stay in

a proper distance to nearby flock-mates; ii) avoid collisions; iii) match velocity with

each other. Then all agents asymptotically move with the same velocity and form a

cohesive flock without collisions (See Fig.5.1). This phenomena is called consensus.

Notice that in the whole group movement there is no one performs as the“leader”

because of a widely accepted opinion by animal behavior scientists that“schools need

no leaders” [59].

Figure 5.2. Linear multi-agent networked robotic system

In this work, a peer-to-peer architecture without leaders is used to solve a kind of

tracking problem of the linear multi-agent networked robotic vehicle systems. Fig.5.2

shows the architecture of the linear multi-agent networked robotic vehicle system.

The agents in the systems are connected and share information with their neighbors

via networks with constant networked induced time delays. Each robot has a local

controller applied. It can sense its own position and orientation in a special coordinate
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by sensors and send those information to its neighbors via networks. Every agent in

the system played the same role as the one in the flock of fish example. It moves at

the same velocity as its neighbors and tracks its reference route which is parallel with

references of others in the flock. Then the whole flock will start moving from place

A to place B. During the movement the flock should reach consensus to present the

properties of the “Flock Movement”. This model has wide application possibilities,

such as the operation of the unpiloted combine harvester in agriculture. The research

work done in this chapter is mainly for dealing with this operation and the main

results are going to be applied in the real engineering field. The harvester and the

truck could be treated as two agents in a multiple system. If using lead-follower

architecture to tackle this problem, the task could be done if the leader tracks its own

desired route on the field and the follower tracks leader’s route with a special angle

perfectly. However, people found this architecture has poor disturbance rejection

properties [78] which could cause failure for the task. Instead of this way, in this

chapter peer-to-peer architecture is chosen to improve the stability of the whole group.

In the proposed design the harvester and the truck are supposed to have their own

desired trajectories which were made according to the working route on the field so

that this architecture could avoid depending heavily on one single agent and avoid

being poor performance in adversarial environments. Those two reference trajectories

have fixed relative position with each other so the two agents could keep a fixed

relative position during the movement. They need to share their state information

with each other to make the whole multiple system reach consensus. In [65], the

velocity and orientation of the flock movement is random,. The aim is to make the
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flock reach consensus during the movement. But in this design the flock movement

has known origin and destination. Each robot is supposed to exchange information

with at least one robot in the group which is treated as its neighbor. In order to tackle

the stabilization problem, the system has been modeled by using an error dynamic.

The objective of this work is designing the consensus based formation control

algorithm to make the system achieve consensus so that: i) each agent tracks its

reference trajectory well; ii) the agents move at the same velocity; iii) the agents

keep a proper distance with each other to make the group formations. In order to

tackle this problem, a distributed control algorithm which includes a relative position

term and a navigational feedback term has been introduced to stabilize the multiple

agent system. A new term called collision avoidance has been added to the control

algorithm to avoid collisions during the group movement. The Lyapunov analysis

method has been used to derive the sufficient conditions for stabilizing controller

design. The effects caused by the network induced delay have been considered in this

design.

5.2 Problem Formulation

In this section, the multiple coordinate system is introduced. First suppose there are

n mobile robots moving on a plane. Each robot is labelled as Ri. To position all the

robots in a common coordinate system, a static coordinate system C0 is defined as

the common position reference for all the robots. In order to make group formations

each of the mobile robots needs to know its relative position and relative orientation

to others. So each robot needs its own coordinate system which is denoted with Ci.
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With the help of modern communication techniques such as Global Position Systems

(GPS) ot relative positioning systems, C0 and Ci can be known to Ri. During the

group movement, Ri senses its position and velocity in C0 and sends these information

to its neighbor Rj. By using the information, Rj can get the relative position and

velocity to Ri in Cj. All robots will sense the relative position to others in this way

during the movement. The sketch map of multiple coordinates is as shown in Fig.5.3

Figure 5.3. Multiple coordinate system

The linear networked multi-agent robotic vehicle system as shown in Fig.5.3 can

be expressed in the following equation:

ẋi(t) = Aiixi(t) +
∑

i6=j

Aij[xj(t− τ)−∆j] + Bui(t), i ∈ m, j ∈ ni (5.1)

where xi(t) ∈ <n represents the error of the ith robot between the present states of

Ri and its reference at time t. The states of Ri contain the position information of

Ri in C0. ui(t) ∈ <m′
represents the control input. xj(t − τ) ∈ <n represents the

difference of states between Ri and Rj, which means the position of Rj in Ci. τ is the



74

known constant time delay. ∆j is the desired relative position of Rj to Ri, m is the

total corpora of all the robots, ni is the subset of all the neighbors of Ri. Aii,Aij and

B are known constant matrices with appropriate dimensions. Aij is the attraction

coefficient matrix of Ri to Rj, physically it means that Ri is attracted to Rj. Aij

could be zero in which case the linear dynamic is the same as the one used in [65].

The objective is to design the controller to stabilize the linear multi-agent networked

robotic systems so that the system could reach consensus.

5.3 Distributed Control Design

Now consider the following distributed control algorithm:

ui(t) =
∑

i6=j,j∈mi

Kij[xj(t− τ)−∆j] + Kiixi(t)

+
∑

i6=j,j∈mc

Lij[1− ∆

‖xj(t− τ)‖ ]xj(t− τ)

Lij = { L, ‖xj(t− τ)‖ ≤ ∆, j ∈ mc

0, ‖xj(t− τ)‖ > ∆, j ∈ mi

(5.2)

where ∆ is the collision warning indicating distance between two robots. It means

that Ri is repulsed from Rj as an artificial potential field exists [11]. When the relative

distance of Ri to Rj is shorter than ∆, there is going to be a possible collision between

them and the repulsion works. Lij is the repulsion coefficient of Ri from Rj, the scalar

L is positive. mi is the subset of all the Rjs which stays in a distance farther than

∆ to Ri; mc is the subset of all the Rjs which stays in a distance shorter than ∆ to

Ri. Note that mi

⋂
mc = 0 and mi ∪mc = ni. Kii and Kij are the control gain to be
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designed. Let γ = 1− ∆
‖xj(t−τ)‖ < 0 and

x̄j(t− τ) =




γxĵ(t− τ)
...

xǰ(t− τ)−∆j




(m−1)×1

(5.3)

where m is the total corpora of all the robots, ĵ ∈ mc and ǰ ∈ mi. Then apply the

control law and (5.3) on (5.1) the closed loop system becomes

ẋi(t) = (Aii + Kii)xi(t) + [. . . , Lij, . . . , Aij + Kij, . . .]j 6=i,j∈ni
x̄j(t− τ), (5.4)

Lemma 5.1. - Jensen Inequality For any constant matrix E ∈ Rn×n, E = ET > 0,

vector function ω : [0, τ ] → Rn such that the integrations concerned are well defined,

then,

τ

∫ τ

0

ωT (s)Eω(s)ds ≥
[∫ τ

0

ω(s)ds

]T

E

[∫ τ

0

ω(s)ds

]
. (5.5)

Theorem 5.1. Consider the linear multi-agnet robotic system (5.1), for a given time

delay τ , if there exist symmetric positive definite matrices diag[Q1, . . . , Qm−1] > 0,

diag[R1, . . . , Rm−1] > 0, matrices Mi, Ni, i ∈ m with appropriate dimensions and a

scalar L > 0, such that the following inequality holds

H =




H11 ∗ ∗ ∗ ∗ ∗
H21 H22 ∗ ∗ ∗ ∗
0 0 H33 ∗ ∗ ∗

H41 H42 H43 H44 ∗ ∗
0 0 0 0 H55 ∗
0 0 H63 H64 0 H66




< 0, (5.6)
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where

H11 = MT
1 Aii + AT

iiM1 + MT
1 BKii + KT

ii B
T M1,

H21 = P + MT
2 Aii + MT

2 BKii −M1,

H22 = −MT
2 −M2, H33 = diag[Q1 + τR1, . . . , Qm−1 + τRm−1]

+diag[NT
11 + N11, . . . , N

T
1(m−1) + N1(m−1)],

H41 =




MT
31

...

MT
3(m−1)



· (Aii + BKii) +




LT
ij

...

AT
ij + KT

ijB
T



·M1,

H42 = −




MT
31

...

MT
3(m−1)




+




LT
ij

...

AT
ij + BT KT

ij



·M2,

H43 =




NT
31 −N11 · · · 0

...
. . .

...

0 · · · NT
3(m−1) −N1(m−1)




,

H44 = −




Q1 · · · 0

...
. . .

...

0 · · · Qm−1




+




MT
31

...

MT
3(m−1)



· [Lij, . . . , Aij + BKij]

+




LT
ij

...

AT
ij + KT

ijB
T



· [M31, . . . , M3(m−1)]

−




NT
31 + N31 · · · 0

...
. . .

...

0 · · · NT
3(m−1) + N3(m−1)




,
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H55 = −1

τ




R1 · · · 0

...
. . .

...

0 · · · Rm−1




H63 =




NT
21 −N11 · · · 0

...
. . .

...

0 · · · NT
2(m−1) −N1(m−1)




,

H64 = −




NT
21 + N31 · · · 0

...
. . .

...

0 · · · NT
2(m−1) + N3(m−1)




,

H66 = −




NT
21 + N21 · · · 0

...
. . .

...

0 · · · NT
2(m−1) + N2(m−1)




, (5.7)

then system (5.1) is asymptotically stable, e.g. xi(t) tends to zero asymptotically

which means Ri tracks its desired trajectory well.

Proof. Now consider the following Lyapunov functional candidate:

Vi(t) = xT
i (t)Pxi(t) +

∫ t

t−τ

x̄T
j (s)




Q1 · · · 0
...

. . .
...

0 · · · Qm−1


 x̄j(s)ds

+

∫ 0

−τ

∫ t

t+θ

x̄T
j (s)




R1 · · · 0
...

. . .
...

0 · · · Rm−1


 x̄j(s)ds, (5.8)

Take the derivative of (5.8) and use Lemma 5.1

V̇i(t) = ẋT
i (t)Pxi(t) + xT

i (t)P ẋi(t) + x̄T
j (t)




Q1 · · · 0
...

. . .
...

0 · · · Qm−1


 x̄j(t)

−x̄T
j (t− τ)




Q1 · · · 0
...

. . .
...

0 · · · Qm−1


 x̄j(t− τ) + τ x̄T

j (t)




R1 · · · 0
...

. . .
...

0 · · · Rm−1


 x̄j(t)−

∫ t

t−τ

x̄T
j (s)




R1 · · · 0
...

. . .
...

0 · · · Rm−1




x̄j(s)ds
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≤ ẋT
i (t)Pxi(t) + xT

i (t)P ẋi(t) + x̄T
j (t)




Q1 · · · 0
...

. . .
...

0 · · · Qm−1


 x̄j(t)

−x̄T
j (t− τ)




Q1 · · · 0
...

. . .
...

0 · · · Qm−1


 x̄j(t− τ) + τ x̄T

j (t)




R1 · · · 0
...

. . .
...

0 · · · Rm−1


 x̄j(t)− 1

τ

∫ t

t−τ

x̄T
j (s)ds




R1 · · · 0
...

. . .
...

0 · · · Rm−1




∫ t

t−τ

x̄j(s)ds, (5.9)

Now with proper dimensions, the following equations holds:

Φ1 = 2ZT
1 MT{−ẋi(t) + (Aii + Kii)xi(t) +

[. . . , Lij, . . . , Aij + Kij, . . .]j 6=i,j∈ni
x̄j(t− τ)} = 0

Φ2 = 2ZT
2 [NT

1 , NT
2 , NT

3 ]T [x̄i
j(t)−

∫ t

t−τ

˙̄xi
j(s)ds− x̄i

j(t− τ)] = 0,

Z1 = [xi(t), ẋi(t), x̄j(t− τ)]T ,

Z2 = [x̄j(t),

∫ t

t−τ

˙̄xj(s)ds, x̄j(t− τ)]T ,

M = {M1,M2, [M31, . . . , M3(m−1)]},

N1 =




N11, · · · 0
...

. . .
...

0 · · · N1(m−1)


 ,

N2 =




N21, · · · 0
...

. . .
...

0 · · · N2(m−1)


 ,

N3 =




N31, · · · 0
...

. . .
...

0 · · · N3(m−1)


 , (5.10)

Then

V̇i(t) + Φ1 + Φ2 ≤ ZT HZ < 0, (5.11)

where Z = [xi(t), ẋi(t), x̄j(t), x̄j(t− τ),
∫ t

t−τ
x̄j(s)ds,

∫ t

t−τ
˙̄xj(s)ds]T and H is as shown

in (5.6).

The LMI condition in (5.6) is non-convex and hence the following theorem is
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proposed to be the equivalent sufficient condition.

Theorem 5.2. For given scalars θi, i ∈ M , and a given time delay constant τ , if there

exist symmetric positive definite matrices diag[Q̄1, . . . , Q̄m−1], diag[R̄1, . . . , R̄m−1],

matrices M̄i, N̄i, i ∈ m with appropriate dimensions and a scalar L > 0, nonsingular

matrix X with appropriate dimensions such that the following inequality holds,

H̄ =




H̄11 ∗ ∗ ∗ ∗ ∗
H̄21 H̄22 ∗ ∗ ∗ ∗
0 0 H̄33 ∗ ∗ ∗

H̄41 H̄42 H̄43 H̄44 ∗ ∗
0 0 0 0 H̄55 ∗
0 0 H̄63 H̄64 0 H̄66




< 0, (5.12)

where

H̄11 = θT
1 AiiX + θ1X

T AT
ii + θT

1 BYii + θ1Y
T
ii BT ,

H̄21 = P̄ + θ2AiiX + θ2BYii − θ1X
T

H̄22 = −θ2X
T − θ2X, H̄33 = diag[Q̄1 + τR̄1, . . . , Q̄m−1 + τR̄m−1]

+diag[N̄T
11 + N̄11, . . . , N̄

T
1(m−1) + N̄1(m−1)],

H̄41 =




θ31

...

θ3(m−1)



· (AiiX + BYii) +




θ1X
T LT

ij

...

θ1X
T AT

ij + Y T
ij BT




H̄42 = −




θ31X

...

θ3(m−1)X




+




θ2X
T LT

ij

...

θ2X
T AT

ij + Y T
ij BT



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H̄43 =




N̄T
31 − N̄11 · · · 0

...
. . .

...

0 · · · N̄T
3(m−1) − N̄1(m−1)




H̄44 = −




Q̄1 · · · 0

...
. . .

...

0 · · · Q̄m−1




+




θ31

...

θ3(m−1)



· [LijX, . . . , AijX + BYij]

+




XT LT
ij

...

XT AT
ij + Y T

ij BT



· [θ31, . . . , θ3(m−1)]

−




N̄T
31 + N̄31 · · · 0

...
. . .

...

0 · · · N̄T
3(m−1) + N̄3(m−1)




H̄55 = −1

τ




R̄1 · · · 0

...
. . .

...

0 · · · R̄m−1




H̄63 =




N̄T
21 − N̄11 · · · 0

...
. . .

...

0 · · · N̄T
2(m−1) − N̄1(m−1)




H̄64 = −




N̄T
21 + N̄31 · · · 0

...
. . .

...

0 · · · N̄T
2(m−1) + N̄3(m−1)




H̄66 = −




N̄T
21 + N̄21 · · · 0

...
. . .

...

0 · · · N̄T
2(m−1) + N̄2(m−1)




(5.13)
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then the Kii and Kij matrices in Theorem 1 are obtained as

Kii = YiiX
−T , Kij = YijX

−T . (5.14)

As a result, the system (5.1) is asymptotically stable, e.g. xi(t) tends to zero asymp-

totically which means Ri tracks its desired trajectory well.

Proof: In order to transform the nonconvex LMI in (4.41) into a solvable LMI,

assume that there are some relations in Mi’s, i ∈ M . One possibility is that Mi =

θiM0 where M0 is nonsingular and θi is known and given. Define X = M−1
0 , W =

diag(X,X,X, X, X, X) and Yii = KiiX
T , Yij = KijX

T . Then pre-multiplying the

inequality in (5.6) by W and post-multiplying by W T , the inequality in (5.12) can

be obtained. Note that the inequality in (5.12) is only a sufficient condition for the

solvability of (5.7) based on these derivations and Q̄i = XT QiX, R̄i = XT RiX,

N̄ij = XT NijX.

Remark 5.1. i,j might be in a bound. If i,j is too big, there will be too many given

scalars θi in 5.12 and it will be difficult to solve 4.42. The interaction topology was

affected by the interactive weight matrix Aij, if Aij = 0 it means there is no connection

between agent i and j. If 5.12 can not be solved with relative weight matrices, then

the system can not reach consensus.

5.4 Summary

This work dealt with the consensus problem for networked multi-agent robotic vehicle

systems. The advantage of the peer-to-peer architecture which was used to model the

system has been discussed. The multi-coordinate system has also been introduced

to explain the system model and communications in the group. Each robotic vehicle

had its own coordinate system, and sent its position and orientation to its neighbors.
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The chapter presents a novel distributed feedback control algorithm that guarantees

the stability of the system by feedback, such as relative position to others. Sufficient

conditions for controller design were given by analyzing the Lyapunov functional can-

didate. The system can be stabilized by the distributed feedback controller via the

interaction among robotic vehicles. The future work will focus on testing this ap-

proach into real robotic vehicles located in the research lab. Each robotic vehicle

is capable of sensing its relative position and orientation in C0 and sending those

information to others via wireless network.



Chapter 6

Consensus Formation Control of
Multiple Mobile Robots

In this chapter, the problem for a kind of consensus formation control of networked

multi-agent robotic systems has been tackled. The outline of this chapter is as fol-

lows: in Section.6.1, the basic idea and main background information about forma-

tion control on networked multi-robotic systems have been introduced; in section.6.2,

the background information of Pioneer 3 mobile robots used to test the control de-

sign methodologies in this work has been introduced; in Section.6.3, the kinematic

model equations of Pioneer 3 robots have been studied; in Section.6.4, the proposed

formation control design methodologies based on consensus algorithms have been in-

troduced. The summary of this work is made in Section.6.5.

Notations: ‖x‖ is the norm defined as ‖ · ‖ =
√

xTx, where x is a vector. The

information exchange among robots is usually modelled by graphs. Suppose that a

team consists of n mobile robots. Çn = (νn, εn) is a graph, where νn = 1, ..., n is a

finite nonempty node set and εn ⊆ νn × νn is an edge set of ordered pairs of nodes,

called edges. The adjacency matrix An = [aij] ∈ Rn×n of a graph Çn = (νn, εn) is

defined such that aij is a positive weight if (j, i) ∈ εn is ture, and aij = 0 if (j, i) ∈ εn

83
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is false.

6.1 Introduction

As the embedded computational resources in autonomous robotic vehicles become

abundance, the enhanced operational effectiveness through cooperative teamwork

in civilian and military applications have been enabled. Compared to autonomous

robotic vehicles that operate single tasks, cooperative teamwork has greater efficiency

and operational capability. Multi-robotic vehicle systems have many potential ap-

plications, such as platooning of vehicles in urban transportation, the operation of

the multiple robots, autonomous underwater vehicles and formation of aircrafts in

military affairs.

For multi-robotic vehicle systems, the group cooperative behavior is the essential

study objective. Group cooperative behavior signifies that individuals in the group

share a common objective and action according to the interest of the whole group.

Group cooperation can be efficient if individuals in the group coordinate their actions

well. Each individual can coordinate with other individuals in the group to facilitate

group cooperative behavior in two ways which are local coordination and global coor-

dination. For local coordination, individuals react only to other individuals that are

close, such as fish engaged in a school. For global coordination, each individual can

directly coordinate its act with every other individual in the group. Due to commu-

nication constraints, most researchers are interested primarily in group cooperation

problems where the coordination occurs locally.

Cooperative control of multi-robotic vehicle systems bring us significant theoretical
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and practical challenges, such as the research objective is defined based on a system of

some subsystems rather than a single system, the effects caused by the communication

constraints should be considered, and how to design coordination strategies so that

coordination will result in group cooperation.

As a concrete example of cooperative control, formation control of multiple au-

tonomous vehicles receives significant interest in recent years. It requires that au-

tonomous robotic vehicles collectively maintain a prescribed geometric shape during

movement. Maintaining an accurate geometric configuration among multiple robotic

vehicles moving in formation can result in less expensive and more capable systems

that can accomplish objectives impossible for a single vehicle. The advantages of

formation control for multi-robotic systems are summarized as follows: good feasi-

bility, accuracy, robustness, flexibility, lower cost, energy efficiency and probability

of success. For example, a group of robotic vehicles can be used for large objec-

tive transferring, terrain model reconnaissance, unknown area exploration and path

obstruction.

Various strategies and approaches, which can be roughly categorized as leader-

follower, behavioral, and virtual leader approaches, have been proposed for formation

control. In leader-follower approach, one of the vehicles is appointed as the leader,

other vehicles in the group are appointed as the followers. When the group coop-

erative behavior occurs, the followers should track the trajectory of the leader with

some prescribed offset. The basic idea about the behavioral approach is to prescribe

several desired behaviors for each vehicle and to make the control action to each ve-

hicle according to each behavior. In the virtual leader structure approach, the entire
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formation of the group is treated as a single structure. The virtual leader’s dynamic

or trajectory is converted as the desired action of each vehicle in the group. Tracking

control based on consensus algorithm is then needed to tackle this problem.

In this work, the consensus-based design scheme has been applied to formation

control of multiple wheeled mobile robot group with a virtual leader. The group

communication configuration is assumed to be a fully coupled system which means

decisions made by each robot in the group affect the cost and outcomes of all other

members of the group. In this case, what a single robot is going to do is affected by

what all other robots in the group are going to do. The distributed formation con-

trol architecture has been defined to accommodate an arbitrary number of subgroup

leaders and arbitrary information flow among the robots. This architecture requires

neighbor-to-neighbor information exchange. On the group level the consensus track-

ing algorithm is applied to guarantee consensus on the time-varying group reference

trajectory in a distributed manner. A consensus-based formation control strategy

developed based on the group level consensus tracking algorithm is applied for vehi-

cle level control. A novel delay-dependent multiple Lyapunov functional candidate

related to LKF has been constructed to investigate the convergence of the tracking

error. The null sums have been added to the new multiple LKF with free weight-

ing matrices introduced to reduce the conservatism in the derivation of the stability

conditions. The matrices and the sufficient conditions for stabilization of the pro-

posed control approach are determined by solving LMIs. The effects caused by the

group communication delay also have been considered in the proposed approach. The

proposed control strategy is experimentally implemented for multiple wheeled mobile
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robots under neighbor-to-neighbor information exchange with group communication

delay involved.

6.2 Pioneer 3 Mobile Robots

Pioneer mobile robots are durable, differential-drive robots for academic researchers.

The most famous advantages of Pioneer 3 robot series are good versatility, reliability

and durability. In this work two kinds in the series named Pioneer 3-DX (P3−DX)

and Pioneer 3-AT (P3− AT ) have been used for the experimental implementation.

Figure 6.1. Pioneer 3 DX mobile robot

The P3 − DX used in the lab is shown in the Fig.6.1 It has assembled motors

with 500-tick encoders, 19cm wheels, 8 forward-facing ultrasonic sensors, 8 real-facing

sonar, 1, 2 or 3 rechargeable batteries, and a micro-controller which can communicate

with a laptop through the serial port. P3−DX can reach the maximum speed of 1.6
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meters per second and carry a payload of up to 23 kg. It is an all-purpose base and can

be used for research and applications involving mapping, teleoperation, localization,

monitoring, reconnaissance,vision capture, cooperation and other behaviors. P3−DX

runs best on hard surfaces. It can traverse low sills and household power cords, it can

also climb most wheelchair ramps.

Figure 6.2. Pioneer 3 AT mobile robot

Another robot P3 − AT used in this work is shown in Fig.6.2. It is a highly

versatile four wheel drive robotic platform, which is software-compatible with other

Pioneer 3 robots. P3−AT is a popular team performer for outdoor or rough-terrain

projects. It has powerful motors and four knobby wheels that can reach the maximum

speed of 0.8 meters per second and carry a payload of up to 12 kg. P3−AT uses 100

tick encoders with inertial correction recommended for dead reckoning to compensate

for skid steering. Similar with P3 − DX, P3 − AT also has 8 forward and 8 rear

sonar, a micro-controller which can be connected with a laptop through serial port

and batteries. It can be used for all the applications of P3−DX.
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Both of P3 − DX and P3 − AT have the same kinematic model which can be

expressed by the following equation:

ẋ = υ cos(θ),

ẏ = υ sin(θ),

θ̇ = ω, (6.1)

where [x, y] is the inertial position of the P3 mobile robot, θ is the orientation of

the robot and [υ, ω] denote the linear and angular speeds of the robot. Since the

P3 mobile robots used in this work has nonholonomic constraints, the coordination

problem becomes more complicated. Since nonholonomic systems cannot be stabilized

with continuous static state feedback, so the difficulty of the coordination problem for

differentially driven mobile robots is that the position and orientation of the center of

the robot cannot be simultaneously stabilized with a time-invariant feedback control

strategy. Some researchers successfully used discontinuous control laws and time

varying control laws to stabilize the center of a single differentially driven mobile

robot, however, the multiple robot case is more complicated.

The most popular way to simplify this complex case is to define a hand position

for each robot. As shown in Fig.6.3, the hand position of the robot usually has been

defined at the point h = [hx, hy]
T which lies a distance L along the line that is normal

to the wheel axis and intersects the wheel axis at the center point r = [rx, ry]
T . The

kinematic model of the hand position are holonomic for L 6= 0. Instead of considering

the coordinating problem at the center of the robot, the problem at the hand position

has been considered. Another important advantage of defining a hand position for



90

Figure 6.3. Hand position for P3 mobile robot

the robot is that the hand position has practical interest. For example, if the task of

the robot group is to move an object from one place to another by using the gripper

which has been installed at the hand position of each robot, then the control objective

for this task is to move the gripper locations in a coordinated fashion.

Now let’s find the kinematic model for the hand position of each robot. First the

hand position can be represented by the following equation:

hx = x + L cos(θ)

hy = y + L sin(θ). (6.2)

where h = [hx, hy]
T is the hand position in x and y plane. Now let’s differentiate (6.2)

with respect to time and substitute (6.1), then

ḣx = cos(θ)υ − L sin(θ)ω

ḣy = sin(θ)υ + L cos(θ)ω. (6.3)
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Define

h = [hx, hy]
T

u = [ux, uy]
T , (6.4)

and let

υ = cos(θ)ux + sin(θ)uy

ω = − 1

L
sin(θ)ux +

1

L
cos(θ)uy, (6.5)

then

ḣ = u, (6.6)

which is the kinematic model of the robot’s hand position.

6.3 Problem Formulation

As described in the above section, the nonlinear kinematic model of the center posi-

tion of the robot has been simplified and linearized into the form of single-integrator

dynamics shown by (6.6) by defining a hand position for each robot. The control

interest has been converted from the center position of the robot to its hand position.

As discussed in subsection.6.1, the virtual leader and virtual structure approach

is one solution to formation control. Fig..6.4 shows the example of the virtual leader

and virtual structure approach with a formation composed of two vehicles with planar

motions. In Fig.6.4, C0 is the global coordinate system, ri(t) = [xi(t), yi(t)]
T is the



92

Figure 6.4. Framework for P3 mobile robot team with virtual leaders

ith vehicle’s actual position at time t and rd
i (t) = [xd

i (t), y
d
i (t)]

T is the ith P3 mobile

robotic vehicle’s desired position at time t. Both its actual and desired position at

time t are relative to C0. As shown in the figure, the group can move with the desired

formation shape only if each vehicle can track its desired position accurately.

In this work suppose each P3 mobile robot knows the state of its virtual subgroup

leader versus time. If each vehicle has inconsistent knowledge of its virtual subgroup

leader’s states, then the desired formation cannot be maintained.

The linearized model of each robot in the group can be represented by the following

equation:

ṙi(t) = ui(t), i = 1, ..., n. (6.7)

where ri(t) = [xi(t), yi(t)]
T ∈ Rm is the state of the ith robot in the group which
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includes its position and velocity information. i is the index denoting the number of

the robot in the group. n is the total number of all robots in the group. ui(t) ∈ Rm

is the control input signal.

Now define the virtual subgroup leader’s state, which is also the desired state

for each P3 mobile robot in the group, as rd
i (t) = [xd

i (t), y
d
i (t)]

T . If ri(t) → rd
i (t),

i = 1, . . . , n, as t →∞, then the desired formation shape is maintained and the group

movement follows the desired reference.

In the next section, a distributed formation control approach which accommodates

an arbitrary number of subgroup leaders and ensures accurate formation maintenance

by sharing information between group members will be introduced.

6.4 A Novel Consensus Control Approach

Apply a distributed consensus tracking control algorithm on the control level as

ui(t) = ṙd
i (t)− ki(ri(t)− rd

i (t))−
n∑

j=1,i 6=j

aij(rj(t− τ)− rd
j (t− τ)), (6.8)

where ki is the control gain need to be designed, notice that each robotic vehicle

in the group has the same group communication coupling and kinematic model, ki

can be represented as k instead; aij is the (i, j) entry of adjacency matrix Av
n ∈ Rn×n

according to the interaction topology Çv
n = (νv

n, εv
n) for ri−rd

i , rj−rd
j is the information

from neighbors of the ith P3 mobile robot, this term also can be treated as the coupling

between the ith P3 mobile robot and its neighbors, τ is the network induced group
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communication delay. Submit (6.8) into (6.7) then

ṙi(t) = ṙd
i (t)− k(ri(t)− rd

i (t))−
n∑

j=1,i6=j

aij(rj(t− τ)− rd
j (t− τ)), (6.9)

if the error vector has been defined as

ei(t) = ri(t)− rd
i (t), (6.10)

then (6.9) can be rewritten as

ėi(t) = −kei(t)−
n∑

j=1,i6=j

aijej(t− τ). (6.11)

It is obvious that if ei → 0, i = 1, . . . , n as t → ∞ which means ri → rd
i , i = 1, . . . , n

as t → ∞, then the desired formation shape is maintained and the group movement

follows the desired reference. Next is to find the sufficient conditions for the design

of the control gain k which can stabilize the error dynamics represented by (6.11).

Lemma 6.1. - Jensen Inequality For any constant matrix E ∈ Rn×n, E = ET > 0,

vector function ω : [0, τ ] → Rn such that the integrations concerned are well defined,

then,

τ

∫ τ

0

ωT (s)Eω(s)ds ≥
[∫ τ

0

ω(s)ds

]T

E

[∫ τ

0

ω(s)ds

]
. (6.12)

Theorem 6.1. Consider the error dynamics model represented by (6.11), for a given

time delay τ and the number of members in one group n, if there exist symmetric

positive definite matrices P =




P11 P12

P T
12 P22


 > 0, Q =




Q11 0

0 Q22


 > 0, R =




R11 0

0 R22


 > 0, matrices Mi, Ni, i = 1, . . . , 5 with appropriate dimensions, such
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that the following inequality holds

H =




H11 ∗ ∗ ∗ ∗
H21 H22 ∗ ∗ ∗
H31 H32 H33 ∗ ∗
H41 H42 H43 H44 ∗
H51 H52 H53 H54 H55




< 0, (6.13)

where

H11 = P̂12 + P̂ T
12 + (n− 1)Q̂11 + (n− 1)τR̂11

+N1 + NT
1 + M1K + KT MT

1

H21 = −P̂ T
12 + N2 −NT

1 + AT MT
1 + M2K

H22 = −(n− 1)Q̂11 −N2 −NT
2 + M2A + AT MT

2

H31 = (n− 1)P̂11 + N3 + MT
1 + M3K

H32 = −N3 + M3A + MT
2

H33 = (n− 1)Q̂22 + (n− 1)τR̂22 + M3 + MT
3

H41 = (n− 1)P̂22 + N4 + M4K

H42 = −(n− 1)P̂22 −N4 + M4A

H43 = P̂ T
12 + M4 H52 = −NT

2 −N5 + M5A

H51 = −NT
1 + N5 + M5K H44 = −(n− 1)R̂11

τ

H53 = −NT
3 + M5 H54 = −NT

4

H55 = −(n− 1)R̂22

τ
−N5 −NT

5 , (6.14)

then system (6.11) is asymptotically stable, e.g. ei(t) tends to zero asymptotically

which means the ith robot in the group tracks its desired trajectory well.

Proof. For each robot in the group take the Lyapunov krasovskii functional candidate
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as:

Vi = (n− 1)eT
i (t)P11ei(t) + 2eT

i (t)P12

n∑

j=1,j 6=i

∫ t

t−τ

ej(s)ds

+
n∑

j=1,j 6=i

∫ t

t−τ

eT
j (s)dsP22

∫ t

t−τ

ej(s)ds

+
n∑

j=1,j 6=i

∫ t

t−τ

[eT
j (s), ėT

j (s)]Q




ej(s)

ėj(s)


 ds

+
n∑

j=1,j 6=i

∫ 0

−τ

∫ t

t+θ

[eT
j (s), ėT

j (s)]R




ej(s)

ėj(s)


 dsdθ, (6.15)

now it is defined that

êT (t) = [eT
1 (t), . . . , eT

n (t)]1×n, (6.16)

and take the multiple Lyapunov krasovskii functional candidate as:

V =
n∑

i=1

Vi = (n− 1)êT (t)P̂11ê(t) + 2êT (t)P̂12

∫ t

t−τ

ê(s)ds

+(n− 1)

∫ t

t−τ

êT (s)dsP̂22

∫ t

t−τ

ê(s)ds

+(n− 1)

∫ t

t−τ

[êT (s), ˙̂eT (s)]




Q̂11 0

0 Q̂22




2n×2n




ê(s)

˙̂e(s)


 ds

+(n− 1)

∫ 0

−τ

∫ t

t+θ

[êT (s), ˙̂eT (s)]




R̂11 0

0 R̂22




2n×2n


ê(s)

˙̂e(s)


 dsdθ, (6.17)
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where

P̂11 =




P11

. . .

P11




n×n

, P̂22 =




P22

. . .

P22




n×n

P̂12 =




0 P12 · · · P12

P12
. . . . . .

...

...
. . . . . . P12

P12 · · · P12 0




n×n

Q̂11 =




Q11

. . .

Q11




n×n

, Q̂22 =




Q22

. . .

Q22




n×n

R̂11 =




R11

. . .

R11




n×n

, R̂22 =




R22

. . .

R22




n×n

, (6.18)

With appropriate dimensions, the following two zero equations hold:

φ1 = 2zT N

[
ê(t)−

∫ t

t−τ

˙̂e(s)ds− ê(t− τ)

]
= 0

φ2 = 2zT M
[
˙̂e(t) + Kê(t) + Aê(t− τ)

]
= 0, (6.19)

where

z =

[
ê(t), ê(t− τ), ˙̂e(t),

∫ t

t−τ

ê(s)ds,

∫ t

t−τ

˙̂e(s)ds

]T

N = [N1, N2, N3, N4, N5]
T , Ni=1,...,5 = diag[ni, . . . , ni]n×n

M = [M1,M2,M3,M4,M5]
T ,Mi=1,...,5 = diag[mi, . . . , mi]n×n
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K = diag[k, . . . ,k]n×n. (6.20)

Then the derivative of the multiple Lyapunov function candidate is as follows:

V̇ = (n− 1) ˙̂eT (t)P̂11ê(t) + (n− 1)êT (t)P̂11
˙̂e(t)

+2 ˙̂eT (t)P̂12

∫ t

t−τ

ê(s)ds + 2êT (t)P̂12ê(t)

−2êT (t)P̂12ê(t− τ) + (n− 1)êT (t)P̂22

∫ t

t−τ

ê(s)ds

−(n− 1)êT (t− τ)P̂22

∫ t

t−τ

ê(s)ds

+(n− 1)

∫ t

t−τ

êT (s)dsP̂22ê(t)

−(n− 1)

∫ t

t−τ

êT (s)dsP̂22ê(t− τ)

+(n− 1)êT (t)Q̂11ê(t) + (n− 1) ˙̂eT (t)Q̂22
˙̂e(t)

−(n− 1)êT (t− τ)Q̂11ê(t− τ)− (n− 1) ˙̂eT (t− τ)Q̂22
˙̂e(t− τ)

+τ(n− 1)êT (t)R̂11ê(t) + τ(n− 1) ˙̂eT (t)R̂22
˙̂e(t)

−(n− 1)

∫ t

t−τ

[êT (s), ˙̂eT (s)]




R̂11 0

0 R̂22







ê(s)

˙̂e(s)


 ds, (6.21)

then

V̇ = V̇ + φ1 + φ2

= (n− 1) ˙̂eT (t)P̂11ê(t) + (n− 1)êT (t)P̂11
˙̂e(t)

+2 ˙̂eT (t)P̂12

∫ t

t−τ

ê(s)ds + 2êT (t)P̂12ê(t)

−2êT (t)P̂12ê(t− τ) + (n− 1)êT (t)P̂22

∫ t

t−τ

ê(s)ds

−(n− 1)êT (t− τ)P̂22

∫ t

t−τ

ê(s)ds

+(n− 1)

∫ t

t−τ

êT (s)dsP̂22ê(t)
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−(n− 1)

∫ t

t−τ

êT (s)dsP̂22ê(t− τ)

+(n− 1)êT (t)Q̂11ê(t) + (n− 1) ˙̂eT (t)Q̂22
˙̂e(t)

−(n− 1)êT (t− τ)Q̂11ê(t− τ)− (n− 1) ˙̂eT (t− τ)Q̂22
˙̂e(t− τ)

+τ(n− 1)êT (t)R̂11ê(t) + τ(n− 1) ˙̂eT (t)R̂22
˙̂e(t)

−(n− 1)

∫ t

t−τ

[êT (s), ˙̂eT (s)]




R̂11 0

0 R̂22




2n×2n




ê(s)

˙̂e(s)


 ds

+2zT N

[
ê(t)−

∫ t

t−τ

˙̂e(s)ds− ê(t− τ)

]

+2zT M
[
˙̂e(t) + Kê(t) + Aê(t− τ)

]
. (6.22)

Using Lemma 6.1, it can be obtained that

V̇ 6 (n− 1) ˙̂eT (t)P̂11ê(t) + (n− 1)êT (t)P̂11
˙̂e(t)

+2 ˙̂eT (t)P̂12

∫ t

t−τ

ê(s)ds + 2êT (t)P̂12ê(t)

−2êT (t)P̂12ê(t− τ) + (n− 1)êT (t)P̂22

∫ t

t−τ

ê(s)ds

−(n− 1)êT (t− τ)P̂22

∫ t

t−τ

ê(s)ds + (n− 1)

∫ t

t−τ

êT (s)dsP̂22ê(t)

−(n− 1)

∫ t

t−τ

êT (s)dsP̂22ê(t− τ)

+(n− 1)êT (t)Q̂11ê(t) + (n− 1) ˙̂eT (t)Q̂22
˙̂e(t)

−(n− 1)êT (t− τ)Q̂11ê(t− τ)

+τ(n− 1)êT (t)R̂11ê(t) + τ(n− 1) ˙̂eT (t)R̂22
˙̂e(t)

−n− 1

τ

∫ t

t−τ

êT (s)dsR̂11

∫ t

t−τ

ê(s)ds− n− 1

τ

∫ t

t−τ

˙̂eT (s)dsR̂22

∫ t

t−τ

˙̂e(s)ds + 2zT N

[
ê(t)−

∫ t

t−τ

˙̂e(s)ds− ê(t− τ)

]

+2zT M
[
˙̂e(t) + Kê(t) + Aê(t− τ)

]

= zT Hz. (6.23)
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where H was shown in (6.13). If (6.13) holds, then from (6.23), it shows that V̇ ≤ 0

which means the system (6.11) is asymptotically stable, e.g. ei(t) tends to zero

asymptotically which means the ith robot in the group tracks its desired trajectory

well.

Note that the LMI condition in (6.13) is non-convex and hence the following

theorem is proposed to be the sufficient condition of (6.13).

Theorem 6.2. Consider the error dynamics model represented by (6.11), for a given

time delay τ , given scalars θi, i = 1, . . . , 5 and the number of members in one group

n, if there exist matrices P̄11, P̄12, P̄22, Q̄11, Q̄22, R̄11, R̄22, N̄i, i = 1, . . . , 5 with

appropriate dimensions, such that the following inequality holds




H̄11 ∗ ∗ ∗ ∗
H̄21 H̄22 ∗ ∗ ∗
H̄31 H̄32 H̄33 ∗ ∗
H̄41 H̄42 H̄43 H̄44 ∗
H̄51 H̄52 H̄53 H̄54 H̄55




< 0, (6.24)

where

H̄11 = P̄12 + P̄ T
12 + (n− 1)Q̄11 + (n− 1)τR̄11

+N̄1 + N̄T
1 + θ1Y + θ1Y

T

H̄21 = −P̄ T
12 + N̄2 − N̄T

1 + θ2XAT + θ2Y

H̄22 = −(n− 1)Q̄11 − N̄2 − N̄T
2 + θ2AXT + θ2XAT

H̄31 = (n− 1)P̄11 + N̄3 + θT
1 X + θ3Y

H̄32 = −N̄3 + θ3AXT + θ2X

H̄33 = (n− 1)Q̄22 + (n− 1)τR̄22 + θ3X
T + theta3X

H̄41 = (n− 1)P̄22 + N̄4 + θ4Y
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H̄42 = −(n− 1)P̄22 − N̄4 + θ4AXT

H̄43 = P̄ T
12 + θ4X

T H̄52 = −N̄T
2 − N̄5 + θ5AXT

H̄51 = −N̄T
1 + N̄5 + θ5Y H̄44 = −(n− 1)R̄11

τ

H̄53 = −N̄T
3 + θ5X

T H̄54 = −N̄T
4

H̄55 = −(n− 1)R̄22

τ
− N̄5 − N̄T

5 , (6.25)

then system (6.11) is asymptotically stable with control gain K = Y X−1, e.g. ei(t)

tends to zero asymptotically which means the ith robot in the group tracks its desired

trajectory well.

Proof. In order to transform the nonconvex LMI in (6.13) into a solvable LMI, assume

that Mi = θiM0, i = 1, . . . , 5 where θi is known and given. Define X = M−1
0 , Ŵ =

diag(X,X,X, X, X) and Y = KX. Then by pre-multiplying the inequality in (6.13)

by Ŵ T and post-multiplying by Ŵ , the inequality (6.24) can be obtained.

Remark 6.1. Eq.(6.24) in Theorem.(6.2) and Eq.(6.13) in Theorem.(6.1) are used to

design control gain K. Eq.(6.24) is a sufficient condition of Eq.(6.13) in Theorem.(6.1)

due to the simplification of Mi matrices.

6.5 Summary

In this chapter, a consensus based tracking control strategy has been proposed for a

kind of virtual leader formation control approach of multiple mobile robot group with

group communication delay. The kinematic model of P3 mobile robot has been intro-

duced. The formation control algorithm has been applied to the linearized dynamic

model of P3 mobile robot. A novel multiple Lyapunov functional candidate has been

proposed to give the sufficient conditions of the control gain design. Theorems have

been provided to list the sufficient conditions as well.



Chapter 7

Simulation Results

7.1 Numerical Example of Stochastic Stabilization

of Sampled-data NCSs

7.1.1 Numerical Example I

Real network conditions were applied to the simulation. The delays and packet loss

that were recorded during the network experiment were replayed for the simulation,

reproducing the exact performance that a real network control system would have

experienced.

Consider the following nominal continuous-time system which is controlled through

networks with packet losses and time varying delays recorded in the experiment:

ẋ(t) =

[
−3 −0.001

−1 0.001

]
x(t) +

[
0

1

]
u(t− d2(t)), (7.1)

with x(0) = [0.5,−0.5]T . The continuous system is open loop unstable with eigen-

values of A as -3.0013 and 0.0013. The plant is sampled with a sampling period

Ts = 0.01 seconds. The packet-loss upper bound is S = 5. The transition probability

matrix (8.4) was used to represent the packet losses in this example. The time varying

delay is set to be mJTs, mJ ∈ {1, 2, 3, 4, 5}. The sampled-data controller is designed

102
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Figure 7.1. The state response with bounded delays and packet losses

as in (4.39), applying Theorem 4.3 with β = 3, a networked controller gain is designed

as:

K = Y X−1 =
[

1.0829 − 3.5142
] [

−0.0068 −0.0027

−0.6352 2.0597

]−1

=
[

0.1078 − 1.7060
]
.

Fig.7.1 shows the state response of the system. Since the control gain was well

designed, the system can be stochastically stabilized in around 5 seconds.

7.1.2 Numerical Example II

In this section, the numerical example of the nominal continuous system which has

been used in [21] and [51] was considered and simulated to illustrate the effectiveness

of the proposed approach. The system is as follows:

ẋ(t) =



−1 0 −0.5

1 −0.5 0

0 0 0.5


x(t) +




0

0

1


u(t). (7.2)

The maximum continuing packet loss amounts was assumed to be five, which
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means that up to 80% of the packets could be lost during the network transmissions.

Furthermore, the packet-loss process is governed by a Markov Chain. The transition

probability matrix in [11] is applied here:

∏
=




0.5 0.2 0.1 0.1 0.1

0.2 0.5 0.3 0 0

0 0.2 0.5 0.3 0

0 0 0.2 0.5 0.3

0.1 0.1 0.1 0.2 0.5




. (7.3)

Applying Theorem. 4.1, the control gain is obtained as K = [0.0412,−0.0117,−0.3172].

The initial state x0 has been chosen as x0 = [5 0 −5]T . The sampling time Ts = 0.5s.

Fig.7.2 depicts the trajectory of the system state when the packet-loss process is a

Figure 7.2. State response (Markovian packet loss)

Markovian process. The successfully arrived control inputs are marked with circles

on the time axis. As shown in the picture that only 17 control inputs arrived at the

system during the first 20 seconds, 57.5% of the packets were lost. The system can
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be stabilized by the controller in 8 seconds which is shorter than the one in [21].

If the time varying delays used in Section. 8.1 are considered in the system (7.2),

the new control gain can be obtained as K = [0.0379,−0.0637,−0.8173] by applying

Theorem. 4.3. Fig.7.3 shows the state response of the system. From the figure, 72.5%

Figure 7.3. State response (Time varying delays)

of the packets were lost. The closed-loop system with both Markovian packet losses

and time varying delays can be stabilized in 15 seconds by the feedback controller.

7.2 Numerical Example of Distributed Consensus

Formation Control of Networked Multi-agent

Robotic Systems with Time Delays

In this section, the results of the simulation work which had been done to support

the theoretic results in Chapter 5 have been shown. The simulation work include two

parts.

In the first part, three-robot group movement has been simulated. The task is
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asking the three-robot group to track the trajectory of the virtual leader. In other

words, the desired trajectory of the three-robot group has been existent already at

the beginning of the group movement. Two different types of group coupling config-

uration,called closed chain and open chain respectively, have been considered.

In the second part, three-robot group movement with disturbance has been studied

and simulated. Two different cases were considered in the simulation work. For the

first case there is group communication happening between each of the robots in

the group during the group movement. For the second case there is not any group

communication happening during the group movement. For both cases no matter

there is or no group communication, the disturbance has been input to one of the

three robots in the group at a fixed time point during the whole group movement.

The performance of the group movement for both cases has been studied to investigate

the meaning of the group communication of multi-agent systems.

7.2.1 Group Performance Comparisons: Closed and Open
Chain Configuration

In this subsection, the three-robot group is asked to track the trajectory of the virtual

leaders and ensure accurate formation maintenance through information exchange be-

tween neighbors. The two group coupling configurations have been shown by Fig.7.4.

The group in Fig.7.4(a) has a configuration called “closed chain group”. The

group in Fig.7.4(b) has a configuration called “open chain group”. The distributed

control scheme is independent of the configurations and it is applicable in groups

which have other configurations. However, only closed chain and open chain config-

urations are considered in the simulation since the groups can be easily tangled in
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Figure 7.4. A three-robot group configuration: (a) closed chain; (b) open chain

other configurations.

A. Closed Chain Group

Figure 7.5. Evolution of closed chain group movement

The case of a closed chain group as shown in Fig.7.4 (a) has been simulated. The

robot group consists of three mobile robots free to move on a plane. The dynamics

for each robot was given in Chapter 5. The element values in the matrices are given
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as:

Aii =

[
0.2 0

0.1 0.2

]

Aij =

[
0.1 0

0 0.1

]

B =

[
1 0

0 1

]
, (7.4)

where i, j ∈ [1, 2, 3], i 6= j. The distributed control scheme in Chapter 5 was applied

Figure 7.6. Tracking error of closed chain group movement

in the simulation. The control gain was designed as:

Kii =

[
−4.7293 0

0 −4.7293

]

Kij =

[
−0.6524 0

0 −0.6524

]
, (7.5)

to satisfy the conditions in Theorem 2 with L = 0.1, τ = 0.2sec. The three robots start

moving at different initial points which are located in a plane as [x0, y0]R1 = [7, 1];
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Figure 7.7. Control input signals of closed chain robot group

[x0, y0]R2 = [9, 0]; [x0, y0]R3 = [4, 18]. The desired trajectories for each robot are

R1 : yd = xd with initial point at xd(0) = 5, yd(0) = 5; R2 : yd = xd + 5 with initial

point at xd(0) = 5, yd(0) = 10; R3 : yd = xd + 10 with initial point at xd(0) =

5, yd(0) = 15. Fig.7.5 gives the evolution of the closed chain group movement. From

the figure, at the beginning the three robots start moving at three different initial

positions and try to get close to their own desired trajectories without any collision.

In the first 1.2 seconds, the three robots move in different velocities based on both of

their desired trajectories and initial positions. After two seconds the group track the

desired trajectory very well and keep the accurate formation maintenance.

The tracking error between closed chain group movement trajectory and its own

desired trajectory has been shown by Fig.7.6. The control input signals sent by the

controller on each of the three robots has been recorded in Fig.7.7. From the figures,
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Figure 7.8. Evolution of open chain group movement

at the beginning of the movement, the controller on each of the robots sends control

input signals with different values to the robot based on how big the tracking error

between the robot and the desired position is. Since the controller has been designed

well, in the two second transitional time, the controller adjusts the robot to its desired

position without any collision. After two seconds, the tracking errors between group

trajectory and desired trajectory converge to zero which means the effect caused by the

communication delay between each robot has been reduced by the controller and do

not affect group movement seriously. Control signals converge to zero as the tracking

errors converge to zero.

B. Open Chain Group

Second we simulated the case of a open chain group as shown in Fig.7.4 (b). The

same situation as in closed chain case, the robot group consists of three mobile robots
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Figure 7.9. Tracking error of open chain group movement

free to move on a plane. The dynamics for each robot and most element values in the

matrices are the same as in closed chain case except

A13 = A31 =

[
0 0

0 0

]

K11 = K33

[
−4.6392 0

0 −4.6392

]

K13 = K31

[
−0.6173 0

0 −0.6173

]
, (7.6)

where i, j ∈ [1, 2, 3], i 6= j.

Fig.7.8 gives the evolution of the open chain group movement. From the figure, as

same in the case of closed chain case, the three robots start moving at three different

initial positions and try to get closer to their own desired trajectories without any

collision. After two seconds the group tracks the desired trajectory and keep the
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Figure 7.10. Control input signals of open chain robot group

accurate formation maintenance.

The tracking error between closed chain group movement trajectory and its own

desired trajectory has been shown by Fig.7.9. The control input signals sent by the

controller on each of the three robots has been recorded in Fig.7.10. From the figures,

the same as in the case of closed chain group, the controller on each of the robots

sends control input signals with different values to the robot based on how big the

tracking error between the robot and the desired position is. Since the controller

has been designed well, in the two second transition time, the controller adjusts the

robot to its desired position without any collision. After two seconds, control signals

converge to zero as the tracking errors converge to zero.

The results discussed above show that since the distributed consensus control

algorithm and the control gain are designed properly, for both configurations the
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control objective of the whole group can be implemented and the effect caused by

the networked induced time delay can be reduced as good as possible. In the next

subsection, the performance of the group movement with group communication and

without communication will be discussed and compared. The comparison shows why

and how group communication plays an important role in consensus formation control

of networked multi-agent robotic system.

7.2.2 Group Performance Comparisons: With and Without
Group Communication

In this subsection, two cases of robot group movement have been investigated. In the

first case, one three-robot group with group communication which takes place under

the closed chain configuration has been asked to track the virtual leader’s trajectory

and keep accurate group formation. The dynamics of each robot is the same as the one

of the closed chain case in subsection.7.2.1. In the second case, another three-robot

group without group communication has been asked to track the same trajectory and

keep the same group formation. For both cases one disturbance signal has been added

to one of the three robots at the same time during the movement process to disturb

the tracking performance of the robot. The dynamics of each robot in this group is

the same as the previous one except

Aij =

[
0 0

0 0

]
. (7.7)

where i, j ∈ [1, 2, 3], i 6= j.

The tracking performance of the three-robot group with & without group commu-

nication has been shown in Fig.7.11 and Fig.7.12 respectively. By comparing these
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Figure 7.11. Evolution of closed chain group movement with disturbance

two group movement evolutions two differences have been found and discussed.

The first difference between the two cases is the transitional time (the time dif-

ference between the beginning time of the system movement and the time when the

system reaches consensus) movement evolution. In the transitional time, the three

robots in the first group start moving from different initial positions and exchanging

information which includes their relative position to their neighbors and relative dis-

tance between each of them. So during the movement each of them can “feel” the

relative position and velocity of its neighbors and set its own velocity and orientation

based on the information from itself and its neighbors. To do so can make each of

them stay in a safe distance from each other and bring the whole group a better

robustness, and then the three robot can react with each other well and perform as a

real group. On the other hand, the three robots in the second group cannot exchange

those information. They set their velocities and orientations only depending on the
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Figure 7.12. Evolution of no neighbor communication group movement with distur-
bance

information of themselves. So each of them moves independently and the whole move-

ment cannot be treated as “group movement”. Ignoring its neighbors’ existence also

results in a higher collision possibility during the movement.

The second difference between the two cases is the group anti-disturbance ability.

As shown in the figures, a disturbance signal has been input to one of the robots at the

same time during the movements for both two cases. When robot 2 in the first group

receives the disturbance, its position gets a sudden change as shown in Fig.7.11. Since

the group has the communication coupling between neighbors, the other two robots

get this information and react to this change as soon as they receive the information

from robot 2. So the whole group obtains a good formation maintenance during the

disturbance. The Fig.7.12 shows that the robot 2 in the second group performs the

same as the one in the first group when it gets the disturbance signal. However, since
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Figure 7.13. Tracking Error of closed chain group movement with disturbance

there is no information exchange between the three robots, the other two robots have

no reaction to the position change of their neighbor and this results in not only a

higher collision possibility, but also a bad group formation maintenance.

Another interesting comparison between the two cases has been done towards the

tracking errors between robot group states and the desired states. The tracking errors

for both cases have been represented in Fig.7.13 and Fig.7.14. As shown in Fig.7.13,

in the first two second transitional time, the state tracking errors of the three robots

react and affect with each other. When robot 2 receives the disturbance, its tracking

errors get a jump from zero. The tracking errors of the other two also react this jump

after they received this information from robot 2. While for case two which has been

shown in Fig.7.14, the three robots do not affect with each other, and the disturbance

received by robot 2 cause the same jump on its tracking errors as in case one but did
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Figure 7.14. Tracking Error without neighbor communication and group movement
with disturbance at 8.8 second

nothing to the tracking errors of the other two.

The disturbance area in Fig.7.11 has been zoomed in and represented in Fig.7.15

to get more details. As shown in the figure, before 8.8 seconds the three-robot group is

moving on its desired trajectory with a stable group formation. At 8.8 seconds during

the movement robot 2 receives the disturbance signal and its position has been pulled

off its desired trajectory by this disturbance. Since there is a networked induced time

delay in the group communication channel, the other two robots do not react to this

position change. So during the short 0.2 seconds time delay period, robot 2 gets close

to robot 3 and far from robot 1. This causes a potential collision and a damage to

the group formation. After the 0.2 seconds delay the other two robots receive this

information from robot 2 and adjust their speeds and orientations according to this

information. This adjustent shown in the Fig.7.15 begins at 9 second, robot 3 starts
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Figure 7.15. Evaluation of disturbance area in closed chain group movement

getting far away from robot 2 and robot 1 starts getting close to robot 2. It just

looks like that the robot 3 and robot 1 has been pushed away and pulled in by the

robot 2 during the process. When robot 2 trys to adjust its position back to the

desired position at 9 second, the whole process has been reversed again until the

whole group reaches consensus. The whole process shows that information exchange

through group agents can avoid potential collisions and maintain the group formation

during any unknown happening as well as possible.

In order to get more details from the group movement in the first case, more figures

have been drawn. Fig.7.16 shows the control input signals sent by the controller of the

three robots. The velocities and accelerations of the three robots have been shown in

Fig.7.17and Fig.7.18; Fig.7.19 and Fig.7.20 show us the angular velocities and angular

accelerations of the robots.
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Figure 7.16. Control signals of closed chain group with disturbance on Robot 2: (a)
Robot 2; (b) Robot 1; (c) Robot 3

From these figures, during the first two second transitional time, the controller at-

tached on each robot in the group sends control input signals to make the whole group

track the virtual leaders’ trajectories and reach consensus. Each robot in the group

exchanges information. The information includes the relative positions to its neigh-

bors. Both the relative distance to its desired trajectory and the relative positions to

its neighbors have been considered in the control input calculating process. Fig.7.16

shows that the control input signals sent by the three robots’ controllers own a kind

of “match” characteristic. This characteristic is more visible in Fig.7.17, Fig.7.18,

Fig.7.19 and Fig.7.20 which show us the velocities, acceleration, angular velocities

and angular acceleration. From these figures, at the beginning of the movement, each

robot gets different accelerations and velocities since they stay at different initial posi-

tions and have different virtual leaders to follow. Then they start moving with group
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Figure 7.17. Speeds of closed chain group movement with disturbance at 8.8 second

communication so that their velocities and accelerations can match with each other

and avoid potential collisions. As shown in Fig.7.18 and Fig.7.20, it takes the whole

group approximate one second after moving to make the acceleration of each member

match with each other well. This means the speed and orientation change trends of

all members meet an agreement, and then the whole group will move together un-

til it reaches consensus. Fig.7.17 and Fig.7.19 show that from one second after the

group starts the movement the whole group reaches consensus and from two seconds

after the movement each robot moves with the same constant speed and zero angular

velocity.

During the disturbance period starts since 8.8 seconds, as shown in these figures,

the speed and orientation of robot 2 has been changed by the disturbance (Fig.7.17;

Fig.7.19). Fig.7.16 shows that the controller attached on robot 2 reacts to this change
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Figure 7.18. Accelerations of closed chain group movement with disturbance

and adjusts the control input values to fix this position migration. When these in-

formation from robot 2 has been received by the other two robots, the controllers

attached on them also adjust the control input values to make these two robots match

the position and velocity change of robot 2. Then a potential collision and maintain

the group formation can be avoided as well as possible. Finally the group reaches con-

sensus and each robot moves with the same constant speed and zero angular velocity

again.

The above discussion and comparison shows that information exchange plays an

important role in multi-agent systems. In other words, even a control law with only

local information is sufficient to guarantee a good tracking performance, however,

the coupling between neighbors improves group robustness and reduces formation

maintenance error.
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Figure 7.19. Angular Velocities of closed chain group movement with disturbance

7.3 Numerical Example of Consensus Formation

Control of Multiple Mobile Robots

In this section, the simulation results regarding the work described in Chapter 6 have

been shown. The main results show that the proposed distributed consensus control

algorithm can 1): make the two-wheel robot group, which has communication delays

inside, track the desired trajectory as well as possible; and 2): reduce the formation

maintenance error as well as possible. The same with section.7.2, this section has

been divided into two parts.

In the first part, two robot groups with the same dynamics and different group

communication delays have been asked to track the same virtual leaders’ trajectory

and maintain the same group formation. The simulation results show how differ-

ent communication delays will affect the group performance and how the controllers
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Figure 7.20. Angular Accelerations of closed chain group movement with disturbance

attached on the robots adjust the group movement evolutions.

In the second part, the same group has been asked to track the desired trajectory

under two cases: in the first case there is group communication during the group

movement; in the second case there is no group communication at all. Comparing

the two cases shows us the success of the consensus control algorithm designed in this

work and the importance of group communication in multi-robotic vehicle systems.

7.3.1 Group Performance Comparisons: Short and Long Time
Delays

In this subsection, two robotic vehicle groups are asked to track the virtual leaders’

trajectories with desired group formation and different time delays. The robotic

vehicle’s dynamic equation has been represented in Chapter 6. The element values in
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Figure 7.21. Evolution of the two robot group movement with short time communi-
cation delay (τ = 0.2second)

the matrices are given as:

Aij =

[
1 0

0 1

]
(7.8)

where i, j ∈ [1, 2], i 6= j.

The two robots start moving at different initial points which are located in a

plane as [x0, y0]R1 = [2, 0]; [x0, y0]R2 = [5, 0]. The desired trajectories for each robot

are R1 : yd = xd with initial point at xd(0) = 5, yd(0) = 5; R2 : yd = xd + 5 with

initial point at xd(0) = 5, yd(0) = 10. The group movements include two cases: group

movement with short time delay and group movement with long time delay.

A. Short Time Delay Case

In this case, the two robotic vehicles in the group move with a 0.2 second group

communication delay. The consensus control algorithm in Chapter 6 has been applied
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Figure 7.22. Control signals of the two robot group with short time communication
delay (τ = 0.2second)

to adjust the whole group movement performance. The control gain has been designed

based on sufficient conditions in the theorem as

K = Y X−1 =

[
1.2026 0

0 1.2026

]
(7.9)

where

X =

[
−5.6453 0

0 −5.6453

]

Y =

[
−6.1877 0

0 −6.1877

]
, (7.10)

i ∈ [1, 2]. The evolution of the group movement and the control input signal sent by

the controllers have been shown in Fig.7.21 and Fig.7.22.

Since the connections between initial positions and desired trajectories of two

robots cross with each other, after the group starts moving as shown in Fig.7.21



126

Figure 7.23. Evolution of group angular acceleration with short time communication
delay (τ = 0.2second)

robot2 needs to cross robot1 at a proper time and a proper position so that they

would not collide each other. After that time each robot keeps the desired distance

with the other one to form the group formation and track the desired trajectory as

well as possible. Note that the time difference between two index in Fig.7.21 is 0.2

second.

The controllers attached on two robots play an important role in the whole pro-

cess. As shown in Fig.7.22, before the whole group reaches consensus at 6 seconds the

controller of each robot keep sending signals, which are calculated based on the posi-

tion information of the robot and its neighbor, to the robot for adjusting its relative

position to its desired trajectory and neighbor. But at the beginning of the movement,

because of time delays each robot has not received the information from its neighbor

yet, the controller calculates the control input value which will be used to adjust
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Figure 7.24. Evolution of group acceleration with short time communication delay
(τ = 0.2second)

the velocity and orientation of the robot depending on the distance between robot’s

initial position and initial desired position only. The evolutions of the velocity and

orientation of two robots have been recorded down and shown by Fig.7.23-Fig.7.26.

At t = 0.2 seconds each robot has received the information from its neighbor, robot

1 reduces its angular acceleration in order to reduce its angular velocity toward its

desired position as shown in Fig.7.21, Fig.7.23 and Fig.7.25. However, robot 1 does

not reduce its angular acceleration too much so that it would not bump with robot

2. While for robot 2, it reduces its angular acceleration much enough to reverse its

angular velocity to avoid getting too close to robot 1. There is only a small differ-

ence between their linear acceleration and speed until the group reaches consensus at

about eighth seconds after movement as shown in Fig.7.24 and Fig.7.26. After 0.6

seconds robot 2 has passed by the desired trajectory of robot 1 and starts tracking on
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Figure 7.25. Evolution of group angular velocity with short time communication delay
(τ = 0.2second)

its own desired trajectory. At the same time robot 1 receives this information from

robot 2 and adjusts its moving orientation toward its desired trajectory by setting

new angular accelerations. It takes about eight seconds for the two robots to adjust

their positions and track the desired trajectory without any possible collision. The

tracking errors shown in Fig.7.27 converge to zero in 8 seconds from when the whole

group reaches consensus. In the second case, the group performance with long time

delay case will be discussed such as how the long time communication delay will affect

the group performance and how the controller will reduce this effect caused by the

long time delay.
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Figure 7.26. Evolution of group velocity with short time communication delay (τ =
0.2second)

B. Long Time Delay Case

In the pervious case, the robot group performance with short group communication

delay has been discussed. In this case, two robotic vehicles in the group move with a

1 second group communication delay. The consensus control algorithm in Chapter.6

has been applied to adjust the whole group movement performance. The control gain

has been designed based on sufficient conditions in the theorem as

K = Y X−1 =

[
1.5675 0

0 1.5675

]
(7.11)
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Figure 7.27. Evolution of group tracking errors with short time communication delay
(τ = 0.2second)

where

X =

[
−6.7636 0

0 −6.7636

]

Y =

[
−10.6019 0

0 −10.6019

]
, (7.12)

i ∈ [1, 2]. The evolution of the group movement and the control input signal sent by

the controllers have been shown in Fig.7.28 and Fig.7.29. Compared with Fig.7.21,

the main differences in Fig.7.28 focus on the 10m by 20m transitional domain. So this

domain has been zoomed in and shown in Fig.7.30. As shown in Fig.7.30 from 0 to 0.4

second (the time difference between two index is 0.2 second) each of them adjusts its

orientation toward its desired position by adjusting its angular acceleration as shown

in Fig.7.31. From 0.4 to 1 second the value of both angular velocity becomes close
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Figure 7.28. Evolution of the robot group movement with long time communication
delay (τ = 1second)

to zero as shown in Fig.7.32, which means the orientation of each robot keeps fixed

toward the desired trajectory during this period. The linear acceleration and speed

of the robot group shown in Fig.7.33 and Fig.7.34 shows during the first second the

acceleration and speed of each robot is reduced as much as the distance between the

robot and its desired position, which is shown in Fig.7.35, is reduced. It is because

of the group communication delay that each robot cannot receive any information

from its neighbor in the first second and runs ignoring its neighbor’s existence.It is

not hard to see that there is a risk for a possible collision of the two robots if one of

them changes its initial position and the group formation does not appear or it is not

even going to appear in the first second.

As shown in the Fig.7.30 at 1 second after the group starts moving, the position

information for 0 second of each robot has not been received by each other. Since the
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Figure 7.29. Control signals of the robot group with long time communication delay
(τ = 1second)

delayed communication cannot accurately provide the current position information of

the neighbor for each robot, the speed and orientation of robots have been affected

by this delayed signal greatly as shown in Fig.7.31 and Fig.7.33. The tracking error

in Fig.7.35 also shows before 1 second the tracking error on x-axis direction has been

close to zero but affected greatly by the delayed signal from its neighbor at 1 second.

Since the control gain has been designed well to reduce the effect caused by the delay,

the tracking errors gradually converges to zero in the next 15 seconds.

For Fig.7.30, at 1.2 second, the controller starts working to adjust the speed and

orientation of the robot. From 1.2 second to 1.6 robot 2 reduces its speed by adjusting

its control input shown in Fig.7.29 to change its acceleration shown in Fig.7.33 because

it “feels” it is getting too far from its neighbor’s “1 second ago position” and tries to

keep the desired team formation with robot 1. For robot 1, it changes its direction by
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Figure 7.30. Evolution of the robot group movement in transitional domain with long
time communication delay

reducing its angular acceleration and increases its speed since it “feels” it is getting

close to the 1 second ago position of robot 2. The good stabilization ability of the

controller can be seen specially from 1.6 second to 3 second, the two robots start

matching its neighbor’s movement and the whole team formation starts appearing.

At 2 second, robot 2 changes its direction greatly to avoid getting to far with robot

1’s position at one second ago, while for robot 1, it also changes its direction with the

same trend as robot 2 to avoid getting too close to robot 2’s position at one second

ago. After 3 second, as the tracking errors converge to zero gradually and the team

formation is being maintaining, the effect caused by the communication delays has

been reduced as well as possible. More details for this adjusting process, such as

angular velocity and speed, are shown in figures discussed above.
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Figure 7.31. Angular acceleration of the robot group with long time communication
delay (τ = 1second)

Compared with short communication delay case, two things should be paid atten-

tion: 1. long time communication delays may cause a higher possibility of collision

than short time delay; 2. long group communication time delay can result in a longer

transition time for the system than short time delay case. Because of the well designed

control gain, the effects caused by long time delay are reduced well as discussed in this

section. In next subsection, the transition time performance of the group movement

with and without group communication will be discussed. By analyzing the difference

of the two cases can tell us why the group communication is so important in consensus

formation control of networked multi-agent robotic vehicle systems.



135

Figure 7.32. Angular velocity of the robot group with long time communication delay
(τ = 1second)

7.3.2 Group Performance in the Transition Time: With and
Without Group Communication

In the previous subsection, the performance of the group movement with short and

long group communication delay have been discussed and compared. From the re-

sults in previous subsection, how the group communication delay could affect group

performance has been learnt. How can the controller designed based on the theoretic

work in Chapter.6 reduce the effects caused by the delay and implement the control

objective as well as possible also has been learnt.

In this subsection two robot groups are asked to track the same virtual leaders’

trajectories with the same desired group formation and 0.2 second group communi-

cation delay. The control gain is the same as the one used in the short time delay

case. The only difference between the two groups is during the movement one group
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Figure 7.33. Acceleration of the robot group with long time communication delay
(τ = 1second)

has group communication and the other does not. In order to test the stabilizing

ability of the proposed control approach, the virtual leaders’ trajectories are designed

in a more complicated case. For robot 1, the desired trajectory is xd1 = 1.5cos(t);

yd1 = 1.5sin(t) + 10. For robot 2, it is xd1 = cos(t); yd1 = sin(t) + 10.

The evolution of the group movement without and with group communications

have been shown in Fig.7.36 and Fig.7.37 respectively. These two figures show that

finally both of groups can track the virtual leaders’ trajectory and can maintain the

desired group formation. However, there is an obvious difference between these two

figures which focuses on the transition time area. In order to get more details regarding

this, the transition time area in the figures, which includes the evolution of the group

movement during the time period from the beginning of the movement to when the

group starts getting in the elliptic orbit, has been magnified and shown in Fig.7.38
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Figure 7.34. Speed of the robot group with long time communication delay (τ =
1second)

and Fig.7.39.

As shown in Fig.7.38, the group without group communication starts moving and

getting close to the elliptic orbit during the first second. For the two robots in the

group, there is not any group communication during the movement, they start getting

close to each other gradually after they start moving. From 0.8 to 1 second, as shown

in the figure, the running trajectory of each robot crosses with each other and then

a high possibility of collision has appeared during this very short period. Compared

with the group movement without group communication, the group movement with

group communication shows the different sight. As shown in Fig.7.39 the two robots

in this group start moving and getting close to the elliptic orbit while keeping a safe

distance with each other. It shows that group communication plays a very important
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Figure 7.35. Tracking error of the robot group with long time communication delay
(τ = 1second)

role in multi-agent system group movement by exchanging the position velocity infor-

mation in group members. Each robot can “feel” its neighbor’s position and velocity

by receiving those information from the neighbor and adjust its own position and

velocity based on not only its own states but also its neighbor’s. Sharing information

can avoid conflicting with its neighbor and drive the whole group to the orbit in a

more safe way. Fig.7.39 shows that at 0.8 seconds each robot in this group starts

getting in the elliptic orbit from its current position which has a safe distance with

its neighbor’s. Comparing Fig.7.36 with Fig.7.37 shows it takes the group without

communication less time than the group with communication to get into the elliptic

orbit, however, the group with communication can move in a safer way than the one

without communication.

Drawing and comparing their control input signals in Fig.7.40 and Fig.7.41, their
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Figure 7.36. Evolution of the group movement without group communication

angular acceleration in Fig.7.42 and Fig.7.43 and their angular velocity in Fig.7.44 and

Fig.7.45 show the same story. As shown in Fig.7.40 all control inputs of this group

converge to zero in 4 seconds and during this transition period the control input

values of each robot are similar with each other. This is because two robots have the

same dynamic equation and they do not exchange information with each other. They

cannot be treated as a whole “group”. The whole movement process just looks like

two independent single system running respectively. So it is not hard to understand

why there is a high possibility of collision appearing in this movement. While for

the other group in Fig.7.41 the control inputs converge to zero in 8 seconds. That is

because the controller on each robot of this group calculates the control inputs based

on not only the states of itself, but also the states of its neighbor. It takes the group

longer time than the other one to make each robot get into the elliptic orbit in the
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Figure 7.37. Evolution of the group movement with group communication

right way. By adjusting the control inputs in this way, each robot in this group gets

different angular acceleration, different angular velocity and speed shown in Fig.7.43,

Fig.7.45 and Fig.7.46 in the 8 second transition time. These differences can make

sure that each robot can keep a safe distance with its neighbor when the whole group

gets close to the elliptic orbit. For the group shown in Fig.7.42 and Fig.7.44, the

angular acceleration and angular velocity are synchronized with each other even in

the transition period. These two pictures show a high collision possibility during the

movement.

For the group with communication the tracking errors have been represented in

Fig.7.47. As shown in the figure, the tracking errors converge to zero in 8 seconds

which supports that the consensus control algorithm in Chapter 6 has been designed

properly. It can make the whole networked multi-agent robotic system reach consensus
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Figure 7.38. Group movement in transition time without group communication

and maintain the desired group formation. It also can reduce the effects caused by

the communication delay.

As discussed in this subsection, it can be concluded that for consensus formation

control of multi-agent system, even a control law which does not include the interact

elements from neighbors is sufficient to guarantee the convergence of the tracking

errors for the whole system; however, the coupling between neighbors can effectively

improve group robustness and reduce formation maintenance error.

7.4 Summary

In subsection.7.1, the simulation results show the effectiveness and feasibility of the

proposed approach. The sampled-data controller can stabilize the NCSs with random

packet loss and varying time delay properly due to the proper design of the control
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Figure 7.39. Group movement in transition time with group communication

gain. In subsection.7.2, the group performance with different configurations has been

shown by simulations. The results support the theoretic design in this work. The

importance of the group communication also has been shown. In subsection.7.3,

the group performance with long (τ = 1second) and short delay (τ = 0.2second)

have been compared. The effects caused by different delays have been shown. The

results show the feasibility of the proposed strategy with different delays and group

communication topologies. The importance of the group communication in group

movement have been shown by the simulation results.
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Figure 7.40. Evolution of control input for the group without communication

Figure 7.41. Evolution of control input for the group with communication
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Figure 7.42. Angular acceleration of the group without group communication

Figure 7.43. Angular acceleration of the group with group communication
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Figure 7.44. Angular velocity of the group without group communication

Figure 7.45. Angular velocity of the group with group communication
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Figure 7.46. Speed of the group with group communication

Figure 7.47. Tracking errors of the group with group communication



Chapter 8

Experimental Results

8.1 Sampled-data NCSs with Stochastic Packet Loss

and Varying Time Delay

In order to study the network property in the real environment, a real-time network

induced delay and packet loss measurement system has been developed based on

MATLAB applications.

Figure 8.1. Real-time network measurement system

147
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With the Instrument Control Toolbox in MATLAB, two computers located in dif-

ferent places can communicate with each other via networks following special protocols

(e.g. TCP/IP and UDP) directly from MATLAB. The data generated in MATLAB

on the client side can be sent out to another computer (server), in which a related

MATLAB application is running synchronously, through the networks as shown in

Fig.8.1. The connection and communication were established using UDP protocol.

The delay and packet loss information could be recorded and saved in MATLAB for

further analysis.

8.1.1 Network Induced Delays and Packet Losses

During one measurement, data packets have been sent with a fixed frequency from

the client to the server following the receiver’s IP address, and then they would be

returned to the client at the same time when they have been received by the server. In

this case, 6,000 data packets were transmitted between the client and the server once

per hour on Feb.5th 2008 from 8:00am to 13:00pm and on Feb.6th 2008 from 12:00pm

to 18:00pm, the average delay of each measurement is very close, the histogram of

average delay versus hour index has been shown in Fig.8.2. The small difference is

caused by the network load change over time; however, generally the network tested

in the experiment keeps stable.

When the information of delays recorded in one measurement has been drawn

in Fig.8.3, it can be found that the minimum time delay value is 10 ms and up to

93% of packets can be received in 50 ms, only 6% of packets have been received in

the time which is longer than 50 ms, and those packets appeared randomly. Most of
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Figure 8.2. Histogram of average time delay vs hour index

the recorded delays are in the time domain from 15 ms to 50 ms, this network time

varying delay property has been applied in the simulation.

The packet loss case is quite complicated and hard to predict. People believe

that the network overload may cause packet loss, so even for the same network the

situation when it is overloaded may be quite different from when it is idle. The packet

loss rates in four different cases were recorded and analyzed as shown in the pie chart

Fig.8.4. In order to vary the case of the network, FlashGet has been used to download

and upload data files from an internet web service. The measurement in Case 1 was

processed without running FlashGet. In Cases 2, 3 and 4 the FlashGet was used to

download date files with the rate of 60 KB/s, 100 KB/s and 400KB/s respectively.

In the pie chart, the slices which present the packet loss rates in four cases were

pulled out. It is clear that the packet loss rate increases as the download rate increases.
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Figure 8.3. Time delay vs numbers of data packet

For the rest two slices, the small one presents the rate of the packets which have been

received but exceeded the bounded delay value, and the big one presents the rate

of the packets received in a shorter time than the bound delay value. For example,

in Case 1 1% of packets was lost during transmissions, 6% was received in a longer

time than the upper bound of the delay and 93% were received in the fixed time

domain. From the result, the network tested in the experiment was keeping in a

stable condition since over 90% packets could be received in a fixed time domain.

8.1.2 Bounded Delays and Bounded Packet Losses

In NCSs, there is usually a common assumption that the delay and the packet loss

amount between two successful transmissions are bounded. This condition is imposed

on network communications by dropping packets that exceed the delay bounds. The

time delay distribution in one measurement can help us to establish the upper bound
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Figure 8.4. Pie chart of packet loss rate

of delays. The results shown in Fig.8.5 are still used here. In Fig.8.5 (a), it shows the

delay distribution in one measurement. Since the minimum delay is 10 ms and over

90% packets arrived in 50 ms, the upper and lower bound of delays were chosen as

50 ms and 10 ms respectively. The packets exceed the bounded delay were dropped

and the new delay distribution under bounded delay was shown in Fig.8.5 (b). The

packets with large delay may become out-of-order. By dropping those packets can

increase the perceived loss rate but can better represent the transmitted signal by not

introducing artefact to NCSs. In the pie chart Fig.8.5 (c), the slice marked with 1%

presents the original packet loss rate. The slice marked with 6% presents the rate of

packets which exceed the bounded delay and were dropped. The slice marked with

93% shows us the data rate received in the bounded delay.
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Figure 8.5. Bounded delay and packet lost

8.1.3 Markov Chains

Predicting packet loss is very difficult due to the lack of information of network con-

ditions. For this reason, stochastic methods have been used to describe the networks

from a statistical standpoint. During the study of this method, Markov Chain (MC) is

considered to model the packet loss phenomena using conditional probabilities where

the probability of moving from one state to the next depends only on the previous

state.

As discussed in Section 4.3, in this work the packet loss process is governed by a

Markov Chain. The order of the MC is determined due to the upper bound of the

packet loss amount between two successful transmissions. From the results obtained

from experiments (Fig.8.4), the upper bounds of the packet loss in Case 1 and Case

4 are both three packets, which means the maximum continuing packet loss amounts
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in both cases are three. With the experimental data from real network, a third-order

MC probability transition matrix can be calculate. The number of transitions from

state 1 to state 1 are divided by the total number of transitions from state 1 to state

1, 2 and 3. For each case, there are two different MC transition matrix. The first one

is calculated before dropping the packets which exceed the bounded delay; the second

one is calculated after dropping them. Only the transition matrices in Case 1 and 4

(Fig.8.4) are listed here as an example and those transition matrices are applied in

the simulation example in subsection 7.1

Case 1, before dropping the packets exceed the bounded delay:

∏
=




0.9861 0.013 0.0009

0.9744 0.0256 0

1 0 0


. (8.1)

Case 1, after dropping the packets:

∏
=




0.9424 0.0541 0.0036

0.9666 0.0334 0

1 0 0


. (8.2)

Case 4, before dropping the packets exceed the bounded delay:

∏
=




0.9426 0.0553 0.0021

0.9159 0.0779 0.0062

0.9231 0.0769 0


. (8.3)

Case 4, after dropping the packets:

∏
=




0.9128 0.0788 0.0084

0.8984 0.0831 0.0185

0.92 0.08 0


. (8.4)
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8.1.4 Real-Time NCSs Experiment

A real-time networked control system based on MATLAB is tested. The experiment

setup is as same as shown in Fig.8.1. One computer is treated as the controller.

Its task is to receive the response from the system and send control input to it.

The system which is shown by (7.1) run on a second computer. The controller and

system communicated with each other directly from MATLAB application through

the real-time network channel with delays and packet loss occurring randomly. At each

sampling time, which is the same as used in subsection. 7.1, the controller sampled the

system response once and sent control input back to it. Since the delays and packet

loss cases are the same as we discussed in previous subsections, the gain design of the

controller is the same with the one shown by (7.2). The real-time system response

has been shown in Fig.8.6. The result showed that the system can be stochastically

stabilized in 3 second due to the proper design of the controller.

Figure 8.6. The state response of real-time networked control system
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8.2 Implementation of Consensus Formation Con-

trol to Pioneer-3 AT and DX Mobile Robots

In this section, the proposed distributed formation control strategy is applied to a

multiple mobile robot experimental platform. The main work for this section is di-

vided into three part: first the hardware experimental set-up will be introduced; next

the software regarding the control operation system of P3 mobile robots will be in-

troduced. The experimental results will be discussed and shown.

8.2.1 Experimental Set-up

Experimental tests are implemented in the Advanced Control and Mechatronics Lab-

oratory at Dalhousie University. The multiple mobile robot test platform consists of

one Pioneer 3 − DX and one Pioneer 3 − AT as shown in Fig.8.7. The two robots

are connected with two laptops through serial ports and the two laptops can com-

municate with each other via wireless network with TCP/IP protocols. Each robot

has an encoder for their position and orientation information. Laptops are used for

calculating control input values and connecting with P3 mobile robot.

In the experimental tests, a group of two P3 mobile robots is required to maintain

the desired group formation according to its desired trajectory. The kinematic model

for each robot has been shown in (6.1). This model has been linearized by setting a

hand position for each robot and the simplified model has been represented by (6.6).

After the group starts moving, laptops attached on the robots will keep performing

the following tasks once per second: 1) reading position and orientation data from the

robots; 2) exchanging those data with each other through the wireless network with
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Figure 8.7. Pioneer 3 mobile robot test platform framework

1 second communication delay; 3) calculating the control input values according to

the distributed consensus formation control algorithm (6.8) and then calculating the

desired linear and orientation speed for the robots according to (6.5); 4) converting

the desired linear and orientation speed of the robots into the desired rotating speed

of the left and right wheel of the robots respectively based on the following equation:

R̃ =
υ

ω

VL = ω(R̃− 0.5l)

VR = ω(R̃ + 0.5l), (8.5)

where VL and VR are the left and right wheel rotating speed of the robot, l = 33cm

is the length between left and right wheel of Pioneer 3−DX and l = 38cm is that of

Pioneer 3−AT ; 5) sending signals to robots to set the rotating speeds as the desired
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values.

8.2.2 Introduction on Software

In the experimental tests, software programming is another important issue. All the

commands and calculations processed by the controller (laptop) attached on each

robot are programmed in C++ language. For simplifying the programming task,

Advanced Robot Interface for Applications (ARIA) has been used in this work.

ARIA is a programming library for C++ programmers who want to access their

Mobile Robot platform and accessories at either a high or low level. Written in the

C++ language, ARIA is client-side software for easy, high-performance access to and

management of the robot, as well as to the many accessory robot sensors and effectors.

ARIA includes many useful utilities for general robot programming and cross-platform

(Linux and Windows) programming as well.

ARIA can dynamically control the robot’s velocity, heading, relative heading, and

other motion parameters either through simple low-level commands or through its

high-level Actions infrastructure. In this work ARIA also receives odometric position

estimates, sonar readings, and all other current operating data sent by the robot

platform. In this work, functions defined in ARIA have been invoked to read position

data and set robot’s velocity and orientations. To do so can save time in programming.

Since the two laptops are required to communicate with each other via the wireless

network with TCP/IP topology, a library named ArSocket in ARIA has been used

for this issue. With the help of ArSocket, we can directly create a server with one

laptop and create a client with another. At the beginning of the group movement, the
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server will open a server port for the client and wait for the client to connect. The

client will connect to the server by pursuing the server’s IP address. When the server

receive the client’s call, it will send a call back to the client and start action. Then

the client will start action as soon as receives the call from the server. The server and

client will act synchronously in this way.

8.2.3 Experimental Results

This section shows the experimental results. In this test, two Pioneer 3 robots are re-

quired to maintain a fixed group formation during the movement with communication

delay τ = 1s. So the consensus based controller gain ki = 1.5675 and the adjacency

matrix Aij are the same as results described in Section 7.3.1 for long delay case (τ = 1

second).

The two robots in the team start moving at initial position of (0, 0) for robot 1

(P3−AT ) and (1050, 1050) for robot 2 (P3−DX) with a unit in mm. As described

in Section.6.2, the hand position for each robot has a distance L to the center point of

the robot. In the experiment, L = 30cm for both robots, so the initial hand positions

of robot 1 and robot 2 are (300, 300) and (1350, 1350) respectively. The unit is mm.

In the first test, the “hands” of the robot group are required to track a straight line

as

xd = 60t + 500

yd = 60t + 500, (8.6)

where t is the time starting from 0 second. The trajectory described by Eq.(8.6) is
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according to the coordinate system Ci of the ith robot itself. The group movement

trajectory is shown in Fig.8.8.

In order to evaluate the group performance, the group movement trajectory has

been recorded by the laptops and analyzed using MATLAB. The group trajectory is

drawn in Fig.8.9. Since the position data has been recorded once per second, the time

period between each location point in the picture is 1 second. As shown in the picture,

P3−AT and P3−DX start moving from initial positions together at 0 seconds. The

group gets close to the virtual leader’s trajectory or the desired trajectory in the first 8

second of the movement. After 8 seconds, the group moves on the desired trajectory.

During this process the desired group formation has been kept very well. Fig.8.10

shows that the consensus tracking errors for the virtual center position converge to

0, the lowest values of the errors are below 2 cm. This convergence property of the

tracking error guarantees the good maintenance of the group formation.

Figure 8.8. Experimental result of group movement tracking straight line: (a) 0
second; (b) 20 second; (c) 40 second; (d) 60 second
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Figure 8.9. Group movement tracking straight line

For the second test, the group is required to track a curve as

xd = 20t + 500

yd = 2t2 + 500, (8.7)

where t is the time starting from 0 second, the unit of xd and yd is mm, and (8.7)

is according to the coordinate system Ci of the ith robot itself. The team movement

with fixed group formation is shown in Fig.8.11.

For this case the data has also been recorded and analyzed. Fig.8.12 shows the

group movement trajectory and virtual leaders’ trajectory. As shown in the picture,

the group trajectory of each robot undulates a little bit in the first 8 second transition

time. After 8 seconds, the group moves on the desired trajectory and undulates a

little bit more than the previous test (the straight line case). Drawing the consensus

tracking errors for virtual center positions in Fig.8.13 shows that the tracking error
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Figure 8.10. Consensus tracking errors for the virtual position: straight line case

of each robot converges in the first 20 second and the minimum value is below 2 cm.

After 20 seconds it increases between 2 cm and 3 cm. This is because the motor speed

of each robot, which is calculated and set by the controller once per second, is held for

each 1 second during the movement. So the system is not ideal time continuous. For

the curve tracking case, the virtual leader of each robot moves with an acceleration

in Y axis direction which is equal to 4 mm/s2. After the group starts moving, the

virtual leader’s velocity increases greatly. Then it is difficult for each robot to react

and match the velocity and motion of its virtual leader. This hardware limitation

causes the consensus tracking errors’ performance as shown in Fig.8.13. If the group

moves for over 200 seconds, then the speed of the virtual leader along Y axis becomes

more than 0.8 meters per second which is the maximum speed of P3− AT . It is the

main difference compared with the previous test (straight line case).

Due to the proper design of the control gain ki, the mobile robot group can track
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Figure 8.11. Experimental result of group movement tracking curve:(a) 0 second; (b)
7 second; (c) 20 second; (d) 35 second

the virtual leader’s trajectory and maintain the desired group formation.

8.3 Summary

In this section, the experimental results of the work described in Chapter 4 and Chap-

ter 6 have been shown and discussed. The network delay and packet loss measurement

system has been introduced. The network control system has been established, the

results show the feasibility of the proposed control strategy. The multiple P3 mobile

robot experimental platform has been set up. The consensus formation control strat-

egy described in Chapter 6 has been applied to the platform. The results show the

good group performance due to the feasibility of the proposed approach.
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Figure 8.12. Group movement tracking curve

Figure 8.13. Consensus tracking errors for the virtual position: curve case



Chapter 9

Conclusions

9.1 Conclusions

In this thesis, the stabilizing problem of Networked Control Systems (NCSs) with

packet losses and bounded time varying delays have been investigated. The packet

loss has been modelled as a random process. The control objective is set to design a

sampled-data stabilizing controller via communication channels with random packet

losses and bounded time varying delays.

A real-time network induced delay and packet loss measurement system was built

to study the real network characteristics. With the experimental measurement, the

characters of time varying delays and packet losses in the real network have been

studied and applied into the packet loss modelling process.

A novel packet loss dependent Lyapunov functional candidate has been constructed

to solve the problem on the stochastic stabilization of the NCSs with the effect of

Markovian packet loss only. Stability conditions are derived via Lyapunov approach

and the corresponding stabilizing sampled-data controller design techniques are also

given based on the conditions. Then the effects of both Markovian packet loss and

time varying delays occurring in both channels are considered. Another novel packet

164
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loss dependent Lyapunov-Krasovskii functional (LFK) has been constructed to solve

the stochastic stabilization problem for NCSs with both random packet loss and time

varying delays. The delays and packet losses that were measured during the network

experiments are firstly replayed for the simulation. A real-time networked control

system has been built based on MATLAB application to test the stabilizing ability of

the controller. Both simulation and experimental results show the effectiveness and

feasibility of the proposed approach,

After dealing with the stabilization of single network control system, the multi-

agent system has been investigated. The consensus-based design scheme has been

applied to the formation control of multiple wheeled mobile robot group with a vir-

tual leader. The distributed formation control architecture has been defined. The

consensus tracking algorithm is applied to develop the proposed consensus based

formation control strategy. A novel delay-dependent multiple Lyapunov functional

candidate has been constructed to investigate the convergence of the tracking error.

The networked induced delays also have been considered in the proposed approach.

In simulation works, the performance of the robot group with and without group

communication have been compared with each other. The comparing results show

the importance of the communication in formation maintenance of the robot group.

The theoretic design also has been supported by the simulation results. The Pioneer

3 mobile robots have been used as an experimental platform for the implementation

of the proposed distributed formation control architecture. The experimental results

show the effectiveness and feasibility of the proposed approach.
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9.2 Future Work

Some interesting work extensions are listed as follows:

1) Consider both packet loss and delays in the communication channels of multi-

agent system. The packet loss can be modeled as a random process as what have

been done in the work of stochastic stabilization of a single network control system.

Then the stochastic stabilization of multi-agent systems can be tackled by designing

a novel consensus-based distributed control strategy. The results can be compared

with that of the proposed approach presented in this thesis.

2) Consider the consensus-based stabilization problem of multi-agent systems with

switching communication topology. There are two ways to model the switching com-

munication topology. One is assuming there are n fixed topologies, where n is a scale.

The communication topology will switch from one to another at each time. The

probability of each switch is known. Then the switching process can be modelled as a

random process by using Markov chain. Another is to choose any two members in the

group as investigating objective. Then there are only two statuses for the communi-

cation between them: “yes” or “no”. The probability of “yes” or “no” is assumed to

be known. The communication topology can be modelled as a deterministic process.

Compared with the previous way, deterministic switching topology is more closed to

real case and more difficult to tackle.

3) Consider the consensus-based stabilization problem of multi-agent systems with

limited information exchange. In this case, each member in the group is supposed to

communicate only with its local neighbors. It is the real situation of the behavior of
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a flock of animals, such as fish, ant and birds. How to define the local neighbor is a

key problem for this case. There is one way that the local neighbor can be defined

by distance. However, the distance keeps changing during the group movement which

means the communication topology is switching. The limited information exchange

and the switching communication topology make it very difficult deal with the con-

sensus problem of the systems. This situation also make it become a challenging and

interesting research area.
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Appendix A: Brief Operational Manual for Experiment in Section 8.2

1) Install Serial-to-USB connector driver to the laptop.

2) Run Microsoft Visual C++ 2008 Express Edition on the laptop. Create a

project named “simple connection”. Copy the example code named as “simple con-

nection” from ARIA manual to the project, compile the code.

3) Connect the Pioneer 3 mobile robot with the laptop using the Serial-to-USB

connector, run the “simple connection” project. If the robot reacts to the project

(clicking) which means the driver has been installed successfully, then the robot is

ready for the experiment.

4) For another Pioneer 3 robot, repeat the steps 1 − 3, make sure each robot is

connected well with the laptop.

5) Connect each laptop to the wireless router via the wireless network. Use “ip-

config” command to acquire the ip address of each laptop. Use “ping” command to

ping from one to another to make sure both are connected via the router.

6) Run the project on the laptop for each robot. The experiment starts.
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