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Abstract

The importance of knowing what type of traffic is flowing through a network is

paramount to its success. Traffic shaping, Quality of Service, identifying critical

business applications, Intrusion Detection Systems, as well as network administra-

tion activities all require the base knowledge of what traffic is flowing over a network

before any further steps can be taken. With SSL traffic on the rise due to applica-

tions securing or concealing their traffic, the ability to determine what applications

are running within a network is getting more and more difficult. Traditional methods

of traffic classification through port numbers or deep packet inspection have been

deemed inadequate by researchers thus making way for new methods. The purpose

of this thesis is to investigate if a machine learning approach can be used with flow

features to identify SSL in a given network trace. To this end, different machine

learning methods are investigated without the use of port numbers, Internet Protocol

addresses, or payload information. Various machine learning models are investigated

including AdaBoost, Naive Bayes, RIPPER, and C4.5. The robustness of the results

are tested against unseen datasets during training. Moreover, the proposed approach

is compared to the Wireshark traffic analysis tool. Results show that the proposed ap-

proach is very promising in identifying SSL traffic from a given network trace without

using port numbers, Internet protocol addresses, or payload information.

x



Acknowledgements

I would like to thank my supervisor Dr. Nur Zincir-Heywood for her guidance

throughout this work. The valuable advice I received from Riyad Alshammari was

also of great benefit. The generation of the dataset used in this thesis wouldn’t have

been possible without the help from Dalhousie’s UCIS and TARA. Specifically, Dana

Echtner, Jeff Allenwood, and Krista Skodje. A big thank-you goes out to all of the

teachers and professors who taught me how to learn and my family for their support.

Finalement, je voudrais remercier ma lapinoune pour toutes les biscuites. J’tm.

xi



Chapter 1

Introduction

Correct classification of network traffic is a fundamental step required for many piv-

otal services required by various stakeholders including Internet Service Providers

(ISPs), governments, and system administrators. These services include traffic shap-

ing, ensuring the uptime of networked mission-critical applications, workload model-

ing, managing bandwidth budgets, detecting bottlenecks, and balancing Quality of

Service (QoS) [4, 3, 2]. To this end, the classification of network traffic, is imperative

for making the necessary calculations in order to resolve any of the above duties.

Successful methods pursued in the past have relied on deep packet inspection by

examining the contents of the payload or using port numbers to correctly identify

the application behind a traffic stream. Unfortunately they no longer hold as much

weight as they once did due to encryption rendering packet payloads non-transparent

and dynamic port allocation enabling applications to connect on alternate ports then

those assigned by the Internet Assigned Numbers Association (IANA). For example,

applications attempting to mask their traffic in order to circumvent firewalls may use

the same ports as other white-listed services. Alternatively, applications may conceal

packets by masquerading as a different protocol through tunneling or even employ

the use of cryptographic protocols to protect their payloads.

Secure Socket Layer (SSL) is a fundamental security protocol belonging to the

application layer in the Internet Transmission Control Protocol Internet protocol

(TCP/IP) model but residing below higher level application protocols and above

TCP. It enables e-commerce transactions and other applications to communicate se-

curely over a public network by encrypting the packet payload. Despite its good

intentions SSL also creates a black hole of encrypted network traffic, which may be

used for illegitimate or non-network sanctioned purposes. Generally speaking, the

disadvantages brought about by encrypting traffic create a security trade-off between

a secure protocol and losing knowledge about a network [53].

1
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Recent research has shown a sharp rise in the use of the SSL protocol amongst

applications to encrypt network traffic [7]. This trend shows no signs of slowing

down as application developers race to encrypt or mask their traffic as a different

protocol while the demand of knowing all types of traffic becomes of greater interest

to ISPs, governments, and network engineers. With the rise of applications utilizing

SSL, the need for a different manner of traffic classification is paramount to resolving

many network questions. To this date, there has been no reported classification

measurement using a flow-based analysis on encrypted SSL traffic.

Past investigations into traffic classification have shown promising results pri-

marily in the classification of unencrypted traffic with more recent explorations into

encrypted traffic. These methods rely on the statistical patterns left behind by the

packet attributes or flows to determine which application is within a given stream.

Packet-based approaches by Bernaille et al. [7] have shown promising results by uti-

lizing the first few packets for classification. Other methods using Hidden Markov

Models (HMMs) by Wright et al. [52] have also shown similar results by taking an

alternative flow-based approach using clustering. Machine Learning (ML) techniques

using AdaBoost, C4.5, Naive Bayes, RIPPER algorithms by Alshammari et al. [4]

have also produced promising results in the area of encrypted traffic classification.

Nevertheless, few have incorporated the use of SSL in their training and those that

have conglomerated the traffic together treating it as a single label with no regard to

the underlying application [19, 18, 9].

The objective of this thesis is to investigate a statistical flow-based approach to

classifying applications implementing or being tunneled through the SSL protocol

using supervised ML techniques. The ML algorithms chosen by Alshammari et al. [4]

were chosen primarily due to their human readability post classification. This read-

ability is important for interpreting how a ML algorithm arrived at its results and

for highlighting which feature set attributes were actually used. Thus, a similar ap-

proach is followed in this thesis. Since no prior dataset focused on SSL, a new one

was automatically generated in the lab. The use of tunneling protocols was imple-

mented to further obfuscate the traffic by introducing a degree of entropy into the

dataset. Numerous precautions were taken to prevent a biased traffic set which does

not represent real traffic.
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In the rest of this thesis, Chapter 2 presents a literature review with more in-depth

look at previous work. Chapter 3 describes the automated data collection process

followed to generate the dataset used. Chapter 4 then breaks down the methodology

steps taken to prepare and train the proposed system. An analysis of the results

is offered in Chapter 5. Chapter 6 presents a baseline comparison of the proposed

system using the well known Wireshark traffic analysis tool. Finally, conclusions are

given and future work is discussed in Chapter 7.



Chapter 2

Literature review

The intent of this chapter is to present the reader with an overview of SSL as well as

past research related to this thesis. Initially, a description and short history on the

evolution of SSL is offered. Various methods of traffic classification are then discussed

along with their advantages and disadvantages.

2.1 Secure Socket Layer — SSL Protocol

This section discusses the history and usage of SSL around the world today for security

and e-commerce. An explanation on the SSL encryption process is then brought to

light. The evolution of SSL to Transport Layer Security (TLS) is then described with

emphasis on the enhancements and differences compared to its predecessor.

2.1.1 Overview

The concept behind SSL is to provide secure communication over a public network

through the use of multiple algorithms for cryptography, digests, and signatures. By

supporting this type of dynamic authentication, SSL servers are able to adapt to

any legal obligations surrounding the use of cryptography by choosing which algo-

rithms to use during the handshake. To accommodate every possible application,

SSL was designed to be application independent, laying between the transport layer

(specifically over TCP) and application layer of the TCP/IP protocol stack. It was

originally designed by Netscape to secure e-commerce transaction over the Hyper-

Text Transfer Protocol (HTTP). However, the more prominent HyperText Transfer

Protocol Secure (HTTPS) protocol is not the only application that can run over SSL.

As stated by Bernaille et al. [7], other application protocols are realizing the need to

encrypt and conceal their data from packet sniffers and are implementing Application

Programming Interfaces (APIs) to use back-end SSL libraries. For those application

instances that are not able to support SSL communication, unencrypted TCP traffic

4
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can also be wrapped by programs such as Stunnel [48] to encrypt other applications

such as e-mail. Regrettably, nefarious users may try to conceal their attacks within

this protocol creating the illusion that a high amount of legitimate SSL traffic is oc-

curring. Thus, a security trade-off exists between ensuring confidential e-commerce

transactions via HTTPS and losing network flow knowledge [53].

As discussed earlier, the requirement for SSL stemmed from the need for a secure

communication medium for web traffic. Since web server communication occurs in

clear-text via HTTP, transmitting confidential information in this manner over an

insecure network was not a viable option. Thus, in 1994 Netscape developed SSLv2 to

protect the consumer during e-commerce transactions [49]. Unfortunately, the original

implementation suffered from numerous security holes and it was later superseded

by SSLv3 in 1995 due to security issues [49]. The upgrade permitted the use of a

wider variety of encryption algorithms and certificate authentication [49]. To help

the adoption of this new protocol, SSLv3 was designed to be backwards compatible

with SSLv2 [32]. Thus, during the handshake process the server is able to fall back

to the methods present in SSLv2 [32].

The SSL encryption process begins with a handshake exchange when a client

requests an SSL-enabled service from a server. With the client’s initial request comes a

series of supported authentication methods called CipherSuites [33]. Upon receipt, the

server calculates the strongest possible encryption methods based on the CipherSuite

and sends its decision as well as a digital certificate back to the client. This certificate

includes a public key as well as other pertinent information regarding the server [49].

Since the public key is freely available, additional precautions are taken to prevent

tampering. As such, a trusted third party Certificate Authority (CA) is used to verify

the legitimacy of the server. The CA maintains a collection of valid certificates and

uses its private key to sign server certificates [49]. A client can then use the public key

of the CA to verify the authenticity of the server. The next step involves generating

session keys to create a secure stream between the client and the server. A random

number is first generated by the client, encrypted using the server’s public key, and

sent to the server. While an attacker could easily capture this data, it would have to

know the private key of the server to successfully decrypt the random number [49].

The client and the server then use the random number to encrypt and decrypt the
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remaining connection. Figure 2.1 illustrates the overall process.

Figure 2.1: Overview SSL process

2.1.2 Transport Layer Security — TLS Protocol

In an attempt to standardize and have an open community supported standard,

TLSv1 was created by the Internet Engineering Task Force (IETF) in 1999 [32]. It

is important to note that TLS and SSL are not interchangeable and one protocol

must be decided upon before the handshake is completed [32]. As such, it is widely

accepted that SSLv3 has evolved into TLSv1 despite several minor differences in the

following list 1:

• The replacement of the Message Authentication Code (MAC) algorithm by the

keyed-Hashing for Message Authentication Code (HMAC) algorithm for more

secure hashes is implemented.

1http://technet.microsoft.com/en-us/library/cc784450(WS.10).aspx
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• Additional alert messages are added for easier diagnostics.

• The usage of intermediary CAs is permitted instead of requiring confirmation

from the root CA.

• The usage of padding block values for block cipher algorithms is added for TLS.

• Due to the closed source nature of the Fortezza algorithms, they are not included

in the TLS RFC [32] because it contradicts IETF policy.

• A few minor changes are implemented in some of the message fields.

Additionally, TLS now supports the User Datagram Protocol (UDP) as the Data-

gram Transport Layer Security (DTLS) protocol [21]. At the time of writing, OpenSSL

is currently compiled with TLS by default and is the most popular implementation of

the SSL/TLS protocols [49]. The IETF is currently working on TLSv1.2 to remove the

protocol’s dependence on MD5 and SHA-1 digest algorithms, which have been com-

promised in recent research [10]. Finally, new authenticated encryption modes using

Counter Mode Encryption (CTR) and combined encryption/authentication modes

are planned [10].

2.2 Previous work

To this date, there is very little literature available focusing on encrypted SSL traf-

fic classification. Most research on SSL analysis has concentrated either on building

IDSs that rely on behavior-based anomaly detection [53] or developing algorithmic

optimizations to reduce computational cost preventing DoS attacks [39, 45, 42, 56].

Yet few researchers have investigated the classification of SSL traffic across different

application instances. Most traffic classification methods focus on unencrypted data,

despite the rise in applications securing or concealing their data with SSL [7, 45]. For

those works, which include encrypted traffic, whether it be SSL or another form of

encryption, many simply state that their methods are not affected by the encryption

process as they rely on packet or flow attributes [36, 55, 19, 9]. Nevertheless, few

researchers actually attempt to parse those encrypted streams to determine the con-

cealed application instances [46]. Thus, in many network classification papers SSL is
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simply conglomerated together as a single application instance representing a small

portion of the overall dataset [19, 18, 9]. This aggregate class approach does little

to present Internet Service Providers and network administrators with the ability to

determine the exact application hidden in a traffic flow [19, 38].

The level of classification granularity becomes further obfuscated by the use of

tunneling programs in an attempt to encrypt or conceal network traffic. Tunneling is

a frequently mentioned term amongst researchers [36], however it is simply referred to

in the related work sections or used to point out potential drawbacks in methodology

of others. With the exception of Tunnel Hunter [16, 17, 12], very few seem to have

actually attempted to classify tunneled traffic, much less encrypted tunneled traffic.

Research done by Dusi et al. [16, 17] has shown promising results, but it focuses solely

on HTTP [12] and Secure Shell (SSH) [16, 17] tunnel detection. The authors claim

although Domain Name Server (DNS) tunnels also run in the application layer and

are generally allowed by most firewalls, they are ignored in Dusi et al.’s work due

to bandwidth constraints and lower popularity of usage [16]. Even then, in order

for Tunnel Hunter to work on encrypted traffic, network administrators must enforce

only one type of user authentication [16]. Indeed, such a requirement will not work

in practice.

Williams et al. [51] used similar classification methods with flow-based approaches

utilizing NetMate [15] preprocessing and ML algorithms but simply do not account

for SSL traffic. Other statistical fingerprinting techniques by Crotti et al. [13] follow

a similar route using clustering but concentrate on a smaller subset of application

instances without any encryption.

Recent research studying encrypted flow-based streams has clearly demonstrated

that machine learning algorithms are able to classify encrypted network traffic with

a greater degree of accuracy then expert driven systems [1, 4, 3, 2]. The purpose of

those works was to determine the possibilities of traffic signatures amongst encrypted

SSH traffic. SSL and SSH share many similarities but also differ greatly due to the

following key points listed from Barrett et al. [5].

• Server-side authentication for SSL is optional whereas it is a requirement for

SSH.

• TLS requires Public Key Infrastructure (PKI) using certificates whereas SSH is



9

limited to keys.

• SSH supports additional features compared to SSL via its connection protocol

allowing tunneling and other services to function.

Bernaille et al. [7] classified SSL using the first few clear-text packets to determine

the encryption algorithm used and application type. They achieve an 85% degree of

accuracy but claim their application is not scalable due to SSL compression features,

which would cause their detection system to fail.

The use of HMM by Dainotti et al. [14] and Wright et al. [52] produced good results

demonstrating the ability of packet-level statistical analysis. Wright et al. [52] made

use of encrypted SSL connections in their dataset prompting further investigation.

In order for their system to work, additional preprocessing steps were taken by the

authors to improve the recognition ability of their classifier using vector quantization

and clustering. Only three post-encryption features from packets are used to build

these models: size, timing, and direction. A comparison of the results obtained using

the same methodology detailed in this paper is presented in Chapter 6.

Regardless of the methods used, many researchers agree that traditional port

numbers used by systems such as Wireshark [11] are no longer a viable manner to

detect traffic due to dynamic port allocation [36, 18, 55, 19]. Furthermore, the use of

signature matching in deep packet inspection [37], such as Bro [41] or SNORT [43]

to identify distinct applications presents several disadvantages. A database of all

application signatures must be maintained and continually updated to match new

versions, which may change the signature of an application [55, 18]. Additionally,

user privacy concerns as well as its inability to be applied against encrypted traffic

also make it an undesirable method [55, 18]. As such, many researchers have turned

towards ML algorithms, which are built on the pretense of pattern recognition using

some attributes of the network traffic [55, 51]. Their usage becomes especially im-

portant when considering how large the captured IP packet traces can grow as well

as the fluctuations amongst the streams [38]. Williams et al. [50] demonstrated the

performance of several ML algorithms including various implementations of Naive

Bayes and C4.5 on network traffic in general without considering encrypted traffic

specifically. They were evaluated in terms of the accuracy, training times, and com-

putational speed to achieve their results. On the other hand, Alshammari et al. [4]
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specifically focused on the classification of encrypted traffic. However, in those works

the focus was on SSH and Skype only. Human interpretation of the results was made

easy thanks to the ML algorithms used: C4.5, AdaBoost, and RIPPER.

Moreover, from Ruixi et al. [55] and Este et al. [19], it can be seen that applications

carry distinct fingerprints in network traffic. What differs amongst the methods of

most researchers is which packet or flow feature-set posses enough information to

correctly classify an application or grouping. Many researchers agree that packet

sizing and inter-arrival times tend to be amongst the most popular attributes offering

the most information [52, 38, 13]. Williams et al. actually proved that greater

classification accuracy can be obtained through reduced feature sets [50, 38], which

was also confirmed in the encrypted traffic classification work of Alshammari et al [3,

2]. Additionally, the ML algorithms employed offer different approaches to classifying

the traffic based on how they assign weights to the different flow attributes [38]. The

other important characteristic to consider are the preprocessing steps as well as the

datasets used as due to their large influence on the final results [38].

Aside from focusing on encrypted SSL traffic, this thesis also differs from previous

literature on the datasets employed. The usage of public data sets for training can

be misleading as they are only as accurate as the labeler employed [46]. Others have

failed to properly represent their datasets by excluding parts of traffic, such as UDP

[36], or using simulation techniques, which do not account for “real” background

network traffic. Others have fixed the algorithms used to only account for one type

of handshake encryption [52].

Nguyen et al. [38] highlighted the importance of balancing training sets by pointing

out the differing results found by two researchers, Park et al. [40] and Erman et al. [54],

using the same ML algorithms and datasets. Unfortunately, the resulting network

traffic would fail to adequately represent real world traffic. High degrees of accuracy

can be attributed to the high sensitivity of training for the ML algorithms since the

training sets and data preprocessing methods greatly influence the resulting output.

Nevertheless, these models would fail to scale to the real network scenarios where

certain assumptions or restrictions are not a viable option. In order to demonstrate

the robustness of the results in this thesis, additional tests are performed on different

datasets to investigate the adaptability of the proposed approach.



Chapter 3

Data collection

The purpose of this chapter is to present an overview of the data collection process

followed to generate the required traffic. The reasoning behind generating a new

dataset can be attributed to the lack of publicly available labeled datasets. Also,

requiring the absolute ground truth is imperative for the ML algorithms to accurately

identify key classification features. Finally, many existing datasets have very little

SSL traffic with the majority belonging to HTTPS. Thus, a training data set is

generated to overcome these problems. In the following description of the network

layout, housing where the dataset is generated is first described. Following this is an

in-depth look at how the traffic was captured at multiple sources. The process behind

centralizing all of the captured traffic into a repository is then brought to light. An

explanation regarding the overall entropy of the captured traffic is then discussed.

Finally, all of the applications and tunnels used in this work are described in further

detail.

3.1 Network Setup

To prevent a single network’s hardware from influencing the packet attributes, two

networks were used to gather the data: one which operated under Dalhousie Univer-

sity1 and the other independently under TARA2. The Dalhousie network contained

one computer, nims, whereas the TARA network housed both taraserver and tar-

aclient computers. Since there was only one physical computer at Dalhousie, nims

hosted two virtual machines using VMware 3 - nims-server and nims-client. All ma-

chines ran the open source OS Ubuntu 4 Linux distribution, but each site differed

in versions varying from 9.04 ’Jaunty Jackalope’ to 9.10 ’Karmic Koala’. At each

1http://www.dal.ca
2http://web.archive.org/web/20080531140809/http://www.tara.ca/
3http://www.vmware.com/
4www.ubuntu.com

11
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network, the machines were segregated on a separate subnet with static IP addresses

to prevent contamination and respect network privacy policies 5. Since some of the

services required hostnames, dynamic DNS through Dynamic Network Services Inc. 6

was used for all of the TARA services with the exception of mail. The machines on

the Dalhousie network were supplied with their own hostnames through Dalhousie’s

DNS servers.

Dalhousie’s firewall rules allowed for any traffic on any port from TARA to flow

through, while blocking the rest of the outside world except for SSH for remote admin-

istration. Additionally, an exception was required for nims-server to communicate

with Dalhousie’s mail servers. An MX record, i.e. a mail server record, was setup

at Dalhousie to forward mail from their mail servers to nims-server. Dalhousie Uni-

versity’s Information Technology Services (ITS) took the added precaution of white-

listing email addresses flowing between the two networks. The TARA firewall setup

mirrored that of Dalhousie’s ensuring all traffic flowing between the two networks

was locally generated. While remote administration was essential to ensuring a high

degree of uptime, it unfortunately also left an open invitation to external probing.

More information on how this was further secured can be found in section 3.4.1.

Originally, The Onion Router (TOR)7 network setup was considered to help in-

troduce additional randomness into packet arrival times and inject further entropy

into the dataset. TOR allows users to re-direct their traffic through a network of

nodes before reaching the final destination thus obscuring their traffic from network

administrators. Despite the bandwidth overhead, the open source TOR program does

an excellent job of anonymizing a client’s requests as well as the responses back from

the actual server. However it was deemed infeasible after encountering configuration

difficulties with a majority of the services and incessant attacks from various coun-

tries. Furthermore, one of the tunneling services required root access to run, opening

up a potential exploitable hole. An overview of above network setup plus additional

TCPdump captures discussed in the section 3.2 is visualized in Figure 3.1.

5Dalhousie University Computing and Information Services policy on capturing network traffic
http://its.dal.ca/policies/5.5.2-data-sets.pdf

6http://www.dyndns.com/
7http://www.torproject.org/
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Figure 3.1: Overview of network and TCPdump captures

3.2 Capturing traffic

As shown in figure 3.1, packet captures were acquired using the TShark 8 TCPdump 9

program in libpcap binary format. With the exception of nims, each machine captured

its own traffic to avoid any possibility of packet loss between the networks. The two

virtual machines at Dalhousie performed exactly like separate physical boxes from a

network point of view preventing any interference from occurring. All client and server

machines ran a script initializing TShark at boot time to start recording TCPdump

files. The command line options passed to TShark specified several important details.

Firstly, traffic was captured on any interface with no network name resolution to

ensure full coverage and reduce TShark’s memory footprint respectively. In order to

help automate the capture, the multiple file ’ring mode’ was enabled. This mode of

8http://www.wireshark.org/docs/man-pages/tshark.html
9http://www.tcpdump.org/
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operation continually captured packets until the TCPdump file reached a maximum

size of 350MB. At this point, TShark would open up another file and begin writing to

it, incrementing the filename counter by one. Traffic from the nims IP address was

also explicitly ignored for backup purposes described in section 3.2.1. Finally, the file

path location for storage of all of these files was specified.

3.2.1 Centralizing the Traffic Captures

To avoid using up the limited resources available on each client and server machine,

an alternative mode of storage was required. As a fully automated solution, nims was

chosen to act as a central server repository housing all of the completed TCPdump

traffic files. This was accomplished in two phases: ensuring the integrity of the

TCPdump files and subsequently transferring them to the repository. The first phase

used a cron job script on each client and server machine to verify the file size of the

TCPdump file. These files were then moved to a special folder location every 30

minutes. This verification step was paramount to ensuring the TCPdump file was

available to be moved and not currently being written to or incomplete due to a

power failure. The second phase executed a cron job script every 12 hours on the

physical nims machine. This script secure copied (SCP) into each client and server

machine and transferred the TCPdump files to their respective directories in nims,

thus keeping all traffic segregated. Once transferred, the completed TCPdump files

were then removed remotely. To avoid contamination of the dataset and recursive

loops, nims IP address was specifically excluded in the TShark startup command.

This allowed the transfer of these 350MB TCPdump files to occur without being

captured by the local TShark processes. An overview of the backup and centralization

steps is illustrated in Figure 3.2.

3.3 Traffic heterogeneity

The applications selected for the data set were based on their ability to be reproduced

by being mainly open source, the heterogeneity of protocol traffic they provided, their

popularity, and their inclusion in the literature. TCP, UDP, and DNS traffic were all

important to provide a good mix of protocols and packet data. The reasoning behind

all of this heterogeneity stems from the need for realistic background traffic to give the
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Figure 3.2: Overview of the automated backup and centralization process

illusion of real network traffic [1, 4]. Without this background noise to inject entropy

into the dataset, the classifiers would be too restrictive and not scalable to different

networks [1, 4]. The usage of a master port list for labeling purposes was important to

determine the ground truth of which ports were being utilized for application specific

traffic with everything else being labeled as spurious background traffic.

3.4 Application Instances and Tunnels

The applications used to populate the dataset as well as their corresponding protocols,

initialization scripts, and required parameters are discussed in this section. Any

modifications to application source code and configuration files are also brought to

light. All services were set to startup on boot to prevent power-failures from creating

zombie processes on the clients. With the exception of Skype, all of the application

programs are both open source and freely available through use of non-commercial
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licenses, thus promoting the reproducibility of the dataset. Traffic for all of the

application instances was gathered over a period of 4 months with intermittent breaks

for maintenance.

3.4.1 OpenSSH

SSH [30] enables secure communication, including data transfer and command ex-

ecution, to a remote host using public key cryptography. It is a valuable tool for

system administrators or anyone wanting to securely connect and even forward GUI

programs back to their client computers.

OpenSSH version 5.1p1 10 was installed through Ubuntu’s Synaptic package man-

ager 11. Through use of the sshd config configuration file, the OpenSSH server was

locked down to only allow remote connections from a special administrative account.

Root login was also prohibited from being authenticated. Additional filtering was

applied forcing client logins to only be authenticated if the connection came from

a Dalhousie or TARA IP address. Finally, in an effort to simulate user-interactive

login, SSHPASS 12 was used for to better protect user passwords and avoid setting

up public/private keys.

The SSH script was wrapped within SSHPASS to perform the initial authenti-

cation. Afterwards, commands were executed remotely, and files were transferred

between the client and server. Approximately 852748 SSH flows were generated.

3.4.2 Web

HTTP [23] and HTTPS [24] web traffic was captured through use of a Linux Apache

MySQL and PHP (LAMP) server setup. All web services were installed using Ubuntu’s

Synaptic package manager with the latest versions in the repository as follows: Apache

v2.0 13, MySQL v5.0.75 14, and PHP v5.2.6 15. Additionally, a self-signed SSL cer-

tificate key was generated at both sites to accept HTTPS connections. Both HTTP

10http://openssh.org
11https://help.ubuntu.com/community/SynapticHowto
12http://sourceforge.net/projects/sshpass/
13http://httpd.apache.org/
14http://www.mysql.com/
15http://www.php.net/
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and HTTPS websites possessed the same web pages consisting of HyperText Markup

Language (HTML) and Hypertext Preprocessor (PHP) files.

Client side scripts made use of the wget 16 open source program to crawl over

both sites following links to all the pages. To enable automated client web requests,

a flag to force automatic certificate acceptance was used. Additionally, certain pages

would throw exceptions, such as 404 page not found errors, upon request from the

recursive crawling client to further emulate a user browsing. Both text and binary

data files were transferred between client and server. Approximately 10092691 HTTP

and 8562626 HTTPS flows were generated.

3.4.3 Mail

Postfix v2.5.5 17 and Dovecot v1.1.11 18 were used to send and receive both encrypted

and unencrypted email traffic. The Dalhousie site was responsible for unencrypted

traffic whereas the TARA site was solely encrypted traffic. User account credentials

were created and authenticated using the Simple Authentication and Security Layer

(SASL) framework [28]. The network setup at Dalhousie forced mail to go through

several hops before arriving at the Faculty of Computer Science’s servers which then

relayed the emails to nims-server. On the other hand, taraserver had a slightly dif-

ferent MX record setup and was capable of dealing with emails directly. Additionally,

tunneling was impossible from the Dalhousie site due to external firewall rules, so all

tunneling was done at the TARA site. In order to avoid email duplication and reduce

the storage load on the servers, Post Office Protocol 3 (POP3) [26] was chosen over

Internet Message Access Protocol (IMAP) [25]. By doing so, it restricted emails to

the client program once downloaded. OpenSSL v0.9.8g 19 was installed to support

Simple Mail Transport Protocol Secure (SMTPS) [29] and Post Office Protocol Secure

(POP3S) [27] authentication with both SSL and TLS protocols.

On the client side, emails were sent with and without attachments using the

mailsend program 20. Mailsend allowed emails to be sent via the command-line with

16http://www.gnu.org/software/wget/
17http://www.postfix.org/
18http://www.dovecot.org/
19http://www.openssl.org/
20http://www.muquit.com/muquit/software/mailsend/mailsend.html
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arguments specifying the sender, recipient, body, mail server, authentication creden-

tials, and optional attachments. Custom scripts further complimented its capabilities

by allowing optional tunneling ports to be specified.

The Thunderbird v2.0.0.24 mail program by Mozilla 21 was used as the incom-

ing mail client. Due to the self-signed certificate nature of the mail services, the

Remember Mismatched Domains v1.4.6 add-on 22 was used to automatically accept

certificates. Different accounts, protocols, and tunnels were then specified to receive

emails at regular intervals. Thunderbird was set to automatically download emails, so

its cron job simply launched the program at specified times. To give an impression of

the volume of mail traffic, the 260000 inbox limit of emails imposed by Thunderbird

had to be cleared multiple times. Approximately 29818 POP3, 1479638 SMTP, 8786

POP3S, and 420502 SMTPS flows were generated.

3.4.4 VSFTP

File Transfer Protocol (FTP) [22] is a commonly used protocol for transferring files

allowing clients to connect to servers and issue series of commands to either place

or retrieve files. FTP traffic was generated through use of the Very Secure FTP

Daemon (VSFTP) v2.2.0 server 23. Command-line scripts using both encrypted and

unencrypted protocols would retrieve and submit files. Both binary and text files

were transferred with consistently changing sizes. Various configuration options were

taken to restrict FTP users in a sandbox environment. This would help to reduce the

spread of contamination should a single account become compromised. Anonymous

FTP traffic was disabled to prevent any guest logins. The SSL certificate used was

the one provided by Ubuntu during installation. Different ports for both data and

control channels at each site were used to separate encrypted and unencrypted traffic.

Approximately 130826 FTP and 151580 FTPS flows were generated.

21http://www.mozilla.org/projects/thunderbird/
22https://addons.mozilla.org/en-US/firefox/addon/2131/
23http://vsftpd.beasts.org/
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3.4.5 Skype

Skype is a chat client, which allows both text, voice, and video to pass through its

proprietary encryption algorithms for secure communication to any telecommunica-

tions device in the world. Representing the only closed-source application, Skype

v2.1.0.47 (Beta) 24 was installed through the binary Debian packages provided by the

Skype company. Configuration was limited to selecting which port to use for traf-

fic. No automation was possible due to its closed-source nature so human-controlled

conversations were executed at both sites. Specifically, the Skype accounts setup on

each client chatted with each other with a physical user directing the conversation.

Approximately 3489 Skype flows were generated.

3.4.6 Subversion

Subversion 25 is a version management system used by many software projects en-

abling multiple users to work on the same file without accidentally overwriting each

others changes. It uses a central repository to house various versions of files support-

ing additional functionality such as branching, reverting to past files, and comparing

file versions. Subversion v1.6.5 26 was installed and a repository was created on the

servers holding a variety of files. Command-line client-side scripts listed, checked-out,

modified, and committed these files using subversion SVN commands to the reposi-

tory. Since subversion’s protocol is unencrypted clear-text, it relies on an SSH tunnel

to provide secure communication. As such, secure subversion traffic was simply la-

beled as another type of SSH behavior. Approximately 40897 subversion flows were

generated.

3.4.7 Vuze and Bit-torrent

Bit-torrent allows files to be transferred between peers without having to consume the

bandwidth of a central server [8]. To simulate background traffic, as well as introduce

wave of UDP traffic, bit-torrent files were downloaded. The original command-line

24http://www.skype.com/intl/en-us/home
25http://subversion.apache.org/
26http://subversion.apache.org/
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bitTorrent client v3.4.2-11.1 in Ubuntu’s Synaptic repositories was used for unen-

crypted bit-torrent traffic. Vuze v4.3 27, the evolved form of Azureus 28, was used

for encrypted SSL traffic bit-torrent downloads. The former program simply required

a torrent file as a command-line argument — no other alterations were necessary.

The configuration options in Vuze allowed for numerous options such as the ability

to resume downloads automatically and forcing encryption to be required. The files

selected for download were varying distributions of Ubuntu. Approximately 2332976

Vuze and 1422414 bit-torrent flows were generated.

3.4.8 Jabberd and Pidgin CHAT

Peer-to-Peer (P2P) chat was automatically generated using the Jabberd v1.4.3 server 29

and Pidgin v2.6.2 30 instant messaging client - the default client for Ubuntu. Jab-

berd uses the open IETF supported Extensible Messaging and Presence Protocol

(XMPP) [34] to allow P2P messaging as well as relaying client statuses. In contrast

to other chat servers, Jabberd is entirely open source and cross-platform. It also

supports SSL encryption for secure communication between two or more parties.

Unfortunately, the Ubuntu 9.10 Karmic Koala distribution used a different version

of Jabberd, which is a completely different project. As such, the nims-server Jabberd

service was built from source using the same version setup on taraserver. The source

code was modified to allow SSL connections to avoid a reported bug 31.

Pidgin’s integration with the back-end lib-purple library 32 allowed for automatic

messaging and status changes to occur between multiple clients via the purple-remote

package 33. Once integrated with the proper Xserver display environment variables,

cron jobs were able to launch and kill Pidgin processes. Additionally, Pidgin’s buddy

pounces allowed automatic conversations to occur amongst the clients by sending

Instant Messages (IMs) based on events.

27http://www.vuze.com/
28http://azureus.sourceforge.net/
29http://jabberd.org/
30http://www.pidgin.im/
31http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=405461
32http://developer.pidgin.im/wiki/WhatIsLibpurple
33http://manpages.ubuntu.com/manpages/jaunty/man1/purple-remote.1.html



21

Encrypted and unencrypted conversations were conducted at both sites respec-

tively. Custom scripts would only be responsible for launching the program, sleeping,

then terminating the process after a period of time. Approximately 489282 Jabber

and 457024 Jabber-SSL flows were generated.

3.4.9 Telnet-SSL

The telnet network protocol [31] allows unencrypted text-based communication to

another port or telnet server. Due to its open nature, telnet has mainly been re-

placed by other remote access programs for added security. Thus to alleviate security

concerns, an alternate implementation that supports SSL to encrypt the authentica-

tion or entire session between client and server has been developed. Telnet-ssl and

telnetd-ssl versions 0.17.24 were both installed from Ubuntu’s Synaptic repositories.

To simulate telnet connections and interactions with the connecting port, Ex-

pect 34 was used to create an automatic script. Login credentials and optional tunnel

ports were passed as command-line arguments to separate scripts, which used either

encrypted or unencrypted connections. Interactions with the responding port were

accomplished by executing a series of commands before terminating the connection.

Approximately 732541 Telnet and 122 Telnet-SSL flows were generated.

3.5 Tunnels

In order to introduce further entropy into the dataset, tunnels were used to conceal

and sometimes encrypt many of the application instances. This section delves into

further detail regarding how these tunnels function and what they contributed to

the dataset. Firstly, HTTP tunneling is presented using its unique dual program

technique. Secondly, Internet Control Message Protocol (ICMP) tunneling is dis-

cussed showing its ability to circumvent firewalls. Lastly, SSL tunneling is brought

to light demonstrating its encryption ability of non-native SSL application instances.

Supported application instances for tunneling included the following:

• FTP

• FTP-SSL

34http://www.nist.gov/mel/msid/expect.cfm
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• SSH

• HTTP

• HTTPS

• POP3

• POP3S

• SMTP

• SMTPS

• Telnet-SSL

• Telnet

3.5.1 HTTP Tunnel

HTTP tunneling encapsulates the original data packet as an HTTP packet thus con-

cealing, but not encrypting, the original payload. Developed by Lars Brinkhoff, HTTP

tunnel 35 is a useful tool for users restricted by network firewalls, which only permits

HTTP traffic by enabling them to tunnel other traffic through the firewall. The en-

capsulated HTTP packet travels between the client and the proxy server where it is

accepted on a port being listened to on a separate proxy server process. The proxy

server then sheds the HTTP layer and forwards the packet to its final destination.

The client program, htc, listens locally on a specified port, which users have to ex-

plicitly set an application to use. For example, making use of the SSH port option, a

command redirecting traffic to a localhost port 2010 would be as follows:

ssh user@localhost -p 2010

The htc tunneling program’s command line options permit the specification of a

proxy server to redirect the packets onto their final destination. In this situation,

an htc instance would have to specify both port and destination addresses, as shown

below.

htc -F 2010 proxyServer.com:2020

35http://www.nocrew.org/software/httptunnel.html
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From the above command, we can see that all traffic going to localhost port 2010

is being redirected to the 2020 proxy server port. The proxy server makes use of its

own hts process to redirect the packet traffic to the final destination, as shown in the

command below.

hts -F destinationServer.com:22 2020

Each tunnel had to be established on startup since HTTP tunnel does not rely

on any configuration file. As such, startup scripts on both client and server passed

command line arguments containing the allocated port and proxy information to re-

spective instances of the programs. Neither program required elevated root privileges

and were run as a regular user.

Table 3.1 shows a breakdown of the number of flows from each HTTP tunneled

application instance.

Application Instance Number of flows

http tunnel-HTTP 1394386
http tunnel-HTTPS 810
http tunnel-POP3 60969

http tunnel-POP3S 299287
http tunnel-SMTP 658702

http tunnel-SMTPS 565264
http tunnel-SSH 572852

http tunnel-TELNET 590208
http tunnel-TELNET-SSL 9341

Table 3.1: Total flow numbers of application instances supporting HTTP tunneling

3.5.2 ICMP Tunnel

Ptunnel 36 takes ordinary TCP packets and transforms them into ICMP (ping) echo

request and reply packets, thus tunneling the connection between a server, proxy,

and client. By doing so, many network firewalls can be bypassed since the TCP

packets are concealed, but not encrypted, as ICMP packets. Ptunnel, developed by

Daniel Stodle utilizes a proxy server to de-code the incoming ping request packets on

a specific port and relay them onto their final destination [47]. On the way back, the

TCP packets are once again transformed into ICMP reply packets and transmitted

36http://www.cs.uit.no/˜daniels/PingTunnel/
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back to the client. It is important to note that Ptunnel requires root privileges to

run due to its interaction with raw sockets to send and receive ICMP packets. The

proxy-side setup simply required the ICMP daemon to run, however, the client-side

needed to know both proxy and final destination information. Similar to the HTTP

Tunnel program, it ran strictly on command line arguments with no configuration

files. The following command illustrates the command line arguments required for

the client to redirect the ICMP traffic.

ptunnel -p proxyServer.com -lp 2030 -da destinationServer.com -dp 2040

Table 3.2 shows a breakdown of the number of flows from each ICMP tunneled

application instance.

Application Instance Number of flows

icmp tunnel-HTTP 772
icmp tunnel-HTTPS 2868
icmp tunnel-POP3 4744

icmp tunnel-POP3S 123
icmp tunnel-SMTP 111

icmp tunnel-SMTPS 1346
icmp tunnel-SSH 989

icmp tunnel-TELNET 179

Table 3.2: Total flow numbers of application instances supporting ICMP tunneling

3.5.3 SSL Tunnel

For application instances that do not support SSL encryption, Stunnel was used to

wrap TCP-only traffic within a secure stream [48]. Unlike the other tunnels discussed

thus far, Stunnel actually encrypts the tunneled application packets by making use

of the external libraries found in OpenSSL.

Instead of using command line arguments to control the program, Stunnel opted

for utilizing a configuration file to specify all of the tunneling instructions. The client

Stunnel configuration file was altered to listen for specific services on different ports.

These ports matched those on the proxy Stunnel configuration file, which would then

forward the connection along to the final destination server. An example entry for

nims-client, proxy nims-server, and final destination taraserver using the POP3 is

listed below:
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Client [POP3] accept = 2016 // Connect to localhost on port 2016 connect =

nims-server // Forward connection to nims-server

Proxy Server [POP3] accept = 2016 // Listen on port 2016 for traffic connect =

taraserver:110 // Send traffic to final destination server:port

Table 3.3 shows a breakdown of the number of flows from each SSL tunneled

application instance.

Application Instance Number of flows

stunnel-FTP 10212
stunnel-FTPS 94234
stunnel-HTTP 2273402

stunnel-HTTPS 3523
stunnel-POP3 24226

stunnel-POP3S 205
stunnel-SMTP 334743

stunnel-SMTPS 532162
stunnel-SSH 225955

stunnel-TELNET 245779
stunnel-TELNET-SSL 304

Table 3.3: Total flow numbers of application instances supporting SSL tunneling



Chapter 4

Methodology

This chapter discusses the steps followed to setup the data generation system, pre-

process the data, and apply the ML algorithms using WEKA [20]. The first section

deals with an overview of the client and server system setup from the point of view

of the software and network resources. Following this is an in-depth look at the data

pre-processing and flow labeling methods used. A description of the various class

labels and independent multi-class runs is then highlighted. A detailed explanation

of how the training sets were sampled is then discussed. The application of WEKA,

the ML algorithms used, and the summarization of the resulting output are then

brought to light. Figure 4.1 illustrates the overall process from data capture to the

ML result output. Each training set size had to meet a performance threshold to

judge which had the best results using various metrics from Section 4.5.3.

Figure 4.1: Process from the flow generation of captured traffic to the ML algorithm
output.

26
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4.1 System Overview

One of the primary goals in generating this dataset was to design the system to

be self-sufficient. Only minimal amounts of user interaction were involved, despite

wanting to mimic that same traffic interchange between actual users. In order to

achieve this level of automation, the use of primarily open source programs, with the

exclusion of the proprietary closed-source Skype application, were both preferred and

implemented. This section discusses the client and server side setup, which enabled

the aforementioned automation to occur.

4.1.1 Client Setup

The client machines, nims-client and taraclient, were responsible for generating the

data through the use of customized shell scripts and cron jobs. The process began

with a cron job being set to run at a certain time in order to automatically exe-

cute a certain shell script with specific command-line arguments. These shell scripts

spawned processes for each of the specified applications. Different applications re-

quired different arguments, for example, the email script expected a sender and a

recipient address whereas SSH needed commands to run once it created a connection

with a remote host. Generally speaking, each of the shell scripts executed several

commands relevant to the application and then terminated.

In order to avoid the classifiers from picking up on consistent packet sizes and

trends due to automation, commands were chosen that would alter the packet sizes

of the data being transfered. For instance, the SVN application instance script would

not only check out with some files from the repository, but also alter and commit

files to simulate human interaction. Additionally, some scripts were manually tuned

throughout the experiment sending different commands or transferring new files. Due

to the resource limits of each machine and available bandwidth, the sequence and

timing behind the client cron jobs was crucial for enabling the server machines to

properly respond to requests without being overburdened. Most of the post-setup

administration time was spent tuning the systems to avoid spawning zombie processes

caused by non-responding system services due to lagging servers. Finally, optional

command-line arguments for each application’s script, which supported tunneling,
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was programmed. This allowed scripts to either send packets straight through the

Internet, or traverse through an optional proxy tunnel. The client automation process

is illustrated in Figure 4.2.

Figure 4.2: Automation from client machines

4.1.2 Server Setup

The server machines had primarily two responsibilities: (i) running a variety of ser-

vices, which respond to various client requests, and (ii) acting as a proxy server for

the tunneling programs. Both of these duties required nims-server and taraserver to

become host connection platforms responding to client queries. Properly set config-

uration files for security purposes and functionality were pivotal in order to properly

respond to client requests. User accounts for a collection of services, such as FTP

or email, were also setup enabling the clients to login to their respective services. A

thorough lock down of permissions restricted user accounts from interfering with each

other should one become compromised.

To setup proxy tunnels for the tunneling programs, each client relied on its lo-

cal network server to tunnel connections to the final destination. Depending on the

tunneling program used, the proxy servers handled requests accordingly with con-

figuration files either specifying background daemons to listen on a certain port or

providing the end destination IP and port for incoming tunnels. To avoid clashing

with well-known ports, both local and proxy ports were assigned numbers incremen-

tally from 2000. Unfortunately, not all application instances were able to be tunneled

by these programs due to tunneling program boundaries, such as not supporting
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multi-port FTP connections, or other incompatibilities. An overview of the tunneling

process for any of the tunneling programs used is presented in Figure 4.3.

Figure 4.3: Tunneling from one network into another.

4.2 Data pre-processing

Once all of the TCPdump traffic was collected, several data pre-processing steps were

taken before preparing the data for WEKA. An exploration into the usage of the

NetMate program to translate the TCPdump traffic into flows is first highlighted.

Following this is an explanation of the class labeling process to prepare the data for

the independent multi-class runs. Finally, the methods behind the creation of the

balanced training sets are then discussed.
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4.2.1 NetMate

NetMate is a traffic monitoring tool, which converts IP packets into bi-directional

flows and generates several metrics regarding these flows [15]. A flow is defined as a

stream of network traffic during a single session of an application instance. Instead

of simply combining all these packets together, NetMate actually computes several

statistical characteristics about the data outputting them in a Comma Separated

Values (CSV) flow record. For example, from the initial request to start an SSH

connection, the subsequent commands, and final termination of the session would

constitute a single flow. It is important to note that NetMate can be run live on an

ethernet interface or on captured TCPdump files giving it additional flexibility [15].

NetMate supports many configuration options giving the user powerful filters to

work with as well as several features to adjust. These filters can be restricted to

generating flows from certain IPs and can even be as fine grained as the protocol

employed [15]. Furthermore, to prevent flows from running indefinitely, a flow time-

out feature is available to be adjusted. In this thesis, the flow time-out was set to 600

to follow the approach by Alshammari et al. [4]. Both TCP and UDP traffic were

permitted by NetMate.

The installation of NetMate used the same source code as Alshammari et al. [4].

Due to the older GCC compiler required, another virtual machine running Ubuntu

8.04 ’Hardy Heron’ OS was installed. To start the transformation process, a shell

script would loop through all the 350MB TCPdump files for each site and generate

flows. These flows were then concatenated into a single 63GB CSV file containing

all of NetMate’s flow output attributes.

4.2.2 Assembling flows

In order to determine, which flow records belonged to the various application instances

as well as their tunnels, the NetMate CSV file had to be further processed. Specifically,

IP and port information had to be removed from the flow records leaving behind the

same feature set used by Alshammari et al. [4] called NetMate Flows. This was

accomplished through phase one of a Perl script. Many of the attributes have two

types representing the forward and backward direction of the packets as they flowed

between the source and destination. The feature set of flow attributes from NetMate
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used in this thesis is listed below.

1. Minimum forward packet length (min fpkt l)

2. Mean forward packet length (mean fpktl)

3. Standard deviation forward packet length (std fpktl)

4. Minimum backwards packet length (min bpktl)

5. Mean backwards packet length (mean bpktl)

6. Maximum backwards packet length(max bpktl)

7. Standard deviation backwards packet length (std bpktl)

8. Minimum forward inter-arrival time (min fiat)

9. Mean forward inter-arrival time (mean fiat)

10. Maximum forward inter-arrival time (max fiat)

11. Standard deviation forward inter-arrival time (std fiat)

12. Minimum backwards inter-arrival time (min biat)

13. Mean backwards inter-arrival time (mean biat)

14. Maximum backwards inter-arrival time (max biat)

15. Standard deviation backwards inter-arrival time (std biat)

16. Duration of the flow (duration)

17. Protocol used (proto)

18. Total amount of forward packets (total fpackets)

19. Total forward volume in bytes of packets (total fvolume)

20. Total amount of backward packets (total bpackets)

21. Total backward volume in bytes of packets(total bvolume)
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22. Class label (added later by labeler)

Before discarding the IP and port information, phase two of the Perl script used

this data to separate the flow records into their respective application instance files

and assign an additional class label. The result consisted of 46 application instance

and tunneled application instance files captured. For example, HTTP, SSH, and SSL-

Tunneled SSH were now all segregated in their own files containing 22 flow attributes

listed above. Any traffic not belonging to an application instance or tunnel was labeled

as spurious traffic and assigned the appropriate NON-SSL class label. Figure 4.4

illustrates the overall breakdown of flow traffic captured by each application instance.

Further detail on the flow numbers can be found in Appendix D.

Figure 4.4: Pie chart illustrating the overall breakdown of NetMate flows for each
application instance

As illustrated above in Figure 4.4, certain application instances generated many

more flows then others. The culprit behind this is NetMate rejecting certain packets

and not considering them part of a traffic session. In an effort to yield more packet

traces, cron job frequencies were altered for certain tunnels and application instances

to yield a higher volume. Despite the richer traffic set, only minimal change in

quantity was observed.
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4.3 Class labeling

Class labels had to be assigned to each flow record to indicate what type of traffic

it represented. This section describes the class labels used for the different types of

traffic found in the dataset. Following this is a brief overview of the independent

multi-class runs used to test the ML algorithms.

4.3.1 Multiple classes

Although there exists many levels of granularity for class labeling, a high level la-

beling approach was pursued. This decision was influenced by many factors, such as

some of the ML algorithms not supporting multi-class labeling, time constraints, and

the investigative nature of the work. To test the performance of the classifiers on

the dataset, traffic was split into several sub-classes. This section describes the dif-

ferent class labels used to identify the types of traffic within an application instance,

specifically, Native SSL, SSL-Tunneled, and Non-SSL. In total, 5 runs were done on

each class run using 10 fold cross-validation to minimize any data generation related

biases. Additionally, the various types of independent multi-class runs are described.

Native SSL

This class consisted of applications, which employ the usage of SSL encryption through

back-end libraries or APIs to OpenSSL. Traffic is encrypted using one of SSL’s encryp-

tion algorithms and directly transmitted between client and server. Certain applica-

tion instances have the choice of transmitting in the clear via unencrypted channels,

or provide the additional security of SSL. For example, HTTP connections are un-

encrypted whereas HTTPS connections use SSL and are considered a native SSL

application instance. Below is a list of all application instances, which were classified

as native SSL.

• HTTPS

• SMTPS

• Jabber-SSL (Chat)

• POP3S
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• FTP-SSL

• Telnet-SSL

• Bit-torrent SSL

• Skype1

SSL-Tunneled

Making use of the open source Stunnel program, SSL-Tunneled traffic utilizes the

backend OpenSSL libraries to encrypt communication between a client and proxy.

Many native SSL and non-SSL application instances can be tunneled in such a manner

creating a distinct type of traffic. So long as the protocol employed and the application

are compatible with Stunnel, the traffic was labeled as being tunneled. Below is a list

of all application instances, which supported Stunnel.

• HTTP

• HTTPS

• SMTPS

• SMTP

• FTP

• FTP-SSL

• POP3

• POP3S

• Telnet-SSL

• Telnet

• SSH

1Skype was tested as both SSL and Non-SSL as it employs SSL for the initial login authentica-
tion [6] before utilizing its proprietary encryption protocols.
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Non-SSL

All unencrypted non-SSL traffic fits into this class, including background traffic along

with application instances such as SSH which do not use SSL. The non-SSL class

represented the largest portion of data collected, mainly due to the enormous size of

the spurious application instances. Below is a list of all application instances, which

were classified as non-SSL.

• HTTP

• SMTP

• Jabber (Chat)

• SVN

• Bit-torrent

• POP3

• FTP

• Telnet

• SSH

• Skype

4.3.2 Multi-Class Runs

Once flow records were separated into their correct classes, multiple runs were per-

formed to produce the final results. Each of these comparisons generated a different

model showing how well the classifiers performed on a set of two classes, i.e. bi-

nary classification. Each class comparison, SSL vs Non-SSL, SSL vs STunnel, and

Non-SSL vs Stunnel, are discussed in more detail below.
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SSL vs Non-SSL

The comparison of SSL encrypted versus unencrypted traffic plays the base-case role

in determining how well the classifiers can detect the differences between SSL and

non-SSL traffic. Any application instance that used some form of SSL, whether it

was native or tunneled, was included as such with the remaining traffic given a non-

SSL label. The results from these runs demonstrated the flow attributes the ML

algorithms selected as important for classification.

SSL vs STunnel

The results from this experiment indicated how well the classifiers were able to dis-

tinguish between applications using SSL natively and those being tunneled. Any

application instance using SSL natively was labeled SSL, whereas any application

being tunneled through Stunnel was labeled SSL-Tunneled. Furthermore, native SSL

using Stunnel were labeled as SSL-Tunneled as their packets were still being tunneled

through a proxy.

Non-SSL vs Stunnel

This class comparison demonstrated how well the classifiers were able to detect un-

encrypted traffic from the hybrid SSL and Non-SSL nature of SSL-Tunneled applica-

tions. This hybrid nature is due to the fact that traffic being SSL-Tunneled appeared

both encrypted and unencrypted at one point throughout its path to the final des-

tination. Non-SSL encrypted application instances were labeled NON-SSL and only

SSL-Tunneled applications were labeled as SSL-Tunneled no native SSL application

instances were included.

4.4 Training

Once all the application instances were labeled and contained all the NetMate flow

attributes, a sample set had to be taken for training from these CSV files. Given the

46 different application instances and their varying sizes, performing subset sampling

required a custom shell script and specialized algorithm. Following the training set

size approach taken by Alshammari et al. [1], training sets measuring in sizes of
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6000, 9000, 12000, 20000, 50000, 100000, 150000, and 500000 flows were taken. Each

training set was balanced in a 50/50 split of the respective classes to be trained. Thus,

for a total training set size of 6000 flows, 3000 from each class would be extracted

from the application instance files representing the class.

While certain independent multi-class runs involved fewer application instances,

the issue of balance amongst them all required special attention. Since application

instances within the dataset measured between kilobytes to gigabytes of flow records,

a specialized script ran an algorithm to help compensate for those with not enough

flows. Generally speaking, for application instances where there was not enough

traffic for training, only half of the initial total flow records were taken. In order to

maintain the overall class balance, the other half was extracted from the largest file for

that class. In some training set sizes, the application instances were able to provide

enough flow records as required from the training Algorithm 1. In other cases, the

application instances varied in contribution due to the aforementioned smaller sizes

causing more to be extracted from the largest application instance of the respective

class. The actual numbers of flow records extracted from the different application

instances for the different training set sizes of the final training sets can be found in

the analysis section. Algorithm 1 illustrates the pseudo-code followed to build the

training sets.

4.5 WEKA

In order to apply the ML algorithms and determine which among them had the

best performance given the different sizes of training sets, the WEKA platform was

chosen. WEKA is a Java-based environment for applying ML techniques to output

statistical information and visualizations [20]. Specifically, its purpose was to provide

an implementation of the different ML algorithms used as well as output models

and results. This section begins by highlighting the additional WEKA preprocessing

steps that were taken. The different ML algorithms used to classify the data are

then introduced. Finally, a brief description on how the results were summarized for

analysis and an overview on how the algorithms were ranked are presented.
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Algorithm 1 Training set generator

Input: A number N representing the training set size specified by the user.

Output: 50/50 class split balanced training set.

1: Calculate total number of flows from all application instances for the class run

totalF lows

2: Count the number of individual application instance class files

3: Determine how many flows to extract from each file per class numFlowPerClass

4: Figure out which application instances posses the largest number of flows per

class

5: for every applicationInstance ineach class do

6: if (applicationInstance ! = largestClassFile ) then

7: if (size(applicationInstance) < numFlowPerClass ) then

8: Extract initial half of total flow records from application instance placing

them in the training set

9: Calculate difference between half and requested numFlowPerClass

10: Add difference to additionalF lows number to be extracted from largest

class file

11: Increment numCompensateF lows counter to keep track of any rounding

discrepancies

12: else

13: Extract initial numFlowPerClass from application instance placing them

in the training set

14: end if

15: end if

16: end for

17: numExtractedFromLargest = numFlowPerClass + additionalF lows +

numCompensateF lows {Deal with largest application instance files for balance}
18: Output statistics regarding how many flow records each application instance con-

tributed
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4.5.1 WEKA preprocessing

Before training or testing could commence, the flow records for each application in-

stance as well as the generated training sets had to be transformed into a WEKA

readable format. This was accomplished using WEKA’s built in CSV converter,

weka.core.converters.CSVLoader, which outputs WEKA’s native ARFF format [20].

Unfortunately, due to hardware memory resource constraints, WEKA can only op-

erate with a maximum number of flow records pending available memory for the

Java virtual machine before throwing an exception. While this had no affect on the

training set files, the test sets required additional processing. As such, each applica-

tion instance file was split into multiple files containing approximately 1000000 flow

records. As a requirement of WEKA, an instance of both classes must appear in a

given ARFF file. In order to be in compliance with this assertion, a script had to

check to make sure each 1000000 split file contained at least once instance of each

class.

4.5.2 Machine Learning Algorithms

While WEKA supports many different ML algorithms that could be used to classify

the data, we wanted to choose those, which have had success in the past and could

output the human readable solutions [1, 4]. To this end, a metaheuristic, decision tree,

probabilistic, and rule learner ML algorithms were chosen. The following section is a

brief description on their unique abilities. It is important to note that each algorithm

was run with 10 fold cross-validation and all WEKA’s default settings were used

unless explicitly stated.

AdaBoost

AdaBoost is a ML algorithm using ensemble learning, which alters weak learning

classifiers by assigning weights with the overall goal to properly identify instances.

Generic boosting is accomplished by starting with all weights at one and then itera-

tively adjusting them by increasing the weights of misclassified examples and decreas-

ing those of correctly classified examples. Each iteration generates a new hypothesis

and holds a unique weight pending how accurately it classified the set. A hypothesis
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achieving a higher degree of correctly classified examples will hold more weight in the

final ensemble; meaning the size of any given hypothesis correlates to the weight it has

in the total ensemble. The final hypothesis output is a weighted-majority collection

of the entire hypothesis collection [44]. AdaBoosting differs from generic boosting by

using weak learners to determine a weighted error on the example giving it a more

accurate result then random guessing [44]. This action allows AdaBoost to generate

a more accurate ensemble hypothesis for the training set.

WEKA’s AdaBoost implementation deals with multi-class sets of data where the

algorithm no longer accepts any weak hypothesis where the accuracy is less then

half. This forces the algorithm to abandon certain weak learners whereas binary

classification is less stringent [20]. Decision stumps representing single branch decision

trees are also implemented generating useful output pending the size of the ensemble

hypothesis [20]. A weighted-majority will be obtained eventually as the ensemble

increases and the error rate heads towards zero [20]. This indicates that the number

of decision stumps needed to accurately classify a training set is equal to the number

of hypothesis making up the ensemble when the error rate equals zero.

As an optional AdaBoost attribute, WEKA supports the usage of decision trees

instead of decision stumps. Unfortunately, testing indicated worse results compared

to the default decision stumps so this approach was dropped. Finally, WEKA’s

output for AdaBoost lists the weight assigned to each decision stump allowing the

user to easily see which attribute provided the greatest knowledge for the correct

classification of an example.

C4.5

The C4.5 decision tree mimics the way a user would make up their mind between

a choice of outcomes based on a known environment. By taking into account all

available input attributes, numerous decisions can be made based on the data to

predict the inevitable outcome with a high degree of accuracy. The reasoning behind

calling it a decision tree can be attributed to its resulting structure resembling that of

a tree with each decision creating a branch. It is also important to note that decision

trees are fully transparent ML algorithms enabling researchers to understand how

they arrived at the resulting decision.
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Branches, or decisions, in a decision tree are created by attribute comparisons

which relay the highest amount of information gain. Information gain represents

how well a given decision will separate the output classes the most — that is, which

attributes can be used to efficiently separate the two output classes. This process is

repeated until all the data is properly classified, as such, they are particularly useful

when dealing with noisy data.

Trees have many shapes and sizes indicating important characteristics about their

classification ability on a data set. Generally speaking, preference is given towards

short trees as they signify a relatively easy decision making process. Additionally,

decision trees with high information gain attributes near the root of the tree separating

a majority of the dataset are equally sought after. Both of these principals also

coincide with Ockham’s razor by striving towards the simplest tree model.

One of the main drawbacks of decision trees is their ability to over-fit the training

data. Thankfully, this can be easily solvable by pruning the tree in the same manner

one would alter a physical tree by removing excess branches. This can be accomplished

by recursively removing these irrelevant attribute comparisons that provide little to

no information gain [44]. WEKA’s implementation of the C4.5 decision tree algorithm

allows this post pruning to occur ensuring the optimal tree is output from the entire

hypothesis space [20].

Naive Bayes

By utilizing prior knowledge about an event, we are able to sometimes predict the

resulting outcome. As a probabilistic classifier, Naive Bayes uses conditional proba-

bilities to arrive at a final decision by applying Bayes theorem.

Probability can be described as the degree of belief something will occur [44]. In

some cases the probability of an event occurring is dependent on an action while in

others those actions have no effect on the outcome. The latter case describes the

notion of independence amongst variables. There are two types of probabilities; (i)

unconditional and (ii) conditional. Unconditional probabilities are related to the

belief that an action will occur given that no other information is available. If we let

the probability P of an event A have a 0.1 likelihood of occurring, it would be written

as P(A)=0.1. Conditional probabilities take this a step further by implying that if
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a given action happens, the likelihood of another action occurring can be assigned a

number. For example, given event B, the probability of that event A will happen is

0.2 according to the following notation: P(A|B)=0.2.

Making use of the above probability rules, Rev. Thomas Bayes invented the

Bayes’ Theorem to deduce the inverse probability of an event [44]. For example, if

we know the probability of an event A and B occurring independently, as well as the

probability of B given A, we can determine the probability of A given B using the

following notation: P(A|B) = P(B|A)P(A) / P(B).

For classifying the flow traffic in this thesis, the classifier had multiple flow at-

tributes to use. In this case, Naive Bayes was applied since all the Netmate flow

attributes are conditionally independent. The correct implementation of the full

joint distribution using Naive Bayes according to Russell et al. [44] is shown below.

P(Cause, Effect1, ..., Effectn) = P(Cause)
∏

i P(Effecti|Cause)

RIPPER

Following the same way a network administrator would apply access control lists, or

rules, to a firewall, RIPPER uses a similar principle to classify traffic. By concatenat-

ing rules using logical OR and AND operators, it generates a rule set in which the

classifier can accurately detect the out-classes. RIPPER contains two main phases,

the first loops through a building stage where it grows, and prunes the classifier, while

the second is responsible for optimization [20].

During the growing step, the algorithm continually adds conditional statements

until the rule obtains complete and accurate classification. This process utilizes the

same information gain principal discussed in the C4.5 decision tree and selects the

condition with the highest gain [20]. The pruning step again applies the same prin-

cipal as in the C4.5 decision tree by cumulatively pruning each rule.

According to the WEKA documentation, all of the above steps are then repeated

in order to build the algorithm until the following conditions are met:

• The current description length of the rule set and examples is 64 bits greater

then the smallest description length met so far

• No other positive examples exist
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• The error rate exceeds 50

The second stage involves optimizing this initial set of conditionals, or rule set,

that has been created thus far. Firstly, two pruned alternatives are produced for each

rule of the initial rule set from a random data sample using the growth and pruning

processes [20]. Specifically, one of these alternatives is produced from an empty rule

whereas the other comes from greedily adding antecedents to the original rule [20].

At this point, computation to determine the smallest description length is undergone

for both the alternative pruned rules as well as the original one. The rule with the

smallest length is chosen as the final representative in the rule set [20]. More rules

are then generated using the remaining newly calculated positives in the building

stage [20].

4.5.3 Performance Metrics Employed

Once training and testing was completed, all that remained were the models generated

by the training files and numerous WEKA text output files for each test. These output

files included statistics on the True Positive (TP), False Positive Rate (FPR), and

Recall rates in the form of confusion matrices. In order to start gathering the results,

a shell script would first concatenate the last 23 lines from each of these files into

a single result file. By including the ML algorithm used in the filename, the script

was able to keep each algorithm’s performance isolated. A separate Perl script would

then parse the entire concatenated output file computing the necessary statistical

measures. Once all the statistics were calculated, the Perl script would output the

results in a CSV format for easy import into a spreadsheet.

In order to properly gauge the performance of the ML algorithm classifiers, var-

ious metrics popular amongst other network traffic classification methods were im-

plemented [46, 35, 4, 1]. Specifically, accuracy, FPR, and recall are all utilized to

determine the overall performance whereas the False Positive Rate Analysis (FPRA)

breaks down the ML algorithm’s robustness over each application instance in the class

run.

Accuracy represents the ratio measurement of how closely classified the ML al-

gorithm came to achieving 100% perfect classification. It is calculated using the

ratio of the number of correctly classified instances and the total number of instances
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belonging to that class.

The FPR, according to the WEKA documentation, represents how many instances

the classifier misclassified as the other class. It is calculated using the ratio of the

number of incorrectly classified instances and the total number of instances belonging

to the misclassified class.

Recall is the same as True Positives and measures the precision of the ML al-

gorithm for a certain class. It is calculated using the ratio of the number instances

identified as a certain class and the total number of all possible instances truly be-

longing to that class.



Chapter 5

Results and Analysis

This chapter highlights the results obtained for the different class runs and presents

an analysis behind the performance of the top algorithms. A more detailed expla-

nation of the FPRA process is first presented highlighting the training data set size

investigation process. Following this are the results from the base-case SSL vs Non-

SSL run using the entire dataset. A closer look to see how the ML algorithms were

able to differentiate between SSL and SSL-tunnel traffic is then brought to light. An

examination of the Non-SSL vs SSL-Tunnel classes then adds additional knowledge

behind how the application instances were classified. Both SSL vs SSL-tunnel and

Non-SSL vs SSL-tunnel class runs used all the flows from every applicable application

instance belonging to the classes involved for testing. Further information on how

many flows each application instance contributed to the training files can be found in

Appendix D. Finally, the robustness of the top performing SSL vs Non-SSL model is

tested against an unseen dataset.

5.1 False Positive Rate Analysis — FPRA

The overall percentages on the performance of a classifier presented a generalized

means to judge those ML algorithms, which could be fine-tuned for secondary opti-

mization experiments. Nonetheless, the overall accuracy, FPR, and Recall metrics fail

to provide any detail regarding the individualized results of the application instances

within the classes. For example, the classifier could achieve a high degree of accuracy

overall, but a certain group of application instances deemed important may be the

ones being misclassified the most. As a result, another script was needed to keep all

the application instances isolated from each other for testing and then gather results

from the WEKA output.

The FPRA is a metric to determine the individual performance of a ML algorithm

model against each application instance. From this, we can extrapolate how well the

45
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ML algorithm performed on different types of traffic from the various standalone

applications as well as those being tunneled. The algorithm, depicted in Algorithm 2,

separates and runs the desired ML algorithm model from the training run against

each application instance then proceeds to output individualized results.

Algorithm 2 FPRA algorithm

Input: NetMate output CSV file of total traffic

Output: Performance of ML algorithm training model on each application instance

1: Label the application instance traffic into the correct classes for the respective

run

2: Separate and split the application instances into isolated folders

3: For each application instance, split the traffic into 1000000 flow record sized files

4: Preprocess the split files to convert them into ARFF format for WEKA

5: for every ApplicationInstanceFolder in SeparatedDirectoryListing do

6: for every SplitF ile in Directory do

7: Run WEKA model against ARFF file saving output results in segregated

application instance directories

8: end for

9: end for

10: Run modified version of summarizer to parse WEKA output for each application

instance

11: Run Perl script on each of the files generating CSV output of the computed results

By carefully modifying existing scripts where applicable, this process guaranteed

consistency in the results amongst the individualized application instances. The CSV

records output holding the results on a per application instance basis were then ported

into spreadsheet for graphical visualization.

5.1.1 Exploring different Sizes of training sets

The question of whether or not including additional flows of the misclassified appli-

cation instances while maintaining the 50/50 class split balance would help improve

the classifier’s accuracy was raised. As such, a method for changing the size of the

training sets based on the FPRA was developed. I decided to apply this principle
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to the individual application instances with the highest degree of misclassification.

A new training script was built using the application instances whose accuracy of

correctly identified instances was lower than 50% from the FPRA as input. In this

case, Algorithm 1 would add an additional 7% more flow records from the application

instances listed as input if they were available. The resulting output training set still

maintained the 50/50 class split of flow records, however, the number per application

instance varied amongst the classes. For example, if SSH had poor performance in the

FPRA and had enough flows were available, an additional 7% of the requested flows

from SSH would be added to the training set. To ensure balance was maintained,

that additional 7% of flow records was then subtracted from the other application

instances.

5.2 Base-case: SSL vs Non-SSL

The AdaBoost ML algorithm achieved the best classification performance with

the largest 500000 training set size. Results for all the ML algorithms with a training

set size of 500000 are displayed in Figure 5.1 while the remaining experiments using

other training set sizes can be found in Appendix A.

In general, the results for the base-case SSL vs Non-SSL run presented fluctua-

tions in performance amongst the ML algorithms as the training set size increased.

As shown in Appendix A, the poor performance rate of Naive Bayes suddenly in-

creased dramatically when the training set size hit 100000 and continued achieving

good results for each consecutive larger training set size. Performance on the smaller

training set size runs was expected to be lower compared to the others as the number

of flow records allowed was buffered down by the requested flows. By having such a

high demand of representation from all the class application instances, it actually re-

stricted the number of flow records from each that could be included thus preventing

the ML algorithms from picking up on key learning features. For example, consider

the smallest training set size of 6000, limiting each class to 3000 flow records. With

a total of 46 application instances, 26 belonging to the SSL class and 20 Non-SSL,

the total number of flow records per application instance is 115 for SSL and 150 Non-

SSL. For the majority of application instances, this does not adequately represent

the behavior amongst all the flow records leading to poor classification. The results



48

Figure 5.1: Adaboost performs best overall with a training set size 500000 in SSL vs
Non-SSL run

corroborate with this theory as all ML algorithms witness improved performance as

the training set sizes increased.

Another important point to mention about the training set sizes is how much

impact Algorithm 1 had on the training set. As the training set sizes increased, so did

the demand for the number of flow records from the application instances. According

to Algorithm 1, if an application instance did not have enough flow records, it would
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take 50% of the flows and leave the rest unseen for testing. Closer examination of

the training logs revealed that half of the application instances for the SSL class were

subjected to this statement with the largest training set size. With the exception of

two, all of them were tunneled application instances using some form of SSL from

different tunneling protocols. While it would seem this would introduce an unfair bias

causing an overestimation of the ML algorithm’s performance, the FPRA, illustrated

in Figure 5.2, still showed how well the algorithm was able to distinctly separate the

individual application instances. By implementing this segregation, we can see that

almost all of the application instances that scored lowest in the FPRA also contributed

the least amount of flows during training. This split amongst the SSL class shows that

if those low ranked application instances had enough flows, the classifier performance

of the ML algorithm should also increase.

In order to determine how AdaBoost achieved these results, an investigation into

how the weights were assigned was required. As such, a Perl AdaBoost extraction

script was used. The script would parse through the result files belonging to the

AdaBoost algorithm and extract the weights assigned by WEKA. The overall weights

for each attribute would then be computed and the script would output the results in

CSV format. Table 5.1 shows the attributes chosen by AdaBoost in order to achieve

the highest performance in this run.

mean fpktl 37.33%
total fvolume 20.12%
mean bpktl 15.86%

std biat 10.83%
total bvolume 7.16%

min bpktl 6.00%
max bpktl 2.71%

Table 5.1: AdaBoost weights used to achieve results in SSL vs Non-SSL run

Of the total 22 flow attributes available, AdaBoost only used seven to classify the

base-case SSL vs Non-SSL run. The algorithm focused on the mean fpktl primarily

as the attribute carrying the most weight throughout all of the larger training set

sizes. By doing so, AdaBoost was classifying SSL and Non-SSL traffic by relying on

the mean forward packet length sent from the client. This indicates AdaBoost was

picking up on the extra SSL overhead, which adjusted the size of the packets. The



50

Figure 5.2: FPRA of AdaBoost 500000 training flows on SSL vs Non-SSL run. The
graphic illustrates the results from each performance metric employed for each appli-
cation instance. They are sorted by the best classification performance on top to the
worst on the bottom.

packet’s new mean size could then be used to separate encrypted SSL requests from

the unencrypted requests coming from the client. Furthermore, the total amount of

bytes sent from the client in the total fvolume flow attribute supports this claim by

indicating larger amounts of network traffic flowing from the client to handle the SSL
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encryption. A similar case exists for the lesser weighted total bvolume flow attribute

responses from the server.

As the packets made their way back from the server to the client, AdaBoost picked

up on the mean bpktl attribute indicating a unique response from the server for many

of the application instances. This was most likely accomplished by focusing on the

SSL handshake process response from the server side. Due to the use of tunnels, this

packet length would have varied since not all responses contained the same signature

pattern as native SSL application instances. The results concur with this claim as the

majority of the worse misclassified application instances were mainly tunneled traffic

as shown in the FPRA in Figure 5.2.

The next highest ranked weight belong to the std biat flow attribute illustrating a

unique delay in the server responses. This could be explained by the extra processing

power required to encrypt the network connection causing a statistically significant

delay. In this case, the standard deviation spread shows the computing complexity

required for SSL encryption was resource intensive enough to stagger the packet

arrival and response times back to the client compared to the lack of processing

power required for unencrypted traffic. This is further supported by AdaBoost using

the mean bpktl and remaining min bpktl, and min biat flow attributes to classify the

traffic.

Several fine tuning approaches were taken to try and improve the performance

of AdaBoost. In addition to changing the weak learner classifier used from decision

stumps to C4.5, another available option through WEKA included using re-sampling

instead of re-weighting, which produced no improvement throughout each training

set size. Similarly, altering the weight threshold for weight pruning produced little

difference. The results from both of these approaches can be found in Appendix E.

Finally, in an attempt to offer more representation to capture the behavior of the

application instances with the highest amount of misclassified flow records, the fine

tuned training set algorithm was used to explore a better training set size (more

applications instances). Unfortunately, only four of the 14 lowest scoring application

instances had enough flow records to be added. To remedy this situation, the data

collection process was once again initiated to capture specific application instances

with limited flow records. Before sufficient flows packets could be captured to be
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turned into flows, TARA announced it was going out of business and the network setup

was subsequently terminated. As a result, the generation of additional traffic which

could be captured in a heterogeneous network setup was impossible. A breakdown

of the application instances composing each class in the training set is presented in

Figure 5.3 and Figure 5.4.

Figure 5.3: SSL class flow representation for training set size 500000 in SSL vs Non-
SSL run

5.3 SSL vs SSL-Tunnel

With the exception of Naive Bayes, the phenomenal results shown in Figure 5.5

clearly illustrate the remaining the ML algorithms scoring well above 87% in almost

every training set size. Unfortunately, a closer look at the performance revealed a

high FPR for many of the ML algorithms. After sorting to see which ML algorithm

had the highest accuracy of correctly identified instances as well as the lowest FPR,

AdaBoostJ48 using a training set size of 6000 was ranked the highest. Standalone

C4.5 came in a very close second place with key differences in the FPR and Recall

rates creating a small performance gap compared to AdaBoostJ48.
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Figure 5.4: Non-SSL class flow representation for training set size 500000 in SSL vs
Non-SSL run

Compared to the base case run, the increased FPR levels amongst most of the ML

algorithms may be attributed to the fact that both classes use SSL at one point during

packet communication between the client, optional proxy, and server. Omitting the

extra hop in network traffic, this would cause the feature sets to become almost

identical leading to a higher misclassification of SSL traffic. The results from the

AdaBoostJ48 tree with the greatest weight, found in Figure 5.6, support this theory by

assigning the primary root node weight to the mean bpktl flow attribute. This clearly

shows the AdaBoost classifier being forced to look at the packet length response from

the server as either being encrypted for native SSL or unencrypted for SSL-Tunnel

communicating with a proxy. Additionally, the difference in the flow attribute size

is prevalent in the tree for the multiple packet length flow attributes due to the

differences between native SSL and SSL-Tunneled traffic. The size difference can be

attributed to how the tunneled packets shed their encryption overhead at one point

during the flow. The other decision trees generated by AdaBoostJ48 held less weight

but utilized the remaining flow attributes to reach their classification results.
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Figure 5.5: AdaBoost using C4.5 decision trees performs best overall with a training
set size 6000 SSL vs SSL-Tunnel run

It should also be noted that as the training set size increased, even better perfor-

mance was obtained as illustrated in Appendix B. Unfortunately, this is primarily

due to the availability of flow records for each application instance. By analyzing the

training set output, it became quickly apparent that instead of the classifiers achieving

better results, the training was getting easier with the application instances unable

to keep up with the flow record demands from Algorithm 1.
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Figure 5.6: Highest weighted AdaBoost C4.5 decision tree in SSL vs SSL-Tunnel run

The FPRA, found in Figure 5.7, highlights those few application instances, which

had poor classification results, specifically stunnel POP3S, stunnel TELNET-SSL,

and icmp tunnel POP3S. Closer investigation of the training log revealed that these

application instances also presented the least number of flows to the training algo-

rithm. This repeats the same analysis from the SSL vs Non-SSL run in regards to

the ML algorithm being unable to adequately learn the behavior patterns with such

few flows.

Finally, since these application instances also represented those without enough

flows to meet the minimum required amounts from their respective classes, any in-

crease in the size of the training set to contain more flow records would be futile.

A breakdown of the application instances composing each class in the training set is

presented in Figure 5.8 and Figure 5.9.
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Figure 5.7: FPRA of AdaBoost C4.5 decision tree in SSL vs SSL-Tunnel run. The
graphic illustrates the results from each performance metric employed for each appli-
cation instance. They are sorted by the best classification performance on top to the
worst on the bottom.

5.4 Non-SSL vs SSL-Tunneled

The original results using a subset of flows for this experiment showed a high degree

of accuracy with low FPR, however, further FPRA investigation revealed that over

half of the Stunnel application instances were being misclassified. Since this original

experiment was performed on a subset of the flows with many application instances

not supplying enough flow records to satisfy Algorithm 1, another run was initiated

using all available class flows. These results, shown in Appendix C, with the addi-

tional Stunnel flows held a much higher classification rate for all algorithms with the

exception of Naive Bayes. In the end, it was RIPPER with a training set size of

12000 that held the best performance, as shown in Figure 5.10.

Despite the added Stunnel flow records, the FPR still remained quite high albeit
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Figure 5.8: SSL class flow representation for training set size 6000 in SSL vs SSL-
Tunnel run

Figure 5.9: SSL-Tunnel class flow representation for training set size 6000 in SSL vs
SSL-Tunnel run

with a more acceptable level of accuracy. The FPRA, shown in Figure 5.11, revealed

high misclassification amongst the Stunnel application instances listed in Table 5.2.

Since the purpose of the class run requires the proper detection of Stunnel traffic,

further examination of the results was warranted.
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Figure 5.10: RIPPER performs best overall with a training set size of 12000 in Non-
SSL vs SSL-Tunnel run

Analysis of the training set revealed that both stunnel POP3S and stunnel TELNET-

SSL contained an extremely limited amount of flows causing inadequate representa-

tion in the training set. Additionally, stunnel POP3, and stunnel SMTP had enough

flows but were misclassified due to high fluctuation in their flow records. Since the

ML algorithms were unable to learn all the patterns within the application instance’s

flow records, they were not able to pick up on any discernible statistical pattern.
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Figure 5.11: FPRA of RIPPER in Non-SSL vs SSL-Tunnel run

Application Instance Incorrectly Id. FPR STunnel FPR Non-SSL

stunnel TELNET-SSL 99.35% 0 1
stunnel HTTPS 98.21% 0 0.98
stunnel POP3S 88.41% 0 0.89
stunnel POP3 39.55% 0 0.4
stunnel SMTP 24.11% 0 0.24

Table 5.2: Application instances with lowest classification accuracy in Non-SSL vs
SSL-Tunnel run

Similarly, the misclassification of stunnel HTTPS can be attributed to memory re-

strictions on the training set size as the total behavior of the application instance was

unable to be captured with the amount of flow records extracted. Further investiga-

tion revealed that the first few hundred flow samples consisted of a certain behavior

type, whereas the remaining flow records differed greatly. While picking flow records

at random may output better classification performance, the real solution is being

able to capture all of the behavior of an application instance within the training set.
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Due to memory restrictions imposed by WEKA requiring the entire training set to

be loaded into memory, this is not possible and is thus left for future work.

As with the previous top performing ML algorithms, not all flow attributes were

utilized. Only seven of the 22 flow attributes presented by NetMate were used by

RIPPER to build a classifying ruleset. The following seven statements illustrate the

rules built by RIPPER in order to classify the traffic.

1. (min fpktl ≥ 100) and (mean fpktl ≤ 366) and (std biat ≤ 32497904) and

(min bpktl ≤ 182) and (mean fpktl ≥ 305) ⇒ class=SSL-Tunnel (2485.0/0.0)

2. (min fpktl ≥ 98) and (mean bpktl ≥ 846) and (mean bpktl ≤ 1062) and

(mean bpktl ≥ 1022) ⇒ class=SSL-Tunnel (1523.0/0.0)

3. (total bvolume ≤ 48) and (duration ≥ 6936) and (mean bpktl ≥ 846) ⇒
class=SSL-Tunnel (103.0/1.0)

4. (duration ≤ 0) and (total bvolume ≤ 52) and (std biat ≤ 6105665) and

(std biat ≥ 6105665) ⇒ class=SSL-Tunnel (61.0/0.0)

5. (min fpktl ≥ 98) and (mean fpktl ≤ 574) and (min fpktl ≥ 143) and (mean fpktl ≥
334) and (min fpktl ≤ 244) ⇒ class=SSL-Tunnel (419.0/0.0)

6. (total bvolume ≤ 48) and (std biat ≤ 2531334) and (min fpktl ≥ 81) ⇒
class=SSL-Tunnel (31.0/0.0)

7. ⇒ class=NON-SSL (7378.0/1379.0)

RIPPER’s ability to achieve almost 100% accurate classification with 10 fold cross-

validation and a very low misclassification error amongst the rule sets is paramount

to its overall performance results. Immediately, the algorithm starts by focusing

primarily on the bi-directional packet length flow statistics and inter-arrival times.

By creating this restrictive window, it is able to classify a good portion of the flow

records quickly and accurately. The use of the forward packet length statistics can

be attributed to the added overhead of encryption while packets are being sent to the

proxy. Furthermore, the inter-arrival times will differ for the packets as they have an

extra hop to go through the proxy server. Finally, during the return trip the packets

must maintain a minimum size to support the SSL encryption overhead.
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The next set of rules manages to classify traffic using only bi-directional packet

length flow statistics. The usage of the mean backwards packet lengths illustrates the

algorithm’s ability to recognize return trip packet connections further supporting the

claims in the initial rule analysis.

Rule three takes into account two new flow attributes, the duration and backwards

volume responses from the server with only one misclassification error. The duration

of the flow plays an important role as Stunnel traffic would have a longer flow time

due to the extra proxy hop. Rule four further adds to the restrictions of rule three

by making use of the inter-arrival times of the packets. Rule five mimics rule two

but concentrates exclusively on the client requests bi-directional packet length flow

statistics. By defining such a restrictive window, it would seem RIPPER is isolating

the Stunneled packets by their extra padding required. Rule six uses the backwards

flow volume, backwards inter-arrival time, and minimum forward packet length to

quarantine Stunnel flows by applying the same principals discussed above. Finally,

any remaining flows not recognized by this if-elseif-else structure are classified as

Non-SSL. This obviously also represents the point where most of the false positives

occur in classification.

A breakdown of the application instances composing each class in the training set

is presented in Figure 5.12 and Figure 5.13.

Figure 5.12: Non-SSL class flow representation for training set size 12000 in Non-SSL
vs SSL-Tunnel run
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Figure 5.13: SSL-Tunnel class flow representation for training set size 12000 in Non-
SSL vs SSL-Tunnel run

5.5 NIMS vs NIMSv2

In order to test the robustness of the classifiers, a different dataset called NIMS

generated by Alshammari et al. [1, 4, 3, 2] was introduced. Since its purpose was

judging the effectiveness of ML algorithms on other forms of encrypted traffic, little

SSL traffic was included with more emphasis placed on SSH and Skype. Also, there

were no tunneling experiments done in the NIMS dataset.

For labeling purposes, the flow records from the original NIMS dataset had to

match those tested in this thesis. As such, only the subset of the application instances

shown in Table 5.3 could be included for testing. A few assumptions had to be

made regarding certain application instances in regards to labeling them as either

SSL or Non-SSL. For instance, there is no way of knowing whether or not SMTP

communication on port 25 or 587 occurred in an encrypted or unencrypted fashion.

Nevertheless, this only serves to increase the entropy of the dataset underestimating

the results of the classifiers [52].
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Application Instance Class label

SSH NON-SSL
HTTP NON-SSL

HTTPS SSL
POP3 NON-SSL

POP3S SSL
SMTP NON-SSL
FTP NON-SSL
SVN NON-SSL

JABBER-SSL SSL
JABBER NON-SSL
TELNET NON-SSL

SPURIOUS NON-SSL

Table 5.3: Matching application instances that can be labeled and tested against in
the NIMS vs NIMSv2 run

5.5.1 Robustness Analysis for SSL vs Non-SSL Classification

In an effort to determine how well the classifier would perform without any prior

knowledge of the different dataset, the best performing model from the SSL vs Non-

SSL run in Section 5.1 was chosen. This AdaBoost model with a training set size

500000 was tested against the original NIMS dataset on the application instances

listed in Table 5.3. The results shown in Table 5.4 are quite promising despite the

low number of available SSL application instances in the original NIMS dataset.

Correctly Id. FPR SSL FPR Non-SSL Recall SSL Recall Non-SSL

94.72% 0.05 0 1 0.947

Table 5.4: Results of the AdaBoost training set size 500000 model against the original
NIMS traffic

5.5.2 Modifying the training data set

In an effort to further optimize the performance of AdaBoost, 20% of the original

NIMS flow records were injected into the training set while maintaining the class

balance. Specifically, 20% of the flow records required from any given application

instance for training were supplied by the original NIMS dataset. By modifying the

altered training script to implement this change, a new fine-tuned training set was
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generated and run against the original NIMS dataset giving the slightly improved

results in Table 5.5.

Correctly Id. FPR SSL FPR Non-SSL Recall SSL Recall Non-SSL

95.79% 0.04 0.01 0.986 0.96

Table 5.5: Results of the new AdaBoost training set size 500000 model with 20% of
the flows from the original NIMS tested against the dataset from this thesis

As a final experiment, the new AdaBoost model with a training set size of 500000

and 20% of the flows from NIMS was then tested against the dataset generated by

this thesis to see if there was any fluctuation in performance. The similar results

obtained are found in Table 5.6.

Correctly Id. FPR SSL FPR Non-SSL Recall SSL Recall Non-SSL

94.80% 0.052 0 1 0.948

Table 5.6: Results of the new AdaBoost training set size 500000 model with 20% of
the flows from the original NIMS tested against the dataset from this thesis

Combining the traffic from both datasets and following a similar permutation of

testing was initially considered but the difference in size between the datasets would

completely bias the results and was therefore not pursued. From these tests, it is

safe to say a high degree of generalization exists solidifying the robustness of the

AdaBoost model.
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Comparing the Proposed Approach to Wireshark

In an attempt to compare the methodology and results achieved in this thesis against

others in the same area, this chapter presents a comparison using the Wireshark 1

traffic analysis tool. Due to Wireshark’s high popularity within the networking field,

this comparison was done to demonstrate the inadequacies of traffic classification

tools available to network stakeholders. Since Wireshark uses packets and not flows,

a discussion on the steps taken to extract those packets, which created the statistical

Netmate flow attributes in the training set, is first presented. Several examples on

Wireshark’s poor performance on correctly identifying packet traces are then illus-

trated.

6.1 Wireshark for Comparison

Wireshark is a popular cross-platform open source traffic analysis tool used by net-

work administrators [11]. It can capture or replay traffic, supports Deep Packet In-

spection (DPI), and provides several useful tools for diagnosing and filtering packets.

Wireshark’s command line cousin, TShark, was discussed earlier in Section 3.2.

Since Wireshark uses packets and not NetMate flows, a direct comparison of the

same packets NetMate used as input for the training sets is impractical. Nevertheless,

it is possible to look at the same packets, which were included in the initial flow

transformations given the temporal process followed in the methodology. The process

began by filtering the date metadata included in the TShark capture files from each

machine. Since the packets were changed into flows by NetMate in a first-capture-first-

transformed manner, it is known that those first few packets appeared as the initial

flow records in the CSV file. In turn, those flows were included as the initial records

in the training sets for each application instance. The resulting process required

loading the initial TShark captured files from each machine into Wireshark since

1http://www.wireshark.org/
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they were stored in a compatible packet capture (pcap) binary format. Then using

Wireshark’s powerful filtering abilities, they were parsed using IP address, protocol,

and port numbers. The remaining traffic represented a packet-based view of a specific

application instance.

Wireshark’s default labeling process uses the IANA official port number registry 2

to classify traffic. As such, it was able to correctly identify application instances that

were in compliance with the IANA ruling. For instance, Wireshark had no problem

detecting and subsequently classifying the application instance JABBER running on

port 5222, as shown in Figure 6.1. However, any non-compliant application instances

Figure 6.1: Wireshark view of correctly classified Jabber XMPP packet on port 5222

were misclassified as their IANA registered counterparts. For example, the application

instance JABBER-SSL was classified as the HP Virtual Machine Group Management

(hpvirtgrp) protocol, as illustrated in Figure 6.2. Further investigation of the packet

data showed a hidden SSL certificate. The developers of Wireshark knew that it

would sometimes mislabel traffic and provided a feature to decode packets as a specific

protocol. Applying an SSL filter in this function on the same packet revealed it was

actually a TLS handshake, shown in Figure 6.3. Unfortunately, the prior knowledge of

2http://www.iana.org/assignments/port-numbers
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Figure 6.2: Wireshark view of mislabeled JabberSSL packet on port 5223 with a
hidden SSL certificate

choosing which protocol to decode the packet as is not available in the real world. This

causes misclassification without manually parsing the packet data field. All tunneling

instances were affected by this same misclassification process. For instance, Stunnel-

HTTP traffic from the client had packets labeled falsely as mailbox and correctly as

an aggregate SSL class, shown in Figure 6.4. ICMP tunneling presented a unique

characteristic as no ports could be used to further filter the packets. As such, packet

payloads contained various pieces of data including the HTTP response shown in

Figure 6.5

Overall the performance of Wireshark for traffic classification without using prior

knowledge to decode packets was mediocre at best. Tunneled traffic suffered the most

out of all the application instances tested and those using custom ports were also mis-

labeled. For those SSL/TLS encrypted packets properly labeled, there was no further

knowledge presented about which application instance spawned the connection. As

such, these SSL/TLS results forced an aggregate high level traffic representation but
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Figure 6.3: Wireshark view of JabberSSL packet after SSL decoding was applied
showing TLS handshake

do not convey additional information to a network stakeholder. Nevertheless, this pre-

sented a good benchmark showing how well the ML algorithms were able to classify

using a few flow attributes rather then entire packets.
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Figure 6.4: Wireshark view of SSL-Tunneled HTTP packets showing TCP and TLS
classification
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Figure 6.5: Wireshark view of ICMP-Tunneled HTTP packets showing HTTP re-
sponse code



Chapter 7

Conclusion and Future Work

In conclusion, the investigation into classifying applications encrypted by SSL achieved

promising results using flow-based statistics and ML algorithms. This was accom-

plished without employing IP addresses, port numbers, or packet payloads. The lack

of traffic classification literature focusing on SSL will become a serious oversight as

more and more applications encrypt their transmissions. As a result, network stake-

holders will no longer have the means to implement services, such as traffic shaping or

ensuring QoS. It is shown that the approach followed in this thesis presents promising

preliminary results, which are robust enough to be scalable to different networks.

In this thesis, the generated training dataset represented real network traffic with-

out imposing restrictions on SSL encryption algorithms, ensured the ground truth

during the labeling process, and included the use of tunnels to increase the overall

entropy of the dataset. The open source nature of almost all the application instances

employed, as well as the WEKA ML algorithm implementation, further promotes the

reproducibility of the results. Training algorithms ensured a balanced training set

to prevent bias amongst the human-interpretable ML algorithm results. Additional

investigation on the sizes of the training set helped to further optimize some of the

results based off the feedback from individual application instance FPRA. The com-

parison of the results from the multiple class runs against recent literature as well as

a popular traffic analysis tool further solidifies the methodology taken.

For the SSL vs Non-SSL class run, AdaBoost proved to have the best classification

performance with a 96% classification accuracy, 4% SSL FPR, and 1.5% Non-SSL

FPR. In the case of the native SSL vs SSL-Tunnel run, a modified version of AdaBoost

using C4.5 decision trees instead of decision stumps performed the best with a 98%

classification accuracy, 0.6% SSL FPR, and 1.1% SSL-Tunnel FPR. Finally, the ML

algorithm best able to distinguish the Non-SSL vs SSL-Tunnel class run was RIPPER

achieving a 99% classification accuracy, 0.5% SSL-Tunnel FPR, and 0.1% Non-SSL

71
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FPR. After averaging the best performance of each ML algorithm across all three

class runs, AdaBoost maintained the highest overall performance, as illustrated in

Table 7.1. While the training set sizes varied amongst all the runs, it can be seen

that capturing the correct amount of behavior is paramount for the ML algorithm

to acquire acceptable results. Without adequate representation from an application

instance, they will be unable to perform well during testing.

ML Algorithm Correctly Id. Average

AdaBoost 95.35%
AdaBoostJ48 93.53%

RIPPER 92.94%
J48WithPruning 92.37%

NaiveBayes 59.31%

Table 7.1: Overall performance of the ML algorithms across all the class runs

Comparing the results found in this thesis to the Wireshark traffic analysis tool

confirmed the incompetencies of DPI methods and inability to rely on port numbers

for classification. Further investigation using this packet based approach showed high

misclassification amongst the majority of the application instances not using standard

IANA port numbers.

There are several areas where future work is warranted as this work was only

investigative in nature. The unexpected closure of TARA prevented the capture of

additional application instances whose overall flow count was much lower then others.

The use of a different training set algorithm to better capture the behavior of an appli-

cation instance would be valuable for increasing the classification performance of the

ML algorithms. This might also lead to reduced training set sizes required to achieve

similar or better results. Exploring alternative ML algorithms is another route, which

should be investigated while attempting to maintain the same level of human inter-

pretation. Furthermore with the changes implemented between IPv4 and IPv6, it

would be interesting to see how much (if at all) the results achieved in this thesis may

be affected. The difference in packet construction would require the NetMate flow

generator to be modified to correctly detect the new flows. Additional packet data

found in IPv6 may also lead to new flow statistical attributes from NetMate. Al-

ternative options for flow timeouts could help improve the number of NetMate flows

detected as several application instances failed to adequately represent themselves in
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flow records after data collection was complete.Further investigation on parameter

sensitivity and the affect they have on the ML algorithms may offer more explanation

as to why the classifiers acted the way they did. Finally, a more thorough compari-

son of the findings in this thesis against others in the same research area should be

investigated as well.
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Appendix A

SSL vs Non-SSL runs

Figure A.1: Training set size 6000 results from each performance metric employed for
each ML algorithm
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Figure A.2: Training set size 9000 results from each performance metric employed for
each ML algorithm
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Figure A.3: Training set size 12000 results from each performance metric employed
for each ML algorithm
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Figure A.4: Training set size 20000 results from each performance metric employed
for each ML algorithm
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Figure A.5: Training set size 50000 results from each performance metric employed
for each ML algorithm
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Figure A.6: Training set size 100000 results from each performance metric employed
for each ML algorithm
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Figure A.7: Training set size 150000 results from each performance metric employed
for each ML algorithm
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Figure A.8: Training set size 500000 results from each performance metric employed
for each ML algorithm



Appendix B

SSL vs SSL-Tunnel

Figure B.1: Training set size 6000 results from each performance metric employed for
each ML algorithm
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Figure B.2: Training set size 9000 results from each performance metric employed for
each ML algorithm
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Figure B.3: Training set size 12000 results from each performance metric employed
for each ML algorithm
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Figure B.4: Training set size 20000 results from each performance metric employed
for each ML algorithm
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Figure B.5: Training set size 50000 results from each performance metric employed
for each ML algorithm
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Figure B.6: Training set size 100000 results from each performance metric employed
for each ML algorithm



Appendix C

Non-SSL vs SSL-Tunnel

Figure C.1: Training set size 6000 results from each performance metric employed for
each ML algorithm
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Figure C.2: Training set size 9000 results from each performance metric employed for
each ML algorithm
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Figure C.3: Training set size 12000 results from each performance metric employed
for each ML algorithm
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Figure C.4: Training set size 20000 results from each performance metric employed
for each ML algorithm
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Figure C.5: Training set size 50000 results from each performance metric employed
for each ML algorithm
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Figure C.6: Training set size 100000 results from each performance metric employed
for each ML algorithm



Appendix D

Number of flows per application instance for each training

set size in the different class runs
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Application Instance 6000 9000 12000 20000

FTPS 115 173 230 384
http tunnel-HTTPS 115 173 230 384
http tunnel-POP3S 115 173 230 183
http tunnel-SMTPS 115 173 230 384

http tunnel-TELNET-SSL 115 173 230 384
icmp tunnel-HTTPS 115 173 230 384
icmp tunnel-POP3S 115 61 61 61
icmp tunnel-SMTPS 115 173 230 384

JABBER-SSL 115 173 230 384
POP3S 115 173 230 384
SKYPE 115 173 230 384
SMTPS 115 173 230 384

SSL-BITTORRENT 115 173 230 384
stunnel-FTP 115 173 230 384

stunnel-FTPS 115 173 230 384
stunnel-HTTP 115 173 230 384

stunnel-HTTPS 115 173 230 384
stunnel-POP3 115 173 230 384

stunnel-POP3S 115 173 91 91
stunnel-SMTP 115 173 230 384

stunnel-SMTPS 115 173 230 384
stunnel-SSH 115 173 230 384

stunnel-TELNET 115 173 230 384
stunnel-TELNET-SSL 115 173 230 152

TELNET-SSL 115 61 61 61
HTTPS 125 399 727 1772

FTP 150 225 300 500
HTTP 150 225 300 500

http tunnel-HTTP 150 225 300 500
http tunnel-POP3 150 225 300 500
http tunnel-SMTP 150 225 300 500
http tunnel-SSH 150 225 300 500

http tunnel-TELNET 150 225 300 500
icmp tunnel-HTTP 150 225 300 500
icmp tunnel-POP3 150 225 300 500
icmp tunnel-SMTP 55 55 55 55
icmp tunnel-SSH 150 225 300 500

icmp tunnel-TELNET 150 89 89 89
JABBER 150 225 300 500

POP3 150 225 300 500
SMTP 150 225 300 500
SSH 150 225 300 500
SVN 150 225 300 500

TELNET 150 225 300 500
VUZE-BITTORENT 150 225 300 500

SPURIOUS 245 531 756 1356

T bl D 1 N b f li i i fl i l d d i h i i i f
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Application Instance 50000 100000 150000 500000

FTPS 961 1923 2884 9615
http tunnel-HTTPS 405 405 405 405
http tunnel-POP3S 183 183 183 183
http tunnel-SMTPS 961 1923 2884 9615

http tunnel-TELNET-SSL 961 1923 2884 4670
icmp tunnel-HTTPS 961 1923 1434 1434
icmp tunnel-POP3S 61 61 61 61
icmp tunnel-SMTPS 961 673 673 673

JABBER-SSL 961 1923 2884 9615
POP3S 961 1923 2884 4175
SKYPE 961 1923 2884 1744
SMTPS 961 1923 2884 9615

SSL-BITTORRENT 961 1923 2884 9615
stunnel-FTP 961 1923 2884 9615

stunnel-FTPS 961 1923 2884 9615
stunnel-HTTP 961 1923 2884 9615

stunnel-HTTPS 961 1923 2884 1761
stunnel-POP3 961 1923 2884 9615

stunnel-POP3S 91 91 91 91
stunnel-SMTP 961 1923 2884 9615

stunnel-SMTPS 961 1923 2884 9615
stunnel-SSH 961 1923 2884 9615

stunnel-TELNET 961 1923 2884 9615
stunnel-TELNET-SSL 152 152 152 152

TELNET-SSL 61 61 61 61
HTTPS 5788 13760 22912 109595

FTP 1250 2500 3750 12500
HTTP 1250 2500 3750 12500

http tunnel-HTTP 1250 2500 3750 12500
http tunnel-POP3 1250 2500 3750 12500
http tunnel-SMTP 1250 2500 3750 12500
http tunnel-SSH 1250 2500 3750 12500

http tunnel-TELNET 1250 2500 3750 12500
icmp tunnel-HTTP 386 386 386 386
icmp tunnel-POP3 1250 2500 3750 2372
icmp tunnel-SMTP 55 55 55 55
icmp tunnel-SSH 494 494 494 494

icmp tunnel-TELNET 89 89 89 89
JABBER 1250 2500 3750 12500

POP3 1250 2500 3750 12500
SMTP 1250 2500 3750 12500
SSH 1250 2500 3750 12500
SVN 1250 2500 3750 12500

TELNET 1250 2500 3750 12500
VUZE-BITTORENT 1250 2500 3750 12500

SPURIOUS 5226 11476 17726 71604

T bl D 2 N b f li i i fl i l d d i h i i i f
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Application Instance 6000 9000 12000 20000

FTPS 200 300 400 666
http tunnel-HTTPS 200 300 400 666
http tunnel-POP3S 200 300 400 666
http tunnel-SMTPS 200 300 400 666

http tunnel-TELNET-SSL 200 300 400 666
icmp tunnel-HTTPS 200 300 400 666
icmp tunnel-POP3S 61 61 61 61
icmp tunnel-SMTPS 200 300 400 666

JABBER-SSL 200 300 400 666
POP3S 200 300 400 666
SKYPE 200 300 400 666
SMTPS 200 300 400 666

SSL-BITTORRENT 200 300 400 666
TELNET-SSL 61 61 61 61

HTTPS 478 778 1078 1886
stunnel-FTP 272 409 545 909

stunnel-FTPS 272 409 545 909
stunnel-HTTPS 272 409 545 909
stunnel-POP3 272 409 545 909

stunnel-POP3S 102 102 102 102
stunnel-SMTP 272 409 545 909

stunnel-SMTPS 272 409 545 909
stunnel-SSH 272 409 545 909

stunnel-TELNET 272 409 545 909
stunnel-TELNET-SSL 61 61 61 61

stunnel-HTTP 661 1065 1477 2565

Table D.3: Number of application instance flows included in each training set size for
SSL vs SSL-Tunnel.
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Application Instance 50000 100000 150000 500000

FTPS 1666 3333 5000 16666
http tunnel-HTTPS 405 405 405 405
http tunnel-POP3S 1666 3333 5000 16666
http tunnel-SMTPS 1666 3333 5000 16666

http tunnel-TELNET-SSL 1666 3333 5000 4670
icmp tunnel-HTTPS 1666 1434 1434 1434
icmp tunnel-POP3S 61 61 61 61
icmp tunnel-SMTPS 673 673 673 673

JABBER-SSL 1666 3333 5000 16666
POP3S 1666 3333 5000 4393
SKYPE 1666 3333 1744 1744
SMTPS 1666 3333 5000 16666

SSL-BITTORRENT 1666 3333 5000 16666
TELNET-SSL 61 61 61 61

HTTPS 7140 17369 30622 136563
stunnel-FTP 2272 4545 6818 5106

stunnel-FTPS 2272 4545 6818 22727
stunnel-HTTPS 2272 1761 1761 1761
stunnel-POP3 2272 4545 6818 22727

stunnel-POP3S 102 102 102 102
stunnel-SMTP 2272 4545 6818 22727

stunnel-SMTPS 2272 4545 6818 22727
stunnel-SSH 2272 4545 6818 22727

stunnel-TELNET 2272 4545 6818 22727
stunnel-TELNET-SSL 61 61 61 61

stunnel-HTTP 6661 16261 25350 106608

Table D.4: Number of application instance flows included in each training set size for
SSL vs SSL-Tunnel.
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Application Instance 6000 9000 12000 20000

stunnel-FTP 272 409 545 909
stunnel-FTPS 272 409 545 909

stunnel-HTTPS 272 409 545 909
stunnel-POP3 272 409 545 909

stunnel-POP3S 102 102 102 102
stunnel-SMTP 272 409 545 909

stunnel-SMTPS 272 409 545 909
stunnel-SSH 272 409 545 909

stunnel-TELNET 272 409 545 909
stunnel-TELNET-SSL 272 152 152 152

stunnel-HTTP 450 974 1386 2474
FTP 142 214 285 476

HTTP 142 214 285 476
http tunnel-HTTP 142 214 285 476
http tunnel-POP3 142 214 285 476

http tunnel-POP3S 142 92 92 92
http tunnel-SMTP 142 214 285 476
http tunnel-SSH 142 214 285 476

http tunnel-TELNET 142 214 285 476
icmp tunnel-HTTP 142 214 285 476
icmp tunnel-POP3 142 214 285 476
icmp tunnel-SMTP 55 55 55 55
icmp tunnel-SSH 142 214 285 476

icmp tunnel-TELNET 142 89 89 89
JABBER 142 214 285 476

POP3 142 214 285 476
SMTP 142 214 285 476
SSH 142 214 285 476
SVN 142 214 285 476

TELNET 142 214 285 476
VUZE-BITTORENT 142 214 285 476

SPURIOUS 247 626 919 1672

Table D.5: Number of application instance flows included in each training set size for
Non-SSL vs SSL-Tunnel.
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Application Instance 50000 100000 150000 500000

stunnel-FTP 2272 4545 6818 5106
stunnel-FTPS 2272 4545 6818 22727

stunnel-HTTPS 2272 1761 1761 1761
stunnel-POP3 2272 4545 6818 22727

stunnel-POP3S 102 102 102 102
stunnel-SMTP 2272 4545 6818 22727

stunnel-SMTPS 2272 4545 6818 22727
stunnel-SSH 2272 4545 6818 22727

stunnel-TELNET 2272 4545 6818 22727
stunnel-TELNET-SSL 152 152 152 152

stunnel-HTTP 6570 16170 25259 106517
FTP 1190 2380 3571 11904

HTTP 1190 2380 3571 11904
http tunnel-HTTP 1190 2380 3571 11904
http tunnel-POP3 1190 2380 3571 11904

http tunnel-POP3S 92 92 92 92
http tunnel-SMTP 1190 2380 3571 11904
http tunnel-SSH 1190 2380 3571 11904

http tunnel-TELNET 1190 2380 3571 11904
icmp tunnel-HTTP 386 386 386 386
icmp tunnel-POP3 1190 2380 3571 2372
icmp tunnel-SMTP 55 55 55 55
icmp tunnel-SSH 494 494 494 494

icmp tunnel-TELNET 89 89 89 89
JABBER 1190 2380 3571 11904

POP3 1190 2380 3571 11904
SMTP 1190 2380 3571 11904
SSH 1190 2380 3571 11904
SVN 1190 2380 3571 11904

TELNET 1190 2380 3571 11904
VUZE-BITTORENT 1190 2380 3571 11904

SPURIOUS 6034 13184 20319 79856

Table D.6: Number of application instance flows included in each training set size for
Non-SSL vs SSL-Tunnel.



Appendix E

Fine Tuning AdaBoost

Size Correctly Id. FPR SSL FPR Non-SSL Recall SSL Recall Non-SSL

6000 71% 0.28 0.02 0.94 0.72
9000 67% 0.32 0.01 0.99 0.68
12000 68% 0.32 0.01 0.99 0.69
20000 78% 0.21 0.01 0.99 0.79
50000 70% 0.3 0.01 0.99 0.71
100000 72% 0.28 0.01 0.99 0.73
150000 71% 0.28 0.01 0.99 0.72
500000 82% 0.18 0.01 0.99 0.82

Table E.1: Results from changing the re-sampling option for AdaBoost in the SSL vs
Non-SSL run show little change.

Size Correctly Id. FPR SSL FPR Non-SSL Recall SSL Recall Non-SSL

6000 62% 0.37 0.02 0.98 0.63
9000 67% 0.32 0.01 0.99 0.68
12000 68% 0.31 0.01 0.99 0.69
20000 78% 0.21 0.01 0.99 0.79
50000 70% 0.3 0.01 0.99 0.71
100000 72% 0.28 0.01 0.99 0.73
150000 71% 0.28 0.01 0.99 0.72
500000 78% 0.216 0.01 0.99 0.78

Table E.2: Results from selecting alternate weight thresholds for AdaBoost in the
SSL vs Non-SSL run show little change.
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