
AN INVESTIGATION OF A MULTI-OBJECTIVE GENETIC
ALGORITHM APPLIED TO ENCRYPTED TRAFFIC

IDENTIFICATION

by

Carlos Bacquet

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2010

c© Copyright by Carlos Bacquet, 2010

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the

Faculty of Graduate Studies for acceptance a thesis entitled “AN INVESTIGATION

OF A MULTI-OBJECTIVE GENETIC ALGORITHM APPLIED TO ENCRYPTED

TRAFFIC IDENTIFICATION” by Carlos Bacquet in partial fulfillment of the

requirements for the degree of Master of Computer Science.

Dated: August 10, 2010

Supervisors:
Professor Nur A. Zincir-Heywood

Professor Malcolm I. Heywood (co-supervisor)

Reader:
Professor Denis Riordan

ii

DALHOUSIE UNIVERSITY

DATE: August 10, 2010

AUTHOR: Carlos Bacquet

TITLE: AN INVESTIGATION OF A MULTI-OBJECTIVE GENETIC
ALGORITHM APPLIED TO ENCRYPTED TRAFFIC
IDENTIFICATION

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: M.C.Sc. CONVOCATION: October YEAR: 2010

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than brief excerpts requiring
only proper acknowledgement in scholarly writing) and that all such use is clearly
acknowledged.

iii

Dedicated to

my friends (you know who you are)

and to my mother Neyda who has always been there for me,

gracias mama.

iv

Table of Contents

List of Tables . viii

List of Figures . ix

Abstract . xi

Acknowledgements . xii

Chapter 1 Introduction . 1

Chapter 2 Background Information 5

2.1 Introduction . 5

2.2 Unsupervised Learning and K-Means Algorithm 5

2.2.1 K-Means Algorithm . 6

2.2.2 DBSCAN Algorithm . 8

2.2.3 EM Algorithm . 9

2.3 Genetic Algorithms . 10

2.3.1 Multi-Objective Genetic Algorithms 11

2.4 The SSH Protocol . 12

2.5 Conclusions . 14

Chapter 3 Previous Work with Unsupervised Learning Techniques

applied to Network Traffic Identification 15

3.1 Introduction . 15

3.2 Previous Work . 16

3.3 Conclusions . 22

Chapter 4 Algorithm Methodology 24

4.1 Introduction . 24

4.2 Genetic Algorithm for Feature Selection and Clustering 24

4.3 Fitness Function . 28

v

4.4 Parameters Setting . 29

4.5 Conclusions . 30

Chapter 5 Experimental Methodology 31

5.1 Introduction . 31

5.2 Data Sets . 31

5.3 Flow Generation . 32

5.4 Conclusions . 35

Chapter 6 Analysis of Clustering Objectives 36

6.1 Introduction . 36

6.2 Clustering Analysis . 36

6.2.1 Fwithin . 36

6.2.2 Fbetween . 38

6.2.3 Fclusters . 40

6.2.4 Fcomplexity . 41

6.3 Conclusions . 43

Chapter 7 Analysis of the Unsupervised Learning Model 44

7.1 Introduction . 44

7.2 Gold Standard Model . 45

7.3 Logarithmic Transformation . 45

7.4 Feature Selection Results . 46

7.5 Performance Results . 53

7.6 Conclusions . 58

Chapter 8 MOGA vs Other Unsupervised Learning Techniques . 60

8.1 Introduction . 60

8.2 Unsupervised Learning Algorithms 60

8.2.1 Basic K-Means . 60

8.2.2 Semi-supervised K-Means . 61

8.2.3 DBSCAN . 61

vi

8.2.4 EM . 62

8.3 Methodology . 62

8.4 Experiments and Results . 63

8.4.1 K-Means Results . 63

8.4.2 Semi-supervised K-Means Results 63

8.4.3 DBSCAN Results . 64

8.4.4 EM Results . 65

8.4.5 MOGA Results . 65

8.4.6 Discussion . 68

8.4.7 Time Analysis . 68

8.5 Conclusions . 69

Chapter 9 Hierarchical MOGA . 70

9.1 Introduction . 70

9.2 Methodology . 70

9.3 Results . 72

9.4 Robustness . 74

9.5 Conclusions . 76

Chapter 10 Conclusions . 78

Bibliography . 82

vii

List of Tables

Table 5.1 Flow Features Available for MOGA 34

Table 7.1 MOGA vs Gold Standard Test Results 58

Table 8.1 Flow Features employed in [22] 62

Table 8.2 K-Means Results . 63

Table 8.3 Semi-Supervised Results . 64

Table 8.4 EM Results . 65

Table 8.5 MOGA Test Results . 66

Table 8.6 MOGA vs Other Methods Summarized 68

Table 8.7 MOGA vs Other Methods Time Analysis 69

Table 9.1 Hierarchical MOGA Post-Training Results and Objective Values 73

Table 9.2 Hierarchical MOGA Test Results on UCIS trace 74

Table 9.3 Hierarchical MOGA Test Results on DARPA trace 75

Table 9.4 Hierarchical MOGA Test Results on AMP trace 75

Table 9.5 Hierarchical MOGA Test Results on MAWI trace 75

viii

List of Figures

Figure 2.1 SSH Tunnel . 13

Figure 2.2 SSH Handshake . 14

Figure 4.1 Individual Representation . 26

Figure 4.2 System Diagram . 27

Figure 4.3 Evolutionary Component Diagram 27

Figure 5.1 Complete System Diagram 35

Figure 6.1 Fwithin Objective over 5000 Epochs 37

Figure 6.2 Fwithin Objective over 5000 Epochs, scaled 37

Figure 6.3 Fwithin Averages over 5000 Epochs 38

Figure 6.4 Fbetween Objective over 5000 Epochs 39

Figure 6.5 Fbetween Objective over 5000 Epochs, scaled 39

Figure 6.6 Fbetween Averages over 5000 Epochs 40

Figure 6.7 Fclusters Objective over 5000 Epochs 41

Figure 6.8 Fclusters Averages over 5000 Epochs 41

Figure 6.9 Fcomplexity Objective over 5000 Epochs 42

Figure 6.10 Fcomplexity Averages over 5000 Epochs 42

Figure 7.1 Features selected with original objectives without log. stan-
dardization. 47

Figure 7.2 Features selected with gold standard without log. standardiza-
tion. 48

Figure 7.3 Features selected with original objectives with log. standard-
ization. 49

Figure 7.4 Features selected with gold standard with log. standardization. 50

Figure 7.5 Box Plot of Features Values in Training Data 51

ix

Figure 7.6 Box Plot of Features Values in Training Data After Log Trans-
formation . 52

Figure 7.7 Post training with original objectives without logarithmic stan-
dardization. DR (y-axis) over 93 to 96% range; FPR (x-axis)
over 0.1 to 1% range. 54

Figure 7.8 Post training with gold standard without logarithmic standard-
ization. DR (y-axis) over 93 to 96% range; FPR (x-axis) over
0.1 to 0.7% range. 55

Figure 7.9 Post training with original objectives with logarithmic stan-
dardization. DR (y-axis) over 93 to 96% range; FPR (x-axis)
over 0.5 to 3% range. 56

Figure 7.10 Post training with gold standard with logarithmic standardiza-
tion. DR (y-axis) over 93 to 96% range; FPR (x-axis) over 0.1
to 0.7% range. 57

Figure 8.1 DBSCAN Results . 65

Figure 8.2 Non-dominated individuals length 60. 67

Figure 8.3 Non-dominated individuals length 100. 67

Figure 9.1 Hierarchical Clusters . 71

Figure 9.2 Hierarchical MOGA Experiments Post-Training Results . . . 73

x

Abstract

An important part of network management requires the accurate identification and

classification of network traffic for decisions regarding bandwidth management, qual-

ity of service, and security. Earlier attempts to identify network traffic used to rely

on TCP port number inspection and/or on payload inspection. Both these methods

do not work on encrypted traffic as the payload is encrypted, and as port number

inspection is not considered reliable anymore. This work explores the use of a Multi-

Objective Genetic Algorithm (MOGA) for both, feature selection and cluster count

optimization, for an unsupervised machine learning technique, K-Means, applied to

encrypted traffic identification. In this work, SSH is chosen as an example of an

encrypted application. However, nothing prevents the proposed model to work with

other types of encrypted traffic, such as SSL or Skype. This work explores whether it

is possible to mimic the performance of a gold standard model (classifier type, label

driven model), using a MOGA based on clustering objectives. Then the performance

of the proposed model is benchmarked against other unsupervised learning techniques

existing in the literature: Basic K-Means, semi-supervised K-Means, DBSCAN, and

EM. Results show that the proposed MOGA, not only outperforms the other models,

but also provides a good trade off in terms of detection rate, false positive rate, and

time to built and run the model. This is a very desirable property for a potential

implementation of an encrypted traffic identification system. Finally, a hierarchical

version of the proposed model is implemented, to observe the gains, if any, obtained

by increasing cluster purity by means of a second layer of clusters. Results show that

with the Hierarchical MOGA, significant gains are observed in terms of the classifi-

cation performances of the system.

xi

Acknowledgements

This work was supported by ISSNet - NSERC Strategic Network and the CFI new

opportunities program. My thanks to Dr. Nur Zincir-Heywood and to Dr. Malcolm

Heywood for all their guidance and time dedicated. My thanks to Chris Maxwell and

David Green from the Faculty of Computer Science Tech Support, and also thanks

to the Dalhousie UCIS team for providing the anonymozied Dalhousie traffic traces.

All research was conducted at the Dalhousie Faculty of Computer Science NIMS

Laboratory, http://www.cs.dal.ca/projectx.

xii

Chapter 1

Introduction

An important part of network management requires the accurate identification and

classification of network traffic [5], [3]. Network administrators are normally interested

in identifying application types for decisions regarding both bandwidth management

and quality of service [3]. Traffic identification can also have potential applications

in network security, in particular in the field of forensic analysis. Earlier attempts to

identify network traffic used to rely on TCP port number inspection, i.e., inferring

an application’s protocol based on the port number it uses. However, this approach

became increasingly inaccurate as users started to send traffic through non-standard

port numbers, and as peer to peer (P2P) applications started to hide behind well

known port numbers to avoid detection [29]. An alternative to port number inspec-

tion is payload inspection, which consists of inferring the type of the application by

searching for protocol specific behavior or data inside the TCP or UDP payloads [39].

However, deep packet inspection cannot be performed when the packets are encrypted,

as the payload is obscured. In addition, “governments may impose privacy regula-

tions constraining the ability of third parties to lawfully inspect payloads at all” [39].

Consequently, the two traditional approaches to identify network traffic are unable

to deal with the identification of encrypted traffic.

Given the limitations of the aforementioned methods, some attention has been

given to the use of machine learning techniques to identify network traffic. These

techniques normally employ statistics of the data, like packet length and packet inter

arrival time related features. A number of these attempts have employed supervised

learning methods, however, these classifiers have uncertain generalization properties

when faced with new data. An alternative to classifiers is the use of unsupervised

machine learning methods, specifically, clustering mechanisms. Unlike classifiers, clus-

tering algorithms identify the natural classes existing in the data, i.e., a data driven

approach. Thus, unsupervised machine learning techniques have the capability of

1

2

identifying new behaviors in the data. This makes them particularly suitable to traf-

fic analysis, given that new applications constantly populate the Internet without any

warning for existing security mechanisms to adapt. The purpose of this work is to

investigate the implementation of a genetic algorithm to work with an unsupervised

machine learning technique to identify encrypted traffic. A Multi-Objective Genetic

Algorithm (MOGA) will be used for the dual goal of (i) identifying the appropri-

ate (flow) attribute/feature subspace and (ii) identifying traffic types via clustering.

Such a MOGA based approach for traffic identification was first employed by the

author in [8], under the assumption that the resulting clusters partition traffic into

encrypted/not encrypted. The proposed MOGA will evolve four predefined cluster-

ing objectives that will aim to maximize inter and intra-cluster distance, as well as

decrease the number of employed features and clusters. It is believed that higher in-

ter and intra-cluster distance would lead to better quality of clusters, and that lower

number of features and clusters will have a positive impact on the computational cost

of training and running the model.

Thus, the first hypothesis of this work is whether the MOGA is capable of select-

ing an appropriate subset of features to partition the data into encrypted versus non

encrypted traffic. To test the effectivity of the proposed method as a feature selec-

tion technique, the performance of the MOGA will be benchmarked against a gold

standard model for feature selection. Such a model will also be a machine learning

technique, however, the learning will be guided with classification objectives rather

than with clustering objectives (chapter 7).

The second hypothesis of this work is whether it is possible to obtain gains in

both, computational performance and classification rates with the proposed model.

To test this hypothesis, the performance of the proposed MOGA will be benchmarked

against the basic K-Means, but without using the MOGA optimization. Furthermore,

the performance of the MOGA will also be benchmarked against other unsupervised

learning techniques existing in the literature, such as semi-supervised K-Means, DB-

SCAN, and EM (chapter 8).

Finally, this work will explore the effects of increasing cluster purity in the clas-

sification performance of the system. It is believed that a higher cluster purity will

lead to better classification rates. To test this hypothesis, a hierarchical version of

3

MOGA that will further partition the data will be implemented, aiming to increase

cluster purity. Then, the performance of this model will be compared against the

performance of the original MOGA (chapter 9).

With regards to the traffic type to analyze, Secure Shell (SSH) was chosen as

an example encrypted application. While SSH is typically used to remotely access a

computer, it can also be utilized for “tunneling, file transfers and forwarding arbitrary

TCP ports over a secure channel between a local and a remote computer” [3]. These

properties of SSH make it an interesting encrypted application to focus on, given that

it shows similar behavior to popular encrypted applications such as Skype. However,

unlike Skype, SSH is an open source protocol. This ensures that the ground truth is

known regarding the traffic tested.

In the following, chapter 2, Background Information, will provide a brief descrip-

tion of unsupervised machine learning techniques, as well as a basic description of

genetic algorithms. Chapter 2 will also describe the encrypted protocol to identify,

SSH. Chapter 3, Previous Work, will describe the work existing in the literature

where unsupervised machine learning techniques have been employed to identify net-

work traffic. Special attention will be given to the specific algorithms employed, as

well as to the feature selection process. Chapter 4, Algorithm Methodology, will

describe the proposed model, going into the details of the implemented genetic al-

gorithm, fitness function, and the feature selection and cluster count optimization

process. Chapter 5, Experimental Methodology, will describe the data employed for

the training and testing of the model, as well as the data pre-processing (flow gen-

eration process). In order to test the proposed methodology, chapter 6, Analysis of

Clustering Objectives, will examine the effectivity of the MOGA in evolving the four

predefined clustering objectives. Chapter 7, Analysis of the Unsupervised Learning

Model, will compare the performance of the proposed MOGA against a gold stan-

dard model, to assess the suitability of the clustering objectives to the task of feature

selection and encrypted traffic identification (first hypothesis). The work presented

in this chapter can also be found in [9]. Chapter 8, MOGA vs Other Unsupervised

Learning Techniques, will benchmark the proposed MOGA against four other unsu-

pervised learning techniques existing in the literature (second hypothesis). The work

presented in this chapter can also be found in [7]. Chapter 9, Hierarchical MOGA,

4

will expand the proposed model into a hierarchical unsupervised learning algorithm,

to analyze the gains, if any, obtained by increasing cluster purity (third hypothesis).

Finally, chapter 10, Conclusions, will summarize the presented work, detailing the

outcome of the conducted experiments and their significance in terms of the three

hypotheses analyzed. Chapter 10 will also outline the future work derived from the

observations and conclusions obtained from this thesis work.

Chapter 2

Background Information

2.1 Introduction

This chapter introduces the basic concepts employed in this work, where it is intended

to identify encrypted network traffic by means of an unsupervised learning technique

(K-Means algorithm), wrapped with a multi-objective genetic algorithm, MOGA, to

address the dual problem of feature selection and cluster count optimization. Thus,

it becomes necessary, before describing the details of the methodology, to explain

the theory behind unsupervised machine learning algorithms, as well as the essence

of genetic algorithms, and the encrypted protocol to identify, Secure Shell (SSH).

This chapter will specifically describe the unsupervised machine learning technique

employed by the proposed model, K-means, as well as two other common unsupervised

techniques found in the literature, DBSCAN and EM. This is not a comprehensive

description of these topics, the interested reader should refer to the material cited in

each section.

2.2 Unsupervised Learning and K-Means Algorithm

Discriminating encrypted versus non-encrypted network traffic can be essentially ad-

dressed as a problem of pattern recognition. The objective is to determine to which

class an entity belongs, based on its characteristics or features. Accordingly, the first

step will be to identify the features that will allow proper distinction between in-class

(encrypted traffic) and out-class (non-encrypted traffic). The feature selection process

employed in this research is detailed in section 5.3, and again revisited in chapter 7.

In the field of machine learning, the classification between in-class and out-class

is normally performed with either supervised learning methods, or with unsupervised

learning methods. In the case of supervised learning, every instance in the training

data has an associated label or class tag, indicating the class the entity belongs to.

5

6

These labels guide the learning of the model. Consequently, the learning phase is

constrained to generate models that will only be able to recognize entities belong-

ing to the classes that the classifier was trained with. When faced with new unseen

data, classifiers tend to have uncertain classification properties. Unsupervised learn-

ing methods, on the other hand, guide the training of the model without any labels or

class tags. Because these methods are not constrained by the classes used for training,

unsupervised techniques can discover new behaviors in the data, potentially leading

to the discovery of new classes [17]. This is particularly interesting for network traffic

analysis, where new applications constantly populate the network without any warn-

ing for existing classifiers to adapt. Furthermore, not requiring labelled training data

is also an advantage in terms of training data generation, as labelled samples tend to

be expensive to generate [17]. Again, this is particularly appealing for encrypted net-

work traffic, where the data is normally represented by log files without any payload

information to facilitate labeling.

The use of unsupervised learning techniques, specifically clustering approaches, to

classify data normally consists of a model building phase, and a test phase. In the

model building phase training data is clustered, or partitioned, based on some criteria

of similarity. Once the clusters of similar data have been formed, they are associated

with a label, which represents the labels of the data grouped in that particular cluster.

This cluster labeling can be implemented in a number of ways, but the basic idea is

that the label has to represent the data contained in the cluster. The test phase, on

the other hand, consists of classifying data by means of the built clusters. This is

done by predicting the class of each entity in the test data, based on the label of the

cluster that the entity is more similar to. Naturally, this criteria of similarity has to

be the same as the one used to build the clusters.

2.2.1 K-Means Algorithm

The unsupervised algorithm utilized in this work is the K-Means clustering algo-

rithm [32]. This algorithm seeks to group the data into K clusters or partitions,

based on the distance between the data points. The idea is to minimize the distance

between the data points and their closest cluster centroid. “Stated informally, the

7

[K-Means] procedure consists of simply starting with [K] groups each of which con-

sists of a single random point, and thereafter adding each new point to the group

whose mean the new point is nearest. After a point is added to a group, the mean

of that group is adjusted in order to take account of the new point. Thus at each

stage the [K-Means] are, in fact, the means of the groups they represent (hence the

terms [K-Means])” [32]. Whereas this algorithm can at times converge to an optimal

solution, that will not be the general case [32]. Algorithm 1 outlines the K-Means

pseudo code [17], where ui represent the cluster’s means.

Algorithm 1 K-Means Algorithm
begin initialize n, k, u1, u2, ... uk

do classify n samples according to nearest ui

recompute ui

until no change in ui

return n, k, u1, u2, ... uk

end

The computational complexity of this algorithm is O(ndkT), where d is the number

of features and T is the number of iterations.

An immediate concern with the K-Means algorithm is that it is required to know

before hand the number of K clusters. Hence, part of this research will be to find the

optimum number of clusters, which will directly depend on the employed features or

attributes [19]. While a certain number of clusters k might lead to optimum results

with a subset of features f1, that same value of k might perform very poorly with a

different subset of features f2. In addition, the number of clusters alone has a great

impact on the performance of the algorithm. If the number of clusters is too small,

then the algorithm might not be able to tell the differences between classes. If, on

the other hand, the number of clusters is too large, then the algorithm will simply

memorize the training data, and its performance will be poor in front of new unseen

data, i.e., over-fitting [32].

8

2.2.2 DBSCAN Algorithm

DBSCAN is a density based algorithm, so it regards “clusters as dense areas of objects

that are separated by less dense areas” [20]. It was first proposed by Ester et al. [24], as

an attempt to generate a clustering algorithm that required minimal prior knowledge

about the data, as it does not require to know before hand the number of natural

clusters in the data. It was also part of the motivation to generate an algorithm, that

unlike existing techniques like K-Means, was not limited to find clusters of spherical

shape. DBSCAN partitions the data based on areas of higher density of points.

Clustered groups have, as expected, a higher density in points than areas outside of

the clusters. These dense area clusters can follow any arbitrary shape.

Clusters are built with the premise that for each point p inside a cluster, “the

neighborhood of a given radius has to contain at least a minimum number of points,

i.e., the density in the neighborhood has to exceed some threshold” [24]. The Eps-

neighbohood of a point p is defined by all the points q such that the distance between

p and q, dist(p,q) is less than a specific distance (Eps distance). Then, for every

point p that is part of a cluster, there has to be a point q such that p is in the q

Eps-neighborhood, and that the Eps-neighborhood of q has al least a certain number

of points (MinPts). Thus, by enforcing a specific distance, Eps, and a minimum

number of points, MinPts, the algorithm ensures a minimum density threshold inside

the resulting clusters.

Formally, a point p is directly density-reachable from a point q if it belongs to

q ’s Eps-neighbohood, and if the number of points in that Eps-neighbohood is larger

than MinPts. Then a point p is density-reachable from a point q if there are points

{p1, p2, ..., pn}, such that pi is directly reachable from pi+1. A point p is density-

connected to a point q if there is a point o such that both p and q are density-reachable

from o. Then, a cluster will be a set of density-connected points [24]. The clusters

are build in two phases. First an arbitrary point p is identified that satisfies the core

point condition. Then, all the point that are density-reachable from that point are

retrieved, generating a cluster. Points that are not part of any cluster are identified

as noise.

The input for the algorithm is only the (Eps) distance, and the number of min-

imum points (MinPts). Given that the Eps-Neighborhoods are relatively small in

9

comparison to the n size of the data to cluster, the time complexity of creating a

neighborhood can be approximated to O(log n). Then, because there would always

be at most one query per point n, the time complexity of the entire algorithm is

O(n* log n) [24].

2.2.3 EM Algorithm

The Expectations Maximization (EM) algorithm [16] works with the probabilities of

each instance belonging to each cluster [42]. Unlike distance based clustering algo-

rithms, like K-Means, EM works with the statistical models that describe the data

to be clustered. The algorithm has two phases, an expectation phase and a maxi-

mization phase. The parameters used by the algorithm that model the characteristic

probability distribution of each cluster are estimated during the expectation phase,

and are continually re-estimated during the maximization phase [20].

The idea behind the algorithm is to identify the data based on its density func-

tions. Specifically, using a probability density function like the mixture model, “which

asserts that the data is a combination of K individual component densities, corre-

sponding to the K clusters” [14]. The mixture model seeks to identify the clusters

in the data and to “provide a model (density distribution) of each of the popula-

tions” [14]. Then, the EM algorithm is used to estimate the parameters for the

mixture model, to fit the model to the particular data to cluster. “The EM algo-

rithm iteratively refines an initial cluster model to better fit the data and terminates

at a solution which is locally optimal” [14]. The algorithm iterates until a stopping

criteria is satisfied. At each iteration, the EM algorithm computes the membership

probability of each point in the data set, and then it updates the model parameters

accordingly.

With regards to its time complexity, to compute the membership probability of

the points in the data, it is necessary to do one full scan of the data for each iteration.

The total number of iterations will depend on the initial parameter values and on the

distribution of the data. A more detailed explanation of the algorithm can be found

in [16] and also in [1].

10

2.3 Genetic Algorithms

The idea behind genetic algorithms consist of bringing concepts from genetic evo-

lution, as they occur in nature, to solve optimization problems in the engineering

sciences [37]. In the words of genetic algorithms creator, John Holland, “Living or-

ganisms are consummate problem solvers. They exhibit a versatility that puts the

best computer programs to shame” [25]. Genetic algorithms are particularly useful

when the space of possible solutions to a problem is too large to be searched efficiently

with exhaustive methods.

The basic genetic algorithm framework consists of encoding possible solutions to

a problem into strings of ones and zeros, which for the purpose of genetic evolution

become chromosomes. Still, from a computer perspective, they are simply encoded

solutions for the problem at hand. Several of these possible solutions are then grouped

together into a population of chromosomes, which is subsequently genetically evolved.

What this means is that employing techniques like crossover and mutation, these chro-

mosomes are combined imitating the interchange of genetic material as it happens in

nature when species breed. Specifically, crossover means that at a certain position in

the string, the material between two chromosomes is exchanged, generating offspring.

Mutation, on the other hand, means that some of the bits in the offspring chromosome

are flipped [37]. The power of genetic algorithms comes from the fact that parental

selection is proportional to the fitness of the individuals (chromosomes). That is, the

fittest individuals are more likely to generate offspring than the least fit ones. It will

be critical, therefore, to define a fitness function that allows discrimination between

the individuals that better solve the problem at hand (fittest), and the individuals

that don’t (less fit). Algorithm 2, which has been taken and summarized from [37],

outlines a simple genetic algorithm framework.

One iteration of this process is called a generation, and a set of generations is called

a run. A run can consist of anywhere from 50 to 500 or more generations [37]. Given

the stochastic nature of the process, it is normally necessary to combine several runs

to obtain consistent results. At the end of a run, the population will ideally contain

fitter individuals, thus, better solutions to the original problem. The key concept

behind genetic algorithms is the idea of building blocks, or schemes. That is, better

solutions are achieved by combining other potentially good solutions, or solutions

11

Algorithm 2 Simple Genetic Algorithm
1 Start with a randomly generated population of n l -bit chromosomes (candidate

solutions to a problem)

2 Calculate the fitness f(x) of each chromosome x in the population

3 Repeat the following steps until n offspring have been created:

a Select a pair of parent chromosomes from the current population, the

probability of selection is proportional to the fitness of the individual.

b With probability pc, “crossover probability”, crossover the pair at a

randomly chosen point to form two offspring.

c Mutate the two offspring at each bit (locus) with probability pm,

“mutation probability”, and place the resulting chromosomes in the new

population.

4 Replace the current population with the new population.

5 Go to step 2

that already contain good schemes, or building blocks. As these individuals with

good schemes are combined, they could eventually lead to better solutions.

2.3.1 Multi-Objective Genetic Algorithms

A particularly interesting type of genetic algorithms are the multi-objective optimiza-

tion algorithms, where the purpose is to address problems that target more than one

objective. The idea is to consider the multiple objectives simultaneously, searching for

a solution space that is optimum in terms of all the objectives, compromising among

its values. This leads to a set of potential solutions to the problem at hand, which

will be a subset of the Pareto Front. The Pareto Front is conformed by the set of

non-dominated individuals. An individual dominates another if it has a higher value

in at least one of the objectives, and is at least as good in all the others. Because the

solution will consist of a set of possible solutions (members of the Pareto Front), often

a decision maker entity is needed to select a final solution. Multi-objective evolution-

ary algorithms need to ensure that the evolution is guided towards Pareto optimality,

while at the same time maintaining diversity among the solutions, and preventing

the loss of non-dominated solutions [36]. The most representative multi-objective

12

algorithms are:

Strength Pareto Evolutionary Algorithm (SPEA), is a generational based genetic

algorithm that maintains a solution archive with the non-dominated individuals. The

idea is to avoid the elimination of the non-dominated individuals. After each gener-

ation, the non-dominated individuals are added to this archive, “culling dominated

and indifferent members accordingly” [36].

Nondominated Sorting Genetic Algorithm (NSGA), implements a “non-dominated

ranking scheme as a means of influencing fitness assignment” [36]. In its original

version the fitness is assigned based on the ranks, favoring the non-dominated indi-

viduals. In its second version, this was improved by including “diversity maintenance

schemes” [36].

Multi-Objective Genetic Algorithm (MOGA), where every member in the popula-

tion is assigned with a rank, which indicates how many individuals in the population

dominate that particular individual. The best individuals, the non-dominated ones,

will be those whose rank equals one and will receive the highest fitness. The remain-

ing individuals receive fitness as a “linear function of rank, scaled by objective space

density in the form of niche counts according to sharing distance” [36].

Pareto Converging Genetic Algorithm (PCGA), which assigns ranks similarly as

done by the MOGA. The PCGA, however, introduces elitism with a steady state al-

gorithm. Thus, the model does not “employ a diversity mechanism explicitly, arguing

that the compressed range of ranks due to the elitist steady-state strategy of PCGA

produces the same effects as fitness sharing” [36].

2.4 The SSH Protocol

This section describes the encrypted protocol that is going to be identified by means

of an unsupervised machine learning technique, K-Means, wrapped with a MOGA

for feature selection and cluster count optimization.

When data travels through the Internet in plain text, it can be easily intercepted,

captured, and viewed by third parties [10]. Secure Shell (SSH) is a protocol that

allows users to send messages encrypted through the network with the purpose of

avoiding interception. The data is encrypted with an RSA key exchange, allowing

secure communication over unsecured channels [2]. SSH enables users to log into a

13

Figure 2.1: SSH Tunnel

computer remotely through the network, executing commands, moving files, etc [2].

It also allows the integration of security to other existing insecure protocols, such as

Telnet, FTP, among others [10]. One of the main advantages of using SSH is that it

is practically imperceptible for the user, and that it can operate with most operating

systems [10]. The data encryption happens before any message left a computer, and

the data is automatically decrypted when it reaches its destination, before the receiver

gets to see the message. Thus, the notion of tunneling, where users can enjoy a secure

interchange of information over the Internet without being aware of this encryption

process, as it all happens behind the scenes. Figure 2.1, taken from [10], displays the

concept of an SSH tunnel.

As it can be observed from figure 2.1, the protocol is organized around a client-

server architecture. The client requests connections to the server, which accepts or

rejects the logging, and then evaluates any other request like files request, command

execution requests, etc [10]. In order to set up the encrypted channel, an SSH authen-

tication process precedes the data exchange. At a high level, the SSH authentication,

or SSH handshake, consists of a host authentication, and a user authentication (fig-

ure 2.2 taken from [18]).

Finally, it is important to note that SSH can not only be used to hide legitimate

users information from third parties on the network. SSH can also be used by banned

14

Fig. 2. Authentication stage in SSH.

boundary security policies that allow the use of SSH for
remote command execution or secure file copy have no other
choice than to accept, with today’s ALGs, that any protocol
can be tunneled in and out of the intranet by means of SSH
tunnels.

SSH is designed following a client-server model: the server
is usually implemented with a daemon running in background
and accepting connections to port 22. Data encryption is
ensured by the SSH protocol that, before any traffic can
be exchanged, requires the peers to negotiate cryptographic
credentials [16], [17]. The authentication procedures of SSH
impact the way tunnel hunter is implemented. Therefore, we
need to go into more details on how they work and how they
affect our technique.

B. The SSH authentication process

An SSH session involves two different authentication phases
before client and server can start exchanging data: (i) host
authentication and (ii) user authentication. Figure 2 outlines
the SSH authentication process.

Host authentication, as reported in [17], provides strong
encryption, cryptographic host authentication, and integrity
protection. The key exchange method, public key algorithm,
symmetric encryption algorithm, message authentication algo-
rithm, and hash algorithm are all negotiated. It is expected
that in most environments only two round-trips are needed
for full key exchange, server authentication, service request,
and acceptance notification of service request: in the worst
case, a round-trip more could be required. This authenti-
cation phase is transmitted un-encrypted and ends with an
SSH MSG NEWKEYS message. All messages sent after this one
must use the negotiated keys and algorithms, and are privacy
and integrity protected.

User authentication, as reported in [16], is intended to be
run over the SSH transport layer protocol, i.e., the encrypted
channel derived by the host authentication phase. Public-key
is the only mandatory authentication method, although pass-
words are also accepted. Successful password authentication
in SSH requires a single round-trip: the client transmits the

password to the server, that replies with an ACK or a NACK.
In the last case, the client has other chances to re-send the
correct password. The public-key method can either require
one or two round-trips: the specifications define an optional
initial exchange where the client could send information on
its public key to the server before sending a signature with its
own private key.

Packets exchanged during the entire SSH authentication
process are not useful to a classifier to detect the type of
session that the user is opening, i.e., whether the session
is tunneling other protocols or is being used for remote
command execution or secure file copy. The classifier can
easily discard all the packets exchanged up to the client’s
SSH MSG NEWKEYS message and the server response, since
they are sent in the clear. It is more difficult to detect when user
authentication ends, and actual data starts being exchanged,
because the second authentication stage is encrypted. In this
paper we solve this issue assuming that network administrators
are required to choose and allow only one kind of SSH user
authentication method to implement tunnel hunter on their
networks.

We will discuss this and other aspects related to the way
SSH configuration parameters affect our mechanism in Sec-
tion IV-E.

IV. TUNNEL HUNTER

The goal of this work is to outline a statistical technique that
provides a behavioral characterization of an application layer
protocol to detect tunneling activities. It is important to point
out that the precision in detecting non-tunneled traffic must
be very high. In other words, the system must minimize the
number of false-positives, intended as the number of legitimate
flows that are incorrectly blocked. Ideally, no legitimate SSH
sessions should be stopped by tunnel hunter.

The algorithm we present here has been empirically derived
from a näive Bayes approach, presented in our previous
work [3], where it was used to classify different protocols
such as POP3, SMTP and HTTP. Here we exploit the same
basic classification algorithm to detect SSH tunnels.

We built our model considering only the packets that carry
application-layer data: since the technique aims at classifying
the application-layer, we do not consider packets without TCP
payload, and we simply discard them.

A. Statistical pattern recognition: basic concepts

Statistical pattern recognition is built on three main defi-
nitions: pattern, feature and class [18]. The pattern is an r-
dimensional data vector x = (x1 , . . . , xr) of measurements,
whose components xi measure the features of an object. The
feature represents the variable specified by the investigator
and holds a key role in classification. The concept of class is
used in discrimination: assuming a set of C classes, named
 1 , . . . , C , each pattern x will be associated with a variable
that denotes its class membership. If the classes are gathered
from an a priori training set, that is, the information about how
to group the data into classes is known and it is not inferred

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1740

Figure 2.2: SSH Handshake

applications to circumvent firewalls and security mechanisms. Applications like peer

to peer, or any other type of blocked or controlled application, can bypass firewalls

by encrypting their content under SSH tunnels [18]. With the content obscured, a

firewall has little chance to discriminate between legitimate and banned or malicious

traffic, likely letting the encrypted content going through. Going any deeper into this

argument would be beyond the scope of this work. Still, the point has been to bring

attention to the importance of identifying encrypted traffic of any kind, in this case,

SSH.

2.5 Conclusions

This chapter has briefly reviewed the basic knowledge needed to understand the work

presented in this thesis. In summary, the unsupervised learning method, K-Means,

will be optimized by means of a genetic algorithm to solve the dual problem of fea-

ture selection and cluster count optimization. This model will then be employed to

identify encrypted network traffic, specifically, SSH. The following section will re-

view the previous work existing in the literature, where similar unsupervised learning

techniques have been employed for network traffic classification, including K-Means,

DBSCAN, and EM.

Chapter 3

Previous Work with Unsupervised Learning Techniques

applied to Network Traffic Identification

3.1 Introduction

Network traffic identification consists of separating the data going through the net-

work by protocols or application types. Earlier attempts to identify network traffic

used to rely on TCP port number inspection, i.e., inferring an application’s proto-

col based on the port number used to communicate it. The use of standard port

numbers allowed such association. For instance, if an application used port num-

ber 80, then it could be confidently assumed that the used protocol was HTTP [26].

However, this approach became increasingly inaccurate as users started to send traf-

fic over non-standard port numbers, and as peer to peer (P2P) applications started

to hide behind well known port numbers to avoid detection [29]. An alternative to

port number inspection is payload inspection, which consists of inferring the applica-

tion types by searching for protocol specific behavior or data inside the TCP or UDP

payloads [39]. Thus, it is necessary to know before hand the mapping between the ap-

plication behaviors (syntax) and the applications to identify [39]. These methods can

be extremely accurate when the payload can be accessed [4]. However, deep packet

inspection cannot be performed when the packets are encrypted, as the payload is

obscured. In addition, “governments may impose privacy regulations constraining

the ability of third parties to lawfully inspect payloads at all” [39]. Given these

limitations, several previous attempts to identify encrypted traffic have worked with

statistics of the data, like packet length and packet inter arrival time related features.

A number of these attempts have employed supervised machine learning techniques,

however, these classifiers have uncertain generalization properties when faced with

new data. An alternative to classifiers is the use of unsupervised machine learning

techniques, specifically, clustering mechanisms (section 2.2). This chapter presents

15

16

a summary of the previous attempts existing in the literature, where unsupervised

machine learning techniques have been employed to identify network traffic.

3.2 Previous Work

One of the earliest works in the literature in this field was presented by Paxson in [41].

In this work, a number of analytic models were presented to describe the features

associated with TELNET, NNTP, SMTP, and FTP connections. Three million TCP

connections gathered at seven different sites were analyzed, focusing on attributes like

bytes transfered and duration. In doing so, it was noticed that in the case of attributes

with large ranges of values, it was more meaningful to analyze the data after applying

a logarithmic transformation to it. Specifically, the significance of statistics such as

mean and standard deviation were skewed towards attributes with the greater ranges.

Given that there were several orders of magnitude between these values, applying a

log transformation reduced the corresponding dynamic range to the attributes with

the most dissimilar ranges. This logarithmic normalization can be observed in several

subsequent traffic classification approaches existing in the literature, as a measure to

obtain better data representation. Section 7.3, chapter 7, will evaluate the effects of

applying this logarithmic transformation to the data, prior to applying the proposed

model.

McGregor et al. [35] presented an unsupervised approach using Expectation Max-

imization (EM) clustering algorithm, to classify network traffic represented by a set

of flow attributes. The authors first examined plots of packet size against packet

inter-arrival time, where they observed that these plots exhibited a number of char-

acteristic shapes that were believed to indicate application types like, HTTP, FTP,

and SMTP. After this analysis, flows were generated with the following attributes:

packet size statistics, inter-arrival statistics, byte counts, connection duration, num-

ber of transitions between transaction mode and bulk transfer mode, and the time

spent idle, in bulk transfer, and in transaction mode. Attributes that did not have

an impact on the classification were identified and discarded. Using the Auckland VI

trace they observed that the clustering algorithm showed some capabilities in group-

ing flows together by traffic type, but that more work needed to be done to derive

better features to increase performance. This characterization of applications based

17

on flow attributes alone, served as a promising indication that a purely data driven

flow based approach could perform a good degree of traffic classification.

Zander et al. [45] also proposed the use of an unsupervised machine learning

technique (autoclass) for network traffic identification. The authors employed the

Auckland VI data set, and the NZIX-II and Leiozig traces. The flow feature selection

process was based on a sequential forward selection, where the algorithm starts with

the single attribute that generates the best results. Then, attributes were added one at

a time, based on the results they generated in combination with the already selected

attributes. This process was repeated until no more improvements were achieved.

The quality of the clusters was evaluated in terms of the intra-class homogeneity. The

idea was to maximize this variable to generate a good cluster separation, under the

assumption that this would lead to a better application differentiation. The authors

were able to achieve an average accuracy across all traces of 86.5%. It was identified

that together with good cluster separation, it would also be desirable to minimize “the

number of classes to improve speed of the learning and classification” and minimize

“memory requirements”. To this end, the model proposed in this thesis addresses this

issue by having one of the objectives to be evolved minimize the number of employed

clusters (section 4.3). The authors also mention that better, new flow attributes,

among others idle time, would be considered for future experiments. This issue has

also been considered in the proposed model by including in this thesis several idle time

related features (section 5.3). Finally, the authors left to “quantify the performance

in terms of processing time and memory consumption and to investigate the trade-

off between the approach’s accuracy and processing overhead” for their future work.

To that end, the proposed model has been benchmarked against other unsupervised

approaches existing in the literature, not only in terms of classification accuracy, but

also in terms of processing time (chapter 8).

Bernaille et al. [12] proposed the use of an unsupervised (K-Means) online ap-

proach, based solely on the packet size of the first p packets. The main motivation

behind this work was that “state-of-the-art techniques cannot determine the applica-

tion before the end of the TCP flow” [12]. Whereas the idea here was to achieve online

classification. Their approach aimed at identifying the application associated with a

TCP flow as early as possible, using the size of the first data packets, ignoring TCP

18

control packets (SYN, ACK’s, etc). The premise was that the “size of the first few

packets is a good predictor of the application associated with a flow because it cap-

tures the application’s negotiation phase, which is usually a pre-defined sequence of

messages and distinct among applications” [12]. The authors observed that unsuper-

vised learning is more appropriate for traffic classification than supervised learning,

because it does not rely on predefined classes. This argument was further investigated

by presenting an analysis of the multiple behaviors an application can have. Specifi-

cally, they plot the different behaviors of the FTP protocol: control flows, download

flows, and upload flows. They found many other multi-modal applications in their

data, which again, should be easier to model with unsupervised methods. With their

proposed model, the best results were obtained employing the first 5 packets, with

50 clusters for the K-Means algorithm. The proposed model correctly classified more

than 80% of the flows of almost all of the tested applications. The authors did men-

tion a few limitations of the proposed method, among others, the fact that the packets

might arrive out of order or may appear more than once. This would directly affect

the results, however, in their studied network this only happened with less than 4% of

the TCP flows. They also mentioned that two applications might start with the same

packet sizes, which would also affect the results. To solve this they would look into

heuristics like port number and inter-arrival times. To that end, in the work proposed

in this thesis the use of port numbers has been avoided as it can be misleading [29].

In [13], Bernaille et al. further elaborated their approach, working on traces

collected at eight different networks. In this work, they explored their proposed ap-

proach with K-Means and Gaussian Mixture Models, GMM, on an Euclidean space,

and Spectral clustering on Hidden Markov Models, HMM. Their results showed that

with the first four packets of a TCP connection they could obtain an accuracy above

90%. Their classification phase used the clusters defined in the training phase, plus

heuristics relative to the port number. A 4-dimensional space gave the best results for

the three clustering algorithms, employing 40 clusters for the K-Means algorithm, 30

clusters for the HMM, and 45 clusters for the GMM. Their results also showed that

“even though the HMM representation is richer, the quality of the clustering is com-

parable to the simpler Euclidean representation when using GMM clustering” [13].

19

Their model correctly classified over 98% of known applications in the studied pay-

load traces when employing the GMM clustering combined with TCP port numbers.

Again, for the work proposed in this thesis, any heuristics related to port numbers is

avoided. Finally, in [11], Bernaille et al. extended their work to identify applications

encrypted in SSL connections. Their method used the size of the first few packets of

an SSL connection to recognize applications. The method was tested on two campus

traces, and on a manually-encrypted trace, being able to recognize the applications

in SSL connections with more than 85% accuracy. To separate the SSL traffic from

the rest of the trace they used their GMM model, employing the first three packets

and 35 clusters. The protocol was then identified by analyzing the subsequent first

application packets. It is interesting to notice that online traffic classification, or near

real-time traffic classification, is not necessarily impossible to achieve with models

that employ complete flows, as opposed to only the first few packets as proposed

here. Near real-time traffic classification could potentially still be achieved with the

entire flows, and without the need of port number related heuristics. However, an

online approach would imply the availability of the computational power to do so.

Erman et al. presented several unsupervised approaches for traffic classifica-

tion [20, 21, 22, 23]. In [21] the authors compared an unsupervised approach using an

Expectation Maximization (EM) based clustering algorithm (AutoClass), against a

supervised approach that used a Naive Bayes Classifier. Both methods were tested on

subsets of the traces Auckland IV and Auckland VI from the University of Auckland.

The data was represented by the following flow features: Total Number of Packets,

Mean Packet Size, Mean Data Packet Size, Flow Duration, and Mean Inter-Arrival

Time of Packets. Because of the heavy tail distributions on many of these features,

they used the logarithms of the features. Their results showed that the unsupervised

technique had an accuracy of up to 91%, outperforming the supervised technique by

up to 9%. Furthermore, they found that the unsupervised technique was also able to

discover traffic from previously unknown applications. Then in [20], they presented

an evaluation of three clustering algorithms: K-Means, which is a partition based

algorithm, DBSCAN, which is a density based algorithm, and the previously used

AutoClass. K-Means and DBSCAN were chosen in particular because of their su-

perior clustering speed in comparison to AutoClass. For this work the authors used

20

the Auckland IV data set, as well as the locally collected Calgary trace. The data

was represented by the following flow features: total number of packets, mean packet

size, mean payload size, number of bytes transferred, and mean inter-arrival time of

packets. Like in their previous work, they applied a logarithmic transformation to the

data. The authors found that with K-Means the overall accuracy steadily improved

as the number of clusters was increased. This continued until K was around 100 with

the overall accuracy being 79% and 84% on each data set respectively. In comparison

to the other tested algorithms, K-Means had better accuracy than DBSCAN. Auto-

class slightly outperformed K-Means, but K-Means had a much faster building time.

Thus, K-Means seemed to provide the best mix of properties.

Finally, in [22], Erman et al. proposed a semi-supervised method, in which the

training was done with only a small percentage of labeled and a high percentage

of unlabeled flows. They obtained high flow and byte accuracy, greater than 90%,

clustering the data with a K value of 400 for the K-Means algorithm. Using a

backward greedy feature selection method, they chose the following eleven features:

total number of packets, average packet size, total bytes, total header (transport plus

network layer) bytes, number of caller to callee packets, total caller to callee bytes,

total caller to callee payload bytes, total caller to callee header bytes, number of callee

to caller packets, total callee to caller payload bytes, and total callee to caller header

bytes. They observed that flow features that have time components should be avoided

as they are more prone to suffer variations across different networks. With regards to

these approaches, in chapter 8 the performance of the model proposed in this thesis

is benchmarked against the three clustering algorithms evaluated in [20] (K-Means,

DBSCAN, and EM), and also against the semi-supervised approach presented in [22].

Siqueira et al. presented an unsupervised approach in [28], focusing on P2P traffic.

They used a hierarchical clustering technique, in which 249 features were analyzed,

including packet length and packet inter-arrival time statistics. The feature selection

was based on the Ratio F, which uses a ratio of two estimates, “dividing the vari-

ance mean of intra-group elements” and “the mean variance of inter-group elements”.

From original 249 features, the best five discriminators were: Port Server, Maximum

Window Advertisement Client to Server, Maximum Window Advertisement Server

to Client, Minimum Window Advertisement Server to Client, Minimum segment size

21

Client to Server. They were able to achieve 86.12% in trust, and 96.79% in accu-

racy. It is important to notice, however, that the Port server was included as one

of the selected features, which as already explained, was avoided during the research

presented in this thesis.

Yingqiu et al. also presented a flow based clustering approach, using K-Means to

build the clusters with features previously identified as the best discriminators [44].

The data used was collected at a research facility, and for the feature selection process

they used several techniques, like: CFS, Consistency-based subset evaluation, Infor-

mation gain attribute evaluation for feature selection, backward and forward greedy

search, greedy Best First, and Ranker for searching. The premise was that the “more

frequent a discriminator appears in the selected feature subsets, the better at dis-

criminating classes”. The best features were: “the number of total packets-b-a, the

number of actual data bytes-b-a, the number of pushed data pkts-a-b, the number

of the pushed data pkts-b-a, size of the mean IP packets-a-b, size of the max IP

packets-a-b, variant of the IP packet size-a-b, size of the mean IP packet-b-a, size of

the max-IP packet-b-a, variant of the IP packet size-b-a, and duration, where ‘a’ is

the client and ‘b’ is the server”. For the K number of clusters, they used values from

20 to 200, and they applied a log transformation that generated a 10% increase in ac-

curacy, reaching an overall accuracy level of up to 90% when utilizing K= 80 clusters.

This gave them a good trade off since they observed that greater values of K would

take more time to form a model, and it would also have a greater risk of over-fitting.

The authors concluded that the logarithmic transformation was very useful for traffic

classification. With that regard, section 7.3 evaluates the effectiveness of applying a

logarithmic transformation to the model proposed in this thesis.

Yang et al. [43] employed a DBSCAN clustering algorithm for traffic classification.

The authors employed a wrapper methodology for feature selection, i.e., features were

selected based on the effect that they had on the classification accuracy. The five fea-

tures employed were: mean inter arrival time, mean IP packet size, total number of

packets, total number of unique bytes sent, and connection duration. They were able

to achieve an accuracy of about 87%, concluding that this algorithm not only had

a good classification performance, but that it also had advantages in terms of the

22

reduced time required to build the model, and in terms of the little domain knowl-

edge that was required to set the input parameters (minPts and eps). Furthermore,

they also noticed that this algorithm was capable of building clusters of arbitrary

shapes, which resulted in better clusters. To this end, chapter 8 will benchmark the

performance of the DBSCAN algorithm against the proposed model in terms of both,

classification performance and computational time required.

Maiolini et al [33] presented an online K-Means based classifier. The authors

analyzed statistical features of the first packets of each connection, such as arrival

times, directions and packet sizes. The data was preprocessed by removing from each

flow the packets related to the first two packets of the three way TCP handshake.

Furthermore, the data was normalized with an “affine” normalization, consisting of

taking the difference between the value x and the minimum value of x, divided by the

difference between the maximum and minimum values of x. The K number of clusters

was selected by means of an a priori cross validation performed in the training data.

The best results were obtained analyzing the first six packets of each flow, supported

by 23 clusters. They focused on identifying applications like HTTP, FTP, POP3,

and SSH; and also on identifying applications within the SSH tunnels. Using locally

captured and locally generated traffic they were able to achieve an SSH average

accuracy of 98.4%. The authors also tried the CAIDA trace, yet, they concluded that

“more traces would help assessing the robustness of [the] methodology”.

3.3 Conclusions

This chapter has presented a review of the most relevant work existing in the literature

related to unsupervised learning algorithms applied to network traffic classification.

The employed unsupervised learning algorithms have been emphasized, as well as the

feature selection process. From the feature selection perspective, it can be observed

that while some authors favored packet length related features, others have resorted

into both, packet length as well as inter-arrival time related features. To that end,

that decision has been left in the hands of the algorithm, which selects the most

appropriate feature set out of a poll of both packet length as well as inter-arrival time

related features (section 5.3). In addition, several authors made use of logarithmic

transformations to obtain better data representations. Chapter 7 evaluates the effects

23

of applying a logarithmic transformation to the proposed model. With regards to the

different algorithms employed, it can be observed that most authors used variations of

either K-Means algorithm, DBSCAN algorithm, or EM algorithm. The performance

of these techniques is benchmarked against the proposed model in chapter 8 in terms

of both classification performances as well as computational times required to build

and test the models. Finally, to the best of the author’s knowledge the proposed

model in this thesis is the first work that performs encrypted traffic identification by

means of a multi-objective genetic algorithm without using any payload information

or port numbers or IP addresses.

Chapter 4

Algorithm Methodology

4.1 Introduction

This chapter introduces the algorithm implemented during this thesis work, in which a

genetic algorithm is utilized for feature selection and cluster count optimization for an

unsupervised machine learning technique. Details about the specific genetic algorithm

to be employed are reviewed, making emphasis on the individual representation as

well as the fitness function. No details are provided regarding the particular data

or application where this algorithm will be employed, as those are left for chapter 5,

Experimental Methodology.

4.2 Genetic Algorithm for Feature Selection and Clustering

The work proposed in this thesis consists of implementing a Multi-Objective Ge-

netic Algorithm (MOGA) for the dual problem of feature selection and cluster count

optimization, applied to encrypted traffic identification. Like most Genetic Algo-

rithms (GA), MOGA starts with a population of individuals (potential solutions to

a problem), and incrementally evolves that population into better individuals, as

established by the fitness criteria. Fitness is naturally relative to the population.

This work followed the MOGA framework proposed by Kim et al. [30], but modify-

ing the evolutionary component to follow the Pareto Converging Genetic Algorithm

proposed by Kumar et al. [31]. The latter converges towards the Pareto-front (set

of non-dominated solutions) without any complex sharing/niching mechanism (sec-

tion 2.3.1). One specific property of this GA is the utility of a steady-state GA, thus,

only two members of the population are replaced at a time under an elitist replace-

ment model. What this means is that instead of replacing the entire population after

each generation (section 2.3), every time two individuals are combined (bred), the re-

sulting two offspring replace the two worse performing individuals in the population.

24

25

Each of these combination and replacement cycles is denominated an epoch.

Two important issues that need to be addressed when using GAs are individual

representation, i.e., how will the individuals in the population represent solutions for

the problem at hand, and the fitness function, i.e., how will the fitter individuals

(the ones that better solve the problem at hand), be distinguished from the less fit

individuals (those that perform worse at solving the problem at hand). The fitness

function will be explained in section 4.3, and further explored in chapter 7. With

regards to the individual representation, on the other hand, each individual in the

population will represent a subset of features f, which will take care of the feature

selection, and a number of clusters K, which will take care of the cluster count opti-

mization. Specifically, an individual is an l bit binary string, where bits between the

first bit and the D ’th bit represent the features to include, and the remaining bits

represent the K number of clusters. The variable D corresponds to the dimension

of the entire feature subspace that is being reduced. Bits of the individuals in the

initial population are initialized with a uniform probability distribution. For feature

selection, a “one” implies that the feature at that index is included (from an array or

table containing the features from 1 to D), and a “zero” ignores the feature. The K

number of clusters, on the other hand, is obtained by counting the number of “ones”

(as opposed to “zeros”) contained between the D ’th bit and the end of the individ-

ual. Clusters are identified using the standard K-Means algorithm, using the subset

of features f, and the number of clusters K, as the input for the K-Means algorithm.

Thus, each individual ind i proposes to cluster the data using a certain subset of

features fi, and with a certain number of clusters ki. Figure 4.1 displays an example

of an individual and its feature selection and cluster count representation.

The fitness of the individual will depend on how well the resulting clusters perform

in relation to four predefined clustering objectives: Fwithin, Fbetween, Fclusters, and

Fcomplexity (section 4.3). Fitness evaluation assumes a multi-objective approach,

typically resulting in the identification of the Pareto-front, or a set of non-dominated

solutions. Informally, a solution is said to dominate another if it has higher values

in at least one of the objectives, and is at least as good in all the others. After

the objective values for each individual have been assessed, individuals are assigned

with ranks, which indicate how many individuals dominate that particular individual.

26

For number of clusters:
K = count the number
of “1” in last bits.

100100111000101010101010110111011101001010100010101000101010

•!!"#$%&'&("%$&#)*#)$)+%&$,($)%&-.&.)/%,#)$&!&

•!0)1/"+"+2&("%$&#)*#)$)+%&"&+,1()#&-.&34,$%)#$&

For feature selection:
“1” : include feature
“0” : discard feature

1 2 3 4 5 6 7 8 9

Discard feature

Include
feature

D’th bit

Figure 4.1: Individual Representation

Thus, fitness of the individuals is inversely proportional to their ranks, which is used

to build a roulette wheel that is ultimately used for parental selection.

The population is evolved for a certain number of epochs, after which the set of

non-dominated individuals (individuals whose ranks equal to 1) is identified. These in-

dividuals correspond to the set of potential solutions. The evolutionary component of

the algorithm is then terminated and the best individual in the set of non-dominated

solutions (the one that better identifies SSH traffic) is identified in the post-training

phase. For each individual in the set of non-dominated solutions,indi, K-Means is

applied with its proposed set of featuresfiand number of clusterski. The result-

ing clusters are labelled as either SSH, or non-SSH. If the majority of the flows in a

cluster have SSH labels, then that cluster is labeled as SSH, otherwise it is labeled

as non-SSH. The post-training phase is then entered and consists of testing each of

the non-dominated individual’s proposed solutions in the training data (used to build

the clusters on), to identify the solution with best classification rates. The system

diagram is displayed in Figure 4.2, and its evolutionary component in Figure 4.3.

27

Traffic Packets

Flow Conversion (NetMate) Traffic Flows

Evolutionary Algorithm for
feature selection and clustering

Set of non-dominated individuals

Post-training

Best individual (final solution)

Figure 4.2: System Diagram

\

Initialize Population

Calculate individual!s ranks and fitness

Apply Selection Operator

Crossover generates offsprings

Mutate new offsprings

Offsprings replace two least fit individuals

All Epochs done?

yes

no

Finished

Figure 4.3: Evolutionary Component Diagram

28

4.3 Fitness Function

The fitness of the individual will depend on how well the resulting clusters perform

in relation to the following four predefined clustering objectives:

1. Fwithin: Measures cluster cohesiveness, the more cohesive the better. For this

purpose the average standard deviation per cluster is assumed. That is, the

sum of the standard deviations per feature over the total number of employed

features. Then Fwithin will be the number of clusters in a solution, K, over the

sum of all the clusters’ average standards.

2. Fbetween: Measures how separate the clusters are from each other, the more

separated the better. For each pair of clusters i and j, their average standard

deviations are calculated, and the euclidean distance between their centroids is

also calculated. Then, Fbetween for clusters i and j is:

Fbetween(i, j) =
EuclideanDistanceFrom i to j√
(AveStdDevi)2 + (AveStdDevj)2

Thus, Fbetween will be the sum of all pairs of cluster’s Fbetween(i,j), over K.

3. Fclusters : Measures the number of clusters K, “Other things being equal,

fewer clusters make the model more understandable and avoid possible over

fitting” [30].

Fclusters = 1− K −Kmin

Kmax−Kmin

Kmax and Kmin are the maximum and minimum number of clusters.

4. Fcomplexity : Measures the amount of features used to cluster the data, this

objective aims at minimizing the number of selected features.

29

Fcomplexity = 1− d− 1

D − 1

D is the dimensionality of the whole data set and d is the number of employed

features.

In short, this model assumes that building fewer high quality clusters in terms

of low intra-cluster distance and high inter-cluster distance, and selecting fewer fea-

tures, will lead to a better data description. Conversely, post training performance

evaluation is based on detection rate (DR) and false positives rate (FPR) defined by:

DR = 1− #false negatives

total number of SSH flows

FPR =
#false positives

total number of non SSH flows

where false negatives means SSH traffic incorrectly classified as non-SSH traffic, and

false positives means non-SSH traffic incorrectly classified as SSH traffic.

4.4 Parameters Setting

For all the experiments in this thesis, the K-Means implementation provided by Weka

[42] is used. Also, the criteria of similarity employed for the K-Means algorithm was

the Euclidean distance, defined by:

d(p, q) =

√√√√
n∑

i=0

(pi− qi)2

With regards to the parameters for the MOGA, the initial population was set to

250 individuals, and it was evolved for 5000 epochs, with a mutation rate of 0.6%

and a uniform crossover operator. These parameters were selected after several trial

and error preliminary experiments. Chapter 6, Analysis of Clustering Objectives, will

explore the effects of the 5000 MOGA epochs over the clustering objectives.

30

4.5 Conclusions

This chapter summarized the multi-objective genetic algorithm developed during this

thesis work, where four clustering objectives are evolved aiming to approach a Pareto-

front of non-dominated solutions. A post training phase selects, based on classifica-

tion metrics (detection rate and false positive rates), the individual with the best

classification performance, which becomes the final solution. Following, chapter 5,

Experimental Methodology, will go into the application specific details of the pro-

posed model.

Chapter 5

Experimental Methodology

5.1 Introduction

This chapter describes the data set and data pre-processing required to apply the algo-

rithm described in chapter 4, to complete the proposed encrypted traffic identification

model. First the data set is described, consisting of traces of network traffic, and then

the flow generation process is outlined, needed to obtain a flow based representation

of the data.

5.2 Data Sets

The training data set employed was sub-sampled from the network trace captured

by the Dalhousie University Computing and Information Services Centre (UCIS) in

January 2007 on the campus network between the university and the commercial In-

ternet. Dalhousie University is one of the largest universities in the Atlantic region

of Canada, with more than 15,000 students. Data privacy related issues required

that the data was filtered to scramble the IP addresses and that each packet was

further truncated to the end of the IP header so that all the payload was excluded.

Furthermore, the checksums were set to zero since they could conceivably leak in-

formation from short packets. However, any length information in the packet was

left intact. Dalhousie traces were labeled by UCIS with a commercial classification

tool, PacketShaper, which is a deep packet analyzer, i.e., it analyzes the packet pay-

load [40]. Given that the handshake part of SSH protocol is not encrypted, it can

be confidently assumed that the labeling of the data set is completely accurate and

provides the ground truth for testing purposes. Again, it is emphasized that this

work did not consider any information from the handshake phase nor any part of the

payload, IP addresses, or port numbers. Also, this work focuses on SSH as a case

study, however, there is nothing in the approach that ties the proposed model to the

31

32

SSH protocol specifically. On the other hand, the fact that the SSH’s handshake is

not encrypted, allowed the comparison of the obtained results with those obtained

through payload inspection. In order to build training data the Dalhousie trace was

randomly sampled. The training data for all experiments consisted of 12250 flows,

including SSH, MSN, HTTP, FTP, and DNS. The test data, on the other hand, was

the entire data set (more than 18,500,000 flows), and consisted of flows from each of

those applications, plus flows that belonged to any of the following additional appli-

cations: RMCP, Oracle SQL*NET, NPP, POP3, NETBIOS Name Service, IMAP,

SNMP, LDAP, NCP, RTSP, IMAPS and POP3S.

In addition, in order to measure robustness across different networks, the per-

formance of the system was also evaluated on the AMP, the DARPA [15], and the

MAWI [34] traces (chapter 9). The AMP trace, consists of data collected during

2005 at the AMPATH location at the NAP of the Americas in Miami, and containing

21,097,425 flows. The MAWI [34] data set, on the other hand, contains 104,046,846

flows. The DARPA [15] data set contains traces with simulated attacks. For the

purposes of this work, only the traces that were free of attacks (weeks one and three)

were considered, as the interest is not in intrusion detection at this point, but on

encrypted traffic identification [5].

5.3 Flow Generation

Flows are defined by sequences of packets that present the same values for source IP

address, destination IP address, source port, destination port and type of protocol.

In this work, each flow is described by a set of statistical features and associated

feature values. A feature is a descriptive statistic that can be calculated from one or

more packets. Thus, a flow can be thought of as a D ’th dimensional vector, where

D correspond of the total number of calculated features, and where each feature

value in the vector represents a different statistic about the packets collected by that

flow. NetMate [38], an open source tool, was used to generate flows, and to compute

feature values. Table 5.1 shows the 38 features obtained from NetMate. Flows are

bidirectional with the first packet determining the forward direction. Since flows are

of limited duration, in this work UDP flows are terminated by a flow timeout, and

TCP flows are terminated upon proper connection tear-down or by a flow timeout,

33

whichever occurs first. A 600 second flow timeout value was employed here; where

this corresponds to the IETF Realtime Traffic Flow Measurement working groups

architecture [27]. It is important to mention that only UDP and TCP flows are

considered. Specifically, flows that have no less than one packet in each direction,

and transport no less than one byte of payload. Again, payload data and features like

IP addresses and source/destination port numbers were excluded from the feature set

to ensure that the results were not dependent on such biases.

34

Table 5.1: Flow Features Available for MOGA
ind. Feature Name Abbreviation
1 protocol (tcp, udp) proto
2 total forward packets total fpackets
3 total forward volume total fvolume
4 total backward packets total bpackets
5 total backward volume total bvolume
6 min forward packet length min fpktl
7 mean forward packet length mean fpktl
8 max forward packet length max fpktl
9 std dev forward packet length std fpktl
10 min backward packet length min bpktl
11 mean backward packet length mean bpktl
12 max backward packet length max bpktl
13 std dev backward packet length std bpktl
14 min forward inter arrival time min fiat
15 mean forward inter arrival time mean fiat
16 max forward inter arrival time max fiat
17 std dev forward inter arrival time std fiat
18 min backward inter arrival time min biat
19 mean backward inter arrival time mean biat
20 max backward inter arrival time max biat
21 std dev backward inter arrival time std biat
22 duration of the flow duration
23 min active min active
24 mean active mean active
25 max active max active
26 std dev active std active
27 min idle min idle
28 mean idle mean idle
29 max idle max idle
30 std dev idle std idle
31 sub flow forward packets sflow fpackets
32 sub flow forward bytes sflow fbytes
33 sub flow backward packets sflow bpackets
34 sub flow backward bytes sflow bbytes
35 forward push counter fpsh cnt
36 backward push counter bpsh cnt
37 forward urg counter furg cnt
38 backward urg counter burg cnt

35

The resulting flows are then integrated with the algorithm described in chapter 4,

Algorithm Methodology, completing the proposed system. Figure 5.1 displays the

complete system diagram, after integrating the flow generation step with the MOGA

described in section 4.2.

Traffic Packets

Flow Conversion (NetMate)

Traffic Flows

Evolutionary Algorithm for
feature selection and clustering

Set of non-dominated individuals

Post-training

Best individual (final solution)

Figure 5.1: Complete System Diagram

5.4 Conclusions

This chapter has described the application specific details of the model proposed in

this thesis. The network traces under a flow based representation are fed into the

MOGA proposed in chapter 4, for encrypted traffic identification. The following

chapter, Analysis of Clustering Objectives, will explore the effects of the MOGA over

the clustering objectives.

Chapter 6

Analysis of Clustering Objectives

6.1 Introduction

This chapter examines the effects of MOGA over the four predefined clustering ob-

jectives described in chapter 4, Fwithin, Fbetween, Fclusters, and Fcomplexity. Given

the stochastic component of the fitness evaluation (fitness is based on a roulette wheel

proportional to individuals ranks), these objectives are not expected to necessarily

increase in a hill climbing mode. Instead, it could be the case that values fluctuate as

the MOGA explores the solution space. The average values should, however, observe

a somewhat constant increase.

6.2 Clustering Analysis

To analyze the effects of the MOGA over the four predefined clustering objectives

(Fwithin, Fbetween, Fclusters, and Fcomplexity), 5 runs of MOGA are set, plotting

only the non-dominated individuals from each run. The non-dominated individuals

from the five runs were combined, plotting their objective values every 1000 epochs.

The idea was to monitor the effects of MOGA on each objective over time, from epoch

0 to epoch 5000. By doing so, it is possible to verify whether the population’s fitness

is enhanced over the epochs as expected.

6.2.1 Fwithin

Figure 6.1 shows the minimum, median and maximum values, as well as the first and

third quartile of the Fwithin objective every 1000 epochs. Figure 6.2 scales the same

diagram so that it is possible to better observe the increase in the median values.

Figure 6.3 shows the average values of Fwithin every 1000 epochs. As it can be

observed from these three diagrams, in the case of Fwithin for the five conducted

runs, there is a steady increase in its values, more notoriously after epoch 3000.

36

37

!"

!#!!!!$"

!#!!!%"

!#!!!%$"

!#!!!&"

!#!!!&$"

'()*+"!" '()*+"%!!!" '()*+"&!!!" '()*+",!!!" '()*+"-!!!" '()*+"$!!!"

.%"

/01"

/23041"

/45"

.,"

Figure 6.1:FwithinObjective over 5000 Epochs

!"

!#!!!!!$"

!#!!!!%"

!#!!!!%$"

!#!!!!&"

'()*+"!" '()*+"%!!!" '()*+"&!!!" '()*+",!!!" '()*+"-!!!" '()*+"$!!!"

.%"

/01"

/23041"

/45"

.,"

Figure 6.2:FwithinObjective over 5000 Epochs, scaled

38

!"

!#!!!!$"

!#!!!!%"

!#!!!!&"

!#!!!!'"

!#!!!!("

!#!!!!)"

*+,-."!" *+,-."$!!!" *+,-."%!!!" *+,-."&!!!" *+,-."'!!!" *+,-."(!!!"

Figure 6.3:FwithinAverages over 5000 Epochs

6.2.2 Fbetween

Figure 6.4 shows the minimum, median and maximum values, as well as the first

and third quartile of theFbetweenobjective every 1000 epochs. Figure 6.5 shows the

same diagram, but scaled so that it is possible to better observe the increase in the

median values. Figure 6.6 shows the average values ofFbetweenevery 1000 epochs.

It is interesting to notice from Figure 6.4 that higher maximum values were achieved

at earlier epochs (0, 1000, and 2000). However, for this analysis it is more interesting

the steady increase of the median, and of the third quartile, as those values give an

idea of where the majority of the higher values are located. As in the previous case,

from these three diagrams it can be observed a steady increase in the median, third

quartile, and also on the average values.

39

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&'()*"!" &'()*"$!!!" &'()*"%!!!" &'()*"+!!!" &'()*",!!!" &'()*"#!!!"

-$"

./0"

.12/30"

.34"

-+"

Figure 6.4:FbetweenObjective over 5000 Epochs

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

+!!"

#!!!"

,-./0"!" ,-./0"#!!!" ,-./0"$!!!" ,-./0"%!!!" ,-./0"&!!!" ,-./0"'!!!"

1#"

234"

256374"

278"

1%"

Figure 6.5:FbetweenObjective over 5000 Epochs, scaled

40

!""#

!$"#

%""#

%$"#

&""#

&$"#

'()*+#"# '()*+#,"""# '()*+#!"""# '()*+#%"""# '()*+#&"""# '()*+#$"""#

Figure 6.6:FbetweenAverages over 5000 Epochs

6.2.3 Fclusters

Figure 6.7 shows the minimum, median and maximum values, as well as the first

and third quartile of theFclustersobjective every 1000 epochs. Figure 6.8 shows

the average values ofFclustersevery 1000 epochs. In this case, it can be observed

a decrease in values until epoch 2000-3000, when the values start increasing. This

initial decrease in values can be attributed to the fact that MOGA does not search

the solution space in a hill climbing mode.

41

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

,-./0"!" ,-./0"$!!!" ,-./0"%!!!" ,-./0"&!!!" ,-./0"'!!!" ,-./0"(!!!"

1$"

234"

256374"

278"

1&"

Figure 6.7:FclustersObjective over 5000 Epochs

!"#$%

!"#&%

!"#'%

!"#(%

!")%

!")*%

!")+%

!"),%

!")#%

!"))%

-./01%!% -./01%*!!!% -./01%+!!!% -./01%,!!!% -./01%#!!!% -./01%)!!!%

Figure 6.8:FclustersAverages over 5000 Epochs

6.2.4 Fcomplexity

Figure 6.9 shows the minimum, median and maximum values, as well as the first and

third quartile of theFcomplexityobjective every 1000 epochs. Figure 6.10 shows the

42

average values ofFcomplexityevery 1000 epochs. In this case, it can be observed a

somewhat steady increase of the objective values over the 5000 epochs.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

-./01"!" -./01"$!!!" -./01"%!!!" -./01"&!!!" -./01"'!!!" -./01"(!!!"

2$"

345"

367485"

389"

2&"

Figure 6.9:FcomplexityObjective over 5000 Epochs

!"#$%

!"&%

!"&'%

!"&#%

!"&(%

!"&$%

!"(%

!"('%

!"(#%

)*+,-%!%)*+,-%.!!!%)*+,-%'!!!%)*+,-%/!!!%)*+,-%#!!!%)*+,-%&!!!%

Figure 6.10:FcomplexityAverages over 5000 Epochs

43

6.3 Conclusions

This chapter has reviewed the effects of the MOGA over the four objectives to be

optimized. It can be observed a somewhat steady increase in the value of the objec-

tives, with some fluctuation in their values as the MOGA explores the solution space.

Also, this analysis has been based on five independent runs. Different runs could

show different fluctuations, however, it should still be possible to observe a similar

overall rise of the objective values through the epochs. In short, in this chapter it

has been demonstrated that the implemented algorithm effectively enhances the ob-

jective values. The next step will be to asses the effectiveness of these objectives for

the intended purpose of traffic classification.

Chapter 7

Analysis of the Unsupervised Learning Model

7.1 Introduction

This chapter investigates to what extend the clustering objectives introduced in chap-

ter 4, guide the learning of the MOGA towards achieving good classification rates.

This analysis is relevant because the use of clustering objectives only indirectly per-

tains to the purpose of traffic identification, i.e., clustering data description is not

necessarily the same as classification. Thus, instead of using clustering objectives,

label information could have been used during training, which would have directly

guided the learning towards achieving good classification rates. However, the use

of labels during the learning phase is computationally much more expensive, as it

involves iterative calculations of classification metrics. Moreover, the use of labels

implies the availability of labeled training data in the first place, which is expensive

to generate. Still, to evaluate how effective the proposed clustering objectives are in

guiding the learning of the model towards achieving good classification rates, a sec-

ond model was implemented in which the learning was driven by labels. This second

model was used as a gold standard against which the performance of the proposed

model was compared. Thus, the first objective in this chapter is to explore whether

it is possible to mimic the results obtained with the gold standard objectives (label

driven learning), with the original clustering objectives.

The second objective of this chapter is to establish the significance of a prior

attribute normalization on the learning of the system. Network traffic under a flow

based representation utilizes attributes representing different properties, such as time

related features and packet length related features. As a result, significant variation in

attribute ranges is commonly observed. Such diversity in attribute ranges is typically

considered to have a negative impact on machine learning algorithms in general,

resulting in the wide spread use of a prior attribute standardization/normalization to

achieve a common variance or dynamic range across all attributes. To this end, many

44

45

approaches [41, 21, 20, 22, 44] in the literature apply a logarithmic transformation to

the data. Thus, the effects of applying a logarithmic transformation to the data set to

increase the homogeneity between the attributes are analyzed. This is believed [41]

to lead to better classification results.

7.2 Gold Standard Model

The gold standard model is established by defining a second set of objectives, in which

Fwithin and Fbetween are replaced with Detection Rate (DR) and False Positive Rate

(FPR) as clustering objectives, but keeping the Fcomplexity and Fclusters objectives.

By doing so, the learning of the model is guided towards achieving better classification

results, rather than towards generating high quality clusters. However, this second

approach has the disadvantage of (i) being computationally much more expensive,

as the calculation of DR and FPR requires a test run over the entire training data

for each individual evaluation, and (ii) being label dependent, requiring a labelled

training data that is expensive to generate. Thus, the interest in this chapter is

to identify under what conditions (if any) the purely cluster style objectives are

able to approach the performance of the explicitly label driven approach for traffic

identification. Such an analysis will consider both classification performance and

attribute support.

7.3 Logarithmic Transformation

It is important to observe that not all 38 features from Table 5.1, chapter 5, belong

to the same type. Instead, there is a mix of time related features, with packet length

related features, and others, resulting in significant range differences between their

values. These differences can account for up to seven orders of magnitude between

their average values. Presumably, differences of this order could bias the design of

clusters towards some of the features, not because of class discriminating characteris-

tics, but because of their range in values. I.e., clustering is a data description process,

thus will be biased to modeling the most frequent/dominant properties in the data.

Whether this is an appropriate bias for traffic discrimination is unknown. To test

46

the impact of a logarithmic transformation to reduce the effect of these range differ-

ences, additional experiments are conducted where a log transformation was applied

to each attribute. In the literature, it is believed that the logged data should observe

much lower inter attribute variation, thus less bias towards any feature in particular,

potentially resulting in different features being identified as appropriate support for

clustering.

7.4 Feature Selection Results

A total of four sets of experiments were conducted. The first set consisted of running

the MOGA with the original clustering objectives, without applying a logarithmic

transformation. The second set consisted of running MOGA with the original ob-

jectives, but after applying a logarithmic transformation to the data. The third and

fourth sets of experiments consisted of running MOGA with the gold standard objec-

tives, without applying logarithmic transformation in the third set, and after applying

logarithmic transformation in the fourth set. Each set of experiments consisted of

25 independent runs, from which the non-dominated individuals were selected. Then

those non-dominated individuals were combined, and a subset that was considered to

be the best individuals was taken. In the case of the runs with the original objectives,

the best individuals were those with the highest intra and inter-cluster distances, and

in the case of the gold standard model, the best individuals were those with DR above

90% and FPR under 0.6%.

Figures 7.1 to 7.4 show the features selected by the best individuals in each set

of experiments. The vertical axis contains the 38 available features from Table 5.1,

chapter 5, and the horizontal axis represents the percentage of best individuals that

employed each feature. Figure 7.1 and Figure 7.2 demonstrate that MOGA with the

original objectives selects a subset of the features identified by the gold standard model

without logarithmic transformation. Both time and packet length related features are

selected by the best individuals. It appears that the standard deviation forward inter

arrival time, std fiat, and the minimum backward inter arrival time, min biat, were

selected by almost all of the individuals in both sets of experiments. Also, it can be

seen from these figures that with the exception of the features between duration, and

std idle, the remaining 26 features were selected with a very similar frequency. On

47

the other hand, once the logarithmic transformation is included, it is observed that

the features selected with the original objectives significantly differ from the features

selected by the gold standard model; compare Figures 7.3 and 7.4. With the exception

of the standard backward inter arrival time,stdbiat, the other selected features seem

to be the opposite as the ones selected by the gold standard model.

!" !#$" !#%" !#&" !#'" !#(" !#)" !#*" !#+" !#," $"

-./0/"

0/01234-156708"

0/012349/2:;7"

0/0123<-156708"

0/0123<9/2:;7"

;=>34-602"

;71>34-602"

;1?34-602"

80@34-602"

;=>3<-602"

;71>3<-602"

;1?3<-602"

80@3<-602"

;=>3A10"

;71>3A10"

;1?3A10"

80@3A10"

;=>3<=10"

;71>3<=10"

;1?3<=10"

80@3<=10"

@:.1B/>"

;=>315B97"

;71>315B97"

;1?315B97"

80@315B97"

;=>3=@27"

;71>3=@27"

;1?3=@27"

80@3=@27"

8C/D34-156708"

8C/D3EF078""

8C/D3<-156708"

8C/D3<<F078"

4-8G35>0"

<-8G35>0"

4:.H35>0"

<:.H35>0"

Figure 7.1: Features selected with original objectives without log. standardization.

48

!" !#$" !#%" !#&" !#'" !#(" !#)" !#*" !#+" !#," $"

-./0/"

0/01234-156708"

0/012349/2:;7"

0/0123<-156708"

0/0123<9/2:;7"

;=>34-602"

;71>34-602"

;1?34-602"

80@34-602"

;=>3<-602"

;71>3<-602"

;1?3<-602"

80@3<-602"

;=>3A10"

;71>3A10"

;1?3A10"

80@3A10"

;=>3<=10"

;71>3<=10"

;1?3<=10"

80@3<=10"

@:.1B/>"

;=>315B97"

;71>315B97"

;1?315B97"

80@315B97"

;=>3=@27"

;71>3=@27"

;1?3=@27"

80@3=@27"

8C/D34-156708"

8C/D3EF078""

8C/D3<-156708"

8C/D3<<F078"

4-8G35>0"

<-8G35>0"

4:.H35>0"

<:.H35>0"

Figure 7.2: Features selected with gold standard without log. standardization.

49

!" !#$" !#%" !#&" !#'" !#(" !#)" !#*" !#+" !#," $"

-./0/"

0/01234-156708"

0/012349/2:;7"

0/0123<-156708"

0/0123<9/2:;7"

;=>34-602"

;71>34-602"

;1?34-602"

80@34-602"

;=>3<-602"

;71>3<-602"

;1?3<-602"

80@3<-602"

;=>3A10"

;71>3A10"

;1?3A10"

80@3A10"

;=>3<=10"

;71>3<=10"

;1?3<=10"

80@3<=10"

@:.1B/>"

;=>315B97"

;71>315B97"

;1?315B97"

80@315B97"

;=>3=@27"

;71>3=@27"

;1?3=@27"

80@3=@27"

8C/D34-156708"

8C/D3EF078""

8C/D3<-156708"

8C/D3<<F078"

4-8G35>0"

<-8G35>0"

4:.H35>0"

<:.H35>0"

Figure 7.3: Features selected with original objectives with log. standardization.

50

!" !#$" !#%" !#&" !#'" !#(" !#)" !#*" !#+" !#," $"

-./0/"

0/01234-156708"

0/012349/2:;7"

0/0123<-156708"

0/0123<9/2:;7"

;=>34-602"

;71>34-602"

;1?34-602"

80@34-602"

;=>3<-602"

;71>3<-602"

;1?3<-602"

80@3<-602"

;=>3A10"

;71>3A10"

;1?3A10"

80@3A10"

;=>3<=10"

;71>3<=10"

;1?3<=10"

80@3<=10"

@:.1B/>"

;=>315B97"

;71>315B97"

;1?315B97"

80@315B97"

;=>3=@27"

;71>3=@27"

;1?3=@27"

80@3=@27"

8C/D34-156708"

8C/D3EF078""

8C/D3<-156708"

8C/D3<<F078"

4-8G35>0"

<-8G35>0"

4:.H35>0"

<:.H35>0"

Figure 7.4: Features selected with gold standard with log. standardization.

51

It is interesting to note how without the log transformation, the model trained

with the clustering objectives never selects the features betweendurationandstdidle,

Figure 7.1. To investigate this phenomenon, the values of the attributes in the flows

of the training data were plotted. Figure 7.5 shows the maximum, minimum, and

median values, as well as first and third quartiles. As it can be observed, the maximum

values of the attributes betweendurationandstdidleare much larger than the rest of

the attributes, whose values appear to be minimal in comparison. It is the existence

of these larger values what prevents MOGA from favoring any individual that makes

use of these attributes. Such large values would have larger variances, which would

ultimately lead to lower values in the clustering objectivesFwithinandFbetween

(section 4.3, chapter 4).

!"#######$

#$

"#######$

%#######$

&#######$

'#######$

(########$

("#######$

(%#######$

(&#######$

('#######$

)*
+,
+$*
-.
/$

,+
,.
/0
1)
.2
3-
,4$
*-
./$

,+
,.
/0
15
+/
6
7-
$*
-.
/$

,+
,.
/0
8)
.2
3-
,4$
*-
./$

,+
,.
/0
85
+/
6
7-
$*
-.
/$

79
:0
1)
3,/
$*
-.
/$

7-
.:
01
)3
,/$
*-
./$

7.
;0
1)
3,/
$*
-.
/$

4,
<0
1)
3,/
$*
-.
/$

79
:0
8)
3,/
$*
-.
/$

7-
.:
08
)3
,/$
*-
./$

7.
;0
8)
3,/
$*
-.
/$

4,
<0
8)
3,/
$*
-.
/$

79
:0
=.
,$*
-.
/$

7-
.:
0=
.,$
*-
./$

7.
;0
=.
,$*
-.
/$

4,
<0
=.
,$*
-.
/$

79
:0
89
.,$
*-
./$

7-
.:
08
9.
,$*
-.
/$

7.
;0
89
.,$
*-
./$

4,
<0
89
.,$
*-
./$

<6
*.
>+
:$*
-.
/$

79
:0
.2
>5
-$*
-.
/$

7-
.:
0.
2>
5-
$*
-.
/$

7.
;0
.2
>5
-$*
-.
/$

4,
<0
.2
>5
-$*
-.
/$

79
:0
9<
/-
$*
-.
/$

7-
.:
09
</
-$*
-.
/$

7.
;0
9<
/-
$*
-.
/$

4,
<0
9<
/-
$*
-.
/$

4?
+
@0
1)
.2
3-
,4$
*-
./$

4?
+
@0
AB
,-
4$*
-.
/$

4?
+
@0
8)
.2
3-
,4$
*-
./$

4?
+
@0
88
B,
-4$
*-
./$

1)
4C
02
:,$
*-
./$

8)
4C
02
:,$
*-
./$

16
*D
02
:,$
*-
./$

86
*D
02
:,$
*-
./$

E($

79:$

7-<9.:$

7.;$

EF$

Figure 7.5: Box Plot of Features Values in Training Data

On the other hand, when the attributes in the training data after the log transfor-

mation are plotted, it can be observed a more even distribution across the features,

Figure 7.6. Still, having a more homogeneous representation after the logarithmic

transformation did not lead the MOGA to mimic the behavior of the gold standard

52

model.

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

()
*+
*")
,-
."

+*
+-
./
0(
-1
2,
+3"
),
-."

+*
+-
./
04
*.
5
6,
")
,-
."

+*
+-
./
7(
-1
2,
+3"
),
-."

+*
+-
./
74
*.
5
6,
")
,-
."

68
9/
0(
2+.
")
,-
."

6,
-9
/0
(2
+."
),
-."

6-
:/
0(
2+.
")
,-
."

3+
;/
0(
2+.
")
,-
."

68
9/
7(
2+.
")
,-
."

6,
-9
/7
(2
+."
),
-."

6-
:/
7(
2+.
")
,-
."

3+
;/
7(
2+.
")
,-
."

68
9/
<-
+")
,-
."

6,
-9
/<
-+"
),
-."

6-
:/
<-
+")
,-
."

3+
;/
<-
+")
,-
."

68
9/
78
-+"
),
-."

6,
-9
/7
8-
+")
,-
."

6-
:/
78
-+"
),
-."

3+
;/
78
-+"
),
-."

;5
)-
=*
9")
,-
."

68
9/
-1
=4
,")
,-
."

6,
-9
/-
1=
4,
")
,-
."

6-
:/
-1
=4
,")
,-
."

3+
;/
-1
=4
,")
,-
."

68
9/
8;
.,
")
,-
."

6,
-9
/8
;.
,")
,-
."

6-
:/
8;
.,
")
,-
."

3+
;/
8;
.,
")
,-
."

3>
*
?/
0(
-1
2,
+3"
),
-."

3>
*
?/
@A
+,
3")
,-
."

3>
*
?/
7(
-1
2,
+3"
),
-."

3>
*
?/
77
A+
,3"
),
-."

0(
3B
/1
9+"
),
-."

7(
3B
/1
9+"
),
-."

05
)C
/1
9+"
),
-."

75
)C
/1
9+"
),
-."

D'"

689"

6,;8-9"

6-:"

DE"

Figure 7.6: Box Plot of Features Values in Training Data After Log Transformation

53

7.5 Performance Results

To investigate the effects of feature selection in the classification performance of the

model, a post training evaluation is conducted, as described in chapter 4. The best

non-dominated individuals per set of experiments are tested in the training data, in

order to identify the ones with the best classifications rates. The individual with the

best classification performance in post training becomes the final solution for that set

of experiments, and it is then tested in the entire data set (chapter 5).

Figures 7.7 to 7.10 show the plot of the best individuals performances during

the post training phase. The vertical axis represents the DR and the horizontal axis

represents the FPR. The final solution per experiment is marked with a darker square

on each plot. From Figure 7.7, it can be observed that with the original objectives and

without the logarithmic standardization, the final solution achieves a DR of 93.5%

and a FPR of 0.25% in post training. That same individual achieves a DR of 90%

and a FPR of 0.4% when tested on the entire data set (Table 7.1). In comparison,

the gold standard model achieves a DR of 93.9% and a FPR of 0.22% in post training

(Figure 7.8), and a DR of 90% and a FPR of 0.8% when tested on the entire data set.

It can be concluded that the original objectives are capable of closely mimicking the

performance of the gold standard model. This does not come as a surprise, as it was

already observed that the original model generally selects a similar set of features as

the gold standard model.

On the other hand, Figures 7.9 and 7.10 show that the results achieved in post

training when applying the logarithmic standardization, differ between the original

objectives and the gold standard objectives. With the original objectives, the final

solution achieves a DR of 95.4% and a FPR of 1.1% in post training (Figure 7.9).

Notice that the rest of the individuals do not appear on the plot for being out of scale

with much larger FPR. That same individual achieves a DR of 91.4% and a FPR of

17% when tested in the entire data set, which is a prohibitory high FPR. The gold

standard model, Figure 7.10, achieves a DR of 94.4% and a FPR of 0.16% in post

training, and a DR of 91% and a FPR of 0.2% when tested in the entire data set.

54

!"#$%

!"#$&%

!"#'%

!"#'&%

!"#&%

!"#&&%

!"#(%

!"!!)% !"!!*% !"!!$% !"!!'% !"!!&% !"!!(% !"!!+% !"!!,% !"!!#% !"!)%

Figure 7.7: Post training with original objectives without logarithmic standardization.
DR(y-axis) over 93 to 96% range;FPR(x-axis) over 0.1 to 1% range.

55

!"#$%

!"#$&%

!"#'%

!"#'&%

!"#&%

!"#&&%

!"#(%

!"!!)% !"!!*% !"!!$% !"!!'% !"!!&% !"!!(% !"!!+%

Figure 7.8: Post training with gold standard without logarithmic standardization.
DR(y-axis) over 93 to 96% range;FPR(x-axis) over 0.1 to 0.7% range.

56

!"#$%

!"#$&%

!"#'%

!"#'&%

!"#&%

!"#&&%

!"#(%

!"!!&% !"!)% !"!)&% !"!*% !"!*&% !"!$%

Figure 7.9: Post training with original objectives with logarithmic standardization.
DR(y-axis) over 93 to 96% range;FPR(x-axis) over 0.5 to 3% range.

57

!"#$%

!"#$&%

!"#'%

!"#'&%

!"#&%

!"#&&%

!"#(%

!"!!)% !"!!*% !"!!$% !"!!'% !"!!&% !"!!(% !"!!+%

Figure 7.10: Post training with gold standard with logarithmic standardization.DR
(y-axis) over 93 to 96% range;FPR(x-axis) over 0.1 to 0.7% range.

58

Thus, it can be concluded that because the original objectives under a logged data

do not select the same features as the gold standard, the performance of the MOGA

with the original clustering objectives is inferior to that of the gold standard model.

All the test results are summarized in Table 7.1.

Table 7.1: MOGA vs Gold Standard Test Results
Experiment DR FPR
Original Objectives 90.0% 0.4%
Gold Standard 90.0% 0.8%
Original Objectives logged 91.4% 17.0%
Gold Standard logged 91.0% 0.2%

7.6 Conclusions

With regards to the first goal, it is observed that the original cluster style objectives

can quite closely mimic the behavior of the gold standard classifier style objectives

in the non-logged experiments. In that case, it is observed that not only both sets of

experiments selected a similar set of features, but also that the results from testing

both models’ best individuals on the entire data set show very similar performances.

The gold standard model achieves a DR of 90% with a FPR of 0.8% when tested on

the entire data set, and the original objectives also achieve a DR 90% with a FPR of

0.4%.

With regards to the second goal, on the other hand, it is observed that after

applying a log transformation to the attributes, the original objectives do not mimic

the behavior of the gold standard model. Both sets of experiments do not select

similar features. Moreover, the classification performance achieved with the original

objectives is considerably lower than the logged gold standard model. The gold

standard model achieved a DR of 91% with a FPR of 0.2% when tested on the entire

data set, whereas the original model achieved a DR of 91.4% with a FPR of 17%,

which is prohibitory high.

As for a feature selection analysis, it is observed that the best results are achieved

consistently with a mix of time and packet length related features. In particular, the

features std fiat and min biat were employed by almost all of the best individuals in

59

the non-logged experiments. Also, it is observed that the features between duration

and std idle have significantly higher maximum values, which prevents the MOGA

from selecting them in the non logged experiments. There is no reason to believe that

these features could not potentially contribute to a better class discrimination. Thus,

it would be interesting to search for a different normalization function in the future.

One that enables the inclusion of these features, while at the same time mimicking

the behavior of the gold standard model.

Chapter 8

MOGA vs Other Unsupervised Learning Techniques

8.1 Introduction

In this chapter the performance of the model proposed in this thesis, a MOGA applied

to encrypted traffic identification, is benchmarked against other unsupervised learning

techniques existing in the literature. Like in the previous chapters, Secure Shell (SSH)

is chosen as an example encrypted application. In this case, four unsupervised learning

techniques are benchmarked: basic K-Means, semi-supervised K-Means, DBSCAN,

and EM, and the results are compared with the proposed MOGA used for the dual

identification of appropriate (flow) feature subspace and clustering of traffic types.

8.2 Unsupervised Learning Algorithms

The three clustering algorithms selected for this work are K-Means, DBSCAN, and

EM. The selection of these algorithms is based in part on the work of Erman et al.

in [20], in which the authors made a similar comparison. Furthermore, the proposed

model is also benchmarked against a semi-supervised method proposed in [22]. The

following subsections give a brief explanation of these algorithms, more details can

be found in [20] and [22]. For the implementations of these algorithms, the K-Mean,

DBSCAN, and EM provided by Weka [42] is employed, and the criteria of similarity

was the Euclidean distance (section 4.4, chapter 4).

8.2.1 Basic K-Means

K-Means clustering algorithm is an unsupervised learning technique that aims to

partition n observations into K clusters, in which each observation belongs to the

cluster with the nearest mean. Erman et al. observed in their experiments that one

of the main advantages of the K-Means algorithm over other clustering algorithms

was that the resulting clusters tended to be mainly of a single application type [20].

60

61

For this experiment, several values of K (20, 40, 60, 80, 100, 200, 300, 400) were

tested, and the best result was selected to be compared with the other models. A

more detailed explanation of the algorithm can be found in chapter 2.

8.2.2 Semi-supervised K-Means

The semi-supervised approach proposed in [22] was followed, in which high detection

rates are achieved by labeling the resulting clusters employing only a small fraction of

the training data. Thus, after running a K-Means clustering algorithm, the clusters

were labelled post training, using only the labels of 5% of the flows, 613 out of 12250.

This model was also trained with larger data sets consisting of 32000 flows, with 80,

800, and 8000 of them labeled. Following the work in [22], the K number of clusters

was set to 400. In all of these experiments the total number of SSH flows was 6000,

so that there was a base point of comparison with the other methods presented. In

addition, the effectiveness of the weighted sampling approach proposed in [22] was

also evaluated. A 3602 flows training data was generated, out of which only 180 flows

were labeled. For this approach 50% of the flows were selected from below, and 50%

of the flows from above the 95th percentile of the flow transfer size of the original

training data (12250 flows).

8.2.3 DBSCAN

DBSCAN [24] is a density based algorithm, so it regards “clusters as dense areas

of objects that are separated by less dense areas” [20]. The main advantage of this

algorithms is that unlike K-Means, it is not limited to find clusters of spherical shape.

Instead, dense area clusters can follow any arbitrary shape [20]. The DBSCAN algo-

rithm takes two input parameters, epsilon (eps) and the number of minimum points

(MinPts). MinPts is the minimum required points to form a core object, and eps is

the distance between two objects to be considered “eps-neighbors”. DBSCAN does

not take as an input the number of clusters to generate, it finds the optimum num-

ber of clusters based on the MinPts and eps. Also, unlike K-Means and EM, if an

object is not part of an existing cluster, it is considered noise [20]. A more detailed

explanation of the algorithm can be found in chapter 2.

62

8.2.4 EM

The Expectation Maximization algorithm works with the probabilities of each in-

stance belonging to each cluster [42]. The algorithm has two phases, an expectation

phase and a maximization phase. The parameters used by the algorithm that “gov-

ern the distinct probability distribution of each cluster” [20] are estimated during the

expectation phase, and are continually re-estimated during the maximization phase

[20]. A more detailed explanation of the algorithm can be found in chapter 2.

8.3 Methodology

To perform this comparison, the same features used in [22] were employed for the

basic K-Means, semi-supervised K-Means, DBSCAN, and EM algorithms, Table 8.1.

For the MOGA, on the other hand, all the 38 original features were employed for it

to select the most appropriate ones during the training phase, Table 5.1, chapter 5.

In order to reproduce the features employed in [22] the netai flowstats.c module of

NetMate was modified, originally used to obtained the aforementioned 38 features

employed by MOGA. The reason the exact same features as in [22] were employed

was to accurately reproduce the methodology described in that paper.

Table 8.1: Flow Features employed in [22]

Total Number of Packets= fpackets+bpackets
Total Caller to Calle Payload Bytes= fvolume-fhlen
Total Bytes= fvolume+bvolume
Total Caller to Callee Header Bytes= fhlen
Total Header (Transport + Network Layer)= fhlen+bhlen
Number of Callee to Caller Packets= bpacket
Average Packet Size= (fpktl + bpktl)/(fpackets + bpackets)
Total Callee to Caller Payload Bytes= bvolume-bhlen
Number of Caller to Callee Packets= fpacket
Total Callee to Caller Header Bytes= bhlen
Total Caller to Callee Bytes= fvolume

63

8.4 Experiments and Results

To compare the performance of these algorithms we measured the obtained results in

terms of Detection Rate (DR) and False Positive Rate (FPR) (section 4.3, chapter 4).

In this case, DR will reflect the number of SSH flows correctly classified, and FPR

will reflect the number of non-SSH flows incorrectly classified as SSH. Given that the

encrypted traffic only forms a few percent of the traffic in real life, false positive rates

are a very important performance indicator on such heavily unbalanced data sets.

As it becomes obvious, a high DR and a low FPR would be the desired outcomes.

For all the conducted experiments the same training and test data was used, with

the exception of the semi-supervised K-Means approach, in which additional training

data samples were also employed. Both the training and test data sets are described

in chapter 5.

8.4.1 K-Means Results

The basic K-Means algorithm was run with values of K from 20 to 400 (Table 8.2).

The best combination of DR and FPR was obtained with K = 100, which achieved

a DR of 98% and a FPR of 11%.

Table 8.2: K-Means Results
Number of clusters DR FPR

20 90% 13%
40 94% 11%
60 97% 11%
80 97% 11%
100 98% 11%
200 98% 15%
300 98% 15%
400 98% 15%

8.4.2 Semi-supervised K-Means Results

For the semi-supervised model proposed in [22], the first experiment was conducted

with the same training data (12250 flows), with K= 400 (as done in [22]), but only

considering the labels of 5% (613) of the flows when labeling the clusters. The DR

64

for that experiment was 90.1% and the FPR was 0%. Then, the training data was

expanded to 32,000 flows, considering the labels of 80, 800, and 8000 of the flows

(as done in [22]) when labeling the clusters (Table 8.3). The highest DR, 98.9%,

was achieved with 8000 labelled flows. However, the FPR was 19%, which is much

higher than the other results. Thus, the best combination of DR and FPR was

achieved with only 800 of the flows labelled, which gives a DR of 92% with a 0%

FPR. Also, in evaluating the effectiveness of the weighted sampling approach, a DR

of 90% and FPR of 0% was obtained, which is the same the results obtained without

the weighted sampling method. However, with the weighted sample approach the

training data consisted of only 3602 flows, with 180 of them labeled. Thus, from

these results it can be observed that the weighted sample approach achieves good

results with a very small training data.

Table 8.3: Semi-Supervised Results
Number of clusters # labelled flows DR FPR

400 80 90.8% 0%
400 800 92% 0%
400 8000 98.9% 19%

8.4.3 DBSCAN Results

The results obtained with DBSCAN are displayed in Figure 8.1. The y-axis represents

the detection rate and the x-axis represents the eps. Several experiments were con-

ducted to assess the performance of the algorithm with different values for MinPts (3,

6, 9, 12) and for eps (0.01, 0.02, 0.04, 0.06, 0.08), the selection of both these ranges of

parameters followed the work presented in [22]. The best results were achieved with

MinPts= 3 and eps= 0.02, with a DR of 47.4% and FPR of 47%.

65

Figure 8.1: DBSCAN Results

8.4.4 EM Results

For the EM algorithm several experiments were conducted with the number of clusters

between 100 and 400 (Table 8.4). The selection of these values was in part following

the work presented in [22], and in part to have a common point of comparison with

the values employed in the K-Means experiments. The best results were achieved

with the number of clusters being 400, which gives a high DR, 96.4%, while at the

same time keeping the FPR relatively low, 5%.

Table 8.4: EM Results
Number of clusters DR FPR

100 93.8% 7.9%
200 95.8% 7.6%
300 97.5% 10.6%
400 96.4% 5%

8.4.5 MOGA Results

The MOGA was run in two sets of experiments, of 25 runs each. In the first set of

experiments, the length of the individuals in the population was 60, which allowed

the individuals to cluster with a minimum K of 2, and a maximum K of 23. In

the second set of experiments, the length of the individuals was 100, allowing the

K number of clusters to be up to 63. The first set of experiments generated a total

66

of 1173 non-dominated individuals and the second set of experiments generated a

total of 869 non-dominated individuals. Out of those individuals, during the post-

training phase the ones that had the lowest FPR (under 1%) and the highest DR

were identified. Those individuals were considered to be the final solutions. Figures

8.2 and 8.3 display the plot of the candidate solutions in the post-training phase for

both sets of experiments. The x-axis represents the FPR and the y-axis represents

the DR. The best individual in the first set of experiments, which is represented by a

larger black square instead of a gray diamond in Figure 8.2, achieved a DR of 94.9%

and a FPR of 0.9% in the post training phase. That same individual achieved a DR

of 90.9% and a FPR of 1.5% in the test data (Table 8.5). This final solution employed

22 out of the 38 available features, and clustered the data into 10 clusters. The best

individual in the second set of experiments, which is represented by a larger black

square instead of a gray diamond in Figure 8.3, achieved a DR of 95.8% and a FPR

of 0.8% in the post training phase. That same individual achieved a DR of 93.5%

and a FPR rate of 0.7% in the test data (Table 8.5). This final solution employed

18 out of the 38 available features, and clustered the data into 36 clusters. Thus,

these solutions not only achieved superior results in terms of DR and FPR, but also

considerably decreased the number of employed features, and clustered the data in a

relatively low number of clusters, both very desirable outcomes.

Table 8.5: MOGA Test Results
Number of clusters DR FPR

10 90.9% 1.5%
36 93.5% 0.7%

67

Figure 8.2: Non-dominated individuals length 60.

Figure 8.3: Non-dominated individuals length 100.

68

8.4.6 Discussion

Table 8.6 summarizes the results from the conducted experiments. It contains the

best results from each set of experiments per algorithm. Thus, for the K-Means

algorithm, a value of K= 100 was employed, and for the semi-supervised K-Means

a value of K= 400 was employed. It should be noted that in the case of the semi-

supervised K-Means the training data was about three times larger than with the

other algorithms (32,000 flows). For the DBSCAN algorithm, a value of eps= 0.02

and a value of MinPts= 3 were employed. For the EM algorithm, a value of K= 400

was employed. For the MOGA, the two individuals that were selected as the best

individuals in each of the two conducted sets of experiments were employed. These

results show that MOGA (100 ind) offers a very good combination of DR and FPR,

when compared to the other methods presented here.

Table 8.6: MOGA vs Other Methods Summarized
Algorithm # clusters DR FPR
K-Means 100 98% 11%
K-Means (semi-sup.) 400 92% 0%
DBSCAN (mP.=3) 36 47.4% 47%
EM 400 96.4% 5%
MOGA (ind 60) 10 90.9% 1.5%
MOGA (ind 100) 36 93.5% 0.7%

8.4.7 Time Analysis

One clear advantage of being able to obtain a high DR and a low FPR with a low

number of features and a low number of clusters is the time involved in both, building

the models, and testing the data. The building time and the test time were measured

for all the models described here (Table 8.7). Specifically, the algorithms with the

parameters that produced the best results in the previously described experiments

were measured. These results show a considerable advantage of the MOGA over all

the other algorithms, except DBSCAN. However, the DR obtained with DBSCAN was

much lower. These experiments were conducted on a standard PC with an Intel(R)

Core(TM) 2 Duo CPU T6400@ 2.00 GHz, with 4 GB of memory.

69

Table 8.7: MOGA vs Other Methods Time Analysis
Algorithm # clusters Build time Test time
K-Means 100 00:02:19 00:49:29
K-Means (semi-sup.) 400 00:22:32 03:07:55
DBSCAN (mP.=3) 36 00:04:30 00:05:43
EM 400 00:37:01 03:54:15
MOGA (ind 60) 10 00:00:11 00:18:09
MOGA (ind 100) 36 00:01:55 00:35:10

8.5 Conclusions

This chapter compared the performance of basic K-Means, semi-supervised K-Means,

DBSCAN, EM, and MOGA, to identify encrypted traffic, specifically SSH. Results

show that the MOGA obtained better performance in terms of combined DR, FPR,

and computational cost (measured in CPU time). The MOGA also clustered the data

with a very small value of K, which is very desirable for a potential implementation

of an encrypted traffic detection system.

In this case, MOGA’s best individual achieved a detection rate of 93.5% and a

false positive rate of 0.7%, whereas it employed only 18 out of the 38 available features

and clustered the data in only 36 clusters. The fact that MOGA was able to cluster

the data with a much smaller number of clusters, provided a noticeable advantage

over the other presented algorithms in terms of the amount of time needed to both

building the models and testing/running them on a real life data set. With regards

to the semi-supervised model proposed by Erman et al. in [22], it can be observed

that the weighting sampling method could achieve good results with a very small

training data. For future work, it could be interesting to employ MOGA under a

semi-supervised context with a weighted sampling method.

Chapter 9

Hierarchical MOGA

9.1 Introduction

Up until this point all the conducted experiments have been based on a flat clustering

approach, i.e., data has been clustered at one level of clusters. This chapter describes

an adaptation of the MOGA described in chapter 4, to implement a two level hierar-

chical clustering approach. The purpose of the second layer of clusters is to further

partition the data after the original MOGA has separated the data into a first layer

of clusters. The motivation behind this analysis is to observe the possible gains, if

any, obtained by further increasing cluster purity.

9.2 Methodology

Hierarchical clusters can be either agglomerative or divisive [17]. Hierarchical clusters

are agglomerative when the hierarchy is built bottom-up, that is, existing clusters

are grouped to form larger clusters based on some criteria of similarity. Divisive

hierarchical clusters, on the other hand, are built from the top, dividing the data into

more specialized clusters. In this approach, the clusters obtained with the original

MOGA proposed in chapter 4, will be divided into a second layer. Thus, this will be

a divisive approach, Fig. 9.1.

The first layer of clusters is built by letting the MOGA partition the data as

originally explained. Then, based on a purity threshold, the resulting clusters are

evaluated to identify the ones that need to be further partitioned into smaller clusters.

If the purity of a cluster, defined by the number of flows of the majority class in

the cluster, divided by the total number of flows in the cluster, is less than the

purity threshold, then the flows in that cluster need to be reclustered. Reclustering

is done by feeding back into the MOGA the flows originally assigned to the partition

being reclustered. The MOGA repeats the optimization process, searching for an

70

71

optimum number of clusters and appropriate subset of features to partition the fed

flows. Fig. 9.1 displays a two layered clustering approach, where the number of

clusters and employed features on the second layer will vary depending on the data

being reclustered.

Clusters from original MOGA Second layer of clusters

cluster 0

cluster 1

cluster n

.

.

.

cluster 0-0

cluster 0-1

cluster 0-2

cluster 0-m

.

.

.

cluster 1-0

.

.

.

cluster 1-1

cluster 1-2

cluster 1-o

cluster n-0

cluster n-1

cluster n-2

cluster n-q

.

.

.

Figure 9.1: Hierarchical Clusters

Aside from the purity threshold, there is a second parameter that needs to be

estimated to run the hierarchical MOGA. Unlike the original MOGA, where the

post-training selection was done once (to select the best individual out of a set of

non-dominated candidate solutions), in the hierarchical MOGA this selection needs

to be done once after the initial first layer clustering, and then every time a cluster

is reclustered. Thus, the post training needs to be automated. This was done by

setting the model to always select, out of the set of non-dominated solutions, the

individual with the highest detection rate, and whose false positive rate was less

72

than a false positive threshold. Both of these parameters, the purity threshold, and

the false positive threshold, were estimated empirically by running the MOGA with

several values and observing the parameters that generated the best results. For the

false positive threshold, good results were obtained with the false positive threshold

set to 0.05%. For the purity threshold, on the other hand, good results were obtained

with the purity threshold set to 90%.

Once the hierarchical model is trained, the testing process is conducted very sim-

ilarly as performed with the original MOGA, chapter 4. The only difference is that

the labeling of the clusters will now consider a third option. A cluster in the first

layer can be labelled as “SSH”, “non-SSH”, or “Phase 2”. If a cluster is labelled as

“SSH” or “non-SSH”, then flows in the test data that are assigned to any of those

clusters are classified like in the original MOGA, with the label of the cluster. If, on

the other hand, a flow is assigned to a cluster, c, that has a label “Phase 2”, then

that flow is redirected to the second layer, where it is assigned to any of the clusters

that resulted from repartitioning that data of cluster c. The labels of the clusters in

the second layer are (as in the original MOGA), either “SSH”, or “non-SSH”.

9.3 Results

Twenty five runs of the hierarchical version of MOGA were conducted. Unlike the

original MOGA, where the output was a set of non-dominated individuals, in these

experiments the result is a unique final solution (individual). The resulting individuals

from each of the twenty five conducted runs were plotted in terms of DR and FPR

obtained during the validation phase (test run on the same data used for training),

Fig. 9.2. Like in the previous experiments, the idea is to identify the solution that

leads to a higher DR and a lower FPR. The five individuals that achieved the lowest

FPR were selected as candidate solutions. The selected individuals have a number

assigned in Fig. 9.2, which corresponds to their FPR order. The post training results

of the selected individuals, ordered by their assigned number, plus the number of

clusters, and the values in their objective values are displayed on Table 9.1.

The selected individuals are then tested on the entire UCIS data set. Test results

are displayed on Table 9.2. Both the training and test data sets are described in

73

Figure 9.2: Hierarchical MOGA Experiments Post-Training Results

Table 9.1: Hierarchical MOGA Post-Training Results and Objective Values
Ind. DR FPR K Fwithin Fbetween Fclusters Fcomplex.
1 96.1% 0.18% 44 5.12E-06 307.92 0.4815 0.6578
2 96.7% 0.18% 36 1.68E-04 606.51 0.5802 0.6315
3 97.8% 0.24% 43 7.84E-06 379.27 0.4938 0.5
4 96.9% 0.32% 36 1.41E-04 501.89 0.5802 0.6842
5 97.2% 0.33% 41 1.55E-04 615.77 0.5185 0.7368

chapter 5. To asses the effects of increasing cluster purity in the classification perfor-

mance of the system, these individuals were also tested by building only the first layer

of clusters, like in the original MOGA. The columns “DR Hierarchical” and “FPR

Hierarchical” represents the results of the hierarchical MOGA, and the columns “DR

Flat” and “FPR Flat” represent the results when testing these individuals under the

original MOGA. As it can be observed, all the selected individuals obtained gains

of about 2% to 5% increase in DR, without significant increases in FPR. The best

74

results were obtained with the third individual, which achieved a DR of 97.8% and a

FPR of 0.24% in post training, and a DR of 96.3% and a FPR of 1.3% when tested

on the entire data set. Thus, it can be concluded that increasing cluster purity by

means of a hierarchical implementation of the proposed model, does indeed lead to

better classification performances.

Table 9.2: Hierarchical MOGA Test Results on UCIS trace
Ind. DR Hierarchical FPR Hierarchical DR Flat FPR Flat
1 93% 1.3% 91.1% 1.4%
2 94.5% 0.9% 90.5% 0.4%
3 96.3% 1.3% 93.3% 0.6%
4 94.5% 0.8% 90.7% 0.4%
5 95.4% 1.1% 90.5% 0.4%

9.4 Robustness

In the case of hierarchical MOGA, the robustness of the proposed model was also as-

sessed by testing the best individuals on three additional data sets. The best individ-

uals were tested on the AMP trace, on the MAWI [34] trace, and on the DARPA [15]

trace. Tables 9.3, 9.4, and 9.5 display the results obtained on the respective data

sets. To benchmark the performance of the original MOGA versus the hierarchical

MOGA, like in the previous experiments, the best individuals were also tested by

building only the first layer of clusters. The columns “DR Hierarchical” and “FPR

Hierarchical” represents the results of the hierarchical MOGA, and the columns “DR

Flat” and “FPR Flat” represent the results when testing these individuals without

employing the second layer of clusters.

In the case of the DARPA trace, Table 9.3, it can be observed that substantial

gains were obtained in terms of DR with the hierarchical MOGA. The first individual

achieved a DR of 89.4% with the hierarchical MOGA, compared to the 0% obtained

with the original MOGA. The remaining individuals also observed increases in DR,

but at a smaller scale. In the case of the AMP trace, Table 9.4, there were also gains

in terms of DR, but for some of the individuals these were quite modest. The fourth

individual observed the highest gains, achieving a DR of 32% with the hierarchical

MOGA, compared to 0.1% obtained with the original MOGA. In the case of the

75

MAWI trace, Table 9.5, the best individual was the fourth individual as well. The

fourth individual achieved a DR of 14% with the hierarchical MOGA, compared to

the 2.1% obtained with the original MOGA.

Table 9.3: Hierarchical MOGA Test Results on DARPA trace
Ind. DR Hierarchical FPR Hierarchical DR Flat FPR Flat
1 89.4% 1.7% 0% 0%
2 33.8% 0.8% 0% 0%
3 27.9% 0.5% 27.9% 0.4%
4 10.3% 0.3% 0% 0%
5 0% 0.1% 0% 0%

Table 9.4: Hierarchical MOGA Test Results on AMP trace
Ind. DR Hierarchical FPR Hierarchical DR Flat FPR Flat
1 1.8% 0.1% 0.6% 0.9%
2 0.4% 1.3% 0.1% 0.2%
3 1.5% 1% 0.7% 0.2%
4 32% 1.1% 0.1% 0.2%
5 9.5% 1.4% 0.4% 0.1%

Table 9.5: Hierarchical MOGA Test Results on MAWI trace
Ind. DR Hierarchical FPR Hierarchical DR Flat FPR Flat
1 2.2% 0.7% 2.4% 0.7%
2 1.9% 1.0% 1.9% 0.1%
3 2.2% 0.5% 2.2% 0.2%
4 14% 0.7% 2.1% 0%
5 3.2% 1% 3% 0%

From these results it can be observed that some individuals observed significant

gains with the hierarchical MOGA in terms of robustness. However, with the ex-

ception of the first individual in the DARPA trace, the classification results were

still quite low. Thus, it would be interesting to identify which factors contribute to

certain individuals achieving better results than others in terms of robustness. For

these experiments in particular, the first four individuals achieved the strongest re-

sults. Table 9.1 displayed the objective values of the best individuals, as well as

the number of employed clusters. By inspecting this table, it can be observed that

the first individual, which was the best individual in the DARPA trace, employed

76

a slightly higher number of clusters, 44, but with no particular higher values in the

other objectives. It is important to note, however, that the first individual did not

achieve good results on the AMP and MAWI traces. The second and fourth indi-

viduals have strong values in Fwithin and Fbetween, and the third individual has a

slightly strong value in Fbetween. Thus, these preliminary observations do not seem

to provide much information regarding which factor contributed to achieving more

robust results. However, the fact that significant gains were observed in some of the

individuals should encourage more research in the area, as it seems feasible to achieve

robust solutions with the proposed model.

The ideal final individual should be able to classify traffic in all the tested traces,

which did not happen in this case. The individuals that observed gains in some of

the traces were not the same ones that perform well on the other traces. There are

several things that could be attempted on this regard. The existing training data

could be modified in terms of both, size and composition. It could be the case that

the SSH behaviors captured in the training data do not represent the behaviors in

the other traces. Also, given that considerable gains in performance were observed

by means of a second layer of clusters, it would be interesting to observe the effects of

implementing additional layers of clusters. This, combined with larger training data

sets could potentially lead to better results. Finally, it could be intuitive to think that

the use of time related features might have a detrimental effect on the robustness of

the system, as packet arrival times could vary from network to network. While this

could be a valid argument, it should be noted that in [5] and [6] the authors achieved

good results in terms of robustness employing both packet length and packet inter-

arrival time related features with a supervised machine learning approach. While

the model proposed in this work is an unsupervised machine learning technique, the

progress achieved by the authors of that work could indicate that robustness can be

achieved with a mix of time and packet length related features.

9.5 Conclusions

This chapter described the implementation of a hierarchical version of the proposed

MOGA. The hierarchical version increased the resulting cluster purity by further

partitioning the clusters generated with the original MOGA. The resulting two level

77

hierarchical clusters lead to an increase in performance in terms of DR and FPR with

respect to the results obtained with the original MOGA. The best individual achieved

a DR of 96.3% and a FPR 1.3% when tested on the entire UCIS data set. This chapter

also assessed the robustness of the proposed hierarchical model by testing the best

individuals in three additional data sets, DARPA, AMP, and MAWI. While some

of the tested individuals observed a notorious increase in classification performances

on the different data sets, the obtained DR were still low. However, the fact that

significant gains were observed with the hierarchical model in terms of robustness

encourages further research in the area.

Chapter 10

Conclusions

This work has investigated the application of a Multi-Objective Genetic Algorithm

(MOGA) to the problem of encrypted traffic identification, in particular, SSH. The

proposed model was employed for the dual problem of feature selection and cluster

count optimization under a flow based representation. The proposed MOGA em-

ployed an unsupervised machine learning technique, K-Means, as the clustering al-

gorithm. The main motivation behind the use of an unsupervised learning technique

for traffic classification was the limitations of both of the traditionally employed tech-

niques, namely port number and payload inspection, when faced with encrypted traf-

fic. The use of unsupervised techniques, i.e., purely cluster/data driven approaches

to separate network traffic into classes, has already been demonstrated by many of

the authors reviewed in chapter 3. The main contribution of this work to the field

of network classification comes, however, from further increasing the performance of

those methods by incorporating a genetic algorithm that can explore the solution

space, searching for an optimum combination between an appropriate subset of fea-

tures and the right number of clusters, as well as specifically focusing on encrypted

traffic identification.

The first hypothesis of this work was whether the MOGA was capable of select-

ing an appropriate subset of features to partition the data into encrypted versus non

encrypted traffic. Chapter 7 addressed this hypothesis by benchmarking the per-

formance of the MOGA against a gold standard feature selection model for traffic

classification. The proposed MOGA selected a subset of the features selected by the

gold standard model, which indicates that the clustering objectives guide, to a certain

extend, the learning of the system towards the ultimate goal of traffic classification.

Furthermore, because the MOGA selected similar features with the gold standard

model, the classification performance of the proposed model was equivalent to that

of the gold standard. Chapter 7 also evaluated the effects of applying a logarithmic

78

79

normalization to the data prior to running the MOGA. With the normalized data, it

could be observed that the MOGA did not select similar features as the gold standard

model, consequently, not being able to achieve an equivalent performance.

The second hypothesis of this work was whether it was possible to obtain gains

in both computational performance and classification rates with the proposed model.

In chapter 8, the performance of the proposed MOGA was benchmarked against the

basic K-Means, but without the MOGA optimization. Furthermore, the performance

of the proposed model was also benchmarked against other clustering techniques ex-

isting in the literature, such as semi-supervised K-Means, DBSCAN, and EM. Results

showed that MOGA not only outperformed the other models in terms of classification

performance, but also in terms of the required time to build and to test the model.

The last hypothesis that was investigated had to do with the potential gains in

classification performances by increasing cluster purity. In chapter 9, a hierarchi-

cal version of MOGA was implemented, which is based on a divisive hierarchical

approach, aimed at increasing the purity of the cluster obtained with the original

MOGA. The performance of the hierarchical model was then benchmarked against

the original MOGA. Results show that the hierarchical version of MOGA, as expected,

had a better classification performance.

In summary, the proposed method showed promising results in terms of classifica-

tion performance, and also in terms of computational costs. The latter attributed to

the use of less clusters and less features, the former attributed to the higher inter and

intra-cluster distances. It is important to note that the savings in computational cost

move unsupervised approaches one step closer to online traffic classification. Another

interesting contribution was the benchmarking of the proposed model against a gold

standard model for feature selection. Results gave a good indication that this purely

data driven approach can somewhat mimic the behavior of a label driven model. This,

it is believed, should leave the door open to further attempts in this area.

With regards to the future work in terms of the data representation, the exper-

iments conducted in chapter 7 investigated the effects of a prior logarithmic trans-

formation to the data. From these experiments it could be observed that under a

normalized data representation, it was not possible to mimic the behavior of the gold

standard model. Moreover, the results were considerably inferior when compared to

80

the results obtained without applying the logarithmic normalization. Still, it could

be observed from the non-normalized experiments that several features, specifically

features with higher variances in their values, were constantly ignored by the MOGA.

There is no reason to believe those features could not potentially contribute to a bet-

ter class discrimination. Thus, it would be interesting to search for an appropriate

normalization function that allows the proper inclusion of all the available features,

while at the same time mimicking the behavior of the gold standard model.

With regards to the training data, the sampling of the trace to generate a training

data was based on the work of [5]. This training data was kept constant through-

out the development of this work, so that it would be possible to compare the per-

formances of the different attempts. Still, more work could be done, investigating

potentially better training samples. In particular, training data sets that include

the applications that are more commonly misclassified, specially in the robustness

experiments. Also with regards to the training data, it would be interesting to in-

corporate the work presented in [22], where the authors achieved good classification

performances with a smaller training data. Such training data is generated with a

percentage of the flows from above the 95th percentile of the traffic size. This ap-

proach was implemented in chapter 8, leading to very good results. A smaller training

data set would more than likely decrease the building times for the MOGA, which

would be very desirable.

With regards to the methodology employed for this work, several variations could

potentially lead to better results, from larger initial populations, to a larger number

of epochs. Furthermore, the genetic algorithm itself could be replaced with a different

generational algorithm, or with a variation of the proposed MOGA. In particular, it

would be interesting to introduce some kind of elitist mechanism to further bias the

evolution of the objectives. The proposed MOGA assigns fitness based on a roulette

wheel that is biased towards selecting non-dominated individuals. However, arguably

there is still room for further guidance of the evolution of the individuals without nec-

essarily falling into a hill climbing approach. With regards to the employed objective

values, in particular the Fwithin and Fbetween, these objectives could be further an-

alyzed to explore alternative objective functions that lead to a data description that

81

more closely resembles existing classes in the data. Finally, with regards of the unsu-

pervised algorithm optimized by the MOGA, a basic K-Means algorithm, this model

could have also employed other unsupervised algorithms, such as semi-supervised

K-Means, DBSCAN, or EM.

With regards to the robustness of the proposed model evaluated in chapter 9,

it could be observed that the hierarchical MOGA considerably increased the perfor-

mance of the system when tested on additional data sets. However, for the majority

of the experiments the obtained classification results were still low. More work is

needed in this regard, which could consider larger and different training data sets,

more layers for the hierarchical approach, and/or different objective values.

Finally, in this work SSH was chosen as an example of encrypted traffic identifi-

cation. This same approach could also be used with other types of encrypted traffic,

such as SSL, or Skype. Moreover, it is also of interest to identify applications within

an encrypted tunnel, or to identify malicious behaviors hidden in the tunnel.

Bibliography

[1] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2004.

[2] R Alshammari. Automatically Classifying Encrypted Network Traffic: A Case
Study of SSH. Master’s thesis, Dalhousie University, Halifax, Nova Scotia,
Canada, 2008.

[3] R. Alshammari and A.N. Zincir-Heywood. A flow based approach for ssh traffic
detection. In Systems, Man and Cybernetics, IEEE International Conference on,
pages 296–301, Oct. 2007.

[4] R. Alshammari and A.N. Zincir-Heywood. Investigating two different approaches
for encrypted traffic classification. In Privacy, Security and Trust, 2008. PST
’08. Sixth Annual Conference on, pages 156–166, Oct. 2008.

[5] R. Alshammari and A.N. Zincir-Heywood. Generalization of signatures for ssh
encrypted traffic identification. In IEEE Symposium Series on Computational
Intelligence on Cyber Security, 2009.

[6] R. Alshammari and A.N. Zincir-Heywood. Machine learning based encrypted
traffic classification: identifying SSH and skype. In Proceedings of the Second
IEEE international conference on Computational intelligence for security and
defense applications, pages 289–296. IEEE Press, 2009.

[7] C. Bacquet, K. Gumus, D. Tizer, A.N. Zincir-Heywood, and M.I. Heywood. A
comparison of unsupervised learning techniques for encrypted traffic identifica-
tion. Journal of Information Assurance and Security, 5:464–472, 2010.

[8] C. Bacquet, A.N. Zincir-Heywood, and M.I. Heywood. An Investigation of Multi-
objective Genetic Algorithms for Encrypted Traffic Identification. In Computa-
tional Intelligence in Security for Information Systems: Cisis’ 09, 2nd Interna-
tional Workshop Burgos, Spain, pages 93–100. Springer, Sep. 2009.

[9] C. Bacquet, A.N. Zincir-Heywood, and M.I. Heywood. An analysis of cluster-
ing objectives for feature selection applied to encrypted trafc identication. In
Proceedings of IEEE World Congress on Computational Intelligence, Barcelona,
Spain, July. 2010.

[10] D.J. Barrett, R.E. Silverman, and R.G. Byrnes. SSH, the secure shell: the
definitive guide. O’Reilly Media, Inc., 2005.

[11] Laurent Bernaille and Renata Teixeira. Early recognition of encrypted applica-
tions. In Proceedings of the Eighth Passive and Active Measurement Conference
(PAM07), 2007.

82

83

[12] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and
Kave Salamatian. Traffic classification on the fly. SIGCOMM Comput. Commun.
Rev., 36(2):23–26, 2006.

[13] Laurent Bernaille, Renata Teixeira, and Kave Salamatian. Early application
identification. In CoNEXT ’06: Proceedings of the 2006 ACM CoNEXT confer-
ence, pages 1–12, New York, NY, USA, 2006. ACM.

[14] P.S. Bradley, U. Fayyad, and C. Reina. Scaling EM (expectation-maximization)
clustering to large databases. Microsoft Research Report, MSR-TR-98-35, 1998.

[15] DARPA. http://www.ll.mit.edu/ist/ideval/docs/1999/schedule.html.

[16] A.P. Dempster, N.M. Laird, D.B. Rubin, et al. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[17] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
Wiley, New York, 2. edition, 2001.

[18] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli. Detection of encrypted tun-
nels across network boundaries. In Proceedings of the 43rd IEEE International
Conference on Communications (ICC 2008), Beijing, China, 2008.

[19] J.G. Dy and C.E. Brodley. Feature selection for unsupervised learning. The
Journal of Machine Learning Research, 5:889, 2004.

[20] J. Erman, M. Arlitt, and A. Mahanti. Traffic classification using clustering
algorithms. In Proceedings of the SIGCOMM workshop on Mining network data,
pages 281–286. ACM, 2006.

[21] J. Erman, A. Mahanti, and M. Arlitt. Internet Traffic Identification using Ma-
chine Learning. In Global Telecommunications Conference. GLOBECOM ’06.,
pages 1–6. IEEE, 2006.

[22] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson. Offline/realtime
traffic classification using semi-supervised learning. Perform. Eval., 64(9-
12):1194–1213, 2007.

[23] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson. Identifying and discrimi-
nating between web and peer-to-peer traffic in the network core. In Proceedings
of the 16th international conference on World Wide Web, pages 883–892. ACM,
2007.

[24] M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proc. KDD, volume 96,
pages 226–231, 1996.

[25] J.H. Holland. Genetic Algorithms. Scientific American, 267(1):66–72, 1992.

84

[26] IANA. http://www.iana.org/assignments/port-numbers.

[27] IETF. http://www.ietf.org/.

[28] GPS Junior, JEB Maia, R. Holanda, and JN De Sousa. P2P Traffic Identification
using Cluster Analysis. In Global Information Infrastructure Symposium. GIIS
2007. First International, pages 128–133, 2007.

[29] T. Karagiannis, A. Broido, N. Brownlee, KC Claffy, and M. Faloutsos. Is p2p
dying or just hiding?[p2p traffic measurement]. In IEEE Global Telecommunica-
tions Conference, 2004. GLOBECOM’04, volume 3.

[30] YeongSeog Kim, W. Nick Street, and Filippo Menczer. Feature selection in
unsupervised learning via evolutionary search. In KDD ’00: Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 365–369, New York, NY, USA, 2000. ACM.

[31] Rajeev Kumar and Peter Rockett. Improved sampling of the pareto-front in mul-
tiobjective genetic optimizations by steady-state evolution: a pareto converging
genetic algorithm. Evol. Comput., 10(3):283–314, 2002.

[32] J.B. MacQueen et al. Some methods for classification and analysis of multivariate
observations, 1966.

[33] G. Maiolini, G. Molina, A. Baiocchi, and A. Rizzi. On the fly Application Flows
Identification by exploiting K-Means based classifiers. Journal of Information
Assurance and Security, 4:142–150, 2009.

[34] MAWI. http://tracer.csl.sony.co.jp/mawi/.

[35] A. McGregor, M. Hall, P. Lorier, and J. Brunskill. Flow clustering using machine
learning techniques. Lecture Notes in Computer Science, 3015:205–214, 2004.

[36] A.R. McIntyre. Novelty detection+ coevolution= automatic problem decompo-
sition: A framework for scalable Genetic Programming classifiers. PhD thesis,
Dalhousie University, Halifax, Canada, 2008.

[37] M. Mitchell. An introduction to genetic algorithms. MIT Press Cambridge, MA,
USA, 1996.

[38] NetMate. http://www.ip-measurement.org/tools/netmate.

[39] T.T.T. Nguyen and G. Armitage. A survey of techniques for internet traffic
classification using machine learning. Communications Surveys Tutorials, IEEE,
10(4):56 –76, quarter 2008.

[40] PacketShaper. http://www.packeteer.com/products/packetshaper.

85

[41] V. Paxson. Empirically derived analytic models of wide-area TCP connections.
IEEE/ACM Transactions on Networking (TON), 2(4):316–336, 1994.

[42] WEKA. http://www.cs.waikato.ac.nz/ml/weka/.

[43] Caihong Yang, Fei Wang, and Benxiong Huang. Internet traffic classification
using dbscan. Information Engineering, International Conference on, 2:163–166,
2009.

[44] Liu Yingqiu, Li Wei, and Li Yunchun. Network traffic classification using k-
means clustering. In Computer and Computational Sciences, 2007. IMSCCS
2007. Second International Multi-Symposiums on, pages 360–365, Aug. 2007.

[45] S. Zander, T. Nguyen, and G. Armitage. Automated traffic classification and ap-
plication identification using machine learning. In Conference on Local Computer
Networks, volume 30, pages 250–257. IEEE, 2005.

