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Abstract

Given a set of peers with overlapping interests where each peer wishes to keep track

of new documents that are relevant to their interests, we propose Shrack—a self-

organizing peer-to-peer (P2P) system for document sharing and tracking. The goal

of a document-tracking system is to disseminate new documents as they are published.

We present a framework of Shrack and propose a gossip-like pull-only information dis-

semination protocol. We explore and develop mechanisms to enable a self-organizing

network, based on common interest of document sets among peers.

Shrack peers collaboratively share new documents of interest with other peers.

Interests of peers are modeled using relevant document sets and are represented as

peer profiles. There is no explicit profile exchange between peers and no global

information available. We describe how peers create their user profiles, discover the

existence of other peers, locally learn about interest of other peers, and finally form

a self-organizing overlay network of peers with common interests.

Unlike most existing P2P file sharing systems which serve their users by finding

relevant documents based on an instant query, Shrack is designed to help users that

have long-term interests to keep track of relevant documents that are newly available

in the system. The framework can be used as an infrastructure for any kind of

documents and data, but in this thesis, we focus on research publications.

We built an event-driven simulation to evaluate the performance and behaviour of

Shrack. We model simulated users associated with peers after a subset of authors in

the ACM digital library metadata collection. The experimental results demonstrate

that the Shrack dissemination protocol is scalable as the network size increases. In

addition, self-organizing overlay networks, where connections between peers are based

on common interests as captured by their associated document sets, can help improve

the relevance of documents received by peers in terms of F-score over random peer

networks. Moreover, the resulting self-organizing networks have the characteristics of

social networks.
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Chapter 1

Introduction

Researchers with a common interest normally form collaborations to advance their

knowledge or achieve the same goal. They may collaborate by sharing resources

or ideas through discussion, or by working together to integrate their results. The

collaborations are not limited to researchers in the same organization. Several Internet

applications have been used to help researchers form collaborations around the world.

Email, the Web, and chat are examples of such applications.

The Internet also serves as a medium for researchers to share documents of interest.

Tools have been developed to help researchers find documents over the Internet. These

tools include search engines, mailing lists, and on-line archives. Recently, online social

bookmarking services such as Citeulike [5], Bibsonomy [4] and ResearchGATE [6]

gain interests in research communities to share documents of interests among each

other. However, existing tools pose a number of challenges for researchers in getting

informed about newly published documents, which from now will be referred as new

documents. For instance, to keep track of new documents of interest, researchers

need to revisit search engines or on-line archives multiple times and issue the same

query. Mailing lists can also be used for keeping track of new documents, however,

researchers need to find where to post and subscribe for information. Moreover, these

tools usually lack autonomous mechanisms to select documents based on individual

interest. Even though Citeulike provides a watchlist option for users to keep track of

new documents that are relevant to each page, the users need to manage the watchlists

manually. Since researchers who work in the same area are usually interested in the

same documents, an autonomous collaborative environment to share and keep track

of new documents in the area will lessen effort of each researcher to individually keep

track of their documents of interest.

1
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We propose Shrack, a peer-to-peer (P2P) system for document sharing and track-

ing, as a framework for researchers to share and keep track of new documents among

researchers who are interested in similar research areas. Each peer is associated with

an individual researcher or a research organization. A peer that is used by a research

organization can be viewed as a super peer—a server that supports group activities

for document sharing such as a digital library or a document archive. There is neither

explicit query nor explicit profile exchange in Shrack, each peer automatically learns

about the user interests, and then keeps track and presents relevant documents to

the user based on the user feedback and received information.

1.1 Motivation

Our motivation is to enable a direct collaboration among researchers by sharing and

keeping track of documents of interest. Even though there are many tools to search

for research publications, there is no autonomous system where a researcher can keep

track of research publications based on individual interest. In Shrack, we aim to

build an environment where the system can autonomously form groups of researchers

that have similar interests to collaboratively share and keep track of new research

publications among them. We design Shrack as a peer-to-peer system and use pull-

only communication to disseminate information among peers. The researchers do not

need to explicitly issue a query nor exchange their profiles to participate in the system.

The researchers first join the system based on real world contacts and then the system

will autonomously learn about the researchers’ interests and form connections with

other researchers having similar interests. As a result, researchers can autonomously

form a collaborative group to learn about new research publications that are of interest

among them.

Shrack is different from traditional search engines in that Shrack’s peers periodi-

cally keep in touch with other peers to update and share new documents of interests.

Shrack’s peers will automatically inform their users when they learn about new doc-

uments that are of relevance to the interests of the peer users. On the other hand,

in traditional search, users issue search queries to find relevant documents that are

currently available in the system. To keep track of new relevant documents, the users
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need to periodically revisit the search engines to issue the queries to get new results.

We introduce Shrack as an alternative way for researchers to keep track of documents

of interests, or somewhat similar to continuous search queries. In addition, the track-

ing ability also makes Shrack different from other existing P2P systems, which usually

support only search services.

1.1.1 Why a Peer-to-Peer System

Shrack is designed as a peer-to-peer system because peer-to-peer systems allow re-

searchers to directly exchange research papers of mutual interest on the Internet

without relying on centralized servers. Peer-to-peer systems are robust against single

points of failure and have the potential of being scalable as the system size increases.

Researchers (peers) and research organizations (super peers) can share resources and

form collaborations at a local level without the privacy concerns and the system man-

agement cost of centralized servers. Moreover, researchers in different organizations

can individually form their own collaborations.

Between the two peer-to-peer system architectures, unstructured and structured

peer-to-peer systems, we choose to design Shrack as an unstructured peer-to-peer

system. An unstructured peer-to-peer system, such as Gnutella [29] and KaZaa [42],

is a peer-to-peer system that does not have control over network topology and data

placement. Each peer maintains a list of addresses of other chosen peers randomly

or based on mutual interest.

In contrast to an unstructured peer-to-peer system, a structured peer-to-peer sys-

tem has a predefined network topology that defines which peer’s addresses each peer

has to maintain. Due to the dynamic behaviour of peers, which can independently join

or leave the system, structured peer-to-peer systems require additional maintenance

cost to synchronize peers according to the predefined topology.

Moreover, most structured peer-to-peer systems [60, 62, 68, 80], which are designed

based on a distributed hash table, have restrictive control over data placement on each

peer according to unique keys of the data. Although structured peer-to-peer systems

provide guarantee and efficient algorithms to locate data items in the system, each

peer needs to know the unique keys of the data items in advance in order to acquire
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the items.

We design Shrack as an unstructured peer-to-peer system because: (1) we would

like Shrack to allow peers to form collaborations based on their interests, not based

on a predefined structure, (2) we would like peers to keep data according to their

interests not according to unique keys of the data, and (3) Shrack is built for peers

to acquire new documents, therefore, it would be difficult for peers to have unique

keys of the new documents in advance to locate the new documents in structured

peer-to-peer systems.

1.1.2 Why Pull-Only Communication

Shrack uses pull-only communication to disseminate shared information among peers.

Pull communication refers to a communication where the information transfer is ini-

tiated by a destination node or node that wants to receive information, e.g. as in

the HTTP or POP protocols. On the other hand, push communication refers to a

communication where the information transfer is initiated by the source node, e.g.

as in the SMTP protocal for email transfer. Consequently, pull communication gives

control to peers who seek information to select from which sources and when to pull

shared information. The system stimulates cooperation by learning and sharing new

documents within a group of researchers having common interest, which is determined

and controlled by peers that seek information. Peers that provide good sources of

information can build their reputation and make themselves and their work visible.

In addition it is easier for researchers to publish documents at one place than push

or inform potential readers in many different places or mailing lists.

With pull-only communication, peers that want to provide information would

make themselves available for other peers to access the information. Peers that want

to receive information, when they are on-line will seek and contact peers that provide

information. However, designated peers, called super peers, can act as information

aggregators and they are expected to be always on-line. Many pull-based applications

are widely used in the Internet such as Web browsers, and RSS readers.
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1.2 Thesis Statement

The goal of this research is to develop a peer-to-peer system framework to provide sup-

port to researchers in forming direct collaboration for document sharing and tracking

in a peer-to-peer environment based on their interests. We hypothesize that:

1. Pull-only information dissemination is scalable in a large-scale peer-to-peer sys-

tem.

2. Self-organizing networks based on common interest of document sets can en-

hance relevance of documents received by peers.

To validate the first hypothesis, we propose a pull-only information dissemination

protocol to disseminate information of new documents among peers in Shrack. A

simulation is built to test its scalability and performance of the protocol in large-

scale networks assuming that all peers are interested in all documents published. To

validate the second hypothesis, we create a user’s interest model based on publication

and authorship to create artificial peer users and their interests. After that, we

evaluate performance of Shrack overlay networks according to three provider peer

selection strategies; namely, a common interest strategy, a random strategy, and a

hybrid strategy.

1.3 Contributions

We built a peer-to-peer system model that facilitates sharing and keeping track of

new documents of interest among researchers. We proposed Shrack as a framework

for such system. The emphasis of this research is on developing and evaluating a

pull-only information dissemination protocol and self-organizing overlay strategies in

the proposed framework.

We summarize the contributions of this research as follows:

1. Shrack framework: Defined a peer-to-peer framework to facilitate researchers in

forming direct collaboration for document sharing and tracking based on their

interests.



6

2. Shrack dissemination protocol: Developed a pull-only information dissemination

protocol that is scalable as the network size increases.

3. Self-organizing overlay networks: Developed self-organizing overlay strategies

that form groups of peers having similar interests without explicitly exchange

user profiles to enhance relevance of documents received by peers.

4. Simulation Environment: Built an event-driven simulation environment to vali-

date dissemination protocols and self-organizing overlay strategies according to

the Shrack framework.

5. Evaluation Methodologies: Defined evaluation techniques and metrics to eval-

uate the dissemination protocol and self-organizing Shrack networks.

1.4 Overview of the Thesis

This thesis consists of ten chapters. The next chapter, Chapter 2, provides back-

ground and related work to this thesis. Chapter 3 describes the Shrack framework

including defining research problems and introducing formal definitions of terminol-

ogy using throughout the thesis. Chapter 4 presents the Shrack prototype system.

Chapter 5 describes the experimental environment that we use to evalution the pro-

totype system. Chapter 6 presents experiments on scalability of Shrack dissemination

protocol. Chapter 7 presents experiments on self-organizing Shrack network. Chap-

ter 8 and Chapter 9 present the effect of peer profile representation and Time-To-Live

(TTL) on the self-organizing Shrack network. Finally, Chapter 10 provides conclusion

and discusses future works of the thesis.



Chapter 2

Background and Related Work

This chapter provides background and related work to give readers knowledge and

intuition behind this thesis. We first discuss data and document sharing networks

in Section 2.1. Then we give an overview of peer-to-peer systems in Section 2.2.

In Section 2.3, we provide a review of peer-to-peer systems for data sharing. In

Section 2.4, we describe the original gossip protocol—a probabilistic dissemination

protocol that is widely used in large-scale systems. After that, in Section 2.5, we give

a review of the existing approaches to resource discovery in unstructured peer-to-peer

systems. In Section 2.6 we review the Re-Coll system that motivated the pull-only

dissemination protocol in Shrack. We review several systems that are based on the

JXTA platform in Section 2.7. In Section 2.8, we present related work in collaborative

filtering. Finally, Section 2.9 provides a summary of this Chapter.

2.1 Data and Document Sharing Networks

Several well-known centralized research article repositories or digital libraries, such as

the ACM digital library [7] and IEEE Xplore [8], have been available to research com-

munities for several years. However, additional efforts are still emerging to collect doc-

uments from many digital libraries to create either individual interest group reposito-

ries or global online repositories. Examples of such repositories include arXiv [1], Web

interface CiteSeer [23], Google Scholar [2], DBLP [45], and AMS Digital Mathemat-

ics Registry (DMR) [14]. These repositories demonstrate the interest of researchers

in sharing documents through the Internet. While such repositories have proved to

be invaluable to the research community and demonstrated that they do scale up to

certain non-trivial amount of documents, they have also exposed weaknesses of the

centralized approach.

Centralized servers create a bottleneck in accessing and collecting documents. As

7
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the number of users and documents increases, centralized servers need to increase

their capacities to support users’ activities requiring high bandwidth and storage.

Currently, CiteSeer alleviates this problem through mirrors. In addition, scaling up

CiteSeer through distributed, cooperative servers was proposed in OverCite, a coop-

erative digital research library [69]. However, these systems increase the performance

through server-sided capacity, which require dedicate servers.

Current models of digital libraries focus on collecting documents and allowing

users to search and access document collections. However, there is no guarantee that

all documents will be stored in a particular digital library. Users need to visit several

digital libraries to search for documents of interest. In addition, users do not know

when a digital library receives new documents in its collection. Users have to regularly

visit a digital library to check for the new documents, or subscribe for a particular

library to be notified when the new documents arrive.

In this thesis, we are interested in designing a mechanism for researchers to col-

laboratively keep track of new documents among those who have common interest.

In our model, researchers are keeping track of documents of interest not from a par-

ticular digital library but from a collection of documents that are of interest to the

collaborative group, which can be from any digital library or any individual collection.

2.2 Introduction to Peer-to-Peer Systems

Since 2000, peer-to-peer systems or peer-to-peer networks have drawn attention to

the research community as a new way of communication allowing individual comput-

ers to communicate directly with each other and to share information as resources

without using special servers. Some examples of such peer-to-peer systems include

Gnutella [29], Freenet [24], CAN [60], and Chord [68]. Peer-to-peer systems are known

to be robust against single point of failure and have the potential of being scalable

as the system size increases [47, 64, 79]. In the following, we provide a definition of

peer-to-peer networks.
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2.2.1 Definition of Peer-to-Peer Networks

Throughout this work, we adopt Schollmeier’s definition of a peer-to-peer network,

which he presented at the first international conference on peer-to-peer computing:

A distributed network architecture may be called a Peer-to-Peer (P-

to-P, P2P, ...) network, if the participants share a part of their own hard-

ware resources (processing power, storage capacity, network link capacity,

printers, ...). These shared resources are necessary to provide the service

and content offered by the network (e.g. file sharing or shared workspaces

for collaboration). They are accessible by other peers directly, without

passing intermediary entities. The participants of such a network are thus

resource (Service and content) providers as well as resource (Service and

content) requestors (Servent-concept) [66].

2.2.2 Peer-to-Peer Overlay Networks

Normally, peer-to-peer networks are viewed as overlay networks. An overlay network

is a network that is built on top of another network. Peers in a peer-to-peer network

are connected with virtual or logical links with other peers, called neighbours. The

logical links identify communication paths, which are composed of many physical links

in the underlying network. There are two major peer-to-peer overlay architectures;

(1) structured peer-to-peer overlay networks or structured peer-to-peer systems and

(2) unstructured peer-to-peer overlay networks or unstructured peer-to-peer systems.

Unstructured Peer-to-Peer Systems In unstructured peer-to-peer systems, such

as Gnutella [29], peers are normally organized into a random graph and use floods or

random walks to discover data stored in the overlay network. Unstructured peer-to-

peer systems support arbitrarily complex queries and do not impose any constraints

on the peer topology or on data placement. However, rare data items are hard to

find efficiently because they require an exhaustive search through the overlay net-

work. Numerous works have focused on improving searches in unstructured peer-to-

peer systems [22, 28, 39, 50]. Recently, semantic and social network concepts have
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been adopted to create an overlay network to improve resource discovery in unstruc-

tured peer-to-peer systems. Examples of such systems include REMINDIN’ [72],

P2PDating [57], and Tribler [59].

Structured Peer-to-Peer Systems Structured peer-to-peer systems have a pre-

defined network topology to specify how peers are connected. Well-known structured

peer-to-peer systems, such as Chord [68], Pastry [62], Tapestry [80], and CAN [60],

are designed based on Distributed Hash Tables (DHT). DHT imposes constraints

on both data placement and network topology. Structured peer-to-peer systems are

known to have scalable and efficient overlay routing for requests with specific keys

or exact match queries. In addition, these systems are designed based on uniform

resources; that is, each peer is expected to dedicate an equal amount of storage, pro-

cessing, and network bandwidth. A number of works [35, 30, 70] propose to relax this

assumption of uniformity to improve routing efficiency. However, a major drawback

of the structured peer-to-peer systems is that although they are well-suited for exact

match lookups using unique identifiers they do not directly support text search [46].

GridVine [9] is a structured peer-to-peer system that addresses this limitation by

using a semantic overlay to support semantic queries. Castro et al. [21] provide a

detailed comparison of the unstructured and structured peer-to-peer systems.

We design Shrack as an unstructured peer-to-peer system. The main criteria

that led to this design decision are simplicity, flexibility, and the total lack of central

control. We do not want to put constraints on data placement or network topology

as in structured peer-to-peer systems. We believe that peers should have the freedom

to connect to any peers they want and keep only information in which they are

interested.

2.3 Peer-to-Peer System for Data Sharing

A peer-to-peer system is an alternative approach for data or document sharing net-

work that allows researchers to directly share their data or document collections with

each other. Each researcher has its own repository and allows others to access the

shared information. Hence, the communication bandwidth and repository storage can
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be distributed among researchers in the community, allowing the system to scale up as

the number of researchers in the system increases. Peers form a collaborative search

to find target documents in the system. For an exhaustive survey of peer-to-peer data

sharing technologies, we refer the readers to the work of Androutsellis-Theotokis and

Spinellis [15].

2.4 Gossip Protocol

Gossip-based probabilistic multicast protocols rely on a peer-to-peer interaction model

for multicasting a message and are scalable since the load is distributed among peers

in the network [43]. They use redundant messages to achieve reliability and fault

tolerance. Many peer-to-peer systems use gossip-based protocols as a major protocol

to exchange their expertise or disseminate information among peers [36, 57, 65, 74].

Jelasity presents a framework for peer sampling services in unstructured peer-to-peer

systems using a gossip-based protocol [37], which could be used for disseminating

information among peers.

follow. The original gossip protocol assumes that there is a membership protocol

which provides each peer with a randomized partial knowledge of other peers in the

system. A notification or gossip message contains an event to disseminate to the

whole group. When a peer generates a notification event, a gossip protocol round is

initiated. Normally a gossiping round is initiated periodically and several notifications

per gossip message may be received [43].

Algorithm 1 Probabilistic gossiping algorithm at each node

1: Receive gossip(sender, notification);
2: if notification.getId() /∈ historyList then
3: deliver(message);
4: historyList.add(notification);
5: for (i=0; i < n; i++) do
6: choose target peers at random;
7: send(target, myself, notification, “gossip”);

Algorithm 1 presents the original gossip protocol, where n is the number of gossip

targets, which could be a random variable. When a peer receives a gossip message
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from a sender, if the notification is new (does not exist in the historyList), the notifi-

cation is delivered and added to historyList. After that, the peer randomly forwards

the notification to n peers.

Shrack dissemination protocol is similar to the gossip protocol in the sense that

peers periodically exchange messages to update new events. However, the Shrack

dissemination protocol is different from the gossip protocol in three aspects:

1. While the gossip protocol is push-based, Shrack uses a pull-based communica-

tion protocol;

2. Shrack peers only disseminate messages that are relevant to them, while in the

gossip protocol peers forward every notification they receive to other peers; and

3. Shrack peers form an overlay network of peers with common interests, while

peers in the gossip protocol form a randomly connected overlay network.

2.5 Resource Discovery in Unstructured Peer-to-Peer Systems

We survey several approaches to resource discovery in unstructured peer-to-peer

systems such as blind search, a variety of semantic and selective overlay networks,

and a community-based information dissemination network.

2.5.1 Blind Search

In order to locate a file, a peer initiates distributed search among peers in the system.

Originally, in Gnutella, peers distribute queries by flooding and later randomly for-

warding queries to their neighbours [15]. In flooding, each peer forwards queries to all

peers in the neighbourhood. In random forwarding, each peer only forwards queries

to a set of its randomly chosen neighbours. Unstructured peer-to-peer systems do

not guarantee that the search returns the sought results. The results are returned as

best effort. Random walks for searching achieves better results than flooding when

the overlay topology is clustered and when a client re-issues the same query while its

network size does not change much [28]. Several other techniques exist that improve
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flooding [22, 28, 39, 50]. However, these approaches blindly forward queries among

peers without taking into account the content of queries or resources of peers in the

network.

content have been purposed to type of networks, peers are forwarded only to

related peers. documents.

2.5.2 Predefined Semantic Overlay

Crespo and Garcia-Molina proposed a system with multiple predefined semantic over-

lay networks. Each peer can join many semantic overlay networks and forwards

queries only to the related semantic overlay networks. Peers have to know in advance

what are the existing semantic overlay networks and join each overlay network based

on the document collections they contain [26].

2.5.3 Shortcut Overlay

Without a predefined semantic overlay, peers can maintain knowledge of peers in the

networks and forward queries to peers that have a high potential to return search

results. Haase et al. presented Bibster [32], where peers are connected randomly but

each peer has knowledge of the expertise of their neighbours and forwards queries

based on the expertise of their neighbours [33]. The system shows improvement over

randomly forwarded queries. However, the system only learns about the expertise

of their neighbours at the start of the simulation and assumes static semantic and

network topology. Similarly, Sripanidkulchai et al. [67] introduce shortcuts to forward

queries to peers that return successful results. Joseph [40], Cooper [25] and Balke et

al. [16] create shortcuts to super-peers or knowledge sources that have local indexes

of document locations. REMINDIN’ [72] and Löser et al. [49] show that selective

forwarding of queries to top-rank peers with some randomness helps improving the

search results.

Tempich et al. [71] explore an IR-ranking strategy to select the top-rank peers

for multiple keywords search. Peers are ranked based on an inverse peer frequency

(IPF), called TFxIPF (Term Frequency-Inverse Peer Frequency) —a similar technique

to TFxIDF [51]. Peers that contain all the terms in a query will have the highest
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score and also terms that exist in many peers are given a less significant weight. Their

experiments compare four peer ranking schemes: (1) ranking based on TFxIDF score,

(2) ranking based on TF, (3) ranking based query hit, and (4) using exact matches.

For the exact matches, peers only forward queries to peers that match all the terms

in a query. The results show that the TFxIPF, TF and query hit schemes have

comparable results that are better than exact matches.

With semantic shortcuts, peers keep expertise knowledge of their neighbours and

forward queries to peers that are semantically related. They still rely on the usage of

the underlying connections and the default mechanism when the shortcuts fail. Peers

usually acquire peer expertise relationship based on queries and results returned. In

the next subsection, we discuss self-organizing overlay networks where peers form

connections to neighbours that have similar interests.

2.5.4 Self-Organizing Overlay Networks

Motivated by small-world networks [75], several self-organizing unstructured peer-

to-peer systems based on similar interests were proposed to improve search perfor-

mance [12, 57, 65, 73, 77]. In these networks, each peer usually has a set of peers

called known peers, which are peers in the system of which the peer is aware. Peers

exchange their expertise regularly with others peers and periodically keep interac-

tions with their neighbours, which are peers with similar interests. Normally, each

peer adjusts its neighbours according to new updated expertise information, forming

a self-organizing overlay of peers with similar interests.

There are three common mechanisms to manage self-organizing overlay networks:

(1) peer expertise learning, (2) peer similarity measurement, and (3) peer neighbour

selection. The peer’s expertise learning is a mechanism for peers to learn about inter-

est of other peers. The peer similarity defines how to quantify the similarity between

two peers. The peer neighbour selection defines how peers select their neighbourhood,

which defines the overlay network.
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Sellf-organizing Semantic Overlay Network network. Each peer in a self-

organizing semantic overlay network periodically asks its neighbours about their ex-

pertise. If the peer learns that their neighbours have less similar interests than a

threshold value, then the peer sends a WalkMessage containing its expertise to ask

about the expertise of other peers in the network in a random manner. After a peer

learns about other peers, it establishes connections to peers that have more similar

interests. Expertise consists of a content item selected as a representative of interest

of the peer. In the experiments, expertise is represented by terms in an ontology.

The similarity between two peers is quantified by the number of edges between terms

in the peers’ expertise according to the ontology. The experiments show that a cer-

tain amount of clustering of peers is beneficial for query routing; over-clustering,

however, (i.e., connecting to peers that are too similar) may cause performance to

deteriorate [65].

Common-Interest Peer Clustering A two-layer approach to maintain a cluster

of peers with common interests is proposed by Voulgaris [73]. Peers are randomly

connected in one layer, and in the other layer peers are connected based on common

interests. In both layers, peers run a gossip-based protocol [74] to periodically ex-

change their expertise with their neighbours. A peer’s expertise is represented by the

list of files that the peer shares. The similarity between two peers is measured by the

intersection of files that both peers share.

Semantic Overlay Networks for Web Searches Semantic overlay networks for

Web searches are proposed in systems such as 6Search (6S) [77] and P2PDating [57].

Each peer has its own topical crawler and a local search engine. Peers first search for

a query result in their local archives, then forward the query to their neighbours for

more results. In 6Search, peers implicitly learn about expertise of other peers from

the exchanges of queries and responses. Peers select their neighbours based on terms

in query hit. In addition to the peer neighbour list, each peer also keeps contacts of

known peers, which increases connectivity among peers in the system. Known peers

can be used as candidate future peer neighbours. In P2PDating, peers randomly

connect to the network, exchange their profiles with other peers, and adjust their
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connection to peers with similar interests. Peers periodically exchange their profiles

to evaluate their similarity by choosing peers from their friend list (neighbours), their

candidate list (known peers), and random peers. The similarity between peers is eval-

uated by quality or usefulness measures, which can be based on (1) peer behaviour, (2)

overlap of peer contents, or (3) semantic similarity using Kullback-Leibler divergence.

The results show that among the three similarity measures, the Kullback-Leibler di-

vergence returns the best search results. Akavipat [12] shows that the emerging se-

mantic communities in 6Search follow small-world properties, such that the semantic

overlay network has higher clustering coefficient and lower characteristic path length

than the random overlay network [76].

Tribler Tribler [59] is a social-based peer-to-peer file-sharing system for content

discovery, content recommendation, and downloading. Tribler is implemented on top

of the BitTorrent1 file-sharing system. Tribler exploits social behaviour by creating an

overlay network based on similar interests among peers. Tribler uses a gossip-based

protocol called BuddyCast to exchange peer expertise, which is a list of recently

downloaded files, to form an overlay of peers with similar interests. In BuddyCast,

each peer periodically selects a peer to which to connect from a list of neighbours

ranked by their common interests. The selection is probabilistic using the roulette

wheel approach. The similarity between peers are measured using Pearson correlation.

Like other systems in this category, Shrack is a self-organizing overlay network.

However, most of these systems focus on searching for documents in response to a

query, whereas Shrack peers focus on dissemination and discovery of new documents.

In addition, the Shrack dissemination messages are used for peers to learn about

expertise of other peers in the system without explicitly exchanging their profiles. As

a result, Shrack peers not only learn about peer expertise but about new documents

of interest at the same time. Shrack peers use only pull communication and form a

self-organizing community network based on common documents of interest among

peers. representations and similarity measures, predefined ontology. Furthermore,

the user profile representation and similarity in Shrack is flexible. We investigate

1http://www.bittorrent.com

http://www.bittorrent.com
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item-based and term-based representations in the thesis, but other options are not

excluded by the framework.

pull communication, whereas our proposed system, answer search queries. docu-

ments. known peers without any explicit exchange of profiles. self-organizing overlay

P2P networks is the investigation of

Next, we present other community-based information dissemination peer-to-peer

systems.

2.5.5 Community-Based Information Dissemination Networks

Two peer-to-peer information dissemination approaches for data sharing based on

small-world networks were proposed by Iamnitchi et al. [36] and by Mitre and Navarro-

Molders [52]. The networks are comprised of several clusters, where each cluster is

defined as a community with overlapping data interests. The systems are built to

support search and locate documents in the same cluster.

In the first approach [36], each peer periodically updates global information of all

peers and document locations in the same cluster through a “gossip” protocol [43], a

push-based information dissemination mechanism. Hence, each peer can immediately

locate documents in the same cluster. However, only filenames and their locations

are disseminated among peers. The system is built on the assumption that each peer

knows how to forward the requests to search for documents outside its cluster and

have a predefined cluster overlay.

In the second approach [52], populated files are replicated among peers in the

same cluster. Peers use limited flooding of requests to search for files within their

clusters. Each peer also needs to have knowledge of other clusters to directly issue

requests for documents outside its cluster. By using replication, peers do not have

to maintain global knowledge of document collections and peers in their clusters, but

they need to spend time on search to locate documents of interest.

Shrack has a similar design as the first approach. However, instead of defining a

rigid cluster and requiring peers to maintain global knowledge of every peer in the

same cluster, Shrack peers maintain knowledge and learn about expertise of other

peers locally from received information. Moreover, Shrack is specially designed for
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document sharing where the metadata of documents, not only filenames and their

locations, are disseminated among peers.

Cuenca-Acuna et al. [27] introduced a content-addressable publish/subscribe ser-

vice for unstructured peer-to-peer Systems (PlanetP) to improve distributed search

in peer-to-peer communities. Each peer in the system maintains global addresses

of peers in the communities and have global knowledge of an inverted term-to-peer

index, which maps terms to peers having documents containing these terms. The gos-

sip protocol is used for peers to distribute the global index and membership changes

among peers in the system. To search for documents of interest, peers forward a

request to a set of peers that contain documents with the requested terms based on

the inverted index and ranking algorithm. When a peer receives a request, a local

search is performed to find documents that match the request and the results are

forwarded to the requesting peer. The experimental results show that PlanetP search

efficiency is comparable with centralized servers. Shrack is different from PlanetP

in that PlanetP disseminates their expertise to create shortcuts for query routing

and use a random network as the underlying overlay. On the contrary, Shrack peers

disseminate new documents of interests, which can be used to learn about expertise

of peers in the system and then form a self-organizing overlay based on common

interests.

2.6 Re-Coll: Peer-to-Peer Document Tracking Network

A Web-based peer-to-peer support for Research Collaboration, Re-Coll, was a pilot

experiment of a peer-to-peer document tracking system using pull-only communica-

tion [53]. Unlike generic peer-to-peer systems where users learn about data items

of interests after they issue search queries, Re-Coll enables users that have common

interests to collaboratively keep track of data items of interests when they become

available in the collaborative group. Re-Coll only provides a dissemination protocol

for peers to keep track of documents of interest. The user of each peer needs to ex-

plicitly manage who they want to contact. In other words, Re-Coll peers do not have

a mechanism to select peer neighbours or learn about the existence of other peers in

the network.
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The Shrack information dissemination protocol is motivated by Re-Coll’s pull-

only dissemination. However, Shrack’s protocol is different from Re-Coll’s. In Shrack,

information is disseminated based on the interest of the peer users, while in Re-Coll

every peer shares all information it receives with other peers in the network. As

a result, Shrack peers benefit from collaborative filtering from peers with similar

interests. In addition, Shrack enables peers to learn about expertise of other peers

and form a self-organizing overlay network based on common interests.

2.7 Peer-to-Peer Research Collaboration on JXTA

JXTA is an open network computing platform designed for peer-to-peer computing [3].

JXTA provides basic functions to support peer-to-peer applications such as member-

ship management, service advertisement, indexing, and searching. Several research

collaborative peer-to-peer systems are built on top of the JXTA platform. Exam-

ples of such systems are DFN [63], BIBSTER [32], Edutella [54] and OAI-P2P [10].

These systems use the JXTA platform to manage membership and information in the

system. They use JXTA’s open search to locate documents of interest. Each of the

systems focuses on different kinds of information that are shared among peers.

The DFN Science-to-Science (S2S) [63] is a non-profit organization that provides

research infrastructure in Germany. The focus of the project is on the search ca-

pability in indexing and gathering scientific information. BIBSTER [32] focuses on

managing, searching and sharing of bibliographic metadata from BibTeX files and

uses semantic Web techniques to enhance document searching. Edutella [54] is a

peer-to-peer networking infrastructure based on RDF. Edutella peers use RDF for

information exchange and querying among peers. OAI-P2P [10] is a peer-to-peer net-

work for open archives. OAI-P2P is built on Edutella for research organizations to

share their documents and support distributed search over all connected metadata

repositories.

While there are many initiatives to build peer-to-peer systems for research collab-

orations, the existing systems focus on document searching. In Shrack, we focus on

document tracking based on users’ interests.

communication protocol; protocol peers form
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2.8 Collaborative Filtering

Collaborative filtering is a type of a recommender system where the recommendations

that a system provides to a user are based in part on the profiles of other similar users.

User similarity can be measured using a similarity measure on the user profiles’ feature

vectors, such as the cosine similarity measure, or it can be defined explicitly through

social connections between users in a social network.

2.8.1 Types of Collaborative Filtering Approaches

Collaborative filtering approaches fall under two general categories: (1) memory-

based and (2) model-based. Memory-based collaborative filtering algorithms store

all rating examples into memory and use them to compute user or item similarity,

which is later used to rate a test item for a user. The similarity of users or items

is computed by using cosine similarity of the rating vectors based on an assumption

that similar users will rate items similarly and similar items will be rated by users

similarly. Model-based collaborative filtering algorithms, on the other hand, use the

training examples to generate a model that is able to predict the rating for items that

a test user has not rated before. Breese et al. provide an empirical analysis of both

types of algorithms [18].

Hybrid collaborative filtering approaches combine memory-based with model-

based algorithms. The hybrid approach reduces the user dimensionality using a

clustering or a classification algorithm. First, a model-based algorithm builds several

models of users, where each model represents a cluster [78] or a persona [58] of similar

users. Then a memory-based algorithm is applied to the models.

2.8.2 Collaborative Filtering Applications

Some of the systems that have successfully employed collaborative filtering include

Tapestry [31], GroupLens [44], ReferralWeb [41], Amazon.com [48], and PipeCF [34].

Tapestry Tapestry [31] is one of the earliest applications of collaborative filtering

in information filtering. Tapestry is an experimental mail system developed at Xerox
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to filter electronic documents based on users’ annotations. Although Tapestry does

not account for user similarity, it provides an efficient and practical approach for

annotating documents and messages, and for filtering incoming data based on user-

defined filters. Tapestry is an example of a distributed content-based filtering system.

GroupLens GroupLens [44] provides recommendation to Usenet newsgroup readers

based on explicit ratings of news items by the users. The system successfully addresses

issues of sparsity, the start-up problem, and the short life-span of the news messages.

Scalability, however, is cited as one of the GroupLens system’s limitations that could

be addressed through a distributed system.

ReferralWeb ReferralWeb [41] exploits the social graph to provide expert or topic

recommendations to a user. The system architecture is distributed in the sense that

each user has their own ReferralWeb agent. The agent infers the social graph au-

tomatically from the Web documents, which is accomplished by querying a search

engine. The dependency on an external search engine renders the system only par-

tially decentralized. Further, the user has little control or direct influence over the

social graph and has no explicit way of providing feedback to the system to improve

its performance.

Amazon.com Amazon.com is arguably the most successful commercial application

of a collaborative filtering system. Instead of comparing users to each other, Ama-

zon.com uses an item-to-item collaborative filtering system [48]. This system is able

to compute all the recommendation off-line over several million items. This approach

is not suitable for distributed environment because it requires a global knowledge of

all items and user interactions, whereas each node in a distributed system contains

only a partial knowledge of available items and other users.

PipeCF PipeCF [34] is a distributed collaborative filtering algorithm for peer-to-

peer networks. It relies on a distributed memory-based approache for storing user

profiles. The distributed hashing table (DHT) is used as the underlying mechanism

for storing and retrieving user data in the system. Hence, the limitations of PipeCF
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are those of the DHT, namely the data locality problem; that is, users cannot control

where their data is stored or which data they store.

The Shrack system acts as a distributed collaborative filtering system. The doc-

uments that a peer receives are filtered by its neighbours, where the neighbours are

chosen based on their similarity to the peer.

Most collaborative filtering methods have the cold-start problem, which refers to

the situation that an item cannot be recommended unless it has been rated by a

substantial number of users. However, there is no rating in Shrack. Shrack peers

recommend all the documents they recieve from the neighbourhood to the peer users.

The cold-start problem could refer to the situation when a peer joins the network,

where (1) the neighbourhood is determined randomly, and (2) the peer does not have

any knowledge of the interest of the peer user. We can alleviate these problems

by: (1) users manually setting up the peer neighbourhood from known contacts that

have similar interests in the real world, and (2) users presenting the set of relevant

documents to the peer to initially model their interests.

2.9 Summary

This chapter provides background and related work for this thesis. First, we provide

background knowledge of data and document sharing network. Then, we give an

introduction to peer-to-peer systems; we define peer-to-peer networks and describe

two major peer-to-peer overlay architectures. After that, we provide a review of

resource discovery in unstructured peer-to-peer systems starting from blind search,

semantic or selective search, resource discovery in self-organizing overlay, and infor-

mation dissemination in community based peer-to-peer networks. Then, we review

the Re-Coll system, which motivated the pull-only dissemination protocol in Shrack.

Subsequently, we describe the original gossip protocol and present related work in

collaborative filtering. In the next chapter, we present the framework of Shrack.
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Shrack Framework

We propose Shrack as a peer-to-peer system that facilitates researchers to share and

keep track of new documents of interest. Shrack is designed based on an assumption

that researchers who work in the same research area are usually interested in overlap-

ping sets of documents. Their efforts in sharing and keeping track of new documents

of interest can benefit from an autonomous collaborative environment.

In this chapter, we first define the research problems in Section 3.1. Then we define

formal terminology that will be used in the rest of the thesis in Section 3.2. Then we

describe the Shrack framework. We present the Shrack architecture in Section 3.3.

Subsequently, we provide the characteristics of Shrack network in Section 3.4. After

that, we explain the Shrack peer functionalities and introduce the Shrack information

dissemination protocol in Section 3.5 and Section 3.6, respectively.

3.1 Problem Definition

The goal of this research is to develop a design and predict the performance of a

peer-to-peer system to help researchers share and keep track of new documents of

interest. This thesis focuses on the following research problems:

1. Making design choices to create the Shrack framework; defining peer compo-

nents, peer functionality, communication protocols, and characteristics of the

network.

2. Designing an information dissemination protocol using pull-only communication

that is scalable as the network size increases.

3. Developing a self-organizing Shrack network, for a given set of peers with over-

lapping interests, to improve the dissemination performance, measured as an

average F-score of documents received by peers.

23
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3.2 Formal Definitions

Next, we briefly define terminology that we will be using in the rest of the thesis.

Definition 1 (Peer) A peer is an individual node that connects to the network. Ev-

ery peer in the network has the same functionality.

Definition 2 (Local Peer) A local peer is a peer under consideration.

Definition 3 (Receiver Peer) A receiver peer is a peer that pulls information or

a peer that issues a request for information, in the context of a P2P communication

session.

Definition 4 (Provider Peer) A provider peer is a peer from whom information

is pulled or a peer that responds to a request for information. A provider peer also

serves as a source of information for a local peer.

Definition 5 (Known Peer) A known peer is a peer in the network of which the

local peer is aware. The local peer may find out about a known peer from messages

that are disseminated among peers in the network or from users manually entering

peers into the local peer’s database.

Definition 6 (Publisher Peer) A publisher peer is a peer that provides the original

source of a document.

Definition 7 (Shrack Message) A Shrack message is a message that is dissemi-

nated among peers to inform them about the new document in the network. A Shrack

message contains information about the new document, message history, and message

status.

The detailed content of a Shrack Message is described in Table 4.1 (page 35).

Definition 8 (Document Metadata) Document metadata contains information about

the document. A document metadata may include title, authors and document descrip-

tion. Each Shrack message contains a document metadata item describing informa-

tion related to the associated document being shared.
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Definition 9 (Peer User) A peer user is a person or organization that is associated

with the peer and the peer’s interest captures the peer user’s interest.

Example of a peer user is a researcher, a department, a research group, or a

document archive.

3.3 The Shrack Architecture

Shrack is an unstructured P2P network designed to mirror real world research

collaborations, assuming that researchers who are interested in similar research areas

are usually interested in overlapping sets of documents, and willing to share their

resources and knowledge to keep track of new documents in the area. Each peer is

associated with a peer user such as an individual researcher or a research organization.

A peer that is used by a research organization can be viewed as a super peer—a

server that supports group activities for document sharing such as a digital library

or a document archive. Each peer acts on behalf of its user based on the interest of

the user and when we talk about the “interest of a peer”, we refer to the interest of

the peer user. Each Shrack peer has the same functionality of sharing and keeping

track of new documents published in the network using pull-only communications.

We believe that pull communication gives control to peers who seek information to

select from which sources and when to pull shared information.

The Shrack architecture from a peer’s perspective is shown in Figure 3.1. The

Shrack network is a peer-to-peer network that supports collaboration by keeping

track of new documents injected by peers into the network. The details of the Shrack

network are described in Section 3.4. Shared directory is a directory that contains

Shrack messages that are made accessible to other peers. Peer’s archive is a local

repository containing documents and document metadata that are of interest to the

peer. Provider peer list maintains the addresses of peers from which the local peer

will pull Shrack messages, referred to as provider peers. The provider peers could be

viewed as a peer’s neighbourhood in the context of a generic peer-to-peer system, but

we use the terminology “provider peers” to emphasize relationship of peers according
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to pull communications. Incoming links are connections established by other peers

through a server port to pull Shrack messages from the local peer. Outgoing links are

connections established by the local peer to provider peers from which the peer pulls

Shrack messages. User’s feedback is a user interface to present document metadata

of new documents to and receive relevant feedback from the user.

Each peer keeps track of new documents from Shrack messages that are dissem-

inated among peers through pull connections. Two main modules are included in

the Shrack architecture to enable self-organizing overlay network among peers with

similar interest, namely, knowledge integrator and provider peer selection.

3.3.1 Knowledge Integrator Module

Each peer has a knowledge integrator module to analyze information received from

interacting with the peer user and other peers. The knowledge integrator module uses

this information to build a knowledge base of documents and peers in the network.

The knowledge integrator module also maintains information about interests of the

peer user and interests of known peers. When a peer presents document metadata

to its associated user, the knowledge integrator module can explicitly or implicitly

learn about the user interests. For example, the knowledge integrator module can

implicitly learn about interest of the user from a set of documents that the user

requests to download. The knowledge integrator learns about interests of known

peers from received Shrack messages that are propagated among peers that have

similar interests. The knowledge integrator module should have an ability to build

a knowledge base that integrates information from document analysis, user analysis,

and peer analysis.

The document integrator module can analyze information related to the document

such as the document content, document metadata, or the citation graph and the co-

authorship graph of documents to model relationship of documents. The user analysis

finds the interest of the peer user, which will be used to create a local peer profile.

The local peer profile can be used by the document metadata filtering module to

indicate document metadata that are of interest to the peer user or by the provider

peer selection module to find peers that have common interest with the peer user.
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Figure 3.1: Shrack peer architecture
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Similarly, the peer analysis finds the interests of known peers and creates a local view

of interests of known peers and the relationship between peers.

3.3.2 Provider Peer Selection Module

The provider peer selection module evaluates and selects provider peers as sources of

information that are of interest to the local peer —creating a self-organizing network

based on common interest. Each peer selects its provider peers from among known

peers with common interests. The interests of a known peer can be identified from

the information embedded in Shrack messages processed by the knowledge integrator

module. Each peer periodically calls the provider peer selection module to change or

update the list of provider peers.

We will discuss the the knowledge integrator module and the provider peer selec-

tion module in detail in Chapter 4 (page 33).

Next, we describe the property of the Shrack network.

3.4 Shrack Network

We assume that Shrack peers are autonomous in that the local peer determines

which peers it wishes to get connected to and which information it wishes to share

with other peers. Hence, Shrack is modelled as an unstructured peer-to-peer system

and it is a purely decentralized network. There is no central directory that maintains

global knowledge. Shrack topology is organically formed according to peer interests

and collaboration. Peers having common interests and who are willing to collaborate

establish pull connections to one another, which are represented as directed edges

from receiver peers to provider peers, as shown in Figure 3.2. Each Shrack peer can

act as both a receiver peer and a provider peer. We use different terminology to

differentiate the role of a peer at a particular time.

Receiver peers maintain contacts to and initiate pull communication (a pull re-

quest) with their provider peers. Provider peers provide information (a pull response)

to the receiver peers if they wish to collaborate. Peers voluntarily join and leave the

system without notifications. The Shrack network is dynamic, unbounded and may
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Figure 3.2: Shrack network

contain cycles. It is unbounded in the sense that no peer can store information about

the complete global network topology, which may be considered infinite from our

point of view.

3.5 Peer Functionality

The four basic peer functions are: join, leave, publish, and retrieve. The details are

described below.

Join

To join a Shrack network, a new peer firstly obtains a Shrack contact address from

potential provider peers with whom it has real world collaboration, or it learns about

from other means of public media, such as web pages or blogs. Users can exchange

Shrack addresses similarly to exchanging their email addresses or telephone numbers.

We call these potential provider peers start-up provider peers. At least one start up

provider peer is required. After obtaining the addresses of the start up provider peers,

the new peer issues pull requests to pull Shrack messages that have been disseminated
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in the system from them. The new peer then uses the information contained in the

Shrack messages to learn about other peers in the system, which become its known

peers, and which later can be used as its new provider peers. The provider peers

respond to the pull request of the new peer by not only sending back the Shrack

messages but also keeping the contact address of the new peer in the list of their

known peers. Later, the provider peers can use the contact address to pull back

information from the new peer. In this way, the information of the new peer will be

disseminated to other peers in the system. As a result, Shrack peers learn about each

other in the process of disseminating Shrack messages.

Leave

There is no explicit notification when a peer leaves the Shrack network. Each peer

can leave the network any time without notice. Other peers will learn and assume

that a peer has left the network, if the peer is in their list of provider peers and they

get no response after multiple pull requests. Then the peer that left will be removed

from their list of provider peers and their list of known peers and finally it will be

removed from the network.

Publish

To publish a document, a publisher peer creates a Shrack message containing doc-

ument metadata and pushes the message into its shared directory. The document

metadata are propagated by means of receiver peers pulling information from the

publisher peer and then taking on the role of provider peers. With successive pulls,

the document metadata will be disseminated to connected peers. When a receiver

peer receives new document metadata items, the document metadata filtering module

will automatically classify document metadata as relevant to the peer’s interest or

not, based on the local peer’s profile. The relevant document metadata are stored in

the peer’s archive, and presented to the peer user.

An example of what happens when a peer p1 publishes a document d and its

document metadata item is disseminated to peer p2 by successive pulling of Shrack

messages is shown in Figure 3.3.



31

Figure 3.3: Peer p1 publishes a document d and its document metadata is dissemi-
nated to peer p2

Retrieve

The peer can automatically download the relevant documents, or the user can later

retrieve documents of interest using information about the document’s location con-

tained in the Shrack message.

3.6 Information Dissemination Protocol

We propose a pull-only information dissemination protocol for peers to share and

keep track of new documents among other peers that have common interest. Periodi-

cally, each peer gets connected to its provider peers to request or pull Shrack messages

from the provider peers. Upon receiving Shrack messages, the peer disseminates the

received Shrack messages by inserting them into its shared directory for other peers

to pull. With successive pulls, Shrack messages will be disseminated to all connected
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peers. Shrack messages should contain enough information about documents for the

peer users to decide whether the documents are relevant to their interest. In addition,

Shrack messages should also contain enough information for peers to automatically

perform their operations with minimum effort.

With pull-only communication, peers in the network cannot push Shrack mes-

sages to other peers. The messages will be transferred only by requests. In this way,

receiver peers can avoid receiving some non-relevant information or receiving infor-

mation when they are not ready. Moreover, provider peers need to maintain their

reputation by not disseminating spams or junk documents, so that other peers will

keep pulling the messages from them. Peers that do not maintain their reputation

will be automatically disconnected as other peer lose interest in pulling their shared

messages. As a result, their publications will be hardly visible by other peers. De-

tails of the information dissemination protocol will be presented in the next chapter,

Section 4.1.

The Shrack protocol only exchanges metadata about documents, not the docu-

ments themselves. As a result, the overhead and bandwidth utilization of the under-

lying network is minimal. However, if someone publishes a document that becomes

popular and many peers in the system wish to download this document, then the

publisher peer may experience a high level of network traffic. This problem can be

mitigated by either hosting the document by a super peer, or by using an approach

similar to BitTorrent for distributing documents.

3.7 Summary

In this chapter, we present the Shrack framework. We define the research problems

and formal definition of terminology using in this thesis. We describe the shrack

architecture, shrack network, and peer functionality. In addition, we provide an

overview of the Shrack information dissemination protocol. In the next chapter, we

present a prototype system of Shrack.



Chapter 4

Shrack Prototype System

This chapter presents a prototype system of the Shrack framework focusing on the

following goals:

1. to develop a scalable information dissemination protocol using pull-only com-

munication; and

2. to enable a self-organizing network to improve the quality of documents received

by peers based on common interests derived from the overlap in the set of

documents of interests.

First, we describe the information dissemination protocol and define Shrack mes-

sages in Section 4.1. Subsequently, we present the knowledge integrator in Section 4.2,

discussing how peers learn about the interests of their associated users, how peers dis-

cover the existence of other peers in the network and learn about their interests based

on information carried in Shrack messages, and how to quantify the common inter-

ests between peers. After that, we present the provider peer selection module in

Section 4.3, investigating three different provider peer selection strategies.

4.1 Information Dissemination Protocol

We develop the Shrack information dissemination protocol using pull-only communi-

cation. Peers in the network cannot push information to other peers. The information

is transferred only on request. In Shrack, it is not the user that issues requests, but

the user’s peer periodically pulls Shrack messages from its provider peers. In standard

P2P systems, the peer executes a search when the user issuse a search query. The

difference is that in Shrack the information has already been collected by the user’s

peer when the user needs it. We claim that pull-only information dissemination is

33
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Figure 4.1: Shrack pull request and pull response

suitable for peers to keep tracks of events that are of interest to the peer user over

a long period of time, when the events do not require immediate notifications. As

a result, it is suitable for keeping track of new documents, since the interests of re-

searchers (peer users) usually persist over a long period of time and change slowly

with time. In addition, with pull-only communication, the receiver peers can choose

when and from where to pull information.

The Shrack information dissemination protocol is simple. Peers disseminate shared

information in the form of Shrack messages by exchanging pull messages, namely pull

requests and pull responses. Each type of pull messages is defined next.

Definition 10 (Pull Request) A pull request is initiated by a receiver peer to re-

quest pulling Shrack messages from a provider peer. A pull request contains the contact

of the receiver peer and an update time identifying the oldest Shrack messages the

receiver peer wants to pull from the provider peer’s shared directory.

Definition 11 (Pull Response) A pull response is a response to a pull request from

a provider peer. The pull response contains a set of Shrack messages that arrive at the

provider peer at time equal to or later than the update time given in the pull request.

A pull request is initiated by a receiver peer to pull Shrack messages from a

provider peer. A pull response is a response from the provider peer to the pull request

containing a set of Shrack messages. Each peer records an arriving time stamp of each

Shrack message, indicating a time when the message arrives. When a receiver peer

wants to pull Shrack messages from a provider peer, the receiver peer initiates a pull
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request with an update time to the provider peer. Upon receiving the pull request,

the provider peer, if it wants to collaborate, responds with a pull response, which

contains a set of Shrack messages with arriving time stamps after the update time

back to the receiver peer. In general, the update time is the time of the previous pull

request of the the receiver peer sent to the provider peer. Figure 4.1 shows message

exchanges when a local peer issues a pull request to a provider peer.

4.1.1 Shrack Messages

Table 4.1: Shrack message fields

Fields Descriptions
Message ID Unique message identifier

Publisher Peer ID Contact of the peer that creates
the Shrack Message such as a URI or
an IP address

Document ID Unique document identifier
Document Metadata Data about the document such as title

author, abstract, keywords, and publication date
Visited Peers A list of IDs of peers the message has travelled through

on its way from the publisher peer to the local peer
Time-To-Live (TTL) The number of hops after which the message will be

discarded

Each Shrack message contains information about the shared documents and status

of the message to manage the dissemination. We define Shrack message fields in

Table 4.1 as consisting of a message identifier, publisher peer identifier, document

identifier, document metadata, visited peers, and Time-To-Live value. Message ID is

a unique identifier created from a combination of a publisher peer ID and document

ID to identify the message in a unique manner. Publisher Peer ID is the contact of

the peer that creates the Shrack message such as a URI or an IP address. Publisher

Peer ID allows receiver peers to learn about the original source of information, so

that they can use this information to retrieve the whole document. Document ID is

a unique identifier to identify a document, such as a digital object identifier (DOI)1.

1http://www.doi.org/
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Document Metadata contains summary information related to the document, which

help users determine whether they are interested in retrieving the whole document.

For a research publication, the document metadata may include the title, author,

abstract, keywords, and date of the publication. Visited Peers is a list of peer IDs

of peers that the message has travelled through along the path from the publisher

peer to the local peer. This list of visited peers contains the message propagation

history allowing receiver peers to learn about the existence of peers in the system.

Time-To-Live (TTL) identifies the number of hops after which the message will be

discarded. The initial value of the TTL is a system-wide predefined value. The TTL

is used as part of a mechanism to ensure that the dissemination of a Shrack message

will be terminated.

4.1.2 Pull Procedure

Shrack peers use Shrack messages to learn about new documents and the existence

of other peers in the network, as well as the interests of these peers. Each peer only

stores and disseminates messages that are of interest to the peer user. These messages

reside in peer’s shared directory for other peers to pull. As a result, each peer filters

out irrelevant messages for other peers that have common interest, creating an implicit

community filtering or recommendation system. The pull procedure describes how

a peer pi pulls and processes Shrack messages. The pseudocode of pull procedure is

presented in Algorithm 2. We also present how peer profile learning and provider

peer selection processes are incorporated in the pull procedure.

We define pull interval as a predefined interval, specifying how frequently a peer

wishes to pull its provider peers to learn about new documents. In this work, we

assume that peers pull Shrack messages from all of their provider peers using the same

pull interval. In practice, pull intervals might be different. A peer pi pulls Shrack

messages by issuing a pull request to each provider peer (line 2). Upon receiving a

pull response, the peer pi updates the last pull time of pj to the current time (line 3).

For each Shrack message in the pull response (line 4), the peer checks if the

message contains new document metadata to the peer pi by comparing the document

metadata’s identifier with the peer’s history list (line 6). If the identifier of the
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Algorithm 2 Pull Procedure of peer pi
1: for each provider peer pj of peer pi do
2: peer pi issues a pull request to pull a set of Shrack messages, M , from pj’s

shared directory that arrived at pj after the last time pi pulled Shrack messages
from pj;

3: update last pull time of pj;
4: for each Shrack message m ∈M do
5: d is a document metadata embedded in m;
6: if d is new to pi then
7: if d is relevant to the pi’s interest then
8: keep d in the local archive;
9: add arriving time stamp for m;

10: decrease the m.ttl by one;
11: if m.ttl is greater than 0 then
12: append pi’s ID to the Visited Peers list of m;
13: add m to the share directory of pi;
14: update local profile of pi
15: update known peer profile of pi
16: update list of provider peers of pi

document metadata is not already in the history list, it will be detected as a new

document metadata. If the new document metadata d is relevant to peer pi, d will

be added to the peer’s local archive (line 8). Then, for each message m containing

relevant document metadata d, the receiver peer pi records an arrving time stamp

for m (line 9) and decreases the TTL of m by one (line 10). If the TTL of m is

greater than zero, the peer appends its peer contact ID to m and places the message

m in its shared directory for further dissemination (line 12-13). After that, the peer

updates its local profile according to the set of new relevant documents (line 14).

Subsequently, the peer updates its known peer profile of peers in the visited list of

the received Shrack messages (line 15). At the end of each pull cycle, the receiver

peer evaluates its known peers and updates its provider peers (line 16).

A Bloom filter [17] is a good candidate to be used as a history list of received

document metadata. The Bloom filter is a randomized data-structure for concisely

representing a set in order to support approximate membership queries. The space

efficiency is achieved at the cost of a small probability of false positives. Bloom filters

have been used in many network applications [20]. We describe how a peer updates
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its local profile and known peer profile in Section 4.2, and how a peer updates the

list of provider peers in Section 4.3. Note that for simplicity, we assume that a peer

gets immediate feedback from its user on the relevance of the new documents based

on their metadata. In practice, the peer has to wait for feedback from the user.

4.2 Knowledge Integrator Module

To enable a self-organizing network based on common interests among peers, each

peer needs to have the ability to learn about the interest of its associated user. In

addition, each peer also needs to have the ability to learn about the existence of other

peers and their interests. Furthermore, each peer needs the ability to quantify the

common interests between its associated user and other peers’ users. These abilities

are captured by the peers’ knowledge integrator module.

Figure 4.2: The prototype of the knowledge integrator module
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We show a diagram of the prototype of the knowledge integrator module in Fig-

ure 4.2. As mentioned in Section 3.3.1 (page 26), the knowledge integrator module

maintains information about interests of its associated user and interests of other

peers. The knowledge integrator also maintains a list of existing peers of which the

local peer is aware, called known peers. Each peer has a peer discovery module to

learns about its known peers. The interests of the peer’s associated user are repre-

sented by a local peer profile, and a peer represents its knowledge about interests of

other peers in the known peer profile module. Each peer discovers its known peers and

learns about their interest locally, based on information carried in Shrack messages

that propagate through the network. There is no explicit profile exchange between

peers. We model both local peer profiles and known peer profiles with two represen-

tations:

1. Item-based peer profiles: The set of documents represents a peer profile

2. Term-based peer profiles: A term-weight vector is used to represent peer profiles

The level of common interests between a local peer and its known peers is quantified

by the common-interest score module based on the similarity between their corre-

sponding profiles. The document analysis module handles the term-weight vector

representation of documents.

Since the set of documents that are available in the network changes with time as

documents get published over time, we define in Section 4.2.1 sets of documents in

relation to time. After that, we describe how a peer models a term-based peer profile

from a given relevant document set in Section 4.2.2. Subsequently, we explain how a

peer discovers the existence of other peers in Section 4.2.3. Then, we describe how a

peer creates its local peer profile and its known peer profile in Section 4.2.4, and 4.2.5,

respectively. Finally, we explain how a peer quantifies the common interest between

itself and its known peers in Section 4.2.6.

4.2.1 Document Set Definitions

We now give definitions of various peer-related document sets that explicitly incor-

porate the notion of time. This is necessary because the peer-to-peer network is a
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dynamic system that changes over time. From now, the term “document” also refers

to the metadata of the document, unless specified differently.

Definition 12 (Peer-Published Document Set) St(pi) is the set of documents

that peer pi publishes up to time t.

The peer published document set represents a set of documents that a peer pub-

lishes up to time t.

Definition 13 (System-Published Document Set) P t is the set of all documents

that are published by every peer in the network up to time t; that is,

P t = ∪zi=1S
t(pi) (4.1)

where z is the number of peers in the network.

The system published document set is a set of all documents that are available in

the system at time t.

Definition 14 (Peer-Relevant Document Set) Rt(pi) is the set of documents that

are published up to time t in the entire network and are relevant to peer pi; that is,

Rt(pi) = {d | d ∈ P t and d is relevant to pi} (4.2)

A peer relevant document set of peer pi, R
t(pi), is the global set of relevant

documents that are available in the system at time t. However, at a given time t,

a peer pi may not be aware of all documents in Rt(pi), because peer pi might not

have connections to some peers that publish documents in the relevant set, or due to

propagation delay of the relevant Shrack messages. However, we assume that peers are

always interested in the documents that they publish themselves, i.e., St(pi) ⊆ Rt(pi).

Definition 15 (Peer-Received Document Set) Dt(pi) is the set of documents

whose metadata was received by peer pi up to time t, excluding the self-published

documents St(pi).
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Note that a Peer-Received document Set of peer pi, D
t(pi), includes all documents

whose metadata was received by pi up to time t, which may be relevant or not relevant

to pi. Moreover, a Peer-Relevant Document Set of peer pi is generally not a subset

of, and not equal to a Peer-Received Document Set of peer pi, i.e., Rt(pi) 6⊆ Dt(pi),

due to propagation delay or network connections.

4.2.2 Term-Weight Document Metadata Model

A term-based peer profile is modeled by using the document metadata contents of a

given relevant document set. In general, the metadata of document consists of mulit-

ple fields to describe information about the associated document; however, we select

three fields to model peer profiles, namely “Title”, “Abstract”, and “Keywords”.

Since the information contained in document metadata is not very long and the se-

lected fields represent the concepts of the documents, we give equal importance weight

to terms present in the selected fields. As a result, we view document metadata as an

unstructured document which is a concatenation of the terms in “Title”, “Abstract”,

and “Keywords” fields.

The metadata of document d is represented by a vector ~d =< d1, d2, d3, ..., dV >

where dv is the term frequency of the term v in ~d and V is the number of terms in

the vocabulary. When we specify “term v”, where 1 ≤ v ≤ V , we mean term number

v in the vocabulary. However, if one wishes to give a weight to terms in each field

differently, one way to handle this is suggested by [61] , which is simply combining

the term frequencies of the different fields by forming a linear weighted combination

of the corresponding fields.

At a given time t, a peer models a term-based profile after a given relevant docu-

ment set Qt, denoted Qt
T . The peer views the document set Qt as a single document,

called a profile document. The term-based peer profile Qt
T , is represented by a term-

weight vector ~Qt; that is,

Qt
T = ~Qt =< wt1, w

t
2, w

t
3, ..., w

t
V > (4.3)

where wtv is the term weight TF × IDF of the term v in ~Qt and V is the number of
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terms in the vocabulary. The term-frequency weight TF t
v of each term v at time t is

computed from the profile document represented by the following equation:

TF t
v =

∑
d∈Qt dv∑
d∈Qt |~d|

(4.4)

where d ∈ Qt.

We assume there is a representative document collection available to estimate a

global IDF of each term v, denoted IDFv. Subsequently, each peer computes the

IDFv from the representative document collection; a maximum value of the global

IDF is assigned to terms that do not exist in the representative document collection.

Hence, the weight wtv for each term in ~Qt is defined as

wtv =

∑
d∈Qt dv∑
d∈Qt |~d|

× IDFv (4.5)

where d ∈ Qt.

To incrementally update the term-based profile Qt
T with a new relevant document

dθ, denoted Qt+1
T , the document profile is modified by adding dθ in Qt, denoted Qt+1.

Then, a new term-weight vector ~Qt+1 is computed. We denoted wt+1
v as a new term-

weight of term v in the new term-weight vector ~Qt+1. Formally,

wt+1
v =

∑
d∈Qt dv + dθv∑
d∈Qt |~d|+ |~dθ|

× IDFv (4.6)

where d ∈ Qt and Qt+1 = Qt ∪ dθ

We discuss how a peer creates its local peer profile and known peer profile in

Section 4.2.4 and Section 4.2.5, respectively. Next, we describe how a peer learns

about an existance of other peers in the system.

4.2.3 Peer Discovery

Each local peer learns about the existence of other peers from the list of visited peers

in the received Shrack messages. The list of visited peers maintains contacts of peers

that the message has travelled through, from the publisher peer to the local peer.
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Furthermore, a local peers also learns about a new peer from a pull request. When

the new peer issues a pull request to the local peer, the request contains a contact of

the new peer as the receiver peer. When a local peer learns about a new peer, either

from received Shrack messages or pull requests, the local peer adds the new peer into

its known peer profiles. The initial profile of the new peer contains only its contact.

The local peer later learns about interests of the new peer from associated Shrack

messages.

4.2.4 Local Peer Profile

A local peer profile represents the interests of the local peer’s user. Each user can

explicitly give a set of terms or a set of documents to initialize the peer profile, or

let the peer learn about the user’s interest incrementally from the user feedback,

implicitly or explicitly. We can get an implicit feedback from a user by assuming that

documents that the user requests to download or documents that the user keeps in

the local archive are the documents that are of interest to the user, to which we refer

as relevant documents. In addition, a peer can implicitly include documents that it

self-publishes in the set of relevant documents. On the other hand, documents that

the user does not request to download or keep in the local achieve are referred to as

non-relevant documents.

Since each peer is only aware of documents whose metadata they received or

published up to a given time, we define a set of relevant documents of a local peer pi

as a function of time, called a local peer relevant document set Lt(pi).

Definition 16 (Local Peer Relevant Document Set) Lt(pi) is a union of the

set of relevant documents whose metadata was received by peer pi and the set of

documents that peer pi has published up to time t; that is,

Lt(pi) = St(pi) ∪ (Rt(pi) ∩Dt(pi)). (4.7)

Each peer incrementally updates its local peer profile when a peer publishes or

learns about a new document d that is relevant to user’s interests.

We explore two peer profile representations: an item-based local peer profile and
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a term-based local peer profile. The item-based local peer profile uses only document

identifiers to represent a local peer profile. The term-based local peer profile uses a

term-weight vector of relevant documents to represent a local peer profile.

Item-based Local Peer Profile

In the item-based local peer profile, we model peer profiles using only a set member-

ship of a local peer relevant document set without taking into account the contents

of the document metadata. Hence, the item-based local peer profile LtI(pi) of peer pi

at time t is defined as the local peer relevant document set Lt(pi).

LtI(pi) = Lt(pi) (4.8)

When a peer pi publishes or learns about a new document, d that is relevant to its

interest, the peer adds d into its local peer profile.

Lt+1
I (pi) = LtI(pi) ∪ {d} (4.9)

Term-based Local Peer Profile

In the term-based local peer profile, each peer modeles its profile according to the

term-weight document metadata model as discussed in Section 4.2.2 (page 41). The

local peer relevant document set Lt(pi) is used as the relevant document set Qt to

create the profile document. As a result, the term-based local peer profile of peer pi

at time t, LtT (pi) is represented by a term-weight vector ~Lt(pi); that is,

LtT (pi) = ~Lt(pi) =< wt1, w
t
2, w

t
3, ..., w

t
V > (4.10)

where term-weight wtv for each term v in ~Lt(pi) is defined as Equation 4.5, where

Qt = Lt(pi).

When a peer publishes or learns about a new document dθ, a new term weight

vector ~Lt+1(pi) is computed to represent the new term-based local peer profile Lt+1
T .

The new term-weight wt+1
v of term v in ~Lt+1(pi) is computed by Equation 4.6, where
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Qt+1 = Lt+1 = Lt ∪ {dθ}.

4.2.5 Known Peer Profiles

A known peer profile contains a set of profiles of known peers. The profile of each

known peer represents the interests of the known peer that the local peer observes.

Since peers only disseminate document metadata that are relevant to their interests

to other peers by inserting them into the peer’s share directory, the list of visited peers

in each Shrack message represents a list of peers that are interested in the associated

document.

Each peer learns about the interests of other peers when it receives a Shrack

message that contains the other peers in the list of visited peers. The local peer

learns that the visited peers are interested in the associated document. Hence, the

local peer uses the associated document to update the profiles of the visited peers. In

general, each peer can receive Shrack messages that contain the document metadata

of a given document from many different paths. Each peer uses the list of visited

peers associated with a given document that it receives to build its local knowledge

of peers and uses the metadata of these documents to create the profile of each known

peer.

For a local peer pi, we define a set of documents that are relevant to the interest of

its known peer pj at a given time t as a known peer relevant document set Kt(pi, pj).

Definition 17 (Known Peer Relevant Document Set) Kt(pi, pj) is a set of doc-

uments that a local peer pi receives via peer pj up to time t; that is, for each document

d ∈ Kt(pi, pj), the peer pj is in the list of visited peers associated with d; that is,

Kt(pi, pj) = {d | d ∈ Dt(pi)∪St(pi) and pj is in the list of visited peers of d} (4.11)

The known peer relevant document set Kt(pi, pj) is created locally in peer pi and

may not contain all documents that are relevant to peer pj at a given time t. Each

local peer uses the known peer relevant document set to create the profile of that

peer.
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In addition to peers in the visited list of received Shrack messages, each peer also

learns about the existence of other peers when they request to pull from its shared

directory. Each peer keeps the contact information of new peers, who issue pull

requests from its shared directory, as its known peers with empty profiles. Empty

profiles are used because the peer does not yet have knowledge of relevant documents

to the new peers, until it pulls from their shared directory.

Similarly to the local peer profile, we also model the two known peer profile

representations: item-based and term-based.

Item-Based Known Peer Profile

An item-based known peer profile contains a set of documents that are relevant to

each known peer according to the information that the local peer receives. The known

peer relevant document set Kt(pi, pj) is represented as the profile of pj in the known

peer profile of pi at time t, Kt
I(pi, pj).

Kt
I(pi, pj) = Kt(pi, pj) (4.12)

The item-based known peer profile of pi consists of a set Kt
I(pi, pj), where pj ∈ Kt

and Kt is the set of all peers known to pi at time t.

When a local peer pulls Shrack messages from its provider peers, every Shrack

message that the local peer receives will be used to update its known peer profile.

For each message, m, the local peer uses the associated document metadata to update

the known peer profile of peers in the visited list, as shown in Algorithm 3.

Algorithm 3 pi.updateKnownPeerProfile(m)

1: d is a document metadata embedded in a message m
2: for each visited peer pj in m do
3: Kt+1(pi, pj) = Kt(pi, pj) ∪ {d}

When a local peer learns about a new peer from a pull request to pull messages

from the local peer shared directory, the local peer creates the new profile with an

empty set.
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Term-Based Known Peer Profile

Each peer models its term-based known peer profile of each known peer according to

the term-weight document metadata model in Section 4.2.2. For each peer pj known

to pi at time t, its relevant document set Kt(pi, pj) is represented as the profile

document of pj. The term-based profile of pj in the known peer profile of pi at time t,

Kt
T (pi, pj), is represented by a term-weight vector ~Kt(pi, pj). That is,

Kt
T (pi, pj) = ~Kt(pi, pj) =< wt1, w

t
2, w

t
3, ..., w

t
V > . (4.13)

where wtv is the term weight TF × IDF of the term v in ~Kt(pi, pj) and V is the

number of terms in the vocabulary. The term-weight wtv is defined by Equation 4.5,

where Qt = Kt(pi, pj). As a result, the term-based known peer profile of a local

peer pi consists of a set of vector ~Kt(pi, pj), where pj ∈ Kt and Kt is the set of all

peers known to pi at time t.

When a local peer pulls a Shrack message m from its provider peer, the local

peer pi includes the associated document metadata dθ in the profile document of

known peer pj that exists in the list of visited peers. Each metadata of document dθ

is represented by a vector ~dθ and used to update a new term-based profile of known

peer pj, K
t+1
T (pi, pj), represented by ~Kt+1(pi, pj). The new term-weight wt+1

v of term v

in ~Kt+1(pi, pj) is computed by Equation 4.6, where Qt+1 = Kt+1(pi, pj) = Kt(pi, pj)∪
{dθ}. The pseudo code for updating the known peer profile of peer pi is shown in

Algorithm 4.

The local peer also learns about the existence of other peers when they request

Algorithm 4 pi.updateKnownPeerProfile(m)

1: ~dθ is a term-weight vector representing metadata of document dθ in a message m

2: for each visited peer pj in m do

3: for each term v in ~dθ do

4: wt+1
v =

∑
dv + dθv∑
|~d|+ |~dθ|

× IDFv, where d ∈ Kt(pi, pj)

to pull from its shared directory and initializes the new profile with a zero vector.
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4.2.6 Common Interest Score

To create self-organizing networks based on common interests, each peer connects to

provider peers that have common interests to its local peer profile. We quantify the

common interests between a local peer and a known peer as a common interest score.

Definition 18 (Common Interest Score) Ct(pi, pj) is a quantification of the com-

mon interests between a local peer pi and a known peer pj at time t

The common-interest score is a scalar value and is calculated locally by a local

peer, based on received information. The objective of the common-interest score is to

quantify the quality of known peers according to the interests of a local peer, which is

then used for peer ranking in the provider peer selection module. A peer pi updates

the common interest score Ct(pi, pj) each time when the profile of its known peer pj,

Kt(pi, pj), is updated.

The common interest score Ct(pi, pj) does not satisfy the commutative property.

Since each peer creates its known peer profile using information that it receives locally,

for a given document metadata d that is relevant to both pi and pj, there may exist

a dissemination path of d from pj to pi but not from pi to pj. The definition of

the common interest score Ct(pi, pj) is defined according to the type of peer profiles

(item-based or term-based peer profiles), which are described next.

Item-Based Common-Interest Score

We quantify the item-based common-interest score based on a modification of the Jac-

card index by measuring the similarity of an item-based local peer profile, LtI(pi), and

an item-based profile of each known peer pj, K
t
I(pi, pj). The Jaccard index is a well-

known similarity metric for sample sets and can be expressed as an extension of the

cosine similarity measure to binary attributes.

In addition, we assume that a new peer pj who pulls shared messages from a

local peer pi would tentatively have a common interest with the local peer, hence we

set its common-interest score to 1, the maximum value. As a result, the local peer

will select the new peer pj as one of its provider peers the next time the local peer

updates its provider peers to learn about the interests of pj. After the local peer
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pulls information from pj, the common-interest score between the local peer pi and

the peer pj will be computed regularly, as defined in Equation 4.14. In other words,

this mechanism enables a peer pj to introduce itself to pi, by initiating a pull request

to pi.

The item-based common-interest score, Ct
I(pi, pj), is defined as,

Ct
I(pi, pj) =


1 if pj is new to pi
|LtI(pi) ∩Kt

I(pi, pj)|
|LtI(pi) ∪Kt

I(pi, pj)|
otherwise

(4.14)

Term-Based Common-Interest Score

We quantify the term-based common-interest score based on the cosine similarity

measure, a measure of similarity between two vectors, which is widely used to compute

the similarity of documents in a term-weight vector representation. The term-based

common-interest score Ct
T (pi, pj) of peer pi and peer pj, according to peer pi at time t,

is measured by the cosine similarity of the term-based local peer profile, LtT (pi), and

the term-based profile of known peer pj, K
t
T (pi, pj).

We also set a common-interest score of a new peer pj who requests to pull shared

messages from a local peer pi to 1 encouraging pi to add pj as a provider peer the

next time pi update its list of provider peers. Since, LtT (pi) is represented by ~Lt(pi),

and Kt
T (pi, pj) is represented by ~Kt(pi, pj), the term-based common-interest score,

Ct
T (pi, pj), is defined as,

Ct
T (pi, pj) =


1 if pj is new to pi
~Lt(pi) · ~Kt(pi, pj)

|~Lt(pi)|| ~Kt(pi, pj)|
otherwise

(4.15)

The rest of this chapter describes several provider peer selection strategies.

4.3 Provider Peer Selection Module

Each peer maintains a list of provider peers as sources of information from which the

peer pulls information. To build a list of provider peers, a local peer initializes the list
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with its start-up provider peers, as described in Section 3.5 (page 29). After successive

pulls, the local peer uses information contained in the received Shrack messages to

build its known peer profile and later selects some of them as its provider peers. We

assume that a group of peers that have long term common interests are most likely to

be interested in documents that are published by peers in the group. Ideally, for each

local peer, its provider peers all together provide all the new documents published in

the system that are of interest to the local peer. However, we cannot partition peers

into disjoint groups because each peer may have multiple interests. Hence, each peer

needs to select its set of provider peers locally. In addition, in a large unstructured

peer to peer environment, it is expensive for a peer to pull messages from every

peer in the system. As a result, we explore three provider peer selection strategies,

namely: common interest strategy, random strategy, and hybrid strategy to select the

best potential provider peers.

The following sections describe how peers get connected based on different provider

peer selection strategies. The parameter N defines the maximum number of provider

peers to which each peer may connect. Effectively, N is a property of Shrack network

that determines the number of neighbours or the neighbourhood size.

4.3.1 Random Strategy

Since the Gossip protocol [43], a well-known scalable and reliable dissemination proto-

col for a large-scale network, disseminates information among peers based on random

connections, a random strategy is selected as a baseline. In this strategy, a peer

simply updates its provider peers by randomly selecting N known peers as its new

provider peers without considering the common-interest score between the local peer

and each known peer.

4.3.2 Common Interest Strategy

In the common interest strategy, a peer gets connected based on common interests

with its known peers. We quantify the common interests between a local peer pi and

a known peer pj at time t with the common-interest score Ct(pi, pj) as previously

defined in Section 4.2.6. When a peer wants to update its provider peers, the top-N
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ranked known peers according to their common interest scores will be selected as a

new set of provider peers. Ties in the scores are resolved by a random selection.

4.3.3 Hybrid Strategy

The hybrid strategy is chosen to reduce the effect of the greedy behaviour of the

common interest strategy by allowing peers to also randomly explore peers in the

network. In this strategy, each peer selects its provider peers from its top-ranked

known peers with probability 1−β, or randomly from its known peers with probability

β, where β is an exploration parameter and 0 ≤ β ≤ 1. The β parameter indicates

how much peers want to explore the network. When β equals 0, the hybrid strategy

behaves like the common interest based strategy. As β increases, the hybrid strategy

behaves more like the random strategy.

We implement the hybrid strategy based on a random rewiring procedure for

creating a mathematical model of a small-world network [76]. Each peer starts by

selecting the top-N ranked known peers according to their common interest score as a

new set of provider peers (the same process as in the common interest strategy). After

that, for each selected provider peer, with a probability of β, the peer replaces the

selected provider peer with a known peer chosen uniformly at random over the entire

set of known peers, without replacement (i.e., duplicate selection is not possible).

Otherwise, with probability of 1− β, the peer leaves the selected provider peer as is.

4.4 Summary

This chapter describes a prototype system of the Shrack Framework. We present

the Shrack information dissemination protocol using pull-only communication. The

Shrack dissemination protocol is similar to the Gossip protocol [43], however, peers

only disseminate information that they are interested to other peers. In the Gossip

protocol, peers disseminate information to other peers randomly. We describe how

Shrack peers can form a self-organizing overlay networks to disseminate information

among peers with similar interest. The knowledge integrator module describes how
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peers integrate information they receive from their users and other peers to create a lo-

cal knowledge of peers in the networks and identify peers with similar interest to their

users. We explore two peer profile representations; item-based and term-based profile

representations. The provider peer selection module describes how peers connect to

other peers to create self-organizing overlay network. We explore three provider peer

selection strategies; namely, common-interest, random, and hybrid strategies. In the

next chapter, we present an experimental environment to evaluate the performance

of the Shrack prototype system.



Chapter 5

Experimental Environment

This chapter describes an experimental environment to validate the Shrack frame-

work. We create a Shrack simulator to realize the prototype system as discussed in

the previous chapter. We also create simulated users to simulate interests of users in

the network. We describe an authorship user interest model in Section 5.1. Then, we

define the performance evaluation metrics in Section 5.2. After that, we give a brief

introduction to our Shrack simulator in Section 5.3.

5.1 Authorship User Interest Model

We propose an authorship user interest model to create a simulated user associated

with each peer in the simulated environment. The interests of peers are defined by

the interests of the associated user. Each simulated user defines a set of documents

that the associated peer publishes, St(pi), and a set of peer-relevant document set,

Rt(pi), during the simulation, where t equals the total simulation time. Users may

have overlapping interests. Therefore, we should not partition a set of documents to

a group of peers. A certain degree of overlaped should be introduced. There exist

some P2P data placement techniques for simulated environments, such as (1) using

a focused crawler to create a document collection of each peer given a seed URL and

topics [13], or (2) partitioning a fixed data set with a standard clustering algorithm

and assigning a set of clusters to each peer with a sliding window technique to create

an overlap data distribution [55]. However, although these techniques may be used to

identify a set of document of which each peer should keep track during the simulation,

there is no model for determining which peers should publish which documents.

We create the authorship user interest model from a collection of documents con-

taining information about the interests of their authors. In our experiments, we

53
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use the ACM Digital Library 1 metadata collection. Each author in the collection

is viewed as a simulated user associated with a peer in the simulation. The list of

documents that each user has published is the set of documents that the associated

peer publishes. The interest of each user is modeled based on the ACM Computing

Classification System (CCS)2 according to the real ACM metadata collection. Each

document in the ACM collection has been assigned to one or more CCS classes by

the document authors. We assume that the interest of each user is identified by the

work that he/she publishes, which could be associated with multiple classes. In our

case, the interest of each user is described by the CCS classes of the documents that

he/she has published. Subsequently, the set of documents of which a peer pi should

keep track during the simulation or the relevance documents is the documents in the

peer-relevant document set excluding the documents in the peer-published document

set, Rt(pi) \ St(pi).
To simulate the user’s feedback, we assume that users will give feedback according

to their interest. When a peer receives Shrack messages, the messages containing

metadata of document that is relevant to the associated user are inserted into the

local peer’s share directory for further dissemination, while non-relevant messages are

discarded.

Table 5.1: An example of an authorship user interest model

Peer Author Publication Documment Class Rt(pi) \ St(pi)

p1 a1 d1 g1 d5, d7

d2 g1

p2 a2 d3 g2 d6, d7

d4 g2

p3 a3 d5 g1 d1, d2

d6 g2 d3, d4

d7 g1, g2

An example of an authorship user interest model is shown in Table 5.1. In this

1http://portal.acm.org/dl.cfm
2http://www.acm.org/about/class/1998

http://portal.acm.org/dl.cfm
http://www.acm.org/about/class/1998
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example, the set of documents consisting of seven publications (d1, d2, . . . , d7) pub-

lished by three authors (a1, a2, a3). There are four document classes (g1, g2, g3, and

g4). From this model, we can create three simulated users, namely a1, a2, and a3, as-

sociated with three peers, namely p1, p2, p3, respectively. The peer p1, p2, and p3 are

responsible to publish the document set of {d1, d2}, {d3, d4}, and {d5, d6, d7}, respec-

tively. Based on their publications, peer p1 is interested in document group g1; peer

p2 is interested in document group g2; and peer p3 is interested in document group g1

and g2; respectively. The Rt(pi) \St(pi) shows a set of documents of which each peer

should keep track, which is excluding the documents that the peer self-publishes. In

case of peer p1, the relevant set is {d5, d7} because d5 and d7 are labelled with class

g1, which is the interest class of peer p1. Similarly, the set of documents that peers

p2 and p3 should keep track of during the simulation are {d6, d7}, and {d1, d2, d3, d4},
respectively.

The main advantage of the authorship user interest model is that the overlap of

interests of the users are created naturally based on the classes of documents they

published.

5.2 Performance Evaluation Metrics

We evaluate the performance of self-organizing Shrack networks based on the rel-

evance of received document metadata and the dissemination speed and distance of

relevant document metadata to the local peer. Moreover, we analyse the properties of

the resulting networks to determine whether they have properties of social networks.

As previously mentioned, in these experiments we would like to evaluate the per-

formance of the system according to relevant documents a peer received based on

the standard information retrieval metrics; namely, precision, recall, and F-score.

Traditionally, these performance metrics are used to measure the performance of in-

formation retrieval systems based on a set of queries and returned results. Comparing

with information retrieval systems, we can view the interest of each Shrack peer as

a set of queries, and view the set of documents a peer receives as returned results.

However, in Shrack, each document takes time to be disseminated. So, we divide the

simulation times into time slots, define a set of documents published during each time
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slot, allow time for their document metadata to be disseminated and then measure

the performance of the system per publication time slot, when the dissemination ends.

We previously defined sets of documents with time t in Definition 12 through

Definition 14. In this section, we extend these definitions to define sets of documents

published during an arbitrary time slot τk = (tks , t
k
e), where tks and tke are the start

and the end of the time slot τk.

Definition 19 Sτk(pi) is the set of documents published by pi during time slot τk;

i.e., Sτk(pi) = St
k
e (pi) \ St

k
s (pi).

Definition 20 P τk is the set of documents published during time slot τk; i.e., P τk =

P tke \ P tks .

Definition 21 Rτk(pi) is the set of documents relevant to peer pi that are published

during time slot τk; i.e., Rτk(pi) = Rtke (pi) \Rtks (pi).

The performance of the system with respect to a set of documents P τk published

during time slot τk is measured when the dissemination of documents in P τk ends,

denoted tkend. We determine the end of dissemination time tkend heuristically as the

time when metadata of documents in P τk have not been exchanged by peers for a

predefined duration tp. In practice, we monitor precision and recall of documents

published in each time slot periodically as time progresses, and record the values that

remain stable for a minimum period of time tp.

Next, we define measurement metrics to evaluate the quality of received document

metadata in Section 5.2.1 and the dissemination speed and distance in Section 5.2.2.

After that, in Section 5.2.3, we describe measurement metrics to observe network

properties.

5.2.1 Quality of Received Documents

We measure the quality of document metadata that a peer receives up to some point

in time based on standard information retrieval quality measures: precision, recall,

and F-score. A high precision value is indicative that the majority of documents that
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a peer receives are actually relevant to the peer. Recall, on the other hand, measure

coverage; that is, the percentage of interesting documents in the system that reach the

peer. The F-measure facilitates comparing parameters and algorithm by combining

precision and recall in a single numeric value. In the current system, Shrack peers

present all the documents its received to the users without ranking. The precision,

recall, and F-score are chosen to measure relevance of received documents. When

the system incorporates ranking, other measurement measures that widely use to

measure search results, e.g. mean average precision (MAP) [51], could be used. Next,

we formally define precision, recall, and F-score.

Definition 22 (Precision) Precisionτk(pi) is the fraction of documents published

during time slot τk, excluding self-published documents, received by peer pi that are

relevant to pi over all the documents that are published by other peers in time slot τk

that peer pi receives. That is,

Precisionτk(pi) =
|Rτk(pi) ∩Dtkend(pi)|
|P τk ∩Dtkend(pi)|

(5.1)

Definition 23 (Recall) Recallτk(pi) is the fraction of documents published during

time slot τk relevant to peer pi, excluding self-published documents, that are received

by pi over all the documents that are relevant to the interest of pi and are published

by other peers in time slot τk. That is,

Recallτk(pi) =
|Rτk(pi) ∩Dtkend(pi)|
|Rτk(pi) \ Sτk(pi)|

(5.2)

Definition 24 (F-score) Fscoreτk(pi) is the harmonic mean of Precisionτk(pi) and

Recallτk(pi). That is,

Fscoreτk(pi) =
2 · Precisionτk(pi) ·Recallτk(pi)

Precisionτk(pi) +Recallτk(pi)
(5.3)

Note that, the standard measurement metrics—precision, recall and F-score—

assume that there is a returned set of documents and a ground truth of relevant

document set. In Shrack, for each peer, we could face a situation where we can not
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measure the relevance of messages a peer receives, which we define as undefined states

as following:

1. Undefined precision: Precisionτk(pi) is undefined if peer pi does not receive

documents published in a particular time slot τk; i.e., P τk ∩Dtkend(pi) = ∅.

2. Undefined recall: Recallτk(pi) is undefined if there are no relevant documents

for peer pi that are published in a particular time slot τk; i.e., Rτk(pi) = ∅.

3. Undefined F-score: Fscoreτk(pi) is undefined if either of Precisionτk(pi) or

Recallτk(pi) are undefined.

We refer to a precision, recall, and F-score of the system at each publishing time

slot τk, denoted Precisionτk , Recallτk and Fscoreτk , as an average Precisionτk(pi),

an average Recallτk(pi) and an average Fscoreτk(pi) over all peers in the network in

each time slot, excluding undefined states, respectively. In addition, we measure the

performance of the system by average precision, recall and F-score overall interested

time slots.

5.2.2 Dissemination Speed and Distance

The dissemination speed and distance of relevant documents are measured in terms

of pull delay and path length of relevant documents published at a given time slot

that a peer receives, which are defined as follows:

Definition 25 (Relevant Pull Delay) Given a peer pi and a time slot τk, the rele-

vant pull delay of documents published during time slot τk of pi, RelPullDelay
τk(pi),

is defined as the average of the time delay from when d is published until pi first

observes d over all such documents d that are relevant to pi that pi receives; i.e.,

d ∈ Rτk(pi) ∩Dtkend(pi).

Definition 26 (Relevant Path Length) Given a peer pi and a time slot τk, the

relevant path length of documents published during time slot τk of pi, denoted

RelPathLengthτk(pi), is defined as the average hop count over all such document

metadata d ∈ Rτk(pi) ∩ Dtkend(pi) that are relevant to pi and pi receives for the first

time.
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We use the terms RelPullDelayτk and RelPathLengthτk to refer to the average

RelPullDelayτk(pi) and the average RelPathLengthτk(pi) over all peers in each time

slot, respectively. A peer is considered to experience better performance if it has

lower relevant pull delay and lower relevant path length.

We introduce the relevant pull delay to represent the average time it takes for

peers to learn about new documents of interest that are available in the system.

The relevant path length is introduced to observe the average distance that relevant

messages are travelled around the network.

5.2.3 Self-Organizing Network Property

We analyse the resulting network topologies to determine whether they form a social

network by examining their clustering coefficients, characteristic path lengths, and

degree distributions, which are defined as follow.

Definition 27 (Clustering Coefficient) The network clustering coefficient, CCO,

is the average of the clustering coefficient of peer pi, CCO(pi), over all peers in the

network. For a directed graph, CCO(pi) is defined as follow:

CCO(pi) =
|E(pi)|

|N(pi)|(|N(pi)| − 1)
(5.4)

where E(pi) is the set of edges between neighbours of pi, and N(pi) is the set of

neighbours of pi.

The CCO(pi) is the number of edges actually existing between nodes in the neigh-

bours of peer pi, N(pi), divided by the number of all possible edges that could exist

between nodes in N(pi). In our case, E(pi) is the set of connections between provider

peers of pi, and N(pi) is the set of provider peers of pi.

Definition 28 (Characteristic Path Length) the characteristic path length, CPL,

of a network is the average length of the shortest paths between any two peers in the

network.

In the case of a disconnected network, the characteristic path length is the average

shortest path between any two peers in the largest strongly connected component.
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In addition, we consider only directed path between two peers according to pull

connections.

Definition 29 (Degree Distribution) The degree distribution of a network is de-

fined as the complementary cumulative distribution function (CCDF) of the in-degree

X of peers in the network, where the in-degree X of a peer pi is the number of peers

for which pi is a provider peer. The CCDF is defined as,

Fc(x) = Prob(X > x) (5.5)

where Prob(X > x) is the probability that the random variable in-degree X is greater

than some value x.

We measure only the in-degree distribution. Since every peer has the same fixed

number of provider peers, the out-degree distribution is not considered.

Many studies [11, 56, 75] report that social networks usually have small-world

properties such as large clustering coefficient, small characteristic path length, and

power-law scaling in degree distributions. Watts and Strogatz [75] show that small-

world networks are highly clustered like regular lattices with a much higher clustering

coefficient than random graphs of the same parameter, but have small characteristic

path length similar to random graphs.

5.3 ShrackSim: A Shrack Simulator

ShrackSim is an event-based simulator that is developed on top of PeerSim [38], a

Java based peer-to-peer simulator released to the public under the GNU General

Public License (GPL).

We implemented ShrackSim to follow the structure of PeerSim such that it is mod-

elled based on components, which make it easy to quickly test and modify Shrack’s

protocols and modules. Users can set up simulation parameters through a configu-

ration file, which allows dynamic loading of components. ShrackSim provides several

predefined objects to monitor the properties that users are interested in during a

simulation, such as evaluation metrics and network properties. The monitor objects
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can be also configured through the configuration file. ShrackSim is extensible and can

be modified through PeerSim components, which provide different pluggable building

blocks. We build ShrackSim to facilitate our and other researchers need to quickly

test and evaluate different Shrack protocols and modules.

5.3.1 An Overview of PeerSim

PeerSim is a peer-to-peer simulator that is started under the EU projects BISON3

and DELIS4. We give a synopsis of PeerSim documentation to introduce the readers

to the concept of PeerSim on which ShrackSim relies. Detailed documentation of

PeerSim can be found on the PeerSim project Web page5.

PeerSim is written in Java and supports two simulation models: a cycle-based

model and an event-based model. In the cycle-based model, events or components

are scheduled per cycle, until a given number of cycles, or until a component decides

to end the simulation. In the event-based model, everything works exactly the same

way as in the cycle based model, except time management and the way control is

passed to the control components. In the cycle-based model, by default, controls are

called in each cycle. In the event-based model, the controls have to be scheduled

explicitly. We develop ShrackSim on top of the event-based model, which allow us to

write controls that are specific to events or messages and schedule them explicitly.

5.3.2 PeerSim Event-Based Simulation

The five main components behind the PeerSim event-based model that one used

in ShrackSim are: Node, Protocol, Event-Driven Protocole, Linkable Protocol, and

Control. Each of these components is described below.

Node The P2P network is composed of nodes. A node is a container of protocols.

The Node provides access to the protocols it holds, and to a fixed identifier (ID) of

the node.

3http://www.cs.unibo.it/bison/
4http://delis.upb.de/
5http://peersim.sourceforge.net/
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Protocol Protocols are run by every node in the network. The two primary types

of protocols are event-driven protocols and linkable protocols.

Event-Driven Protocol The Event-Driven Protocol is a type of Protocol that is

designed to run in the event-driven model. This protocol is responsible for generating

events to be added to the event queue, and may also handle the processing of these

events.

Linkable Protocol The Linkable Protocol provides a service to other protocols to

access a set of neighbour nodes. The instances of the same linkable protocol class

over the nodes define an overlay network.

Control Controls are scheduled for execution at certain points during the simula-

tion. Typically, Controls observe the simulation statistics or modify the simulation

variables.

When setting up a new simulation, the following general steps are taken:

1. Choose a simulation length;

2. Choose the number of nodes;

3. Choose one or more protocols with which to experiment, and initialize them;

4. Choose one or more Control objects to monitor the properties you are interested

in and to modify some parameters during the simulation; and

5. Run the simulation by invoking the Simulator with a configuration file that

contains the above information.

5.3.3 Life Cycle of a PeerSim Event-Based Simulation

The life cycle of a PeerSim event-based simulation is depicted in Figure 5.1. The first

step is to read the configuration file. The configuration contains all the simulation

parameters concerning all the objects involved in the experiment. Then the simulator

sets up the network, initializing the nodes in the network and the protocols in them.
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Figure 5.1: A flow chart of the PeerSim simulation life cycle

Each node has the same kinds of protocols; that is, instances of protocols form an

array in the network, with one instance in each node. The instances of the nodes and

the protocols are created by cloning. That is, only one instance is constructed using

the constructor of the object, which serves as a prototype, and all the nodes in the

network are cloned from this prototype.

At this point, initialization needs to be performed that sets up the initial states of

each protocol and the simulation event queue. The initialization phase is carried out

by Control objects that are scheduled to run only at the beginning of each experiment.

In the configuration file, the initialization components are easily recognizable by the
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init prefix.

After initialization, the execution of the simulation is driven by controls that

generate events and send events (messages) to protocols. Each object in PeerSim

(controls and protocols) is assigned a Scheduler object which defines when they are

executed according to the event queue. The simulation stops when the event queue

is empty (nothing left to do) or if all the events in the queue are scheduled for a time

later than the specified end time.

5.3.4 Main Components of ShrackSim

ShrackSim is an implementation of the Shrack framework and architecture in simu-

lated environment on top of PeerSim. Thus, ShrackSim consists of the following main

components:

1. Shrack node

2. Simulated User model

3. Shrack protocol

4. Neighbourhood protocol

5. Observers

Next, we describe each of the ShrackSim components and their role in the simulation

of a Shrack network.

Shrack Node A Shrack node represents a peer in a Shrack network and is used to

compose an overlay network. In ShrackSim, the Shrack node acts as a container for

the various protocols, same as PeerSim. In addition, each Shrack node is associated

with a predefined simulated user. Shrack nodes also keep status and local statistics

about their peer, which can be inspected by observers.

Simulated User Model The user model represents a simulated user that is as-

sociated with a Shrack peer. The user model consists of a user identifier, a list of
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publications that the associated peer will publish during the simulation, and a list of

interest (publication) groups of which the peer should keep track.

Shrack Protocol The Shrack protocol is the main event-driven protocol that im-

plements the Shrack dissemination protocol, which processes pull requests and pull

responses. It implements the Pull Procedure represented in Section 4.1.2 (page 36).

The Shrack protocol is responsible for issuing pull requests and responding to pull

requests from other peers. It maintains a representation of the local peer profile

described in Section 4.2.4 (page 43), such as item-based and term-based represen-

tations. Further, it implements several neighbour selection strategies such as the

random, top-rank, and hybrid strategies, described in Section 4.3 (page 49). It relies

on the Neighbourhood protocol to identify the provider peers and determine where to

send pull requests. It addition, it uses information from the user model to generate

publication events; that is, inject new documents in to the network.

Neighbourhood Protocol The neighbourhood protocol is an implementation of

the linkable protocol in PeerSim. It defines the Shrack overlay network that maintains

a list of provider peers, a list of known peers. It maintains a representation of the

known peer profiles described in Section 4.2.5 (page 45), such as item-based and

term-based representations.

Observers An observer is an implementation of a PeerSim Control that is used

to observe the status of protocols and components in the network. The observers

are run periodically at a predefined step. The observers used in our simulations

collect several statistical about the network, messages exchanged, and relevance of

the received documents. The measured metrics, described in Section 5.2 (page 55),

are:

• the average precision, recall, and F-score of received documents;

• the relevant pull delays;

• the relevant path length;



66

• the characteristic path length of the network;

• the clustering coefficient of nodes in the network; and

• the in-degree statistics of nodes.

Further implementation details including class diagrams, structure of the config-

uration file, and instructions on executing a simulation are given in Appendix D.

5.4 Summary

This chapter describes an experimental environment used to validate the Shrack

framework. First, we explain how to create simulated users in the experiments by

introducing an authorship user interest model. Then, we define the performance eval-

uation metrics to evaluate our prototype system according to the quality of received

documents, the dissemination speed and distance, and the property of networks. Fi-

nally, we give an overview of the Shrack simulator.



Chapter 6

Shrack Dissemination Protocol

In this chapter, we study the performance of the Shrack information dissemination

protocol with respect to the increase of network size. We define the experiment

hypotheses and performance evaluation metrics in Section 6.1 and Section 6.2, re-

spectively. After that, we define the experiment parameters in Section 6.3. We

describe the experimental design in Section 6.4. We evaluate the performance of the

dissemination protocol in two scenarios, first, when peers form collaboration directly

without super peers, and second, when peers form collaboration through super peers.

We present the experiments and discuss the results of the first and second scenarios in

Section 6.5 and 6.6, respectively. At the end, we provide the summary in Section 6.7.

6.1 Experiment Hypotheses

The goal of these experiments is to study the scalability of the Shrack dissemina-

tion protocol. We observe the performance of Shrack dissemination protocol as the

network size increases with the following hypotheses.

H6.1 We hypothesize that the Shrack dissemination protocol is scalable as the

network size increases.

H6.2 We hypothesize that super peers can help improve the dissemination perfor-

mance for normal peers in the system.

For simplicity, we assume that all peers are interested in all documents that are

available in the system.

67
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Table 6.1: Performance metrics for experiments on scalability of the Shrack dissemi-
nation protocol

Metric Brief Definition

Pull Delay The average time delay when a document published
until a receiver peer first observes the document

Path Length The average number of hops a message travels from
the publisher peer to a receiver peer

Coverage The percentage of peers that receives dissemination
messages

Pull Load The average number of messages transferred for each
pull response

New Messages The average number of messages in each pull response
that are new to the receiver peer

6.2 Performance Evaluation Metrics

The performance metrics for this experiments are summarized in Table 6.1. The

path length and coverage are standard metrics to measure message propagation per-

formance. We use pulll delay to measure average time delay that a message propagate

to receiver peers. We introduce pull load and new messages to measure communi-

cation load. We consider the scalability of the dissemination protocol in terms of

dissemination speed and distance as describe in Section 5.2.2, namely relevant pull

delay and relevant path length. Since in this experiment all documents are relevant

documents, we refer to the relevant pull delay and the relevant path length as pull

delay and path length, for short, respectively. We define the scalability of the dissem-

ination protocol as follows.

Definition 30 (Scalability of dissemination protocol) A dissemination proto-

col is scalable if the average pull delay over every peer is a logarithmic function of the

network size.

The pull delay is affected by the pull interval and the number of peers in the

system. We are interested in assessing the behaviour of the pull delay as the number

of peers in the system increases. With a large number of peers, the delay could be
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prohibitively large, e.g., it could be in the order of months or years, and this is why

we believe that the pull delay metric is meaningful.

Since every peer is interested in every documents in the system, the precision of

the received messages always equals to 1.0. We replace the measure in terms of quality

of received documents—precision, recall and f-score—with a dissemination coverage.

The dissemination coverage is defined as the average number of peers that receive or

learn about documents that are available in the system. We define the dissemination

coverage as following:

Definition 31 (Dissemination Coverage) The dissemination coverage of a docu-

ment d is the ratio between the number of peers that receives the metadata of document

d to the network size.

In addition, we also measure the number of Shrack messages that are transferred

from a provider peer to a receiver peer for each pull response, called pull load, and

the number of messages in the pull load that are new to the receiver peer, called new

messages.

6.3 Parameter Definitions

The experimental parameters are defined in Table 6.2.

Table 6.2: Input parameters for experiments on scalability of the Shrack dissemination
protocol

Parameter Definition

Pull interval Time interval between successive pulls
by a peer

Publishing rate Average number of documents that a peer
publishes per time unit

Number of provider peers Number of provider peers that each peer
connects to pull Shrack messages at each
pull time

TTL The initial TTL value
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The pull interval, number of provider peers, and TTL are standard parameters

for pull-based protocols. The TTL is a system-wide predefined value. Although the

publishing rate is not a parameter of the Shrack dissemination protocol, it is a part

of our experimental environment; representing peer behaviours.

6.4 Experimental Design

The experiments are conducted in our simulated environment, ShrackSim, as de-

scribed in Chapter 5. We define cycle as a time measurement unit which could be of

any fixed duration. Each cycle has 1,000 simulation clock units in PeerSim. In these

experiments, we focus only on the dissemination protocol. We do not incorporate the

self-organizing model into the system. The network is static, that is, every peer stays

continuously in the network and the overlay networks are predefined. The pull delay

depends on pull intervals and network communication delays. We assume that the

point-to-point network communication delay between two peers is negligible because

it is several orders of magnitude smaller than the pull interval. For instance, the

point-to-point network delay could be in orders of milliseconds, while the pull inter-

val could be several hours or days. Hence, in our experiments, pull delays depend

only on the pull intervals.

We evaluate the performance of the information dissemination protocol in two

scenarios. First, we test its performance on a uniform model, where there are no super

peers in the system. Second, we test the performance in a super-peer model, where

peers form collaboration through their super peers, and compare the results with the

uniform model. We describe the experiment setup and discuss the performance of the

dissemination protocol in the uniform model in Section 6.5 and the super-peer model

in Section 6.6.

6.5 Shrack Dissemination Protocol in the Uniform Model

This experiment aims to test Hypothesis H6.1; that is, the Shrack dissemination

protocol is scalable as the network size increases. We first describe the experimental

setup and then discuss the performance of the dissemination protocol.
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6.5.1 Experiment Setup

We evaluate the system in a uniform model where peers have similar resources and

there are no super peers in the overlay network. Two peer-to-peer network models

are used for testing the performance of the dissemination protocol: (1) a small-world

network and (2) a random network. A small-world network is likely to be a more

accurate model for social networks than a random network, as the latter induces

a network topology without preferential attachment. In the first case, we connect

provider peers based on the small-world model of Watts and Strogatz (WS) [76]. In

the second case, provider peers are assigned randomly. For both topologies, we ensure

that every peer in the network is a provider peer of at least one peer in the network,

which guarantees that every peer is pulled by at least one peer during the simulation.

Table 6.3: Parameter setup for experiments on the scalability of the Shrack dissemi-
nation protocol in the uniform model

Parameter Value

Number of provider peers 3 - 20
(power-law distribution;
with exponent equal to 2.7)

Publishing rate 1 document per 30 cycles
(Poisson distribution)

Pull interval 2 cycles (periodically)
TTL 20 hops

Overlay network random, small-world

A summary of the parameter setup for the experiment is shown in Table 6.3. In

both models, the power-law distribution is used to model the number of provider

peers of each peer, where the exponent of the power law is 2.7 (based on [19]), and

the minimum and the maximum size of the provider peers are 3 and 20, respectively.

Each peer publishes documents over time according to a Poisson distribution with an

average publishing rate of one document per 30 cycles, and periodically pulls Shrack

messages every 2 cycles (but at a different, random starting time for each peer).

The maximum hop count (TTL) is 20. We vary the network size and measure the
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performance metrics observed by each peer and averaged over all peers.

6.5.2 Experiment Results

The dissemination pull delay and path length of both random and small-world net-

works are depicted in Figure 6.1 and Figure 6.2, respectively. The results are presented

on a logarithmic scale of network size. In both networks, the results support the hy-

pothesis that the Shrack dissemination protocol is scalable, since the average pull

delay increases logarithmically as the size of the network increases. The performance

in terms of dissemination path length correlates with the pull delay. The average

path length also follows a logarithmic function of the network size. When the size of

the network is greater than 100, the random networks shows smaller pull delay and

smaller path length than the small-world networks.
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Figure 6.1: The pull delay of Shrack dissemination protocol on a uniform model as a
logarithmic function of network size.

The dissemination coverage is presented in Figure 6.3. In both networks, the

system always has 100% dissemination coverage. The result indicates that the dis-

semination protocol is reliable; that is, every message is disseminated to every peers

in the network. The average pull load and new messages per pull response are re-

ported as a function of the network size in Table 6.4. The results show that both
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Figure 6.2: The dissemination path length of Shrack messages on a uniform model as
a logarithmic function of network size.
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Figure 6.3: Dissemination coverage of Shrack dissemination protocol on a uniform
model as a function of network size.
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Table 6.4: The Pull Load and New messages per pull response of Shrack dissemination
protocol on a uniform model as a function of network size

Network Size
Random Network Small-World Network

Pull Load New Messages Pull Load New Messages
10 0.43 0.08 0.55 0.10
20 1.20 0.24 1.26 0.26
40 2.02 0.33 2.51 0.41
60 3.56 0.61 3.96 0.69
80 4.77 0.86 5.23 0.90
200 11.74 2.25 12.82 2.42
400 25.11 4.66 23.61 4.46
600 37.15 7.03 35.92 6.66
800 48.62 9.03 47.76 8.77
1000 60.91 11.28 60.39 11.08
2000 119.78 22.16 121.68 22.62
4000 243.95 45.01 236.67 43.81
6000 357.81 65.55 352.38 65.17
8000 471.53 86.50 470.90 86.57
10000 589.06 108.71 586.01 107.88

Note: Pull Load and New Messages are defined in Table 6.1.

networks give the same characteristics of pull load and new messages. Each pull

response receives constantly higher pull load than new messages. On average, for

each pull response, the pull load and new messages increase linearly as the network

size increases. To measure the message overhead, we compute the number of new

messages per pull load. In other words, the message overhead is a number of copies

of messages that are disseminated among peers in the network for a given message.

The results show that the system has a constant message overhead of 5.47 on average,

independent of the network size.

6.5.3 Discussion

The behaviour of the average pull delay is a direct consequence of the way Shrack

messages propagate throughout the network. In general, more than one peer pulls

shared directory of a given peer. Hence, Shrack messages propagate down in a tree
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topology through the network at an exponential rate, where the dissemination path

length represents the dept of the tree. This argument is supported by the observation

that the average dissemination path length also follows a logarithmic function of the

network size.

Our experiments were conducted in the ideal situation where peers can respond

to every pull request. Hence, the experimental results show that the system is highly

scalable. Although the propagation path of Shrack messages is similar to query

routing in flooding-based networks, the behaviour is rather different, as explained

below.

Flooding-based message query routing is a push-based protocol, which requires

peers to forward messages immediately when a message arrives. In our protocol,

peers pull information from the shared directory of other peers, and the information

is replicated in several peers having similar interests. Peers can choose to pull in-

formation when they are ready and can select from which peers they want to pull.

Moreover, in general P2P file-sharing systems, the number of original messages equals

to the number of requests generated by each peer. In Shrack, the number of original

root messages equals to the number of publications. Queries in general file-sharing

systems might be for the same document but they are created multiple times for

different requests, which results in creating multiple root messages. In Shrack, only

new publications will be propagated as root messages among peers.

Our dissemination protocol is more similar to the gossip protocol [43] than the

flooding-based message query-routing. The gossip protocol is known to be scalable

and reliable for message dissemination in large-scale networks for group communi-

cation. Our proposed protocol differs from the gossip protocols in that peers self-

organize into groups of peers having similar interests and disseminate only relevant

messages, rather than push messages to randomly chosen peers and disseminate ev-

ery message received. The self-organizing property of the Shrack networks and the

corresponding performance metrics are investigated in Chapter 7.

In terms of message transfers, our dissemination protocol is also scalable, because

each peer only receives a fixed number of messages (maximum one copy of metadata

of each document) from each of its provider peers. The provider peers only send a pull
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response once per pull request. As a result, the number of dissemination messages

is bounded by the number of provider peers and not the size of the network. This

argument is supported by the experimental results that the system has a constant

message overhead independent of the network size. The results show that the pull

load increases linearly as the size of the network increases, because in our experi-

mental setup every peer has the same publication rate. Hence, the number of new

documents in the system increases linearly as the network size increases, and the pull

load increases as the number of new documents in the network increases. Although,

duplicate copies of messages introduce the message overhead in the system, they also

help the system achieve fault-tolerance in dynamic environment, where peers may

leave or fail. However, further analysis is required to determine the optimal message

overhead.

6.6 Shrack Dissemination Protocol in the Super-Peer Model

In this section, we conduct experiments to test Hypothesis H6.2 that states that

super peers can help improve the dissemination performance for normal peers in the

system. Super peers are peers that have high resources and availability. They can

be thought of as peers that are associated with research organizations that maintain

a collection of documents of interest to researchers in the organization. They only

communicate with normal (not super) peers in their organization. Normal peers are

viewed as researchers in the organization, which can form collaboration with peers

within and outside the research groups. We study the effect of super peers on local

group collaborations in the small-world network model.

Next, we describe the experimental setup and then discuss the results.

6.6.1 Experiment Setup

The overlay network in the super-peer model is defined as follows. Each normal peer

is associated with only one super peer. Each super peer periodically pulls messages

only from the peers in its local organization, with the same pull interval as normal

peers. Each normal peer also periodically pulls document metadata from its super
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peer, as well as from other peers in the network. An example of a super-peer overlay

network is shown in Figure 6.4.

Figure 6.4: Example of a super-peer overlay network

In the experiments, each normal peer has the same parameter setup as in previous

experiments as defined in Table 6.3. Only normal peers publish documents. Super

peers only support the collaboration among normal peers and build the organization

document collections. We test the performance of the system with collaboration of

super peers in two configurations called fix-super-peer and vary-super-peer configura-

tions. We summarize the experimental parameter setup for super peers in Table 6.5.

In the fix-super-peer configuration, the number of super peers is fixed at 10 inde-

pendent of the network size, and the number of normal peers associated with each

super peer is the same. In the vary-super-peer configuration, the number of super

peers increases as the size of the network increases. We fix the number of normal

peers associated with each super peer at 500, regardless of all network size. In both

configurations, normal peers have the same configuration as the previous experiment

presented in Table 6.3. Each peer must have one super peer as its provider peer.

We vary the number of normal peers, and measure the dissemination characteristics,
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Table 6.5: Parameter setup for experiments on scalability of the Shrack dissemination
protocol in the super peer model∗

Notation Overlay Network Number of super peers

No-super-peer small-world 0
Fix-super-peer small-world fixed (10)

Vary-super-peer small-world vary
(1 for every 500 normal peers )

* The parameter setup for normal peers is the same as in the previous experiment, presented
in Table 6.3.

comparing them with the small-world network in the uniform model.

6.6.2 Experimental Results

The comparison of pull delay and path length of the super-peer models with the

uniform model in the small-world network observed by normal peers are depicted in

Figure 6.5 and Figure 6.6, respectively. The results show that in both configurations

the super-peer models help improve the dissemination performance for normal peers

in the system. The average pull delay and path length observed by normal peers in

the super-peer models are smaller than in the uniform model and highly depend on

the number of super peers. In the fix-super peer configuration, normal peers observe

a near-constant average pull delay and path length in all network sizes. In the vary-

super peer configuration, normal peers observe an increase of pull delay and path

length as the network size increases.

The comparison of the average pull load and new messages per pull response

observed by normal peers in the super-peer models and the uniform model is presented

in Table 6.6 and 6.7, respectively. The results show that normal peers observed the

same pull load and new messages in all configurations. This shows that super peers

do not help in reducing the dissemination pull load observed by normal peers and, at

the same time, they do not introduce additional pull load to the normal peers, which

means that the existance of super peers does not affect the pull load of normal peers.
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Figure 6.5: Dissemination pull delay observed by normal peers in super-peer models
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Figure 6.6: Dissemination path length observed by normal peers in super-peer models

Next, we present the dissemination performance observed by super peers, compar-

ing between the fix-super-peer configuration and the vary-super-peer configuration.

Figure 6.7 presents the dissemination pull delay. Super peers in the fix-super-peer
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Table 6.6: The average pull load observed by normal peers in super-peer models

No super peers Fix super peers Vary super peers
Network size Pull Load Pull Load Pull Load

200 12.82 13.54 12.62
400 23.61 24.52 25.04
600 35.92 36.96 37.26
800 47.76 47.45 51.17

1000 60.39 60.42 63.06
2000 121.68 122.38 123.40
4000 236.67 242.90 241.49
6000 352.38 364.73 364.57
8000 470.90 n/a∗ 484.35

10000 586.01 n/a∗ 611.24

∗ n/a = no data available.

Table 6.7: The average new messages observed by normal peers in super-peer models

No super peers Fix super peers Vary super peers
Network size New Messages New Messages New Messages

200 2.42 2.54 2.37
400 4.46 4.63 4.69
600 6.66 6.86 6.91
800 8.77 8.72 9.36

1000 11.08 11.13 11.62
2000 22.62 22.80 22.95
4000 43.81 44.89 44.68
6000 65.17 67.33 67.34
8000 86.57 n/a∗ 89.00

10000 107.88 n/a∗ 112.44

∗ n/a = no data available.

configuration observe a nearly constant pull delay, while super peers in the vary-super-

peer configuration observe a logarithmically increasing pull delay as the network size

increases. The dissemination path length observed by super peers correlates with the

pull delay as presented in Figure 6.8.

The dissemination pull load and the number of new messages per pull response
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Figure 6.7: Dissemination pull delay observed by super peers
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Figure 6.8: Dissemination path length observed by super peers

observed by super peers in the fix-super-peer and vary-super-peer configuration are

presented in Table 6.8 and Table 6.9, respectively. The results shows that super peers

in both configurations experience the same pull load per pull response. However,
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the number of new messages per pull response of super peers in the fix-super-peer

configuration does not change, while the number of new messages per pull response of

super peers in the vary-super-peer configuration increases as the network size increase.

We compute the message overhead, which shows that the message overhead of super

peers correlates with the number of their associated normal peers or group size.

Table 6.8: Comparison of pull load, new message per pull response, and message
overhead of super peers with a fixed number of super peers

Normal peers Group size∗ Pull Load New Message Overhead

200 20 13.50 0.69 19.45
400 40 24.44 0.64 38.39
600 60 36.78 0.63 57.99
800 80 47.40 0.61 77.11

1000 100 59.89 0.62 96.29
2000 200 121.61 0.63 192.21
4000 400 242.91 0.63 385.26
6000 600 363.75 0.63 578.26

* Group size is the number of normal peers associated with each super peer.

Table 6.9: Comparison of pull load and new messages per pull response, and message
overhead of super peers with vary number of super peers

Normal peers Group size∗ Pull Load New Message Overhead

200 200 12.46 0.07 191.67
400 400 24.79 0.06 385.58
600 300 37.09 0.13 288.19
800 400 51.01 0.13 387.10

1000 500 62.28 0.13 478.12
2000 500 122.99 0.26 480.83
4000 500 241.23 0.50 481.35
6000 500 363.99 0.76 480.85
8000 500 483.24 1.01 479.96

10000 500 608.37 1.26 481.10

* Group size is the number of normal peers associated with each super peer.
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6.6.3 Discussion

The experiment results show that super peers help reduce the dissemination path

length, and consequently the pull delay of peers in the same groups, which eventually

effects the dissemination path length between peers in the network. Hence, the pull

delay and path length correlate with the number of super peers or collaborative groups

in the network. We present the number of normal peers and the number of super

peers in the fix-super-peer and vary-super-peer configurations in Table 6.10.

Table 6.10: The number of super peers in the network with fix-super peer and vary
super peer configurations

Fix super peer Vary super peer
Normal peers Super peers Super peers

200 10 1
400 10 1
600 10 2
800 10 2

1000 10 2
2000 10 4
4000 10 8
6000 10 12
8000 10 16

10000 10 20

In the fix-super-peer configuration, peers experience nearly constants pull delay

and path length because there are always 10 collaborative groups in the system.

In the vary-super-peer configuration, the pull delay and path length are about the

same when the network size equals to 200 and 400, since both networks contain one

collaborative group. Similarly, when the network size is between 600 and 1,000 peers,

the networks contain two collaborative groups, and the pull delay and path length

are nearly constant. When the network size increases from 2,000 to 10,000 peers, the

pull delay and path length increase as the number of collaborative groups increases.

Although, the fix-super-peer configuration can improve the dissemination perfor-

mance to be nearly constant independent of the network size, its super peers have to
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handle more load as the network size increases. Even though the pull load per pull

response is the same for both configurations, the total pull load for each pull interval

is different. Since, in each pull interval, super peers pull messages from all of their

associated normal peers, the total pull load for each pull interval of each super peer

correlates with the size of collaborative groups. As a result, the total pull load of

super peers in the fix-super-peer configuration increases as the network size increases,

while the total pull load of super peers in the vary-super-peer configuration remains

constant. Subsequently, the message overhead of super peers in the fix-super-peer

configuration increases as the size of the network increases, while the message over-

head of super peers in the vary-super-peer configuration remain constant as presented

in Table 6.8 and 6.9, respectively.

The experiment results also show that super peers have to handle a large amount

of overhead, which increases linearly as the size of collaborative groups increases.

This overhead could be reduced in several ways, since super peers do not need to

pull the same copy of a given message from every normal peers in the associated

groups. For example, in each pull interval, each super peer could only pull messages

from a randomly chosen subset of the normal peers. In addition, each super peer can

reduce the update time for each pull request to pull only a few latest messages that

normal peers receive. For normal peers, their message overhead remains the same

in all configurations, because in the experiments, they all have the same parameter

setup for the number of provider peers.

6.7 Summary

In this chapter, we present experimental evaluation of the Shrack dissemination pro-

tocol. We evaluate the dissemination protocol based on scalability criteria. The

experimental results support our hypotheses that:

• H6.1: The Shrack dissemination protocol is scalable as the network size in-

creases.

• H6.2: Super peers can help improve the dissemination performance for normal

peers in the system.
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In the uniform model, the dissemination pull delay follows a logarithmic function

of the network size. In addition, the messages overhead correlates with the number

of provider peers, not the size of the network. In the super-peer models, the normal

peers observe a smaller pull delay and path length when they form collaborative

groups through super peers.

These experiments are setup in ideal environment to understand the behaviour of

the dissemination protocol. The network topologies are predefined in static overlay

networks and all the peers are connected. In addition, peers always respond to all

requests and are interested in all documents available in the system. In the next

chapter, we study the system where peers are self-organizing and peers are only

interested in a subset of documents available in the system.



Chapter 7

Self-Organizing Shrack Networks

In the previous chapter, we evaluate the performance of the dissemination protocol

where we assume that every peer is interested in every document published in the

system. In this chapter, we focus on users’ interests and self-organizing networks.

Given a set of peers with overlapping interests where each peer wishes to keep track

of new documents that are relevant to their interests, we study the behaviour of the

Shrack prototype where peers form self-organizing network based on common interest

of document set. Next, we present the experiment hypotheses and the road map of

this chapter.

7.1 Experiment Hypotheses and Road Map

There are two hypotheses for experiments in this chapter defined as follows.

H7.1 We hypothesize that self-organizing Shrack networks based on common inter-

est of document set can enhance quality of documents received by peers in terms of

F-score over random connected networks.

H7.2 We hypothesize that the resulting self-organizing networks based on common

interest of document set have the characteristics of social networks.

This two hypotheses are tested on the same experimental sets using different

performance metrics. The road map of this chapter is summarized in Table 7.1. The

first hypothesis is measured in the aspect of the quality of received documents. The

second hypothesis is measured in the aspect of the self-organizing network property. In

addition, we also observe the performance of the system in the aspect of dissemination

speed and distance. We provide a summary of the performance metrics for each

86
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Table 7.1: The road map of experiments on self-organizing Shrack networks
.

Hypothesis 1 Hypothesis 2
Performance Metrics

(Section 7.2)
Data Set Preparation

(Section 7.3)
Experiment Setup

Section 7.4
Quality of Received Documents Self-Organizing Network Property

(Section 7.5) (Section 7.7)
Dissemination Speed and Distance

(Section 7.6)
Summary

(Section 7.8)

aspect in Section 7.2. In Section 7.3, we describe the dataset preparation. Then, we

explain the experiment setup in Section 7.4. We present the experimental results and

discussion in the aspect of the quality of received documents, the dissemination speed

and distance and the self-organizing network property in Section 7.5, 7.6, and 7.7.

Finally, we provide a summary in Section 7.8.

7.2 Performance Metrics

The summary of performance metrics in the aspect of the quality of received docu-

ments, the dissemination speed and distance and the self-organizing network property

is presented in Table 7.2. The definition of each performance metrics is defined in

Section 5.2 (page 55).

7.3 Dataset Preparation

In this section, we explain the preparation of the experiment dataset including the

simulated users and the term-based peer profile representation.
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Table 7.2: The summary of peformance metrics in the aspect of the quality of received
documents, the dissemination speed and distance and the self-organizing network
property

Performance Metrics

Quality of received documents Precision
Recall
F-score

Dissemination speed and distance Relevant pull delay
Relevant path length

Self-organizing network property Clustering Coefficient
Characteristic Path Length
Degree Distribution

7.3.1 Simulated Users

We create our simulated users from authors who published documents in class H.3.3,

information search and retrieval, in the year 2008, in the ACM metadata collection.

We use a set of documents in class H.3.3 that these authors published since the

year 2000 as our document dataset. There are 7 subclasses in class H.3.3. These

subclasses are used to define interests of the artificial users and document classes in

our simulation. Each document can be labelled by multiple subclasses, which define

the interests of the document’s authors. We select the top 1,000 authors according

to the number of documents they published as the set of the artificial users. From

these authors, we have 1,639 documents in our simulation.

We show the number of users and documents in each subclass in Table 7.3. Out of

1,000 users, 38% are interested in one subclass, 31% are interested in two subclasses,

the rest are interested in three or more subclasses. The majority of documents, 72%,

are labelled with one subclass.

7.3.2 Term-based Peer Profile Representation

For term-based profiles, we estimate the global inverse document frequency (IDF) of

each term from the ACM document metadata collection that was published before
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Table 7.3: The number of users and documents in each subclass

Subclass Name #Users #Docs

Clustering 235 222
Information filtering 268 238
Query formulation 327 354
Relevance feedback 148 151
Retrieval models 579 629
Search process 437 493

Selection process 144 110

year 2000. Note that our test set is the documents in class H.3.3, that are published

since year 2000. We precompute feature vectors for each peer based on their interests,

selecting top 200 terms ranked by their TFxIDF weight. However, the weigh of

each term in the profile vector is computed locally and dynamically according to the

messages each peer receives.

7.4 Experimental Setup

We use ShrackSim, discussed in Chapter 5 (page 53), to study the performance of

self-organizing Shrack networks. We define a “cycle” as a time measurement unit,

which could be of any fixed duration. Each cycle has 1,000 simulation clock units.

We assume that the point-to-point network communication delay between two peers

is negligible. We run the simulation on a network with 1,000 peers with the initial

connections formed randomly. Initially, peers only have contacts of peers that they

get connected to, then they learn about other peers in the network and form a self-

organizing network as described in the prototype system, Chapter 4 (page 33).

We conducted two sets of experiments:

1. Item-based Profile: Each peer represents its local and known peer profiles using

the item-based profile representation.

2. Term-based Profile: Each peer represents its local and known peer profiles using

the term-based profile representation.
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Table 7.4: Experimental parameter setup for self-organizing Shrack network

Property Value

Peer Profile representation Item-based
Term-based

Provider peer selection Common Interest
Random
Hybrid1, Hybrid2, Hybrid3

System Publishing rate 1 documents per 4 cycles
(Poisson distribution)

Pull Interval 20 cycles (periodically)

TTL 8

Size of provider peers 3-15

Maximum Update 160 cycles

Number of random seeds 10

The summary of the experiment parameter setup is presented in Table 7.4. Each

set of experiments uses five provider peer selection strategies, namely the common-

interest strategy, the random strategy and the hybrid strategy with β ∈ 10−1, 10−2, 10−3.

In all experiments, documents are published in the system by the peer associated with

the first author. The publishing time of documents in the system follows a Poisson

distribution with an average publishing rate of 1 document per 4 cycles. The docu-

ment publication time in the simulation is independent of the time of the actual ACM

publication. The pull interval is fixed at 20 cycles with a different (random) starting

time for each peer. The experiments are conducted with a TTL value of 8 (selected

experimentally) for experiments with a limited TTL.We vary the number of provider

peers from 3 to 15. Each peer sets the maximum update time to 160 cycles—the

product of the TTL (8) and the pull interval (20 cycles). Each configuration is tested

with 10 simulations, with different random seeds to initialize the network connections.

We evaluate the performance of the system as a function of time using a sliding

window. The parameter tp of the criterion determining dissemination end is set at 200
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cycles. We use a window size of 400 cycles in duration, with 200 cycles overlap be-

tween successive windows; i.e., tks = {0, 200, 400, ..., 5400}, where k = {1, 2, 3, ..., 29}.
We ignore the last 4 time slots, τ30 through τ33, because the simulation ends before

the end of the dissemination of documents published in these time slots. The network

property is measured every 200 cycles. Each performance metric for a given observa-

tion time, except for the degree distribution, is averaged over the 10 simulations, for

each configuration.

To measure the performance and network property of Shrack networks in each

configuration, we average each evaluation metric, except the degree distribution, over

the last 10 time slots, τ20 through τ29. The results are presented as a function of the

number of provider peers.

We compare the performance and property of the Shrack network among five

provider peer selection strategies, namely the common-interest strategy, the random

strategy, the hybrid strategy with β = 10−1, the hybrid strategy with β = 10−2, and

the hybrid strategy with β = 10−3. We present the experimental results from two

set of experiments; (1) item-based profiles with a limited TTL and (2) term-based

profile with a limited TTL. We denote the item-based profile and term-based profile

representation by the similarity measure it uses to quantify the common-interest score,

which are Jaccard and Cosine.

Table 7.5 presents the notation of provider peer selection strategies with item-

based or term-based profile representation. Note that the random provider peer

selection strategy does not require peer profiles. The experimental results and discus-

sion are divided under three groups; (1) the quality of received document metadata,

(2) the dissemination speed and distance of relevant document metadata, and (3) the

self-organizing network property.

7.5 Quality of Received Documents

In this section, we present experiment results and discussion in terms of precision,

recall, and F-score.
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Table 7.5: Notation of provider peer selection strategy with item-based or term-based
profile representation

Notation Provider peer selection strategy Profile representation

Jaccard Common interest Item-based
Hybrid1-Jaccard Hybrid with β = 10−1 Item-based
Hybrid2-Jaccard Hybrid with β = 10−2 Item-based
Hybrid3-Jaccard Hybrid with β = 10−3 Item-based

Cosine Common interest Term-based
Hybrid1-Cosine Hybrid with β = 10−1 Term-based
Hybrid2-Cosine Hybrid with β = 10−2 Term-based
Hybrid3-Cosine Hybrid with β = 10−3 Term-based

Random Random -

7.5.1 Experiment Results

Precision The precision of document metadata that Shrack peers received, aver-

aged over all peers is presented in Figure 7.1. Figure 7.1 (a) shows the precision of

the system when the item-based profile representation is used. Figure 7.1 (b) shows

the precision of the system when the term-based profile representation is used.

The experimental results are very consistent in both sets of experiments. The

common interest strategy always gives the best precision compared with other types

of provider peer selection strategies. On the other hand, the random strategy always

gives the lowest precision. The hybrid strategy shows the mixture effects of the com-

mon interest and random strategy and gives the precision in between the precision of

the common interest and random strategy. As the value of the exploration parameter

β increases, the hybrid strategy behaves more like the random strategy. In both sets

of experiments, Hybrid3 gives higher precision than Hybrid2 and both of them give

higher precision than Hybrid1.

We did a ANOVA to test for statistical significance of peer selection strategy on

the precision. There is a significant main effect of peer selection strategy on the

precision (F = 26877.7, df = 4 and 5940, p < 0.001, partial η2 = 0.948). The Scheffé
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Figure 7.1: The quality of document received in terms of precision as the number
of provider peers increases using different provider peer selection strategies; (a) an
item-based profile representation; (b) a term-based profile representation

post hoc testing indicates that the common interest strategy gives the best precision

followed by Hybrid3, Hybrid2, Hybrid1, and Random.

As the number of provider peers increases, the precision of every provider peer

selection strategy decreases, except for the random strategy. In the random strategy,
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the precision remain unchanged as the number of provider peers increases. However,

in all configurations, as the number of provider peers increases, the order of perfor-

mance in terms of precision remains unchanged. The ANOVA and Scheffé post hoc

testing indicate that there is a statistically significant effect of the number of provider

peers on the precision (F = 4487.8, df = 5 and 5940, p < 0.001, partial η2 = 0.791).

The partial η2 indicates that the selection strategy is the best prediction of the

precision (partial η2 = 0.948). The next best prediction is the number of provider

peers (partial η2 = 0.791). The complete ANOVA test is presented in Appendix B

Table B.1 (page 162).

Recall The quality of received document metadata in terms of recall, averaged over

all peers over the last 10 time slots is presented in Figure 7.2. Figure 7.2 (a) shows

the recall of the system when the item-based profile representation is used. Figure 7.2

(b) shows the recall of the system when the term-based profile representation is used.

Both sets of experiments give similar results, which shows a reverse order of per-

formance in terms of recall, compared with the precision. In terms of recall, the

random strategy always gives the best and nearly perfect performance; i.e., its recall

is always very close to 1.0 (always greater than 0.998), in all configurations. Con-

versely, the common interest strategy gives the lowest recall. Similar to the precision

performance, the hybrid strategy gives the mixture effects of the common interest and

random strategy. All hybrid strategies give recall in between the recall of the common

interest and random strategy. As the value of β increases, the hybrid strategy gains

higher recall and behaves more like the random strategy.

The ANOVA and Scheffé post hoc testing indicate that there is a statistically

significant main effect of the selection strategy on the recall (F = 11129.7, df = 4 and

5940, p < 0.001, partial η2 = 0.882). The Random strategy gives the best recall

followed by Hybrid1, Hybrid2, Hybrid3, and the common interest strategy.

Unlike the recall of the random strategy, the recall of the common interest and

hybrid strategies are sensitive to the increment of the number of provider peers. As

the number of provider peers increases, the recall of the common interest and hybrid

strategies increases. The ANOVA and Scheffé post hoc testing indicate that there
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Figure 7.2: The quality of document received in terms of recall as the number of
provider peers increases using different provider peer selection strategies; (a) an item-
based profile representation; (b) a term-based profile representation

is a statistically significant main effect of the number of provider peers on the recall

(F = 9131.2, df = 5 and 5940, p < 0.001, partial η2 = 0.885).

The partial η2 shows that the selection strategy and the number of provider peers

are the best prediction of recall with partial η2 equals 0.882 and 0.885, respectively.
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This results indicate that the selection strategy and the number of provider peers

account for more than 80% of the overall variance of recall, which is considered to be

a large effect size. The complete ANOVA test is presented in Appendix B Table B.2

(page 163).

F-score The performance in terms of F-score, which is a harmonic mean of precision

and recall is depicted in Figure 7.3. Figure 7.2 (a) shows the F-score when the item-

based profile representation is used. Figure 7.2 (b) shows the F-score of the system

when the term-based profile representation is used.

In both sets of experiments, when the number of provider peers equals three, the

common interest and the hybrid with β equals 10−3 (Hybrid3) and 10−2 (Hybrid2)

give very low F-score, while the hybrid with β equals 10−1 (Hybrid1) gives the best

F-score followed by the random strategy. As the number of provider peers increases,

the common interest strategies, Hybrid3 and Hybrid2 gain more recall than the loss of

precision, as a result, their F-score increase. The F-score of Jaccard, Hybrid3-Jaccard,

and Hybrid2-Jaccard overcome the F-score of Hybrid1-Jaccard and Random, when

the number of provider peers is greater than or equals to four. Similarly, the F-score

of Cosine and Hybrid3-Cosine overcome the F-score of Hybrid1-Cosine and Random

when the number of provider peers is greater than or equals to five. The F-score

of Hybrid2-Cosine overcomes the F-score of Random and Hybrid1-Cosine when the

number of provider peers is greater than or equals to four and five.

Since, the number of provider peers does not affect its precision and recall, the

random strategy always gives the same F-score, which is 0.607 on average, as the

number of provider peers increases. For Hybrid1, the increment of recall as the

number of provider peers increases does not have a sufficient effect to overcome the

loss of precision, as a result, its F-score decreases closer to the F-score of the random

strategy, as the number of provider peers increases.

When the recall of the common interest strategy and the hybrid strategy ap-

proaches 1.0, the increment of recall is not sufficiently larger than the loss of precision.

As a result, we can notice the slight decline of their F-score, e.g., when the size of

provider peer is greater than or equals to ten in Jaccard and Hybrid3-Jaccard.
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Figure 7.3: The quality of document received in terms of F-score as the number
of provider peers increases using different provider peer selection strategies; (a) an
item-based profile representation; (b) a term-based profile representation

The results from the ANOVA testing for statistical significance indicate that there

is a significant main effect of the selection strategy on the F-score (F = 7224.9,

df = 4 and 5940, p < 0.001, partial η2 = 0.830). The Scheffé post hoc testing

shows that the common interest strategy and Hybird3 give the best F-score followed
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by Hybrid2, Hybrid1, and Random. There is no significant difference between the

common interest strategy and Hybrid3. In their best performance, when the number

of provider peers equals nine and eight, Jaccard and Hybrid3-Jaccard give a 26.5%

and 27.0% improvement in the F-score over Random, respectively. In addition, when

the number of provider peers equals nine, Cosine and Hybrid3-Cosine give a 14.8%

improvement in the F-score over Random.

The ANOVA and Scheffé post hoc testing also indicates that there is a statisti-

cally significant effect of the number of provider peers on the F-score (F = 557.651,

df = 5 and 5940, p < 0.001, partial η2 = 0.319). The system achieves the best F-

score when the number of provider peers equals six to eight, and there is no significant

difference between them.

The selection strategy is the best prediction of the F-score with partial η2 equals

0.830, which accounted for more than 80% of the overall variance of F-score. The

next best is the profile representation with partial η2 equals 0.513 1. The number

of provider peers is the third to affect F-score with partial η2 equals 0.319, which

accounted less than 50% of the overall variance of F-score. The complete ANOVA

test is presented in Appendix B Table B.3 (page 164).

7.5.2 Discussion

The results show that peers in the common interest and hybrid strategy with β less

than 10−2 can automatically form a self-organizing network of peers with common

interest. By sharing and disseminating only messages that are of interest, peers

automatically filter out messages that are not relevant to their group, creating a

community filtering system.

In general, the hybrid strategy provides mixture effects of the common interest

and the random strategies. When the exploration parameter β equals 0, the hybrid

strategy behaves like the common interest strategy. As the β parameter increases,

the hybrid strategy behaves more like the random strategy. In addition, when the β

parameter equals 1, the hybrid strategy behaves like the random strategy.

Since, peers in the common interest strategy try to connect to provider peers with

1The effect of profile representation will be disscussed in the next chapter
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high common interests, their provider peers help the local peers filter out non-relevant

documents. As a result, the networks with common interest strategy gives the best

precision.

The relatively low recall of the common interest strategy can be attributed to peers

not receiving relevant document metadata from some peers that have low common

interests. Another possible reason is the group of peers having common interests

becoming disconnected from the network, either by a small number of TTL, a small

number of provider peers, or a characteristic of the cluster that they form. Peers

with multiple interests may have difficulty in keeping track of documents in a sparse

interest group, because the common interest strategy favours peers with high common

interest. A possible solution is for the user to use multiple peers, one for each interest.

Thus, peers responsible for sparse interests will perform a random walk until they find

relevant peers. When the number of provider peers increases, each peer connects with

a larger varieties of provider peers, the recall increases while the precision decreases.

The networks with random strategy behaves like a standard gossip protocol—

a probabilistic reliable dissemination in large-scale systems [43]. With the random

strategy, peers receive document metadata of all documents available in the networks

(recall of 1.0). However, since not all the documents are relevant to all peers, the

average precision of the random strategy is lower than the other strategies. The

random strategy is good for disseminating information to every peer in the network. In

our experiments, the number of provider peers does not affect the performance of the

random strategy, because every peer in the random strategy is already connected since

the number of provider peers equals three, and Shrack messages can be disseminated

to every peer with in the predefined TTL (eight).

Since, in our experiments, the system with common interest strategy and the

hybrid strategy gain more precision than the loss of recall comparing with the random

strategy, they have better performance in terms of F-score than the random strategy.

We anticipated that the hybrid strategy with very small β, i.e., β = 10−3 or

Hybrid3 in our experiment, would reduce the effect of the greedy behaviour in the

common interest strategy, sufficiently increasing the recall and as a result F-score over

the common interest strategy. Experimental results show, however, that for number of
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provider peers greater than five, Hybrid3 does not provide a significant improvement

in the F-score over the common interest strategy. This shows that increasing the

provider peer diversity by increasing the number of provider peers results in better

overall performance than by creating some random connections.

7.6 Dissemination Speed and Distance

The dissemination speed and distance of relevant document metadata are measured

in terms of relevant pull delay and relevant path length, averaged over all peers over

the last 10 time slots.

7.6.1 Experiment Results

Relevant Pull Delay The relevant pull delay of the system as the number of

provider peers increases using five provider peer selection strategies is presented in

Figure 7.4. Figure 7.4 (a) shows the relevant pull delay of the system when the item-

based profile representation is used. Figure 7.4 (b) shows the relevant pull delay of

the system when the term-based profile representation is used.

The relevant pull delay indicates the average dissemination time delay from time

when a document is published until relevant peers first observe its metadata, which

is defined in Section 5.2.2 (page 58). The experimental results show that in both the

item-based and the term-based profile representations, the random strategy always

has the highest relevant pull delay and the common interest strategy always has the

lowest relevant pull delay. The hybrid strategy has the relevant pull delay in-between

the relevant pull delay of the random and the common interest strategy; i.e., the

relevant pull delay increases as the exploration parameter β increases.

The system is considered to have better performance if it has lower relevant pull

delay. The ANOVA testing for statistical significance shows that there is a signif-

icant main effect of the selection strategy on the relevant pull delay (F = 6778.1,

df = 4 and 5940, p < 0.001, partial η2 = 0.820). The Scheffé post hoc testing indi-

cates that the common interest strategy gives the best relevant pull delay followed by

Hybrid3, Hybrid1, Hybrid2, and Random.
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Figure 7.4: The relevant pull delay as the number of provider peers increases using
different provider peer selection strategies; (a) an item-based profile representation;
(b) a term-based profile representation
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The ANOVA testing for statistical significance shows that there is a significant

main effect of the number of provider peers on the relevant pull delay (F = 45308.2,

df = 5 and 5940, p < 0.001, partial η2 = 0.974). The Scheffé post hoc testing

indicates that as the number of provider peers increases, the relevant pull delay of all

provider peer selection strategies decreases. On average, the difference of the relevant

pull delay of each strategy is also reduced, as the number of provider peers increases.

When the number of provider peers is greater than or equals to six, the difference of

the relevant pull delay among each strategy is less than one pull interval (20 cycles).

The partial η2 indicates that the number of provider peers is the best predictor of

the relevant pull delay with partial η2 equals 0.974. The selection strategy is the next

best predictor of the relevant pull delay with partial η2 equals 0.820. The complete

ANOVA test is presented in Appendix B Table B.4 (page 165).

Relevant Path Length The relevant path length of the system as the number

of provider peers increases using five provider peer selection strategies is presented

in Figure 7.5. Figure 7.5 (a) shows the relevant path length of the system when

the item-based profile representation is used. Figure 7.5 (b) shows the relevant path

length of the system when the term-based profile representation is used. The relevant

path length indicates the average distance of peers to the source of relevant document

metadata, which is defined in Section 5.2.2 (page 58).

The experimental results show that in both the item-based and the term-based

profile representations, the random strategy always has the lowest relevant path

length. In addition, the number of provider peers does not affect the relevant path

length of the random strategy. For the other strategies, their relevant path length

exhibit a negative correlation with the number of provider peers.

The results from the ANOVA and Scheffé post hoc testing indicate that there is a

statistically significant effect of the selection strategy (F = 5947.3, df = 4 and 5940,

p < 0.001, partial η2 = 0.800) and the number of provider peers (F = 5829.1,

df = 4 and 5940, p < 0.001, partial η2 = 0.831) on the relevant path length. The

partial η2 indicates that the number of provider peers is the best to predict the relevant

path length with partial η2 equals 0.831. However, the relevant path length is not
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Figure 7.5: The relevant path length as the number of provider peers increases using
different provider peer selection strategies; (a) an item-based profile representation;
(b) a term-based profile representation
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significantly different, when the number of provider peers is greater than or equals

to 12. The selection strategy is the next best predictor of the relevant path length

with partial η2 equals 0.80. The complete ANOVA test is presented in Appendix B

Table B.5 (page 166).

In general, the random strategy gives the best relevant path length, which is

less than the hybrid and the common interest strategy. Overall, although they are

statistically different, the difference between the average relevant path length of all

strategies is very small, which is less than one hop.

7.6.2 Discussion

The speed and distance performance shows that, even though, the networks with

common interest strategy have higher relevant path length, they have statistically

lower relevant pull delay than the networks with random strategy. This behaviour

shows that the networks with common interest strategy disseminate relevant messages

faster than the random strategy, i.e., disseminating messages through multiple hops

with less pull delay. This is because peers in the networks with common interest

strategy usually pull and receive relevant messages from peers in the same group, while

peers in the networks with random strategy get relevant messages from connecting

to many different random peers according to their dynamic topology. Every time

a peer updates its provider peers, a peer with the random strategy will connect to

other peers randomly, while a peer with the common interest strategy tend to connect

to the same group of provider peers. However, this property has less effect on the

system as the number of provider peers increases. As the number of provider peers

increases, each peer gets connected to more provider peers, and as a result, it receives

more messages for each pull interval and messages are disseminated faster. Overall,

the difference of the performance in terms of speed and distance of all provider peer

selection strategies is very small. Especially, since we assume that the time that a

peer learns about relevant documents is not critical in our application.
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7.7 Self-Organizing Network Property

We measure the property of network in terms of the clustering coefficient, the charac-

teristic path length, and the degree distribution, to determine whether they exhibit

a social network property. We provide definitions of each measurement metric in

Section 5.2.3 (page 59).

7.7.1 Experiment Results

Clustering Coefficient The clustering coefficient CCO of the networks in each

provider peer selection strategy are shown in Figure 7.6. Figure 7.6 (a) presents

the clustering coefficient of the networks when the item-based profile representation

is used. Figure 7.6 (b) presents the clustering coefficient of the networks when the

term-based profile representation is used.

In general, the networks of the common interest strategy and the hybrid strategy

with β = 10−3 have similar clustering coefficients, which are higher than the clustering

coefficients of the other strategies. As the exploration parameter β increases the

clustering coefficient of the networks of the hybrid strategy decreases toward that of

the random network. The random network has the lowest clustering coefficient.

The results from ANOVA indicate that there is a significant main effect of peer

selection strategy on the clustering coefficient (F = 51822.7, df = 4 and 5940, p <

0.001, partial η2 = 0.972). The results from the Scheffé post hoc testing indicates that

the networks of the common interest strategy gives the highest clustering coefficient

followed by the networks of Hybrid3, Hybrid2, Hybrid1, and the random strategy.

Initially when the number of provider peers increases, the clustering coefficients

of the common interest strategy networks diminishingly drops and, after that, they

slightly increase as the number of provider peers increases. For Jaccard, its network

clustering coefficient diminishingly drops when the number of provider peers increases

from three to six, and then start to increase slightly when the number of provider

peers is greater than eight. For Cosine, its network clustering coefficient diminishingly

drops when the number of provider peers increases from three to seven, and start to
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Figure 7.6: The network clustering coefficient as the number of provider peers in-
creases using different provider peer selection strategies; (a) an item-based profile
representation; (b) a term-based profile representation

increase slightly when the number of provider peers is larger than ten. The cluster-

ing coefficient of the random network constantly slightly increases as the number of

provider peers increases. The hybrid gives the mixture effects between the common

interest and the random strategy. The results from the ANOVA and Scheffé post hoc
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testing indicate that there is a statistically significant effect of the number of provider

peers on the clustering coefficient (F = 491.2, df = 5 and 5940, p < 0.001, partial

η2 = 0.293).
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Figure 7.7: The network characteristic path length as the number of provider peers
increases using different provider peer selection strategies; (a) an item-based profile
representation; (b) a term-based profile representation

The partial η2 indicates that the peer selection strategy is the best to predict the
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clustering coefficient with partial η2 equals 0.972. The number of provider peers is the

second best to predict the clustering coefficient with partail η2 equals 0.293. However,

less than 30% of the overall variance of the clustering coefficient is accounted for by

the variance between groups formed by the number of provider peers. The complete

ANOVA test is presented in Appendix B Table B.6 (page 167).

Characteristic Path Length The characteristic path length CPL of the networks

in each provider peer selection strategy are shown in Figure 7.7. Figure 7.7 (a)

presents the characteristic path length of the networks when the item-based profile

representation is used. Figure 7.7 (b) presents the characteristic of the networks when

the term-based profile representation is used.

Although, the results show that all networks exhibit similar characteristic path

length, the ANOVA test indicates that there is a statistically significant effect of peer

selection strategy on the characteristic path length (F = 5525.0, df = 4 and 5940, p <

0.001, partial η2 = 0.788). The results from the Scheffé post hoc testing indicate that

the random strategy network has the smallest characteristic path length compared

with other networks. The networks of the common interest strategy and the hybrid

strategy with β equals 10−3 and 10−2 have similar characteristic path length, which

are higher than the characteristic path length of the hybrid strategy with β = 10−1

and the random strategy. There is no significant difference between the common

interest strategy and the hybrid strategy with β equals 10−2.

The results form the ANOVA and Scheffé testing also indicate that the effect of

the number of provider peers is a statistically significant on the characteristic path

length (F = 17483.3, df = 4 and 5940, p < 0.001, partial η2 = 0.936). All networks

show a negative correlation with the number of provider peers; i.e., the characteristic

path length of all networks diminishingly decreases as the number of provider peers

increases.

The partial η2 indicates that the number of provider peers is the best predictor for

the characteristic path length with partial η2 equals 0.936. The next best predictor is

the peer selection strategy with partial η2 equals 0.788. The complete ANOVA test

is presented in Appendix B Table B.7 (page 168).
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Figure 7.8: Example of the in-degree complementary cumulative distribution function
of the networks under different provider peer selection strategies; (a) an item-based
profile representation; (b) a term-based profile representation

Degree Distribution Example of the in-degree complementary cumulative dis-

tribution function (CCDF) of the networks under different provider peer selection

strategies on a log-log scale is presented in Figure 7.8. Figure 7.8 (a) presents the

in-degree complementary cumulative distribution function of the networks when the
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item-based profile representation is used. Figure 7.8 (b) presents the in-degree com-

plementary cumulative distribution function of the networks when the term-based

profile representation is used. We select, for each provider peer selection strategy, an

instance of the network that is evolved from the same initial topology at the observa-

tion time slot τ29. Every network has the same predefined number of provider peers,

which is eight.

We observe that the in-degree distribution of the networks using the common

interest strategy and the hybrid with β = 10−3 follows the power law distribution

fairly closely. When in-degree is greater than 3, the in-degree distribution of their

networks fits a power law function with α = 2.1. Conversely, the network with the

random strategy does not follow the power law distribution as closely; even for in-

degree values greater than 9, its in-degree distribution fits a power law function with

α = 9.6 which is outside the typical range of 2 > α > 3 for social networks.

7.7.2 Discussion

The analysis of the network properties gives evidence that the networks with the

common interest strategy and the hybrid strategy have statistically different charac-

teristics than the networks with the random strategy. The experimental results show

that the network with common interest strategy and the hybrid strategy with β equals

10−3 (Hybrid3) are self-organizing into a topology that follows the characteristics of

social networks, namely the small-world property [11, 56, 75]. Particularly, with the

same configuration, the common interest strategy and Hybrid3 networks have sig-

nificantly larger clustering coefficient than the random strategy network, have small

characteristic path length similar to the random strategy network, and have power-

law scaling in degree distribution. In addition, the difference of their characteristic

path lengths also agrees with the small-world property [75] that, the small world net-

work (our common interest strategy) has higher characteristic path length than the

random network with the same configuration.

The clustering coefficient also indicates that when the number of provider peers

are very small (less than six), the networks with the common interest strategy have

very high clustering path length, which decreases as the number of provider peers
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increase. We conjecture that when the number of provider peers equals three, there

are multiple small disconnected clusters of peers in the network. On average, peers

have high clustering coefficient, as the probability of provider peers of each peer get

connected is higher, when the size of cluster is smaller. As the number of provider

peers increase, the size of cluster is larger creating more variety of peers in each cluster,

the probability of provider peers of each peer get connected decreases. As a result, the

clustering coefficient decreases. When all the peers get connected the size of cluster is

the same, but as the number of provider peers increases, the probability of provider

peers of each peer to be interconnected increase. As a result, the clustering coefficient

increases. A similar behaviour is shown in the network with random strategy. Since,

peers in the random strategy are all connected when the number of provider peers

equals three, the network clustering coefficient increases as the number of provider

peers increases.

7.8 Summary

This chapter presents experimental evaluation of self-organizing Shrack network based

on the provider peer selection strategies with item-based and term-based profile rep-

resentation. We assume that each peer has a set of predefined interests and measures

the performance of Shrack network in terms of the quality of received document

metadata. We also evaluate dissemination speed and distance of relevant document

metadata. Furthermore, we observes the property of self-organizing networks and

compare them with the property of social networks. The results in both set of exper-

iments support the experiment hypotheses that:

• H7.1: Self-organizing Shrack networks based on common interest of document

set can enhance quality of documents received by peers in terms of F-score over

random connected networks.

• H7.2: The resulting self-organizing networks based on common interest of doc-

ument set have the characteristics of social networks.

The experimental results show that for both item-based and term-based profile

representation, the common-interest strategy statistically outperforms the random
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strategy in terms of F-score. The hybrid strategy provides a mixture effect of the

comon-interest and random strategy. When the exploration parameter β equals 10−3,

the hybrid strategy gives similar performance as the common-interest strategy, as β

increases, the hybrid strategy behaves more like the random strategy.

The performance in terms of dissemination speed and distance of relevant docu-

ment metadata shows that although they are statistically different, all strategy have

very similar characteristic. They all have similar relevant pull delay and relevant path

length. The analysis of the self-organizing network property shows that the network

with the common-interest strategy and the hybrid strategy with a small β follows

the same characteristic as the social networks, while the network with the random

strategy does not follow as closely.



Chapter 8

Effect of Peer Profile Representation

In this chapter, we discuss the effects of peer profile representation on the self-

organizing Shrack network. We describe an experiment setup and performance met-

rics in Section 8.1. After that, we provide experiment results and discussion of the

system performance in regard of the effect of peer profile representation. We present

the results and discussion of the performance in the aspet of the quality of received

documents, the dissemination speed and distance of relevant documents, and the self-

organizing network property in Section 8.2, Section 8.3, and Section 8.4, respectively,

Finally, we provide a summary of this chapter in Section 8.5.

8.1 Experiment Setup and Performance Metrics

We discuss the effect of peer profile representation using the results from the same

sets of experiments in the previous chapter (Chapter 7). In the previous chapter,

we present and discuss the experiment results in regards to different provider peer

selection strategies. In this chapter, we focus on the comparison of the item-based and

term-based profile representations. We use the same notation as defined in Table 7.5

(page 92) to refer to each set of experiments. The item-based profile is denoted as

Jaccard and the term-based profile is denoted as Cosine. We graphically depict the

effect of peer profile representation in the common interest strategy and the hybrid

strategy with β = 10−2, for the clarity of the presentation. The hybrid strategy

with β = 10−3 gives similar results as the common interest strategy, and the hybrid

strategy with β = 10−1 provides results closer to the random strategy. Furthermore,

the peer profile representation does not affect the performance of the random strategy,

because it does not use knowledge embedded in peer profiles. We discuss the results

in terms of the quality of received document metadata, the dissemination speed and

distance of relevant document metadata, and the self-organizing network property.

113
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8.2 Quality of Received Documents

The comparison between the item-based and term-based profile representations of

the quality of received document metadata in terms of precision, recall, and F-score,

is presented in Figures 8.1, 8.2, and 8.3, respectively. In general, for each provider

peer selection strategy, both profile representations have a similar behaviour in all

performance metrics, as the number of provider peers increases.

8.2.1 Experiment Results

Precision In terms of precision, as shown in Figure 8.1, for each provider peer selec-

tion strategy, the item-based profile representation always gives better performance

than the term-based profile representation. For the hybrid strategy, as the exploration

parameter β increases the difference of the performance in term of precision between

the item-based and term-based profile representation decreases and is more sensitive

to the increment of the number of provider peers. The results from the ANOVA

test indicate that the effect of the profile representation is statistically significant on

the precision (F = 8327.8, df = 1 and 5940, p < 0.001, partial η2 = 0.584 ). The

partial η2 indicates that the profile representation accounted for more than 50% of

the overall variance of precision. We can notice that as the number of provider peers

increases, the difference of precision between Hybrid2-Jaccard and Hybrid2-Cosine

decreases. On average, over all the different numbers of provider peers, Jaccard and

Hybrid2-Jaccard give 15.7% and 9.3% improvement over Cosine and Hybrid2-Cosine,

respectively.

Recall The performance of the item-based and term-based profile representation

for each strategy in terms of recall is shown in Figure 8.2. Unlike precision, the

profile representation does not have major effect on the recall, both of them give

similar performance. Although, the results from the ANOVA test indicate that there

is a statistically significant effect of the profile representation on recall (F = 230.4,

df = 1 and 5490, p < 0.001, partial η2 = 0.037), the partial η2 = 0.37 indicates that

the profile representation accounted for less than 5% of the overall variance of recall.

This shows that the profile representation does not practically affect the recall. In
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Figure 8.1: The quality of document received in terms of precision as the number of
provider peers increases using item-based and term-base profile representations
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Figure 8.2: The quality of document received in terms of recall as the number of
provider peers increases using item-based and term-base profile representations

general, the item-based profile representation gives slightly better performance than

the term-based profile representation. On average, over all networks with the provider

peers of size greater than four, Jaccard and Hybrid2-Jaccard gives 1.4% and 2.1%

improvement in terms of recall over Cosine and Hybrid2-Cosine, respectively.
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Figure 8.3: The quality of document received in terms of F-score as the number of
provider peers increases using item-based and term-based profile representations

F-score Since the item-based profile representation gives a significantly better pre-

cision than the term-based profile representation, and both of them provide similar

results on recall, for each provider peer selection strategy, the item-based profile rep-

resentation gives a better F-score. Figure 8.3 shows the performance comparison

between the two profile representations in term of F-score. For the hybrid strat-

egy, the improvement of the item-based profile representation on the F-score over

the term-based profile representation decreases, as the β parameter increases. The

results from the ANOVA test indicate that the effect of the profile representation

is statistically significant on the F-score (F = 6247.7, df = 1 and 5490, p < 0.001,

partial η2 = 0.513). The partial η2 = 0.513 indicates that the profile presentation is

a good predictor of the F-score, which accounted for more than 50% of the overall

variance of the F-score. On average, over all number of provider peers, Jaccard and

Hybrid2-Jaccard gives 11.1% and 8.0% improvement in term of F-score over Cosine

and Hybrid2-Cosine.
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8.2.2 Discussion

The experimental results show that the item-based profile representation gives a bet-

ter model of Shrack peers than the term-based profile representation. Recall that

our peer users are modelled after the authorship of documents in ACM dataset and

the interests of the peer users are modelled after the ACM Computing Classification

System (CCS). Our experiment results indicate that the item-based profile represen-

tation gives a better model to represent the common interest of authors who publish

documents in ACM dataset given that the authors are interested in receiving all doc-

uments published in the same class. However, in practice, each user might not be

interested in all the documents published in the same class. Experiments with real

users will provide more evidence on the performance on peer profile representation.

Our experimental results provide evidence that our provider peer selection strategy

gives very consistent results for both item-based and term-based profile representa-

tions.

The item-based profile representation gives a direct mapping of peer common in-

terest according to the relevant document set. On the other hand, the term-based

profile representation provides an abstraction of common interest according to the

terms in the relevant documents. Both of them show that Shrack peers can incremen-

tally and locally create interest of peers in the networks from information contained

in Shrack messages.

In the item-based profile representation, peers directly connect to provider peers

that disseminate document metadata of documents in the overlap set of interest, as

a result, its gives higher precision than the term-based profile representation. On the

other hand, in the term-based profile representation, peers try to connect to provider

peers that disseminate messages on the same topic of interests, as a result, it gives

more variety of documents on the same topic and gives higher recall than the item-

based profile representation. However, since the item-based profile representation

gains more performance in terms of precision than the loss of recall, it gives a better

performance in terms of F-score.
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8.3 Dissemination Speed and Distance

Figures 8.4 and 8.5 show the comparison between the performance of the item-based

and term-based profile representations for the common interest strategy and the hy-

brid strategy with β = 10−2, in terms of relevant pull delay and the relevant path

length.

8.3.1 Experiment Results
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Figure 8.4: The relevant pull delay as the number of provider peers increases using
item-based and term-base profile representations

Relevant Pull Delay The results show that, overall, both profile representation

give a similar relevant pull delay. However, for the hybrid strategy, as the β parameter

increases, we notice that the item-based profile representation gives lower relevant pull

delay than the term-based profile representation, such that, the relevant pull delay

of Hybrid2-Jaccard is smaller than Hybrid2-Cosine. The results from the ANOVA

test show that the effect of the profile representation is statistically significant on the

relevant pull delay (F = 149.8, df = 1 and 5940, p < 0.001, partial η2 = 0.025).

However, the partial η2 indicates that the profile representation only accounted for
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2.5% of the overall variance of the relevant pull delay. This shows that the profile

representation does not practically affect the relevant pull delay.
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Figure 8.5: The relevant path length as the number of provider peers increases using
item-based and term-base profile representations

Relevant Path Length The relevant path lengths of both profile representations

are very similar, as shown in Figure 8.5. The results for the ANOVA test indi-

cate that the effect of profile representation is statistically significant on the relevant

path length (F = 950.5, df = 1 and 5940, p < 0.001, partial η2 = 0.138). In gen-

eral, the item-based profile representations have larger relevant path length than the

term-based profile representations. Furthermore, the item-based profile representa-

tions with both provider peer selections have larger relevant path length than the

relevant path length of the term-based profile representation, i.e., both Jaccard and

Hybrid2-Jaccard have larger relevant path length than Cosine and Hybrid2-Cosine.

The partial η2 indicates that the profile representation does not practically affect the

relevant path length compared with the number of provider peers and the peer se-

lection strategy. The profile representation only accounted for 13.8% of the overall

variance of the relevant path length, while the number of provider peers and the peer

selection strategy accounted for more than 80% of the overall variance of the relevant

path length.
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8.3.2 Discussion

The experimental results show that both profile representations provide the same

characteristics in the aspects of dissemination speed and distance. The performance

of the system is more sensitive to the type of provider peer selection strategy than

the type of peer profile representation. However, we can notice that both profile rep-

resentation have similar relevant pull delay, but, the item-based profile representation

gives a slightly better relevant path length than the term-based profile representation,

which means that the item-based profile representation forms a better group of peers

according to their relevant document set.

8.4 Self-Organizing Network Property

The comparison of self-organizing network property of networks evolving from the

same provider peer selection strategy, using item-based and term-based profile repre-

sentation is shown in Figures 8.6, 8.7, and 8.8.

8.4.1 Experiment Results
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Figure 8.6: The network clustering coefficient as the number of provider peers in-
creases using item-based and term-base profile representations
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Clustering Coefficient Figure 8.6 shows that Jaccard and Cosine have similar

network clustering coefficient and, similarly, Hybrid2-Jaccard and Hybrid2-Cosine

have similar network clustering coefficient. However, when we look closely, when the

number of provider peers is less than seven, the networks with item-based profile

representation have slightly higher clustering coefficient. As the number of provider

peers increases, the difference of the network clustering coefficient between the two

types of profile representation decreases. In addition, when the number of provider

peers is greater than nine, the networks with term-based profile representation turn

to have slightly higher clustering coefficient than the networks with item-based profile

representation.

The results from the ANOVA test indicate that there is a statistically significant

effect of profile representation on the clustering coefficeint (F = 35.0714, df = 1 and

5940, p < 0.001, partial η2 = 0.006). However, the partial η2 indicates that the type

of profile representation does not practically affect the clustering coefficeint. Less

than 1% of the overall variance of the clustering coefficient is accounted for by the

variance between groups formed by the type of the profile representation.
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Characteristic Path Length The comparison of the characteristic path length of

the networks is presented in Figure 8.7. The experimental results shows that all of the

networks have very similar characteristic path length. The results from the ANOVA

test suggest that there is a statistically significant effect of profile representation on the

characteristic path length (F = 179.8, df = 1 and 5940, p < 0.001, partial η2 = 0.029).

However, the partial η2 indicates that the profile representation only accounted for

less than 3% of the overall variance of the characteristic path length, which infers that

the profile representation does not practically affect the characteristic path length.

Degree Distribution Figure 8.8 graphically confirms that the type of peer profile

representation has less effect on the characteristic of the self-organizing network than

the type of provider selection strategy. The in-degree distribution of networks with the

same provider peer selection strategy fits nicely with the same power law distribution,

regardless of the type of peer profile representation.
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8.4.2 Discussion

The experimental results show that the self-organizing networks that evolve from the

same provider peer selection strategy have the same network property regardless of

the type of profile representation, in all measurement metrics. This confirms that the

difference of the item-based and term-based profile networks is how peers define their

common interests with other peers. However, the property of networks in terms of

clustering coefficient shows that cluster of peers in the item-based profile representa-

tion is less sensitive to the increment of the group size. As the size of provider peer

increases, the networks of peers with item-based profile representation have slightly

higher clustering coefficient than the networks of peers with term-based profile repre-

sentation. On the other hand, this characteristic supports the argument that clusters

of peers in the term-based profile representation have more variety than peers in the

item-based profile representation. As a result, the term-based profile representation

gives better recall than the item-based profile representation.

8.5 Summary

In this chapter, we discuss the effect of peer profile representation on the self-organizing

Shrack network. The experimental results show that both item-based and term-based

profile representations are meaningful to represent interests of peers. The results for

the ANOVA test indicate that the effect of profile representation is statistically signif-

icant on all measurement metrics. However, the partial η2 indicates that the profile

representation only practically affects the precision and F-score with partial η2 greater

then 0.80. This statistical results support our observation that, in general, for each

provider peer selection strategy, both profile representations have similar behaviour

in all performance metrics. However, the item-based profile representation gives a

better model of Shrack peers than the term-based profile representation, yielding

significantly better performance in terms of precision. Subsequently, the item-based

profile representation provides higher F-score than the term-based profile representa-

tion.



Chapter 9

Effect of Time-To-Live (TTL)

This chapter discusses effects of the time-to-live (TTL) on the performance and prop-

erty of the Shack networks, for each provider peer selection strategy. We explore the

performance of the system with unlimited TTL, where there is no TTL to limit the

dissemination of Shrack messages. We present an experiment setup and performance

metrics in Section 9.1. We present the results and discussion of the performance in

the aspects of the quality of received documents, the dissemination speed and dis-

tance of relevant documents, the dissemination cost, and the self-organizing network

property in Section 9.2, Section 9.3, Section 9.4, and Section 9.5, respectively, Finally,

we provide a summary of this chapter in Section 9.6.

9.1 Experimental Setup and Performance Metrics

We repeat the previous experiments with unlimited TTL by setting the initial TTL

to 400. In the previous experiments, the initial TTL is set to eight. The summary of

the experimental parameter setup is presented in Table 9.1.

The same notation as in the previous experiments is used to refer to the type of

provider peer selection strategy and the profile representation for each experiment

configuration. In addition, for the same parameter setup but using unlimited TTL, a

suffix “-400”, will be added. For example, “Jaccard-400” refers to a set of experiments

using a common interest strategy with item-based profile representation and with

unlimited TTL.

In addition to the quality of received documents, and the dissemination speed

and distance of relevant documents, we also measure the dissemination cost. The

dissemination cost is measured in terms of average pull load per pull interval to

observe the cost introduced by the protocol with unlimitted TTL. We defined the pull

load in Table 6.2, which is the number of messages transferred for each pull response.
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Table 9.1: Experimental parameter setup to study the effect of Time-To-Live (TTL)

Property Value

Peer Profile representation Item-based
Term-based

Provider peer selection Common Interest
Random
Hybrid1, Hybrid2, Hybrid3

System Publishing rate 1 documents per 4 cycles
(Poisson distribution)

Pull Interval 20 cycles (periodically)

TTL 400

Size of provider peers 3-15

Maximum Update 160 cycles

Number of random seeds 10

The pull load per pull interval will account for all of the messages transferred in each

pull interval.

Recall that with limited TTL (TTL=8), the systems using the hybrid strategy

with β = 10−3 (Hybrid3) give very similar performance as the systems using the

common interest strategy. In addition, there is no statistically difference between

this two provider peer selection strategies. For clarity of the graphical presentation,

we do not include Hybrid3 with limited TTL in the graphical results. Reader can

use the result of Jaccard and Cosine as a reference for Hybrid3-Jaccard and Hybrid3-

Cosine respectively. Furthermore, the TTL does not affects the performance of the

system using the random strategy. As a result, we do not include the results of

Random and Random-400 for further discussion. For, Hybrid2 and Hybrid1, the

effects of the TTL on the system performance and network property are similar to

Hybrid3 with smaller degrees as the exploration parameter β increases. We did an

ANOVA statistical analysis to test for statistical significance of the effect of TTL

on the common interest strategy and the hybrid strategy with β = 10−3 (Hybrid3).
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The results of the complete full factorial model of ANOVA test are presented in

Appendix C.

Hence, the rest of this chapter presents a comparison of the systems using the com-

mon interest strategy with limited and unlimited TTL, and the hybrid strategy with

β = 10−3 with limited and unlimited TTL, as representative results. The notation of

the system disscussed in this chapter is presented in Table 9.2. The complete experi-

mental results of experiments on unlimited TTL are presented in Appendix A. Next,

we discuss the results in terms of the quality of received document metadata, the

dissemination speed and distance of relevant document metadata, the dissemination

cost, and the self-organizing network property.

Table 9.2: Notation for the analysis on the effects of TTL

Notation Selection strategy Profile TTL

Jaccard Common interest Item-based Limited
Jaccard-400 Common interest Item-based Unlimited

Hybrid3-Jaccard Hybrid with β = 10−3 Item-based Limited
Hybrid3-Jaccard-400 Hybrid with β = 10−3 Item-based Unlimited

Cosine Common interest Term-based Limited
Cosine-400 Common interest Term-based Unlimited

Hybrid3-Cosine Hybrid with β = 10−3 Term-based Limited
Hybrid3-Cosine-400 Hybrid with β = 10−3 Term-based Unlimited

9.2 Quality of Received Documents

We present experiment results and discuss the effect of TTL in regards of the quality

of received document metadata in terms of precision, recall, and F-score.

9.2.1 Experiment Results

Precision We present the effect of TTL in term of precision in Figure 9.1. The

results show that in both profile representations, the common-interest strategy and

Hybrid3 with unlimited TTL give higher precision than the system with limited TTL.
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The results from the ANOVA test indicate that the effect of TTL is statistically signif-

icance on the precision (F = 8024.0, df = 1 and 4752, p < 0.001, partial η2 = 0.628).

The partial η2 of the effect of TTL on the precision is greater than 0.50, which indi-

cates that the overall variance of the precision is moderately influenced by the TTL.

The full analysis indicates that the type of profile representation is the main effect

on the precision for the system using the common interest and Hybrid3 strategies,

with the partial η2 equals 0.830. On average, when the number of provider peers is

greater than or equals eight, Jaccard-400 and Cosine-400 give 18.0% and 11.6% im-

provement over Jaccard and Cosine, in terms of precision, respectively. In addition,

Hybrid3-Jaccard-400 and Hybrid3-Cosine-400 give 15.7% and 9.8% improvement over

Hybrid3-Jaccard and Hybrid3-Cosine, respectively.
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Figure 9.1: The comparison of the Shrack networks with limited and unlimited TTL
in term of precision as the size of provider peer increases.

Recall In general as depicted in Figure 9.2, the systems with unlimited TTL pro-

vide very small improvement in terms of recall over the systems with limited TTL.

Furthermore, for the common interest strategy with item-based profile representation,

the results show reverse effects. When the number of provider peers is greater than

six, Jaccard-400 gives lower recall than Jaccard. On average, when the number of
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Figure 9.2: The comparison of the Shrack networks with limited and unlimited TTL
in term of recall as the size of provider peer increases.
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Figure 9.3: The comparison of the Shrack networks with limited and unlimited TTL
in term of F-score as the size of provider peer increases.

provider peers is greater than or equals eight, Hybrid3-Jaccard-400, Cosine-400, and

Hybrid3-Cosine-400 give 0.05%, 0.9% and 3.0% improvement over Hybrid3-Jaccard,

Cosine, and Hybrid3-Cosine in terms of recall, respectively. On the other hand, Jac-

card outperforms Jaccard-400 by 7.9%, on average, when the number of provider
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peers is greater than or equals to eight.

The results from the ANOVA test indicates that the effect of TTL is statistically

significance on the recall (F = 377.4, df = 1 and 4752, p < 0.001, partial η2 = 0.074).

However, the partial η2 suggests that the TTL does not practically affect the recall.

TTL only accounted for 7.4% of the overall variance of the recall. The best predictor

for the recall for the system using the common-interest and Hybrid3 strategies is the

number of provider peers, with partial η2 = 0.884.

F-score The comparison of performance in term of F-score is depicted in Figure 9.3.

The systems with unlimited TTL outperforms the systems with a limited TTL. When

the number of provider peers is greater or equals eight, Jaccard-400 and Hybrid3-

Jaccard-400 outperform Jaccard and Hybrid3-Jaccard by 2.6% and 9.2%, respectively.

In addition, Cosine-400 and Hybrid3-Cosine-400 outperform Cosine and Hybrid3-

Cosine by 6.6% and 6.9%, respectively.

The results from the ANOVA test indicates that the effect of TTL is statistically

significance on the F-score (F = 5175.1, df = 1 and 4752, p < 0.001, partial η2 =

0.521). The partial η2 suggests that the TTL is the second best predictor that affects

F-score with partial η2 = 0.521. TTL accounted for more than 50% of the overall

variance of the F-score. The best predictor for the F-score for the system using the

common-interest and Hybrid3 strategies is the profile representation, with partial

η2 = 0.647.

9.2.2 Discussion

With unlimited TTL, the systems not only allow messages to reach more relevant

peers, but also allow peers to select better provider peers that have common interest

with the local peers. As a result, the systems with unlimited TTL have statistically

higher precision than the system with limited TTL. However, by having provider peers

that are too similar in common interests causes negative effects in terms of recall to

the common interest strategy with item-based profile representation (Jaccard-400).

When the number of provider peers is greater than five, Jaccard-400 gives less recall

than Jaccard. This is because, with unlimited TTL, peers discover and have more
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knowledge about other peers in the network, they can pick a better top-most common

interest provider peers.

For item-based profile representations, the common interest profile is represented

by a set of relevant documents. When the provider peers are too similar, they dissem-

inate a highly overlapped set of documents to a local peer. As a result, a local peer

receives less variety of documents, which affects the system in terms of recall. On the

other hand, the term-based profile representation is not as sensitive to the provider

peers with high common interest as the item-based profile representation, because a

local peer semantically abstract the common interests from document contents. As a

result, their provider peers disseminate documents that are conceptually relevant to

the local peers, which provides more variety of documents than provider peers that

disseminate the same documents in the item-based profile representation. The results

show a small randomness can solve this problem. With unlimited TTL, the hybrid

with β equals 10−3 with item-based profile representation (Hybrid3-Jaccard-400) does

not have a problem with having too similar in common interests of provider peers. As

a result, overall, Hybrid3-Jaccard-400 gives the best performance in terms of F-score.

9.3 Dissemination Speed and Distance

We present the effect of TTL in terms of the relevant pull delay and relevant path

length.

9.3.1 Experiment Results

The comparison of the relevant pull delay and relevant path length is shown in Fig-

ures 9.4 and 9.5, respectively. The results show that the relevant pull delay and

relevant path length of the systems with unlimited TTL are higher than the systems

with limited TTL. However, in general, the difference is small; i.e., their relevant pull

delay is less than one pull interval, on average, and their relevant path length is less

than three hops, on average.

The effects of TTL is the highest when the number of provider peers equals three.

On average, the systems with unlimited TTL have about 20 cycles larger relevant pull
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Figure 9.5: The comparison of the Shrack networks with limited and unlimited TTL
in term of relevant path length as the size of provider peer increases.

delay and four hops longer relevant path length than the systems with the limited

TTL. When the number of provider peers is larger than or equals eight, the systems

with unlimited TTL have 3.5 cycles larger relevant pull delay and 1.8 hops longer

relevant path length than the systems with the same experiment parameters, but
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their TTL equals eight.

The results from the ANOVA test indicate that the effect of TTL is statistically

significance on the relevant pull delay (F = 5685.4, df = 1 and 4752, p < 0.001,

partial η2 = 0.545) and the relevant path length (F = 57161.4, df = 1 and 4752,

p < 0.001, partial η2 = 0.923) of the systems using the common-interest and Hybrid3

provider peer selection strategies. The partial η2 suggests that the TTL accounted

for more than 50% and 90% of the overall variance of the relevant pull delay and

the relevant path length, respectively. In addition, TTL is the best predictor of the

relevant path length and it is the second best predictor of the relevant pull delay. The

best predictor of the relevant pull delay is the number of provider peers (with partial

η2 = 0.956).

9.3.2 Discussion

Originally, TTL is introduced as part of a mechanism to ensure that the dissemination

of Shrack messages will be terminated and to avoid their circulation in the network

forever. The initial value of the TTL is a system-wide predefined value, which needed

to be tuned for each community. As shown in the experiments, when the number of

provider peers is small, the predefined TTL equals eight that is used in the previous

experiments is actually too small for a message to disseminate to relevant peers for a

system using a common interest or Hybrid3 strategy . On average, when the number of

provider peers equals three, the relevant path length of the common interest strategy

networks with unlimited TTL are greater than ten, which is higher than the predefined

value of TTL.

In general, when the number of provider peers is greater than five, on average, the

common interest strategy networks with unlimited TTL have the relevant path length

closer to eight. However, the TTL does not affect the network greatly, because their

characteristic path length is less than six. On average, there exists a path that is less

than eight for a message to be disseminated to relevant peers. On the other hand,

when the number of provider peers equals three, their characteristic path length is

greater than or equal to eight. As a result, we can see a strange drop of the relevant

path length of the common interest strategy networks when the number of provider



133

peers equals three, comparing with other type of networks. Since the systems with

unlimited TTL have comparatively higher relevant path length than the limited TTL,

they have higher relevant pull delay, but relatively small (less than 10 cycles or half

of pull interval on average).

9.4 Dissemination Cost

The dissemination cost is measured in term of average pull load for each pull interval

average over all peers, which from now will be refered as pull load.

9.4.1 Experiment Results

We present the comparison of dissemination cost in terms of pull load in Figure 9.6.

We also include pull load of the Shrack networks with random selection strategy. We

give labels of the random strategy with limited and unlimited TTL as Random and

Random-400, respectively. The results show that the systems with unlimited TTL

have higher pull load than the systems with limited TTL. However, the systems using

the common-interest strategy and Hybrid3 with unlimited TTL have significantly less

pull load than the random strategy with TTL equals eight. On average, when the

number of provider peers is greater than or equals eight, Jaccard-400 and Cosine-

400 have 14.2% and 20.8% higher pull load that Jaccard and Cosine, respectively. In

addition, Hybrid3-Jaccard-400 and Hybrid3-Cosine-400 have 16.5% and 21.5% higher

pull load than Hybrid3-Jaccard and Hybrid3-Cosine, respectively, on average, when

the number of provider peers is greater than or equals eight.

The results from the ANOVA test indicate that the effect of TTL is statistically

significant on the pull load (F = 156.2, df = 1 and 4752, p < 0.001, partial η2 =

0.032) of the systems using the common-interest and Hybrid3 provider peer selection

strategies. However, the partial η2 suggests that the TTL does not practically affect

the pull load; TTL only accounted for 3.2% of the overall variance of pull load.

The best predictor of the pull load is the number of provider peers (with partial

η2 = 0.418).
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Figure 9.6: The comparison of the Shrack networks with limited and unlimited TTL
in term of dissemination load per pull interval as the size of provider peer increases.

9.4.2 Discussion

The experimental results show that the systems with unlimited TTL have higher

dissemination cost than the systems with limited TTL. With unlimited TTL, the

system allows Shrack messages to be disseminated to all connected peers with common

interests without the control of number of hops after which the messages should be

discarded. As a result, there are more messages transferred among peers in the

networks. Shrack peers in the system with unlimited TTL control the number of

messages transfers by (1) discarding non-relevant messages to the local peers, (2)

discarding duplicate messages they received, and (3) transferring messages only since

the update time included in the pull request.

Peers in the random strategy do not get benefits from the provider peers to filter

out (discard) non-relevant messages. Hence, they have more pull load from non-

relevant messages than peers in the common-interest strategy. In addition, recall

that each pull request includes an update time which is the time of the previous pull

request that a local peer sent to the provider peer. The update time defines the

oldest Shrack messages the provider peer should send back to the local peer. Since,

the system using the common-interest strategy and Hybrid3 usually pull messages
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from the same group of provider peers, their network topology are less dynamic than

the network topology of peers in the random strategy. Hence, the average update

interval in each pull request in the common-interest networks is less than peers in the

update interval in the random networks, and as a result, peers in the common-interest

strategy have less messages transferred among peers on average. Note that in our

experiments, peers in the random strategy usually have the update time bounded by

the predefined maximum update time. This could be fine tuned and further analysed

for an optimal maximum update time for the random strategy for those who are

interested in this strategy.

9.5 Self-Organizing Network Property

We present the effect of TTL in terms of clustering coefficient, characteristic path

length, and degree distribution.

9.5.1 Experiment Results

In general, the networks with limited and unlimited TTL all have similar cluster-

ing coefficient, characteristic path length, and in-degree distribution. However, the

systems with unlimited TTL do have slightly higher clustering coefficient and char-

acteristic path length than the system with limited TTL, as shown in Figures 9.7

and 9.8, respectively.

Figure 9.7 shows that, for any number of provider peers, Hybrid3-Jaccard-400 and

Jaccard-400 have larger clustering coefficient than Jaccard, and Hybrid3-Cosine-400

and Cosine-400 have larger clustering coefficient than Cosine. In addition, Figure 9.8

shows that, Hybrid3-Jaccard-400 and Jaccard-400 have slightly larger characteristic

path length than Jaccard, and Hybrid3-Cosine-400 and Cosine-400 also have slightly

larger characteristic path length than Cosine, in any number of provider peers. Fur-

thermore, the results shows that TTL does not affect the in-degree distribution of the

networks. Figure 9.9 shows that Jaccard, Jaccard400, and Hybrid-Jaccard400 have

the same in-degree distribution.

The results for the ANOVA test indicate that the effect of TTL is statistically
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significance on the clustering coefficient (F = 10709.1, df = 1 and 4752, p < 0.001,

partial η2 = 0.693) and the characteristic path length (F = 1185.3, df = 1 and 4752,

p < 0.001, partial η2 = 0.200). The partial η2 suggests that the TTL is the main

effect on the clustering coefficient, which accounted for 69.3% of the overall variance
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of the clustering path length. On the other hand, the TTL moderately affects the

characteristic path length, which accounted for 20% of the overall variance of the

characteristic path length. The best predictor for the characteristic path length is

the number of provider peers (with partial η2 = 0.858).

9.5.2 Discussion

Experimental results show that the TTL significantly affects the clustering coefficient

of the self-organizing property of networks. For all types of provider peers and profile

representations, the systems with unlimited TTL gives better performance than the

systems with limited TTL. However, their self-organizing network properties are still

the same. This indicates that the system does not require TTL to limit the number

of hops a message should be disseminated. Peers can form a self-organizing filtering

community and discard non-relevant messages from the system. In addition, the

system also has other mechanisms to terminate messages including a history list and

an update field in pull request. The history list provides a mechanism to discard

messages that a local peer has previously seen and the update field can discard old

messages from the system.



138

9.6 Summary

In this chapter, we discuss the effect of TTL on the self-organizing Shrack network.

We compare the system between limited TTL and unlimited TTL. The experimental

results show that with unlimited TTL, the systems allow messages to reach more

relevant peers and allow peers to select better provider peers that have common

interests with the local peers. However, having provider peers that are too similar

may cause negative effects in terms of recall.

In general, the system with unlimited TTL significantly improves the performance

in term of precision and recall, as a result, it gives higher F-score than the system with

limited TTL. This shows that the Shrack peers can eliminate non-relevant messages

and perform better without TTL. The statistic analysis also shows that the main effect

on the dissemination cost is the number of provider peers not the TTL. In addition,

the TTL does not significantly effect the property of self-organizing networks.



Chapter 10

Conclusion

We design Shrack with a motivation to reduce a tedious task of users that need

to constantly search and keep track of new information from different sources. We

expect that Shrack will broaden the information sources and narrow down the infor-

mation views for users; that is, Shrack will increase visibility for users to keep track

of information in which they are interested with minimum effort.

We summarize the contributions of this work in Section 10.1 and provide future

work directions in Section 10.2.

10.1 Contributions

We propose a novel framework for a peer-to-peer collaborative environment that sup-

ports document sharing and tracking, namely Shrack. Shrack peers autonomously

learn about the interests of their users and form a collaborative network with other

peers. The peers keep track of new documents that are published in the system and

are potentially of interest to their users. Shrack is different from existing document

tracking tools such as RSS, Newsgroups or Mailing lists in that (1) Shrack peers find

information that is of interest to the users automatically from different sources with-

out an explicit subscription and (2) each user receives information based on his/her

individual interests. As a result, each user in Shrack can receive information from a

larger spectrum but unique to his/her interests.

Shrack extends the utility of existing peer-to-peer file sharing systems beyond

the support for instant querying. We add functionality of the existing peer-to-peer

document sharing systems to support document tracking based on a long-term interest

of the user. Although in this thesis, we focus on document tracking, instant querying

can be seamlessly incorporated in Shrack by issuing the query among peer groups.

In this thesis, we define the Shrack framework and present a Shrack prototype

139
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system and simulation to validate the thesis’ hypotheses. The hypotheses of this

thesis are (1) a pull-only information dissemination is scalable in a large-scale P2P

system and (2) self-organizing networks based on common interest of document sets

can enhance relevance of documents received by peers in terms of F-score. To validate

our hypotheses, we develop a pull-only information dissemination protocol and self-

organizing network strategies in Shrack, build a simulation environment to study

behaviour of Shrack, and define evaluation techniques and metrics to evaluate the

performance of the dissemination protocol and the Shrack self-organizing networks.

The contributions of this thesis can be summarized in five topics as follows:

1. Shrack Framework;

2. Shrack Dissemination Protocol;

3. Self-Organizing Shrack Network;

4. Simulation Environment; and

5. Evaluation Methodologies.

A summary of each topic are presented next.

10.1.1 Shrack Framework

We define the Shrack architecture form a peer’s perspective including peer compo-

nents and main modules. We discuss characteristics of the Shrack network and define

peer functionality. The framework can be used for any kind of data, however, we

focus on sharing and tracking of research publications.

10.1.2 Shrack Dissemination Protocol

We develop the Shrack information dissemination protocol using pull-only communi-

cation. The dissemination protocol is tested in a scenario where all peers are interested

in all document, and peers are connected in random network and small-world network

configurations. The results support the first hypothesis that a pull-only information

dissemination is scalable in a large-scale P2P system. In both network configurations,
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the Shrack information dissemination protocol is scalable as the average pull delay

of the system follows a logarithmic function of the network size. The Shrack dissem-

ination protocol shows similar characteristics as the standard gossip-like protocol.

Moreover, the experimental results show that super peers can improve the average

dissemination speed of the system.

10.1.3 Self-Organizing Shrack Network

We develop peer-selection strategies based on common interests among peers. Peers

are connected based on their observed common interests. There is no explicit profile

exchange between peers and no global information available. As part of developing

self-organizing networks, we develop (1) a method for a peer to discover other peers

in the network, (2) a peer profile learning algorithm whereby a peer learns the inter-

ests of other peers in the network, and (3) a common-interest score between peers

whereby item-based and term-based common-interest scores are explored. We de-

scribe a strategy for peers to discover the existence of other peers and learn about

their interests locally, based on information carried in the document metadata that

propagates through the network.

We compare our proposed common interest strategy with a randomly connected

network. The results support the second hypothesis that self-organizing network based

on common interest of document sets can enhance relevance of documents received by

peers in term of F-score. Based on simulated environment using the ACM digital

library metadata, the experimental results demonstrate that the proposed strategy

gives noticeable improvement in the dissemination performance in terms of F-score

up to 27% and 14.8% over a random network using an item-based Jaccard index and

a term-based cosine similarity as a common interest score respectively.

Note that, with the common interest strategy, the system loses its reliability as

each peer connects only to peers that have highly similar interests. Consequently,

the peer may not receive all the relevant documents. These effects are shown in the

dissemination performance in terms of recall, which is less than 1. However, the recall

increases as the size of peer neighbourhood increases.
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We also demonstrate that our peer selection strategies create self-organizing net-

works that follow the characteristics of social networks, namely the small-world

property [11, 56, 75]. Particularly, our self-organizing networks—Jaccard, Cosine,

Hybrid-Jaccard3 and Hybrid-Cosine3 networks—have significantly larger clustering

co-efficient than random networks, small characteristic path length similar to random

networks, and power-law scaling in degree distribution.

10.1.4 Simulation Environment

We develop an event-based simulation called ShrackSim. ShrackSim provides a simu-

lation environment to test and study the behaviour of Shrack networks. ShrackSim is

developed on top of PeerSim—a Java based peer-to-peer simulation. ShrackSim fol-

lows the structure of PeerSim such that ShrackSim is modelled based on components,

and make it easy to quickly test and modify Shrack’s protocols and modules. Users

can set up simulation parameters through a configuration file, resulting in dynamic

loading of components. ShrackSim provides several predefined objects to monitor

the properties in which users are interested during the simulation, such as evaluation

metrics and network properties. ShrackSim is extensible and can be modified through

PeerSim components, which provide different pluggable building blocks.

10.1.5 Evaluation Methodology

We define and develop techniques to evaluate Shrack in simulated environment. Since

it is difficult to find a large group of users to evaluate and understand the behaviour

of Shrack users and the Shrack network, we introduce an artificial user model called

authorship user interest model. The authorship user interest model is created from an

existing document collection using authorship information to model simulated users

based on documents they publish and documents of interest.

We devise a methodology to study and evaluate Shrack behaviour. We divide

the simulation time into time slots and observe the evolution of the dissemination

performance according to each time slot. The dissemination performance of a set of

documents published during a given time slot is measured when the dissemination of

these documents ends, which is determined by using a heuristic criterion.
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Since information in a Shrack network is dynamic—sets of relevant documents for

each peer change with time—standard information retrieval metrics, namely preci-

sion, recall, and F-score, can not be directly applied to evaluate the quality of doc-

uments that Shrack peers receive. We define the quality of documents that Shrack

peers receive by modifying the standard information retrieval metrics such that pre-

cision, recall, and F-score are measured during the time duration when documents

are published.

10.2 Future Work

There are many aspects that can be explored and incorporated in Shrack for future

study and improvement.

Shrack Application The next step of this work is developing a Shrack application

to be deployed and tested with real users. The application would allow the users

to adjust their peer parameters such as profile representations, pull intervals, and

number of provider peers. This flexibility would facilitate the creation of super peers,

leading to an effective document distribution and tracking peer-to-peer network.

Dynamic Number of Provider Peers In the current model, the number of

provider peers is a predefined system parameter. An interesting extension to this

model would allow Shrack peers to dynamically adjust the number of provider peers

according to documents received and availability of resources.

User Interface and Document Filtering A primary objective of a peer is to

recommend to its user documents that the user finds of interest. Once the peer

acquires candidate documents from the Shrack network, it would be beneficial to filter

them before presenting them to the user. We are interested in two particular filtering

techniques: content-based filtering and collaborative filtering. The content-based

filtering approach computes the similarity between each document and the user’s

profile, and only recommends to the user documents that exceed a certain threshold.

The collaborative filtering approach utilizes the information already stored in the
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peer about other peers in the system and applies traditional collaborative filtering

algorithms to recommend documents to its user.

An alternative to using a similarity threshold is to rank the documents based on

their similarity and present the documents to the user in an ordered list. Measurement

metrics such as mean average precision (MAP) [51] can be used to compare different

similarity measures or ranking algorithms.

Security and Access Control The Shrack framework gives peers full control over

what document metadata they share. Peers may implement different forms of security

and access control as required. For instance, a publisher may authenticate its shared

document metadata to protect the publisher’s reputation. Access to the documents’

full-text can be restricted to a group of peers. For instance, a peer hosted by a univer-

sity laboratory may restrict full access to members of the laboratory or collaborating

organizations. Such restrictions aim at protecting the intellectual property rights of

the individuals or the organization. At a more personal level, Shrack can be tailored

to the needs of users concerned with privacy and security of information exchanged,

especially when Shrack is used to share sensitive information. For instance, secure

communication channels, such as TLS, ssh, or HTTPS, can be used to for secure

peer-to-peer communication. If authentication is required, standard authentication

methods can be used, such as Kerberos.

Social Network Analysis Once Shrack is deployed in the real world, it would

open the door for social network analysis. Common properties investigated in social

network analysis including identifying hubs, experts, dynamically formed interest

groups, and the social network connectivity. Further, we are interested in analyzing

the impact of introducing super-peers in a self-organizing Shrack network.

Mathematical Analysis From a theoretical perspective, we would like to analyze

the behaviour of a Shrack network using probabilistic modelling. Particularly, we

are interested in modelling the behaviour of the network as a function of publication

rate, network size, the number of provider peers, and the pull interval. Furthermore,

we are interested in modelling the dynamic nature of peers in terms of joining and
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leaving the network, publishing new metadata, and changes in the interests of the

peer users.

Alternative Sharing Model This work assumes that users share documents that

they author themselves. Following this assumption, a user model is created using the

ACM Digital Library metadata collection whereby users are modelled after authors

in the collection. An alternative user model is to assume that users are readers who

share documents authored by others that they read and find interesting. The ACM

Digital Library metadata collection can be used to model such users by exploiting

the citation graph contained within the collection. We can still model users after

authors in the collection; however, for each publication in the collection, the users

share (publish in Shrack) the documents cited by this publication, rather than the

publication itself.

Modelling Changes in User Interests One of the assumptions of the Shrack

system is that users have persistent long-term interests. In practice, user interests

may change over time. To account for gradual changes in a user’s interests, we can

revise the profile representations to utilize only a certain number of the most recent

relevant documents. This approach would account for changes in the interests of

the local user, as well as the interests of users associated with other peers. We are

interested in exploring other approaches that can account for short-term spikes in

user interests, as well as recurring interests.
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Appendix A

Complete Experimental Results of Self-Organizing Shrack

Networks with Unlimited TTL

In this appendix, we present the complete results from experiments with unlimited

TTL. We compare the results of the system with unlimited TTL among different

provider peer selection strategies with item-based and term-based profile representa-

tions. The results are presented in the aspects of the quality of received documents,

the dissemination speed and distance of relevant documents and the self-organizing

network property.
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Figure A.1: The quality of documents received in terms of precision as the num-
ber of provider peers increases using different provider peer selection strategies with
unlimited TTL: (a) an item-based profile representation; (b) a term-based profile
representation
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Figure A.2: The quality of documents received in terms of recall as the number of
provider peers increases using different provider peer selection strategies with unlim-
ited TTL: (a) an item-based profile representation; (b) a term-based profile represen-
tation



156

 0.4

 0.5

 0.6

 0.7

 0.8

 4  6  8  10  12  14

F
-s

co
re

Number of Provider Peers

Jaccard
Hybrid3-Jaccard
Hybrid2-Jaccard
Hybrid1-Jaccard

Random

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 4  6  8  10  12  14

F
-s

co
re

Number of Provider Peers

Cosine
Hybrid3-Cosine
Hybrid2-Cosine
Hybrid1-Cosine

Random

(b)

Figure A.3: The quality of documents received in terms of F-score as the num-
ber of provider peers increases using different provider peer selection strategies with
unlimited TTL: (a) an item-based profile representation; (b) a term-based profile
representation
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Figure A.4: The relevant pull delay as the number of provider peers increases using
different provider peer selection strategies with unlimited TTL: (a) an item-based
profile representation; (b) a term-based profile representation
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Figure A.5: The relevant path length as the number of provider peers increases using
different provider peer selection strategies with unlimited TTL: (a) an item-based
profile representation; (b) a term-based profile representation
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Figure A.6: The network clustering coefficient as the number of provider peers in-
creases using different provider peer selection strategies with unlimited TTL: (a) an
item-based profile representation; (b) a term-based profile representation
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Figure A.7: The network characteristic path length as the number of provider peers
increases using different provider peer selection strategies with unlimited TTL: (a)
an item-based profile representation; (b) a term-based profile representation
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Figure A.8: Example of the in-degree complementary cumulative distribution function
of the networks under different provider peer selection strategies with unlimited TTL;
(a) an item-based profile representation; (b) a term-based profile representation



Appendix B

Statistic Results of ANOVA Tests on Self-Organizing

Networks with Limited TTL

This appendix presents a complete statistic resuls of ANOVA tests on the self-

organzing Shrack networks. We did full factorial ANOVA to test statistical difference

of the experiment results. Note that “Algo” refers to the provider peer selection

strategy and “Profile” refers to the profile representation.

Table B.1: Tests of Between-Subjects Effects; Dependent Variable: Precision

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 76.671a 59 1.300 2594.229 .000 .963
Intercept 2080.699 1 2080.699 4153753.087 .000 .999

Algo 53.854 4 13.464 26877.675 .000 .948
N 11.240 5 2.248 4487.771 .000 .791

Profile 4.172 1 4.172 8327.753 .000 .584
Algo*N 4.332 20 .217 432.427 .000 .593

Algo*Profile 2.982 4 .746 1488.400 .000 .501
N*Profile .051 5 .010 20.260 .000 .017

Algo*N*Profile .039 20 .002 3.937 .000 .013
Error 2.975 5940 .001
Total 2160.345 6000

a. R Squared = .889 (Adjusted R Squared = .888)
b. Computed using alpha = .05
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Table B.2: Tests of Between-Subjects Effects; Dependent Variable: Recall

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 89.123a 59 1.511 1901.172 .000 .950
Intercept 4873.691 1 4873.691 6133954.656 .000 .999

Algo 35.372 4 8.843 11129.651 .000 .882
N 36.275 5 7.255 9131.156 .000 .885

Profile .183 1 .183 230.429 .000 .037
Algo*N 17.023 20 .851 1071.242 .000 .783

Algo*Profile .112 4 .028 35.196 .000 .023
N*Profile .094 5 .019 23.782 .000 .020

Algo*N*Profile .063 20 .003 3.991 .000 .013
Error 4.720 5940 .001
Total 4967.534 6000

Corrected Total 93.843 5999

a. R Squared = .950 (Adjusted R Squared = .949)
b. Computed using alpha = .05
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Table B.3: Tests of Between-Subjects Effects; Dependent Variable: F-score

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 18.414a 59 .312 806.388 .000 .889
Intercept 2660.118 1 2660.118 6872983.827 .000 .999

Algo 11.185 4 2.796 7224.927 .000 .830
N 1.079 5 .216 557.651 .000 .319

Profile 2.418 1 2.418 6247.657 .000 .513
Algo*N 2.194 20 .110 283.381 .000 .488

Algo*Profile 1.479 4 .370 955.222 .000 .391
N*Profile .011 5 .002 5.856 .000 .005

Algo*N*Profile .048 20 .002 6.174 .000 .020
Error 2.299 5940 .000
Total 2680.831 6000

Corrected Total 20.713 5999

a. R Squared = .889 (Adjusted R Squared = .888)
b. Computed using alpha = .05
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Table B.4: Tests of Between-Subjects Effects; Dependent Variable: Relevant Pull
Delay

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 9.440E11 59 1.600E10 4573.820 .000 .978
Intercept 6.602E12 1 6.602E12 1887173.450 .000 .997

Algo 9.484E10 4 2.371E10 6778.093 .000 .820
N 7.925E11 5 1.585E11 45308.172 .000 .974

Profile 5.241E8 1 5.241E8 149.810 .000 .025
Algo*N 5.455E10 20 2.728E9 779.719 .000 .724

Algo*Profile 8.799E8 4 2.200E8 62.883 .000 .041
N*Profile 2.507E8 5 5.014E7 14.334 .000 .012

Algo*N*Profile 4.714E8 20 2.357E7 6.739 .000 .022
Error 2.078E10 5940 3498110.537
Total 7.566E12 6000

Corrected Total 9.648E11 5999

a. R Squared = .978 (Adjusted R Squared = .978)
b. Computed using alpha = .05
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Table B.5: Tests of Between-Subjects Effects; Dependent Variable: Relevant Path
length

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 347.527a 59 5.890 1047.313 .000 .912
Intercept 190702.302 1 190702.302 3.391E7 .000 1.000

Algo 133.795 4 33.449 5947.293 .000 .800
N 163.921 5 32.784 5829.126 .000 .831

Profile 5.346 1 5.346 950.535 .000 .138
Algo*N 42.496 20 2.125 377.800 .000 .560

Algo*Profile 1.486 4 .371 66.044 .000 .043
N*Profile .211 5 .042 7.494 .000 .006

Algo*N*Profile .273 20 .014 2.425 .000 .008
Error 33.408 5940 .006
Total 191083.237 6000

Corrected Total 380.935 5999

a. R Squared = .912 (Adjusted R Squared = .911)
b. Computed using alpha = .05
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Table B.6: Tests of Between-Subjects Effects; Dependent Variable: CCO

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 21.047a 59 .357 3596.735 .000 .973
Intercept 76.545 1 76.545 771761.367 .000 .992

Algo 20.559 4 5.140 51822.718 .000 .972
N .244 5 .049 491.230 .000 .293

Profile .003 1 .003 35.071 .000 .006
Algo*N .149 20 .007 75.300 .000 .202

Algo*Profile .007 4 .002 18.748 .000 .012
N*Profile .062 5 .012 125.347 .000 .095

Algo*N*Profile .022 20 .001 10.877 .000 .035
Error .589 5940 9.918E-5
Total 98.181 6000

Corrected Total 21.636 5999

a. R Squared = .973 (Adjusted R Squared = .973)
b. Computed using alpha = .05
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Table B.7: Tests of Between-Subjects Effects; Dependent Variable: CPL

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 5904.216a 59 100.071 1885.077 .000 .949
Intercept 113106.007 1 113106.007 2130612.530 .000 .997

Algo 1173.208 4 293.302 5525.020 .000 .788
N 4640.618 5 928.124 17483.347 .000 .936

Profile 9.543 1 9.543 179.766 .000 .029
Algo*N 56.622 20 2.831 53.331 .000 .152

Algo*Profile 17.246 4 4.311 81.215 .000 .052
N*Profile 2.663 5 .533 10.033 .000 .008

Algo*N*Profile 4.317 20 .216 4.066 .000 .014
Error 315.332 5940 .053
Total 119325.555 6000

Corrected Total 6219.548 5999

a. R Squared = .949 (Adjusted R Squared = .949)
b. Computed using alpha = .05



Appendix C

Statistic Results of ANOVA Tests on the Effect of TTL

This appendix presents a complete statistic resuls of ANOVA tests on the effect of

TTL on Self-Organizing Shrack Networks. We did ANOVA test on the system using

the Common-Interest Strategy and the Hybrid Strategy with β = 10−3. Note that

“Algo” refers to the provider peer selection strategy and “Profile” refers to the profile

representation.
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Table C.1: Tests of Between-Subjects Effects; Dependent Variable: Precision

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 40.606a 47 .864 1101.660 .000 .916
Intercept 2542.897 1 2542.897 3242527.794 .000 .999

Algo .947 1 .947 1207.500 .000 .203
N 13.677 5 2.735 3487.872 .000 .786

Profile 18.180 1 18.180 23181.412 .000 .830
TTL 6.293 1 6.293 8023.976 .000 .628

Algo*N .073 5 .015 18.655 .000 .019
Algo*Profile .005 1 .005 6.071 .014 .001
Algo*TTL .102 1 .102 129.561 .000 .027
N*Profile .020 5 .004 5.097 .000 .005
N*TTL .648 5 .130 165.300 .000 .148

Profile*TTL .530 1 .530 675.775 .000 .125
Algo*N*Profile .014 5 .003 3.474 .004 .004
Algo*N*TTL .003 5 .001 .827 .530 .001

Algo*Profile*TTL .001 1 .001 1.537 .215 .000
N*Profile*TTL .110 5 .022 28.097 .000 .029

Algo*N* .004 5 .001 1.113 .351 .001
Profile*TTL

Error 3.727 4752 .001
Total 2587.229 4800

Corrected Total 44.333 4799

a. R Squared = .916 (Adjusted R Squared = .915)
b. Computed using alpha = .05
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Table C.2: Tests of Between-Subjects Effects; Dependent Variable: Recall

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 57.967a 47 1.233 878.023 .000 .897
Intercept 3312.097 1 3312.097 2.358E6 .000 .998

Algo 1.757 1 1.757 1251.054 .000 .208
N 51.027 5 10.205 7265.367 .000 .884

Profile .139 1 .139 99.308 .000 .020
TTL .531 1 .531 377.738 .000 .074

Algo*N .140 5 .028 19.898 .000 .021
Algo*Profile .219 1 .219 155.826 .000 .032
Algo*TTL .469 1 .469 333.540 .000 .066
N*Profile .167 5 .033 23.836 .000 .024
N*TTL 2.556 5 .511 363.897 .000 .277

Profile*TTL .788 1 .788 560.995 .000 .106
Algo*N*Profile .022 5 .004 3.130 .008 .003
Algo*N*TTL .008 5 .002 1.150 .331 .001

Algo*Profile*TTL .132 1 .132 93.836 .000 .019
N*Profile*TTL .010 5 .002 1.490 .189 .002

Algo*N* .001 5 .000 .189 .967 .000
Profile*TTL

Error 6.675 4752 .001
Total 3376.738 4800

Corrected Total 64.642 4799

a. R Squared = .897 (Adjusted R Squared = .896)
b. Computed using alpha = .05
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Table C.3: Tests of Between-Subjects Effects; Dependent Variable: F-score

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 13.075a 47 .278 431.237 .000 .810
Intercept 2596.268 1 2596.268 4.025E6 .000 .999

Algo .091 1 .091 140.757 .000 .029
N 3.169 5 .634 982.575 .000 .508

Distance 5.607 1 5.607 8692.144 .000 .647
TTL 3.338 1 3.338 5175.071 .000 .521

Algo*N .010 5 .002 2.970 .011 .003
Algo*Distance .185 1 .185 286.012 .000 .057

Algo*TTL .115 1 .115 178.908 .000 .036
N*Distance .087 5 .017 26.978 .000 .028

N*TTL .305 5 .061 94.688 .000 .091
Distance*TTL .011 1 .011 16.778 .000 .004

Algo*N*Distance .012 5 .002 3.837 .002 .004
Algo*N*TTL .006 5 .001 1.962 .081 .002

Algo*Distance*TTL .107 1 .107 165.248 .000 .034
N*Distance*TTL .030 5 .006 9.194 .000 .010

Algo*N* .001 5 .000 .437 .823 .000
Distance*TTL

Error 3.065 4752 .001
Total 2612.408 4800

Corrected Total 16.140 4799

a. R Squared = .810 (Adjusted R Squared = .808)
b. Computed using alpha = .05
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Table C.4: Tests of Between-Subjects Effects; Dependent Variable: Relevant Pull
Delay

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 4.385E11 47 9.331E9 2410.051 .000 .960
Intercept 4.861E12 1 4.861E12 1.256E6 .000 .996

Algo 4.601E9 1 4.601E9 1188.350 .000 .200
N 4.012E11 5 8.025E10 20727.289 .000 .956

Profile 3.444E9 1 3.444E9 889.482 .000 .158
TTL 2.201E10 1 2.201E10 5685.433 .000 .545

Algo*N 2.281E7 5 4.562E6 1.178 .317 .001
Algo*Profile 5.241E6 1 5.241E6 1.354 .245 .000
Algo*TTL 3.974E8 1 3.974E8 102.642 .000 .021
N*Profile 7.029E7 5 1.406E7 3.631 .003 .004
N*TTL 3.265E9 5 6.530E8 168.671 .000 .151

Profile*TTL 3.186E9 1 3.186E9 823.017 .000 .148
Algo*N*Profile 7.690E7 5 1.538E7 3.972 .001 .004
Algo*N*TTL 1.035E7 5 2.071E6 .535 .750 .001

Algo*Profile*TTL 3.015E6 1 3.015E6 .779 .378 .000
N*Profile*TTL 6.118E7 5 1.224E7 3.161 .007 .003

Algo*N* 1.516E8 5 3.033E7 7.834 .000 .008
Profile*TTL

Error 1.840E10 4752 3871611.103
Total 5.318E12 4800

Corrected Total 4.569E11 4799

a. R Squared = .960 (Adjusted R Squared = .959)
b. Computed using alpha = .05
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Table C.5: Tests of Between-Subjects Effects; Dependent Variable: Relevant Path
Length

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 5029.270a 47 107.006 1436.097 .000 .934
Intercept 212871.088 1 212871.088 2.857E6 .000 .998

Algo 2.643 1 2.643 35.475 .000 .007
N 512.529 5 102.506 1375.704 .000 .591

Profile 94.019 1 94.019 1261.799 .000 .210
TTL 4259.182 1 4259.182 57161.402 .000 .923

Algo*N .533 5 .107 1.430 .210 .002
Algo*Profile .013 1 .013 .176 .675 .000
Algo*TTL 1.008 1 1.008 13.526 .000 .003
N*Profile 6.871 5 1.374 18.442 .000 .019
N*TTL 93.689 5 18.738 251.475 .000 .209

Profile*TTL 45.163 1 45.163 606.119 .000 .113
Algo*N*Profile 3.600 5 .720 9.664 .000 .010
Algo*N*TTL .498 5 .100 1.338 .245 .001

Algo*Profile*TTL 3.931E-5 1 3.931E-5 .001 .982 .000
N*Profile*TTL 5.368 5 1.074 14.408 .000 .015

Algo*N* 4.155 5 .831 11.152 .000 .012
Profile*TTL

Error 354.079 4752 .075
Total 218254.437 4800

Corrected Total 5383.349 4799

a. R Squared = .934 (Adjusted R Squared = .934)
b. Computed using alpha = .05
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Table C.6: Tests of Between-Subjects Effects; Dependent Variable: CCO

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 2.976a 47 .063 312.699 .000 .756
Intercept 158.414 1 158.414 782351.067 .000 .994

Algo .006 1 .006 27.163 .000 .006
N .404 5 .081 398.732 .000 .296

Profile .123 1 .123 609.508 .000 .114
TTL 2.168 1 2.168 10709.111 .000 .693

Algo*N .002 5 .000 2.421 .034 .003
Algo*Profile 6.525E-5 1 6.525E-5 .322 .570 .000
Algo*TTL 7.039E-5 1 7.039E-5 .348 .555 .000
N*Profile .108 5 .022 107.070 .000 .101
N*TTL .020 5 .004 19.763 .000 .020

Profile*TTL .124 1 .124 613.931 .000 .114
Algo*N*Profile .003 5 .001 2.814 .015 .003
Algo*N*TTL .004 5 .001 3.728 .002 .004

Algo*Profile*TTL .001 1 .001 2.566 .109 .001
N*Profile*TTL .006 5 .001 5.639 .000 .006

Algo*N* .007 5 .001 6.611 .000 .007
Profile*TTL

Error .962 4752 .000
Total 162.352 4800

Corrected Total 3.938 4799

a. R Squared = .756 (Adjusted R Squared = .753)
b. Computed using alpha = .05
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Table C.7: Tests of Between-Subjects Effects; Dependent Variable: CPL

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 4340.723a 47 92.356 655.175 .000 .866
Intercept 114468.363 1 114468.363 812041.982 .000 .994

Algo 33.345 1 33.345 236.551 .000 .047
N 4046.384 5 809.277 5741.033 .000 .858

Profile 70.886 1 70.886 502.866 .000 .096
TTL 167.091 1 167.091 1185.345 .000 .200

Algo*N 2.830 5 .566 4.015 .001 .004
Algo*Profile 2.338 1 2.338 16.584 .000 .003
Algo*TTL .622 1 .622 4.415 .036 .001
N*Profile 5.022 5 1.004 7.125 .000 .007
N*TTL .815 5 .163 1.156 .328 .001

Profile*TTL 2.121 1 2.121 15.049 .000 .003
Algo*N*Profile 3.001 5 .600 4.258 .001 .004
Algo*N*TTL .976 5 .195 1.385 .227 .001

Algo*Profile*TTL .046 1 .046 .326 .568 .000
N*Profile*TTL 2.996 5 .599 4.251 .001 .004

Algo*N* 2.251 5 .450 3.193 .007 .003
Profile*TTL

Error 669.859 4752 .141
Total 119478.945 4800

Corrected Total 5010.582 4799

a. R Squared = .866 (Adjusted R Squared = .865)
b. Computed using alpha = .05
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Table C.8: Tests of Between-Subjects Effects; Dependent Variable: Pull Load

Source Type III df MS F Sig. Partial
SSQ η2

Corrected Model 259325.498a 47 5517.564 98.524 .000 .494
Intercept 1.054E6 1 1.054E6 18827.639 .000 .798

Algo 180.826 1 180.826 3.229 .072 .001
N 191147.627 5 38229.525 682.640 .000 .418

Profile 47045.337 1 47045.337 840.058 .000 .150
TTL 8748.485 1 8748.485 156.216 .000 .032

Algo*N 40.660 5 8.132 .145 .981 .000
Algo*Profile 24.605 1 24.605 .439 .507 .000
Algo*TTL 29.836 1 29.836 .533 .465 .000
N*Profile 11756.640 5 2351.328 41.986 .000 .042
N*TTL 267.122 5 53.424 .954 .445 .001

Profile*TTL 56.308 1 56.308 1.005 .316 .000
Algo*N*Profile 4.978 5 .996 .018 1.000 .000

Profile
Algo*N*TTL 3.782 5 .756 .014 1.000 .000

Algo*Profile*TTL 9.654 1 9.654 .172 .678 .000
N*Profile*TTL 7.309 5 1.462 .026 1.000 .000

Algo*N* 2.330 5 .466 .008 1.000 .000
Profile*TTL

Error 266123.874 4752 56.002
Total 1579844.227 4800

Corrected Total 525449.372 4799

a. R Squared = .494 (Adjusted R Squared = .489)
b. Computed using alpha = .05



Appendix D

ShrackSim: A Shrack Simulator

This chapter provides details of implementation of ShrackSim and describe how to

use ShrackSim. We first present the main components of ShrackSim in Section D.1.

After that, we explain the configuration file in Section D.2. Finally, we explain how

to run and evaluate experiments in Section D.3.

D.1 Main Components of ShrackSim

This section explains main components of ShrackSim. First, we describe ShrackNode

and its related components. After that, we explain Control classes, and then, describe

interface and abstract classes.

D.1.1 ShrackNode and Related Components

Figure D.1 shows the main components that model a Shrack peer and their related

components and protocols. Classes with gray background colour are classes that exist

in PeerSim. We have already explained Node, Protocol, EDProtocol, and Linkable

classes in Section 5.3.2 (page 61). Following is the description of GeneralNode,

ShrackNode, UserModel, ShrackProtocol, ShrackNeighbourhood,

PullRequestGenerator, and PublishProtocol classes.

GeneralNode: A default Node class in PeerSim that implements Node interface,

which is used to compose an overlay network.

ShrackNode: An extension of GeneralNode that represents a Shrack peer. Each

ShrackNode is associated with a predefined artificial user, which is represented by

UserModel. ShrackNode also keeps status and local statistic of each peer. Each
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Figure D.1: ShrackSim main components
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ShrackNode runs four protocols, namely ShrackProtocol, ShrackNeighbourhood,

PullRequestGenerator, and PublishProtocol.

UserModel: UserModel represents an artificial user that is associated with a Shrack

peer (ShrackNode). A UserModel consists of a user identifier, a list of publications

that the associated peer will publish during the simulation, and a list of interest

(publication) groups of which the peer should keep track.

ShrackProtocol: The main event-driven protocol that implements the Shrack dis-

semination protocol, which processes pull requests and pull responses.

The ShrackProtocol class implements the Pull Procedure represented in Section 4.1.2

(page 36). It contains ShrackNeighbourhood and PullRequestGenerator. The

ShrackNeighbourhood provides the contact of provider peers and

PullRequestGenerator issues pull requests to provider peers. The ShrackProtocol

class also contains other three main interfaces that can be dynamically loaded from

the configuration file including Filter, NeighbourSelector, and LocalProfile. We

describe these three interfaces later in Section D.1.3.

ShrackNeighbourhood: A protocol that implements Linkable, creating the simu-

lation overlay network that maintains a list of provider peers, a list of known peers,

and profiles of known peers. The ShrackNeighbourhood class associates with a

NeighbourProfile interface, described in Section D.1.3, that can be dynamically

loaded from the configuration file.

PullRequestGenerator: An event-driven protocol that generates pull requests to

provider peers.

PublishProtocol: An event-driven protocol that runs publish events. A publish

event is an event that a peer publishes or injects a publication into the network.

The ShrackProtocol, PullRequestGenerator, and PublishProtocol classes are

an extension (implementation) of EDProtocol.
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Figure D.2: ShrackSim initializer classes

D.1.2 Control Classes

There are two kinds of Control classes: (1) Control classes that are used for setting

up the initial states of each protocol and the event queue, namely initializer classes,

and (2) Control classes that are used for observing the Shrack behaviours during the

simulation, namely observer classes. Both initializer and observer classes implement

the PeerSim Control interface.

Initializer Classes

There are five main initializer classes for initializing ShrackSim components, called

ACMUserInitializer, EmptyDocSetInitializer, TermBasedDocSetInitializer,

ShrackProtocolInitializer, and PublishEventGen, as shown in Figure D.2. The

initializer classes are called at the start of the simulation. Next, we provide the

description of each class.

ACMUserInitializer: An initializer that initializes an artificial user (UserModel)

for each peer. The ACMUserInitializer initializes UserModel from predefined input
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files and is assigned to each peer (ShrackNode) in the network.

EmptyDocSetInitializer: An initializer that initializes a set of documents to be

used during the simulation. The EmptyDocSetInitializer only keeps information

of an identifier, a list of authors, and a list of publication groups of each publication.

This information is sufficient for creating item-based peer profiles. The simulator

does not need information of the document content.

TermBasedDocSetInitializer: A document set initializer that initializes a set of

documents similar to EmptyDocSetInitializer with an additional information of

term-based vector representation of documents. The TermBasedDocSetInitializer

class is an extension of EmptyDocSetInitializer and is suitable for creating term-

based peer profiles.

ShrackProtocolInitializer: An initializer that schedules to start up

ShrackProtocol for each peer. The ShrackProtocolInitializer controls when

each peer starts pulling Shrack messages from, or issuing a pull request to, its provider

peers. In the current implementation, ShrackProtocolInitializer randomly sched-

ules a peer to start issuing a pull request within a predefined cycle.

PublishEventGen: An initializer that schedules PublishProtocol. The

PublishEventGen initializer schedules which peer publishes which documents and at

which simulation cycle. In the current implementation, PublishEventGen schedules

that documents are published in the system by the peer associated with the first

author. The publication time follows a Poisson distribution with a predefined average

publishing rate.

Observer Classes

The observer classes are an implementation of Control that is used to observe the

status of Protocol and components in the network. The observer classes are run

periodically at a predefined step. There are several observer classes provided by

PeerSim, as well as several new observer classes introduced in ShrackSim. The four
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commonly used observers are; SlidingSlotRecvDocQuality, SCCDist, Clustering,

and InDegreeObserver. Next, we give the description of each observer class.

SlidingSlotRecvDocQuality: The main observer class that evaluates Shrack mes-

sages that peers receive. Five main evaluation metrics are used, namely precision,

recall, f-score, relevant pull delay and relevant path length. The

SlidingSlotRecvDocQuality observer is used to evaluate provider peer selection

strategies in Shrack. It evaluates messages that peers receive that are published in

the network during each observed time slot.

SCCDist: An observer class that measures the shortest path length (or distance)

between two nodes in the largest strongly connected component of the network. The

average distance between two nodes defines the characteristic path length of the

network.

Clustering: An observer class that measures the clustering coefficient of nodes in

the network.

InDegreeObserver: An observer class that measures the in-degree statistics of

nodes in the network.

D.1.3 ShrackSim Interface and Abstract Classes

ShrackSim provides three main interfaces and one abstract class for users to develop

and test different modules in Shrack, namely KnownPeerProfile, LocalProfile,

NeighbourSelector, and Filter. At present, ShrackSim provides classes that sup-

port the prototype system as described in Chapter 4 (page 33). Figure D.3 shows the

ShrackSim interfaces and abstract class, and their current implementation classes.

The interfaces and the abstract class are highlighted with dark-gray text colour. The

details of each class are described next.

KnownPeerProfile: An abstract class that manages statistics of each known peer

and provides a method to update the profile of a known peer. Each known peer has
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Figure D.3: ShrackSim interface and abstract classes
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its own KnownPeerProfile object. Each ShrackNeighbourhood instance maintains

a list of peers of which each local peers are aware, hence each ShrackNeighbourhood

consists of several KnownPeerProfile instances. ShrackSim has an abstract method

for a peer to update profiles of known peers according to a given set of Shrack mes-

sages. At present, ShrackSim provides three implementations of KnownPeerProfile:

NoKnownPeerProfile, ItemBasedKnownPeerProfile, and

TermBasedKnownPeerProfile. The NoKnownPeerProfile class does nothing. It

serves as a empty container implementation for a configuration that does not re-

quire known peer profiles, i.e., when a peer randomly selects its provider peers.

The ItemBasedKnownPeerProfile builds a known peer using information of rele-

vant publication identifiers only. The TermBasedKnownPeerProfile builds a known

peer using a term-weight vector representation. The ItemBasedKnownPeerProfile

and TermBasedKnownPeerProfile implement an item-based known peer profile and

a term-based known peer profile, respectively, as discussed in Section 4.2.5(page 45).

LocalProfile: An interface to manage a node’s local profile. The LocalProfile

interface provides a method to update a node’s local profile. Classes implementing

this interface are cloned to every nodes in the network, as part of ShrackProtocol.

ShrackSim provides three implementations of LocalProfile named: NoLocalProfile,

ItemBasedLocalProfile, and TermBasedLocalProfile. Similar to the implementa-

tions of KnownPeerProfile, NoLocalProfile is an empty container implementation

and does nothing. The ItemBasedLocalProfile builds a local peer using informa-

tion of relevant publication identifiers only, and the TermBasedLocalProfile builds

a local peer using a term-weight vector representation.

The ItemBasedLocalProfile and TermBasedLocalProfile implement an item-based

local profile and a term-based local profile, respectively, as discussed in Section 4.2.4

(page 43).

NeighbourSelector: An interface that provides a method for a peer to update its

provider peers. Each peer has its own NeighbourSelector as part of ShrackProtocol.

ShrackSim provides three implementations of NeighbourSelector named:

TopRankSelector, RandomSelector, and TopRankRandomSelector implementing the
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three provider peer selection strategies as discussed in Section 4.3 (page 49). The

TopRankSelector implements the common interest strategy, the RandomSelector

implements the random strategy, and the TopRankRandomSelector implements the

hybrid strategy.

Filter: An interface that provides methods to test a filter module. The Filter

provides three methods to initialize the filter, to filter messages, and to update the

filter. At present, ShrackSim does not have an implementation of a real filter and

only provides an empty container implementation called NoFilter.

D.2 The Configuration File

ShrackSim uses the PeerSim configuration file as an input parameter for running a

simulation. The configuration file is a plain ASCII text file, composed of key-value

pairs representing Java, java.util.Properties. Some of the key names refer to global

properties and others refer to single component instances. Lines starting with the ‘#’

character are treated as comments and are ignored. Each component has a name.

In the case of protocols, each protocol’s name is mapped to a numeric index called

protocol ID, by the PeerSim engine. This index does not appear in the configuration

file, but it is necessary for accessing protocols during a simulation. A component such

as a protocol or a control is declared by the following syntax:

<protocol|init|control>.string_id [full_path_]classname

The full class path is optional. PeerSim can search in Java’s classpath envi-

ronment variable in order to find a class. If multiple classes share the same name

(in distinct packages), then the full path is needed. The component parameters are

defined by the following scheme:

<protocol|init|control>.string_id.parameter_name parameter_value

We can divide the configuration file into five sections:

1. Declaring constant variables that will be later used in the configuration file.
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2. Setting up the simulation time and network.

3. Setting up protocols.

4. Initializing protocols and components.

5. Monitoring the simulation.

Next, we provide an example of a configuration file that configures ShrackSim to

run ShrackProtocol, the Shrack information dissemination protocol, with the hybrid

provider peer selection strategy using item-based peer profiles. The configuration file

is divided into five sections as mention earlier.

Section 1: Declaring constant variables

1 # shracksim test shrack config
2
3 # parameters of execution time
4 # CYCLE defines the length of a cycle
5 # CYCLES defines number of CYCLE to run the simulation
6 # the simulation length = CYCLES*CYCLE+1
7 CYCLE 1000
8 CYCLES 6500
9 PULL_INTV 20*CYCLE

10 OBS_STEP 200*CYCLE
11
12 # parameters of message transfer (cycles)
13 # this configuration ignore delay
14 MINDELAY 0
15 MAXDELAY 0
16
17 # drop is a probabiliy, 0 <= DROP <=1
18 # this configuration no message will be dropped
19 DROP 0
20
21 MAXNB 5
22 MAXHOP 8

Figure D.4: An example of a configuration file section 1: constant variable declaration

An example of a declaration part is shown in Figure D.4. Users can simply declare

a variable and its value as a key-value pair, e.g., line 7 declares CYCLE to be equal to

1000. The configuration file can handle many types of expressions including common
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24 random.seed 123456789
25
26 simulation.logtime OBS_STEP
27 simulation.endtime CYCLES*CYCLE+1
28
29 network.size 1000
30 network.node shracksim.core.ShrackNode

Figure D.5: An example of a configuration file section 2: setting up the simulation
time and network

mathematical functions that are recognized by the Java Expression Parser (Jep) 1.

Expressions can be used anywhere instead of numeric values, for example, line 9

declares PULL INTV to be equal to 20*CYCLE which is 20,000. In this configuration,

we defines that one cycle has 1,000 simulation clock units.

Section 2: Setting up the simulation time and network.

Figure D.5 defines the global simulation and network parameters. The

random.seed defines the random seed of the simulation. The parameter

simulation.logtime defines the interval of time at which the simulation prints the

progress of simulation time on the standard error. In this configuration, we set

simulation log time to be every 200 cycles. The parameter simulation.endtime tells

the simulator when to stop. The parameter network.size defines the number of

nodes in the network. The parameter network.node defines the type of nodes in the

network, here defined as ShrackNode.

Section 3: Setting up protocols.

There are six protocols that needs to be configured to run ShrackSim. These

protocols are: ShrackNeighbourhood, PullRequestGenerator, ShrackProtocol,

PublishProtocol, UniformRandomTransport, and UnreliableTransport protocols.

The last two protocols are required because PullRequestGenerator is built on top of

them. Figure D.6 shows how to define protocols and their parameters. For example,

we define ShrackNeighbourhood as a string ID “nb” (line 32). Then we use this

1http://www.singularsys.com/jep/index.html
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32 protocol.nb ShrackNeighbourhood
33 protocol.nb.max MAXNB
34 protocol.nb.nbProfile ItemBasedKnownPeerProfile
35 protocol.nb.nbProfile.scoreType jaccard
36
37 protocol.reqGen PullRequestGenerator
38 protocol.reqGen.transport tr
39
40 protocol.shrack ShrackProtocol
41 protocol.shrack.localProfile ItemBasedLocalProfile
42 protocol.shrack.filter NoFilter
43 protocol.shrack.nbSelector TopRankRandomSelector
44 protocol.shrack.nbSelector.beta 0.01
45 protocol.shrack.nbSelector.seed random.seed+111
46 protocol.shrack.pullIntv PULL_INTV
47 protocol.shrack.maxHop MAXHOP
48 protocol.shrack.maxUpdate MAXHOP*PULL_INTV
49 protocol.shrack.neighbours nb
50 protocol.shrack.reqGen reqGen
51 protocol.shrack.transport tr
52
53 protocol.pub PublishProtocol
54 protocol.pub.shrack shrack
55
56 #no delay at this time MINDELAY = MAXDELAY = 0
57 protocol.urt UniformRandomTransport
58 protocol.urt.mindelay (MINDELAY*CYCLE)/100
59 protocol.urt.maxdelay (MAXDELAY*CYCLE)/100
60
61 #use unreliable Transport protocol but right now set DROP = 0,
62 #which means now the protocal is reliable no message DROP
63 protocol.tr UnreliableTransport
64 protocol.tr.transport urt
65 protocol.tr.drop DROP

Figure D.6: An example of a configuration file section 3: setting up protocols
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67 init.um AcmUserInitializer
68 init.um.authorDocProfile acm_abstracts/top1000_authorDocIndex.txt
69 init.um.authorGroupProfile acm_abstracts/top1000_authorGroupIndex.txt
70
71 init.docSet EmptyDocSet
72 init.docSet.indexfile acm_abstracts/2007_2008a_2000_2008d_H33_f_Index.txt
73
74 init.rnd WireKOut
75 init.rnd.protocol nb
76 init.rnd.k MAXNB
77
78 init.startShrack ShrackProtocolInitializer
79 init.startShrack.bootTime PULL_INTV
80 init.startShrack.shrackProt shrack
81
82 init.pubGen PublishEventGen
83 init.pubGen.pubRate (1.0/(4*CYCLE))
84 init.pubGen.pubProt pub
85 init.pubGen.rSeed random.seed+777
86
87 include.init um docSet rnd startShrack pubGen

Figure D.7: An example of a configuration file section 4: initializing protocols and
components

string ID to define its parameters, namely MAXNB (line 33), which defines the size

of neighbourhood, nbProfile (line 34), which defines type of known peer profile to

be ItemBasedKnownPeerProfile, and nbProfile.scoreType (line 35), which is a

parameter of ItemBasedKnownPeerProfile defining a type of common-interest score

to be used. Other protocols are defined with a similar manner. Details of which

parameters are required to create each protocols are defined in the ShrackSim Java

Documentation (JavaDoc).

Section 4: Initializing protocols and components.

Figure D.7 shows how to initialize protocols and components in ShrackSim. First,

we need to define initializer classes and their parameters in the same way as defining

protocols. Then, we need to explicitly specify which initializer classes we want to

include in the simulation using the parameter include.init with a list of classes
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89 control.netCluster Clustering
90 control.netCluster.protocol nb
91 control.netCluster.step OBS_STEP
92
93 control.slotObserver SlidingSlotRecvDocQuality
94 control.slotObserver.slotSize OBS_STEP
95 control.slotObserver.step PULL_INTV
96
97 control.sccDistance SCCDist
98 control.sccDistance.protocol nb
99 control.sccDistance.step OBS_STEP

Figure D.8: An example of a configuration file section 5: monitoring the simulation.

that we want to be included, as shown in line 87. The simulation will call the initial-

izer classes in the same order as they are listed in the include.init. There are five

initializer classes that we need to include. The first two classes are used to set up the

user model and document set, which are defined in line 67-72. The last three classes

are used to initialize three main protocols, namely ShrackNeighbourhood (string id

“nb”), ShrackProtocol (string id “shrack”), and PublishProtocol (string id “pub”).

Line 67-85 presents how to initialize the three protocols using their associated ini-

tializer classes. Note that, WireKOut (line 74) is provided by PeerSim for initializing

classes implementing the Linkable interface, which is a super class of

ShrackNeighbourhood. The WireKOut class randomly connects each node with a

predefined size of neighbourhood, defined by a parameter ‘k’ on line 76.

Section 5: Monitoring the simulation.

Finally, in section 5 of the configuration file, we define which observer classes

we want to use to monitor the simulation. In this example, we include three ob-

server classes. A special parameter “step” needs to be defined to specify the inter-

val of cycles at which an observer is called. For example, line 91 defines that the

Clustering observer is called every OBS STEP (200) cycles, and line 95 defines that

SlidingSlotRecvDocQuality observer will be called every PULL INTV (20) cycles.
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1 Simulator: loading configuration
2 ConfigProperties: File 20090808-example-r0-b001-jaccard-nb5.con loaded.
3 Simulator: starting experiment 0 invoking peersim.edsim.EDSimulator
4 Random seed: 123456789
5 EDSimulator: resetting
6 EDSimulator: running initializers
7 - Running initializer init.um: class shracksim.initializer.AcmUserInitializer
8 - Running initializer init.docSet: class shracksim.initializer.EmptyDocSet
9 - Running initializer init.rnd: class peersim.dynamics.WireKOut

10 - Running initializer init.startShrack: class \\
shracksim.initializer.ShrackProtocolInitializer

11 - Running initializer init.pubGen: class \\
shracksim.initializer.PublishEventGen

12 EDSimulator: loaded controls [control.netCluster, control.sccDistance, \\
control.slotObserver]

13 Current time: 0
14 Current time: 200000
15 Current time: 400000
16
17 .
18 .
19 .
20
21 Current time: 6000000
22 Current time: 6200000
23 Current time: 6400000
24 EDSimulator: queue is empty, quitting at time 6500000

Figure D.9: An example of a simulation status printed on the standard error.

D.3 Running and Evaluating Experiments

Users can run ShrackSim by invoking the ShrackSim class with a configuration file as

a command line as following:

java shracksim.ShrackSim <configuration_file>

After running the simulation, the simulation status is printed on the standard

error and the simulation results are printed on the standard output. The simulation

output from running ShrackSim with the configuration file that is previously discussed

(Figure D.4- D.8) is shown is Figure D.9 and D.10.
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Figure D.9 shows the simulation status on the standard error. Lines 1-12 display

status of the simulator when loading the configuration file, invoking the simulation en-

gine, running initializers and loading controls (observers). Lines 13-23 show progress

of the simulation time. Finally, line 24 shows the end of simulation.

An example of the simulation results is shown in Figure D.10. Lines 1 and 2 shows

an initial statistic (at time 0) of the clustering coefficient of nodes and the shortest

path length between nodes in the network, respectively. In general, the result of each

observers is presented in the following format:

observer_id: min max #sample avg var #min #max

where

observer id is the observer identifier that is defined in the configuration file

min is the minimum observed value

max is the maximum observed value

#sample is the number of the sample

avg is the average of the observed value

var is the variance of the observed value

#min is the number of sample that are minimum values

#max is the number of sample that are maximum values

For example, from Figure D.10 line 1, we can interpret that, initially, from 1,000

nodes, there are 891 nodes that have the minimum clustering coefficient of 0.0 and 3

nodes that have the maximum clustering coefficient of 0.1. On average, the network

clustering coefficient is 0.01 with variance equal to 0.0. Note that, we show the

statistic values in Figure D.10 with two decimal places only for the presentation.

Compared with other observers, the output of the SlidingSlotRecvDocQuality

observer is presented differently indicating an observation time (Time), a publication
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1 control.netCluster: 0.0 0.1 1000 0.01 0.0 891 3

2 control.sccDistance: 1.0 8.0 981090 4.38 0.83 4955 131 1

3 Time: 20000 Slot Time: 200000 Slot No: 1 PubSize 3

4 Time: 20000 Slot Time: 200000 Slot No: 1 Precision 0.0 1.0 20 0.35 0.24 13 7

5 Time: 20000 Slot Time: 200000 Slot No: 1 Recall 0.0 1.0 827 0.01 0.01 820 3

6 Time: 20000 Slot Time: 200000 Slot No: 1 F-score 0.0 1.0 14 0.381 0.181 7 3

7

8 Time: 40000 Slot Time: 200000 Slot No: 1 PubSize 7

9 Time: 40000 Slot Time: 200000 Slot No: 1 Precision 0.0 1.0 121 0.47 0.25 63 56

10 Time: 40000 Slot Time: 200000 Slot No: 1 Recall 0.0 1.0 999 0.02 0.01 941 2

11 Time: 40000 Slot Time: 200000 Slot No: 1 F-score 0.0 1.0 121 0.24 0.07 63 1

12 .

13 .

14 .

15 Time: 180000 Slot Time: 200000 Slot No: 1 PubSize 50

16 Time: 180000 Slot Time: 200000 Slot No: 1 Precision 0.0 1.0 1000 0.51 0.06 21 21

17 Time: 180000 Slot Time: 200000 Slot No: 1 Recall 0.0 1.0 1000 0.50 0.02 21 8

18 Time: 180000 Slot Time: 200000 Slot No: 1 F-score 0.0 0.79 1000 0.48 0.02 21 1

19

20 control.netCluster: 0.0 0.5 1000 0.06 0.01 452 5

21 control.sccDistance: 1.0 11.0 888306 4.91 1.46 4715 14 1

22 Time: 200000 Slot Time: 200000 Slot No: 1 PubSize 56

23 .

24 .

25 .

26 control.netCluster: 0.0 0.95 1000 0.10 0.02 353 1

27 control.sccDistance: 1.0 14.0 871422 5.30 2.29 4670 12 1

28 Time: 400000 Slot Time: 200000 Slot No: 1 PubSize 108

29 Time: 400000 Slot Time: 200000 Slot No: 1 Precision 0.04 1.0 1000 0.56 0.05 1 5

30 Time: 400000 Slot Time: 200000 Slot No: 1 Recall 0.5 1.0 1000 0.84 0.01 5 17

31 Time: 400000 Slot Time: 200000 Slot No: 1 F-score 0.06 0.93 1000 0.65 0.03 1 1

32

33 Time: 400000 Slot Time: 400000 Slot No: 2 PubSize 52

34 Time: 400000 Slot Time: 400000 Slot No: 2 Precision 0.0 1.0 1000 0.68 0.05 2 54

35 Time: 400000 Slot Time: 400000 Slot No: 2 Recall 0.0 1.0 1000 0.74 0.02 2 17

36 Time: 400000 Slot Time: 400000 Slot No: 2 F-score 0.0 0.97 1000 0.66 0.03 2 1

37

38 Time: 420000 Slot Time: 200000 Slot No: 1 PubSize 108

39 .

40 .

41 .

42 control.netCluster: 0.0 0.85 1000 0.14 0.02 246 1

43 control.sccDistance: 1.0 14.0 878906 5.66 3.09 4690 168 1

44 Time: 6500000 Slot Time: 200000 Slot No: 1 PubSize 108

45 Time: 6500000 Slot Time: 200000 Slot No: 1 Precision 0.05 1.0 1000 0.56 0.04 1 4

46 Time: 6500000 Slot Time: 200000 Slot No: 1 Recall 0.59 1.0 1000 0.92 0.01 1 259

47 Time: 6500000 Slot Time: 200000 Slot No: 1 F-score 0.1 0.96 1000 0.67 0.03 1 1

48

49 Time: 6500000 Slot Time: 400000 Slot No: 2 PubSize 109

50 Time: 6500000 Slot Time: 400000 Slot No: 2 Precision 0.10 1.0 1000 0.66 0.05 1 31

51 Time: 6500000 Slot Time: 400000 Slot No: 2 Recall 0.44 1.0 1000 0.86 0.02 1 240

52 Time: 6500000 Slot Time: 400000 Slot No: 2 F-score 0.18 1.0 1000 0.72 0.03 1 1

53 .

54 .

55 .

56 Time: 6500000 Slot Time: 6600000 Slot No: 33 PubSize 22

57 Time: 6500000 Slot Time: 6600000 Slot No: 33 Precision 0.0 1.0 981 0.80 0.04 2 378

58 Time: 6500000 Slot Time: 6600000 Slot No: 33 Recall 0.0 1.0 1000 0.45 0.04 21 47

59 Time: 6500000 Slot Time: 6600000 Slot No: 33 F-score 0.0 1.0 981 0.56 0.03 2 33

Figure D.10: An example of a simulation result printed on the standard output.
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slot time (Slot Time), a slot number (Slot No) followed by an observed statistics. Each

observed statistics, except PubSize, is presented in the same format as previously

defined. The PubSize presents the number of documents that are published in the

observed publication time slot. The simulation periodically evaluates and presents

the observed value as defined in the configuration file.

This chapter provides a general information of ShrackSim. We recommend those

who want to use ShrackSim to read the details Java documentation. In addition, for

those who want to modify ShrakSim, we recommend to study PeerSim documentation

as well.
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