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Abstract

Tone mapping is a computational task of significance in the context of displaying

high dynamic range images on low dynamic range devices. While a number of tone

mapping algorithms have been proposed and are in common use, there is no single

operator that yields optimal results under all conditions. Moreover, obtaining sat-

isfactory mappings often requires the manual tweaking of parameters. This thesis

proposes interactive evolution as a computational tool for tone mapping. An evolu-

tion strategy that blends the results from several tone mapping operators while at the

same time adapting their parameters is proposed. As well, the results are adapted

such that such that approximately uniform perceptual distances between offspring

candidate solutions and the parent are ensured. The introduction of a perceptually

based step size adaptation technique enhances the control of the variability between

newly generated offspring, when compared to parameter space step size adaptation.
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Chapter 1

Introduction

1.1 Tone Mapping

Tone mapping is an important task in image processing and computer graphics. While

the luminance present in real world scenes often spans many orders of magnitude,

today’s display devices, including CRTs, LCDs, and printers, are capable of displaying

only a narrow subrange thereof. For example, the contrast ratio, i.e. the ratio of

luminance values between the brightest and darkest regions in an image depicting an

indoor scene in which a window looking into the sunlit outdoors is visible, can span

up to nine orders of magnitude. The contrast ratio that contemporary display devices

are capable of generating spans a mere two or three orders of magnitude. The task

of mapping the colours of a high dynamic range image to the low dynamic range of a

display device such that the visual appearance of the image is preserved as much as

possible is referred to as tone mapping. Even as display devices capable of displaying

higher dynamic ranges become available, tone mapping will remain an important task

as lower cost devices including printers are not likely to disappear. The increasing

importance of tone mapping is also witnessed by its growing support in commonly

used image processing software. A good introduction to the area of high dynamic

range imaging can be found in Reinhard et al. [34].

1.2 High Dynamic Range Images

High dynamic range images can stem from several sources. One possibility is to

capture several images of the same scene with different exposure settings. This allows

various amounts of light to enter the lens. Debevec and Malik [8] and others have

developed algorithms for stitching those shots together to form a single high dynamic

range image. Clearly, this approach is best suited for still scenes. Figure 1.1 shows

1
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Figure 1.1: A series of images taken of the same scene at different exposures, as well
as the result of combining the images to a single high dynamic range image which is
then tone mapped with the iCAM operator. This series of images is taken from [11].

an example of this, where on the left we see the series of images taken at different

exposures allowing increasingly more light into the lens for each image. This allows

for each portion of the scene to be better exposed. On the right we see a tone mapped

version of the high dynamic range image which was created as the combination of the

series. Notice that the details in the dark areas of the scene, such as the forest around

the river, as well as the bright areas around mountain peak are both visible in the tone

mapped image. However, looking at the series of images, the details of a particular

area are only visible in the single exposure where the area was correctly exposed.

A second possibility for acquiring high dynamic range images is through advances

in camera technology. Many modern digital cameras that are on the market today

already use higher dynamic range representations internally than were available in

the past. And finally, photo-realistic rendering techniques that use physically based

models of light propagation, such as ray tracing, artificially generate high dynamic

range images [29]. While most image formats in common use today represent colours

using eight bits in each colour channel (thus being able to represent only 256 distinct

values per channel), the use of several high dynamic range image formats that use

more bits per pixel, such as OpenEXR, is becoming more widespread.

A multitude of tone mapping operators have been proposed, ranging from the use

of simple sigmoidal functions to the computationally and conceptually more sophis-

ticated gradient domain tone mapping operator by Fattal et al. [14]. Some operators
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(a) Schlick (b) Ashikhmin (c) Reinhard and Devlin

Figure 1.2: This series of images shows the diversity of the different tone mapping
operators. These images are mapped very differently by each of the tone mapping
operators using their default parameter settings. By tuning the parameters each
operator should be able to give a much improved result.

are based on psycho-physical models of human perception; others strive to either lo-

cally or globally maximise contrast. Figure 1.2 shows the results of applying three

different tone mapping operators to two high dynamic range images. In this figure

the results from Schlick’s [36] operator produces the darkest image for the first scene,

yet for the second image the operator generates an unnaturally bright image. In the

former case, Schlick’s operator is also the one which preserves the greatest amount of

local detail. Ashikhmin’s operator as well as Reinhard and Devlin’s operator generate

quite bright results for the first scene while leaving out most of the details. However,

in the second image however both operators generate a much better mapping with

many details present. In all cases, better images can be generated by tuning the

algorithms’ parameters.

1.3 The Problem

High dynamic range images and tone mapping have engendered many debates in

photography communities on the internet. One interesting side effect of high dynamic

range images is that the extra information stored in the image can produce some

unique visual effects when tone mapping the image. These give the images a somewhat



4

(a) Surreal (b) True to Life

Figure 1.3: The mapping on the left was done with the gradient domain operator of
Fattal et al. [14], using the parameters to boost contrast and saturation which leads
to more of a surreal unnatural appearance. The mapping on the right on the other
hand, published in [14], mapped with the same operator has a much more natural
appearance giving the viewer more of an impression of the original scene.

surreal appearance. Some operators allow, with the tweaking of parameters, for the

creation of mappings which have perhaps an unnatural amount of contrast. This has

been exploited in some cases by groups of individuals using HDR to create images with

very different effects. A guide to HDR photography [25] demonstrates how to achieve

these effects to match these types of images. Figure 1.3 shows an example of this. By

boosting contrast and saturation the mapping on the left is quite unnatural compared

to the mapping on the right which is mapped to give the image the same impression as

the original scene. This is most often the intent of tone mapping operators: striving

to produce mappings which if compared to the original scene come as close as possible

to reality.

As of today, there is no single “best” tone mapping operator that generates satis-

factory results under all conditions. Several recent studies that attempt to compare
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different operators arrive at different conclusions. Drago et al. [9] conducted a study

in which human subjects assessed their perceptions when comparing the results of

six tone mapping operators applied to high dynamic range images of four scenes,

including both synthetic and photographic ones. Subjects were asked to judge how

perceptually similar or dissimilar the images were with respect to apparent image con-

trast, apparent level of detail, and apparent naturalness. As a result, they were able

to group operators into categories that best preserve each one of the three attributes,

albeit usually at the cost of the other two. Ledda et al. [23] had human subjects

compare images mapped using six common tone mapping operators with images of

the same scenes displayed on a high dynamic range device. They found that subjects

tended to agree on which tone mapped images appear closest to the reference image,

and that the photographic tone reproduction algorithm of Reinhard et al. [33] and

the iCAM operator of Johnson and Fairchild [20] consistently performed well. When

asked to rate the reproduction of feature and detail, agreement between subjects was

even more pronounced and again seemed to favour the iCAM operator. Kuang et al.

[21] conducted further psycho-physical experiments in which they had human subjects

compare images tone mapped by different operators with the real world scenes they

depict. In their study, the iCAM operator’s performance was rather mixed, and their

results seemed to favour the bilateral filtering algorithm of Durand and Dorsey [10]

instead. However, they also state that “no single algorithm consistently performs well

for all images.” It is unclear whether parameter tuning was done for the operators

included in their study.

1.4 The Proposed Solution

Algorithmically, there currently is no conclusive answer to the question of which op-

erator is best suited to tone mapping a given high dynamic range image, and how its

parameters should be set. However, a human subject is typically able to effortlessly

evaluate the quality of a tone mapped image. We therefore contend that interactive

evolution is a computational tool ideally suited to the task of tone mapping. Inter-

active evolutionary algorithms have previously been used for tasks ranging from the
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computer assisted evolution of coffee blends to the fitting of hearing aids. Appli-

cations of interactive evolution in image processing and computer graphics include

algorithms for interactive lighting design [24], the computer assisted creation of art

[40], and the interactive evolution of images [17, 49, 28, 37, 38]. Despite the signifi-

cance of the task, no evolutionary approaches have been proposed for the problem of

tone mapping high dynamic range images.

In this thesis we propose an approach to tone mapping that uses interactive evo-

lutionary techniques. Tone mapped images are generated by blending the results

obtained from a number of commonly used tone mapping operators. The weights

that determine the relative influence of the individual operators together with the

operators’ parameters form a vector of real-valued variables. An evolution strategy

with subjective selection is used to iteratively improve the appearance of the tone

mapped images. Importantly, adjustments to the mapping are made in the inter-

active evolutionary process without a need for the user to understand the influence

of the operators’ parameters. A user of the system simply needs to pick the most

appealing out of a set of automatically generated images. The motivation for blend-

ing the images obtained from several tone mapping operators is that mappings that

cannot be generated by any one of the individual operators may be achieved. Rather

than having to pick the operator most appropriate for the image at hand (and having

to accept its limitations), a good mapping that may be outside of the range of any

one operator can be found. We will also introduce an approach to screening the off-

spring of a generation such that the images presented for subjective selection will be

constrained within a range of perceptual similarity values using a well known image

metric.

The remainder of this thesis is organised as follows. Chapter 2 introduces the

colour spaces, image metrics and tone mapping operators used in the present work

as well as surveying relevant work on interactive evolutionary algorithms. Chapter 3

proposes an evolution strategy with subjective evaluation to solve the tone mapping

problem. It will conclude with an informal evaluation of the proposed system. Lastly,

Chapter 4 concludes with a brief summary and suggestions for future research.

A preliminary version [5] of this work has appeared in ACM SIGEVO’s 11th
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Annual Conference on Genetic and Evolutionary Computation.



Chapter 2

Background

2.1 Overview

This chapter will provide an overview of the various areas of research related to topics

found throughout this thesis. First we discuss the details of high dynamic range image

formats and how they differ from the traditional image formats. The next section

will detail the different colour spaces, which will be used later on. Thirdly we will

discuss several of the image metrics, providing an understanding of their limitations

and strengths, which will help to motivate the decision of which metric to use for

our purposes. Then three tone mapping operators will be described, detailing their

functions and algorithms. This chapter will conclude with an overview of some areas

of evolutionary computation, looking at previous work on interactive evolution and

constraint handling techniques.

2.2 High Dynamic Range Image Formats

Traditionally images are stored in a 8-bits/channel or 24-bits/pixel format. As we

saw in the introduction, high dynamic range images are those which capture a large

range of luminance information. This amount of information is usually more than

previous image formats are able to support. According to Reinhard et al. [34] there

are three established HDR formats. These include the HDR, TIFF and EXR formats,

each of which supports different types of pixel encodings. The encodings describe how

the data is stored in the file and, depending on the type of encoding, some support

compression. Compression is a desirable feature with many formats supporting 32-

bits/channel or 96-bits/pixel. This can lead to some very large files if compression is

not used, which for some applications such as the web can be a major drawback.

One interesting approach to high dynamic range formats is the one taken by Ward

8
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and Simmons [48] with their JPEG sub-band encoding method. This method stores

a tone mapped version of the image in the JPEG file as well as pixel data for the high

dynamic range information. The HDR information is stored in a sub-band which is

ignored by tools used to read and display the original JPEG files, this makes the

HDR JPEG format backwards compatible. The HDR information can be used to

reconstruct the image when the full HDR image is required. This format, just like

the original JPEG format, is lossy in that the data is compressed beyond the point

where all of the original can be recovered.

More information on the formats, encodings, compression, etc. can be found in

[34] and [7]. The three established formats mentioned above all have freely available

libraries which allow for the reading and writing of their files. Both the EXR and

HDR formats are available through open source software through OpenEXR1 and

Radiance2, respectively.

2.3 Colour Spaces

Colour is the result of light entering the eye at different wavelengths. Light can either

be reflected from objects or emitted from objects directly. The dominant wavelength

of the light determines the hue of colour which we see. Visible light is roughly limited

between 380 and 780 nm. Above this range is ultra violet and below infrared light,

which are not visible to the naked eye.

Figure 2.1 shows the colour matching functions for CIELAB. The three curves

x̄(λ), ȳ(λ) and z̄(λ) represent the auxiliary equations used to calculate the needed

intensities the channels X, Y and Z, respectively, for a given colour. The Y primary

for CIELAB was chosen such that the colour matching function ȳ(λ) matches the

luminous-efficiency function. This allows for the channel Y to represent luminance,

which allows us to quickly and easily determine luminance in this space. These colour

matching functions are described for a viewing angle of 2◦, which is important to note

here as the perception of colour can change with different viewing angles. There are

also colour matching functions described for a viewing angle of 10◦, however this is

1OpenEXR: http://www.openexr.com
2Radiance: http://www.radiance-online.org
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Figure 2.1: This plot from [39] shows the colour matching functions for 2◦ CIEXYZ.

not commonly used with computer graphics as this angle describes a much larger

area of colour than what is typically found in computer graphics. Further details on

colour as well as the details described here can be found in [15].

These colour matching functions were first described by the experiments of Stiles

and Burch [41]. Using four light sources, three carefully selected primaries and one

target, they experimented with human subjects asking them to tune the intensities

of the three light sources till their combination matched the target light source [16].

With this data they were able to create three functions which give the needed in-

tensities of the three primaries in order to produce the colour given a wavelength

for each participant. The functions however varied slightly for each individual in the

experiment, though not by much. Using this data the International Commission on

Illumination (CIE) was able to come up with a standard set of equations for the XYZ

colour space. Most colour spaces can be described in terms of their transformation

from XYZ.

Another important topic in colour spaces is chromatic coordinates. Chromatic
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coordinates describe the chroma information of a colour without the luminance infor-

mation. The XYZ colour space has a corresponding set of chromaticity coordinates

described by

x =
X

X + Y + Z

y =
Y

X + Y + Z

z =
Z

X + Y + Z
= 1− x− y.

(2.1)

Since given x and y we are able to recover z the chromatic coordinates x and y define

a 2D space. Many colour spaces are described by a single channel for luminance

information and two separate channels for chroma information. For example, in the

perceptually uniform colour spaces L∗a∗b∗ and L∗u∗v∗ channels a∗ and b∗ and u∗ and

v∗ describe the chroma information for the two colour spaces respectively.

Several colour spaces are used throughout this work each chosen specific to the

application for which it is used. The four that will be introduced in this section are

RGB, XYZ, Lαβ and L∗a∗b∗. Each of these play important roles in the calculation of

different image attributes and image transformations. Further details may be found

in [34].

2.3.1 RGB and XYZ

The RGB colour space is one of the most commonly used. It is seen in many image

processing tools as the primary means for selecting colour. There are several different

RGB colour spaces, however they all share the characteristic that they describe colour

by specifying three intensities for red, green and blue. RGB is a device dependent

colour space in that pixel values represented in RGB are tailored for a specific device

depending on the device’s white point and primary red, green and blue values. The

white point describes the brightest white which the display is capable of producing.

This is encoded by a tristimulus value in XYZ. This information is required when

transforming an RGB image to the device independent colour space, XYZ. It is often

used as a step in transforming images from RGB to another space due to this quality.

Since RGB is device specific, transforming from RGB to other colour spaces can be

difficult if the information about the device the image was targeted for is not available.
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Figure 2.2: This example shows how the RGB colour channels are correlated and
how Lαβ is able to remove this correlation. In the first row of plots we can see
that for the most part for a given contribution of one colour channel a very similar
contribution of the other channels can be predicted. Looking at the second row of
plots, we see that Lαβ has transformed the data such that it is aligned with and
roughly symmetric about the axes. This non-correlated colour space is important in
that three dimensional image processing problems can be looked at as three separate
one dimensional problems.

Reinhard et al. [34] give us that the second best solution is to use a standard matrix.

One such matrix is provided by the International Telecommunications Union. Using

this matrix the transformation from RGB to XYZ is:


X

Y

Z

 =


0.4306 0.3415 0.1784

0.2220 0.7067 0.0713

0.0202 0.1295 0.9394



R

G

B

 . (2.2)
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2.3.2 Decorrelated Colour Space Lαβ

The opponent colour space Lαβ is less correlated colour space. The transformation

to this colour space removes the much of the correlation which is present in RGB. The

three components which make up the Lαβ space are the single luminance channel L

and the two chromatic channels α and β. It is a common practice in many colour

spaces to split the colour information in this way. Figure 2.2 shows how the RGB

colour space is correlated by plotting each of the colour channels for the big fog image

seen in Figure 3.15 against one another. The second row of plots in Figure 2.2 shows

the Lαβ colour channels of the same image plotted against each other. From these

we see that axes have essentially been rotated and the data transformed such that

the points now lie along the axes as well as now are symmetrical about the axes.

This transformation is best described by Reinhard et al. in [31] which says that using

several images, which are on average similar to many found in nature, Ruderman

et al. [35] performed principal component analysis (PCA) on the RGB data of these

images to determine the transformation which would give three decorrelated channels.

These transformations for each image were then averaged and rounded to give the

scale and rotation found in the transformation of Equation (2.4) below.

Having an uncorrelated representation of an image offers the advantage of being

able to calculate image attributes in each of the channels separately rather than using

more complex equations to consider all three correlated channels at once. This feature

is exploited Reinhard et al. in [31] and by Toet and Lucassen [43] to create a similarity

metric for colour images, which we will see later on in Section 2.4.3.

In order to transform an image to the Lαβ colour space we first transform the

device independent XYZ image to the LMS colour space. The LMS colour space

separates the image into long, medium and short wavelengths. These correspond

somewhat to the cones in the eye which also are sensitive to either long, medium or

short wavelengths. This transformation is done by:
L

M

S

 =


0.3897 0.6890 −0.0787

−0.2289 1.1834 0.0464

0.0000 0.0000 1.0000



X

Y

Z

 . (2.3)

After this transformation the log of each of the channels is computed in order to
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Figure 2.3: A plot of MacAdam ellipses used to show the non uniformity of XYZ
taken from [16]. Each ellipse shows a region of colours which are indistinguishable
from one another. These ellipses are enlarged so that they are easier to see. Their
overall size is not important here, it is that their size and orientation relative to one
another vary over the plot.

account for a skewness in the distribution of the intensities found in each channel.

After which the final transformation to Lαβ is performed by the following equation:
L

α

β

 =


0.5774 0.5774 0.5774

0.4083 0.4083 −0.8165

0.7071 −0.7071 0.0000




log(L)

log(M)

log(S)

 . (2.4)

2.3.3 Perceptually Uniform Colour Space L∗a∗b∗

L∗a∗b∗, also known as CIELAB, is a perceptually uniform colour space. This is a

space in which the euclidean distance between colours is roughly proportional to the

distance which is perceptually seen by a human observer. Glassner [16] describes

perceptually uniform colour spaces as those in which interpolation from one colour

to the next should behave “as expected”. For instance with the interpolation from

c0 to c1 with

c = (1− a)c0 + ac1, (2.5)
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one might expect that the interpolation of colour should vary from c0 to c1 with

respect to a. If using equal steps in a from 0 to 1 we would expect that the colour

would also vary in equal steps. This is not true however in a non-perceptually uniform

space such as XYZ. Figure 2.3 shows a plot of the XYZ space in the 2D chromaticity

coordinates. The ellipses in Figure 2.3 show enlarged regions for which colour is

perceptually constant. We notice that the ellipses are not the same size or orientation.

This makes it rather difficult to define the relation of distances between the colour

space to what is perceived. The CIELAB colour space attempts to transform the

colour representation such that all of the ellipses are the same size and orientation.

The results are not perfect, however. Figure 2.4 shows the MacAdam ellipses for the

L∗u∗v∗ colour space, a space similar to CIELAB. These spaces are both similar in

that they both provide similar accuracy as a perceptually uniform colour space. They

also both use a very similar set of functions to make the transformation from XYZ.

In this figure we can see that the size and orientation of the ellipses have improved.

There are other colour spaces which have been proposed which come close to a near

perfect perceptually uniform colour space however their advantages are outweighed

by the computational costs to transform an image. For this reason CIELAB and

CIELUV are commonly used perceptually uniform colour spaces.

The distance measure in CIELAB is denoted ∆E∗ab which is evaluated as

∆E∗ab =
√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (2.6)

which is the Euclidean distance between colour values. This gives us an intuitive

description of the distances between colours and also allows for easy interpolation

between colours.

The colour transformation from XYZ to CIELAB requires the knowledge of the

XYZ colour values for the white illuminant of the scene, this is denoted as (Xn, Yn, Zn).

If the information regarding the white point is unknown, which is often the case, a

standard illuminant is used. Using this illuminant we can calculate the L∗a∗b∗ colour

values as:
L∗ = 116f( Y

Yn
)− 16

a∗ = 500
(
f( X

Xn
− fY Yn)

)
b∗ = 200

(
f( Y

Yn
− fZZn)

) (2.7)
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Figure 2.4: MacAdam ellipses for the CIELUV colour space taken from [16]. This
colour space is more perceptually uniform. It is very similar to the CIELAB colour
space and the reason that they both exist according to [34] is largely historic. CIELAB
is commonly used in print material where CIELUV is more common with television.
In this plot we can see that the ellipses are much closer in size and orientation when
compared with those in Figure 2.3.
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where the function f() takes the ratio of the of the tristimulus value against the

tristimulus of the white point. This is how f() is defined:

f(r) =

{
(r)1/3 : r > 0.008856

7.787r + 16
116

: r ≤ 0.008856
. (2.8)

2.4 Image Metrics

Image metrics are most commonly used to test compression algorithms, to determine

the amount of signal loss which occurs. Many of the first image metrics, such as the

Mean Squared Error and the Peak Signal to Noise Ratio, come from other areas of

signal processing. These metrics were designed to detect differences between signals.

However, when it comes to the application of comparing images there are some types

of changes which can be made to a signal which will be virtually undetectable to the

viewer.

Recently there have been several new approaches to image quality assessment

which account for the workings of the human visual system. For example, there is

the very complex iCAM colour appearance model of Fairchild and Johnson [12]. The

iCAM colour appearance model is able to calculate values for many image attributes

such as contrast, lightness, chroma and hue. The model has been used for image com-

parison [13] and as well for tone mapping [20]. Another recent image metric is from

the work of Wang and Bovik [45]. They have introduced the Universal Image Quality

Metric as well as a further extension called the SSIM or Structural Similarity Image

Metric. As implied by the name SSIM, these metrics base their quality assessment on

the structural qualities of the image. These work quite well especially with greyscale

images as structural distortions are most noticeable compared to those which do not

distort structure such as changes to luminance and contrast. Convincing examples of

different types of distortions can be found in [46].

This section will describe some of the image metrics in common use. The section

will progress from a simple greyscale metric to a much more complex metric which

accounts for the workings of the human visual system as well as colour images.
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2.4.1 Mean Squared Error and Peak Signal to Noise

Mean Squared Error (MSE) is commonly used in many signal processing applications

to compare two signals. The metric has been in use for over 50 years according to

Wang and Bovik [46] who compare MSE against some of the more recent signal fidelity

measures. The process for calculating this metric is quite straightforward. Given two

discrete signals x and y of length N , we compare these by

MSE(x,y) =
1

N

N∑
i=1

(xi − yi)2. (2.9)

In the application of image processing the signals x and y represent the pixel inten-

sities and N , the number of pixels in each image.

According to Wang and Bovik a few of the reasons why MSE is commonly used

are its relatively simple calculation with a low computational cost and it exhibits

several advantageous mathematical properties. Some of these properties include non-

negativity, symmetry, a single identity and that it exhibits the triangular inequality

property.

Another metric commonly used in measuring signal quality is the peak signal

fidelity or peak signal to noise ratio (PSNR) [46]. It is calculated using MSE and

remains very similar, however it takes into account the dynamic range of each signal.

This is useful when comparing two signals with different dynamic ranges. PSNR can

be calculated as

PSNR(x,y) = 10 log10

L2

MSE(x,y)
(2.10)

where L is the dynamic range of the signal, which for a greyscale 8 bit low dynamic

range image is equal to 255.

2.4.2 Universal Quality Index

The universal quality index was first introduced by Wang and Bovik in [45]. The

main issue with MSE and PSNR is that they do not take into account how the

human visual system (HVS) works. As a result of this they do not correlate well with

human perception.
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(a) MSE: 0.0
SSIM: 1.0

(b) MSE: 319,
SSIM: 0.87

(c) MSE: 345,
SSIM: 0.0.96

(d) MSE: 313,
SSIM: 0.65

(e) MSE: 405,
SSIM: 0.50

(f) MSE: 312,
SSIM: 0.59

Figure 2.5: This figure compares Mean Squared Error (MSE) with the Structural
Similarity Image Metric (SSIM) for different types of distortions. These images come
from a similar figure in [46], these images have been distorted such that each have a
similar MSE score and this leaves open for interpretation the scores of the SSIM. The
distortions are: (a) Original, (b) Contrast Stretch, (c) Luminance Shift, (d) Blurring,
(e) Gaussian Noise, (f) JPEG Compression. Here it should also be noted that SSIM
has a maximum of 1.0 obtained when the two images being compared are identical.
MSE on the other hand has an optimal value of 0.0 as it is a measure of error.
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Many image quality methods are intended to measure the impact that noise,

compression and other factors have on the quality of the image signal. Wang and

Bovik give some examples in [45] where MSE fails, showing three images with a

similar MSE score where one image appears virtually unchanged from the original

and the others have very obvious signal degradations and distortions. They show

that their quality index is able to give a high score to the image which appears most

unchanged and much lower scores to the others. We have recreated a similar series

of examples in Figure 2.5.

The approach taken by Wang and Bovik is based on the assumption that the

HVS is most sensitive to detecting distortion in the structural information of an

image. The structural information in a scene is made up of common objects such as

facial features which the HVS is highly adapted to. The image metric makes its full

comparison using structural, luminance and contrast information contained in the

images.

We will start with the details for how the luminance and contrast signals are

compared. For two greyscale image signals x and y, luminance is measured by the

mean pixel intensities. This comparison is computed by the equation

l(x,y) =
2x̄ȳ

(x̄)2 + (ȳ)2
(2.11)

where x̄ and ȳ are the means for the image signals x and y respectively.

Contrast in each signal is measured using the standard deviation of each signal

denoted σx and σy for signals x and y respectively. The standard deviations are

compared the same way as the means in the luminance comparison. This is done

with the equation:

c(x,y) =
2σxσy

σ2
x + σ2

y

. (2.12)

Lastly we will describe how the structure of the image signals is measured and

compared. Wang and Bovik describe structure using a projection of the image signal

onto the hyperplane described by

N∑
i=1

xi = 0. (2.13)
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This projection is done only after the each image signal is normalized. The normal-

ization process is calculated by subtracting from each image signal its mean intensity

and then dividing the signal by its standard deviation. The correlation between

the normalized signals, (x − x̄)/σx and (y − ȳ)/σy, give the measure for structural

similarity. The structure comparison is defined as:

s(x,y) =
σxy

σxσy

(2.14)

where σxy is computed as

σxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ). (2.15)

The quality index then combines these three calculations by multiplying them to

give:

Q(x,y) =
σxy

σxσy

2x̄ȳ

(x̄)2 + (ȳ)2

2σxσy

σ2
x + σ2

y

. (2.16)

This metric can become unstable when the standard deviations and mean intensities

are close to zero, however this issue was later addressed by Wang and Bovik [47]

in a metric which is known as the structural similarity image metric (SSIM). This

addresses the issue of stability by introducing a few new constants into the above

equations.

Since the HVS analyzes images locally rather than as a whole Wang and Bovik

note that it is best to make the calculations using a small sliding window over the

image. The local calculations can then be averaged to give a signal metric value.

Different types of windows were tested in [47], where it was found that the results

which provide the tightest correlation with that of human observers is an 11 × 11

circular-symmetric Gaussian weighting function.

2.4.3 Universal Colour Image Fidelity Metric

The universal colour image fidelity metric was introduced by Toet and Lucassen in

[43] in which they extend the universal image quality index to colour images. They

state that by simply applying the greyscale metric to the three RGB colour channels

we form a metric for colour images. However, this metric does not correlate well with

what is perceived by humans.



22

Figure 2.2 shows how strongly correlated the RGB channels are, where contri-

butions of the channels are usually matched by the others. The authors use this

observation as their motivation for using a perceptually uncorrelated colour space.

This allows us to analyze each channel individually. For the uncorrelated colour

space, the space Lαβ, described in Section 2.3.2 is used. With this the colour fidelity

metric is defined as

Qcolour(x,y) =
√
wL(Q(xL,yL))2 + wα(Q(xα,yα))2 + wβ(Q(xβ,yβ))2 (2.17)

where Q(x,y) is the image quality metric function described in the previous section

and the subscripts L, α and β on the vectors x and y denote the image vectors

of the single colour channel. Also the weights, wL, wα and wβ are present to give

the results of the quality index for each colour channel different contributions to the

overall colour fidelity metric.

Toet and Lucassen performed experiments where observers ranked images based

on their degradation. Using this information they were able to show how well corre-

lated their measure is with human perception. They were also able to determine the

best set of weights for the three channels, for the two images that were experimented

with, which gave the tightest correlations. Their findings for the weights pinned wL

with the largest of the three with values of 3.3 and 2.8. The other two weights, wα

and wβ were both close to 1.0, with wα result with values of 1.3 and 0.9 and wβ with

values of 0.9 and 0.8.

2.5 Tone Mapping Operators

Tone mapping high dynamic range images is the process of reducing the range of

the luminance values such that they will fit into the range available on the target

viewing device. The most common range for viewing devices is the 24bit RGB colour

range where each colour channel is able to store 256 different values. Existing tone

mapping operators can all be broadly categorized as being either global or local.

Global operators perform mappings by fitting all of the real world intensities to a

single curve whereas local operators will adapt the curve for each pixel in the image

in order to maximise features locally. Each of these types of operators have their own
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advantages and disadvantages. Local operators are best at preserving local contrast.

However these operators are also slower to compute compared to global operators

and can sometimes suffer from halo artifacts around areas where very bright regions

border much darker ones. Global operators on the other hand are quite fast at tone

mapping since they are not calculating values over neighbourhoods for each pixel, but

they do suffer from some loss in local contrast as all of the real world intensities are

fitted to a single curve.

Tone mapping operators can also be classified as to whether they follow tradi-

tional computer graphics methods of dynamic range reduction, using processes such

as gamma corrected clamping, or whether they integrate research which has emerged

from psycho-physical models of the human visual system (HVS). There are also oper-

ators which do not follow either models of the HVS or traditional CG methods. For

example Fattal et al. propose a method that compresses the dynamic range of the

image in the gradient domain [14].

Many tone mapping operators simply deal with compressing the luminance chan-

nel of an image [34]. It is generally accepted that the majority of the dynamic range

in a high dynamic range scene is contained within the luminance channel, with less

in the chromatic channels. However, it should also be noted that some of the more

recent tone mapping operators take into account the mapping of colour in a more so-

phisticated way. The operators which map luminance will simply reduce the dynamic

range of the luminance channel by applying the transformation (shown in [34]):
Rd

Gd

Bd

 =


Ld R

w

Lw

Ld G
w

Lw

Ld B
w

Lw

 . (2.18)

This reduces the world RGB values, (Rw, Gw, Bw), to low dynamic range display

values, (Rd, Gd, Bd). This is a linear mapping with respect to the world luminance

values (Lw) and their new calculated display values (Ld). Luminance can be taken

from the XYZ space as Y represents luminance as described in Section 2.3. With

this we are able to calculate the luminance using the middle row of the matrix from

Equation (2.2) which yields the calculation for luminance as:

L = 0.2651R + 0.6702G+ 0.0641B. (2.19)
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The notation of superscript d and w will be used through this thesis to denote

display and world quantities respectively. The operators used in our evolutionary

tone mapping tool are those of Schlick [36] and Ashikhmin [1] as well as that of

Reinhard and Devlin [32]. This selection includes diverse approaches in order to span

as large of a mapping space as possible. Further considerations included the existence

of parameters that can be tuned as well as computational speed. Both Schlick’s and

Reinhard and Devlin’s operators are global; Ashikhmin’s is a local operator and the

only one of the three to consume significant computational resources. While Schick’s

operator implements a simple heuristic, both Ashikhmin’s and Reinhard and Devlin’s

are based on psycho-physical models of photoreceptors.

2.5.1 Schlick’s Operator

Schlick’s algorithm [36] is one of the earliest tone mapping operators. It attempts to

improve on some of the more traditional computer graphics techniques for dynamic

range compression. But before introducing Schlick’s operator it is useful to introduce a

few other tone reproduction techniques. These techniques will use a similar structure,

mapping luminance Ld(x, y) as

Ld(x, y) = bLdmaxF (Lw(x, y))c (2.20)

where F () is a mapping defined as:

F : [0, Lwmax] −→ [0, 1]. (2.21)

The most primitive technique is a simple linear mapping. In this case F linearly

maps the range [0, Lwmax] into [0, 1] by

F (Lw(x, y)) = Lw(x, y)/Lwmax. (2.22)

The rest of this section will describe different variations on F which improve upon

this. The values mapped to Ldmax, the maximum display luminance, will then be

clamped to Ldmax − 1 as values between 0 and Ldmax − 1 are desired. It has been

said [1] that linear mappings best preserve detail, however these mappings do not
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take into account the non-linear response of most display devices. Gamma-corrected

linear mappings can improve upon this. The mapping replaces F with

F γ(Lw(x, y)) =

(
Lw(x, y)

Lwmax

)1/γ

(2.23)

where γ ∈ [1, 3]. Although this method does help to correct for the non-linear response

of the display device, for some images it sacrifices detail in dark areas of the image.

This issue however is addressed by the gamma-corrected clamping which is used to

preserve some of this detail. With gamma-corrected clamping we change the function

F to

F p,γ(Lw(x, y)) =

{
(Lw(x, y)/p)1/γ : Lw(x, y) < p

1 : otherwise
(2.24)

where p ∈ [Lwmin, L
w
max] and γ ∈ [1, 3]. This method works well but as Schlick points

out there is no easy way to decide on values for p and γ. The parameter γ is often

given for display devices, however this can change depending the monitor’s brightness

and contrast settings as well as the level of light in the environment where the device

is located. There is also a logarithmic mapping which uses

F p,γ(Lw(x, y)) =

(
log(1 + pLw(x, y))

log(1 + pLwmax)

)1/γ

(2.25)

where p ∈ [0,∞) and γ ∈ [1, 3]. This can produce good results however the logarith-

mic operation has a fairly high computational cost for some applications, and there

remains the difficulty of choosing appropriate values for both p and γ. These are the

motivations behind the tone mapping function proposed by Schlick.

The following function is a rational tone mapping function which has one param-

eter (which will be explained later) that is easily tuned

F p(Lw(x, y)) =
pLw(x, y)

pLw(x, y)− Lw(x, y) + Lwmax
(2.26)

where p ∈ [1,∞). By changing p this operator is able to provide curves similar to

both logarithmic and exponential curves without the added cost of their computa-

tion. Finding suitable values for p may be difficult. However, Schlick addresses this

issue with an equation for calculating an appropriate value for p based on an input

parameter M . The parameter p is calculated as

p =
MLwmax
LdmaxL

w
min

(2.27)
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Figure 2.6: This image is provided by Schlick in [36] for calculating the darkest
grey visible on a display device. By viewing this image on the target display device
and selecting the first square in the image which is distinguishable from the black
background, this gives the intensity which can be use as a value for the parameter
M .

where M is the display value of the darkest grey distinguishable from black on the

target device. They provide the image in Figure 2.6 which can be used to find this

value. Figure 2.7 shows the different curve shapes for exponential and logarithmic

mappings as well as the curves capable of Schlick’s rational mapping for different

values of the parameter M . As we can see the rational mappings are able to form

curves quite similar to those found in the logarithmic and exponential mappings.

Schlick’s goal of removing the parameters has not been completely met. However the

guesswork in finding good values for p and γ is removed, which is one of the major

drawbacks of the other mappings introduced above. While simple, Schlick’s operator

is often surprisingly effective. Equation (2.26) defines a sigmoidal compression curve

the exact shape of which is determined by parameter M . Small changes in M have

a small effect on the shape of the curve, making it a valuable parameter that can

be tuned in the evolutionary approach. This operator has just the one parameter to

tune, the value for M .

2.5.2 Ashikhmin’s Operator

Ashikhmin’s tone mapping operator [1] is a local operator developed with the goal

of finding a good balance between closely modelling the human visual system on the
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Figure 2.7: These plots show some curves representing gamma corrected linear map-
pings (or exponential), logarithmic mappings and rational mappings. As we can see
the rational mappings are able to adopt shapes similar to those of the exponential and
logarithmic mappings as well as form further shapes. When viewed over a logarithmic
x-axis the rational mappings exhibit a sigmoidal shape. This allows for the extreme
ends of the compression range to be treated differently than the rest.

one hand and simplicity on the other. With this operator the intention is to model

two features of the HVS. These include absolute brightness and local contrast. This

section will discuss the derivation of the operator and how it will achieve these two

features.

Firstly, contrast is described as

c(x, y) = Lw(x, y)/La(x, y)− 1 (2.28)

where La(x, y) is the local adaptation level or background intensity at the pixel lo-

cation (x, y) in the scene. This describes contrast in relation to the surrounding

intensities. In order to preserve local contrast the constraint cd(x, y) = c(x, y) is

used, which implies that the contrast present in the display image should be equal to

the contrast of the original. Now consider display contrast to be of the form

cd(x, y) = Ld(x, y)/TM(La(x, y))− 1 (2.29)

where TM() is the tone mapping function later described for the local adaption level.

This contrast is described in terms of display quantities. Combining Equations (2.28)

and (2.29) with the constraint that cd(x, y) = c(x, y) we then have a function for

display luminance in terms of world luminance. This gives the relation:

Ld(x, y) =
Lw(x, y)TM(La(x, y))

La(x, y)
. (2.30)
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For most tone mapping applications visible contrast is more important to preserve

than the one calculated with Equation (2.28). Ashikhmin describes visible contrast

as

cv(x, y) = (Lw(x, y)− La(x, y))/TVI(La(x, y)). (2.31)

This equation uses the TVI function which is the threshold versus intensity function.

This gives the value of the just noticeable difference (JND) for the given adaptation

level. In other words, the TVI function gives the intensity of light which is just

noticeable from a given background intensity. We can also describe visible contrast

with display quantities as we did before with contrast. For this we have:

cdv = (Ld(x, y)− TM(La(x, y)))/TVI(TM(La(x, y))). (2.32)

Now if we keep the constraint that contrast in the original image should be equal to

that in the final image and apply this to visible contrast we then have the relation

cdv = cv. This leads us to the final equation for display luminance which is described

by:

Ld(x, y) = TM(La(x, y)) +
TVI(TM(La(x, y)))

TVI(La(x, y))
(Lw(x, y)− La(x, y)). (2.33)

This gives us a function which maps world luminance to display luminance while

preserving visible contrast. What we have yet to describe is how the tone mapping

function TM and the local adaption are defined. In order to preserve as much detail

as possible the tone mapping function is calculated using a linear mapping. The

tone mapping function will not linearly map luminance directly, rather it will use

perceptual capacity for the mapping. The perceptual capacity is the number of visible

JNDs for a given background intensity. This can be calculated by integrating the TVI

function. However, the TVI function itself would be difficult to integrate analytically

and so a close approximation is made in log-log space using linear segments. These

equate to the piece-wise function

C(L) =


L/0.0014 : L < 0.0034

2.4483 + log(L/0.0034)/0.4027 : 0.0034 ≤ L < 1

16.5630 + (L− 1)/0.4027 : 1 ≤ L ≤ 7.2444

32.0693 + log(L/7.2444)/0.0556 : otherwise

. (2.34)
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The tone mapping function that linearly maps perceptual capacity to display lumi-

nance is

TM(La) = Ldmax

(
C(La)− C(Lwmin)

C(Lwmax)− C(Lwmin)

)
. (2.35)

Lastly we need to describe how local adaptation is calculated. First smax different

images are created. These are denoted Gs(L) which are the results of applying a

Gaussian filter of width s to the image. Local adaptation is taken to be Gs(L) for the

largest s for which local contrast is not greater than a threshold or s no larger than

smax. Ashikhmin reports ten as a reasonable default value for smax as it was found

to be adequate.

Local contrast is calculated as

lc(s, x, y) = (Gs(L)(x, y)−G2s(L)(x, y)/Gs(L)(x, y)). (2.36)

Determining the Gaussian neighbourhood size based on local contrast is how this

operator is able to avoid halo artifacts. It should be noted though that halos do still

appear, but by tweaking the parameters to suit the image it is possible to control the

degree to which they do occur. The parameters that this operator has for adjusting

results are the local contrast threshold and a scale factor. The scale factor is used in

a preprocessing stage to, if necessary, scale the units of the image so that they are

transformed to Standard International (SI) units. This step was noted as being nec-

essary in [34]. Transforming the image to SI units ensures that the luminance values

are described in terms of candelas per square metre which is the unit of measurement

for luminance required for the TVI function.

2.5.3 Reinhard and Devlin

The operator of Reinhard and Devlin [32] also models properties of the human visual

system. The model includes several parameters which control intensity, contrast,

lightness, and chromatic adjustment. Underlying the operator is the insight that the

photoreceptor potential to distinguish luminance differences is relative to the current

intensity it is experiencing as well as recent intensities. The operator is described by

Idr|g|b(x, y) =
Ir|g|b(x, y)

Ir|g|b(x, y) + (fAr|g|b(x, y))m
(2.37)
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where Ir|g|b(x, y) are the intensities of the current pixel in the red, green and blue

channels of the input image and Idr|g|b(x, y) are the corresponding intensities in the

output image. Parameter f provides control over the overall intensity of the output

image while m determines the shape of the compression curve and allows one to trade

contrast in medium intensity regions of the image for detail in the dark and bright

regions. The adaptation level Ar|g|b(x, y) is computed as

Ar|g|b(x, y) = aAlocalr|g|b(x, y) + (1− a)Aglobalr|g|b (2.38)

where Alocalr|g|b(x, y) and Aglobalr|g|b denote local and global adaptation levels, respectively,

and parameter a determines the relative weighting of the two. The local adaptation

level is computed as

Alocalr|g|b(x, y) = cIr|g|b(x, y) + (1− c)L(x, y) (2.39)

where L(x, y) is the pixel’s luminance. The global adaptation level

Aglobalr|b|g = cIaverager|g|b + (1− c)Laverage (2.40)

is computed from intensity and luminance values averaged across the image. Weight-

ing factor c allows for colour correction in that for values close to one, each colour

channel is treated independently whereas for values close to zero, overall luminance

dominates.

Reinhard and Devlin [32] point out that many operators offer several parameters

to tune. However usually these control unintuitive properties with very large and per-

haps unbounded ranges. As mentioned there are four properties for which parameters

are provided. Parameter a gives control over the correlation of the color channels and

c gives the interpolation between global and local intensity adaptation. Parameters

m and f give control over contrast and intensity, respectively. For the parameter m

a method for automatically calculating a ‘good’ setting is given. This method can

be used if the user does not provide their own setting. This automatic calculation is

done by:

m = 0.3 + 0.7k1.4 (2.41)

where k = (Lwmax − Lwavg)/(Lwmax − Lwmin).
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The three tone mapping operators described here together offer several parameters

to tune, a gamma encoding is also used as part of the post processing stage. These

parameters will all be valuable features to include as dimensions of our interactive

evolutionary search space.

2.6 Interactive Evolution

Evolutionary strategies employ techniques found in natural evolution to solve opti-

mization problems. At each generation offspring are generated as a combination of

random mutations of one or more of the parents. Once the population is complete

for a generation all of the candidate solutions are evaluated against a fitness function.

The results of the fitness function evaluation are used to determine which candidate

solution or solutions will be the parent or parents of the next generation. This process

is repeated until certain conditions are met. These conditions can include converging

on an optimal fitness value, a maximum number of generations, a maximum length

of time passing, etc.. Often, these strategies use step length and covariance matrix

adaptation which can help to increase the speed at which the algorithm converges to

the goal. Step length here refers to a variable which is used to control the strength of

the mutations. Covariance matrix adaptation is used to find dependencies in the di-

mensions of the search space and uses this insight to shape the mutations accordingly.

A detailed introduction to evolutionary strategies can be found in [3].

Interactive evolutionary algorithms are iterative optimisation strategies that are

applied to problems for which the objective is not easily formalised but instead is

judged subjectively. One of the most impressive results generated so far is the in-

teractive evolution of coffee blends by Herdy [19]. A discussion of the approach, as

well as difficulties, application areas, and perspectives are discussed by Banzhaf [2].

A more recent survey of a large number of applications has been compiled by Takagi

[42]. In fact in this 2001 survey Takagi reports 251 publications where interactive

evolutionary computation is being used spanning many different applications.

User fatigue has repeatedly been recognised as a significant obstacle in interactive

evolutionary algorithms. It is typically expected that a human subject can or is willing

to provide meaningful input for a maximum of between ten and twenty generations.
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Moreover, it is sometimes desirable to reduce strain on the user by asking him or

her to perform simple selection tasks rather than more difficult ranking tasks. A

thorough discussion of user interaction strategies can be found in Breukelaar et al.

[4]. Takagi [42] asserts that the ability for users to remember the different offspring

when viewing them sequentially becomes an issue especially for time varying data such

as videos or images with too high a level of detail to be displayed simultaneously. It

is therefore necessary to design a solution which allows the users to view and compare

the offspring with minimal effort.

As a result of the typically small number of iterations that interactive evolutionary

algorithms are limited to, modern approaches to step length or even covariance matrix

adaptation that may require many time steps before generating useful results are

impractical. Nonetheless, choosing appropriate step lengths is essential as too small

steps require too many generations in order to yield useful results, while too large

steps quickly lead to user frustration. Experiments involving interactive evolution

strategies with successful step length adaptation have been reported by Herdy [18].

This work also emphasises the benefits of recombination for interactive evolution.

An interesting approach to circumventing the problem of user fatigue is the recent

approach by Picbreeder [37, 38], a computational online tool for evolving images that

allows users to pick up improving candidate images where others have left off. This

obviously can only work depending on the application. For instance for something

requiring a more immediate solution, depending on users to voluntarily mutate the

solutions via a website may not be practical.

2.7 Constraint Handling

In evolutionary computation, constraint handling is used when limitations are set on

the dimensions of the search space. Several methods have been introduced in the

past which are described in a survey by Michalewicz [26]. Many constraint handling

techniques use a penalty function which determines how the evolutionary model deals

with offspring that exceed the constraints. The use of the different techniques can

depend on the nature of the fitness function and the topology of the search space.

This section will describe a few of the methods detailed in the Michalewicz survey.
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We restrict this discussion to box constraints as this is the only type of constraint

found in this thesis.

Some of the most straightforward approaches to constraint handling include re-

jecting and repairing offspring. With rejecting offspring, any offspring which does not

lie within the constraints is not considered as a candidate. Repairing offspring on the

other hand will adjust the offspring so that they will all lie within the constraints.

This can be done by clamping the individual dimensions to the constraints when nec-

essary or by interpolating between the parent and the offspring vectors until all the

parameters are inside the constraints. These constraint handling methods will only

produce offspring which lie in the search space. However, this may not be desirable in

all circumstances as it has been noted that if the search space is not contiguous, this

strategy may make crossing regions through the space where non-feasible solutions

lie difficult or impossible.

Lastly there are constraint handling techniques which allow for both feasible and

non-feasible solutions to be considered as a solution. These methods are usually much

more complex than those described above. Usually this is done by incorporating a

factor into the fitness function to account for how much a non-feasible solution exceeds

the constraints. These types of methods are described in [30] and [27].



Chapter 3

Interactive Evolutionary Tone Mapping

We propose interactive evolution as a computational tool for tone mapping. Using

subjective selection the tool will provide users with a simple process for tone mapping

high dynamic range images. The tool will allow the user to select an appropriate

operator along with parameter settings for the image which they are tone mapping.

This will be done without requiring knowledge of the operators and parameters by

the user. Instead the operator or operators and their parameters are selected through

an evolutionary process.

The proposed solution is a (1 +λ)-ES with subjective selection. This chapter will

describe the details of our interactive evolutionary tone mapping tool. The approach

includes a weighted blending of images which are the results of multiple tone mapping

operators. The weights allow for the control of each operator’s contribution to the

tone mapped image. This removes the problem of deciding which operator is best

suited for the image as the evolutionary strategy will be able to mutate towards a

good mapping deciding on the best operator or a combination thereof. The strategy

may also be able to find a solution outside the range of each individual operator,

creating the potential for results which a single operator may not be capable of. The

weights assigned to each operator controlling their contributions make it possible to

eliminate operators which are ill suited for the particular image as their weights can

mutate towards zero. As it was pointed out in [32] and [36], it is often difficult to

assign appropriate values for the parameters of each operator, and so these will be

mutated as well.

The operators which will be selected for this task must be fast since each offspring

requires its own run of each algorithm. Also tunable parameters are an attractive

feature for this task as they add dimensions to our search space. The operators

chosen for this thesis are the ones discussed in Section 2.5, these are the operators of

34
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Figure 3.1: A screen shot of the interface. The user is presented with nine images
with a diverse selection. There are a few which are beyond anything that might be
considered desirable. However, there are several very eligible candidates each with
unique characteristics.

Ashikhmin, Schlick and Reinhard and Devlin. Clearly, other or more operators could

easily be accommodated. The implementation of the operators as well as several

image processing routines, provided by Reinhard et al. [34], have been used as the

basis of our program.

The chapter will first introduce the basic algorithm. This will detail the user

interface, the blending of the images, the generation of the offspring and how step

size is controlled. After which we will provide the details of another method for

controlling the diversity of the offspring. This will use the image metric introduced in

Section 2.4.3. This metric will allow the offspring to be filtered based on perceptual

similarity before the generation is presented to the user. The chapter will conclude

with a discussion of the tool and results.
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3.1 Basic Algorithm

The user interface of our evolutionary tone mapping tool as shown in Figure 3.1 is

deliberately simple. The goal is to provide a clean and easy to use interface which

does not overwhelm the user with too much information. This allows the user to

easily and quickly make a decision. After some experimentation, we have set the

number of offspring, λ, to 8, as providing fewer images sometimes provided too little

variability, while displaying more images required extra effort from the user to make

a selection. The images are displayed to the user in equal size, with the parent always

appearing in the same location. The user can select an image by double clicking and

enlarge it if desired. There is also a feature which enables the user to start over in

case they feel that none of the displayed images will lead to a good solution. On a

recent PC with a quad core processor, generating a new generation of tone mapped

images takes about ten seconds. This of course depends on the size of the images.

This time could be reduced by only using global operators since they are generally

faster to compute. However, we wanted to incorporate the use of a local operator as

it gives us more variety in our mapping algorithms.

3.1.1 Search Space

With the operators we have chosen, we have a total of seven input parameters to tune.

As well, the implementations of the tone mapping operators offer a tunable gamma

value which is used as a post processing step. Including the weights mentioned above,

the gamma values and the seven tone mapping algorithm parameters there are a total

of 13 values to tune. This gives us a search space of 13 dimensions.

Each parameter has associated with it constraints which are used to keep the

value of the parameter inside of the range which for it was intended. Table 3.1 gives

the default setting for the parameters as well as the minimum and maximum values.

The default value for gamma of 2.0 is taken from the implementation of the tone

mapping operators. According to Reinhard et al. [34] this value is in the range of a

typical display. The minimum and maximum values of 1.50 and 2.75, respectively,

were chosen to span a range of gamma values typical of most display devices. The

weights are mutated such that they are always positive between zero and one and
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Operator Parameter Default Min Max

Schlick ln(M) −0.74 −6.0 0.0

Ashikhmin
ln(s) −1.00 −2.0 4.0
t 0.50 0.0 1.0

d 1.00 0.0 1.0
Reinhard c 0.00 0.0 1.0
& Devlin f 0.00 −8.0 8.0

m 0.60 0.3 1.0

Table 3.1: The default, minimum, and maximum values which are used for the tone
mapping operators’ input parameters. Default values are used for the parent of the
first generation and the minimum and maximum values are used as constraints.

their sum is equal to one, which is done by dividing by the sum of the weights.

3.1.2 Generating Offspring

The first parent is generated using equal weights for each of the tone mapping oper-

ators, and the default parameter settings listed above. These values are all stored in

the parent vector y. New offspring are then generated as vectors x, mutated from

the single parent y. This is done component wise by

xi = (x
(max)
i − x(min)

i )σri + yi (3.1)

where σ denotes the mutation strength or step size applied to the offspring, x
(min)
i

and x
(max)
i are the minimum and maximum values for the parameters and weights

which make up the candidate vectors. Lastly the ri are normally distributed random

numbers with mean 0 and standard deviation 1 and the yi are the components of the

parent vector. An exception will occur when a parameter, xi in x, has a range where

the minimum and maximum values have orders of magnitude which differ by two or

more. These parameters will be mutated as

xi = exp
(

(ln(x
(max)
i )− ln(x

(min)
i ))σri + ln(yi))

)
. (3.2)

This exception is in place to allow for parameters with large ranges to experience

mutations similar to those with smaller ranges.

Constraint handling is done using the repair method of clamping the values of the

parameters which are outside of the constraints. The clamping maps values greater
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than the maximum to the maximum value, and values less than the minimum to the

minimum value. This method of constraint handling was chosen as it is fast compared

to rejecting offspring until λ offspring are generated with parameters which all fall

into the acceptable ranges.

Step size adaptation is commonly used in evolutionary computation to guide the

mutation towards an optimal solution much faster. For our tool we have decided to

use a very simple strategy for adapting the step size of our mutations. This is mainly

due to the fact that we do not expect a session to last more than 10 or 20 generations.

Our step size is controlled by a mutation strength σ which starts out with a value

of 0.2 and is decreased by one fifth each time a generation of images does not make

any improvements and the parent image is selected. The parameter σ controls how

much the parameters mutate away from the parent. In practice this works fairly

well. However, depending on the image and the direction of the candidate vector,

the variability of the offspring can be difficult to control. We will later address this

issue by introducing a stage in which the offspring are first pre-screened such that the

generation prepared for the user is all within a target range of perceptual similarity.

This allows us to control the offspring in perceptual space rather than in parameter

space.

3.1.3 Image Blending

The tone mapping operators give us three images for each offspring. With these

images we use the mutated weights to blend the three together. This is done in the

perceptually uniform colour space, CIELAB described in Section 2.3.3. The reason

for using this space is that its perceptual uniformity should allow a good interpolation

between the three pixel values. Moreover, our initial experimentations of using the

RGB colour space for this interpolation led to some undesirable effects. These effects

were most likely quantization errors near the extreme ends of the colour channels’

ranges. Using the CIELAB colour space the issue of these undesirable effects was

resolved. For the blending of the images, we first convert the image from RGB to

CIELAB then each pixel, p of the final image is calculated as

p = wapa + wsps + wrdprd (3.3)
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where pa, ps and prd are corresponding pixels from the images tone mapped using

Ashikhmin’s, Schlick’s and Reinhard and Devlin’s operators respectively. Once the

final blended image is processed, it is then transformed from CIELAB to XYZ by

inverting the equations in Section 2.3.3. Lastly the image is transformed from XYZ

to RGB using the inverse of the matrix from equation (2.2). The image is now ready

to be displayed.

3.2 Perceptually Based Step Length Adaptation

The basic algorithm described so far is only capable of manipulating the offspring of a

generation in parameter space which is done via the mutation strength, σ. It may on

the other hand be desirable to be able to control the offspring in a perceptual space.

In other words, rather than just having control over the mutations in parameter

space we may want to have control over how similar the resulting images are when

compared to one another visually. It may be noticeable, especially for some images

and directions in parameter space, that small steps do not equate to small steps in

perceptual space. Therefore, it may be desirable to be able to control the mutation of

the offspring in perceptual space ensuring all offspring are roughly equidistant from

the parent. This section will describe a method using an image similarity metric to

control the mutation strength of the offspring.

Image space step size adaptation is used to control offspring in perceptual space.

Here perceptual space will be described in terms of perceptual similarity which will

be measured with the universal image fidelity metric described in Section 2.4.3. In

order to be able to adapt offspring in terms of their perceptual similarity we will

describe how to control offspring in a manner which will allow us to manipulate

the similarity measure. We will also define a scheme to adapt the range of target

perceptual similarity values to control the diversity of the population.

In order to produce generations of images where all of the images are within some

target region of perceptual similarity around the parent image we conduct an initial

pre-screening to adapt the images which do not meet our specifications. For the

image metric we need to decide on the values of weights, wL, wα and wβ. We have

chosen wL, wα and wβ to take on values of 3.00, 1.10 and 0.95, respectively. These are
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Figure 3.2: These plots show the average perceptual similarity of offspring from four
different parents at different step sizes. The perceptual similarity has a range of
[0.0, 2.24722] and the step size is varied from 0.0 to 1.4 with discrete steps of 0.2. The
Paul Bunyan image can be seen in Figure 3.3 and the Waffle House image in Figure
3.11.

somewhat arbitrary but have been chosen to be close to the optimal ones reported

by Toet and Lucassen [43] for their images. This gives us the equation

Qcolour(x,y) =
√

3.00(Q(xL,yL))2 + 1.10(Q(xα,yα))2 + 0.95(Q(xβ,yβ))2 (3.4)

which is further described in Section 2.4.3. With these settings for the weights the

metric has a range of [0.0, 2.24722], where the maximum value of 2.24722 is achieved

when the two images being compared are identical.

3.2.1 Perceptual Ranges

Prior to deciding whether it would be feasible to provide a feature which would allow

the tool to generate images with a target perceptual similarity, some preliminary

research was carried out. The goal here was to find a relationship between parameter

space and perceptual space. By doing so this would allow us to predict the influence

on the image in perceptual space when making changes to it parameter space. The

results of the first experiment are plotted in Figure 3.2. This shows the average
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Qcolour: 2.24,
parent image

Qcolour: 2.18,
step size: 0.05

Qcolour: 2.16,
step size: 0.10

Qcolour: 2.14,
step size: 0.15

Qcolour: 2.11,
step size: 0.20

Qcolour: 2.10,
step size: 0.25

Qcolour: 2.08,
step size: 0.30

Qcolour: 2.02,
step size: 0.35

Qcolour: 1.60,
step size: 0.40

Figure 3.3: This series of images shows how the similarity metric Qcolour behaves with
respect to step size. The images here are the result of fixing a single random direction
in parameter space and then generating an image at increasing step sizes. In this case
we see that the further along the direction we travel away from the image the metric
decreases.
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perceptual similarity with 95% error bars of offspring at different step sizes. This was

calculated for two different images and for each image four different random parents

were chosen. As we can see, as the step size increases the average perceptual similarity

decreases. As well we see the span of the error bars decrease when the step size is

small. As well as showing the possible relationship between step size and the image

similarity metric, this figure further emphasizes the need for greater control over the

strength of the mutations. The large ranges covered by the error bars in the two

plots show us that its difficult to predict the similarity of a new generated offspring

solely based on the mutation strength. A second example shown in Figure 3.3 allows

us to observe visual what is happening in Figure 3.2. This example shows a series of

offspring all generated from a single parent using the same mutation vector. Each of

these offspring differ by an increasing step size. As we can see in this example, as the

step size increases the similarity metric decreases.

Figures 3.2 and 3.3 indicate that there is a fairly smooth relationship between step

size and perceptual similarity. From this observation we make the assumption that by

increasing the step size we can decrease the perceptual similarity and by decreasing

the step size, increase the perceptual similarity. This assumption will allow us to

control the perceptual similarity measure of the child images. We will use this result

to help form a set of equations which will allow us to generate images within the

desired perceptual range.

For the purpose of the pre-screening, the images will each have their own local

mutation strength σl, initially set to the mutation strength σ, described in Section

3.1.1, at the start of each generation. The offspring will be generated as previously

described, however using σl rather than the global mutation strength σ. Then the off-

spring will all be compared with the parent of the generation calculating its perceptual

similarity, d. If an offspring is not within the range of perceptual similarities, denoted

by rmin and rmax, then its local mutation strength will be decreased or increased, if

the perceptual similarity of the offspring is below or above the range, respectively.
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The local mutation strength is adapted by

σl =


σl(1.0 + |d− rmax|/2.24722) : d > rmax

σl(1.0− |d− rmin|/2.24722) : d < rmin

σl : otherwise

. (3.5)

The idea is to decrease or increase the mutation strength relative to how far outside

the similarity range the offspring is. This process is repeated until all of the offspring

of a generation fall into the target range.

3.2.2 Perceptual Similarity Ranges

We would like to define a range of perceptual similarities which will control the

offspring that will be selected as candidates for the generation. Figure 3.4 offers

insights regarding which ranges of perceptual similarity will allow us to produce a

generation of images in a feasible amount of time. The idea here is to start with a

rather large range with a significant distance from the parent. Then as the range

is adapted it should converge quickly to a range not too small but such that it will

generate images very close to the parent.

The range has a maximum of
√

5.05 which is approximately equal to 2.24722 and

minimum of 0. The application stores a value for the target perceptual similarity,

t, and with this we are able to determine with a range of perceptual similarities,

[rmin, rmax]. This range is calculated by

rmin = t− (1− (t/tmax)
1.5 +mmin) (3.6)

and

rmax = t+ (1− (t/tmax)
1.5 +mmin) (3.7)

where mmin has been set to 0.1, which keeps the interval open so that it does not

converge to a single value. The factor 1−(t/tmax)
1.5 allows the range to start off fairly

large and then quickly decrease as it approaches the final range. The updates will

occur whenever the parent of the current generation is selected as the best available

candidate, the same as in the parameter space step size adaptation. These updates

are calculated as

t = t+ (tmax − t)ε (3.8)
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Figure 3.4: This figure shows the average number of images generated for different
perceptual similarity targets and margins of error in order to generate eight child
images within the range defined by the target and margin. The offspring for this plot
were all generated using an initial step size of 0.2. This was done for four different
images from [11]. These results were created to support the decisions regarding the
adaptation of the perceptual ranges.
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Figure 3.5: This shows how the range of perceptual similarities will adapt with each
update which occurs. The maximum line shows the maximum value which the simi-
larity metric can obtain. The margin of error and target lines show how each of these
are adapted to define the range of similarities.

where tmax has been set to 2.175. This allows the range to start off approximately

spanning [1.0, 2.0] and then will approach a range of approximately [2.1, 2.25]. By

adjusting the value for ε we are able to control how fast the range approaches final

values. Figure 3.5 shows a plot of the range adaptation with ε = 0.20. As we can

see the range is very close to the final values after just 10 updates which is likely a

good setting for our application since we do not expect the user to endure numerous

generations.

Since the diversity of the offspring is controlled by a band of perceptual similarities

it is reasonable to increase the initial step size which images will be generated with.

This way if offspring which are drastically different from the parent, they should then

be rejected by the perceptual similarity range and adapted to fit.

3.2.3 Speed Enhancements

One of the constraints that we are working with is speed. As described in Section

2.6, user fatigue is one of the most common issues with interactive evolution. Given

this we would like to maximise the number of generations a user is able to endure
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Figure 3.6: This figure shows the relationship between the size of the image and
perceptual similarity measured with the universal colour image fidelity metric. Four
pairs of images with an initial size of 1024 × 683 are compared after being resized
from 99% to 1%. The resizing was done using the box filter as it left the similarity
metric the least affected. From the plot we can see that until the 5% line all of the
curves increase gradually. At this point the images have a resolution of 50× 34.

and so decreasing the time between generations is the next topic of discussion. There

are several areas where speed can be increased using common tools. Multi-threading

is one technique which we use to decrease the time it takes to produce the next

generation. This takes advantage of multiple cores found in modern processors. All

of the tone mappings which take place in each generation can be run in parallel, as well

as the blending. This is very useful as at least eight offspring are generated in each

generation and each of these needs three tone mapping operations and one blending

operation. This totals at least 24 tone mappings and eight blending operations.

This total can be even higher when the goal is to generate offspring within a range

perceptual similarities as offspring are repeatedly generated until there are enough

acceptable offspring.

Secondly, in order to produce a generation of images which all lie in the same

perceptual similarity range, images are pre-screened. New batches of offspring are

generated until there are eight offspring which fall into the target range of perceptual
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similarities. The initial pre-screening is done with much smaller images. Although

smaller images take less time to process, the amount of information has changed

and so this can affect the score of the image metric. Tests were performed to find the

optimal scaling factor which would allow us to find images in the correct range without

requiring too much time between generations. Figure 3.6 shows the relationship

between image size in percent and perceptual similarity scores. This is shown for a

images with an original size of 1024× 683. Other filters were tested but it was found

that the box filter did the least to affect the similarity metric. We can see that by

restricting the image resizing such that the resized image is no smaller than 50× 34

pixels we are able to obtain a good relationship between the score of the original sized

images and the resized images.

3.3 Results

We now analyze and discuss the interactive evolutionary tone mapping tool using

a few example sessions. First we look at a couple of sessions to make observations

regarding how the two types of step size adaptation are able to provide diversity when

the steps are large and then their abilities to tighten control over diversity as the steps

become much smaller. This will provide insight into the possible usefulness of these

methods and this tool as a whole.

Next will look at a sample session first without perceptual similarity ranges, com-

paring of the default settings for the three tone mapping operators and their blended

image against the final settings and their blended image. We will then observe a sam-

ple session which uses the perceptual similarity ranges, looking again at the default

and final settings. Also we will examine how the weights are mutated during these

sessions. We will conclude this section with a comparison of a result mapped with

the interactive evolutionary tone mapping tool and other published mappings of the

same image.

3.3.1 Offspring Step Size Control

For these two sessions we tone map the Golden Gate Bridge image [11]. In this image

it is important to capture the detail from the shaded grassy area near the bottom of
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the image as well as the detail from the rest of the image which, for the most part, is

much brighter. These two sessions allow us to observe how the step size adaptation

controls the images. In each session the step size is has been reduced five times, the

parent image is displayed in the middle of its eight children surrounding it. The goal

is to observe a wide diversity before the step size is reduced and then a much less

diverse group of offspring after the step size has been reduced. The number of step

size reductions was chosen as five, since typically during a session lasting 10 to 20

generations the step size should be decreased about five times.

First we will examine the starting generation, shown in Figures 3.7 and 3.8. These

were produced with similar parent images, which are placed in the centre of each of

these figures. The offspring in the centre of the bottom row of Figure 3.7, which uses

parameter space adaptation, is obviously not a good mapping. The point of using the

ranges of perceptual similarity is to attempt to remove such images from generations

as well as to maintain control over diversity with small step sizes. As we can see

from Figure 3.8 there are no images which are mapped as poorly as the one in the

centre on the bottom row in Figure 3.7, yet we are still able to see some variety in

the offspring.

After adapting the step size five times, the parameter space step size adaptation

which started with a step size of 0.2, ended with a step size of 0.066. The perceptual

similarity step size adaptation started with a step size of 0.3, and ended with the

step size 0.0988. As well the perceptual similarity step size adaptation ended with a

perceptual similarity range between 1.705 and 2.203.

For Figures 3.9 and 3.10 the parent images in the centre have remained the same.

The difference here is that the step sizes have been reduced according to the functions

discussed above. The idea now is to have very little diversity, yet a generation of

completely identical offspring is not very useful either. Except for the image in the

centre on the right column in Figure 3.9, the offspring have only subtle variations from

the parent. The perceptual similarity ranges appear to have eliminated any drastic

changes from the parent as the images in Figure 3.10 have only subtle variations.
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Qcolour: 2.03 Qcolour: 1.96 Qcolour: 1.58

Qcolour: 1.96 Parent Qcolour: 1.84

Qcolour: 1.96 Qcolour: 0.88 Qcolour: 2.01

Figure 3.7: This is the initial generation of images for the sample session using pa-
rameter step size adaptation. The image seen here and in the follow three figures is
an image of the Golden Gate Bridge found in [11].
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Qcolour: 1.96 Qcolour: 2.02 Qcolour: 1.38

Qcolour: 2.00 Parent Qcolour: 0.96

Qcolour: 1.70 Qcolour: 1.76 Qcolour: 1.60

Figure 3.8: This is the initial generation of images for the sample session using per-
ceptual space step size adaptation. We can that there are no images similar to the
one found in the centre of the bottom row of Figure 3.7.
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Qcolour: 2.08 Qcolour: 2.05 Qcolour: 1.96

Qcolour: 1.45 Parent Qcolour: 2.06

Qcolour: 1.99 Qcolour: 2.05 Qcolour: 2.03

Figure 3.9: This is the final generation of images for the sample session using param-
eter space step size adaptation. We can see that even though the step size has been
reduced there is still at least one image which is still fairly different from the parent
image in the centre.
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Qcolour: 2.01 Qcolour: 2.03 Qcolour: 2.04

Qcolour: 2.03 Parent Qcolour: 2.04

Qcolour: 2.02 Qcolour: 2.05 Qcolour: 1.96

Figure 3.10: This is the final generation of image for the sample session using percep-
tual space adaptation. We can see here that by restricting the images in perceptual
space we are able to produce a generation of very similar offspring.
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3.3.2 Parameter Space Step Size Adaptation

For this session and the next we will be looking at the Waffle House image [11]. The

attractive feature of the Waffle House image for these observations is that neither of

the tone mappings provides a perfect solution to start with. Looking at the default

settings in Figure 3.11, Ashikhmin’s operator does the best to preserve contrast.

However, if one looks closely at the lights inside of the diner, halos are observed.

Schlick’s operator produces a very bright result which is quite unnatural and much of

the detail in the image is missing. Lastly, Reinhard and Devlin’s operator produces a

poor result due to some bright spots which emerge in the high contrast areas around

the sign outside the building. The blended result is not good due to these issues

found in each of the images.

Selections were made during the interactive evolutionary process with the goal of

reducing or removing the bright spots which appear around the top of the building.

As well the overall image should not be too dark such that the detail in the car is

missing. Also the halos around the lights inside the diner are additional artifacts

which should be avoided.

After 12 generations we arrive at an arguably much better image than the default

blended image as we can see in Figure 3.11. The lower weights on the results from

Schlick’s and Reinhard and Devlin’s operators resulted in their contributions not

mutating towards a something much better than what they started with. However,

Ashikhmin’s contribution which started out with the best result mutated toward a

darker image which contains a lot of contrast. The weights which are plotted in Figure

3.12 show how each operator contributed to the final image. Ashikhmin’s operator

gives us the greatest contribution adding a lot of contrast, Reinhard and Devlin’s

operator contributes some brightness and Schlick’s with a weight of zero or very close

to zero contributed nothing. The plot in Figure 3.12 also shows us that the weights

mutated quickly such that Ashikhmin’s contribution dominated. This would result

in most of the tuning of the parameters tuned this one operator. This is not to say

that Schlick’s, or Reinhard and Devlin’s operator are completely inappropriate for

this image. Better mappings could be obtained by manually tuning the parameters

for each of the operators.
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(a) Default;
Schlick

(b) Final;
Schlick

(c) Default;
Ashikhmin

(d) Final;
Ashikhmin

(e) Default;
Reinhard &

Devlin

(f) Final;
Reinhard &

Devlin

(g) Default;
Blended

(h) Final;
Blended

Figure 3.11: A sample session with parameter space step size adaptation using the
Waffle House image. The final blended image does a good job at eliminating the
bright spots around the sign while giving a good sense of the brightness of the sign.
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Figure 3.12: The plot shows how the weights adapt over the generations with param-
eter space step size adaptation. The places in the plot where all three of the weights
do not change between generations indicate areas where the parent was selected.

3.3.3 Perceptual Space Step Size Adaptation

This session we will look at how perceptual similarity ranges work to adapt the

starting image towards a final solution. This session will use the same default settings

and thus images as the previous. The goals in the tone mapping remain the same.

The results of this session can be seen in Figure 3.13. This session resulted in

a very similar mapping as that seen in Figure 3.11. As in the previous session the

weight for Ashikhmin’s operator dominated over the rest quite quickly as shown in the

plot in Figure 3.14. Again this is likely due to the fact that Ashikhmin’s operator has

the best default mapping when compared to others. The final result here has both

Reinhard and Devlin’s and Schlick’s operators contributing a small but noticeable

amount. Schlick’s very bright mapping adds brightness to the final blended image

and Reinhard and Devlin’s mapping helps to smooth some of the areas where halos

are present in Ashikhmin’s mapping.

We will conclude the results section by comparing the results of an image tone

mapped with our interactive evolutionary tool with some other published results. In

Figure 3.15 we compare our results of mapping the Big Fog image tone mapped with
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(a) Default;
Schlick

(b) Final;
Schlick

(c) Default;
Ashikhmin

(d) Final;
Ashikhmin

(e) Default;
Reinhard &

Devlin

(f) Final;
Reinhard &

Devlin

(g) Default;
Blended

(h) Final;
Blended

Figure 3.13: A sample session with perceptual space step size using the Waffle House
image. The final blended image is quite similar to the previous sample session however
the final blended image is somewhat brighter overall, this is likely due to the larger
weighting given to Schlick’s operator.
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Figure 3.14: This plot shows the mutations of the weights for a sample session similar
to the previous except this time with perceptual space step size adaptation. The
weights here a very much the same as the previous session except for the weight
associated with Schlick’s operator which is larger in this session. This could be what
attributed to the brighter final blended image.
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(a) Fattal (b) Interactive
Evolution

(c) Ward
Larson

Figure 3.15: Comparison with other published results. The mapping on the left is
a result from Fattal et al. [14] and the mapping on the right is from Ward Larson
et al. [22]. The centre mapping was generated with the interactive evolutionary tone
mapping tool. The high dynamic image is due to Tumblin and Turk [44].

the against results published by Ward Larson et al. [22] and Fattal et al. [14]. While

it is not immediately clear which of the tone mapped images is preferable, the evolu-

tionary approach allows each user to select according to their own preferences without

manually changing obscure parameters. Figures 3.16 and 3.17 give more comparisons

with other published results. In each of these we further see the subjective nature

of tone mappings, strengthening the argument for using interactive evolution as a

computational tool.



59

(a) Durand (b) Interactive
Evolution

(c) Ward
Larson

Figure 3.16: A second comparison with other published results. The mapping on
the left is a result from Durand and Dorsey’s bilateral filtering algorithm [10] and
the mapping on the right is from Ward Larson et al. [22]. The centre mapping was
generated with the interactive evolutionary tone mapping tool. The high dynamic
range image is included with [34].
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(a) Trilateral Filtering

(b) Interactive Evolution

(c) Fattal

Figure 3.17: Third and final comparison with other published results. The mappings
on the top are two result from Choudhury and Tumblin’s trilateral filtering algorithm
[6]. On the bottom are results from Fattal et al. [14] and the mappings in the centre
are results from the interactive tone mapping tool. Both of these images are due to
Fattal et al. [14].



Chapter 4

Conclusion

In this thesis a new approach has been described that uses interactive evolution as

a computational tool for tone mapping high dynamic range images. It is difficult to

mathematically describe a good mapping yet for a human observer the task is almost

effortless. Blending the results from several tone mapping operators allows for the

tool to render mappings outside the capabilities of just one operator. Combining the

parameters of each tone mapping operator and the blending weights into a single

vector creates an optimization problem which uses subjective selection. The use of a

perceptually uniform colour space to perform the blending proved necessary to avoid

the difficulties of interpolating colour in RGB. Even though we are using a fairly

simple (1+λ)-ES, the system has been found be capable of generating good mapping

in just a few generations. The use of a perceptual similarity metric to control the

offspring of a generation presents a novel idea for interactive evolution on images.

The application created for this thesis will be released to the public as a tool for tone

mapping.

In future work it would be desirable to conduct an in depth set of user experiments

to examine the strengths and weaknesses of our approach. This would include a study

where participants would be asked to tone map a high dynamic range image using

the tool with a goal of producing a mapping similar to a target. This would provide

further insights into the usefulness of the approach as well as help to find optimal

values for step length adaptation for both σ and the perceptual ranges. Giving control

over the step length to the user may also prove useful. In addition, valuable data

could be collected from multiple runs from many users of the tool, this could be

collected through an online setting of the tool. This may allow us to determine if a

covariance matrix adaptation method would be useful with this tool. If so this could

decrease the number of generations needed in order to find an appropriate mapping.
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