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Two-component scaling near the metal-insulator bifurcation in two dimensions
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We consider a two-component scaling picture for the resistivity of two-dimensional~2D! weakly disordered
interacting electron systems at low temperature with the aim of describing both the vicinity of the bifurcation
and the low resistance metallic regime in the same framework. We contrast the essential features of one-
component and two-component scaling theories. We discuss why the conventional lowest order renormaliza-
tion group equations do not show a bifurcation in 2D, and a semiempirical extension is proposed which does
lead to bifurcation. Parameters, including the productzn, are determined by least squares fitting to experimen-
tal data. An excellent description is obtained for the temperature and density dependence of the resistance of
silicon close to the separatrix. Implications of this two-component scaling picture for a quantum critical point
are discussed.
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I. INTRODUCTION

The determination of the low-temperature properties, a
ultimately the ground-state phase diagram, of tw
dimensional~2D! systems of strongly interacting electrons
low carrier density in the presence of low levels of disord
remains a very challenging problem in spite of a great dea
experimental and theoretical effort. The longstanding vi
that all charge carrier states become localized at zero t
perature (T50) in the limit of a large 2D system has bee
called into question by experimental observations of a fin
temperature ‘‘transition’’ from insulatorlike (]r/]T,0) to
metal-like (]r/]T.0) behavior as the electron density
increased in very high purity metal-oxide semiconduc
field-effect transistors~MOSFET’s! and heterostructures.1–4

This bifurcation of the resistivityr(T) into two families of
curves occurs at a critical carrier density of the 2D elect
~or hole! system. The critical carrier density depends on
specific disorder characteristics of the given sample. In
vicinity of the bifurcation,r(T) has intriguing scaling prop
erties as a function of density and temperature. The lo
density insulating family of curves havingdr/dT,0 can be
collapsed onto a single curve when plotted as a function
scaling variableT0(d)/T. The new density dependent tem
perature scaleT0(d) has a power law dependence on t
magnitude ofd5(n2n!)/n!, wheren! is the critical den-
sity at the bifurcation. Similarly, the metallic family o
curves at higher density withdr/dT.0 collapses onto an
other unique curve with a power law dependence onT0(d)/T
with precisely the same critical exponent. There is also s
ing behavior with respect to density viaudu and applied elec-
tric field, with a different characteristic critical exponent.
review has been given by Abrahamset al.5

A bifurcation with scaling behavior at finiteT is expected
to be a generic feature associated with aT50 quantum criti-
cal point~QCP!.6 Consequently, the demonstrated scaling
the resistivity can be taken as evidence for a metal-insul
transition~MIT !. With this assumption, Dobrosavljevic´ et al.
0163-1829/2003/67~20!/205309~7!/$20.00 67 2053
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have given a phenomenological description of the obser
scaling properties and power laws in terms of a on
parameter scaling theory.7 In this picture, the bifurcation
point lies on a separatrix which terminates atT50 at a QCP
which is a fixed point of a set of scaling equations. The fix
point is repulsive with respect to the temperature varia
and separates the insulating and metallic regions of the l
T phase diagram. There is a unique correspondence betw
the QCP and the bifurcation point and a two-phase gro
state is implied.

However, this correspondence provides only indirect e
dence for an MIT. Of course the power law fits near t
bifurcation point are based on linearization of a scaling fl
equation and the linearization must eventually fail at su
ciently low temperature, for whichT0(d)/T is no longer
small, but this is not evidence against a QCP. A more cru
point is that a physical effect which is negligible for temper
turesT;1 K near the bifurcation, may become dominant
the low-T limit. Scaling properties characteristic of an imm
nent QCP would then still be observed near the bifurcat
but the suggested QCP itself could be totally removed in
zero-temperature limit.

A possible example of this situation is the proposal
Simmonset al.8 that in p-type GaAs ther(T) curves of the
metallic family will eventually turn upward to exhibit insu
latorlike behavior with]r/]T,0 if the electron temperature
T could be made sufficiently low. A similar conclusion ha
recently been reached for Si MOSFET’s.9 However, the turn
up is actually only directly observed for metallic curves ju
above the critical density and, as we discuss below, the m
netoresistance data cited as evidence of a universal w
localization in 2D in Refs. 8 and 9 may alternatively refle
different magnetic field dependencies of the competing loc
izing and delocalizing triplet spin state interactions. Irresp
tive of the mechanism responsible for the upturn, proper
of the system at temperatures well below the bifurcation te
perature are not correctly described by a one-compon
scaling theory. We will outline a semiempirical two
©2003 The American Physical Society09-1
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component scaling theory that describes within a sin
framework the temperature-dependent resistivity both in
vicinity of the bifurcation and in the low resistance metal
regime.

Following early work by Altshuler et al.10 further
progress toward an understanding of disordered 2D elec
systems in the strong coupling regime was made
Finkelstein11,12 and by Castellaniet al.13 who showed that
electron-electron interactions can lead todr/dT.0 ~metallic
behavior! in the disordered 2D system at finiteT. This is in
contrast to the localizing insulating behavior found in t
absence of electron-electron interactions.14 The physical
properties of the system at lowT are determined by nonlin
ear interactions of low-energy diffusive modes. A set
renormalization group~RG! equations was generated b
means of a formal perturbation expansion in powers o
dimensionless temperature-dependent resistivityR which is
related to the physical resistance per square byR
5(e2/ph)Rn . These scaling results include electro
electron interactions to all orders and are valid in the dif
sive regimekBT,\/t provided R is small ~in principle,
R!1). Additional progress was made by Zalaet al.15 who
considered interaction corrections to transport propertie
intermediate temperatures in the ballistic regimekBT.\/t
to all orders in the electron-electron interaction using
Fermi-liquid approach. These results are also restricted to
perturbative regimeR!1. Comparisons with experiment fo
the temperature dependent resistivity of Si MOSFET’s h
been made for both the scaling theory16 and the intermediate
temperature theory.17,18 The intermediate temperature theo
gives consistent semiquantitative agreement with experim
in the range of densities for whichR is small.

We emphasize that both these theories are perturbativ
R and are limited to the regime of smallR. Hence they must
fail to describe the regime near bifurcation whereR;1 and
they contain no bifurcation point. In addition, in the R
procedure the equations develop singularities at a non
temperature so that the approach to the ground state ca
be described.

In contrast to the 2D case there is a qualitative und
standing of the metal-insulator transition in 3D electron s
tems. A consistent qualitative picture of the transition h
been obtained by RG methods in a space of dimensio
1e with e.0 taken as an expansion parameter. Phys
quantities such as critical exponents are expressed as p
series ine. While only the leading terms ine have been
obtained it is presumed that resummation methods wo
give good results in 3D if sufficient correction terms cou
be calculated. In the case ofe.0 it is clear that the interplay
of strong electron-electron interactions with disorder is
essential aspect of the bifurcation.

It is remarkable that in spite of great effort a correspon
ing theory does not exist for 2D systems, that is fore50.
This lack casts doubt on the physical significance and
evance of the ‘‘universal’’ aspects of electron-electron int
actions in disordered systems. In addition the lack of even
approximate scaling theory has prevented quantitative
cussion of the low-temperature limit and the approach to
ground state. We expect that the interplay of strong electr
20530
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electron interactions with disorder must be an essential
pect of the bifurcation in 2D irrespective of whether or no
true metal-insulator transition occurs. Of course in some s
tems material dependent effects also contribute.

In this paper we discuss why the lowest order RG eq
tions in 2D do not show a bifurcation and we give a sem
empirical extension which does describe a bifurcation
gion. We focus on the immediate vicinity of the bifurcatio
and on the metallic regime. The strong insulator limit will b
discussed elsewhere. The proposed scaling equations ha
physical low-temperature limit and have no singularities
finite length or temperature scales. This scaling picture p
vides a theoretical framework for the interpretation of expe
mental results, more specifically the ‘‘universal’’ contribu
tions due to electron-electron interactions and disorder.

II. RENORMALIZATION GROUP EQUATIONS

The RG equations established at one-loop level for a
system of electrons in the presence of disorder are base
four dimensionless scaling parametersR, g2 , Z, and
gc ,11–13 whereG25Zg2 is the electron-hole scattering am
plitude for the triplet spin state,Gc5Zgc is the singlet state
particle-particle scattering amplitude andZ is the dynamical
energy rescaling function. Together withR, these quantities
are all functions of the variabley5 ln l21 which describes
rescaling of the momenta after integrating over the mom
tum shell specified bylk0

2,k2,k0
2.19 We consider only the

case when the disorder is due to purely potential scatter
When a connection between length and temperature sca
is needed, we relate a thermal lengthl th to temperature by
l th / l el5(Tel /T)1/z, wherel el andTel are the length and tem
perature scales for elastic scattering andz is the dynamical
critical exponent.6

Particle-particle scattering is not considered to play
essential role relative to the electron-hole scattering rep
sented byg2 so we omit consideration ofgc . The energy
scaling functionZ(y) is not followed explicitly but its effect
is taken into account at the bifurcation fixed point byy
5 ln@(Tel /T)1/z#. These approximations permit discussion
a two-component scaling theory based on the scaling par
etersR andg2. With these simplifications the RG equation
are

dR/dy5a~g2!R 2, ~1!

dg2 /dy5
~11g2!2

2
R, ~2!

where

a~g2!511Fnv1@~2nv!221#H 12
11g2

g2
ln~11g2!J G .

~3!

nv is the number of valleys, so for Sinv52. Equations~1!
and~2! are to be integrated upward iny, starting from initial
bare values for the dependent variables aty5y(0) for which
Tel /T is of order unity. Increasingy corresponds to integrat
ing out shorter wavelength and higher-energy excitatio
9-2
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This amounts to increasing the length scale and decrea
the temperature scale. Our Eqs.~1!–~3! are essentially the
same as Eqs.~1! and~2! of Ref. 16. The notational differenc
is that we use a running variabley52 ln(l) as in Ref. 19,
while Ref. 16 usesj52 ln(kBTt/\). Prior to renormalization
due to interacting diffusive modes, we can setZ(y)51. Af-
ter the RG flow has proceeded to the bifurcation fixed po
we sety5 ln@(Tel /T)1/z#, wherez is the dynamical critical
exponent of the fixed point.

The first term~unity! on the right-hand side of Eq.~3!
contains no electron-electron interactions and arises f
weak localization. On scaling this term enhances the re
tivity. The other term, in the square brackets, is due
electron-electron interactions in the singlet and trip
particle-hole spin states and can be negative wheng2 is large
enough. When it is negative this term has the opposite tr
of reducing the resistivity upon scaling. The bare value ofg2

is given byg2
bare52F0

a/(11F0
a), whereF0

a,0 is the spin-
antisymmetric Landau parameter. From Eq.~2!, g2 increases
with rescaling. With nv52, the expression fora(g2)
changes sign wheng2 reaches 0.46.

A change in sign ofa(g2), corresponding to a net delo
calizing effect in zero external magnetic field, has no parti
lar a priori implication for magnetoresistance. The magn
toresistance data of Refs. 8,9 can be consistent with
scaling conclusions if, for example, the localizing contrib
tion in Eq. ~3! has a stronger magnetic field dependence~at
small fields! than the delocalizing contribution from th
electron-electron interactions. Thus the appearance of a w
localization precursor signature in magnetoresistance
does not necessarily imply there will be an eventual turn
in the zero field resistivity at very low temperatures.

As we integrate Eq.~2!, g2 increases from its initial bare
value but diverges at a finite value ofy5ymax providedR
remains finite aty5ymax.

11–13 It is easy to confirm that a
solution of Eqs.~1! and ~2! with finite R5Rmin andg2 ar-
bitrarily large is consistent. In this limit Eq.~2! can be writ-
ten

dg2 /dy5~Rmin/2!g2
2 . ~4!

It follows that g2 diverges at a finiteymax. To verify the
consistency of a finiteRmin wheng2 diverges, we can divide
Eq. ~1! by ~2! and rearrange obtaining

dR/R52dg2~6 lng2!/g2
2 . ~5!

The integral of the left hand side is finite so it follows thatR
indeed reaches a finite lower limitRmin asg2→`. The res-
caling cannot be continued beyond the singularity aty
5ymax which means that the zero-temperature limit can
be reached.

In principle, this singularity in the triplet state scatterin
amplitude might signal the onset of a magnetic instability
the system. On the other hand, the divergence might sim
be an artifact of a low order perturbation expansion. T
ultimate fate of this singularity at very lowT is not com-
pletely clear. Castellaniet al.19 showed that a similar diver
gence in the energy rescaling functionZ(y) can cause the
singular point to shift to extremely lowT. The paramagnetic
20530
ng

t,

m
s-
o
t

d

-
-
ur
-

ak
ta
p

t

ly
e

metallic regime would then extend over a wide temperatu
More recently, Kirkpatrick and Belitz20 and Chamon and
Mucciolo21 have indeed found a solution of the RG equ
tions corresponding to a disordered ferromagnet. The qu
tion of how low the temperatures would be where such tr
sitions might occur is open. In the absence of theoret
guidance on this point we turn to experiment for informati
on the triplet spin state scattering amplitudeg2 in the tem-
perature range of the bifurcation.

Reference 22 concluded from an analysis of magneto
sistance data that there would be a ferromagnetic instab
very near the density of the bifurcation. However, measu
ments in Refs. 23,24 found an enhancement of the effectivg
factorg* , but no singularity for densities down tor s58.4, a
range which includes the bifurcation. This is interpreted
terms of the spin-antisymmetric Landau parameter asg*
52/(11F0

a). F0
a would be21 at the onset of a ferromag

netic instability. Forr s58 Ref. 24 givesF0
a.20.5, corre-

sponding to a spin susceptibility enhancement factor of 2.
temperatures well above the bifurcation the bare values
the electron-electron interaction amplitudes such asg2

bare

have negligible diffusion corrections.g2
bare is then related to

F0
a by g2

bare52F0
a/(11F0

a). A valueF0
a520.5 corresponds

to g2
bare51. On the basis of the direct measurement ofg* we

will assume that the triplet spin state scattering amplitudeg2
is finite and well behaved throughout the density and te
perature range of the experiments we consider. With this
sumption, an explicit RG equation is not needed forg2.
Nonmagnetic Fermi liquid behavior of the system is a su
cient condition for a smoothg2 but may not be necessary.

III. BIFURCATION IN 2D

To discuss why Eqs.~1! and ~2! fail to describe a bifur-
cation in 2D electron systems, we first recall the correspo
ing RG results ind521e dimensions withe small and posi-
tive. Making the same physical assumptions regarding
interacting diffusive modes and the same one-loop appr
mation, Eq.~1! becomes

dR/dy52~e/2!R1a~g2!R 2. ~6!

The first term on the right hand side of Eq.~6! is the conse-
quence of theL22d form factor when converting resistivity
to resistance in a space ofd dimensions, and the coefficien
a(g2) in the second term is the same as in Eq.~3!.

We identify the bifurcation point as the point at whic
dR/dy50. The zero of Eq.~6! occurs at the critical value
R* 5e/(2a), provideda.0, wherea is the value ofa(g2)
when the bifurcation occurs. In order for the bifurcation to
a precursor for a quantum critical point, the temperat
must be a relevant variable. This requires thatt21.0 in the
linearized flow equation

d~R2R* !/dy5t21~R2R* !. ~7!

This procedure for identifying a critical point by a linearize
flow equation is standard. From Eq.~6!, t215e/2.0. The
9-3
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D. J. W. GELDART AND D. NEILSON PHYSICAL REVIEW B67, 205309 ~2003!
condition thatt21.0 implies that the resistance has positi
~negative! slope with respect toT in the metallic~insulating!
regime.

It is clear that a nontrivial root ofdR/dy50 requires at
least two terms and that for the 2D case Eq.~1! as presented
@that is, Eq.~6! with e50] will not be sufficient. Attempts
have been made to discuss possible metal-insulator tra
tions in 2D using Eq.~1! by tuning the parametera(g2) to
zero. However, a critical point is a robust property of t
entire dR/dy and cannot be described by the properties
only a single terma(g2)R 2 in a series. Such a procedure
not stable to the addition of higher order terms. The simp
modification of Eq.~1! that can show a bifurcation and
consistent with two-component scaling is

dR/dy5a~g2!R 21b~g2!R 31•••. ~8!

The functionb(g2) is not known explicitly but its sign can
be determined by the conditions thatR* and t21 are both
positive. Linearizing Eq.~8! about the zero of its right han
side gives the linearized flow equation, Eq.~7!, with R*
52a/b and exponentt5b/a2. Herea andb are the val-
ues of a(g2) and b(g2) when the bifurcation occurs.R*
andt21 are both positive provideda,0 andb.0. There is
no bifurcation in 2D ifa(g2) is always positive. Integrating
Eq. ~7! starting from an initialR0 at y5y0 gives two fami-
lies of curves. A metallic regime and a bifurcation can th
be described.

We conclude that the bifurcations in the 2D system a
the 21e system are controlled by different fixed points. T
fixed pointR* 5e/a for 21e requiresa.0 which is in the
range of weak electron-electron interactions. This fixed po
becomes trivial (R* 50) in thee→0 limit and plays no role
in 2D. This allows a new fixed pointR* 52a/b to become
physical in 2D at a scale where electron-electron interacti
have become strong enough to change the sign ofa. In each
case there is only one fixed point and the physical picture
interacting diffusive modes is correct for the determinat
of the universal contributions.

The strength of the electron-electron interactions in 2D
crucial for generating a bifurcation. At high densities whe
the electron-electron interactions are weak,g2

bareis small and
a(g2

bare) is positive. As the density is lowered the initialg2
bare

increases. Using the data of Ref. 24 forg* in Si, the sign
change ina(g2

bare) occurs for a density corresponding tor s

.3. This provides an upper limit to the density at which
bifurcation can occur in Si. Forr s,3 the electron-electron
interactions are too weak.

In order to describe quantitatively the resistivity near t
bifurcation whereR;1, as well as in the insulating regim
whereR@1, the sum of the series implied in Eq.~8! must be
adequately represented. If the series is truncated at an
trary finite order a spurious divergence at a finiteymax can
occur in the insulating region. While in the insulating limitR
and dR/dy are expected to diverge asy→` ~that is, atT
→0), the divergence indR/dy must be sufficiently weak
that a spurious divergence inR at a finite ymax does not
occur. A linear power law inR is the strongest growth o
dR/dy at largeR that permits this~with possible logarith-
20530
si-

f

st

s

d

t

s

f

s

bi-

mic corrections!. For simplicity, we maintain the fixed poin
structure of the low order terms and introduce a denomina
into Eq. ~8! to represent the net effect of higher order term
including the linear growth at largeR,

dR
dy

5
a~g2!R 21b~g2!R 3

11k~g2!R 2
. ~9!

Equation ~9! satisfies the minimal conditions of having
bifurcation with two classes of well defined solutions~me-
tallic and insulating! depending on the choice of initial con
ditions aty5y(0). It may beregarded as a semi-empirica
Padéapproximation to the full series. Of course, these mi
mal conditions do not uniquely determine the function
form ~see also Sec. IV B!.

We focus in this paper on the metallic regime and t
close vicinity of the separatrix. The known perturbative r
sults are contained explicitly in Eq.~9! so the solution for
y→` and R→0 is exact. The strongly insulating limitR
→` contains additional logarithmic corrections so Eq.~9! is
incomplete in this limit, and a detailed discussion of the de
insulating regime will be given elsewhere.

Close to the separatrix the functionsa(g2), b(g2), and
k(g2) are taken to be slowly varying and so are replaced
their constant valuesa, b, andk for g2 near the start of the
bifurcation. Information on these parameters is given by
ting to experimental data in the following section. Equati
~9! can then be rewritten in the form

1

R
dR
dy

5
1

t

D1D2

11f~2D1D2!
, ~10!

where

R* 52a/b,

R/R* 511D,

t215bR* 2/~11kR* 2!,

f5kR* 2/~11kR* 2!. ~11!

Linearizing Eq.~10! in D we recover Eq.~7!, with the solu-
tion

ln$uR2R !u/uR~0!2R !u%5t21@y2y~0!#. ~12!

Since t describes the rescaling of an inverse leng
squared, it is related to the critical exponentn of the corre-
lation length byt52n. The temperature is introduced by th
thermal lengthl th;1/T1/z giving

uR2R !u5uR~0!2R !u~T0 /T!1/zn, ~13!

with the same exponent for both the metallic and the in
lating branches. The prefactor defines a temperature s
T0(d);uduznT0. Both of these features agree with the o
served scaling and with the phenomenological scaling
Ref. 7.
9-4
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IV. RESULTS

A. Vicinity of separatrix

We now compare our results based on Eq.~10! with ex-
perimental values of the resistivityr(T) close to the separa
trix obtained for a Si-MOSFET taken from Fig. 1~b! of Ref.
25 ~see also Ref. 5!. Equation~10! can be integrated analyti
cally. The parametersR !, z, n, a, b, and k in R(y) are
chosen to give a best fit to the experimental data. Not
these parameters are independent of each other. The ex
mental data fixR !52.8. SinceR !52a/b, we can then
considera to be fixed withb the free variable. Thez and
n5t/2 enter together as a product viat21@y2y(0)#
5 ln(T0 /T)1/zn. The temperatureT0 just prior to the bifurca-
tion was taken to correspond to the temperature scale of e
tic scatteringTel51.75 K. From the definition oft, we have
k5tb21/R !2, which relatesk to b. There are therefore
three independent variablesz, n5t/2, andb.

From the combination of electric field scaling and te
perature scaling of the resistivity the dynamical critical e
ponentz is believed to be in the range 0.8 to 1.2.5 We have
therefore made least squares fits to the experimental
with b5zn andb as free parameters for the fixed values
z in the range 0.8<z<1.2. The optimum values of the fittin
parameters are determined by minimizing the root m
square relative deviation between theory and experimen

D5
1

N (
j 51

N A~R j
theory2R j

expt!2

R j
expt

, ~14!

whereN is the total number of points included in the fit.
We have also examined the sensitivity of the fitted para

eters to the temperature and density range of the fits. Th
essential because the values of the least squares fitted pa

FIG. 1. Solid lines: measured resistivityr(T) in units of h/e2

from Ref. 25 in a Si-MOSFET close to separatrix for electron d
sities ~from the top! n58.6, 8.8, 9.0, 9.3, 9.5, 9.9, 11.
31010 cm22. Dashed lines: our calculations using Eq.~10!. The
values of the parameters are given in the text. Dotted lines are in
small T region T0(d)/T.0.5 that is excluded from the fit. Sma
vertical arrows: see text.
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eters can vary with the range of temperature and den
considered. Equation~10! has been established on the a
sumption of constant parameters for sufficiently sm
T0(d)/T. Fits to data will be valid only if the derived param
eters are stable with respect to reducing the maximum
lowed T0(d)/T, that is by restricting the temperature an
density range of the fits.

We first carried out fits including all of the data points
Fig. 1~b! of Ref. 25. To test sensitivity to the range of fit w
successively restricted the allowed data points by the co
tions T0(d)/T,1.0, 0.5, and 0.25. ForT0(d)/T,0.5 and
fixed z the D and the values of the fitted parameters beco
stable. The coefficientsb and k vary slowly with z. How-
ever, the essential parameters from the point of view of
ting to a universal scaling form are constant throughout
range of z. These values areD50.03660.0005, b5zn
51.0960.005 andf50.8060.005, where the uncertaintie
reflect the small variations due toz. A constantb and f is
consistent, since (2f21)/b is the universal coefficient o
the first nonlinear correctionD2 in Eq. ~10!.

Figure 1 compares our results~dashed lines! from Eq.
~10! for the dimensionless resistivity in the formre2/h
5Rp with the experimental measurements~solid lines!. The
agreement is excellent. The dotted lines indicate the d
points excluded from the fit by the conditionT0(d)/T
,0.5, and the small arrows show the edge of the correspo
ing excluded data range forT0(d)/T,0.25.

B. Exponential form in metallic region

Previous fits to experimental data have shown that
temperature dependence of the resistivity is approxima
exponential.26,27 This result was accounted for by Ref. 7 b
arguing that the beta function of the conductivity was a log
rithmic function of conductivity, even in the metallic rang
near the separatrix. This is equivalent to assuming that
sum of the full series in Eq.~8!, again with the coefficients
evaluated at the bifurcation, is approximately logarithm
Then Eq.~10! is replaced by

d lnR/R !

dy
.t21lnR/R !, ~15!

giving

R~T!.R !expH 2CFT0~d!

T G1/znJ ~16!

with C a positive constant of order unity.
For the purposes of least squares fitting to data for sm

uDu, it is important to note that Eqs.~10! and ~15! are not
inconsistent. Standard procedures for Pade´ approximations
give the identity

ln~11D!5
D1 1

2 D2

11D1 1
6 D2

1O~D5!. ~17!

The exact sum of the perturbation series near the bifurca
has the same form

-
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d ln R/R !

dy
5

1

t

D1aD2

11bD1cD2
1O~D5!, ~18!

with the coefficients being of order unity. Equation~10! and
Eq. ~15! with ~17! can thus be regarded as different appro
mations to Eq.~18! and are therefore equivalent from th
point of view of least squares fitting to data for smalluDu. It
is interesting to note that the low order expansion of E
~17!, ln(11D)5D21

2D
21O(D3), gives a valuef5 3

4 which
is comparable to our fitted value off50.80.

C. Deep metallic limit

Due to itsy dependenceg2 continues to rescale as the lo
temperature limit of the metallic regime is approached. If
assume thatg2 approaches a finite limiting plateau valueg2

0

as T approaches 0, thena(g2) and b(g2) also approach
finite limiting valuesa(g2

0) andb(g2
0). Similarly, again due

to the rescaling, the low-temperature valuez0n0 of the expo-
nentzn is expected to be different from the bare value a
also from the value determined at the bifurcation. In this c
for T sufficiently small we can obtain a consistent solution
Eq. ~8! with R!1 so that the perturbation expansion is w
represented by the leading term

dR/dy5a~g2
0!R 21O~R 3!, ~19!

with the solution

R/R05@12a~g2
0!~y2y0!#21. ~20!

Using (y2y0)5 ln(T0 /T)1/z and with the dimensionless con
ductivity g5R 21, we find

dg

d ln T
5z0a~g2

0!. ~21!

The dominant temperature dependence is then logarithm
observed experimentally. References 27 and 28 express
logarithmic contribution to the conductivityG as DG
5(e2/h)C(n)ln T. Using Eq. ~21! we identify C(n)
5a(g2

0)/(pz0). As the density increasesg2
0 anda(g2

0) de-
crease in magnitude anda(g2

0) may even change sign. Thi
dependence ofC(n) on density is in agreement with tha
observed experimentally.

V. CONCLUSIONS

The low order perturbative RG equations of Refs. 11–
do not describe a bifurcation in 2D, but a proper descript
.M

.E

ov

ys

20530
-

.

e

d
e
f
l

as
his

3
n

of a fixed point and a bifurcation in 2D can be obtained wh
higher order terms in the perturbation expansion forR are
retained@see Eqs.~8!, ~9!#. The resulting 2D fixed point ex-
ists only fora(g2) negative and so is unrelated to the fixe
point in dimensions 21e for which a(g2) is positive.

Our results provide a coherent semiempirical tw
component scaling description of the density and tempe
ture regime near the observed bifurcation and throughout
metallic regime. Near the separatrix a least squares fi
experimental data using Eq.~10! gives an excellent descrip
tion of the observed density and temperature dependenc
the resistivity. A full discussion for the insulating range w
be given elsewhere. The scaling results apply only to
‘‘universal’’ contributions to the resistivity which are a ge
neric consequences of the interplay between electr
electron interactions and disorder. There are also ‘‘nonu
versal’’ contributions to the resistivity which will be materia
dependent.

The present picture is based on aR which shows a bifur-
cation and on ag2 which scales smoothly with temperatur
The bifurcation ‘‘point’’ R* 52a/b therefore varies
smoothly with temperature and the separatrix, at wh
dR/dT50, is ‘‘tilted’’ upwards. A tilted separatrix can lead
in the metallic regime to a turn up of the resistance at l
temperatures. This cannot occur in a one-component sca
theory where the separatrix is flat and the bifurcation poin
uniquely determined as a function of density.

An exact solution of Eq.~19! in the very low-temperature
limit shows a logarithmic dependence of the conductance
temperature with a coefficient which is negative and d
creases in magnitude as the density increases. The
temperature behavior is in agreement with experimen
results.27,28 The physical origin of this logarithmic electron
electron contribution to the conductivity is the same as t
observed at high temperature. However, the numerical va
of the low-T coefficient can differ from the bare value a
higher temperature.
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