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We consider a two-component scaling picture for the resistivity of two-dimensi@Balweakly disordered
interacting electron systems at low temperature with the aim of describing both the vicinity of the bifurcation
and the low resistance metallic regime in the same framework. We contrast the essential features of one-
component and two-component scaling theories. We discuss why the conventional lowest order renormaliza-
tion group equations do not show a bifurcation in 2D, and a semiempirical extension is proposed which does
lead to bifurcation. Parameters, including the produgtare determined by least squares fitting to experimen-
tal data. An excellent description is obtained for the temperature and density dependence of the resistance of
silicon close to the separatrix. Implications of this two-component scaling picture for a quantum critical point
are discussed.
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[. INTRODUCTION have given a phenomenological description of the observed
scaling properties and power laws in terms of a one-
The determination of the low-temperature properties, angharameter scaling theofyln this picture, the bifurcation
ultimately the ground-state phase diagram, of two-point lies on a separatrix which terminatesTat0 at a QCP
dimensional2D) systems of strongly interacting electrons atwhich is a fixed point of a set of scaling equations. The fixed
low carrier density in the presence of low levels of disorderpoint is repulsive with respect to the temperature variable
remains a very challenging problem in spite of a great deal o&nd separates the insulating and metallic regions of the low-
experimental and theoretical effort. The longstanding viewT phase diagram. There is a unique correspondence between
that all charge carrier states become localized at zero temhe QCP and the bifurcation point and a two-phase ground
perature T=0) in the limit of a large 2D system has been state is implied.
called into question by experimental observations of a finite However, this correspondence provides only indirect evi-
temperature “transition” from insulatorlikedp/dT<0) to  dence for an MIT. Of course the power law fits near the
metal-like (9p/dT>0) behavior as the electron density is bifurcation point are based on linearization of a scaling flow
increased in very high purity metal-oxide semiconductorequation and the linearization must eventually fail at suffi-
field-effect transistorMOSFET'’9 and heterostructurés?  ciently low temperature, for whiciio(58)/T is no longer
This bifurcation of the resistivity(T) into two families of  small, but this is not evidence against a QCP. A more crucial
curves occurs at a critical carrier density of the 2D electrorpoint is that a physical effect which is negligible for tempera-
(or hole system. The critical carrier density depends on theuresT~1 K near the bifurcation, may become dominant in
specific disorder characteristics of the given sample. In thehe low-T limit. Scaling properties characteristic of an immi-
vicinity of the bifurcation,p(T) has intriguing scaling prop- nent QCP would then still be observed near the bifurcation
erties as a function of density and temperature. The lowebut the suggested QCP itself could be totally removed in the
density insulating family of curves havirdp/dT<0 can be zero-temperature limit.
collapsed onto a single curve when plotted as a function of a A possible example of this situation is the proposal by
scaling variableT(8)/T. The new density dependent tem- Simmonset al® that in p-type GaAs thep(T) curves of the
perature scaldy(6) has a power law dependence on themetallic family will eventually turn upward to exhibit insu-
magnitude of§=(n—n*)/n*, wheren* is the critical den- latorlike behavior withdp/dT<0 if the electron temperature
sity at the bifurcation. Similarly, the metallic family of T could be made sufficiently low. A similar conclusion has
curves at higher density witdp/dT>0 collapses onto an- recently been reached for Si MOSFE¥'slowever, the turn
other unique curve with a power law dependencd gf¥)/T up is actually only directly observed for metallic curves just
with precisely the same critical exponent. There is also scalabove the critical density and, as we discuss below, the mag-
ing behavior with respect to density \id and applied elec- netoresistance data cited as evidence of a universal weak
tric field, with a different characteristic critical exponent. A localization in 2D in Refs. 8 and 9 may alternatively reflect
review has been given by Abraharesal® different magnetic field dependencies of the competing local-
A bifurcation with scaling behavior at finit€ is expected izing and delocalizing triplet spin state interactions. Irrespec-
to be a generic feature associated withi-a0 quantum criti-  tive of the mechanism responsible for the upturn, properties
cal point(QCP.® Consequently, the demonstrated scaling forof the system at temperatures well below the bifurcation tem-
the resistivity can be taken as evidence for a metal-insulatgperature are not correctly described by a one-component
transition(MIT). With this assumption, Dobrosavljevat al.  scaling theory. We will outline a semiempirical two-
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component scaling theory that describes within a singleelectron interactions with disorder must be an essential as-
framework the temperature-dependent resistivity both in thgect of the bifurcation in 2D irrespective of whether or not a
vicinity of the bifurcation and in the low resistance metallic true metal-insulator transition occurs. Of course in some sys-
regime. tems material dependent effects also contribute.

Following early work by Altshuler et all® further In this paper we discuss why the lowest order RG equa-
progress toward an understanding of disordered 2D electroifions in 2D do not show a bifurcation and we give a semi-
systems in the strong coupling regime was made byempirical extension which does describe a bifurcation re-
Finkelsteif*'2 and by Castellanét al** who showed that gion. We focus on the immediate vicinity of the bifurcation
electron-electron interactions can leadhj@d T>0 (metallic ~ and on the metallic regime. The strong insulator limit will be
behavioy in the disordered 2D system at finife This is in ~ discussed elsewhere. The proposed scaling equations have a
contrast to the localizing insulating behavior found in thephysical low-temperature limit and have no singularities at
absence of electron-electron interactiéhsThe physical finite length or temperature scales. This scaling picture pro-
properties of the system at loWare determined by nonlin- vides a theoretical framework for the interpretation of experi-
ear interactions of low-energy diffusive modes. A set ofmental results, more specifically the “universal” contribu-
renormalization group(RG) equations was generated by tions due to electron-electron interactions and disorder.
means of a formal perturbation expansion in powers of a
dimensionless temperature-dependent resistiityhich is Il. RENORMALIZATION GROUP EQUATIONS

related to the physical resistance per square By i ,
The RG equations established at one-loop level for a 2D

=(e2/7rh)RD. These scaling results include electron- - :
electron interactions to all orders and are valid in the diffu-SYSteém Of electrons in the presence of disorder are based on
our dimensionless scaling parametefd, vy,, Z, and

sive regimekgT<7/7 provided R is small (in principle, 11-13 > ¢ _
R<1). Additional progress was made by Zalgall® who ~ Yc: Wherel';=Zy, is the electron-hole scattering am-
d,.=Zv. is the singlet state

considered interaction corrections to transport properties dtlitude for the triplet spin statd, ,
intermediate temperatures in the ballistic regikad > #/7 particle-particle scattering amplitude a#ds the dynamical

to all orders in the electron-electron interaction using a€N€rgy rescaling function. Together wii, these quantities

Fermi-liquid approach. These results are also restricted to tHd€ &l functions of the variablg=InA ' which describes
perturbative regim@&<1. Comparisons with experiment for '€scaling of thg_momen;a a1;ter Integrating over the momen-
the temperature dependent resistivity of Si MOSFET's havdum shell specified bjky<k“<kp.™ We consider only the
been made for both the scaling thetrgnd the intermediate €as€ when the d_|sorder is due to purely potential scattering.
temperature theor/*® The intermediate temperature theory When a connection between length and temperature scaling
gives consistent semiquantitative agreement with experimer¢ needed, we relate a thermal lendghto temperature by
in the range of densities for whicR is small. lin/le=(Te/ T)*%, wherel and T are the length and tem-
We emphasize that both these theories are perturbative pgrature scales for elastic scattering and the dynamical
R and are limited to the regime of small. Hence they must ~ critical _exponerjﬁ o _
fail to describe the regime near bifurcation wh&e-1 and Particle-particle scattering is not considered to play an
they contain no bifurcation point. In addition, in the RG €ssential role relative to the electron-hole scattering repre-
procedure the equations develop singularities at a nonzeRented byy, so we omit consideration of.. The energy
temperature so that the approach to the ground state canrgfialing functionZ(y) is not followed explicitly but its effect
be described. is taken into account at the bifurcation fixed point py
In contrast to the 2D case there is a qualitative under=IN[(Te//T)*]. These approximations permit discussion of
standing of the metal-insulator transition in 3D electron sys2 tWo-component scaling theory based on the scaling param-
tems. A consistent qualitative picture of the transition hasttersR andy,. With these simplifications the RG equations
been obtained by RG methods in a space of dimension 2r€
+e¢e with e>0 taken as an expansion parameter. Physical

— 2
guantities such as critical exponents are expressed as power dR/dy=a(y)R", @)
series ine. While only the leading terms i have been 14 v)2
obtained it is presumed that resummation methods would dv,/d :ﬂR 2)
. . . .. . y2/ay 2 ’
give good results in 3D if sufficient correction terms could

be calculated. In the case ef0 it is clear that the interplay where
of strong electron-electron interactions with disorder is an
essential aspect of the bifurcation.

It is remarkable that in spite of great effort a correspond- a(y,)=1+ In(1+ yZ)H.
ing theory does not exist for 2D systems, that is éo+0. 3)
This lack casts doubt on the physical significance and rel-
evance of the “universal” aspects of electron-electron inter-n, is the number of valleys, so for $j,=2. Equationg1)
actions in disordered systems. In addition the lack of even aand(2) are to be integrated upward yn starting from initial
approximate scaling theory has prevented quantitative didsare values for the dependent variableg=aty(0) for which
cussion of the low-temperature limit and the approach to th& /T is of order unity. Increasing corresponds to integrat-
ground state. We expect that the interplay of strong electroning out shorter wavelength and higher-energy excitations.

t+ v

1
nv+[<2nv)2—1][1—
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This amounts to increasing the length scale and decreasingetallic regime would then extend over a wide temperature.
the temperature scale. Our Ed&)—(3) are essentially the More recently, Kirkpatrick and Belit? and Chamon and
same as Eq41) and(2) of Ref. 16. The notational difference Mucciolc®* have indeed found a solution of the RG equa-

is that we use a running variable= —In(\) as in Ref. 19,
while Ref. 16 useg= —In(kgT#/#). Prior to renormalization
due to interacting diffusive modes, we can géy)=1. Af-

tions corresponding to a disordered ferromagnet. The ques-
tion of how low the temperatures would be where such tran-
sitions might occur is open. In the absence of theoretical

ter the RG flow has proceeded to the bifurcation fixed pointguidance on this point we turn to experiment for information

we sety=In[(Ty/T)?], wherez is the dynamical critical
exponent of the fixed point.
The first term(unity) on the right-hand side of Ed3)

on the triplet spin state scattering amplitugle in the tem-
perature range of the bifurcation.
Reference 22 concluded from an analysis of magnetore-

contains no electron-electron interactions and arises froraistance data that there would be a ferromagnetic instability
weak localization. On scaling this term enhances the resis/ery near the density of the bifurcation. However, measure-
tivity. The other term, in the square brackets, is due toments in Refs. 23,24 found an enhancement of the effegtive

electron-electron interactions in the singlet and tripletfactorg*, but no singularity for densities down tQ=8.4, a

particle-hole spin states and can be negative wieis large

range which includes the bifurcation. This is interpreted in

enough. When it is negative this term has the opposite trenterms of the spin-antisymmetric Landau parametergas

of reducing the resistivity upon scaling. The bare valueof
is given by 5= —F3/(1+F2), whereF3<0 is the spin-
antisymmetric Landau parameter. From E2), v, increases
with rescaling. With n,=2, the expression fora(y,)
changes sign wher, reaches 0.46.

A change in sign ofx(y,), corresponding to a net delo-

=2/(1+F§). F§ would be —1 at the onset of a ferromag-
netic instability. Forrs=8 Ref. 24 givesF§=—0.5, corre-
sponding to a spin susceptibility enhancement factor of 2. At
temperatures well above the bifurcation the bare values of
the electron-electron interaction amplitudes such§%®

have negligible diffusion correctiong5®®is then related to

calizing effect in zero external magnetic field, has no partichg by Y2~ —F2/(1+F3). A valueF3= — 0.5 corresponds
lar a priori implication for magnetoresistance. The magne-, ygam=1. On the basis of the direct measuremengbfve
toresistance data of Refs. 8,9 can be consistent with oy assume that the triplet spin state scattering amplitygle

scaling conclusions if, for example, the localizing contribu-

tion in Eq. (3) has a stronger magnetic field dependetate

small fields than the delocalizing contribution from the

is finite and well behaved throughout the density and tem-
perature range of the experiments we consider. With this as-
sumption, an explicit RG equation is not needed for

electron-electron interactions. Thus the appearance of awe%nmagnetic Fermi liquid behavior of the system is a suffi-

localization precursor signature in magnetoresistance da@
does not necessarily imply there will be an eventual turn up

in the zero field resistivity at very low temperatures.

As we integrate Eq(2), v, increases from its initial bare
value but diverges at a finite value gty 4 provided R
remains finite aty=y .. > It is easy to confirm that a
solution of Egs.(1) and(2) with finite R="TR,, and y, ar-
bitrarily large is consistent. In this limit Eq2) can be writ-
ten

dy2/dy=(Rmin/2) 75 4
It follows that y, diverges at a finitey ... TO verify the
consistency of a finit&,;, whenvy, diverges, we can divide
Eqg. (1) by (2) and rearrange obtaining

dRIR=—dy,(6 Iny,)/ 5. (5)

The integral of the left hand side is finite so it follows th@t
indeed reaches a finite lower limR;, as y,— . The res-
caling cannot be continued beyond the singularity yat

ent condition for a smootly, but may not be necessary.

Ill. BIFURCATION IN 2D

To discuss why Egs1) and (2) fail to describe a bifur-
cation in 2D electron systems, we first recall the correspond-
ing RG results ird= 2+ e dimensions withe small and posi-
tive. Making the same physical assumptions regarding the
interacting diffusive modes and the same one-loop approxi-
mation, Eq.(1) becomes

dR/dy=—(el2) R+ a(y,) R 2. (6)
The first term on the right hand side of E®) is the conse-
quence of the.?~9 form factor when converting resistivity
to resistance in a space dfdimensions, and the coefficient
a(7y,) in the second term is the same as in R&).

We identify the bifurcation point as the point at which
dR/dy=0. The zero of Eq(6) occurs at the critical value

— YVimax Which means that the zero-temperature limit cannot®" = €/(2a), provideda>0, wherea is the value ofa(y,)

be reached.

when the bifurcation occurs. In order for the bifurcation to be

In principle, this singularity in the triplet state scattering @ Precursor for a quantum critical point, the temperature
amplitude might signal the onset of a magnetic instability inMust be a relevant variable. This requires that>0 in the
the system. On the other hand, the divergence might simpl{nearized flow equation
be an artifact of a low order perturbation expansion. The

ultimate fate of this singularity at very low is not com-

pletely clear. Castellargt al® showed that a similar diver-
gence in the energy rescaling functidty) can cause the
singular point to shift to extremely low. The paramagnetic

d(R—R*)Idy=7"YR—R*). (7

This procedure for identifying a critical point by a linearized
flow equation is standard. From E(), 7 1=¢€/2>0. The
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condition thatr~1>0 implies that the resistance has positive mic corrections For simplicity, we maintain the fixed point
(negative slope with respect td in the metallic(insulating structure of the low order terms and introduce a denominator
regime. into Eq. (8) to represent the net effect of higher order terms
It is clear that a nontrivial root oflR/dy=0 requires at including the linear growth at largr,
least two terms and that for the 2D case Eg.as presented
[that is, Eq.(6) with e=0] will not be sufficient. Attempts dR  a(y,)R2+B(y,)R3
have been made to discuss possible metal-insulator transi- d_y: 1+ R2
tions in 2D using Eq(1) by tuning the parametat(y,) to w(72)

zero. However, a critical point is a robust property of thequation (9) satisfies the minimal conditions of having a
entire dR/dy and cannot be described by the properties ofjfurcation with two classes of well defined solutiofrae-
only a single termx(,)R © in a series. Such a procedure is tallic and insulating depending on the choice of initial con-
not stable to the addition of higher order terms. The simples§itions aty=y(0). It may beregarded as a semi-empirical
modification of Eq.(1) that can show a bifurcation and is padeapproximation to the full series. Of course, these mini-

(C)

consistent with two-component scaling is mal conditions do not uniquely determine the functional
5 3 form (see also Sec. IVB
dRIdy=a(y2) R+ B(y2) R+ - (8) We focus in this paper on the metallic regime and the

close vicinity of the separatrix. The known perturbative re-
sults are contained explicitly in Eq9) so the solution for
y—oo and R—0 is exact. The strongly insulating limiR
—o0 contains additional logarithmic corrections so E9).is
incomplete in this limit, and a detailed discussion of the deep
insulating regime will be given elsewhere.

Close to the separatrix the functiong y,), B(v»2), and
x(7y,) are taken to be slowly varying and so are replaced by

The functionB(7y,) is not known explicitly but its sign can
be determined by the conditions thRt and =~ * are both
positive. Linearizing Eq(8) about the zero of its right hand
side gives the linearized flow equation, EJ), with R*
= —a/B and exponent=B/a?. Herea and B are the val-
ues of a(y,) and B(y,) when the bifurcation occursR*
and7 ! are both positive provided<0 andB>0. There is

no bifurcation in 2D ifa(y,) is always positive. Integrating 4
Eq. (7) starting from an initialR, aty=y, gives two fami- their constant valuea, B, andx for vy, near the start of the

lies of curves. A metallic regime and a bifurcation can thusp'furcat'on' Ir_lformatlon on these parameters is given by_flt-
be described. ting to experimental data in the following section. Equation

We conclude that the bifurcations in the 2D system ano(g) can then be rewritten in the form
the 2+ € system are controlled by different fixed points. The 2
fixed pointR* = e/ « for 2+ € requiresa>0 which is in the i d_R _ E A+A
range of weak electron-electron interactions. This fixed point R Ay 714+¢(2A+A2)°
becomes trivial R* =0) in thee— 0 limit and plays no role
in 2D. This allows a new fixed poirR* = — a/3 to become ~ Where
physical in 2D at a scale where electron-electron interactions
have become strong enough to change the sign ¢h each
case there is only one fixed point and the physical picture of
interacting diffusive modes is correct for the determination RIR* =1+A,
of the universal contributions.

The strength of the electron-electron interactions in 2D is T 1= BR*?I(1+ kR*?),
crucial for generating a bifurcation. At high densities where
the electron-electron interactions are wegé"is small and = kR*?/(1+ kR*?). (13)
a(y5%9 is positive. As the density is lowered the initig]*"®
increases. Using the data of Ref. 24 fpf in Si, the sign
change ina(¥5%9 occurs for a density corresponding itg
=3. This provides an upper limit to the density at which a o LA — 1y
bifurcation can occur in Si. Farg<3 the electron-electron In{IR=RRO=R*[}=7"Ty=y(O)]). (12

mtTractg)ns arg too_;veak. itatively th L h Since 7 describes the rescaling of an inverse length
n order to describe quantitatively the resistivity near theg, 4req, it is related to the critical exponenof the corre-

bifurcation whereR~1, as well as in the insulating regime |44i5 jength byr=2». The temperature is introduced by the
whereR>1, the sum of the series implied in E®) must be thermal lengtH ,,~ 1/TYZ giving

adequately represented. If the series is truncated at an arbi-

trary finite order a spurious divergence at a finjtg,, can IR—R*|=|R(0)— R *|(To/T) 2, (13)
occur in the insulating region. While in the insulating lirilt

anddR/dy are expected to diverge gs—« (that is, atT  with the same exponent for both the metallic and the insu-
—0), the divergence iMR/dy must be sufficiently weak lating branches. The prefactor defines a temperature scale
that a spurious divergence iR at a finite ., does not  Ty(8)~|8|*T,. Both of these features agree with the ob-
occur. A linear power law irR is the strongest growth of served scaling and with the phenomenological scaling of
dR/dy at largeR that permits thiSwith possible logarith- Ref. 7.

(10

R*=—alB,

Linearizing Eq.(10) in A we recover Eq(7), with the solu-
tion
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eters can vary with the range of temperature and density
considered. Equatiol0) has been established on the as-
sumption of constant parameters for sufficiently small
To(6)/T. Fits to data will be valid only if the derived param-
eters are stable with respect to reducing the maximum al-
lowed Ty(0)/T, that is by restricting the temperature and
density range of the fits.

We first carried out fits including all of the data points in
Fig. 1(b) of Ref. 25. To test sensitivity to the range of fit we
successively restricted the allowed data points by the condi-
tions Ty(8)/T<1.0, 0.5, and 0.25. Forfy(8)/T<0.5 and
fixed z the D and the values of the fitted parameters become
stable. The coefficient® and « vary slowly with z. How-
ever, the essential parameters from the point of view of fit-
, ] ting to a universal scaling form are constant throughout the
15 range of z. These values aré® =0.036+0.0005, b=zv

=1.09+0.005 and¢=0.80+0.005, where the uncertainties

FIG. 1. Solid lines: measured resistivip{T) in units ofh/e?  reflect the small variations due @ A constantb and ¢ is
from Ref. 25 in a Si-MOSFET close to separatrix for electron den-consistent, since (—1)/b is the universal coefficient of
sities (from the top n=8.6, 8.8, 9.0, 9.3, 9.5, 9.9, 11.0 the first nonlinear correction? in Eq. (10).

X 10'° cm~2. Dashed lines: our calculations using E40). The Figure 1 compares our resulfdashed linesfrom Eq.
values of the parameters are given in the text. Dotted lines are in th€l0) for the dimensionless resistivity in the forme?/h
small T region To(5)/T>0.5 that is excluded from the fit. Small =R« with the experimental measuremerdslid lineg. The

0.5

1.0
TK)

vertical arrows: see text. agreement is excellent. The dotted lines indicate the data
points excluded from the fit by the conditiomy(5)/T
IV. RESULTS <0.5, and the small arrows show the edge of the correspond-
A. Vicinity of separatrix ing excluded data range fdr,(5)/T<0.25.

We now compare our results based on Edf) with ex-
perimental values of the resistivip(T) close to the separa-
trix obtained for a Si-MOSFET taken from Fig(k of Ref. Previous fits to experimental data have shown that the
25 (see also Ref. )5 Equation(10) can be integrated analyti- temperature dependence of the resistivity is approximately
cally. The parameter® *, z, v, a, B, andk in R(y) are  exponentiaf®?’ This result was accounted for by Ref. 7 by
chosen to give a best fit to the experimental data. Not alarguing that the beta function of the conductivity was a loga-
these parameters are independent of each other. The expaithmic function of conductivity, even in the metallic range
mental data fixR *=2.8. SinceR*=—«a/B, we can then near the separatrix. This is equivalent to assuming that the
considera to be fixed with3 the free variable. The and  sum of the full series in Eq@8), again with the coefficients
v=7/2 enter together as a product via {y—y(0)] evaluated at the bifurcation, is approximately logarithmic.
=In(T,/T)¥?”. The temperaturd just prior to the bifurca- Then Eq.(10) is replaced by
tion was taken to correspond to the temperature scale of elas-
tic scatteringT¢=1.75 K. From the definition of, we have dInRIR*
k=7B—1/R*2, which relatesxk to B. There are therefore dy
three independent variablesv= 7/2, andpg. o

From the combination of electric field scaling and tem-9ving
perature scaling of the resistivity the dynamical critical ex-
ponentz is believed to be in the range 0.8 to £.2ve have
therefore made least squares fits to the experimental data
with b=zv and B as free parameters for the fixed values of N )
zin the range 0.8 z<1.2. The optimum values of the fitting With C a positive constant of order unity.
parameters are determined by minimizing the root mean FOr the purposes of least squares fitting to data for small

square relative deviation between theory and experiment |Al, it is important to note that Eq¢10) and (15) are not
inconsistent. Standard procedures for Pageroximations

B. Exponential form in metallic region

=7 UnRIR*, (15)

To(9)

1/zv
R(T):R*exp[ —0[7} ] (16)

1 N (RN &P give the identity
D=5 2~ e (14)
=1 Rj A+ 32 ]
+A)=——+ .
whereN is the total number of points included in the fit. In(1+4) 1+A+ A2 O(8%) a9

We have also examined the sensitivity of the fitted param-
eters to the temperature and density range of the fits. This i8he exact sum of the perturbation series near the bifurcation
essential because the values of the least squares fitted paranas the same form
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dinRIR* 1 A+aA? ] of a fixed point and a bifurcation in 2-D can be optained when

q = 5 T O(A), (18 hlgh.er order terms in the perturban.on expgnsmn?ﬁgnare

y 1+bA+cA retained[see Eqs(8), (9)]. The resulting 2D fixed point ex-

with the coefficients being of order unity. Equatict) and  ists only fora(y;) negative and so is unrelated to the fixed
Eq. (15) with (17) can thus be regarded as different approxi-point in dimensions 2 € for which a(y,) is positive.
mations to Eq.(18) and are therefore equivalent from the  Our results provide a coherent semiempirical two-
point of view of least squares fitting to data for smal|. It ~ component scaling description of the density and tempera-
is interesting to note that the low order expansion of Eqture regime near the observed bifurcation and throughout the
(17), In(1+A)=A—3A?+O(A%), gives a valuep=3 which  metallic regime. Near the separatrix a least squares fit to
is comparable to our fitted value gf=0.80. experimental data using E(LO) gives an excellent descrip-
tion of the observed density and temperature dependence of
the resistivity. A full discussion for the insulating range will
be given elsewhere. The scaling results apply only to the

Due to itsy dependence, continues to rescale as the low “yniversal” contributions to the resistivity which are a ge-
temperature limit of the metallic regime is approached. If Weneric consequences of the interp|ay between electron-
assume thay, approaches a finite limiting plateau valyd  electron interactions and disorder. There are also “nonuni-
as T approaches 0, ther(y;) and B(vy,) also approach versal” contributions to the resistivity which will be material
finite limiting valuesa(y3) andB(y3). Similarly, again due  dependent.
to the rescaling, the low-temperature vaiie® of the expo- The present picture is based ofRawhich shows a bifur-
nentzv is expected to be different from the bare value andqation and on ay, which scales smoothly with temperature.
also from the value determined at the bifurcation. In this casgne pifurcation “point” R*=—alB therefore varies

for T sufficiently small we can obtain a consistent solution Ofsmoothly with temperature and the separatrix, at which
Eq. (8) with R<1 so tha? the perturbation expansion is well dR/dT=0, is “tilted” upwards. A tilted separatrix can lead
represented by the leading term in the metallic regime to a turn up of the resistance at low

dRIdy=a(y)R2+O(R3), (190  temperatures. This cannot occur in a one-component scaling
theory where the separatrix is flat and the bifurcation point is
uniquely determined as a function of density.

C. Deep metallic limit

with the solution

RIRy=[1—a(¥3)(y—yo)] % (20) An exact solution of Eq(19) in the very low-temperature
Using (y—Yo) = In(To/T)Y2 and with the dimensionless con- limit shows a logarithmic dependence of the conductance on
ductivity g=7R ~ %, we find temperature with a coefficient which is negative and de-
creases in magnitude as the density increases. The low-
dg 0,0 temperature behavior is in agreement with experimental
dinT % a(yz 2D esults?” 28 The physical origin of this logarithmic electron-

electron contribution to the conductivity is the same as that

The dominant temperature dependence is then logarithmic Bbserved at high temperature. However, the numerical value

observed experimentally. References 27 and 28 express thé? the low-T coefficient can differ from the bare value at
logarithmic contribution to the conductivityG as AG

—(e/NC(MInT. Using Eq. (21) we identfy c(n) Mgher temperature.
=a(y9)/(72°). As the density increaseg and a(y3) de-
crease in magnitude andyg) may even change sign. This
dependence o€(n) on density is in agreement with that
observed experimentally.
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