NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

Canada
Production of Domoic Acid, a Neurotoxin, by the Diatom

Pseudonitzschia pungens f. *multiseries* Hasle

Under Phosphate and Silicate Limitation

by

Youlian Pan

A thesis submitted in partial fulfilment of the requirements for

the Degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia, Canada

May, 1994

©Copyright by Youlian Pan, 1994
THE AUTHOR HAS GRANTED AN IRREVOCABLE NON-EXCLUSIVE LICENCE ALLOWING THE NATIONAL LIBRARY OF CANADA TO REPRODUCE, LOAN, DISTRIBUTE OR SELL COPIES OF HIS/HER THESIS BY ANY MEANS AND IN ANY FORM OR FORMAT, MAKING THIS THESIS AVAILABLE TO INTERESTED PERSONS.

THE AUTHOR RETAINS OWNERSHIP OF THE COPYRIGHT IN HIS/HER THESIS. NEITHER THE THESIS NOR SUBSTANTIAL EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT HIS/HER PERMISSION.

L'AUTEUR A ACCORDE UNE LICENCE IRREVOCABLE ET NON EXCLUSIVE PERMETTANT A LA BIBLIOTHEQUE NATIONALE DU CANADA DE REPRODUIRE, PRETER, DISTRIBUER OU VENDRE DES COPIES DE SA THESE DE QUELQUE MANIERE ET SOUS QUELQUE FORME QUE CE SOIT POUR METTRE DES EXEMPLAIRES DE CETTE THESE A LA DISPOSITION DES PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE DU DROIT D'AUTEUR QUI PROTEGE SA THESE. NI LA THESE NI DES EXTRAITS SUBSTANTIELS DE CELLE-CI NE DOIVENT ETRE IMPRIMES OU AUTREMENT REPRODUITS SANS SON AUTORISATION.

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE ARTS
- Architecture: 0727
- Art History: 0377
- Cinema: 0900
- Dance: 0378
- Fine Arts: 0357
- Information Science: 0723
- Literature: 0799
- Music: 0413
- Speech Communication: 0459
- Theater: 0465

EDUCATION
- General: 0515
- Adult Education: 0514
- Adult and Continuing Education: 0516
- Agricultural: 0517
- Art: 0273
- Bilingual and Multicultural Education: 0282
- Business Education: 0281
- Childhood Education: 0118
- Elementary: 0524
- Finance: 0777
- Guidance and Counseling: 0519
- Health: 0480
- Higher Education: 0745
- History: 0520
- Home Economics: 0728
- Industrial: 0379
- Languages and Literature: 0279
- Mathematics: 0280
- Music: 0522
- Philosophy of Education: 0998
- Physical: 0523

PSYCHOLOGY AND RELIGION AND THEOLOGY
- Psychology: 0525
- Religious Studies: 0526
- Sociology: 0533
- Social Sciences: 0534
- Sociology of Education: 0534
- Teacher Training: 0530
- Vocational: 0747

SOCIAL SCIENCES
- American Studies: 0323
- Anthropology: 0349
- Art History: 0384
- Economics: 0626
- Educational Administration: 0310
- Geography: 0366
- History: 0758
- Philosophy of: 0710
- Political Science: 0462
- Psychology: 0508
- Sociology: 0525

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
- Agriculture: 0473
- Agronomy: 0285
- Animal Culture and Nutrition: 0475
- Animal Pathology: 0476
- Food Science and Technology: 0359
- Forestry and Wildlife: 0478
- Plant Culture: 0479
- Plant Pathology: 0480
- Plant Physiology: 0817
- Range Management: 0777
- Zoology: 0742

PHYSICAL SCIENCES
- Chemistry: 0645
- Physics: 0799

EARTH SCIENCES
- Biochemistry: 0425
- Geochernistry: 0996

Subject Categories

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
- Agriculture: 0473
- Agronomy: 0285
- Animal Culture and Nutrition: 0475
- Animal Pathology: 0476
- Food Science and Technology: 0359
- Forestry and Wildlife: 0478
- Plant Culture: 0479
- Plant Pathology: 0480
- Plant Physiology: 0817
- Range Management: 0777
- Zoology: 0742

PHYSICAL SCIENCES
- Chemistry: 0645
- Physics: 0799

EARTH SCIENCES
- Biochemistry: 0425
- Geochernistry: 0996

Subject Categories

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
- Agriculture: 0473
- Agronomy: 0285
- Animal Culture and Nutrition: 0475
- Animal Pathology: 0476
- Food Science and Technology: 0359
- Forestry and Wildlife: 0478
- Plant Culture: 0479
- Plant Pathology: 0480
- Plant Physiology: 0817
- Range Management: 0777
- Zoology: 0742

PHYSICAL SCIENCES
- Chemistry: 0645
- Physics: 0799

EARTH SCIENCES
- Biochemistry: 0425
- Geochernistry: 0996

Subject Categories

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
- Agriculture: 0473
- Agronomy: 0285
- Animal Culture and Nutrition: 0475
- Animal Pathology: 0476
- Food Science and Technology: 0359
- Forestry and Wildlife: 0478
- Plant Culture: 0479
- Plant Pathology: 0480
- Plant Physiology: 0817
- Range Management: 0777
- Zoology: 0742

PHYSICAL SCIENCES
- Chemistry: 0645
- Physics: 0799

EARTH SCIENCES
- Biochemistry: 0425
- Geochernistry: 0996

Subject Categories

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
- Agriculture: 0473
- Agronomy: 0285
- Animal Culture and Nutrition: 0475
- Animal Pathology: 0476
- Food Science and Technology: 0359
- Forestry and Wildlife: 0478
- Plant Culture: 0479
- Plant Pathology: 0480
- Plant Physiology: 0817
- Range Management: 0777
- Zoology: 0742

PHYSICAL SCIENCES
- Chemistry: 0645
- Physics: 0799

EARTH SCIENCES
- Biochemistry: 0425
- Geochernistry: 0996

Subject Categories

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
- Agriculture: 0473
- Agronomy: 0285
- Animal Culture and Nutrition: 0475
- Animal Pathology: 0476
- Food Science and Technology: 0359
- Forestry and Wildlife: 0478
- Plant Culture: 0479
- Plant Pathology: 0480
- Plant Physiology: 0817
- Range Management: 0777
- Zoology: 0742

PHYSICAL SCIENCES
- Chemistry: 0645
- Physics: 0799

EARTH SCIENCES
- Biochemistry: 0425
- Geochernistry: 0996

Subject Categories

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
- Agriculture: 0473
- Agronomy: 0285
- Animal Culture and Nutrition: 0475
- Animal Pathology: 0476
- Food Science and Technology: 0359
- Forestry and Wildlife: 0478
- Plant Culture: 0479
- Plant Pathology: 0480
- Plant Physiology: 0817
- Range Management: 0777
- Zoology: 0742

PHYSICAL SCIENCES
- Chemistry: 0645
- Physics: 0799

EARTH SCIENCES
- Biochemistry: 0425
- Geochernistry: 0996

Subject Categories

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
- Agriculture: 0473
- Agronomy: 0285
- Animal Culture and Nutrition: 0475
- Animal Pathology: 0476
- Food Science and Technology: 0359
- Forestry and Wildlife: 0478
- Plant Culture: 0479
- Plant Pathology: 0480
- Plant Physiology: 0817
- Range Management: 0777
- Zoology: 0742

PHYSICAL SCIENCES
- Chemistry: 0645
- Physics: 0799

EARTH SCIENCES
- Biochemistry: 0425
- Geochernistry: 0996
献给我的父母

To my parents
CONTENTS

CONTENTS v

LIST OF FIGURES xii

LIST OF TABLES xviii

ABSTRACT xx

SYMBOLS AND ABBREVIATIONS xxi

ACKNOWLEDGEMENTS xxv

CHAPTER 1. GENERAL INTRODUCTION 1

1.1. The problems 1

1.2. The approaches 2

1.3. Literature review 8

1.3.1. History of Pseudonitzschia pungens 8

1.3.2. Distribution of Pseudonitzschia pungens 10

1.3.3. Domoic acid poisoning 11

1.3.4. Physiological and ecological studies 13

CHAPTER 2. GENERAL METHODS 16

2.1. Organisms and culture 16

2.2. Culture media 16

2.2.1. Medium F 17

2.2.2. Medium FE 18

2.2.3. Medium H 19

v
2.3. Measurement of biomass

2.4. Chlorophyll a analysis

2.5. Nutrient analyses
 2.5.1. Particulate carbon and nitrogen
 2.5.2. Particulate phosphorus and silicon
 2.5.2.1. Oxidation
 2.5.2.2. Analysis
 2.5.3. Dissolved phosphorus and silicon
 2.5.4. Dissolved inorganic nutrients
 2.5.5. Dissolved carbon dioxide

2.6. Analysis of domoic acid

2.7. Measurements of Adenosine triphosphate (ATP) and adenyl energy charge (EC)
 2.7.1. Reagents
 2.7.1.1. Inorganic compounds
 2.7.1.2. Tris buffer
 2.7.1.3. Organic compounds and enzymes
 2.7.2. Filtration and extraction (enzyme inactivation)
 2.7.3. Assay

2.8. Measurements of alkaline phosphatase activity
 2.8.1. Reagents
 2.8.2. Assay
2.9. Relationships between photosynthesis and photosynthetic photon flux density (PPFD) 31

2.10. Chemostat continuous culture system 33

2.11. Growth 35
 2.11.1. Batch culture 35
 2.11.2. Continuous culture 36

CHAPTER 3. PHOTOSYNTHESIS AND GROWTH 37

3.1. Introduction 37

3.2. Materials and methods 39
 3.2.1. Determination of particulate chlorophyll a, carbon and nitrogen, dissolved inorganic nutrients and light 39
 3.2.2. Growth rate 40
 3.2.3. Experiment A: effects of culture age 40
 3.2.4. Experiment B: light dependence 41
 3.2.5. Experiment C: temperature dependence 41

3.3. Results 42
 3.3.1. Dependence of photosynthesis and growth on age of the cultures 42
 3.3.1.1. Growth and cellular chemical composition 42
 3.3.1.2. Photosynthesis 49
 3.3.2. Photosynthesis and growth under different PPFD levels 54
 3.3.2.1. Growth and cellular chemical composition 54
 3.3.2.2. Photosynthesis 60
 3.3.3. Temperature dependence of photosynthesis and growth 63
3.3.3.1. Growth and cellular chemical composition 63

3.3.3.2. Photosynthesis 67

3.4. Discussion 70

3.4.1. Growth 70

3.4.2. Chemical composition 74

3.4.3. Photosynthesis 78

3.4.4. Overview 82

CHAPTER 4. EFFECTS OF SILICATE LIMITATION ON GROWTH AND DOMOIC ACID PRODUCTION IN BATCH CULTURES 85

4.1. Introduction 85

4.2. Materials and methods 86

4.3. Results 88

4.3.1. In medium F (Treatment A) 94

4.3.2. In high-Si medium (Treatment B) 95

4.3.3. In low-Si medium (Treatments C and D) 97

4.3.4. Silicate perturbation 97

4.4. Discussion 99

4.4.1. Growth 99

4.4.2. Cellular silicon 101

4.4.3. Roles of silicon in cell metabolism 102

4.4.4. Production of domoic acid in relation to silicate limitation 105
CHAPTER 5. SILICATE LIMITATION AND DOMOIC ACID PRODUCTION IN CHEMOSTAT CONTINUOUS CULTURES

5.1. Introduction

5.2. Materials and methods
 5.2.1. Chemostat system
 5.2.2. Preparation of culture medium and stock culture
 5.2.3. Procedures for experiments

5.3. Results
 5.3.1. Experiment I: continuous culture
 5.3.2. Experiment II: continuous culture
 5.3.3. Experiment III: extended batch culture
 5.3.4. Growth kinetics

5.4. Discussion
 5.4.1. Growth and uptake kinetics in relation to domoic acid production
 5.4.2. Cellular chemical composition and DA production
 5.4.3. Domoic acid production in relation to nutrient metabolism

CHAPTER 6. PHOSPHATE LIMITATION AND DOMOIC ACID PRODUCTION IN CHEMOSTAT CONTINUOUS CULTURE

6.1. Introduction

6.2. Materials and methods
 6.2.1. Chemostat system
 6.2.2. Preparation of culture medium and stock culture
6.2.3. Procedures for experiments 153

6.3. Results 155

6.3.1. Steady states in continuous cultures 155

6.3.2. Principal component analysis 162

6.3.3. Extended batch mode 168

6.4. Discussion 175

6.4.1. Growth and DA production 175

6.4.2. N:P ratios and DA production 178

6.4.3. Phosphate limitation and cellular chemical composition 182

6.4.4. Alkaline phosphatase activity and DA production 184

6.4.5. Relationships between DA production and other primary metabolism (energy partitioning) 186

CHAPTER 7. GENERAL DISCUSSION: BIOCHEMICAL AND ECOLOGICAL PERSPECTIVES 189

7.1. Biochemical perspectives 190

7.2. Bioenergetics in relation to DA production 194

7.3. Ecological perspectives 196

7.3.1. Effects of light and temperature 196

7.3.2. Implication of abnormal nutrient ratios 198

7.3.3. Implication of heavy precipitation and freshwater discharge 203

7.3.4. Population dynamics of P. pungens f. multiseries and DA production 207

CHAPTER 8. CONCLUSIONS 209
APPENDICES

Appendix A1. List of publications

Appendix B1. One example of standard curves for particulate (A) phosphorus and (B) silicon measurements (Chapter 2).

Appendix B2. Examples for the standard curves for the measurements of ATP, ATP+ADP, ATP+ADP+AMP (Chapter 2).

Appendix B3. Examples for the measurements of alkaline phosphatase activity. (A) standard curve, (B) one example (July 13, chamber 2; Chapters 2, 6).

Appendix B4. Sensitivity and coefficient of variation of various methods used (Chapter 2)

Appendix C1. Silicate concentrations (µM) of the control and the reservoir during the silicate limited continuous culture experiments (Chapter 5).

Appendix C2. Silicate limited steady state experiments (Chapter 5). (A) DA concentrations (left: DA in cultures, right: DA per cell) and (B) DA production, in relation to bacterial abundance.

Appendix C3. Bacterial effects on DA production (Chapter 5).

Appendix D1. Future developments

D1.1. Domoic acid as a valuable compound

D1.2. Further research potential

REFERENCES
LIST OF FIGURES

Fig. 1.1. *Pseudonitzschia pungens* f. *multiseries*, a pennate diatom bloomed in the fall-winter of 1987 in Cardigan Bay, Prince Edward Island (PEI). (Top) colonies of *P. pungens* f. *multiseries* (scale: 1 cm = 40 μm), (Bottom) map of PEI. 3

Fig. 1.2. Domoic acid and related compounds. 4

Fig. 1.3. Amnesic shellfish poisoning occurred in Cardigan Bay PEI and resulted in 105 cases of human poisonings and 3×10^6 economic loss (Addison and Stewart, 1989). 5

Fig. 1.4. Potential pathway of domoic acid biosynthesis (refers to Luckner, 1984, Laycock *et al.*, 1989 and Douglas *et al.*, 1992). 12

Fig. 2.1. Schematic display of chemostat system. 1 = chemostat culture chamber, 2 = thermostat water jacket, 3 = stir bar, 4 = effluent, 5 = polycarbonate buffer cylinder, 6 = sterile air filter (0.2 μm), 7 = cotton filters, 8 = activated charcoal to remove organic compounds in the air, 9 = measuring cylinder for effluent measurements, 10 = stopcock. 34

Fig. 3.1. Growth curves based on different indices of biomass fitted by Gompertz equation (2.11). 43

Fig. 3.2. Modelled (Equation 2.12) growth rates (μ, d⁻¹) based on different indices of biomass during the first 15 days of the culture. 46

Fig. 3.3. Variations with time in the cellular (A) carbon, (B) nitrogen, and (C) chlorophyll *a*. Error bar = 1 standard deviation. Absent of error bar means it is smaller than the symbol. The curves are the ratios of the corresponding lines in Fig. 3.1. 47

Fig. 3.4. Changes with time in the ratios of (A) carbon to chlorophyll *a* (by weight) and (B) carbon to nitrogen (atomic). The curves are the ratios of corresponding lines in Fig. 3.1. 48

Fig. 3.5. Relationships between photosynthesis and PPFD in cultures after 4 days growth. (A) normalized to chlorophyll *a* (μg C [μg Chl *a*]⁻¹ h⁻¹), (B) normalized to carbon (μg C [μg C]⁻¹ h⁻¹). The curves
are fitted by Equation 2.6.

Fig. 3.6. Variations of \(\alpha^B \) in various phases of batch culture. (A) normalized to chlorophyll \(a \) (\(\mu g \) C [\(\mu g \) Chl \(a \)] \(^{-1} \) h \(^{-1} \) [\(\mu mol \ m^{-2} \ s^{-1} \)] \(^{-1} \)), (B) normalized to carbon (\(\mu g \) C [\(\mu g \) C] \(^{-1} \) h \(^{-1} \) [\(\mu mol \ m^{-2} \ s^{-1} \)] \(^{-1} \)).

Fig. 3.7. Variation of \(P_m^B \) in various phases of batch culture. (A) normalized to chlorophyll \(a \) (\(\mu g \) C [\(\mu g \) Chl \(a \)] \(^{-1} \) h \(^{-1} \)), (B) normalized to carbon (\(\mu g \) C [\(\mu g \) C] \(^{-1} \) h \(^{-1} \)).

Fig. 3.8. Growth curves of \(P. pungens \) f. \(multiseries \) under various PPFD levels (\(\mu mol \ m^{-2} \ s^{-1} \)) fitted by Gompertz equation (2.11).

Fig. 3.9. Variations with PPFD levels in (A) the maximal growth (the solid curve is fitted by Equations 3.7 to the 5 filled points only and the broken line is fitted to all the 8 data points), (B) the duration of lag phase and (C) the time when maximal growth reached (fitted by Equation 3.8).

Fig. 3.10. Variations with PPFD levels in the cellular (A) carbon, (B) nitrogen and (C) chlorophyll \(a \). The lines are linear regressions.

Fig. 3.11. Variations with PPFD levels in the ratios of (A) carbon to chlorophyll \(a \) (by weight) and (B) carbon to nitrogen (atomic).

Fig. 3.12. Variations of \(\alpha^B \) with PPFD levels. (A) normalized to chlorophyll \(a \), (B) normalized to carbon. The curves are fitted by exponential functions.

Fig. 3.13. Variations of \(P_m^B \) with PPFD levels. (A) normalized to chlorophyll \(a \), (B) normalized to carbon. The lines are linear regressions.

Fig. 3.14. Growth rate of \(P. pungens \) f. \(multiseries \) at different temperatures. The curve is fitted by eye.

Fig. 3.15. Effect of temperature on the cellular (A) carbon, (B) nitrogen and (C) chlorophyll \(a \). The curves are fitted by eye.

Fig. 3.16. Effect of temperature on the ratios of (A) carbon to chlorophyll \(a \) (by weight) and (B) carbon to nitrogen (atomic). The curves are fitted by eye.

Fig. 3.17. Relationships between photosynthesis and photosynthetic photon
flux density (P-I curves, Equation 2.6) at (A) 0° to 25°C, (B) 15°C and (C) 0°C.

Fig. 3.18. Variations of (A) P_m^B and (B) α^B with temperature. The curves are fitted by eye.

Fig. 3.19. Relationships of (A) growth rates and (B) photosynthetic rate (P_m^B) with cellular chlorophyll a. The lines are linear regressions.

Fig. 3.20. Relationship between growth rate (μ) and photosynthetic rate (P_m^B). (A) P_m^B is normalized to chlorophyll a, (B) P_m^B is normalized to carbon. The lines are linear regressions.

Fig. 4.1. Experimental design. Four treatments: (A) control, the initial DISi was 95 µM; (B) high initial DISi 190 µM; (C) low initial DISi = 61 µM, 65 µM Si spiked on day 14; (D) low initial DISi = 65 µM, 120 µM Si added on day 25. Each treatment was in triplicate. The curves are plotted by eye.

Fig. 4.2. Treatment A. Variations in (A) cell concentrations, (B) dissolved inorganic silicate, (C) particulate silicon, (D) chlorophyll a and (E) domoic acid concentrations during the growth cycle. Error bar = 1 standard deviation. Absence of error bar means the standard deviation was smaller than the symbol. The curve in A is fitted by Equation 2.11.

Fig. 4.3. Treatment B. Legend as in Fig. 4.2.

Fig. 4.4. Treatment C. (B) Silicate (65 µM) was added on day 14. Other legends as in Fig. 4.2.

Fig. 4.5. Treatment D. (B) Silicate (120 µM) was added on day 25. Other legends as in Fig. 4.2.

Fig. 4.6. Relationship between cellular domoic acid and growth rate during the DISi perturbation experiments. The solid curves are the slopes of curves in Figs. 4.4A (A) and 4.5A (B) respectively.

Fig. 4.7. Relationship of maximum DA concentrations in the culture and DA per cell with silicate supply. The lines are linear regressions.

Fig. 5.1. Schematic procedures for experiments. See text for details.
Fig. 5.2. Experiment I. Variations with growth rate: (A) DA concentration, (B) cellular DA, (C) DA production rate, and (D) DISi. Silicate concentration in the reservoir was 165.4 (±9.0) µM. The curves in A, B, C, are fitted by Equation 5.1.

Fig. 5.3. Experiment I. Relationships of domoic acid with (A) silicate, (B) phosphate in the culture medium, and (C) ATP concentrations in the cells. The curves in A and B are fitted by an exponential function like Equation 5.1 and the line in C is a linear regression.

Fig. 5.4. Experiment II. Variations with growth rate: (A) DA concentration, (B) cellular DA, (C) DA production rate, (D) bacterial abundance, and (E) DISi and DSi. Silicate concentration in the reservoir was 56.2 (±3.4) µM. The curves are fitted by Equation 5.1 or by eye.

Fig. 5.5. Experiments I + II. Domoic acid concentration (filtrate + cells) in relation to growth rate. The curve is fitted by Equation 5.1.

Fig. 5.6. Experiment III. Variations with time in (A) cell concentration, (B) DA per cell, (C) DA in filtrate, (D) DA in cells + filtrate, (E) bacterial abundance, and (F) DISi.

Fig. 5.7. Growth kinetics fitted with Droop’s cell quota model: \(\mu = \mu_{\text{max}} \frac{(Q-K_Q)}{Q} \). (A) Experiments I and II, (B) Experiment I, and (C) Experiment II.

Fig. 5.8. Growth kinetics fitted with Goldman equation: \(\mu = \frac{\mu_{\text{max}}}{U/(K_U+U)} \). (A) both Experiments I and II, (B) Experiment I, and (C) Experiment II.

Fig. 5.9. Domoic acid in relation to silicate uptake rate. (A) DA in the whole culture, (B) DA in cells, and (C) DA production rate. Curves fitted by Equation 5.1.

Fig. 5.10. Relationships between domoic acid production and cell chemical composition. The curve in A is fitted by Equation 5.1.

Fig. 5.11. ATP concentrations in relation to (A) growth rate, (B) silicate uptake, and (C) DA production. The lines are linear regressions, broken lines corresponding to open triangles, solid line to filled circles.
Fig. 5.12. Relationships between domoic acid concentration and other cell metabolism. The curve in A is fitted by an exponential function, as in Equation 5.1. The lines in B and C are linear regressions corresponding to open triangles (broken) and filled circles (solid).

Fig. 6.1. Schematic illustration of procedures for experiments. See text for details.

Fig. 6.2. Relationship of growth rate and phosphate uptake rate during the continuous culture. \(\mu_m' \) is fixed at 1.10 d\(^{-1}\) (the maximum \(\mu_m' \) from Chapter 5). \(\mu = \mu_m' \frac{U}{(K_V+U)} \).

Fig. 6.3. Variation with growth rate in the steady state experiments. (A) domoic acid concentration, (B) cellular DA and its production, (C) alkaline phosphatase activity (APA, ng P [pg Chl a]\(^{-1}\) h\(^{-1}\)), and (D) dissolved phosphorus. The curves in A, B, C are fitted by Equation 5.1 and those in D are fitted by eye.

Fig. 6.4. Relationships between alkaline phosphatase activity (APA) and dissolved inorganic phosphate. The curve is fitted by Equation 5.1.

Fig. 6.5. Relationships of alkaline phosphatase activity to (A) DA production, (B) cellular DA, (C) DA in the filtrate, and (D) total DA in continuous cultures. The lines are linear regressions.

Fig. 6.6. Relationships of N:P (atomic) ratios to (A) DA production, (B) cellular DA, and (C) total DA in continuous cultures. Curves fitted by eye.

Fig. 6.7. Relationships of cellular DA (filled circle) and DA production (open triangles) with (A) carbon assimilation, uptake of (B) phosphate, (C) nitrate and (D) silicate in continuous cultures. Curves fitted by Equation 5.1.

Fig. 6.8. Relationships of growth rate to (A) ATP, (B) ATP+ADP+AMP, and (C) adenylate energy charge (EC) in continuous cultures. Curves fitted by eye.

Fig. 6.9. Variations of (A) growth rate, (B) total DA in the culture and (C) DA production in relation to the scores of first principle component (PC1) in continuous cultures. The line in A is linear regression and the curves in B and C are fitted by Equation 5.1.
Fig. 6.10 **Chamber 1** in the extended batch mode. Variations with time in (A) biomass [concentrations of cell (left) and chlorophyll a (right)], (B) DA [cellular DA (left) and its production (right)], (C) APA (ng P [μg Chl a]⁻¹ h⁻¹, left) and percentage of DA in the medium, and (D) dissolved phosphorus (left) and silicate (right).

Fig. 6.11 **Chamber 6** in the extended batch mode. Legend as Fig. 6.10. (D) 61 μM phosphate was added to the culture on day 4.

Fig. 6.12 **Chamber 2** in the extended batch mode. Legend as Fig. 6.10. (D) 142 μM of silicate was added to the culture on day 1 and 50 μM phosphate on day 4.

Fig. 7.1 The study area. The surface circulation pattern as described by Lauzier (1965).

Fig. 7.2 Proposed explanation for the toxigenic blooms of *Pseudonitzschia pungens f. multiseries* in Cardigan Bay PEI.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1.</td>
<td>Known distribution of Pseudonitzschia pungens in the world oceans.</td>
<td>6</td>
</tr>
<tr>
<td>Table 1.2.</td>
<td>Comparison of the two different forma of Pseudonitzschia pungens. Values in the parenthesis are means.</td>
<td>9</td>
</tr>
<tr>
<td>Table 2.1.</td>
<td>Composition of medium F.</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.2.</td>
<td>Composition of medium H.</td>
<td>18</td>
</tr>
<tr>
<td>Table 3.1.</td>
<td>Nutrient concentrations (μM) in culture medium during growth of P. pungens f. multiseries in Experiment A.</td>
<td>44</td>
</tr>
<tr>
<td>Table 3.2.</td>
<td>Changes in photoadaptive parameters of P. pungens f. multiseries with time at two PPFD levels in Experiment A.</td>
<td>51</td>
</tr>
<tr>
<td>Table 3.3.</td>
<td>Values of parameters in Equation 3.8.</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.4.</td>
<td>Changes in photoadaptive parameters Iₘ, Iₖ and Iₘ (μmol m⁻² s⁻¹) during growth at different PPFDs in Experiment B.</td>
<td>63</td>
</tr>
<tr>
<td>Table 3.5.</td>
<td>Initial slopes of μ-I curves in selected diatoms and dinoflagellates. αₑ = 10⁻³ d⁻¹ [μmol m⁻¹ s⁻¹]⁻¹.</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.1.</td>
<td>Maximum growth rates, chlorophyll a, cell concentration, particulate silicon and DA concentration during growth of P. pungens f. multiseries under 4 different conditions. Values in parentheses give the ages (day) of the culture when these measurements were made.</td>
<td>89</td>
</tr>
<tr>
<td>Table 4.2.</td>
<td>Variation in the cellular silicon content in selected diatom species.</td>
<td>103</td>
</tr>
<tr>
<td>Table 5.1a.</td>
<td>Experiment I: measured variable, their statistics and their correlation with growth rate, DA production and concentrations.</td>
<td>117</td>
</tr>
<tr>
<td>Table 5.1b.</td>
<td>Experiment II: legend as Table 5.1a.</td>
<td>118</td>
</tr>
<tr>
<td>Table 5.2a.</td>
<td>Experiment I: cellular chemical compositions of P. pungens f. multiseries expressed as ratios at various growth rates, their</td>
<td></td>
</tr>
</tbody>
</table>
correlations (R) with DA production (µg DA l⁻¹ d⁻¹) and concentration (µg DA l⁻¹).

Table 5.2b. Experiment II: legend as Table 5.2a.

Table 5.3. Common changes of chemical properties in Experiments I and II as a result of increase in growth rate.

Table 5.4. Growth kinetics in chemostat cultures (function: \(\mu = \mu_{\text{max}}' (Q-k_q)/Q \)). Values in parentheses are standard deviations.

Table 5.5. Growth kinetics in chemostat cultures. Data were from the direct fitting equation 5.3 to experimental data points. Values in parentheses are standard deviations.

Table 5.6. Growth kinetics in chemostat cultures. Data were determined first by performing linear regression on \(Q \) vs. \(U \) and then by fine-tune fitting equation 5.3 to experimental data points. Values in parentheses are standard deviations.

Table 5.7. Comparison of DA production in steady-state continuous cultures with the production in batch cultures under silicate limitation.

Table 6.1. Steady state experiments: measured variables, their statistics and their correlations with growth rate, DA production and concentration.

Table 6.2. Fitted values of Fig 6.2. During fitting, an up-limit of 1.10 d⁻¹ (the \(\mu_m' \) value from Chapter 5) was applied in comparison with the values obtained by directly fitting. Values in the parentheses are standard deviations of fitting.

Table 6.3. Steady state experiments: results of principal component analysis of observed variables showing percentage of variance and correlation coefficients (n=19, significant level = 0.43).

Table 6.4. Steady state cultures: cellular chemical compositions and their correlations with growth rate, domoic acid and its production. Values of C:Chla, N:Chla, Si:Chla and P:Chla are µg:µg, and the rest are molar ratios.

Table 7.1. Characteristics of two types of conditions for DA production.
Pseudonitzschia pungens f. multiseries Hasle is the first diatom to have been implicated in an episode of shellfish poisoning. In 1987, 150 people became sick and 3 died after consuming mussels, Mytilus edulis, from Cardigan Bay, Prince Edward Island (Addison and Stewart, 1989). It was discovered that the mussels had been feeding on a monospecific bloom of P. pungens f. multiseries, and the toxin involved was domoic acid (DA, Subba Rao et al., 1988a). This thesis reports an investigation of the physiology of the diatom, with particular emphasis on factors that lead to DA production.

Photosynthesis, phosphate (P) and silicate (Si) uptake, and domoic acid production were studied in batch and chemostat continuous cultures. The photosynthetic carbon assimilation rate of P. pungens f. multiseries was low compared to other diatoms, especially when the cultures progressed into stationary phase and were nutrient limited. Luxury uptake of P and Si occurred when the culture populations were perturbed with these nutrients after being starved of them. Domoic acid was produced both in dividing and non-dividing populations and the production rates correlated with the severity of P or Si limitation. Production of DA was significantly enhanced when overall cell metabolism declined due to nutrient limitation. In the batch cultures, there were two stages of DA production. The first stage corresponded to the decline of population growth, and the second stage to nutrient limitation. These two stages are believed to be controlled by self-limiting factors and external stress respectively. In continuous culture, the same two stages were detected. Under severe limitation of either P or Si, DA production rose to maximum levels around 200 µg l⁻¹ d⁻¹ (3.17 pg DA cell⁻¹ d⁻¹) and the maximum DA levels attained were 11.9 pg DA cell⁻¹ in cells and 1118 pg l⁻¹ in whole culture. The main conclusions are (i) the self-limiting control associated with decline of population growth is an essential prerequisite to DA production, but the main control is external nutrient stress; (ii) the major cell mechanism regulating DA production is a change in partitioning of energy and precursors between primary and secondary metabolism; (iii) the domoic acid poisoning episodes in Cardigan Bay were likely caused by abnormal nutrient ratios in the sea water.
SYMBOLS AND ABBREVIATIONS

\(\alpha^B \) The initial slope of the \(P^B-I \) curve (\(\text{ng C [\(\mu g \text{ Chl} a \)]^{-1} h^{-1} [\mu mol \text{ m}^2 s^{-1}]^{-1} \) or \(\text{ng C [\(\mu g \text{ C} \)]^{-1} h^{-1} [\mu mol \text{ m}^2 s^{-1}]^{-1} \))}.

\(\alpha_s \) The initial slope of the \(\mu_m-I \) curve (\(d^{-1} [\mu mol \text{ m}^2 s^{-1}]^{-1} \)).

\(\beta^B \) The photoinhibition index (same units as \(\alpha^B \)).

\(\mu \) (Specific) growth rate (\(d^{-1} \)).

\(\mu_m \) Maximum growth rate (\(d^{-1} \)).

\(\mu_{m(m)} \) Maximum growth rate at optimal PPFD levels (\(d^{-1} \)).

0-MF 3-0-methylfluorescein.

0-MFP 3-0-methylfluorescein phosphate.

ADP Adenosine diphosphate.

AMP Adenosine monophosphate.

AP Alkaline phosphatase.

APA Alkaline phosphatase activity.

ASP Amnesic shellfish poisoning.

ATP Adenosine triphosphate.

C Carbon.

Chl Chlorophyll.

CHN Carbon, hydrogen and nitrogen.

d day.

D Dilution rate in chemostat continuous culture (\(d^{-1} \)).

DA Domoic acid.

xxi
DAD Diode array detector (one method for DA analysis).
DAPI Diamidino-2-phenyl-indole dihydrochloride.
DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea.
DIP Dissolved inorganic phosphate.
DISi Dissolved inorganic silicate.
DNA Deoxyribonucleic acid.
DP Total dissolved phosphorus.
DSi Total dissolved silicon.
EC Adenyl energy charge (Equation 2.4).
EDTA Ethylene diamine tetraacetic acid.
f The negative initial slope of t_m-I curve (Equation 3.8).
fg femtogram (10^{-15} gram).
FMOC 9-fluornyl-methoxycarboxyl (one method for DA analysis).
GF/F Glass fibre filter, grade F.
HL High light (1100 μmol m^{-2} s^{-1}).
I Photosynthetic photon flux density (μmol m^{-2} s^{-1}).
I_k Photo-adaptive index (Equation 2.9).
I_m I corresponding to the maximum photosynthetic rate P_m^B (Equation 2.8).
I_s I corresponding to P_s^B (Equation 2.1 J).
LL Low light (105 μmol m^{-2} s^{-1}).
MK Myokinase (or Adenylate kinase).
MW Molecular weight.
N Nitrogen.
\(N_1, N_2 \) Biomass at times 1 and 2 respectively (Equation 3.1)

\(N_0 \) Initial biomass.

\(N_t \) Cell number at time \(t \).

\(\text{ng} \) nanogram \((10^{-9} \text{ gram})\).

\(\text{Pi} \) Phosphate.

\(\text{P} \) Phosphorus.

\(P^B \) Biomass normalized photosynthetic rate \((\mu \text{g C} [\mu \text{g C}^{-1} \cdot \text{a}^{-1}] \text{ h}^{-1} \text{ or } \mu \text{g C} [\mu \text{g C}^{-1}] \text{ h}^{-1}, \text{ Equation 2.6})\).

\(P^B_d \) The intercept of the \(P^B-I \) curve on the Y-axis (same units as \(P^B \), Equation 2.6).

\(P^B_m \) \(P^B \) at optimum I (Equation 2.7).

\(P^{\text{pot}} \) The maximum potential \(P^B \) in the absence of photoinhibition (same units as \(P^B \), Equation 2.6).

\(\text{PC} \) Particulate carbon.

\(\text{PC1} \) Principal component 1.

\(\text{PC2} \) Principal component 2.

\(\text{PC3} \) Principal component 3.

\(\text{PC4} \) Principal component 4.

\(\text{PC5} \) Principal component 5.

\(\text{PEI} \) Prince Edward Island.

\(\text{PEP} \) Phosphenolpyruvate.

\(\text{pg} \) picogram \((10^{-12} \text{ gram})\).

\(\text{PK} \) Pyruvate kinase.

\(\text{PIP} \) Particulate inorganic phosphorus.
PISi Particulate inorganic silicon.
PC Particulate carbon.
PN Particulate nitrogen.
PP Particulate phosphorus.
PPFD Photosynthetic photon flux density (μmol m⁻² s⁻¹).
PSi Particulate silicon.
PSP Paralytic shellfish poisoning.
Q₁₀ Ratios of metabolic rates at the temperatures of 10°C difference.
R Correlation coefficient.
Rₐ Chlorophyll a fluorescence after acidification.
Rᵦ Chlorophyll a fluorescence before acidification.
RNA Ribonucleic acid.
rpm Revolutions per minute.
Std Standard deviation.
μg microgram (10⁻⁶ gram).
T Temperature (°C).
t Time (day).
t₁, t₂ Times 1 and 2 respectively (Equation 3.1)
t₄ Maximum tₘ (day), when the culture is in the dark (Equation 3.8).
tₘ The time (day) needed to reach μₘ (Equation 3.8).
Tris Trishydroxymethylaminomethane.
Y Magnitude of change in biomass (Ln(N/N₀, Equation 2.11). Nₜ = biomass at time t, N₀ = biomass at time 0.
ACKNOWLEDGEMENTS

It would be impossible for a long journey like a Ph.D. program to reach its destination without the support from various sources. My guru, Subba Rao Durvasula has been a continuous source of humour and logistic support, Ken Mann has been an excellent English teacher and continuous source of financial support, and along with other committee members Bob Brown, Glen Harrison and Bill Li provided stimulating guidance and criticism throughout the research and writing of the thesis. I am indebted to my committee.

Don Gordon, Jim Stewart and Mike Sinclair helped and encouraged me throughout. Subba Rao Durvasula isolated and supplied NPBIOS strain, and K. Pauley isolated KP-59 stain, of *Pseudonitzschia pungens* f. *multiseriata*. The KP-59 strain was supplied by Jim Stewart. Both strains were confirmed by the taxonomic authorities G. Hasle and G. A. Fryxell. Leo Vining and Jeff Wright gave me criticism on the potential pathway of domoic acid synthesis (Fig. 1.4) and enriched my knowledge of secondary metabolism. Wade Blanchard (Dalhousie Statistical Consulting Service) gave me critical evaluation of various statistical methods used. Trevor Platt took time to discuss with me the P-I model. Roddy Warnock instructed me and let me use his photosynthetron. Steve Bates provided me with his unpublished manuscripts when I was writing the thesis. Richard Gallant (PEI Department of Fisheries and Aquaculture) provided reports of a PEI mussel monitoring program. Roger Pocklington and his crew, Jeff Wright (Jr.), Krista Pronk and Jim Leonard analyzed domoic acid throughout. Bill Li and Paul Dickie kindly collected mid-Atlantic sea water for me during their 1991 JGOFS cruise, taught me the DAPI method for bacterial quantification and helped in many other experimental issues. Yonghong Guan enumerated bacteria epifluorescent samples. Lorne Lea (DFO, Charlottetown) and Peter Vass assisted in collecting Cardigan Bay seawater and helped in many other ways. Peter Strain and Pierre Clement analyzed nutrients at the initial stage. Mark Hodgson, Leslie Harris and Brian Irwin provided instruction and let me use their CHN analyzer and spectrophotometers. Peter Vass, Jim Frost, Brian Irwin, Bill Li, Ron O’Dor and Jim Novitski loaned me equipment. Paul Keizer let me use his office during the renovation period of 1992. Paul Boudreau loaned me his computer. Gary Kohlgeschaffen, Ann Orr, Joanne Jellett, Linda Marks and Zhiming Yu gave me support as both friends and colleagues. Sharon Morgan (Bedford Institute) and Steve Fry, Donna Healy, Finn Sander and Barbara Cossar (Dalhousie University) gave me technical and administrative support. Art Cosgrove and Heinz Wiele (Bedford Institute) assisted with graphics and slides for presentation. People in the Biology Department at Dalhousie and the Biological Science Branch at BIO supported me physically and
morally. My parents, my wife Yonghong, my children Elysia and Eric gave me constant support and encouragement. I sincerely appreciate the efforts of, and extend gratitude to, all these people.

Dalhousie University and Bedford Institute of Oceanography afforded me space and facilities for these studies. This work has been funded by research grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to Ken Mann, Graduate Scholarships from Dalhousie University to Y. Pan and by grants from the phycotoxin program in the Department of Fisheries and Oceans, Canada (DFO) to Subba Rao Durvasula. I received Lett bursary for a travel grant and a personal emergency support.

Parts of the results of Chapter 3 have been published (Appendix A1, Nos. 7 and 11). Copyright permission has been obtained from Elsevier Scientific Publishers B. V., Amsterdam for the reproduction.
CHAPTER 1
GENERAL INTRODUCTION

1.1. The problems

Production of phycotoxin by diatom blooms was unknown until 1987. In 1987, a monospecific bloom of a pennate diatom *Pseudonitzschia pungens f. multiseries* Hasle (formerly *Nitzschia pungens f. multiseries* Grunow, Fig. 1.1) occurred in Cardigan Bay, Prince Edward Island (PEI). This diatom produced a neurotoxin, domoic acid (DA, Fig. 1.2), which was accumulated by the blue mussel (*Mytilus edulis* Linnaeus). Subsequently, consumption of the toxin-laden mussels resulted in amnesic shellfish poisoning (ASP). It caused economic losses of approximately 3×10^6 (Fig. 1.3) due to the closure of shellfisheries and 105 cases of human poisonings, of which 3 were fatal (Addison and Stewart, 1989).

P. pungens f. multiseries is an ubiquitous diatom distributed from 60 °N to 40 °S in both Atlantic and Pacific (Table 1.1). The physiology and ecology of this diatom, which bloomed in the fall and winter, unlike most other diatom blooms which occur in the spring, was not much known before the outbreak of the toxigenic blooms in 1987. *P. pungens f. multiseries* is the first diatom reported toxigenic and its toxigenesis only occurs in certain waters of the world oceans. This raised several questions, i.e. (i) Under
what conditions, does it become toxigenic and what are the triggers of the toxin synthesis? (ii) How can it bloom in the late fall and winter when the natural conditions are obviously not favoured for other diatom blooms?

1.2. The approaches

In *P. pungens f. multiseries*, DA production usually started when the active growth declined, and toxicity in nature occurred 7-10 days after the peak of the bloom (Silvert and Subba Rao, 1992). This suggests that DA production is associated with physiological stresses, such as nutrient limitation. Natural marine ecosystems are very complex because of the interaction of physical, chemical and biological factors, so it is very difficult to pinpoint the main factors that regulate a specific algal bloom and induce the toxin production. This is true for any other toxigenic algal blooms. Therefore in the present studies I used cultures as analogues of natural blooms, controlling a few environmental factors and simulating the bloom conditions in the PEI bays to study the physiology, ecology and toxigenesis of *P. pungens f. multiseries*.

In this thesis I investigated: 1) the physiological ecology of *P. pungens f. multiseries*; 2) the role of nutrients in the development and decline of the monospecific toxigenic blooms; and 3) the role of physiological stress due to nutrient limitation in the DA production. The hypothesis is tested that *P. pungens f. multiseries* produces domoic acid when stressed by nutrient limitation. After description of methodology (Chapter 2), photosynthesis and growth of this diatom in relation to physiological stages, light history
Fig. 1.1. *Pseudonitzschia pungens* f. *multiseries*, a pennate diatom bloomed in the fall-winter of 1987 in Cardigan Bay, Prince Edward Island. (Top) colonies of *P. pungens* f. *multiseries* (scale: 1 cm = 40 µm), (Bottom) map of PEI.
Fig. 1.2. Domoic acid and related compounds.
Fig. 1.3. Amnesic shellfish poisoning occurred in Cardigan Bay PEI and resulted in 105 cases of human poisonings and 3×10^6 economic loss (Addison and Stewart, 1989).
Table 1.1. Known distribution of *Pseudonitzschia pungens* in the world oceans. Forma m = f. *multiseries*, p = f. *pungens*.

<table>
<thead>
<tr>
<th>Region</th>
<th>Ocean</th>
<th>Location</th>
<th>Abundance (10^3 cells l^-1)</th>
<th>Forma (m/p)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardigan Bay, Canada</td>
<td>Atlantic</td>
<td>46°15'N, 62°30'W</td>
<td>10-15000</td>
<td>m</td>
<td>Bates et al., 1989</td>
</tr>
<tr>
<td>Nova Scotia, Canada</td>
<td>Atlantic</td>
<td>43-47°N, 50-60°W</td>
<td>0.08-100</td>
<td>m and p</td>
<td>Subba Rao., unpublished</td>
</tr>
<tr>
<td>Gulf of Mexico, USA</td>
<td></td>
<td>30°N, 85-90°W</td>
<td>0.12-2.95</td>
<td>m</td>
<td>Dickey et al., 1992</td>
</tr>
<tr>
<td>New York Bight, USA</td>
<td></td>
<td>40°N, 74°W</td>
<td>0.12-2.95</td>
<td>m</td>
<td>Marshall and Cohn, 1987b</td>
</tr>
<tr>
<td>Eastern coast, USA</td>
<td></td>
<td>35-45°N, 66-76°W</td>
<td>0.10-19.50</td>
<td></td>
<td>Marshall and Ranasinghe, 1989</td>
</tr>
<tr>
<td>Chesapeake Bay, USA</td>
<td></td>
<td>37°15'N, 76°25'W</td>
<td>m</td>
<td></td>
<td>Cupp, 1943</td>
</tr>
<tr>
<td>Norweigian Sea</td>
<td></td>
<td>62°N</td>
<td>m</td>
<td></td>
<td>Hasle, 1972</td>
</tr>
<tr>
<td>Drobak, Norway</td>
<td></td>
<td>59°40'N, 10°40'E</td>
<td>m</td>
<td></td>
<td>Hasle, 1965</td>
</tr>
<tr>
<td>Cabo Frio, Brazil</td>
<td></td>
<td>23°S, 42°W</td>
<td>m</td>
<td></td>
<td>Gonzalez-Rodriguez et al., 1985</td>
</tr>
<tr>
<td>Atlantida, Uruguay</td>
<td></td>
<td>34°46'S, 55°45'W</td>
<td>m</td>
<td></td>
<td>Hasle, 1965</td>
</tr>
<tr>
<td>Quequen, Argentina</td>
<td></td>
<td>38°30'S, 59°W</td>
<td>m</td>
<td></td>
<td>Hasle, 1965</td>
</tr>
<tr>
<td>British Columbia, Canada</td>
<td>Pacific</td>
<td>48-53°N, 126-131°W</td>
<td>3700-10600</td>
<td>m</td>
<td>Forbes and Denman, 1991</td>
</tr>
<tr>
<td>British Columbia, Canada</td>
<td></td>
<td>49°45'-50°N, 124°W</td>
<td></td>
<td></td>
<td>Sancetta, 1989</td>
</tr>
<tr>
<td>West coast, USA</td>
<td></td>
<td>33-45°N, 117-125°W</td>
<td></td>
<td></td>
<td>Cupp, 1943</td>
</tr>
<tr>
<td>Oregon, USA</td>
<td></td>
<td>32-46°N, 124-125°W</td>
<td></td>
<td>m</td>
<td>Hasle, 1965</td>
</tr>
<tr>
<td>Region</td>
<td>Ocean</td>
<td>Location</td>
<td>Abundance (10^3 cells l^-1)</td>
<td>Forma (m/p)</td>
<td>References</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Chile</td>
<td>Pacific</td>
<td>30-50°S, 72-77°W</td>
<td></td>
<td></td>
<td>Rivera, 1985</td>
</tr>
<tr>
<td>Wellington Harbour, New Zealand</td>
<td>Pacific</td>
<td>41°S, 174°E</td>
<td></td>
<td></td>
<td>Hasle, 1972</td>
</tr>
<tr>
<td>Western North Pacific</td>
<td>Pacific</td>
<td>20-34°N, 139-155°E</td>
<td></td>
<td></td>
<td>Furuya and Marumo, 1983</td>
</tr>
<tr>
<td>Hachijo Island, Japan</td>
<td>Pacific</td>
<td>32-40°N, 140°E</td>
<td>10.1%</td>
<td>p and m</td>
<td>Furuya et al., 1986</td>
</tr>
<tr>
<td>Ofunato - Atsumi Bays, Japan</td>
<td>Pacific</td>
<td>35-39°N, 137-141°E</td>
<td></td>
<td></td>
<td>Takano and Kuroki, 1977</td>
</tr>
<tr>
<td>Yeddo Bay, Japan</td>
<td>Pacific</td>
<td>N E</td>
<td></td>
<td></td>
<td>Grunow, 1988</td>
</tr>
<tr>
<td>Meizhou Bay, China</td>
<td>Pacific</td>
<td>24°N, 118°E</td>
<td></td>
<td></td>
<td>Lin et al., 1991</td>
</tr>
<tr>
<td>Eastern China Sea</td>
<td>Pacific</td>
<td>24-42°N, 112-124°E</td>
<td></td>
<td></td>
<td>Zou et al., 1993</td>
</tr>
<tr>
<td>Kori, Korea</td>
<td>Pacific</td>
<td></td>
<td></td>
<td></td>
<td>Yoo and Lee, 1982</td>
</tr>
<tr>
<td>Gulf of Santa Fe</td>
<td>Caribbean</td>
<td>22°N, 66°W</td>
<td></td>
<td></td>
<td>Breeuwer de Ramirez, 1977</td>
</tr>
<tr>
<td>Cayo Enrique-Gata, Puerto Rico</td>
<td>Caribbean</td>
<td></td>
<td></td>
<td></td>
<td>Navarro, 1983</td>
</tr>
<tr>
<td>Mithapur, India</td>
<td>Indian</td>
<td></td>
<td></td>
<td></td>
<td>Ram et al., 1989</td>
</tr>
<tr>
<td>Banyuls-sur-Mer, France</td>
<td>Mediterranean</td>
<td>42°29'N, 03°18'W</td>
<td></td>
<td></td>
<td>Cahet et al., 1972</td>
</tr>
<tr>
<td>Golf du lion</td>
<td>Mediterranean</td>
<td></td>
<td></td>
<td></td>
<td>Fiala et al., 1976</td>
</tr>
<tr>
<td>Indian Sector</td>
<td>Antarctic</td>
<td>61-65°S, 100-120°E</td>
<td></td>
<td></td>
<td>Kawamura and Ichikawa, 1984</td>
</tr>
</tbody>
</table>
and temperature are studied in Chapter 3. Onset of the stationary phase is coincident with silicate depletion in the medium. Chapters 4 and 5 deal with physiology and toxigenesis of the diatom under silicate stress, showing that toxin production is greatly enhanced when silicate is depleted in the cultures. To further demonstrate the roles of nutrient stress in DA production, bioenergetics and phosphate stress are studied in Chapter 6. Biochemical and ecological perspectives on the formation of the toxigenic blooms in nature are presented in Chapter 7. The major contributions to physiological ecology of *P. pungens f. multiseries* are concluded in Chapter 8.

1.3. Literature review

1.3.1. History of *Pseudonitzschia pungens*

Pseudonitzschia pungens was first found by Grunow (1882) from Yeddo Bay in Japan and reported as *Homoecladia pungens* Grunow. Cleve (1897) characterized it as having "linear-lanceolate, acute" valves. It has a synonym of *Nitzschia pungens* var. *atlantica* Cleve (Cupp, 1943). Hasle (1965) recorded forma *multiseries* of this species in the samples from Drobak in Norway, Chesapeake Bay and Oregon in the United States, Atlantida in Uruguay, and Quequen in Argentina. Takano and Kuroki (1977) observed forma *pungens* of this species co-occurring with forma *multiseries* and some other members of *Pseudonitzschia* group from Japanese coastal waters.

Pseudonitzschia pungens is a pennate, colony-forming diatom. Because of the
similarity in the shapes of frustule and colony between \textit{P. pungens} on one hand and \textit{P. seriata} Cleve and five other closely related species on the other, Hasle (1965) grouped them as \textit{Nitzschia seriata}-complex in genus \textit{Nitzschia} (Hasle, 1965). The unique type of colony-formation and the shape of frustule readily indicate this complex as a member of \textit{Pseudonitzschia} Peragallo, which was considered to be subdivisional group in the Genus \textit{Nitzschia} Hasle, Bacillariophyceae before 1993. Since 1993, this group is now promoted to be the Genus \textit{Pseudonitzschia} Peragallo (Hasle, 1993).

\begin{table}[h]
\centering
\caption{Comparison of two different forma of \textit{Pseudonitzschia pungens}. Values in the parentheses are means.}
\begin{tabular}{|l|l|l|}
\hline
Measurement & \textit{f. multiseries} & \textit{f. pungens} \\
\hline
Length (\(\mu\)m) & 68-140 (100) & 81-151 (106) \\
\hline
Width (\(\mu\)m) & 4-5 & 3.1-5 (4) \\
\hline
Transapical costae in 10 \(\mu\)m & 10-13 & 11-14 \\
\hline
Poroids & Fine, 4-6 in 1 \(\mu\)m or 2-4 rows between costae & Round, usually 2 rows, one at each side of costa \\
\hline
References & Hasle, 1965; Takano & Kuroki, 1977 & Takano & Kuroki, 1977 \\
\hline
\end{tabular}
\end{table}

There are two forma in the species of \textit{P. pungens}, \textit{f. multiseries} and \textit{f. pungens}. Of these two forma, only \textit{f. multiseries} is toxigenic (Subba Rao \textit{et al.}, 1988a, 1990; Bates \textit{et al.}, 1989; Smith \textit{et al.}, 1990a). Differences between these two forma can only be seen under the electron microscope (Table 1.2). The main differences are the size and the number of rows of poroids: usually fine poroids, 4-6 in 1 \(\mu\)m (Hasle, 1965) or 2-4 rows
between costae (Takano and Kuroki, 1977) for forma *multiseries*; and round poroids, usually 2, one row at each side of a coasta, for forma *pungens*. Changes in morphology have been observed for f. *multiseries* under different physiological conditions (Subba Rao and Wohlgeschaffen, 1990) or in different stages of the life cycle (Subba Rao *et al.*, 1991).

1.3.2. Distribution of Pseudonitzschia pungens

Pseudonitzschia pungens is an ubiquitous species distributed from 62 °N (Hasle, 1965) to 65 °S (Kawamura and Ichikawa, 1984). It has been found in the Pacific (Takano and Kuroki, 1977; Forbes and Denman, 1990), Atlantic (Hasle, 1965, 1972; Marshall and Ranasinghe, 1989), Indian (Ram *et al.*, 1989), Antarctica (Kawamura and Ichikawa, 1984) and Mediterranean (Cahet *et al.*, 1972). Its cell concentration ranged from a few cells per litre to 15×10^6 cells per litre (Table 1.1).

Pseudonitzschia pungens f. *multiseries* occurs between 60 °N and 40 °S in the Atlantic and Pacific oceans (Table 1.1). Most recently, it has been reported toxigenic in the northwest Atlantic coasts from Cardigan Bay, Prince Edward Island (PEI) (Subba Rao *et al.*, 1988a, 1990; Bates *et al.*, 1989) in the north (46 °N) to the Gulf of México (Dickey *et al.*, 1992) in the south (15 °N); and in the northeast Pacific (Scholin *et al.*, 1994; Whyte *et al.*, 1994 and personal communication, October, 1993).

On the Northwest Atlantic coasts, this species has been recorded since 1965 and appeared year-round. Cell concentrations ranged from a few cells (Marshall and his associates, 1983-1989) to 15 million cells l$^{-1}$ (Bates *et al.*, 1989). The relative rank of
abundance of this species was usually higher in the fall and winter than in spring and summer, more in near-shore than in offshore (Marshall and Cohn, 1987a, b). In the PEI bays also, the toxigenic form, *Pseudonitzschia pungens* f. *multiseries* was most abundant in the fall and winter, but very low in the summer (Bates *et al.*, 1989).

1.3.3. Domoic acid poisonings

More recently, DA was detected in *P. pungens* f. *multiseries* from the Gulf of Mexico (Dickey *et al.*, 1992), in *P. australis* Frenguellii (= *Nitzschia pseudoseriata* Hasle, Fritz *et al.*, 1992; Garrison *et al.*, 1992) and in *P. pungens* f. *multiseries* (Scholin *et al.*, 1994) from Monterey Bay, California. Domoic acid poisoning, which was believed to be related to *P. australis* or *P. pungens* f. *multiseries*, was also reported from California (Work *et al.*, 1993) and Oregon coasts (Wood and Shapiro, 1993). In the fall of 1993, DA poisoning also occurred along the Canadian Pacific coasts attributable to the toxigenic *P. pungens* f. *multiseries* (Whyte, personal communication, October, 1993). Earlier, DA was isolated from two red algae, *Chondria armata* Okamura in Japan and nearby waters (Takemoto and Daigo, 1958) and *Alsidium corallinum* C. Agardh in Mediterranean
Fig. 1.4. Potential pathway of domoic acid biosynthesis (refers to Luckner, 1984, Laycock et al., 1989 and Douglas et al., 1992).
Domoic acid (Fig. 1.2) is a naturally occurring, excitatory amino acid, first isolated by Daigo (1959) from Chondria armata. Its name was derived from the Japanese name of this alga, domoi. Domoic acid is closely related to kainic acid (Fig. 1.2) and probably acts as an agonist to glutamate, a neurotransmitter in the central nervous system (Hampson and Wenthold, 1988). Human poisoning by DA result in short-term memory loss and more severely in death (Addison and Stewart, 1989).

Domoic acid consists of two parts. One is the proline-like ring and the other is an isoprenoid structure (Fig. 1.2). Part of the former probably originally derived from glutamate which is from α-oxoglutarate in the Krebs cycle (Fig. 1.4). Synthesis of proline from glutamate requires 2 NADPH and 2 ATP. The latter may be derived from geranyl pyrophosphate, which is originally from acetyl-CoA (Luckner, 1984). Three ATP and 2 NADPH are required during the biochemical process from acetyl-CoA to geranyl pyrophosphate. These two parts probably condense to form domoic acid under certain physiological conditions, which are under investigations. Details of the condensation procedures remain obscure.

1.3.4. Physiological and ecological studies

The production and storage of toxins of an individual isolate of P. pungens f. multiseries vary with light, temperature, growth rate and physiological stage of the cells. Generally, the toxin content in P. pungens f. multiseries is lowest or undetectable in the mid-exponential phase, increases after cells enter the stationary phase and attains a
maximum in the advanced stationary phase (Subba Rao et al., 1990; Bates et al., 1991)

Light is required in the production of domoic acid (Bates et al., 1991). In the stationary phase of *P. pungens* f. *multiseries*, DA production ceased during the period of darkness; it resumed immediately after the transition from dark to light (Bates et al., 1991). Addition of photosynthetic inhibitor DCMU stopped DA production (Bates et al., 1991). Hence, photosynthesis (specifically photochemical processes), the primary energy source for carbon assimilation, mediates DA production as well.

Production of toxin as a secondary metabolite may compete with the primary metabolism for photosynthesized energy. Production of DA in the batch culture of *P. pungens* f. *multiseries* has only been found in the lag phase (Douglas and Bates, 1992) or stationary phase (Subba Rao et al., 1990; Bates et al., 1991) when the carbon assimilation rate was drastically reduced to ~3-15% of that in the exponential phase (Pan et al., 1991). It seems that some of the photosynthesized energy has been channelled into DA production instead of carbon assimilation. In saxitoxin production, physiological stress such as lowering the temperature resulted in an enhancement of toxicity and content of saxitoxins (STX and its derivatives) per cell of *Alexandrium* spp. Lowering temperature results in decrease in carbon assimilation (Pan et al., 1993) and growth rate (Boyer et al., 1985; Pan et al., 1993). It reduces the competition of the primary metabolism for the photosynthesized energy. Dark reaction (carbon assimilation) rate is reduced because low temperature lessens enzyme activity, whereas light reaction (energy assimilation) is somewhat independent of temperature. Therefore, energy is made available for toxin production.
In *P. pungens* f. *multiseries*, onset of stationary phase corresponded to the silicate deficiency (Pan *et al.*, 1991) and initiation of DA production. Cultures grown with initial silicate concentrations of 5-30 µM contained approximate 35% more DA per cell than those grown with 55-105 µM (Bates *et al.*, 1991), which according to the authors is attributed to the differences in the duration in the stationary phase because cells grown in lower silicate concentration entered stationary phase earlier.

DA is not detected in the sexual phases of *P. pungens* f. *multiseries*, i.e. gametes and zygotes, and resulting cells grown for 16 days do not have DA (Subba Rao *et al.*, 1991). Cells must go through several generations of asexual reproduction after finishing the sexual cycle before they can produce DA. This provides a possible explanation why *P. pungens* f. *multiseries* produces DA in one place but not in another.
CHAPTER 2
GENERAL METHODS

2.1. Organism - culture

Two strains of *Pseudonitzschia pungens* (Grunow) f. *multiseries* (Hasle) were used in these studies. Strain NPBIO was isolated from Cardigan Bay, Prince Edward Island (PEI) in December of 1987 when the toxigenic bloom caused by this diatom was first reported. Strain KP-59 was isolated from New London Bay, PEI, in October of 1991. Both strains are confirmed by the taxonomy authorities G. Hasle and G. A. Fryxell respectively. Stock cultures have been maintained in medium FE (Section 2.2.2, Subba Rao *et al.*, 1988) under continuous light of up to 410 µmol m\(^{-2}\) s\(^{-1}\) and at temperatures between 3-10 °C. Cultures were suitably acclimated to a given condition of light, temperature and nutrient by sub-culturing 2 or 3 times at 5-7 days intervals to meet the requirements of the experimental protocol as detailed in each chapter.

2.2. Culture media

Media were made using aged sea water from Cardigan Bay, where blooms of toxigenic *P. pungens* f. *multiseries* were reported, or from the Atlantic Ocean (36°N,
Seawater was filtered through 153 μm nitex to remove large zooplankton and other large marine organisms and stored in plastic containers for a period of one year or more. The seawater was enriched for each medium as described below and autoclaved at 15-20 Psi (121-131 °C) for 15-30 minutes as detailed in each chapter.

2.2.1. Medium F

The recipe of Medium F is described in Table 2.1 (Guillard and Ryther, 1962).

Table 2.1. Composition of medium F

<table>
<thead>
<tr>
<th>Enrichments</th>
<th>Formula</th>
<th>Concentration (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macronutrients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₃</td>
<td>NaNO₃</td>
<td>1765.000</td>
</tr>
<tr>
<td>PO₄</td>
<td>NaH₂PO₄·H₂O</td>
<td>72.500</td>
</tr>
<tr>
<td>Si</td>
<td>Na₂SiO₃·9H₂O</td>
<td>123.000</td>
</tr>
<tr>
<td>Micronutrient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>C₆H₅O₇Fe·3H₂O</td>
<td>23.300</td>
</tr>
<tr>
<td>Cu</td>
<td>CuSO₄·5H₂O</td>
<td>0.079</td>
</tr>
<tr>
<td>Zn</td>
<td>ZnSO₄·7H₂O</td>
<td>0.153</td>
</tr>
<tr>
<td>Co</td>
<td>CoCl₂·6H₂O</td>
<td>0.085</td>
</tr>
<tr>
<td>Mn</td>
<td>MnCl₂·4H₂O</td>
<td>1.830</td>
</tr>
<tr>
<td>Mo</td>
<td>NaMoO₄·2H₂O</td>
<td>0.052</td>
</tr>
<tr>
<td>EDTA</td>
<td>Na₂EDTA</td>
<td>38.249</td>
</tr>
<tr>
<td>Vitamins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamine·HCl</td>
<td>C₁₂H₁₇N₄O₅SCI·HCl</td>
<td>0.593</td>
</tr>
<tr>
<td>Biotin</td>
<td>C₁₀H₁₆N₂O₅S</td>
<td>4.1x10⁻³</td>
</tr>
<tr>
<td>VB₁₂</td>
<td>C₆₃H₈₈CoN₁₄O₁₄P</td>
<td>7.35x10⁴</td>
</tr>
</tbody>
</table>
Table 2.2. Composition of medium H

<table>
<thead>
<tr>
<th>Enrichments</th>
<th>Formula</th>
<th>Concentration (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macronutrients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₃</td>
<td>NaNO₃</td>
<td>1765.000</td>
</tr>
<tr>
<td>PO₄</td>
<td>NaH₂PO₄·H₂O</td>
<td>72.500</td>
</tr>
<tr>
<td>Si</td>
<td>Na₂SiO₃·9H₂O</td>
<td>123.000</td>
</tr>
<tr>
<td>Micronutrient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>C₆H₆O₁₂Fe·3H₂O</td>
<td>30.100</td>
</tr>
<tr>
<td>Cu</td>
<td>CuSO₄·5H₂O</td>
<td>0.079</td>
</tr>
<tr>
<td>Zn</td>
<td>ZnSO₄·7H₂O</td>
<td>0.153</td>
</tr>
<tr>
<td>Co</td>
<td>CoCl₂·6H₂O</td>
<td>0.090</td>
</tr>
<tr>
<td>Mn</td>
<td>MnCl₂·4H₂O</td>
<td>2.000</td>
</tr>
<tr>
<td>Mo</td>
<td>NaMoO₄·2H₂O</td>
<td>0.124</td>
</tr>
<tr>
<td>Citric acid</td>
<td>C(OH)(COOH)(CH₂·COOH)₂·H₂O</td>
<td>42.800</td>
</tr>
<tr>
<td>Vitamins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamine.HCl</td>
<td>C₁₂H₁₇N₄OSCl.HCl</td>
<td>0.593</td>
</tr>
<tr>
<td>Biotin</td>
<td>C₁₀H₁₆N₂O₃S</td>
<td>4.1x10⁻³</td>
</tr>
<tr>
<td>VB₁₂</td>
<td>C₆₃H₁₄₀CoN₁₄O₁₄P</td>
<td>7.35x10⁻⁴</td>
</tr>
</tbody>
</table>

2.2.2. Medium FE

Medium FE was a modification of medium F (Subba Rao et al., 1988a). To medium F described above, 2% (v/v) soil extract was added. The soil extract was prepared using soil from Cardigan Bay area and fortified by NaNO₃ and Na₂HPO₄·12H₂O as described below. In woods near Cardigan Bay, a deep pit was dug and a large quantity of soil was collected to a level 0.5 m below the ground and stored in plastic bags in the
dark at room temperature. To 1 kg soil, 1 litre distilled water was added and the mixture was autoclaved for 25 minutes at 131 °C. The soil extract was filtered through Whatman GF/C filter or centrifuged at 1000 rpm (~150 g) for 10 minutes. After cooling down, the filtrate or the supernatant fluid was adjusted to 1 litre using distilled water and enriched by 4 g NaN\textsubscript{3} and 0.6 g Na\textsubscript{2}HPO\textsubscript{4} 12H\textsubscript{2}O. Aliquots (20 ml) were dispensed into clean plastic vials and deep frozen. To prepare medium FE, one vial was added to 1 litre medium F, and the medium was autoclaved.

2.2.3. Medium H

Medium H was a modification of medium F, in which EDTA was replaced by citric acid and other changes were made as described in Table 2.2 (Humphrey, 1963; Humphrey and Subba Rao, 1967).

2.3. Measurement of biomass

Biomass was usually determined by cell concentrations. Culture samples (10-15 ml) were preserved by 1% (v/v) of the water solution mixture (1%:1%) of paraformaldehyde and glutaraldehyde and enumerated using an inverted microscope. In addition, particulate chlorophyll \textit{a}, carbon, nitrogen, silicon and phosphorus were also used as biomass indices; \textit{in vivo} chlorophyll \textit{a} fluorescence was used for monitoring population size in the continuous culture (Section 2.10).
2.4. Chlorophyll \textit{a} analysis

Chlorophyll \textit{a} was determined by fluorometry (Strickland and Parsons, 1972). A culture sample (usually 20 ml) was filtered onto a 25 mm Whatman GF/F filter (average pore size = 0.7 \textmu m), the funnel and the filter were rinsed with isotonic saline (NaCl solution of the same ionic strength as the culture medium). Then the filter was transferred into a glass vial containing 90\% acetone (10 ml) and refrigerated at 0-5 \textdegree C for 24-36 hours. The extract was analyzed for chlorophyll \textit{a} using a Turner Model 10 fluorometer. The fluorometric readings were taken before (R\textsubscript{b}) and after (R\textsubscript{a}) acidification by 1 or 2 drops of 1 N HCl. The chlorophyll \textit{a} concentration was calculated from the difference between R\textsubscript{b} and R\textsubscript{a} based on a calibration for each scale using the standard chlorophyll \textit{a} supplied by Sigma Chemical Inc. (Sigma-C6144). Chlorophyll \textit{a} values are an average of two determinations.

2.5. Nutrient analyses

2.5.1. Particulate carbon and nitrogen

Particulate carbon and nitrogen were analyzed using either a Perkin-Elmer Model 240B or Model 2400 CHN Elemental Analyzer. A culture sample (30 or 40 ml) was filtered onto a 25 mm Whatman GF/F filter, which had been previously baked at 550 \textdegree C for 3 hours. The cells on the filter were rinsed twice by isotonic saline. Samples were stored in plastic petri dishes frozen at -20 \textdegree C until analyzed (< 3 months). The cells on
the filter were dried at 60 °C overnight and then manually rolled using clean stainless
tweezers into a silver filter (for Model 240B) or a tin disk (for Model 2400) before
combustion (Strickland and Parsons, 1972). Particulate carbon and nitrogen values are
averages of two determinations.

2.5.2. Particulate phosphorus and silicon

Culture samples (20 or 10 ml) were filtered in duplicate onto nuclepore filters
(pore size = 1 μm, 25 mm diameter), which had been previously rinsed twice using
distilled water. Cells on the filter were rinsed twice with isotonic saline immediately
upon the completion of filtration. The samples were kept in plastic petri dishes stored
frozen at -20 °C until analysis (30-80 days) using the procedures described below.

2.5.2.1. Oxidation Oxidation was carried out in a 60-ml polypropylene plastic bottle
using alkaline persulphate as oxidant (Koroleff, 1983b). The filter was transferred to a
polypropylene bottle containing distilled water (30 ml) and oxidizing solution (3 ml). The
bottle was closed tightly and autoclaved at 15-20 Psi (126-131 °C) for 60 minutes, then
allowed to stand at room temperature for ~12 hours. Standard solutions of Na₂SiO₃ and
NaH₂PO₄ were simultaneously treated for calibration (Appendix B1).

2.5.2.2. Analysis Samples were taken from the bottle for phosphorus and silicon
measurements. For phosphorus determination, 4 ml of the oxidized solution (or its
dilutions) was transferred to a 5-ml Vacutainer tube. Mixed reagent (Strickland and
Parsons, 1972; 0.5 ml) was added to the tube using an Eppendorf Repeater pipette. Absorbency at 885 nm was measured using a Phillips Model PU8625 UV/VIS spectrophotometer between 10 and 30 minutes after the addition of mixed reagent. Phosphorus concentration was extrapolated from a standard curve determined simultaneously.

For silicon, 6 ml of the oxidized solution (or its dilution) was transferred to a 10-ml plastic tube and 0.25 ml of acid molybdate solution (Koroleff, 1983a) was added using an Eppendorf Repeater pipette and mixed. After 15 (±1) minutes, oxalic acid (0.25 ml, 0.8 M) and ascorbic acid (0.05 ml, 0.32 M) were added and mixed well. Full colour development was allowed to proceed for 60 minutes. Absorbency at 810 nm was measured within 3 hours. Silicon concentration was extrapolated from a standard curve determined simultaneously.

2.5.3. Dissolved phosphorus and silicon

A culture sample was filtered through a nuclepore filter (1.0 μm) and the filtrate (30 ml) transferred to a 60-ml polypropylene bottle and stored frozen. For analysis, the filtrate was thawed and 3 ml oxidation solution were added. The mixture was autoclaved for 60 minutes. Phosphorus and silicon were determined following the same procedures as described in Section 2.5.2.2.

2.5.4. Dissolved inorganic nutrients

Culture filtrate was collected in a 40-ml polypropylene bottle following the same procedures described in Section 2.5.3. Samples for Chapter 3 were analyzed for nitrate,
nitrite, phosphate and silicate using an Autoanalyzer II (Strickland and Parsons, 1972) by Mr. P. Clement in Marine Chemistry Division, Bedford Institute of Oceanography. The remaining samples were analyzed for phosphate and silicate using spectrophotometry (Strickland and Parsons, 1972) following the same procedures described in Section 2.5.2.2.

2.5.5. Dissolved carbon dioxide

Total dissolved CO$_2$ in the cultures was calculated from alkalinity determinations (Strickland and Parsons, 1972) based on salinity determined with Guildline Salinometer and pH with an Orion Research microprocessor ion-analyzer 901 at room temperature.

2.6. Analysis of domoic acid

Culture samples were filtered onto nuclepore filters (25 mm, pore size = 1.0 μm). The filters were kept in plastic petri dishes and the filtrates (10 ml) were kept in 20-ml plastic vials. Both the filters and filtrates were stored frozen (-20 °C) until analyzed (5-100 days). The samples were analyzed using high performance liquid chromatography (HPLC, Pocklington et al., 1990, Wright et al., 1989) by Dr. R. Pocklington and his associates, Marine Chemistry Division, Bedford Institute of Oceanography. Before analysis, a filter sample was transferred to a vial. The petri dish was rinsed twice with 1 ml of filtered (0.2 μm nuclepore filter) seawater, and the rinsed fluid added to the vial. The vial was capped and left in a sonic water bath (Sonic 300 Dismembrator, Artek, 20
+ 0.4 kHz) for 15 minutes to rupture the cells and release DA into the solution. The contents were then filtered through a Millipore Millex-HV filter (0.45 µm). For the filtrate sample, direct filtration through a Millipore Millex-HV filter was applied.

Two methods were used for analysis depending on DA concentrations present in the samples. At low levels (detection limit = 2 ng), DA was determined using the 9-fluorenyl-methoxycarboxyl (FMOC) method. Domoic acid first reacted with 9-fluorenylmethyl-chloroformate to form a fluorescent derivative that was then separated by HPLC and finally measured using a fluorescence detector (Pocklington et al., 1990). At high level (> 0.5 µg), a 5 µl portion was injected and separated by HPLC (5 µm Vydac 201 TP column, 25 cm x 2.1 mm ID at 40°C, isocratic elution with 0.5 ml min⁻¹ 10% acetonitrile in water plus 0.1% trifluoroacetic acid) and the ultraviolet absorbency of DA at its characteristic wavelength of 242 nm was measured by diode array detector (DAD, Wright et al., 1989). The value of DA is an average of duplicates.

2.7. Measurement of adenosine triphosphate (ATP) and adenyl energy charge (EC)

Among the various techniques for separating and measuring ATP, the firefly bioluminescent reaction is one of the most specific, sensitive and reproducible assay procedures known. This method makes use of the fact that firefly luciferin and luciferase react with ATP in the present of Mg²⁺ and oxygen to yield one photon of light for every ATP molecule hydrolysed (McElroy et al., 1969).
Mg\(^{++}\) luciferase

\[\text{ATP + firefly luciferin} \rightarrow \text{ADP + Pi + photon}\] (2.1)

2.7.1. Reagents

2.7.1.1. Inorganic compounds

1. MgSO\(_4\) (0.04 M): prepared in the laboratory.
2. KH\(_2\)AsO\(_4\) (pH 7.4, 0.1 M): obtained commercially from Sigma Chemical Inc. St. Louis US. (Sigma FF-As-100)
3. Mixture of MgCl\(_2\) (15 mM) and potassium phosphate buffer (pH 7.4, 75 mM)
4. Mixture of MgCl\(_2\) (30 mM) and potassium phosphate buffer (pH 7.4, 150 mM).

2.7.1.2. Tris buffer (Sigma Trizma base, No. T-1503, FW=121.1; 0.02 M)

5. pH = 7.75. Trishydroxymethylaminomethane (Tris, 7.5 g) was dissolved in 3000 ml of distilled water and pH of the buffer was adjusted to 7.75 by drop-wise addition of concentrated HCl. The solution was autoclaved at 15 Psi for 15 minutes and then dispensed (50 ml) to 60-ml sterile plastic flasks when it was hot. The buffer was kept in fridge until being used for extraction.
6. pH = 7.55. Following the same procedures for reagent 5 but adjusted the pH to 7.55.

2.7.1.3. Organic compounds and enzymes (from Sigma Chemical, St. Louis, U.S.)

7. ATP standard (Sigma A5349): Stock solution was prepared at the concentration of 1 µM in Tris buffer (reagent 5, pH = 7.75).
8. ADP standard (Sigma A1782): Stock solution was prepared at the concentration 0.1 mM in Tris buffer (reagent 5, pH = 7.75).
9. AMP standard (Sigma A1752): Stock solution was prepared at the concentration 0.05 mM in Tris buffer (reagent 5, pH = 7.75).

10. Phosphoenolpyruvate - Na (PEP-Na, 5 mM): 95 mg PEP-Na (FW=190, Sigma P9303) were dissolved in 100 ml Tris buffer (reagent 6, pH 7.55).

11. Pyruvate kinase (PK, Sigma P1506): A solution of 1,000 units was diluted to 50 ml with Tris buffer (reagent 6, pH 7.55). The final concentration in the stock solution was 20 units ml\(^{-1}\) (>0.2 units per sample).

12. Myokinase (MK, or Adenylate kinase; Sigma M3003): 20,000 units were diluted to 5 ml with Tris buffer (reagent 6, pH 7.55). The final concentration in the stock solution is 4,000 units ml\(^{-1}\) (20 unit per sample).

13. Firefly lantern extract: Lyophilized firefly lantern extracts were obtained commercially (Sigma FLE-50) stored frozen and desiccated (< -5 °C) prior to use. At assay a) each vial of the enzyme extract was rehydrated with 5 ml distilled water and allowed an ageing period of 2-3 hours at room temperature; then b) equal volumes of MgSO\(_4\) (reagent 1) and KHAsO\(_4\) (reagent 2) were added to 25 ml in each vial; c) several vials of the solution were combined if the number of samples was over 25 and more vials of enzymes were needed; d) this enzyme solution was centrifuged at 1,000 rpm (~150 g) for 10 minutes and the supernatant fluid was used for assay.

2.7.2. Filtration and extraction (enzyme Inactivation)

The culture sample (30 - 50 ml) was filtered through a Whatman GF/F filter at
vacuum pressure less than 180 mm Hg. The filter was sucked dry but not rinsed (rinsing will create an unpredictable error). Immediately, the filter was transferred into a 5-ml vacutainer tube containing boiling Tris buffer (4 ml, Reagent 5, pH=7.75) and the tube left in a boiling water bath for 2.5-3 minutes (the sample should not be extracted for more than 3 minutes). The tube was transferred to an icy water bath and then stored in the dark at -20°C until analysis.

2.7.3. Assay

The assay was carried out using an integrated photometer (ATP Photometer). Before assay, ADP and AMP were both converted to ATP by enzyme reactions (2.2) and (2.3) given below. To determine ATP, reagent 3 (50 µl) was mixed with sample or standard (0.2 ml) in a 10-ml cylindrical vial. The vial was manually transferred into the photometer before 1 ml firefly lantern extract (reagent 13) was added using an automatic dispenser. The peak height method with a 3 second delay (Karl and Holm-Hansen, 1980) was used for the measurement of photon flux densities.

\[
P^K_{\text{PK}} \quad \text{ADP} + \text{PEP} \quad \overset{\text{------\rightarrow}}{\text{ATP} + \text{pyruvate}} \quad (2.2)
\]

\[
P^M_{\text{MK}} \quad \text{ATP} + \text{AMP} \quad \overset{\text{\rightarrow}2\text{ADP}}{\text{\<------\>}} \quad (2.3)
\]

For ADP+ATP determination, a) Reagent 4 (2.5 ml) was mixed with PEP-Na (Reagent 10, 1 ml) and PK (reagent 11, 1.5 ml); b) this mixture (50 µl) was added to samples or standards (0.2 ml) in a cylindrical vial and allowed to react for 30 minutes in
a water bath at 30 °C to convert ADP to ATP (Equation 2.2); c) the vial was transferred to a boiling water bath for 2 min to inactivate the enzymes and d) assayed as ATP after it cooled.

To determine AMP+ADP+ATP, a) Reagent 4 (2.5 ml) was mixed with PEP-Na (Reagent 10, 1 ml), PK (Reagent 11, 1 ml) and MK (Reagent 12, 0.5 ml) and then taken through the steps b) (Equations 2.2, 2.3), c) and d) described for ADP+ATP measurement.

For the measurement of blanks, 0.2 ml Tris buffer (Reagent 5) was used instead of the sample. The procedures for treatment and assay were the same as for the samples. A standard curve was obtained for each set (less then 40) samples and the levels of ATP, ADP+ATP and AMP+ADP+ATP were extrapolated from the standard curves obtained simultaneously. Averages of 3 determinations was reported.

All the glassware used during the preparation of reagents and samples and during the assay was washed using a mixture (0.5% 1:1) of JAVEX bleach and EXTRAN MN-1 soap and then rinsed thoroughly. The glassware was finally baked at 550 °C for >3 hours to eliminate any organic contaminant as any negligence of the cleanliness of the glassware would result in unpredictable errors.

Adenyl energy charge (EC) is defined as (Karl and Holm-Hansen, 1980):

\[
EC = \frac{ATP + \frac{1}{2} ADP}{ATP + ADP + AMP}
\]
(2.4)
2.8. Measurements of alkaline phosphatase activity

The underlying principle for the determination of alkaline phosphatase activity is that many microorganisms produce phosphatase associated with the cell membrane surface when phosphorus becomes limiting in a culture or in sea water. These phosphatases are capable of hydrolysing organic phosphate bonds. Examination for the presence of alkaline phosphatase (AP) has been used to determine the phosphate limitations in limnological and oceanographical investigations (Perry, 1972 and the references therein). The assay used in the experiments was based on the hydrolysis of the monophosphate ester bond of 3-0-methylfluorescein phosphate (0-MFP) by this enzyme.

\[\text{AP} \quad 0\text{-MFP} \rightarrow 0\text{-MF} + \text{Pi} \quad (2.5) \]

2.8.1. Reagents

1. **Tris Buffer (10 mM, pH=8.5):** Tris (2.42 g) was dissolved in distilled water (2000 ml) and the pH was adjusted to 8.5 by adding concentrated HCl. The buffer was autoclaved at 15 Psi for 15 min and then aseptically dispensed into small stocks (50 ml) in sterile plastic culture flasks (60 ml) when it was hot.

2. **Substrate:** 3-0-methylfluorescein phosphate (0-MFP, MW=511, 1.0 mM). The substrate was obtained commercially from Sigma Chemical Inc. (Sigma M2629, St. Louis, U. S.). 0-MFP (5.11) was dissolved in Tris buffer (10.0 ml, Reagent 1, pH=8.5) and dispensed (1 ml each) to 15-ml plastic culture tubes stored frozen until assay. The stock was thawed at 5 °C and diluted 10x with the same Tris
buffer for a working solution for the assay.

3. **Standard:** 3-0-methylfluorescein (0-MF, MW=346, 0.1 mM). 0-MF (1.73 mg, Sigma M7004) was dissolved in absolute methanol (50 ml) and dispensed (1 ml each) to plastic tubes store at -5.0°C. For a working solution, 1 ml of the stock solution was diluted to 100 ml with 0.05 N NaOH to get 1.0 µM and further diluted with distilled water to various concentrations. A linear relationship existed between the intensity of fluorescence of 0-MF and its concentration (Appendix B3).

2.8.2. **Assay**

A culture sample was collected, a portion of it was filtered through nuclepore filter (1.0 µm) and the filtrate was collected. Before assay, the culture (4 ml), filtrate (4 ml) and fresh medium (4 ml) were transferred to 6-ml vacutainer tubes and the tubes were positioned in a water bath (37 °C) and allowed to condition for 5 - 10 minutes before addition of the substrate.

A Turner model 111 fluorometer was equipped with No. F4T5 lamp, a primary filter of Wratten No. 47B (395-477 nm, the same as chlorophyll a measurement) and a secondary filter of Wratten No. 2A-12 combination (visible above 507 nm). After adding the substrate (0.5 ml, Reagent 2), the contents were mixed thoroughly using a Vortex-Genie mixer and its fluorescence was determined immediately. The tubes were left in the water bath before the next fluorescence readings were taken. The contents were mixed before each measurement of fluorescence and 6 to 8 measurements were obtained during 60 to 80 minutes. Alkaline phosphatase activity (APA) was determined by the slope of
the increments of fluorescence in the culture or filtrate minus that in the fresh medium. APA in the filtrate usually was negligible compared to that in the culture sample (<5%). Values presented were averages of two determinations.

All glassware used in the preparation and the assay was cleaned using a mixture (0.5% 1:1) of JAVEX bleach and EXTRAN MN-1 soap and rinsed thoroughly using tap water and distilled water, then autoclaved at 15 Psi for 15 minutes. Contact with any phosphate based detergent would result in unpredictable errors and has been avoided.

2.9. Relationships between photosynthesis and photosynthetic photon flux density (PPFD)

The photosynthesis-PPFD (P_B-I) relationships were determined using the 14C method (Steemann-Nielsen, 1952). High specific activity $H^{14}CO_3^-$ (111-222 K Bq ml$^{-1}$ depending on cell density) was added to about 65 ml culture and after mixing thoroughly, 1 ml aliquots of the culture were dispensed into 48 clean glass vials in a photosynthetron incubator and incubated for 30 minutes at different PPFDs ranging from 11 to 5000 μmol m$^{-2}$ s$^{-1}$ (Lewis et al., 1985). The radioactivity added was determined in 5 μl of the 14C-containing incubation medium using 5 μl Aquasol scintillation fluid containing NaOH (10 μl 6N). Incubations of the cells with the radioactive bicarbonate were terminated by addition of HCl (250 μl 6N). The vials were shaken for more than 1 hour to remove residual $H^{14}CO_3^-$. A Beckman two-channel scintillation counter was used to determine radioactivity. Photosynthesis was determined by the ratios of radioactivity assimilated by
the cells during the 30 minutes to the total radioactivity added multiplied by CO₂ concentration in the culture medium (Section 2.5.5). The relationship between photosynthesis (P₄: μg C [μg Chl a]⁻¹ h⁻¹ or μg C [μg Chl]⁻¹ h⁻¹) and PPFD (I: μmol m⁻² s⁻¹) could be described by the photoinhibition model of Platt et al. (1980) with the addition of a single parameter, P₄d:

\[P₄ = [P₄s (1 - \exp(-\alpha I/P₄s)) \exp(-\beta I/P₄s)] + P₄d \]

(2.6)

In this formulation, P₄s (same units as P₄) is the maximum potential photosynthesis in the absence of photoinhibition; \(\alpha \) (ng C [μg Chl a]⁻¹ h⁻¹ [μmol m⁻² s⁻¹]⁻¹ or ng C [μg Chl]⁻¹ h⁻¹ [μmol m⁻² s⁻¹]⁻¹) is the initial slope of the P₄-I curve, that is, photon efficiency or photosynthesis per unit PPFD, \(\beta \) (same units as \(\alpha \)) is the photoinhibition index, P₄d (same units as P₄) is the intercept of the P₄-I curve on the Y-axis. The additional parameter P₄d was necessary to account for a background uptake of \(^{14}\)C in all samples. P₄s, P₄d, \(\alpha \), \(\beta \) were calculated by fitting Equation 2.6 to experimental data points by non-linear regression using a commercial package employing the Marquardt algorithm (Marquardt, 1963). All the points were equally weighted. P₄m, Iₘ, Iₖ, Iₙ were calculated from P₄, \(\alpha \), \(\beta \) following the relationship among these parameters suggested by Platt et al. (1980):

\[P₄m = P₄s \left(\frac{\alpha}{\alpha + \beta} \right) \left(\frac{\beta}{\alpha + \beta} \right)^{\frac{\alpha}{\alpha + \beta}} \]

(2.7)

Iₘ, Iₖ, Iₙ corresponding to the maximum photosynthetic rate P₄m.
\[I_m = \frac{P^B_s}{\alpha^B} \ln \left(\frac{\alpha^B + \beta^B}{\beta^B} \right) \] (2.8)

\[I_k, \text{ photo-adaptive index:} \]

\[I_k = \frac{P_m^B}{\alpha^B} \] (2.9)

\[I_s, \text{ I corresponding to the maximum potential photosynthetic rate (P}_{BS}^B) \text{ in the absence of photoinhibition:} \]

\[I_s = \frac{P_s^B}{\alpha} \] (2.10)

Where, \(I_m, I_k, I_s \) have the same units as \(I \).

2.10. Chemostat continuous culture system

The continuous culture system is shown in Fig. 2.1. The Pyrex glass chemostat culture chamber of 1.5 litre (1) was surrounded by a thermostat water jacket (2), which was connected and circulated with a thermostat water bath. Temperature was maintained at 15 \(\pm 0.2 \) °C. The culture was agitated at about 100 rpm by a magnetic stirrer (3) at the bottom of the chamber and aerated by sterile air at 30 \(\pm 10 \) bubbles per minutes. Reservoir medium was added continuously by a peristaltic pump. Effluent was collected in a plastic flask (4). The flow rate (dilution rate) was confirmed by measuring the effluent (9) every day. Six chemostats were set up simultaneously. The chemostats were exposed to a bank of 290 \(\pm 50 \) \(\mu \text{mol m}^{-2} \text{s}^{-1} \) continuous cool white fluorescent light.
Fig. 2.1. Schematic display of chemostat system. 1 = chemostat culture chamber, 2 = thermostat water jacket, 3 = stir bar, 4 = effluent, 5 = polycarbonate buffer cylinder, 6 = sterile air filter (0.2 μm), 7 = cotton filters, 8 = activated charcoal to remove organic compounds in the air, 9 = measuring cylinder for effluent measurements, 10 = stopcock.
All the glassware and tubing were washed using a mixture (0.5% 1:1) of JAVEX bleach and EXTRAN MN-1 soap then rinsed thoroughly using tap water (>5 times) and distilled water (> 5 times). Parts (chemostat, effluent flask, tubing and buffer cylinders to supply medium and air, etc) were connected before or immediately after (inside the autoclave chamber) being autoclaved at 15 Psi for 20-30 minutes. The system was then aseptically connected with sterile air and medium supply soon after being mounted on the shelf.

The culture population was monitored daily by measuring in vivo chlorophyll \(a\) fluorescence. After measurement of fluorescence, a 10-ml sample was preserved (Section 2.3) in a 20-ml plastic vial and served as the backup for population size determination. Steady state was defined as a period of 5 days during which the coefficient of variation of the chlorophyll \(a\) fluorescence was not greater than 5%.

2.11. Growth

2.11.1. Batch culture

Growth of \textit{P. pungens f. multiseries} in batch culture was described by the Gompertz growth model (Zwietering \textit{et al.}, 1990). Growth is defined in terms of the logarithm of cell concentrations (or other biomass index) as a function of time. Changes in growth rate result in a sigmoidal curve: an initial lag phase, an exponential growth phase, and finally a stationary phase. The Gompertz equation may be expressed as:

\[Y = a \exp[-\exp(b-ct)] \quad (2.11) \]
where \(Y = \ln(N_t/N_0) \), \(N_t \) is the cell concentration at time \(t \) and \(N_0 \) is the initial cell concentration. The parameters \(a \), \(b \) and \(c \) describe the shape of the curve. They are mathematical parameters rather than biological ones. However, the biological meanings can be described by the values derived from these parameters. The maximum growth rate \((\mu_{max}) \) is given by \(ac/e \) where 'e' is the base of Naperian logarithms (~2.718). The duration of the lag phase is given by \((b-1)/c\) (Zwietering et al., 1990). Changes in growth rates as a function of time were normalized to cell concentration and other biomass indices and fitted by non-linear regression (Marquardt, 1963). Growth rates throughout the culture experiments were computed from the derivative of Equation (2.11) with respect to time:

\[
\frac{dY}{dt} = \frac{ac \exp[-\exp(b-ct)] \exp(b-ct)}{c}
\]

using the estimates of parameter \(a \), \(b \), and \(c \) obtained from non-linear regression of Equation (2.11).

2.11.2. Continuous culture

At the steady state when the culture population remains constant. The growth rate \((\mu) \) of the culture population was determined by the dilution rate \((D) \):

\[
\mu = D = \frac{dv}{V dt}
\]

Throughout the thesis, the term *growth rate* \((\mu) \) is equivalent to the *specific growth rate* in the literature.
3.1. Introduction

Photosynthesis and growth are basic physiological processes of phytoplankton. Photosynthesis is not only the essential process for primary metabolism, but is also required for toxin production. For example, the yield of saxitoxins per cell in *Alexandrium catenella*, a dinoflagellate implicated in paralytic shellfish poisoning, was proportional to hours of light per day (Proctor *et al.*, 1975). In stationary phase, domoic acid production by *Pseudonitzschia pungens f. multiseries* ceased during periods of darkness; however, the toxin production resumed immediately after the transition from dark to light (Bates *et al.*, 1991). Production of domoic acid was also inhibited by addition of the photosynthetic inhibitor DCMU (Bates *et al.*, 1991). Hence, photosynthesis, the primary energy source for carbon assimilation, is necessary for DA production as well.

Variations in light intensity have less effect on the production of phycotoxins (Ogata *et al.*, 1987, 1989; Boyer *et al.*, 1985; Bates *et al.*, 1991). Differences in the initial DA production rate between light intensities of 45 and 145 μmol m\(^{-2}\) s\(^{-1}\) were not significant (Bates *et al.*, 1991).
Physiological stress, such as low temperature, resulted in an enhancement of saxitoxin production by *Alexandrium* spp. Toxicity and the content of saxitoxins (STX and its derivatives) per cell increased under sub-optimal growth temperature (Proctor et al., 1975; Hall, 1982; Boyer et al., 1985; Ogata et al., 1987; Anderson et al., 1990). Transferring the culture to a lower temperature (from 15 to 10 °C) increased toxin production, but decreasing light intensity (from 113 to 19 μmol m$^{-2}$ s$^{-1}$) did not have a similar effect (Ogata et al., 1987). Low temperature limited the photosynthesis and growth of *P. pungens* f. *multiserises* (Pan et al., 1993, Lewis et al., 1993), but did not limit DA production (Lewis et al., 1993).

A study of the relationship of photosynthesis and photosynthetic photon flux density (PPFD = I) is essential to understand the physiological ecology of algae. To describe the relationship between photosynthesis and incident PPFD, Blackman (1905) first produced an ideal model. Thirty years later, Baly (1935) and Smith (1936) developed mathematical formulations to fit experimental data on phytoplankton. Steel (1962), Webb et al (1974), and Platt et al. (1975), Platt and Jassby (1976), and Platt et al. (1980) have produced alternative formulations to define the P vs I curve.

The initial slope of the P-I curve, α^B, is one of the two important parameters in all models. It is a relative measure of light absorption and maximum quantum efficiency of photosynthesis at low light. This parameter depends on the type of chlorophyll and accessory pigments of the cell, the absorption characteristics of the cell and its pigments. Simply stated, α^B is the photochemical parameter in the models.

P_{m}^B, the maximum carbon assimilation rate, is the other important parameter,
indicating algal physiological activity. Thus P_{mB} is dependent on physiological stage, light, temperature and overall cell metabolism. Therefore, cell division and photosynthesis are ultimately regulated by the environmental factors affecting these processes.

Studies on photosynthesis and growth of *Pseudonitzschia pungens* f. *multiseries* under different environmental conditions are important in understanding the development of a toxic bloom. In this chapter, I study photosynthesis and growth of *Pseudonitzschia pungens* f. *multiseries* and examine their relationship to culture age, photosynthetic photon flux density (PPFD), temperature, cellular carbon, nitrogen and chlorophyll a.

3.2. Materials and Methods

Non-axenic *P. pungens* f. *multiseries* isolated from Cardigan Bay, PEI (strain NPBIO) were grown as clonal batch cultures in medium FE (Section 2.2.2), at 0-25 °C under continuous cool white fluorescence light of 53 to 1100 μmol m$^{-2}$ s$^{-1}$. Growth, photosynthesis, and cellular chemical composition were determined (a) in different growth phases, (b) for cultures under different PPFD, and (c) at different temperatures.

3.2.1. Determination of particulate chlorophyll a, carbon and nitrogen, dissolved inorganic nutrients and light

Chlorophyll a was determined fluorometrically (Section 2.4). Particulate carbon and nitrogen were analyzed by combustion (Section 2.5.1). Growth PPFD was measured
with a LICOR model Li-185B light meter. Inorganic nitrate, phosphate and silicate concentrations in the medium were measured using a Technicon Autoanalyzer II (Section 2.5.4).

3.2.2. Growth rate

Growth rates were determined using the Gompertz growth model (Section 3.11.1) except for experiment C. In this case growth rates were determined by Equation 3.1 (see Section 3.2.5).

3.2.3. Experiment A: effects of culture age

For stock cultures, 500-ml flasks each containing medium FE (200 ml, Section 2.2.2) were seeded with culture in exponential growth phase (25 ml each). Cultures were routinely grown at two levels of PPFD (105 and 1100 μmol m$^{-2}$ s$^{-1}$) and were sub-cultured every 5 days for 10 days using fresh medium. At the beginning of the experiments, 3-litre Fernbach flasks containing FE medium (2 litre) were seeded with exponentially growing $P. pungens$ f. $multiseries$ (5-day old, 200 ml) adapted to the experimental PPFD. Cultures grown at 105 and 1100 μmol m$^{-2}$ s$^{-1}$ were designated as low light (LL) and high light (HL) cultures respectively. The photosynthesis-PPFD (P-I) relationship was determined using the 14C method (Section 2.9). Samples were analyzed for cell concentration, chlorophyll a, particulate carbon and nitrogen after 1, 4, 8, 15, 25 and 34 days growth at 10 °C.
3.2.4. *Experiment B: light dependence*

Stock cultures were grown under 5 PPFD levels (53, 250, 410, 815 and 1100 µmol m$^{-2}$ s$^{-1}$) at 10 - 12 °C. After subculturing twice (in 10 days), exponentially growing cells were inoculated into a 3-litre Fernbach flask at a 1:10 ratio as in experiment A for each PPFD level. P-I characteristics of the culture, cell concentration, chlorophyll a, particulate carbon and nitrogen were measured on day 4 and day 12.

3.2.5. *Experiment C: temperature dependence*

A stock culture was grown at 10-12 °C under continuous cool white fluorescence light of 410 µmol m$^{-2}$ s$^{-1}$. To measure temperature dependence, exponentially growing culture of *P. pungens f. multiseries* (5 days, 200 ml) was inoculated into a 3-litre Fernbach flask containing FE medium (2 litre). On the third day of growth, the culture in 250 ml aliquots was dispensed into each of 6 autoclaved flasks, which were transferred to 0, 5, 10, 15, 20 and 25 °C with photosynthetic photon flux density (PPFD) ranging from 350 to 440 µmol m$^{-2}$ s$^{-1}$. P-I relationships were determined at corresponding temperatures for cells harvested on the 4th day. Cell concentration, chlorophyll a, particulate carbon and nitrogen were measured at the same time. Cell concentrations were also measured on days 0, 1, 3.

Growth rates (μ) of *P. pungens f. multiseries* in all the cultures were calculated using Equation 3.1 (Guillard, 1973):

$$\mu = \frac{\ln(N_2/N_1)}{(t_2-t_1)} \quad (3.1)$$
based on the cell concentration (N₁, N₂) on day 3 (t₁) and day 4 (t₂).

3.3. Results

3.3.1. Dependence of photosynthesis and growth on age of the cultures

3.3.1.1. Growth and cellular chemical composition

Both low light (LL) and high light (HL) cultures grew exponentially for 8 days attaining a maximum of 1.56 and 1.41 $\times 10^8$ cells l⁻¹ respectively by day 15. Thereafter, there was no marked change in cell concentration (Fig. 3.1A).

Chlorophyll a concentrations increased with increasing age of the culture for the first 4 days (Fig. 3.1B). The maximum chlorophyll a concentrations attained were 40.2 μg l⁻¹ in the HL culture and 103.3 μg l⁻¹ in the LL culture. The HL cells contained less chlorophyll a than LL cells although similar cell concentrations were obtained in both HL and LL cultures (Figs. 3.1A, B).

Particulate carbon and nitrogen increased with time at both levels of PPFD for the first 8 days (Figs. 3.1C, D). The following are the features of interest: i) accumulation of carbon seemed to be more rapid than nitrogen (Figs. 3.1C, D) and ii) the lag phase for the accumulation of nitrogen was longer in HL cells (Fig. 3.1D).

PO_4 and NO_2+NO_3 were abundant over the entire 34 days of growth. However, SiO_3 was reduced to 11% and 8% of the initial levels (84-86 μM) in the HL and LL cultures respectively by day 8 due to utilization by the diatom for frustule formation (Table 3.1). This low level of SiO_3 corresponded with the onset of the stationary phase.
Fig. 3.1. Growth curves based on different indices of biomass fitted by Gompertz equation (2.11).
The decrease in silicate concentrations between days 1 and 15 was 72 µM (HL) and 73 µM (LL), and resulted in cell concentrations of 100×10^6 cells l$^{-1}$ and 114×10^6 cells l$^{-1}$ respectively. Based on this yield, a cellular silicon of 20.2 pg cell$^{-1}$ (HL) and 15.5 pg cell$^{-1}$ (LL) were calculated. The quantity of silicate (2.1-3.2 µM) available beyond day 15 was probably insufficient for further division of the cells.

Table 3.1. Nutrient concentrations (µM) in culture medium during growth of *P. pungens* f. *multiseries* in Experiment A.

<table>
<thead>
<tr>
<th>PPFD (µmol m$^{-2}$ s$^{-1}$)</th>
<th>Age (day)</th>
<th>SiO$_3$</th>
<th>PO$_4$</th>
<th>NO$_2$+NO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1</td>
<td>75.30</td>
<td>102.0</td>
<td>3028</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>49.30</td>
<td>53.3</td>
<td>3001</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9.26</td>
<td>63.4</td>
<td>2961</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.19</td>
<td>47.3</td>
<td>2813</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.72</td>
<td>59.1</td>
<td>2892</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5.64</td>
<td>80.4</td>
<td>2770</td>
</tr>
<tr>
<td>105</td>
<td>1</td>
<td>75.60</td>
<td>101.0</td>
<td>3085</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>55.80</td>
<td>77.3</td>
<td>2941</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.06</td>
<td>62.9</td>
<td>3032</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.05</td>
<td>70.4</td>
<td>2987</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>9.25</td>
<td>89.7</td>
<td>2937</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6.42</td>
<td>84.9</td>
<td>2969</td>
</tr>
</tbody>
</table>

Using the derivative (Equation 2.12) of the Gompertz equation, growth rates (μ) were calculated based on all indices of biomass. Because of the scarcity of data points during the exponential phase, caution should be applied when interpreting these values.
The maximum growth rate (μ_m) based on an increase in cell numbers was 0.56 d^{-1} for the HL culture with a lag phase of 1 day. The corresponding values for the LL culture were 0.74 d^{-1} and 2 days (Fig. 3.2A).

Variations in the accumulation rate of chlorophyll a, particulate carbon and nitrogen were observed. Measuring growth rates using chlorophyll a, μ_m was calculated as 0.95 (LL) and 1.34 (HL) d^{-1} (Fig. 3.2B). The maximum growth rates based on chlorophyll a were much higher and occurred much earlier as compared to the μ_m calculated using other biomass indices (Fig. 3.2). The μ_m obtained using particulate nitrogen was $0.2-0.3 \text{ d}^{-1}$ (Fig. 3.2D). Besides resulting in the lowest μ_m, use of particulate nitrogen resulted in the longest lag phase compared to other growth indicators (Figs. 3.1D, 3.2D).

Cellular carbon and nitrogen were at their maximum on day 1 and drastically decreased by day 4 but there was no marked difference between cells grown under HL and LL (Figs. 3.3A, B). In general, cellular chlorophyll a was low initially, then increased in 3.2-3.5 days to a maximum (Fig. 3.3C). However, cellular chlorophyll a levels were always higher (by a factor of 1.8-5.4) in LL cells than in HL cells. Carbon:chlorophyll a ratio was highest in the lag phase, lowest in the exponential phase and slightly increased in the stationary phase. This ratio was consistently lower in LL than in HL cells (Fig. 3.4A). The C:N of cells was low at the beginning, peaked by day 4 in HL and by day 8 in LL cells, followed by a gradual decrease (Fig. 3.4B). In the exponential phase, C:N ratio was higher in HL cultures than in LL cultures, whereas in the stationary phase, C:N ratio was lower in HL cultures than in LL cultures.
Fig. 3.2. Modelled (Equation 2.12) growth rates (d\(^{-1}\)) based on different indices of biomass during the first 15 days of the cultures.
Fig. 3.3. Variations with time in the cellular (A) carbon, (B) nitrogen, and (C) chlorophyll a. Error bar = 1 standard deviation. Absent of error bar means it is smaller than the symbol. The curves are the ratios of the corresponding lines in Fig. 3.1.
Fig. 3.4. Changes with time in the ratios of (A) carbon to chlorophyll α (by weight) and (B) carbon to nitrogen (atomic). The curves are the ratios of corresponding lines in Fig. 3.1.
3.3.1.2. Photosynthesis Photosynthetic rates increased as PPFD level increased but were inhibited at higher PPFD (Fig. 3.5). The empirical formula of Platt et al. (1980) provided with an additional parameter (P^{B_d}, Equation 2.6) described my data well. Photosynthetic rates were corrected for background uptake, P^{B_d}, because the data showed that P^{B_d} varied significantly with age of the culture: in exponentially growing cultures, it was < 10% of the maximum corrected photosynthesis (P^{mB}), in post-exponential cultures, on the other hand, it was 3-4 times higher than the corrected photosynthesis, similar to the findings of Laws and Caperon (1976) who studied cultures of the flagellate Monochrysis lutheri.

Interpretation of the P-I responses in HL and LL depended upon the biomass index used. For example in exponentially growing cells, if photosynthesis is normalized to chlorophyll a (Fig. 3.5A), HL cells achieved a greater maximum photosynthetic rate (P^{mB}: assimilation number) than the LL cells (2.2 compared to 1.7 μg C [μg Chl a]^{-1} h^{-1}). In contrast, when normalized to carbon (Fig. 3.5B), HL cells attain a P^{mB} that is only 40% of that of LL cells (0.02 compared to 0.05 μg C [μg C]^{-1} h^{-1}). This was a consequence of differences in the C:Chl a ratio in HL and LL cells.

Regardless of biomass index chosen, HL cells attained P^{mB} at a higher PPFD than LL cells ($I^{m(HL)} = 1272$, $I^{m(LL)} = 489$ μmol m^{-2} s^{-1}). The photoadaptive parameters I_m, I_k and I_s were independent of the biomass index chosen (Table 3.2). Consistent differences existed between the HL and LL cells. The I_m of HL cells was always higher (by a factor of 1.7-5.3) than those of LL cells; for I_k the factor was 2 to 6.2. This differences was also true for I_s except for day 1.
Fig. 3.5. Relationships between photosynthesis and PPFD in cultures after 4 days growth. (A) normalized to chlorophyll a (µg C [µg Chl a]^{-1} h^{-1}), (B) normalized to carbon (µg C [µg C]^{-1} h^{-1}). The curves are fitted by Equation 2.6.
Table 3.2. Changes in photoadaptive parameters of *P. pungens* f. *multiseris* with time at two PPFD levels in Experiment A.

<table>
<thead>
<tr>
<th>PPFD (μmol m⁻² s⁻¹)</th>
<th>Age (days)</th>
<th>(I_m) (μmol m⁻² s⁻¹)</th>
<th>(I_s) (μmol m⁻² s⁻¹)</th>
<th>(I_a) (μmol m⁻² s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1</td>
<td>1006</td>
<td>172</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1272</td>
<td>415</td>
<td>569</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1716</td>
<td>399</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1049</td>
<td>217</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1086</td>
<td>244</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>593</td>
<td>156</td>
<td>154</td>
</tr>
<tr>
<td>105</td>
<td>1</td>
<td>599</td>
<td>86</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>489</td>
<td>140</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>379</td>
<td>102</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>197</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>426</td>
<td>114</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>276</td>
<td>46</td>
<td>42</td>
</tr>
</tbody>
</table>

The photosynthetic response to PPFD varied systematically with the age of the culture in both HL and LL cells. With increasing culture age, the photochemical parameter (the initial slope of P-I curve, \(\alpha^B\)) increased to attain a maximum on day 4 (6.06 ng C [μg Chl a]⁻¹ h⁻¹ [μmol m⁻² s⁻¹]⁻¹ at HL, and 8.69 ng C [μg Chl a]⁻¹ h⁻¹ [μmol m⁻² s⁻¹]⁻¹ at LL, Fig. 3.6A), after which there was a drastic decrease. \(\alpha^B\) continuously decreased in the stationary phase (Fig. 3.6). When normalized to chlorophyll *a* (Fig. 3.6A), \(\alpha^B\) values were comparable between HL and LL cells. In terms of cellular carbon, however, the \(\alpha^B\) value in HL cells was usually lower (Fig. 3.6B) because of the high
Fig. 3.6. Variations of α^8 in various phases of batch cultures. (A) normalized to chlorophyll a (pg C [pg Chl a]$^{-1} h^{-1} [\mu$mol m$^{-2}$ s$^{-1}]$), (B) normalized to carbon (pg C [pg C]$^{-1} h^{-1} [\mu$mol m$^{-2}$ s$^{-1}]$).
Fig. 3.7. Variation of P_m^B in various phases of batch cultures. (A) normalized to chlorophyll a (μg C [μg Chl a]$^{-1}$ h$^{-1}$), (B) normalized to carbon (μg C [μg C]$^{-1}$ h$^{-1}$).
C:Chl a ratio in HL cells (Fig. 3.4A).

The variations of P_{mB} over time were similar to those of α^B, i.e. they attained a maximum on day 4 (2.2 μg C [μg Chl a]$^{-1}$ h$^{-1}$ in HL 1.7 μg C [μg Chl a]$^{-1}$ h$^{-1}$ in LL) and subsequently decreased (Fig. 3.7A).

3.3.2. Photosynthesis and growth under different PPFD levels

3.3.2.1. Growth and cellular chemical composition

The cultures grew at different rates with different lag phases under various PPFD levels (Fig. 3.8). Generally, cultures entered exponential phase earlier and grew faster at higher PPFD. For example, the culture at 1100 μmol m$^{-2}$ s$^{-1}$ entered stationary phase on day 4, while the culture at 53 μmol m$^{-2}$ s$^{-1}$ was still in the exponential phase on day 12.

Maximal growth rates and the duration of lag phase were determined by fitting data to the Gompertz model (Equation 2.11, Figs. 3.9A, B). Maximal growth rates (μ_m) ranged from 0.21 to 0.84 d$^{-1}$ and were saturation functions (Equation 3.7) of PPFD levels. At 410 μmol m$^{-2}$ s$^{-1}$, there was a scarcity of data points in the exponential phase (Fig. 3.8C) and a large standard deviation in the lag phase (Fig. 3.9B), which resulted in an abnormally high value of μ_m.

$$\mu_m = \mu_{m(m)} [1 - \exp(-\alpha_{g} L)]$$

In equation 3.7, $\mu_{m(m)}$ is the maximal growth rate at PPFD for optimal growth, α_{g} is the initial slope of the μ_m-L curve (d$^{-1}$ [μmol m$^{-2}$ s$^{-1}$]$^{-1}$).
Fig. 3.8: Growth curves of *P. punctata* under various PPD levels

Growth curves of *P. punctata* under various PPD levels (Eq. 2.11).
Replacing a, b, c in Equation 2.11 with the fitted values, the time (t_m, in days) when the culture reached μ_m was determined. Surprisingly, t_m was a typical exponentially decreasing function of PPFD, under which cells were grown (Fig. 3.9). The relationship was well described by Equation 3.8:

$$t_m = (t_d - g) \exp(-fI) + g$$ (3.8)

Where, t_d (same unit as t_m) is the maximum t_m when the culture is in the dark, f (day $[\mu\text{mol m}^{-2} \text{s}^{-1}]^{-1}$) is the negative initial slope at $I\rightarrow0$, and g describes the asymptote (t_m at $I\rightarrow\infty$). Based on the data of t_m (Fig. 3.9C), fitted values are as in Table 3.3.

Table 3.3. Values of parameters in Equation 3.8

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_d (day)</td>
<td>18.16</td>
<td>0.21</td>
</tr>
<tr>
<td>f (day $[\mu\text{mol m}^{-2} \text{s}^{-1}]^{-1}$)</td>
<td>0.004905</td>
<td>0.000143</td>
</tr>
<tr>
<td>g (day)</td>
<td>2.24</td>
<td>0.096</td>
</tr>
</tbody>
</table>

In the exponential phase (day 4), cellular carbon, nitrogen and chlorophyll a decreased as PPFD increased (Fig. 3.10). In the stationary phase (day 12), on the other hand, cellular carbon and nitrogen became relatively constant (Figs. 3.10A, B) while chlorophyll a decreased as PPFD increased (Fig. 3.10C). This was consistent with the results from experiment A (Fig. 3.3).
Fig. 3.9. Variations with PPFD levels in (A) the maximal growth (\(\mu_m \), solid curve is fitted by Equations 3.7 to the 5 filled points only and the broken line is fitted to all the 8 data points), (B) the duration of lag phase and (C) the time when maximal growth reached (fitted by Equation 3.8).
Fig. 3.10. Variations with PPFD levels in the cellular (A) carbon, (B) nitrogen and (C) chlorophyll α. The lines are linear regressions.
Fig. 3.11. Variations with PPFD levels in the ratios of (A) carbon to chlorophyll a (by weight) and (B) carbon to nitrogen (atomic).
The patterns of change in C:Chl a were similar on day 4 and day 12 (Fig. 3.11A). However, the magnitude of change in this ratio was higher on day 12 than day 4. C:Chl a slightly increased from 113 to 153 on day 4 as a result of increasing PPFD (Fig. 3.11A). A more significant increase occurred on day 12, from 67 at 53 μmol m$^{-2}$ s$^{-1}$ to 249 at 815 μmol m$^{-2}$ s$^{-1}$. At higher PPFD (>815 μmol m$^{-2}$ s$^{-1}$), C:Chl a ratio decreased both on day 4 and day 12.

The ratio of carbon to nitrogen was variable and ranged from 5.84 to 11.33. On day 4, the C:N ratio decreased from 7.98 to 5.84 when PPFD increased from 53 to 410 μmol m$^{-2}$ s$^{-1}$ and then increased again as PPFD further increased (Fig. 3.11B). In contrast, the C:N ratio on day 12 was a mirror image of that on day 4.

3.3.2.2. Photosynthesis Photosynthetic characteristics also varied with different PPFD levels. The initial slope α^B ranged from 0.40 to 6.22 ng C [µg Chl a]$^{-1}$ h$^{-1}$ [µmol m$^{-2}$ s$^{-1}$]$^{-1}$ (Fig. 3.12A) while P_m^B ranged from 0.10 to 1.16 µg C [µg Chl a]$^{-1}$ h$^{-1}$ (Fig. 3.13A). Regardless of the biomass indices used for normalization, α^B increased on day 4, and decreased on day 12 as PPFD increased (Fig. 3.12). These variations were more pronounced on day 12 than on day 4.

In the exponential phase (day 4), P_m^B (normalized to chlorophyll a) increased as PPFD increased from 53 to 250 μmol m$^{-2}$ s$^{-1}$ and remained approximately constant between 250 and 410 μmol m$^{-2}$ s$^{-1}$. As PPFD further increased, P_m^B slightly decreased showing a photoinhibition at high PPFD levels (Fig. 3.13A). When normalized to carbon, photoinhibition was not evident (Fig. 3.13B). In the stationary phase (day 12), on the
Fig. 2.12. Variations of α^8 with PPFD levels. (A) normalized to chlorophyll a, (B) normalized to carbon. The curves are fitted by exponential functions.
Fig. 3.13. Variations of P_{m}^{B} with PPFD levels. (A) normalized to chlorophyll a, (B) normalized to carbon. The lines are linear regressions.
other hand, photoinhibition was significant at high PPFD.

The photoadaptive parameter I_m generally corresponded to the growth PPFD (Table 3.4). Cultures grown at higher PPFD had higher I_m values. For individual cultures, however, the I_m value was higher on day 4 than day 12. Nevertheless, I_k and I_s did not follow the variation of PPFD.

Table 3.4. Changes in photoadaptive parameters I_m, I_k and I_s (μmol m$^{-2}$ s$^{-1}$) during growth at different PPFDs in Experiment B

<table>
<thead>
<tr>
<th>PPFD (µmol m$^{-2}$ s$^{-1}$)</th>
<th>Day 4</th>
<th>Day 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>I$_m$</td>
<td>I$_k$</td>
<td>I$_s$</td>
</tr>
<tr>
<td>1100</td>
<td>1320</td>
<td>198</td>
</tr>
<tr>
<td>815</td>
<td>1430</td>
<td>231</td>
</tr>
<tr>
<td>410</td>
<td>730</td>
<td>278</td>
</tr>
<tr>
<td>250</td>
<td>900</td>
<td>431</td>
</tr>
<tr>
<td>53</td>
<td>500</td>
<td>175</td>
</tr>
</tbody>
</table>

3.3.3. Temperature dependence of photosynthesis and growth

3.3.3.1. Growth and cellular chemical composition Over the temperature range investigated, cells grew at different rates at different temperatures. The growth rates ranged from 0.21 to 1.25 d$^{-1}$ reaching a plateau at 15°C and remaining relatively constant between 15 and 25°C. A Q_{10} of 2.8 was determined between 5 and 15°C (Fig. 3.14). Cellular carbon and nitrogen decreased by 56% and 45% respectively (Figs. 3.15A, B) when the growth rate increased from 0.21 d$^{-1}$ at 0°C to 1.18 d$^{-1}$ at 15°C. Growth rates were positively correlated with cellular chlorophyll a levels ($r = 0.8$, $p < 0.05$). There
Fig. 3.14. Growth rate of *P. pungens* f. *multiseries* at different temperatures. The curve is fitted by eye.
Fig. 3.15. Effects of temperature on the cellular (A) carbon, (B) nitrogen and (C) chlorophyll α. The curves are fitted by eye.
Fig. 3.16. Effects of temperature on the ratios of (A) carbon to chlorophyll a (by weight) and (B) carbon to nitrogen (atomic). The curves are fitted by eye.
was a parallel increase in growth rate and cellular chlorophyll \(a \) in the temperature range 10 - 15°C (Figs. 3.14, 3.15C). The C:Chl \(a \) ratio (by weight) decreased drastically from 306 to 52 (Fig. 3.16A), while the C:N ratio decreased slightly from 9.4 to 6.6 as growth rate and temperature increased (Fig. 3.16B).

Nutrient concentrations in the medium remained high throughout the experiment. Nitrate were 2.32 - 2.70 mM, phosphate 72 - 91 \(\mu \)M and silicate 106 - 154 \(\mu \)M, therefore, none of the major nutrients limited growth.

3.3.3.2. Photosynthesis
The shapes of the P-I curves were generally similar at all temperatures (Fig. 3.17). The maximum \(P_m^B \) was 3.42 \(\mu \)g C [\(\mu \)g Chl \(a \)]\(^{-1}\) h\(^{-1}\) at 15°C whereas the minimum \(P_m^B \) was 0.08 \(\mu \)g C [\(\mu \)g Chl \(a \)]\(^{-1}\) h\(^{-1}\) at 0°C. At 15°C, the optimal temperature for photosynthesis (Figs. 3.17A, B), P-I relationships were well described. However, when cells were stressed after transferring from 10 to 0°C, \(P_m^B \) was very low (0.08 \(\mu \)g C [\(\mu \)g Chl \(a \)]\(^{-1}\) h\(^{-1}\)) and the P-I data points were scattered (Fig. 3.17C).

The temperature dependence of the P-I responses was related to the biomass index chosen (Fig. 3.18). For example, if photosynthesis was normalized to chlorophyll \(a \), \(P_m^B \) (\(\mu \)g C [\(\mu \)g Chl \(a \)]\(^{-1}\) h\(^{-1}\)) increased exponentially from 0.08 at 0°C to 3.42 at 15°C with a \(Q_{10} \) of 10.8 between 5 and 15°C and then decreased at temperatures >15°C (Fig. 3.18A). Normalized to carbon, the maximum photosynthetic rate showed a plateau between 15 and 25°C.

The initial slope of P-I curve (\(\alpha^B \)) increased exponentially from 0.17 \(\mu \)g C [\(\mu \)g Chl \(a \)]\(^{-1}\) h\(^{-1}\) [\(\mu \)mol m\(^{-2}\) s\(^{-1}\)]\(^{-1}\) at 0°C to 6.5 \(\mu \)g C [\(\mu \)g Chl \(a \)]\(^{-1}\) h\(^{-1}\) [\(\mu \)mol m\(^{-2}\) s\(^{-1}\)]\(^{-1}\) at 20°C with
Fig. 3.17. Relationships between photosynthesis and photosynthetic photon flux density (P-I curves, Equation 2.6) at (A) 0° to 25°C, (B) 15°C and (C) 0°C.
Fig. 3.18. Variations of (A) P_m^B and (B) α^B with temperature. The curves are fitted by eye.
a Q_{10} of 16.9 between 5 and 15 °C. The patterns of changes on α^B at different temperature were similar between these two biomass normalizations of carbon and chlorophyll a, although there was a temperature difference of 5°C between the two curves in Fig. 3.18B.

3.4. Discussion

3.4.1. Growth

Pseudonitzschia pungens f. *multiserie* grew at different rates depending on the physiological states. Upon inoculating into a fresh medium, *P. pungens* f. *multiserie* usually experienced a lag phase with a duration of 0-4 days. The growth rates increased gradually and attained a maximum after cells entered exponentially phase, and decreased afterwards. Growth rates changed with various levels of PPFD and temperature. This fits the general growth model of phytoplankton (Fogg and Thake, 1987).

A variety of cell functions changed as the batch-culture population aged. Signs of aging in *P. pungens* f. *multiserie* appeared before the cells reached the stationary phase. Both cellular carbon and nitrogen were highest on day 1 and decreased gradually as the cells approached the stationary phase by day 8 or later (Figs. 3.3A, B). Chlorophyll a changed similarly (Fig. 3.3C).

The decrease in cellular chlorophyll a in the aged *P. pungens* f. *multiserie* cells, especially in the HL culture (Fig. 3.1B), might be due to breakdown of photosynthetic membrane, as was shown in *Gonyaulax polyedra* (Prézelin, 1982) and *Ptychodiscus brevis*
(Steidinger, 1979). In *P. pungens f. multiseries*, the chloroplasts were clearly seen under the photo-microscope to be heavily pigmented in the exponentially growing cells but neither the shape of chloroplasts nor the pigmentation were clearly seen in the aged cells. Prézelin (1982) found *Gonyaulax polyedra* cells began to break down their photosynthetic membranes in order to sustain cell metabolic requirements. Taylor (1968) noted a decrease in chloroplast lamella and a reduction in stroma in old zooxanthellae cells.

Faster growth due to higher PPFD accelerated aging of *P. pungens f. multiseries*. Cultures had a shorter lag period, grew faster and reached stationary phase earlier under higher PPFD (Fig. 3.8). This was similar to the observations of Bates *et al.* (1991). The signs of delay in aging were found in the cultures at low PPFD, which had higher cell content of carbon, nitrogen and chlorophyll *a* (Fig. 3.10) compared to high light cells on day 4. Similar features were shown in the culture of *Gonyaulax polyedra* (Prézelin, 1982).

Applying the same exponential decreasing function as Equation 3.8 to the duration of lag phase, a similar curve was obtained (Fig. 3.9B). The *g* value was very small (<0.3 day) and its standard deviation was more than 3 times higher. This suggests that the duration of lag phase would approach 0 if the PPFD was further increased. Similar changes in the duration of the lag+exponential phase under different PPFD was reported for the same diatom by Bates *et al.* (1991). In their experiment, stationary phase was reached 10 days earlier in the high light (145 μmol m⁻² s⁻¹) culture than those in low light (45 μmol m⁻² s⁻¹). They also found a delay in domoic acid production in the low light grown cultures.
The time for *P. pungens* f. *multiseriæ* culture to reach its maximal growth was a typical exponential function of growth PPFD (Fig. 3.9C). The cultures grew faster and reached their maximal growth earlier at higher PPFD. These cultures would approach their minimum t_m (2.24) if PPFD levels were higher.

Extrapolating the exponential curve in Fig. 3.9C to the point $I=0$, a maximal value of t_m was obtained. A negative value of compensation PPFD (I_c) and a positive intercept on Y-axis were also obtained by supplying an additional parameter of I_c to the μ-I model (Equation 3.7). Although a negative I_c is physiologically meaningless, a positive intercept on Y-axis together with a t_m value of 18.2 days suggested that *P. pungens* f. *multiseriæ* might be able to grow in the dark in the presence of some energy source other than light. Observation of Subba Rao and Wohlgeschaffen (unpublished data) showed growth of *P. pungens* f. *multiseriæ* in the dark in the presence of a variety of organic substrates. This suggests that this alga is both photo- and heterotrophic. Heterotrophic growth has also been found in other diatoms such as *Nitzschia laevis* (Lewin and Hellebust, 1978), and *Phaeodactylum tricornutum* (Flynn and Syrett, 1986).

Maximal growth (μ_m) was a saturation function of PPFD levels (Fig. 3.9A). The PPFD levels for the optimal growth in *P. pungens* f. *multiseriæ* was 410-1100 μmol m$^{-2}$ s$^{-1}$, which was consistent with the variation of P_mB (Fig. 3.13A). Similar saturation functions between growth and incident PPFD exist in most other diatoms and dinoflagellates (Keifer and Mitchell, 1983; Falkowski *et al.*, 1985 and Langdon, 1987). For example, in the diatoms *Ditylum brightwellii* and *Pseudonitzschia turgidula* (Paasche, 1968), and dinoflagellate *Gonyaulax polyedra* (Rivkin *et al.*, 1982a), growth rates
increased as a saturation function of PPFD. Langdon (1987) found an α_g of $17 \times 10^3 \text{ d}^{-1} \text{[\mu mol m}^{-2} \text{s}^{-1}]^{-1}$ for *Skeletonema costatum* grown at 20 °C. In the present study on *P. pungens f. multiseries*, α_g was $2.7(\pm1.9)\times10^3 \text{ d}^{-1} \text{[\mu mol m}^{-2} \text{s}^{-1}]^{-1}$ which was generally low compared to other diatoms but comparable to dinoflagellates (Table 3.5). However, because of the scarcity and scattering of data points in Fig. 3.9A, caution should be applied when comparing these data with the literature values. For example, after introducing the 3 points from experiments A and C, the α_g value increased to $18 (\pm16) \times 10^3 \text{ d}^{-1} \text{[\mu mol m}^{-2} \text{s}^{-1}]^{-1}$, which was comparable to other diatoms.

Table 3.5. Initial slopes of $\mu - I$ curves in selected diatoms and dinoflagellates. $\alpha_g = 10^3 \text{ d}^{-1} \text{[\mu mol m}^{-2} \text{s}^{-1}]^{-1}$

<table>
<thead>
<tr>
<th>Taxa</th>
<th>T °C</th>
<th>α_g</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. pungens f. multiseries</td>
<td>10</td>
<td>2.7-18</td>
<td>Present study</td>
</tr>
<tr>
<td>Skeletonema costatum</td>
<td>15</td>
<td>17.00</td>
<td>Langdon, 1987</td>
</tr>
<tr>
<td>Thalassiosira weissflogii</td>
<td>20</td>
<td>20.10</td>
<td>Laws and Bannister, 1980</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>9.29</td>
<td>Falkowski et al., 1985</td>
</tr>
<tr>
<td>Leptocylindrus danicus</td>
<td>10</td>
<td>11.78</td>
<td>Verity, 1981</td>
</tr>
<tr>
<td>Chaetoceros protuberans</td>
<td>19</td>
<td>7.07</td>
<td>Morel et al., 1987</td>
</tr>
<tr>
<td>Phaeodactylum tricornutum</td>
<td>22-24</td>
<td>25.00</td>
<td>Geider et al., 1985</td>
</tr>
<tr>
<td>Dinoflagellates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonyaulax polyedra</td>
<td>23</td>
<td>2.63</td>
<td>Rivkin et al., 1982a</td>
</tr>
<tr>
<td>Alexandrium tamarense</td>
<td>15</td>
<td>3.40</td>
<td>Langdon, 1987</td>
</tr>
<tr>
<td>Prorocentrum micans</td>
<td>18</td>
<td>0.35</td>
<td>Falkowski et al., 1985</td>
</tr>
<tr>
<td>Gyrodinium cf. aureolum</td>
<td>20</td>
<td>17.33</td>
<td>Garcia and Purdie, 1992</td>
</tr>
<tr>
<td>Pyrocystis noctiluca</td>
<td>23</td>
<td>1.73</td>
<td>Rivkin et al., 1982b</td>
</tr>
</tbody>
</table>
There are no data on acclimation of *P. pungens f. multiseries*. It would have well acclimated at the time of the experiments after two subculturings (>5 generation times) under the new PPFD. Rivkin *et al.* (1982a) showed that *Gonyaulax polyedra* can retain its maximal growth for up to two generation times during exposure to sub-optimal PPFD. This suggests that this dinoflagellate needs a transition time of at least two generation to acclimate to a new PPFD.

The acclimation time of phytoplankton to different temperatures varies from 0 to more than 100 hours, and from 0 to 4 divisions (Li, 1980). If *P. pungens f. multiseries* adapted to the new temperatures after one generation (one division), the cultures at 10°, 15°, 20° and 25 °C in experiment C would have been acclimated to the new temperature before the P-I experiments and the one at 5 °C would be almost acclimated (0.8 division).

3.4.2. Chemical composition

Growth is the expression of overall metabolism of an organism or a population and is related to the variation in chemical composition of algae. Comparison of growth rates in experiment A based on the 4 biomass indices, i.e. chlorophyll *a*, cell number, carbon, and nitrogen showed that cell division was not internally consistent with intracellular chemical constituents (Fig. 3.2). In HL, for example, chlorophyll *a* based growth rate increased and reached its maximum after 1.8 days. Cells were actively dividing as the photosynthetic capacity increased resulting from the rapid increase of chlorophyll *a* per unit volume (Figs. 3.1B, 3.2B) and reached the maximal cell division after 3.5 days, i.e. 1.7 days later than chlorophyll *a* based rate. Growth rate measured by
particulate carbon reached a maximum in 4.4 days, and that by particulate nitrogen reached a maximum in 5.2 days. The magnitudes of μ_{max} attained, based on the 4 biomass indices differed as well (Fig. 3.2). In LL culture, the maximal growth based on chlorophyll a was attained after 2.7 days as compared to 1.8 days at HL (Table 3.4). A similar unbalanced growth in cellular constituents was found by other researchers. For example, Caperon and Meyer (1972a, b) demonstrated that μ based on 14C, carbon or chlorophyll a cannot be equated to the growth prediction based on nutrient uptake. Shuter (1979) divided the cellular carbon into 4 compartments (carbohydrate, protein, lipid and nucleotide) and emphasized that differences in the flows of material between compartments and between cells would result in unbalanced growth.

Chemical composition is influenced by growth rate. In experiment A, for example, cellular carbon and nitrogen in *P. pungens* were highest at the beginning of the batch cultures (Fig. 3.3A), but decreased substantially as the cells entered the exponential phase. Cellular levels of carbon and nitrogen did not recover when the cells entered the stationary phase although carbon and nitrogen sources in the medium were not limiting. In experiment B, on day 4, growth rate increased as PPFD increased and reached a plateau; but cellular carbon and nitrogen decreased. Similarly, in experiment C, the highest cellular carbon and nitrogen occurred at 0 °C when the growth of *P. pungens* was restricted by the low temperature. Both cellular carbon ($r = -0.94, p < 0.01$) and nitrogen ($r = -0.98, p < 0.01$) were negatively correlated with the growth rate of *P. pungens* f. *multiseriis* at various temperatures.

Cellular chlorophyll a, on the other hand, positively correlated with growth rate
and maximum photosynthetic rate (Fig. 3.19). In experiment A, for example, cellular chlorophyll a was initially low, it increased and reached a maximum at 3.2 days for HL culture and 3.5 days for LL cultures corresponding to the maximal growth at 3.5 day (HL) and 3.6 day (LL) respectively. In experiment C, increase in cellular chlorophyll a was similar to the increase in growth and photosynthetic rate. In experiment B, however, this feature was different. Growth rate increased while cellular chlorophyll a decreased with increasing PPFD. This was due to the photoadaptation mechanism. Systematic differences in cellular chlorophyll a existed in the cultures under different PPFD no matter how fast the cells grew (Fig. 3.3C).

Upon transfer from 10 °C to higher temperatures, cellular chlorophyll a increased immediately, more than double within a day, coincident with the obvious increases in growth and photosynthetic rates. The C:Chl a ratio decreased with increase in temperature, consistent with observations on *Phaeodactylum tricornutum* (Li, 1980), *Skeletonema costatum* (Sakshaug, 1977; Yoder, 1979) and *Dunaliella tertiolecta* (Eppley and Sloan, 1966). When transferred to lower temperatures, on the other hand, variations in cellular chlorophyll a were very small, even though growth and photosynthetic rates decreased. However, my data showed that in temperature controlled batch cultures of *P. pungens* f. *multiseriis*, growth rate was significantly correlated to cellular chlorophyll a ($r = 0.81$, $n = 6$).

Temperature limited cultures showed that the C:N ratio decreased approaching the Redfield ratio (6.25) when growth rates increased as a result of increasing temperature (Figs. 3.14, 3.16). This was similar to the negative correlation between C:N ratio and
Fig. 3.19. Relationships of (A) growth rates and (B) photosynthetic rate (P_{m}^B) with cellular chlorophyll a. The lines are linear regressions.
growth rate of the chrysophyte *Monochrysis luthei* under P-limitation, the diatom *Thalassiosira pseudonana* 3H under NH$_4$ limitation and the chlorophyte *Dunaliella tertiolecta* under P- and N-limitation (Goldman et al., 1979). Goldman et al. (1979) found as a common feature that the Redfield ratio (C:N:P=106:16:1) was approached only at high growth rates (>90% μ_{max}) regardless of the N:P ratio in the medium. However, this feature was not applicable to the data from experiments A and B. The C:N ratio increased with increasing growth rate in the exponential phase of the HL culture of experiment A (Fig. 3.4) and then decreased as the cells approaching stationary phase. In the LL culture, on the other hand, the ratio increased and did approach the Redfield ratio when cells approached μ_{m}, but the ratio further increased in the late exponential phase and then decreased after cells entered stationary phase.

3.4.3. Photosynthesis

The growth rate was positively correlated with the maximum photosynthetic rate regardless of the growth conditions (Fig. 3.20). For example in experiment A, the maximal P_m^B attained on day 4 (Fig. 3.7) corresponds to the mid-exponential phase (Fig. 3.1). The P_m^B decreased as growth rate decreased when the cultures aged, which is consistent with that of *Nitzschia closterium* (Humphrey and Subba Rao, 1967) and some other microalgae (Glover, 1980). The relative magnitudes of P_m^B occurring during the exponential phase compared to that in the early stationary phase ($P_m^{B\ (\text{day 4})} : P_m^{B\ (\text{day 8})}$) were 4.7 for HL and 3.2 for LL cells respectively in the experiment A. The corresponding ratios for growth rates were 2.8 (HL) and 5.4 (LL) respectively. A similar
Fig. 3.20. Relationship between growth rate (μ) and photosynthetic rate (P_m^B). (A) P_m^B is normalized to chlorophyll a, (B) P_m^B is normalized to carbon. The lines are linear regressions.
tendency was seen in experiment B (Fig. 2.13). This was in agreement with previous studies on other diatoms. For example, *Thalassiosira pseudonana* 3H grown at 18 °C and 200 μmol m⁻² s⁻¹ (Glover, 1980) had the corresponding ratio of 6.0 for photosynthesis.

The HL cultures in Experiment A yielded higher P_m^B than those grown at PPFD an order of magnitude less. This phenomenon was tested further in Experiment B. Normalized to carbon, P_m^B increased as PPFD increased on day 4; on the other hand, it was an exponential decreasing function of PPFD on day 12 (Fig. 3.13B). The physiological states of cultures under various PPFD levels were different on both day 4 and day 12. On day 4, for example, the cultures at 250 and 410 μmol m⁻² s⁻¹ were approaching α in the period of maximal growth (Fig. 3.8); but the culture at 53 μmol m⁻² s⁻¹ was still in the lag phase and those at 810 and 1100 μmol m⁻² s⁻¹ had already passed the period of maximal growth and were approaching stationary phase. Similarly, as PPFD increased, α^B increase on day 4, but decrease on day 12. Generally, in the exponential phase, P_m^B was larger for the cultures under higher PPFD; in the stationary phase, on the other hand, the cultures grown at low PPFD had higher P_m^B and α^B. This was consistent with the aging effects of high PPFD discussed above (section 3.4.1) and also suggests cells survive better under low PPFD.

The initial slopes α^B were low when normalized to cell concentration; but were comparable to those of *Pseudonitzschia delicatissima* (Erga, 1989) and *Nitzschia americana* (Miller and Kamykowski, 1986b) when normalized to chlorophyll a. The chlorophyll a normalized P_m^B of *P. pungens f. multiseries* was also comparable with those of other diatoms and dinoflagellates (Pan et al., 1991; Subba Rao, 1988). When
normalized to carbon they were of the same magnitude as other pennate diatoms but were low compared to *Amphiprora paradoxa* (Glover 1980). P_m^B based on particulate carbon were two orders of magnitude lower than *Fragilaria* sp (Taguchi, 1976) and *Gonyaulax polyedra* (Prézelin and Matlick, 1983).

In experiment A, P_m^B (μg C [\(\mu g\) Chl \(a\)]\(^{-1}\) h\(^{-1}\)) increased between day 1 and day 4 corresponding with a decrease in C:Chl \(a\) ratio. Following this, P_m^B decreased rapidly while the C:Chl \(a\) slightly increased and then remained relatively constant in stationary phase (Figs. 3.7A, 3.4A). The variation of C:N ratio in the HL culture of experiment A was similar to that of P_m^B, but not the LL culture. This relationship of P_m^B (μg C [\(\mu g\) Chl \(a\)]\(^{-1}\) h\(^{-1}\)) with C:Chl \(a\) or with C:N for *P. pungens* f. *multiseries* also differed from those for *Leptocylindrus danicus* (Verity, 1981) and could be attributed to the effects of physiological stage of the cells. On day 4 in experiment B, P_m^B, C:Chl \(a\) ratio, N:Chl \(a\) increased with an increase in PPFD; which was consistent with the observations on *L. danicus* (Verity, 1981).

Growth and photosynthesis were promoted as a result of increase in temperature from 10 to 15 °C (Figs. 3.14, 3.18A,B); and the cells responded consistently to the increasing PPFD (Fig. 3.17). When temperature decreased from 10 to 0 °C, on the other hand, the cells were stressed, growth and photosynthetic rates were drastically reduced, and no clear P-I relationship was established (Fig. 3.17C).

Photosynthetic rates (Fig. 3.18A) of *P. pungens* f. *multiseries* increased with temperature up to 20 °C. The exponential increase of P_m^B from 0.08 at 0 °C to 3.42 at 15 °C was similar to that reported for well acclimated, temperate microphytoplankton (Li
and Dickie, 1987). But the Q_{10} of P_{mB} was much higher than some well acclimated coastal phytoplankton (Harrison and Platt, 1980). The Q_{10} of photosynthesis at low temperatures (<10°C) may be as high as 16 (Harris, 1978). Harris and Piccinin (1977) reported a $Q_{10} = 16.0$, between 2.5 °C and 5 °C, for photosynthesis of natural phytoplankton populations.

The relative photon efficiency, α^B, varied significantly (Fig. 3.18B) in the growth temperature range of 0 ° to 15 °C. α^B increased exponentially with increasing temperature, similar to the sigmoid pattern of *Leptocylindrus danicus* (Verity, 1982), but the magnitude of temperature dependent variations of α^B for *P. pungens* was much higher than that for *L. danicus* (Verity, 1981). For *Nitzschia americana*, at salinity lower than 30‰, Q_{10} for α^B was variable, the maximum was 13.1 between 10 and 20 °C at 8‰ (Miller and Kamkowski, 1986a).

3.4.4. Overview

Photosynthesis and growth were coupled (Fig. 3.20B). After integrating all the data from Experiments A, B and C, a regression analysis showed that the specific rates of growth (μ) and photosynthesis (P_{mB}) were positively correlated (Equation 3.9), which is consistent with the results discussed in Section 3.4.3 on the maximum photosynthesis and growth.

\[
\mu = 0.966 P_{mB} + 0.112, \quad (n=28, p < 0.001) \tag{3.9}
\]
A positive intercept of μ when P_m^B is 0 further suggests that this diatom might be able to grow heterotrophically as discussed earlier.

The physiological activity of *P. pungens* f. *multiseries* decreased as the culture progressed from exponential to stationary phase, which is consistent with other diatoms and dinoflagellates. Growth and photosynthetic characteristics were comparable to other diatoms and dinoflagellates. Although similarities exist between *P. pungens* f. *multiseries* and other diatoms in these variations, production of domoic acid initiated at the beginning of stationary phase (Subba Rao *et al.*, 1990, Bates *et al.*, 1989) implies that the factors inducing stationary phase might also induce the production of domoic acid.

Photosynthesis and growth decline in low light. However cells adapt to decreasing PPFD levels by increasing chlorophyll content and photon efficiency in the low PPFD. Therefore, decreasing light would have less impact on overall cell metabolism than changes of other environmental factors such as temperature and nutrient concentrations.

Lowering temperature, on the other hand, results in a decrease in enzyme activity and thus reduces the overall metabolism. It reduces the demands from primary metabolism for energy and precursors. As a result of lowering temperature, a distinction between dark reaction and light reaction must be made (Prézelin, 1981). Dark reaction (carbon assimilation) rate is reduced because many enzyme reactions are involved; light reaction (energy assimilation), however, is somewhat independent of temperature.

The chlorophyll content of a cell is an indicator of physiological activity, being positively correlated to growth rate and photosynthesis (Fig. 3.19). Carbon and nitrogen contents of exponential growing cells, however, are somehow inversely related to growth.
rate and photosynthesis.

Domoic acid is produced when overall cell metabolic rate declines (Subba Rao et al., 1990; Bates et al., 1991). Thus, stress resulting from lowering temperature or nutrient limitations would have greater impact on enhancing toxin production than from lowering light. However, decreasing light to a very low level would limit the energy supply, hence limit primary metabolism as well as toxin production.

The depletion of silicate in the medium coincided with initiation of stationary phase, suggesting that depletion of silicate limits overall cell metabolism and might also initiate the production of domoic acid.
CHAPTER 4
EFFECTS OF SILICATE LIMITATION ON
GROWTH AND DOMOIC ACID PRODUCTION
IN BATCH CULTURES

4.1. Introduction

The availability of dissolved silicon in sea water regulates the growth of diatom populations because silicon is required for diatom frustule construction. Decrease of silicate concentration to low or undetectable levels in marine and freshwater habitats during diatom blooms has been well documented (Paasche, 1973a; Sommer and Stabel, 1983; Egge and Aksnes, 1992 and Harrison et al., 1993). The magnitude of a diatom bloom is often directly related to the availability of silicon in sea water.

In diatom culture, silicate concentrations in the medium can regulate the cell yield (Taguchi et al., 1987). Cessation of cell division, which may be due to cessation of DNA synthesis (Darley and Volcani, 1969; Sullivan and Volcani; 1973), was found to accompany depletion of silicon in the culture media (Lewin, 1955; Lewin and Chen, 1968; Vaulot et al., 1987; Brzezinski et al., 1990). Concomitantly, cells tend to accumulate lipid under silicate limitation (Shifrin and Chisholm, 1981; Enright et al.,
Uptake of silicate by the diatom *Navicula pelliculosa* is related to aerobic respiration (Lewin, 1955). In Si-deficient cells, addition of silicate stimulated respiration as did organic substrates such as glucose, fructose, lactate, citrate, glycerol which also stimulated cell division.

Pseudonitzschia pungens f. multiseries produces domoic acid during the stationary phase (Subba Rao et al., 1990; Bates et al., 1991). The onset of the stationary phase was found to coincide with low levels of silicate in the medium (Pan et al., 1991). The linkage between DA production and silicon depletion is not understood. Initiation of the stationary phase in *P. pungens f. multiseries*, can be caused by self-inhibition factors, such as shading, accumulation of metabolic wastes in the medium or deficiency of essential nutrients such as silicate (Fogg and Thake, 1987).

In this chapter, production of domoic acid by *P. pungens f. multiseries* grown in media with different silicate concentrations is studied to test the hypothesis that DA production is triggered by silicate limitation.

4.2. Materials and Methods

Pseudonitzschia pungens f. multiseries (clone NPBIO) was cultured at 15 (±1) °C under 410 (±80) μmol m⁻² s⁻¹ continuous cold-white-fluorescent light. The stock culture was originally grown in medium FE (Section 2.2.2) and transferred to medium F (Section 2.2.1) 15 days before the experiment started. This stock culture was further sub-cultured
Fig. 4.1. Experimental design. Four treatments: (A) control, the initial DI Si was 95 μM; (B) high initial DI Si 190 μM; (C) low initial DI Si = 61 μM, 65 μM Si spiked on day 14; (D) low initial DI Si = 65 μM, 120 μM Si added on day 25. Each treatment was in triplicate. The curves are plotted by eye.
twice in medium F.

There were 4 treatments designated A, B, C and D, each in triplicate. Unmodified medium F was used in control designated as A. Treatment B, C and D had an initial silicate concentrations of 190, 61 and 61 μM respectively. Treatment C was spiked with additional silicate (64 μM) during early stationary phase (day 14), whereas Treatment D was spiked with additional silicate (122 μM) during late stationary phase (day 25) (Fig. 4.1).

Silicate concentrations in the culture media were monitored; as were cell concentrations, particulate chlorophyll a, silicon, phosphorus and domoic acid using the procedures described in Chapter 2. Growth of the cultures was described by the Gompertz model (Equation 2.11).

4.3. Results

The cell concentration increased exponentially until the onset of stationary phase 9 to 12 days after inoculation depending on the silicate regime (Table 4.1, Figs. 4.2-4.5). The onset of stationary phase in all silicate regimes coincided with a low level of silicate (<21.2 μM) in the medium. The initial silicate concentration in the medium had no significant effect on the growth rate except for Treatment B which increased growth rate by approximately 20%. Cell yields in the stationary phase were related to the total silicate supplied (Table 4.1). Cellular silicon and DA concentrations (in cells) were also dependent on the silicate concentrations in the media.
Table 4.1. Maximum growth rates, chlorophyll a, cell concentration, particulate silicon and DA concentration during growth of *P. pungens* f. *multiseries* under 4 different conditions. Values in parentheses give the ages (day) of the culture when these measurements were made.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Silicate supplied (μM)</th>
<th>r_{max} (d')</th>
<th>Chl a (pg l$^{-1}$)</th>
<th>Cell Conc. (107 cells l$^{-1}$)</th>
<th>PSi (pM)</th>
<th>Domoic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(pg cell$^{-1}$)</td>
</tr>
<tr>
<td>A</td>
<td>95.3</td>
<td>0.20</td>
<td>52.8 (9)</td>
<td>14.0 (35)</td>
<td>154.3 (50)</td>
<td>431.8 (50)</td>
</tr>
<tr>
<td>B</td>
<td>190.5</td>
<td>0.25</td>
<td>58.2 (12)</td>
<td>18.7 (35)</td>
<td>369.3 (20)</td>
<td>177.2 (41)</td>
</tr>
<tr>
<td>C</td>
<td>60.9 +64</td>
<td>0.21</td>
<td>30.1 (9)</td>
<td>8.7 (14)</td>
<td>60.5 (9)</td>
<td>296.6 (50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38.4 (50)</td>
<td>14.1 (30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>60.9 +122</td>
<td>0.21</td>
<td>58.8 (12)</td>
<td>9.2 (15)</td>
<td>124.0 (25)</td>
<td>143.8 (35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>66.5 (30)</td>
<td>15.0 (30)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4.2. Treatment A. Variations in (A) cell concentrations, (B) dissolved inorganic silicate, (C) particulate silicon, (D) chlorophyll a and (E) domoic acid concentrations during the growth cycle. Error bar = 1 standard deviation. Absence of error bar means the standard deviation was smaller than the symbol. The curve in A is fitted by Equation 2.11.
Fig. 4.3. Treatment B. Legend as in Fig. 4.2.
Fig. 4.4. Treatment C. (B) Silicate (65 μM) was added on day 14. Other legends as in Fig. 4.2.
Fig. 4.5. Treatment D. (B) Silicate (120 μM) was added on day 25. Other legends as in Fig. 4.2.
4.3.1. In medium F (Treatment A)

Cell concentration increased about five-fold from an initial level of 1.5×10^7 cells l$^{-1}$ to 9.3×10^7 cells l$^{-1}$ on day 12 corresponding to the beginning of the stationary phase (Fig. 4.2A). During this period, silicate concentration in the medium (DISi) decreased from 95.3 to 19.2 µM. Following this, DISi increased reaching a peak of 50.4 µM on day 20 (Fig. 4.2B). Cell concentration slightly increased after day 20 following an increase in DISi and reached 14.0×10^7 cells l$^{-1}$ on day 35. During this period, a drastic decrease in DISi from 26.3 µM on day 30 to 2.36 µM on day 35 occurred presumably reflecting the use of silicate for frustule formation.

Total particulate silicon (PSi) increased from day 0 to day 9 paralleling the increase in cell concentration (Fig. 4.2C). Subsequently, particulate silicon did not increase for 6 days probably due to the low silicate concentration in the medium, but after day 15, PSi increased following an increase in DISi (Figs. 4.2B, C). Such a variation in DISi was also found in other treatments.

Cellular silicon ranged from 25.3 to 65.7 pg Si cell$^{-1}$ (Fig. 4.2C). The silicon content of cells increased even in the first day following transfer into fresh medium when the cells were in the lag phase, but decreased subsequently during the exponential phase when growth of the culture was most rapid (Fig. 4.2C). During the stationary phase, cellular silicon levels remained low except for a slight increase on day 20.

The pattern of cellular chlorophyll a concentration was opposite to DISi (Fig. 4.2D) attaining a maximum (49.57 µg l$^{-1}$) at onset of the stationary phase, after which a decrease was observed. In late stationary phase (day 35), chlorophyll a increased slightly
to give a second peak (36.43 μg l⁻¹), consistent with an increase in cell concentration. Chlorophyll a per cell increased and reached a maximum (0.82 pg cell⁻¹) at the mid-exponential phase (day 6) decreasing afterwards. Chlorophyll a per cell remained low and fairly constant during the stationary phase.

Two stages of DA production can be recognized. The first stage occurred during late exponential phase and corresponded to a decline in growth rate of the culture resulted from a decrease in DISi (70.9 μM on day 3 to 30.1 μM on day 6). The DA production (0.11 - 0.18 μg l⁻¹ d⁻¹ or 1.20-2.24 fg DA cell⁻¹ d⁻¹) was low compared to the high DA production rates (1.3 - 3.8 μg DA l⁻¹ d⁻¹, or 10.39-25.07 fg DA cell⁻¹ d⁻¹) in the second stage coinciding with the lowest DISi level (2.4 μM) on day 35. This low DISi was insufficient to support any further frustule construction, but the toxin levels increased to a maximum of 55.25 μg DA l⁻¹ (or 431.76 fg DA cell⁻¹). The DA concentration probably increased further as the production rate remained at 3.1 μg DA l⁻¹ d⁻¹ (or 25.07 fg DA cell⁻¹ d⁻¹) during the interval day 41 to 50, but sampling was not extended beyond day 50. The initiation of DA production in both stages did not coincide with the onset of stationary phase on day 12 when DISi was 19.2 (±1.94) μM, however it did with drastic decreases in DISi on day 6 and day 35. Exhaustion of DISi enhanced DA production markedly during the second stage.

4.3.2. In high-Si medium (Treatment B)

High initial DISi increased maximum cell concentration (Table 4.1). Following seeding, DISi drastically decreased from 190.5 μM to 67 μM (Fig. 4.3B), while total
particulate silicon increased from 34.7 to 137.7 μM (Fig. 4.3C) accompanied by a small increase in cell number during the first day. Although the culture reached stationary phase on day 9, total particulate silicon increased continuously and attained a peak (369.3 μM) on day 20. The magnitude of the peak was more than twice the control. Cellular silicon reached a peak of 214.4 pg Si cell⁻¹ at day 1 and subsequently decreased to a low (60 pg Si cell⁻¹,) as the culture approached stationary phase on day 9. The DISi and cellular silicon remained low during the stationary phase.

Chlorophyll a concentration attained a maximum of 58.3 μg l⁻¹ on day 12 and subsequently decreased to 25.28 μg l⁻¹ on day 50. A maximum of 0.66 pg cell⁻¹ was observed on day 6 (mid-exponential phase) and then decreased to 0.22 pg cell⁻¹ on day 50. Maximum chlorophyll a concentration and chlorophyll a per cell were comparable to control (Table 4.1).

That DA production proceeded in two stages was also evident in this treatment. Although DISi was lowest (3.46 μM) on day 12, the Psi content per cell remained similar to day 9. The initiation of the first stage of DA production coincided with the onset of stationary phase on day 9 and a low level of DISi, but the production rate was very low (0.1 - 0.19 μg DA l⁻¹ d⁻¹, 0.97-1.74 fg DA cell⁻¹ d⁻¹). The DA production remained low until days 25-30 (Fig. 4.3E) when cellular silicon drastically decreased from 75.9 pg cell⁻¹ on day 25 to 51.7 pg cell⁻¹ on day 30. The concentration reached a maximum of 36.4 μg DA l⁻¹ (or 177.0 fg DA cell⁻¹) on day 41 and then decreased to 19.13 μg DA l⁻¹ (or 148.2 fg DA cell⁻¹) coinciding with an increase in cellular silicon from 47.5 pg Si cell⁻¹ on day 41 to 62.9 pg Si cell⁻¹ on day 50. The maximum DA concentration was about 2/3 of the
control.

4.3.3. **In low-Si medium (Treatments C and D)**

Cultures attained lower cell concentration and lower PSi in the medium with low initial silicate concentration (Table 4.1). Cellular silicon was 14-35 pg Si cell\(^{-1}\), which is only half that of control. However, chlorophyll \(a\) concentration was comparable to control. Two stages in DA production could not be distinguished clearly. Initial DA production (0.06 - 0.19 \(\mu g\) DA \(l^{-1} d^{-1}\), or 1.16 - 2.19 fg DA cell\(^{-1} d^{-1}\)) was 3 days earlier than in Treatment A and followed a drastic decrease of DISi (from 66.6 to 22.7 \(\mu M\)). The second stage of DA production immediately succeeded the first, reflecting the onset of the stationary phase as a result of further decrease in DISi. The production rates in the second stage were 0.36 to 1.64 \(\mu g\) DA \(l^{-1} d^{-1}\) (or 5.14-16.86 fg DA cell\(^{-1} d^{-1}\)).

4.3.4. **Silicate perturbation**

Spiking the cultures with silicate (64 \(\mu M\), up to the level of medium F) on day 14 (Treatment C, Fig. 4.4), cell concentration and particulate silicon increased to levels corresponding to the control. Maximum chlorophyll \(a\) concentration was less than that in the control at the same period. Chlorophyll \(a\) concentration was less variable than Treatments A and B after the cultures reached the first stationary phase. Importantly, immediately after more silicate was spiked on day 14, DISi, cellular silicon increased, but the second stage of DA production was interrupted, and DA concentration remained unchanged until a further silicate limitation occurred on day 35. Following that, cells
Fig. 4.6. Relationship between cellular domoic acid and growth rate during the DISi perturbation experiments.
continued to produce DA at rates of 1.9 - 3.8 μg DA l\(^{-1}\) d\(^{-1}\) (or 14.35 - 30.20 fg DA cell\(^{-1}\) d\(^{-1}\)) until 53.5 μg DA l\(^{-1}\) (or 296.6 fg DA cell\(^{-1}\)) was reached at the end of the experiment. These values were similar to those obtained from Treatment A.

In Treatment D, after addition of silicate (122 μM) on day 25, the cell concentration increased from 10.5 to 15.0 x 10\(^{7}\) cells l\(^{-1}\), chlorophyll \(a\) from 24.24 to 66.52 μg l\(^{-1}\), and particulate silicon from 124 to 184 μM, but DA production ceased (Fig. 4.5). The DA production was enhanced when the cells entered the stationary phase, but stopped soon afterwards because silicate was not limiting.

In both Treatments C and D, cells started accumulating DA only when the growth rate declined (Fig. 4.6) as a result of partial or total depletion of DISi (Figs. 4.4B, 4.5B). When DISi was elevated through perturbation in the early and late stationary phases it caused cultures to resume growth, DA production stopped and did not resume until the growth rate decreased as a result of silicate stress.

4.4. Discussion

4.4.1. Growth

Cell yields of \(P.\ pungens\ f.\ multiseries\) were proportional to supply of silicate, but growth rates were not. Cultures reached the stationary phase when low levels of silicate were present in the medium. Addition of silicate to cultures, existing in stationary phase caused by silicate limitation, facilitated further growth. These results were consistent with the work of Taguchi \textit{et al.} (1987) on \textit{Chaetoceros gracilis}, \textit{Hantzschia} sp. and \textit{Cyclotella}
sp. Cells continue to accumulate silicon even after cultures entered stationary phase, which supported further growth of the population following onset of the stationary phase (Figs. 4.2, 4.3), consistent with the observation made on *Navicula pelliculosa* (Lewin, 1957).

Chlorophyll *a* concentration is an indication of the physiological activity of an algal culture (Chapter 3). Chlorophyll *a* concentration was variable during the stationary phase in Treatments A, B, and D but not in Treatment C. This was related to the availability of silicate in the culture media. A low level of silicate in the culture media resulted in a decrease in chlorophyll *a* concentration. For example in Treatment A (Fig. 4.2), chlorophyll *a* concentration attained a peak on day 9 after DISi decreased and then declined continuously until day 20 when silicate increased probably due to the dissolution from dead cell frustules. Chlorophyll *a* increased again reaching a second peak on day 35 when DISi was exhausted. Increase of chlorophyll *a* corresponded to the increased of cell concentration (Fig. 4.2). This was consistent with the data from Treatment D (Fig. 4.5). Chlorophyll *a* concentration increased and attained a peak (58.8 μg l⁻¹) on day 12 due to the exhaustion of DISi at onset of the stationary phase and then decreased to 18.4 μg l⁻¹ on day 20. No significant increase of chlorophyll *a* concentration was noticed until day 27, two days after the perturbation of DISi. In Treatments B and C, however, chlorophyll *a* was less variable in the stationary phase because silicate stress was not severe due to the high reserve of cellular silicon (62.8 pg Si cell⁻¹) which was probably able to support further growth of the population (Treatment B) or the stress was rapidly released by addition of extra silicate (Treatment C) immediately after the culture
population entered the stationary phase.

4.4.2. Cellular silicon

Determination of DISi and cellular silicon demonstrated luxury uptake of silicate by *P. pungens* f. *multiseriata*. In Treatment B (Fig. 4.3), for example, when initial silicate concentration was high at 195 μM, 59% of silicate was taken up by the diatom population in the first day although there was very little increase in cell concentration (16%). Cellular silicon increased from 69.7 to 214.4 pg Si cell⁻¹. In the control (Fig. 4.2), the initial silicate concentration was at 95.3 μM. Silicate concentration decreased by 38%, but cellular silicon increased very little (from 63.7 to 65.7 pg Si cell⁻¹). There was also an elevation in DISi after cells entered stationary phase (Fig. 4.2B) probably caused by the dissolution of silicon from dead cells. Lewin (1955) demonstrated that substantial amounts of silicon were dissolved after diatom cells died. In Treatments C and D when the initial DISi was lower (Figs. 4.4, 4.5), however, there was about a 10% increase in DISi probably due to the dissolution of silicon from dead cells present in the seeding population; following culture growth, cellular silicon dropped from 79.5 to 29.6 pg Si cell⁻¹.

The general pattern of cellular silicon was that cells in the lag or early exponential phase had higher values than cells in the later phases. Higher cellular silicon in the stationary phase was associated with higher DISi. These results were in agreement with Lewin (1957), who found that the degree of silicification of *Navicula pelliculosa* cells in culture initially fell with increasing cell number. Stationary phase cell silicon was
dependent on the initial silicate concentrations of the growth medium.

The silicon content in stationary phase cells of Treatment B (47.7 - 78.2 pg Si cell\(^{-1}\)) was comparable to the maximum levels in Treatments A, C and D (64.2 - 79.5 pg Si cell\(^{-1}\)). At these similar cell silicon levels, cells from Treatment B stopped dividing while cells from the other treatments were ready to divide. Perturbation of DISi during stationary phase did not raise cellular silicon to a level comparable to that found in the cells of Treatment B; different magnitudes of perturbation in Treatments C and D did not result in different levels of cell silicon. This suggested that the cellular silicon level was determined by the initial DISi in the fresh medium. Immediately after seeding a population into fresh medium, the cells probably adjusted their requirement for silicate according the available resources. Perturbation had less effect on the intracellular silicon level but promoted growth of the population.

Cellular silicon varied from 14 to 214.4 pg Si cell\(^{-1}\), which is abnormal compared to other diatoms (Table 4.2). The ratios of maximum to minimum cellular silicon (\(Q_{\text{max}}/Q_{\text{min}}\)) were less than 5 for most other diatoms except for *Navicula pelliculosa* and *Coscinodiscus granii*, but 15 for *P. pungens f. multiseries*. This suggested that *P. pungens f. multiseries* is better able to respond to a wide range of silicate levels than other diatoms and probably helps to explain the ubiquitous distribution of this diatom.

4.4.3. Role of silicon in cell metabolism

Diatoms require silicon not only for cell frustule formation, but also for other metabolic processes, such as DNA replication. Addition of silicate to silicon-starved
Table 4.2. Variation in the cellular silicon content in selected diatom species.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Cell size (μm)</th>
<th>(Q_{\text{max}})</th>
<th>(Q_{\text{min}})</th>
<th>(Q_{\text{max}}/Q_{\text{min}})</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(pg Si cell(^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudonitzschia pungens</td>
<td>5-10</td>
<td>214</td>
<td>14</td>
<td>15.3</td>
<td>Present study</td>
</tr>
<tr>
<td>f. multiseries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitzschia palea</td>
<td></td>
<td>62</td>
<td>14</td>
<td>4.4</td>
<td>Jørgensen, 1955</td>
</tr>
<tr>
<td>Navicula pelliculosa</td>
<td></td>
<td>3.3</td>
<td>0.36</td>
<td>9.2</td>
<td>Lewin, 1957</td>
</tr>
<tr>
<td>Centric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skeletonema costatum</td>
<td>4-6</td>
<td>7</td>
<td>3.8</td>
<td>1.8</td>
<td>Paasche, 1973b</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>2.16</td>
<td>0.84</td>
<td>2.6</td>
<td>Harrison et al., 1976, 1977</td>
</tr>
<tr>
<td>Thalassiosira pseudonana</td>
<td>3-6</td>
<td>1.81</td>
<td>0.6</td>
<td>3.0</td>
<td>Paasche, 1973a, b</td>
</tr>
<tr>
<td>Thalassiosira decipiens</td>
<td>17-28</td>
<td>330</td>
<td>150</td>
<td>2.2</td>
<td>Paasche, 1973b</td>
</tr>
<tr>
<td>Thalassiosira nana</td>
<td></td>
<td>430</td>
<td>89</td>
<td>4.8</td>
<td>Jørgensen, 1955</td>
</tr>
<tr>
<td>Thalassiosira gravida</td>
<td>7-9</td>
<td>56</td>
<td>30.24</td>
<td>1.9</td>
<td>Harrison et al., 1977</td>
</tr>
<tr>
<td>Licomphora sp.</td>
<td>14-40</td>
<td>210</td>
<td>80</td>
<td>2.6</td>
<td>Paasche, 1973b</td>
</tr>
<tr>
<td>Ditylum brightwellii</td>
<td>13-52</td>
<td>900</td>
<td>200</td>
<td>4.5</td>
<td>Paasche, 1973b</td>
</tr>
<tr>
<td>Coscinodiscus granii</td>
<td>95-190</td>
<td>6412</td>
<td>728</td>
<td>8.8</td>
<td>Taylor, 1985</td>
</tr>
<tr>
<td>Chaetoceros debilis</td>
<td>16-20</td>
<td>8.46</td>
<td>3.11</td>
<td>2.7</td>
<td>Harrison et al., 1977</td>
</tr>
<tr>
<td>Chaetoceros affinis</td>
<td>7-27</td>
<td>42</td>
<td>33</td>
<td>1.3</td>
<td>Paasche, 1980</td>
</tr>
<tr>
<td>Cerataulina pelagica</td>
<td>36-56</td>
<td>97</td>
<td>88</td>
<td>1.1</td>
<td>Paasche, 1980</td>
</tr>
<tr>
<td>Rhizosolenia fragilissima</td>
<td>12-20</td>
<td>51</td>
<td>28</td>
<td>1.8</td>
<td>Paasche, 1980</td>
</tr>
</tbody>
</table>
Cylindrotheca fusiformis cells caused initiation of DNA synthesis and an increased synthesis of nuclear DNA polymerases (Okita and Volcani, 1978). Therefore, silicon availability affects the cell-cycle progression in diatoms. Brzezinski et al. (1990) showed that silicon deprivation halted progression of the cell cycle by arresting the cells in G1, G2 and M phases in 6 of the 7 diatom species examined. Silicon starvation of diatoms leads to an accumulation of cells at the G1/S boundary and in G2 and/or M phase (Vaulot et al., 1987; Brzezinski et al., 1990).

Production of saxitoxins by Alexandrium tamarense seems to be related to the cell cycle (Anderson, 1990) and toxin synthesis occurred during the first half of the S phase but then stopped for more than 10 hours as cells went through mitosis and divided. Anderson (1990) concluded that toxin synthesis was not continuous throughout the cell cycle, but temporally linked to the pulse of DNA synthesis. Silicate availability affects the cell cycle as well as DNA synthesis. This suggests that silicate stress restrains the progression of the cell cycle and DNA synthesis, hence indirectly regulates production of toxin even though silicate plays no role in the structure and synthetic pathway of domoic acid. The relationship between domoic acid production and the cell cycle may parallel the observed relationship between saxitoxin production by Alexandrium sp and its cell cycle. This merits further investigation.

Lipid accumulation induced by silicon deficiency has been well documented in diatoms (Taguchi et al., 1987). In Cyclotella cryptica, for example, this accumulation was due in part to a change in the partitioning of newly photoassimilated carbon (Roessler, 1988b); a higher proportion of the carbon was partitioned to lipid production.
This change was due to an increase in the activity of acetyl-CoA carboxylase (Roessler, 1988a), an enzyme involved in early steps of lipid synthesis. This enzyme is also believed to be associated with the early steps in the synthesis of isoprenoid (Luckner, 1984), which is believed to be an immediate precursor of DA (Fig. 1.4). Therefore, the association of silicate limitation with DA production suggests a link between DA production and lipid synthesis in *P. pungens f. multiseries*.

4.4.4. Production of domoic acid in relation to silicate limitation

There was a negative correlation between the final yield of domoic acid and the supply of silicate in the culture medium (Fig. 4.7). In Treatment A, the initial level of silicate in the medium was 95.28 μM, the maximum DA level attained was 55.25 μg DA l⁻¹ (or 431.76 fg DA cell⁻¹). In Treatment B with about 2 times the initial silicate concentration in the medium (196.42 μM), maximum DA level was 36.4 μg DA l⁻¹ (or 177.23 fg DA cell⁻¹). When the total supply of silicate (initial level plus spiked) was 124.55 μM in Treatment C, the maximum DA concentration attained was 53.5 μg DA l⁻¹ (or 296.55 fg DA cell⁻¹).

A two-stage DA production phenomenon was obvious in the control (Treatment A) and Treatment B but not clear in Treatments C and D. In Treatments A and B the exhaustion of DISi did not coincide with the onset of stationary phase. After initiation of the first production stage which occurred in the later exponential phase due to a decline of growth rate, the cells probably adjusted themselves to a new low silicate habitat with a new uptake kinetic strategy for further growth using the residual silicate. When silicate
Fig. 4.7. Relationship of maximum DA concentrations in the culture and DA per cell with silicate supply. The lines are linear regressions.
was exhausted in the medium, cells were not able to adjust to permit any further growth. The cells may have been arrested at certain phase(s) in the cell cycle, which is most likely the cue for DA synthesis, and its production is enhanced. In Treatments C and D, on the other hand, DA production before silicate perturbations can not be clearly divided into two phases. Cells were not able to manage any further growth after they entered the stationary phase due to depletion of silicate. Therefore the second production stage immediately followed initiation of the first stage. This gave an image of a continuous linear increase of DA production rate. Production of DA was vigorous when cells were not able to grow further due to depletion of DI Si and intracellular inorganic silicate pool.

Another noteworthy feature in the experiments was the temporal shift in the initiation of the first stage of DA production. The production started earlier as a result of decrease of initial silicate concentration in the medium. In Treatment B when the initial silicate concentration was the highest (190 μM), the first stage of DA production started on day 9 at the onset of stationary phase when growth of the culture almost stopped. In the control (Treatment A) when the initial silicate concentration was 95 μM, the first stage of DA production was initiated on day 6 at late exponential phase when growth of the culture was declining. In the Treatments C and D, the first stage of DA production was initiated on day 3 at the mid exponential phase when growth of the culture was at the peak or just started to decline (Fig. 4.6). This suggests that DA production is not necessarily associated with cessation of cell division, but triggered by physiological stress such as silicate limitation.

Subba Rao et al. (1990) and Bates et al. (1991) concluded that DA production
occurs only after cell division stopped. More silicate may have been contributed by the soil extract which made the initial silicate concentration higher in the FE medium used by Subba Rao et al. (1990) than in medium F or to the level comparable to Treatment B in the present study, i.e. initiation of the first DA production stage coincided with onset of the stationary phase. On the other hand, the initial silicate in F/2 medium used by Bates et al. (1991) was comparable to that in Treatments C and D in the present study, i.e. first DA production stage preceded onset of stationary phase. The DA production during the first stage in their cultures might have been too low to be noticed.

Interestingly, addition of silicate to a silicate-exhausted culture facilitated further growth and simultaneously interrupted DA production (Figs. 4.4, 4.5). The production resumed when growth of the population declined due to further silicate stress (Fig. 4.6). Production of DA, both before and after silicate perturbation, was initiated at decline of growth rate. This suggests there could be an inverse correlation between DA production and growth rate, even when the culture is maintained at a constant growth rate in a continuous culture. This possibility is investigated in Chapter 5.
CHAPTER 5

SILICATE LIMITATION AND DOMOIC ACID

PRODUCTION IN

CHEMOSTAT CONTINUOUS CULTURES

5.1. Introduction

In batch cultures, domoic acid (DA) production generally occurs in the stationary phase when cells stopped dividing. This is probably because cells are arrested at a certain phase of the cell cycle, such as G1 or S phase (Chapter 4), in which DA is produced. During the growth cycle of a batch culture, the physiological stage of the population is always changing. The onset of stationary phase is due to a variety of factors that restrict the further growth of a population.

Silicon plays an important role in diatom cell metabolism. In Navicula pelliculosa, a freshwater diatom, synthesis of RNA, protein, carbohydrate and chlorophyll ceases 5 to 7 hours after deprivation of silicate in the medium, while syntheses of DNA and lipid continue (Coombs et al., 1967). In Pseudonitzschia pungens f. multiseries, DA was produced when cells were stressed by silicate limitation in batch culture and the production was enhanced when cell division stopped in the stationary phase (Chapter 4).
However, the first stage of DA production coincided with the later exponential phase when growth was proceeding although more slowly (Chapter 4). This implies that the toxin production is not necessarily associated with cessation of cell division, and the diatom is able to produce DA when cells are dividing but under silicate stress.

In this chapter, I raised *P. pungens* f. *multiseries* cultures in chemostats under silicate limitation and investigate the kinetics of DA production in dividing cells and its relationships with cell chemical composition and nutrient uptake kinetics of this diatom. The objective is to understand the relationships between DA production and silicate limitation in a dividing population.

5.2. Materials and Methods

5.2.1. Chemostat system

The continuous culture system is shown in Fig. 2.1 and is described in Section 2.10. Six chemostat chambers were set up simultaneously. One of them, a blank glass chamber under the same conditions, served as control to monitor the silicate level. The cultures and the control were exposed to a bank of 290 (± 50) μmol m\(^{-2}\) s\(^{-1}\) continuous cool white fluorescent light and the temperature was maintained at 15 (±0.2) °C.

5.2.2. Preparation of culture medium and stock culture

Mid-Atlantic oceanic sea water was collected during BIO JGOFS cruise (April, 1991) and settled for two years before the experiment. Deionized water (super Q) was
added to the seawater to lower the salinity to 27%, comparable to that on the coast of Prince Edward Island. This sea water was further enriched to make medium H (Table 2.2) with a silicate concentration of 56.2 (±3.4) μM. It was then dispensed (600 ml each) into 1-litre polycarbonate culture flasks and autoclaved for 15 minutes at 15 Psi.

For the medium in the reservoirs, 10 L of the same mid-Atlantic sea water was diluted and enriched as above in a 20-litre carboy and autoclaved for 20 minutes at 15 Psi. Soon after autoclaving, while it was still very hot, 2 carboys of the medium were aseptically pooled into a 20-litre reservoir. Glass tubes were positioned with intakes 5 cm above the bottom. After 24 to 36 hours at 10 °C, when the medium was cooled and became clear (precipitated), the reservoirs were connected to the peristaltic pumps that supplied this medium to each culture chamber at a different flow rate.

In the chemostat experiment I (Experiment I hereafter, Fig. 5.1), the reservoir medium was prepared and autoclaved in 20-litre glass carboys. In addition to the 56.2 (±3.4) μM silicate (Na₂SiO₃) added, more than 100 μM silicon was released from the glass carboy into the medium during autoclaving and brought up the final concentration to 165.4 (±9.0) μM. Silicate concentration was monitored in reservoirs and in the control; further release of silicon from the glassware during the experiments was negligible (Appendix C1).

After 10 steady state experiments, the reservoir medium was prepared again and the experiments progressed into chemostat experiment II (Experiment II hereafter, Fig. 5.1). Instead of the glass carboys, 20 litre polycarbonate carboys were used for autoclaving and storage of reservoir medium. No significant change in silicate
Inoculation: 600 ml medium
100 ml culture

Batch mode growth

Chemostat continuous mode
[Si] = 165.4 μM

Steady state experiments
(10)

Inflow medium stopped for 2 days
Changed tubing and reservoir

Chemostat continuous mode
[Si] = 56.2 μM

Steady state experiments
(10)

Batch mode
(4 days)

Chamber 1
D = 0.27 d\(^{-1}\)
No perturbation

Chamber 5
D = 0.10 d\(^{-1}\)
No perturbation

Chamber 6
D = 0.20 d\(^{-1}\)
Perturbation
85 μM Si

Conclusion:
DA production related to Si stress

Exp. I

Exp. II

Exp. III

Fig. 5.1. Schematic procedures for experiments. See text for details.
concentration occurred \((56.2 \pm 3.4 \mu M)\) either during autoclaving or during the experiment in the control chemostat or in the reservoirs.

Stock culture of *Pseudonitzschia pungens* f. *multiseries* (KP-59 strain) was grown in the silicate-reduced H medium prepared with Mid-Atlantic seawater for 10 days before being inoculated into the chemostat culture chambers. This stock culture was subcultured twice during the 10 day period and maintained in batch culture at 15°C under 320 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) continuous cool white fluorescent light.

5.2.3. Procedures for experiments

The experiments were divided into 3 parts (Fig. 5.1). The first two parts (Experiments I and II) were identical chemostat cultures except that different kinds of carboys were used for autoclaving and storage of reservoir medium. As stated earlier, the use of different carboys in the medium preparation resulted in marked differences in silicate concentration. The last part (Experiment III) was a batch mode extension after steady state experiments when addition of reservoir medium was stopped.

At the beginning of the experiments, 600 ml of medium were aseptically added to each chemostat chamber and left for 4 hours before inoculating with 100 ml of the stock culture. The culture was agitated and aerated immediately. Inflow of reservoir medium \([\text{Si}] = 165.4 (\pm 9.0) \mu M\) was started when growth of the cultures was significant (checked visually) 2 days later, and continued until the end of the experiments. The culture population was monitored daily by measuring *in vivo* chlorophyll \(a\) fluorescence. After the measurement of fluorescence, a 10-ml sample was preserved (section 2.3) in a
20 ml plastic vial and served as backup for the measurement of population size. Steady state was defined as described in Section 2.10. A sample of 300 ml was collected in the steady state. Sub-samples were collected on the filters and analyzed as described in Chapter 2 for particulate silicon and phosphorus, carbon and nitrogen, ATP, domoic acid (DA) and chlorophyll a within 1 hour. Filtrate (1.0 μm) was collected for determinations of dissolved silicate, phosphate and DA in the medium as detailed in Chapter 2. After the samples were taken, the inflow rate was changed and the next steady state was usually attained in ≥ 8 days. A total of 10 such steady state experiments were conducted in 5 of the 6 chemostats in Experiment I.

At the end of Experiment I, the peristaltic pumps were stopped immediately after the last steady-state experiment. All the tubing for supplying reservoir medium were changed aseptically and the reservoir medium was freshly prepared in the plastic carboys.

Experiment II started 2 days later. Addition of medium ([Si] = 56.2 (+3.4) μM) from the reservoirs was started and the inflow rates were randomly set disregarding the pre-history of the dilution rate. A total of 10 steady state experiments were conducted and sub-samples were collected as in Experiment I except for the additional samples for bacteria quantification as described below.

In Experiment III, the peristaltic pumps were stopped after the last steady state of Experiment II, changing the cultures into batch mode. Samples were taken and analyzed for the same variables as those in Experiment II from Chambers 1, 5, and 6 (Fig. 5.1) the next day and 4 days later. The previous dilution rates for these three chambers were 0.27, 0.10 and 0.20 d⁻¹ respectively. Of the three chambers, silicate concentration in Chamber
6 was raised by 85 μM at the beginning of the batch mode.

During Experiments II and III, samples were collected for quantification of bacteria. An 18-ml sample was preserved in a 20-ml clean glass vial with 0.36 ml filtered (0.2 μm) formalin and refrigerated for less than two weeks. Triplicate subsamples of 5 ml were taken from each vial, 0.5 ml DAPI (3.3% diamidino-2-phenylindole dihydrochloride) stain was added. The samples were kept in the dark at room temperature for 12 minutes before filtering through 0.2 μm nuclepore filters. The filters were collected and mounted in immersion oil on microscopic slides and refrigerated in the dark within two hours. The sample was then enumerated under an epi-fluorescence microscope within two months. The excitation and emission wavelengths were <380 and 520 nm respectively.

5.3. Results

5.3.1. Experiment I: continuous culture

Biomass in the steady state was comparable (72-105 x 10^6 cells l⁻¹) at different specific growth rates except for the one at the highest rate (0.669 d⁻¹) when cell concentration was significantly reduced (48 x 10^6 cells l⁻¹). Growth rates in the 10 steady states ranged from 0.09 to 0.67 d⁻¹. There was a negative correlation between growth rate and biomass (n=10, p<0.05) (Table 5.1a). As growth rate increased, (1) carbon assimilation (P_B^m) increased; (2) cellular phosphorus and ATP decreased, but cellular silicon and chlorophyll a increased; (3) C:Chl a, N:Chl a, P:Chl a and N:Si decreased.
while C:P, N:P and Si:P ratios increased. C:Si ratios were less variable and slightly decreased as growth rate increased. C:N ratios were relatively constant with a mean of 9.85 (Table 5.2a).

Domoic acid concentrations in the cultures ranged from 1.6 to 135.9 µg l\(^{-1}\) (0.02 to 1.00 pg cell\(^{-1}\)), and were highest at low growth rates but exponentially decreased with growth rate increased (Figs. 5.2A, B). Similar patterns were found for DA production (Fig. 5.2C). The relationship between DA (production and concentrations) and growth rates can be described by:

\[
DA = DA_m \exp(-a \mu)
\]

(5.1)

Where \(DA\) is domoic acid (production or concentration) at growth rate of \(\mu\). \(DA_m\) is the maximum DA at \(\mu=0\). \(a\) is the negative initial slope of the exponential curve.

Dissolved inorganic silicate concentration (DISi) in the culture medium of steady states ranged from 2.4 to 106.2 µM in this experiment (Table 5.1a), and positively correlated with growth rate (Fig. 5.2D). Concentration of DA was negatively correlated with silicate and phosphate in the culture medium (n=10 p<0.02) but positively correlated (p<0.02) with ATP concentration (Fig. 5.3, Table 5.1a). Similar to growth rate, carbon assimilation negatively correlated with DA concentration and its production (n=10, p<0.05). In addition, DA production also positively correlated with the concentrations of particulate carbon and nitrogen (Table 5.1a).
Table 5.1a. Experiment I: measured variables, their statistics and their correlation with growth rate, DA production and concentrations

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Correlation coefficient R (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Growth rate</td>
</tr>
<tr>
<td>Growth rate (d(^{-1}))</td>
<td>0.322</td>
<td>0.092</td>
<td>0.669</td>
<td>1.00</td>
</tr>
<tr>
<td>(10^6) Cell l(^{-1})</td>
<td>80.82</td>
<td>48.28</td>
<td>104.67</td>
<td>-0.64</td>
</tr>
<tr>
<td>DA production (µg l(^{-1}) d(^{-1}))</td>
<td>7.62</td>
<td>0.55</td>
<td>16.79</td>
<td>-0.61</td>
</tr>
<tr>
<td>Total DA (µg l(^{-1}))</td>
<td>42.70</td>
<td>1.60</td>
<td>135.90</td>
<td>-0.74</td>
</tr>
<tr>
<td>(pg DA cell(^{-1}))</td>
<td>0.38</td>
<td>0.02</td>
<td>1.00</td>
<td>-0.75</td>
</tr>
<tr>
<td>DA in filtrate (µg l(^{-1}))</td>
<td>9.92</td>
<td>0.00</td>
<td>36.00</td>
<td>-0.66</td>
</tr>
<tr>
<td>P(_b) (µg C [µg Chl a](^{-1}) h(^{-1}))</td>
<td>1.58</td>
<td>0.61</td>
<td>2.98</td>
<td>1.00</td>
</tr>
<tr>
<td>Chl a (µg l(^{-1}))</td>
<td>60.55</td>
<td>47.00</td>
<td>76.04</td>
<td>-0.28</td>
</tr>
<tr>
<td>(pg Chl a cell(^{-1}))</td>
<td>0.77</td>
<td>0.51</td>
<td>1.01</td>
<td>0.45</td>
</tr>
<tr>
<td>PC (µM)</td>
<td>632.33</td>
<td>418.17</td>
<td>811.08</td>
<td>-0.71</td>
</tr>
<tr>
<td>(p₂ C cell(^{-1}))</td>
<td>94.99</td>
<td>76.49</td>
<td>124.68</td>
<td>-0.06</td>
</tr>
<tr>
<td>PN (µM)</td>
<td>75.27</td>
<td>45.28</td>
<td>98.61</td>
<td>-0.77</td>
</tr>
<tr>
<td>(pg N cell(^{-1}))</td>
<td>11.23</td>
<td>9.42</td>
<td>14.24</td>
<td>-0.28</td>
</tr>
<tr>
<td>PSI (µM)</td>
<td>124.30</td>
<td>84.58</td>
<td>161.23</td>
<td>-0.51</td>
</tr>
<tr>
<td>(pg Si cell(^{-1}))</td>
<td>43.78</td>
<td>34.18</td>
<td>53.93</td>
<td>0.32</td>
</tr>
<tr>
<td>PISi (µM)</td>
<td>2.02</td>
<td>0.85</td>
<td>3.78</td>
<td>-0.74</td>
</tr>
<tr>
<td>DISi (µM)</td>
<td>48.10</td>
<td>2.40</td>
<td>166.20</td>
<td>0.97</td>
</tr>
<tr>
<td>DSI (µM)</td>
<td>48.20</td>
<td>4.00</td>
<td>113.20</td>
<td>0.97</td>
</tr>
<tr>
<td>DIP (µM)</td>
<td>23.14</td>
<td>20.31</td>
<td>28.06</td>
<td>0.54</td>
</tr>
<tr>
<td>PP (µM)</td>
<td>4.33</td>
<td>2.07</td>
<td>6.85</td>
<td>-0.82</td>
</tr>
<tr>
<td>(pg P cell(^{-1}))</td>
<td>1.65</td>
<td>1.22</td>
<td>2.40</td>
<td>-0.64</td>
</tr>
<tr>
<td>ATP (nM)</td>
<td>9.17</td>
<td>1.05</td>
<td>21.86</td>
<td>-0.74</td>
</tr>
<tr>
<td>(fmol cell(^{-1}))</td>
<td>0.109</td>
<td>0.012</td>
<td>0.226</td>
<td>-0.68</td>
</tr>
</tbody>
</table>
Table 5.1b. Experiment II: legend as Table 5.1a.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Correlation coefficient R (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Growth rate</td>
</tr>
<tr>
<td>Growth rate (d⁻¹)</td>
<td>0.183</td>
<td>0.061</td>
<td>0.441</td>
<td>1.00</td>
</tr>
<tr>
<td>10⁶ Cell l⁻¹</td>
<td>54.46</td>
<td>26.62</td>
<td>71.44</td>
<td>-0.53</td>
</tr>
<tr>
<td>DA production (µg l⁻¹ d⁻¹)</td>
<td>40.57</td>
<td>16.97</td>
<td>90.35</td>
<td>0.01</td>
</tr>
<tr>
<td>Total DA (µg l⁻¹)</td>
<td>287.70</td>
<td>45.00</td>
<td>553.20</td>
<td>-0.69</td>
</tr>
<tr>
<td>(pg DA cell⁻¹)</td>
<td>2.79</td>
<td>1.10</td>
<td>5.62</td>
<td>-0.07</td>
</tr>
<tr>
<td>DA in filtrate (µg l⁻¹)</td>
<td>129.70</td>
<td>2.40</td>
<td>399.20</td>
<td>-0.76</td>
</tr>
<tr>
<td>Pₐₘ (µg C [µg Chl a]⁻¹ h⁻¹)</td>
<td>0.77</td>
<td>0.28</td>
<td>1.87</td>
<td>0.99</td>
</tr>
<tr>
<td>Chl a (µg l⁻¹)</td>
<td>69.26</td>
<td>52.53</td>
<td>87.10</td>
<td>-0.05</td>
</tr>
<tr>
<td>(pg Chl a cell⁻¹)</td>
<td>1.36</td>
<td>0.74</td>
<td>2.23</td>
<td>0.62</td>
</tr>
<tr>
<td>PC (µM)</td>
<td>595.00</td>
<td>505.25</td>
<td>771.42</td>
<td>-0.40</td>
</tr>
<tr>
<td>(pg C cell⁻¹)</td>
<td>139.10</td>
<td>102.80</td>
<td>227.80</td>
<td>0.52</td>
</tr>
<tr>
<td>PN (µM)</td>
<td>79.93</td>
<td>52.14</td>
<td>106.71</td>
<td>-0.69</td>
</tr>
<tr>
<td>(pg N cell⁻¹)</td>
<td>21.15</td>
<td>13.11</td>
<td>32.88</td>
<td>-0.00</td>
</tr>
<tr>
<td>PSi (µM)</td>
<td>53.83</td>
<td>46.39</td>
<td>61.08</td>
<td>-0.19</td>
</tr>
<tr>
<td>(pg Si cell⁻¹)</td>
<td>29.36</td>
<td>21.95</td>
<td>51.23</td>
<td>0.69</td>
</tr>
<tr>
<td>PISi (µM)</td>
<td>0.98</td>
<td>0.73</td>
<td>1.20</td>
<td>0.01</td>
</tr>
<tr>
<td>DISi (µM)</td>
<td>0.52</td>
<td>0.12</td>
<td>1.29</td>
<td>0.19</td>
</tr>
<tr>
<td>DSi (µM)</td>
<td>2.56</td>
<td>0.97</td>
<td>4.29</td>
<td>-0.47</td>
</tr>
<tr>
<td>DIP (µM)</td>
<td>28.86</td>
<td>23.03</td>
<td>34.46</td>
<td>0.66</td>
</tr>
<tr>
<td>PP (µM)</td>
<td>5.36</td>
<td>4.72</td>
<td>6.19</td>
<td>0.09</td>
</tr>
<tr>
<td>(pg P cell⁻¹)</td>
<td>3.26</td>
<td>2.31</td>
<td>5.79</td>
<td>0.71</td>
</tr>
<tr>
<td>ATP (nM)</td>
<td>8.39</td>
<td>1.20</td>
<td>15.02</td>
<td>-0.18</td>
</tr>
<tr>
<td>(fmol cell⁻¹)</td>
<td>0.156</td>
<td>0.045</td>
<td>0.330</td>
<td>-0.16</td>
</tr>
<tr>
<td>Bacteria (10³ ml⁻¹)</td>
<td>222.8</td>
<td>159.5</td>
<td>354.1</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Table 5.2a. Experiment I: cellular chemical compositions of *P. pungens* f. *multiseries* expressed as ratios at various growth rates, their correlations (R) with DA production (μg DA l⁻¹ d⁻¹) and concentration (μg DA l⁻¹).

<table>
<thead>
<tr>
<th>μ (d⁻¹)</th>
<th>C:Chl a (weight)</th>
<th>N:Chl a (weight)</th>
<th>Si:Chl a (weight)</th>
<th>P:Chl a (weight)</th>
<th>C:N (atomic)</th>
<th>C:Si (atomic)</th>
<th>C:P (atomic)</th>
<th>N:P</th>
<th>N:Si</th>
<th>Si:P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.092</td>
<td>675.3</td>
<td>20.01</td>
<td>67.06</td>
<td>3.04</td>
<td>9.24</td>
<td>5.51</td>
<td>134.5</td>
<td>14.56</td>
<td>0.60</td>
<td>24.40</td>
</tr>
<tr>
<td>0.130</td>
<td>596.1</td>
<td>17.68</td>
<td>66.82</td>
<td>2.78</td>
<td>9.48</td>
<td>5.02</td>
<td>133.6</td>
<td>14.09</td>
<td>0.53</td>
<td>26.62</td>
</tr>
<tr>
<td>0.160</td>
<td>779.4</td>
<td>14.56</td>
<td>53.23</td>
<td>2.85</td>
<td>10.04</td>
<td>5.49</td>
<td>113.8</td>
<td>11.33</td>
<td>0.55</td>
<td>20.71</td>
</tr>
<tr>
<td>0.229</td>
<td>637.8</td>
<td>14.77</td>
<td>53.32</td>
<td>2.30</td>
<td>9.94</td>
<td>5.51</td>
<td>141.3</td>
<td>14.22</td>
<td>0.55</td>
<td>25.66</td>
</tr>
<tr>
<td>0.239</td>
<td>811.1</td>
<td>15.56</td>
<td>59.37</td>
<td>2.19</td>
<td>9.60</td>
<td>5.03</td>
<td>150.8</td>
<td>15.72</td>
<td>0.52</td>
<td>29.98</td>
</tr>
<tr>
<td>0.310</td>
<td>770.8</td>
<td>14.15</td>
<td>53.59</td>
<td>1.87</td>
<td>10.23</td>
<td>5.39</td>
<td>170.8</td>
<td>16.72</td>
<td>0.53</td>
<td>31.66</td>
</tr>
<tr>
<td>0.320</td>
<td>554.6</td>
<td>14.53</td>
<td>57.52</td>
<td>2.07</td>
<td>9.67</td>
<td>4.88</td>
<td>149.9</td>
<td>15.51</td>
<td>0.51</td>
<td>30.71</td>
</tr>
<tr>
<td>0.519</td>
<td>563.8</td>
<td>13.40</td>
<td>49.37</td>
<td>1.73</td>
<td>9.48</td>
<td>5.14</td>
<td>162.2</td>
<td>17.13</td>
<td>0.54</td>
<td>31.56</td>
</tr>
<tr>
<td>0.539</td>
<td>516.0</td>
<td>13.42</td>
<td>68.56</td>
<td>1.89</td>
<td>9.99</td>
<td>3.91</td>
<td>156.7</td>
<td>15.69</td>
<td>0.39</td>
<td>40.10</td>
</tr>
<tr>
<td>0.669</td>
<td>418.2</td>
<td>11.56</td>
<td>50.38</td>
<td>1.37</td>
<td>10.78</td>
<td>4.94</td>
<td>201.8</td>
<td>18.73</td>
<td>0.46</td>
<td>40.81</td>
</tr>
<tr>
<td>Mean</td>
<td>632.3</td>
<td>14.96</td>
<td>57.92</td>
<td>2.21</td>
<td>9.85</td>
<td>5.08</td>
<td>151.5</td>
<td>15.37</td>
<td>0.52</td>
<td>30.22</td>
</tr>
<tr>
<td>Std</td>
<td>120.9</td>
<td>2.25</td>
<td>6.86</td>
<td>0.51</td>
<td>0.43</td>
<td>0.46</td>
<td>22.8</td>
<td>1.91</td>
<td>0.05</td>
<td>6.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>DA prod. (μg DA l⁻¹)</th>
<th>μ (d⁻¹)</th>
<th>C:Si:N:P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.63</td>
<td>-0.71</td>
<td>151:29:15:1</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
<td>-0.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.58</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.60</td>
<td>-0.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.83</td>
<td>-0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>-0.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C:Si:N:P = 151:29:15:1
Table 5.2b. Experiment II: legend as Table 5.2b

<table>
<thead>
<tr>
<th>μ (d$^{-1}$)</th>
<th>C:Chl a (weight)</th>
<th>N:Chl a</th>
<th>Si:Chl a</th>
<th>P:Chl a</th>
<th>C:N</th>
<th>C:Si</th>
<th>C:P</th>
<th>N:P</th>
<th>N:Si</th>
<th>Si:P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.061</td>
<td>647.8</td>
<td>27.85</td>
<td>29.85</td>
<td>3.14</td>
<td>6.21</td>
<td>11.57</td>
<td>121.6</td>
<td>19.62</td>
<td>1.87</td>
<td>10.51</td>
</tr>
<tr>
<td>0.085</td>
<td>550.3</td>
<td>12.14</td>
<td>18.06</td>
<td>1.93</td>
<td>7.66</td>
<td>10.28</td>
<td>106.4</td>
<td>13.90</td>
<td>1.34</td>
<td>10.34</td>
</tr>
<tr>
<td>0.094</td>
<td>567.8</td>
<td>20.04</td>
<td>24.65</td>
<td>2.52</td>
<td>6.84</td>
<td>11.11</td>
<td>120.4</td>
<td>17.62</td>
<td>1.63</td>
<td>10.84</td>
</tr>
<tr>
<td>0.101</td>
<td>633.5</td>
<td>19.17</td>
<td>19.16</td>
<td>2.27</td>
<td>6.56</td>
<td>13.13</td>
<td>122.4</td>
<td>18.66</td>
<td>2.00</td>
<td>9.33</td>
</tr>
<tr>
<td>0.095</td>
<td>575.3</td>
<td>14.66</td>
<td>23.69</td>
<td>2.45</td>
<td>7.81</td>
<td>9.64</td>
<td>103.1</td>
<td>13.23</td>
<td>1.24</td>
<td>10.69</td>
</tr>
<tr>
<td>0.137</td>
<td>613.6</td>
<td>15.21</td>
<td>22.64</td>
<td>2.23</td>
<td>7.86</td>
<td>10.55</td>
<td>118.6</td>
<td>15.09</td>
<td>1.34</td>
<td>11.24</td>
</tr>
<tr>
<td>0.202</td>
<td>771.4</td>
<td>17.18</td>
<td>17.83</td>
<td>2.19</td>
<td>7.22</td>
<td>13.91</td>
<td>125.6</td>
<td>17.41</td>
<td>1.93</td>
<td>9.03</td>
</tr>
<tr>
<td>0.265</td>
<td>552.2</td>
<td>13.14</td>
<td>18.79</td>
<td>2.78</td>
<td>8.52</td>
<td>11.90</td>
<td>89.2</td>
<td>10.48</td>
<td>1.40</td>
<td>7.49</td>
</tr>
<tr>
<td>0.299</td>
<td>532.9</td>
<td>11.39</td>
<td>24.26</td>
<td>2.25</td>
<td>9.30</td>
<td>8.73</td>
<td>104.0</td>
<td>11.20</td>
<td>0.94</td>
<td>11.92</td>
</tr>
<tr>
<td>0.441</td>
<td>505.3</td>
<td>12.28</td>
<td>22.94</td>
<td>2.59</td>
<td>9.71</td>
<td>10.37</td>
<td>101.7</td>
<td>10.49</td>
<td>1.07</td>
<td>9.80</td>
</tr>
<tr>
<td>Mean</td>
<td>595.0</td>
<td>16.31</td>
<td>22.19</td>
<td>2.44</td>
<td>7.77</td>
<td>11.12</td>
<td>111.3</td>
<td>14.77</td>
<td>1.48</td>
<td>10.12</td>
</tr>
<tr>
<td>Std</td>
<td>72.5</td>
<td>4.77</td>
<td>3.59</td>
<td>0.33</td>
<td>1.08</td>
<td>1.49</td>
<td>11.4</td>
<td>3.26</td>
<td>0.35</td>
<td>1.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DA prod. µg DA l$^{-1}$</th>
<th>µ (d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>-0.40</td>
</tr>
<tr>
<td>0.05</td>
<td>-0.61</td>
</tr>
<tr>
<td>-0.31</td>
<td>-0.13</td>
</tr>
<tr>
<td>-0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>-0.13</td>
<td>0.90</td>
</tr>
<tr>
<td>0.55</td>
<td>-0.23</td>
</tr>
<tr>
<td>0.31</td>
<td>-0.56</td>
</tr>
<tr>
<td>0.18</td>
<td>-0.77</td>
</tr>
<tr>
<td>0.34</td>
<td>-0.61</td>
</tr>
<tr>
<td>-0.31</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

C:Si:N:P = 111:10:15:1
Fig. 5.2. Experiment I. Variations with growth rate: (A) DA concentration, (B) cellular DA, (C) DA production rate, and (D) DI/Si. Silicate concentration in the reservoir was 165.4 (±9.0) μM. The curves in A, B, C, are fitted by Equation 5.1.
Experiment I. Relationships of domoic acid with (A) silicate, (B) phosphate in the culture medium, and (C) ATP concentrations in the cells. The curves in A and B are fitted by an exponential function like Equation 5.1 and the line in C is a linear regression.
5.3.2. Experiment II: continuous culture

Experiment II was characterized by low DISi (56.2 μM) in the inflow medium and low cellular silicon. Cell concentrations were low and less variable (41 - 71 x 10⁶ l⁻¹) except for the highest growth rate (0.441 d⁻¹) when cell concentration was significantly reduced (26.6 x 10⁶ cells l⁻¹). Otherwise, cellular chlorophyll a, carbon, nitrogen, phosphorus and ATP were higher than those in Experiment I, but silicon was lower (Table 5.1). As growth rate increased, the following features were observed: (1) carbon assimilation increased. (2) cellular chlorophyll a, carbon, silicon and phosphorus increased, but cellular nitrogen was not affected (Table 5.1b). (3) C:Chl a, N:Chl a, C:P, N:P and N:Si ratios decreased, while the C:N ratio increased. Si:Chl a, P:Chl a, C:Si, and Si:P were relatively insensitive to growth rate (Table 5.2b).

Another feature in the Experiment II was high DA concentration (45-553 μg DA l⁻¹, 1.1-5.6 pg DA cell⁻¹) and production (17-90 μg DA l⁻¹ d⁻¹, or 0.31-1.35 pg DA cell⁻¹ d⁻¹) which was due to low silicate supply rates (3.4-24.8 μmol l⁻¹ d⁻¹). However, the relationships between DA and growth rate can not be simply described by equation 5.1. At very low growth rate, DA in cells and DA production rates increased as growth rate increased, reaching a peak at μ = 0.20 d⁻¹. Following this, DA production decreased exponentially similar to the pattern in Experiment I (Figs. 5.4A, B, C). At low growth rates, cells tend to release DA into the medium (Fig. 5.4A).

Abundance of bacteria followed the same pattern as DA production in relation to growth rate (Fig. 5.4D). Domoic acid and its production seem to be correlated (p<0.05) with bacterial concentrations (Table 5.1b).
Fig. 5.4. Experiment II. Variations with growth rate: (A) DA concentration, (B) cellular DA, (C) DA production rate, (D) bacterial abundance, and (E) DISi and DSi. Silicate concentration in the reservoir was 56.2 (±3.4) μM. The curves are fitted by Equation 5.1 or by eye.
DISi in the culture medium at the steady state (Fig. 5.4E) remained low and unaffected by the growth rates. However, when growth rates were less than 0.14 d\(^{-1}\), total dissolved silicon in the culture medium increased as growth rate decreased, which implies the dissolution of silica from cell walls.

Table 5.3. Common changes of chemical properties in Experiments I and II as a result of increase in growth rate

<table>
<thead>
<tr>
<th>Variables</th>
<th>Increase</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell concentrations</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Carbon assimilation (P(_{Bm}))</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>DA concentration and production</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Particulate nitrogen</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Particulate carbon</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Particulate inorganic phosphate</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>pg Si cell(^{-1})</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>pg Chl a cell(^{-1})</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>C:N ratio</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>C:Chl a ratio</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>N:Chl a ratio</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>N:Si ratio</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

The common characteristics between Experiments I and II were (1) coupling of growth with carbon assimilation (P\(_{Bm}\), p< 0.0001) and both were negatively correlated with the DA concentration (p<0.05, Table 5.1). When data from both Experiments I and II were pooled, the relationship between DA concentration and growth rate can be described by a single curve of equation 5.1 (Fig. 5.5). (2) Growth rates were also
Experiments I + II. Domoic acid concentration (filtrate + cells) in relation to growth rate. The curve is fitted by Equation 5.1.
correlated negatively with N:Chl a and N:P, but positively with C:N ratio (Table 5.2). (3) C:Chl a ratio positively correlated with DA production. (4) DA concentration correlated positively with N:Chl a and N:Si ratios but negatively with C:N ratio. In conclusion, any factor with a positive effect on growth and carbon assimilation exerted negative effects on DA concentration and/or its production (Tables 5.1, 5.2, 5.3).

5.3.3. Experiment III: extended batch culture

When addition of medium from the reservoir ceased in the extended batch mode, cell concentration increased or not, depending on the previous steady state growth rate. For example in Chamber 1 (Fig. 5.6), cell concentration increased from 49 x 10^6 cells l^{-1} to 60 x 10^6 cells l^{-1} in the first 21 hours. This increase was comparable to the specific growth rate in the steady state (\(\mu = 0.265 \, \text{d}^{-1} \)). Further population growth was prevented by stoppage of silicate supply essential for cell frustule formation. Production rate of DA had been 53.6 µg DA l^{-1} d^{-1} (or 1.09 pg DA cell^{-1} d^{-1}) during the previous steady state. The production was enhanced by a factor of 3 during the first 21 hours after the curtailment of silicate supply, DA concentration increased by 151.5 µg DA l^{-1} (from 201.5 to 353.0 µg DA l^{-1}, or 3.17 pg DA cell^{-1} d^{-1}). The production continued at a slightly reduced rate (138.5 µg DA l^{-1} d^{-1}, or 2.41 pg DA cell^{-1} d^{-1}) during the following 3 days. The total DA concentration at the end of the experiment was 768.5 µg DA l^{-1}, the highest ever reported for \(P. pungens \) f. \(multiseries \). Of this 768.5 µg DA l^{-1}, 124.5 µg DA l^{-1} occurred in the filtrate, the concentration in the cells was 11.9 pg DA cell^{-1}.

In Chamber 5, the steady state growth rate was the lowest 0.10 d^{-1} and the DA
Experiment III. Variations with time in (A) cell concentration, (B) DA per cell, (C) DA in filtrate, (D) DA in cells + filtrate, (E) bacterial abundance, and (F) DI Si.
production was 29.6 µg DA l\(^{-1}\) d\(^{-1}\) (0.72 pg DA cell\(^{-1}\) d\(^{-1}\)). No substantial increase in cell concentration was observed, but an increase in DA production rate was also evident (Fig. 5.6). During the first 21 hours it was 90.5 µg DA l\(^{-1}\) (from 293.3 to 383.8 µg DA l\(^{-1}\), or 2.60 pg DA cell\(^{-1}\) d\(^{-1}\)), enhanced by more than 3 times. During the following 3 days, DA production continued at 74.4 µg l\(^{-1}\) d\(^{-1}\) (1.78 pg DA cell\(^{-1}\) d\(^{-1}\)). Note the production rate was also slightly reduced.

In Chamber 6, the steady state growth rate was 0.20 d\(^{-1}\) and DA production was 90.35 µg DA l\(^{-1}\) d\(^{-1}\) (1.35 pg DA cell\(^{-1}\) d\(^{-1}\)); 85 µM silicate was added to the culture immediately after the steady state and addition of medium from the reservoir was stopped (Fig. 5.6F). Cell concentration increased from 66.7 to 71.6 x 10\(^{6}\) cells l\(^{-1}\) during the first 21 hours and attained 76.7 x 10\(^{6}\) cells l\(^{-1}\) 3 days later. On the other hand, no substantial increase of DA was found (447.3 - 455.4 pg DA l\(^{-1}\)) in this culture during the first 21 hours. But an increase in DA production during the following 3 days was obvious (455.4-763.5 µg DA l\(^{-1}\), or 1.39 pg DA cell\(^{-1}\) d\(^{-1}\)) due to the drastic decrease in silicate concentration (from 57.5 to 1.8 µM).

Unlike in the steady state, bacterial abundance did not increase during this extended batch mode (Fig. 5.6E) although DA production substantially increased. On the other hand, increase or decrease of bacteria concentration seems to be inversely related to the change in population size of \(P.\ pungens\ f.\ multiseries\) (Figs. 5.6A, E). The bacterial effects on DA production is further discussed in the Appendix C3.
5.3.4. Growth kinetics

There have been conflicts over whether external or internal concentration of nutrient controls growth rate of phytoplankton in steady state of continuous culture (Droop, 1973, 1983). For the silicate limited continuous culture of *P. pungens f. multiseries*, Droop's (internal) model (Equation 5.2) is better suited for expressing the kinetic data than Monod's (external) model. However because of the scatter in the data and the clustering of the data points in the region of low growth rate (Fig. 5.7), interpretation of the results (Table 5.4) is difficult.

\[
\mu = \mu_{\text{max}}' \frac{(Q-k_q)}{Q}
\]

(5.2)

where, \(\mu\) is growth rate, \(\mu_{\text{max}}'\) is the potential maximum growth rate, \(Q\) is the measured cell quota corresponding to measured \(\mu\), and \(k_q\) is the minimum cell quota, *i.e.* the cell quota at \(\mu = 0\). No significant differences were found in the fitted parameters between the two chemostat experiments (Table 5.4), but the coefficient of variation was very high (23-64%).

Table 5.4. Growth kinetics in chemostat cultures (function: \(\mu = \mu_{\text{max}}' \frac{(Q-k_q)}{Q}\)). Values in parentheses are standard deviations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experiment I (n=10)</th>
<th>Experiment II (n=10)</th>
<th>Experiment I & II (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_{\text{max}}') (d(^{-1}))</td>
<td>0.68 (0.43)</td>
<td>0.55 (0.17)</td>
<td>0.58 (0.12)</td>
</tr>
<tr>
<td>(k_q) (pg Si cell(^{-1}))</td>
<td>22.44 (12.94)</td>
<td>18.53 (3.09)</td>
<td>19.12 (3.20)</td>
</tr>
</tbody>
</table>

The data showed that growth rate was not only controlled by cell quota but also
Growth kinetics fitted with Droop's cell quota model: \(\mu = \mu_{max} \left(Q - K_q \right) / Q \).

(A) Experiments I and II, (B) Experiment I, and (C) Experiment II.

Fig. 5.7.
related to the external concentration of silicate (Fig. 5.2D). Goldman (1977) suggested that growth was controlled by uptake rate and proposed an equation (Equation 5.3), essentially a combination of the Monod and Droop equations, to describe his results from phosphate limited continuous culture of the chrysophyte Monochrysis lutheri Droop.

\[
\mu = \frac{U_{\max}}{K_U + U}
\]

(5.3)

where \(U \) is the uptake rate (pg Si cell\(^{-1}\) d\(^{-1}\)), \(K_U \) is the half saturation coefficient for growth with respect to uptake rate. This equation also satisfactorily described the kinetic data of \(P. \) pungens f. multiseries from my silicate-limited continuous culture.

Table 5.5. Growth kinetics in chemostat cultures. Data were from the direct fitting equation 5.3 to experimental data points. Values in parentheses are standard deviations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experiment I ((n=10))</th>
<th>Experiment II ((n=10))</th>
<th>Experiment I & II ((n=20))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_{\max}') ((d^{-1}))</td>
<td>2.67 (1.59)</td>
<td>0.76 (0.10)</td>
<td>1.43 (0.33)</td>
</tr>
<tr>
<td>(K_U) ((pg \text{ Si cell}^{-1} \text{d}^{-1}))</td>
<td>100.1 (72.7)</td>
<td>15.27 (3.08)</td>
<td>42.54 (14.27)</td>
</tr>
</tbody>
</table>

Direct fitting equation 5.3 to my data points did not give satisfactory results (Table 5.5) due to lack of points at high growth rates. To solve this problem, I determined \(\mu_{\max}' \) and \(K_U \) by first performing linear regression analysis on the cell quota \((Q)\) vs. \(U \) data and then by fine-tuning with nonlinear regression analysis directly on \(\mu \) vs. \(U \) data in equation 5.3 following the method of Goldman and McCarthy (1978). Adjustments to both parameters were within limits of one standard error from linear regression. \(\mu_{\max}' \) and \(K_U \)
Fig. 5.8. Growth kinetics fitted with Goldman equation: $\mu = \mu_{\text{max}} \frac{U}{(K_U+U)}$.
(A) both Experiments I and II, (B) Experiment I, and (C) Experiment II.
were finally determined by the criteria of least square of fitting (Marquardt, 1963). Coefficients of variation for both μ_{max} and K_U in all the data sets were significantly reduced (Table 5.6) compared to Table 5.5. The results were consistent (Fig. 5.8, Table 5.6) as evident from μ_{max}' that was comparable to the μ_{max} values obtained from batch culture experiments (Chapters 3, 4) and slightly higher that the highest μ values of this continuous culture study.

Table 5.6. Growth kinetics in chemostat cultures. Data were determined first by performing linear regression on Q vs. U, and then by fine-tune fitting equation 5.3 to experimental data points. Values in parentheses are standard deviations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experiment I (n=10)</th>
<th>Experiment II (n=10)</th>
<th>Experiment I & II (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_{\text{max}}' (\text{d}^{-1})$</td>
<td>1.10 (0.20)</td>
<td>0.78 (0.088)</td>
<td>0.92 (0.012)</td>
</tr>
<tr>
<td>$K_U (\text{pg Si cell}^{-1} \text{ d}^{-1})$</td>
<td>28.25 (0.84)</td>
<td>15.34 (2.81)</td>
<td>21.00 (0.47)</td>
</tr>
</tbody>
</table>

5.4. Discussion

5.4.1. Growth and uptake kinetics in relation to DA production

At very low growth rate in Experiment I and most steady states in Experiment II, there were still measurable quantities, of the order of 0.5 - 2 μM, of reactive silicate left in the medium (Figs. 5.2D, 5.4E). This is consistent with the results of Paasche (1973a) on *Thalassiosira pseudonana* Hasle and Heimdal. Paasche demonstrated 4 possible mechanisms regarding this phenomenon: (1) lack of a component essential for full
utilization of silicate, such as phosphate, (2) dissolution of the silica wall, (3) binding factor and (4) existence of non-utilizable reactive silicate. The *P. pungens f. multiseries* cultures had enough other essential compounds in the medium that addition of silicate during the extended batch mode enabled further growth of the population. So mechanism 1 is not applicable. Mechanisms 2, 3 and 4 are possible. Dissolution of cell silicon has been demonstrated during the stationary phase of batch culture (Figs. 4.2B, 4.3B) and also found in this experiment (Fig. 5.4E). Adding a large quantity of filtrate from an old *Rhizosolenia alata* culture has been shown to inhibit growth of *P. pungens f. multiseries* (Subba Rao *et al.*, 1994). Besides the allelopathic effect, in the filtrate, existence of some other inhibitor of nutrient uptake similar to the "binding factor" in *Monochrysis lutheri* (Droop, 1968) is possible. Besides the monomeric Si(OH)$_4$, sea water medium may contain non-utilizable low polymers of silicate, which are reactive in analysis.

Pooling the data from Experiments I and II, a single curve of equation 5.1 described them well (Fig. 5.5). However Experiment I data consisted of the lower portion, while Experiment II data the upper. This suggested the existence of different kinetics of DA production in these two Experiments. Experiments I and II differed in silicate concentration in the reservoir medium, which resulted in significant difference in kinetics of growth (Table 5.6) and DA production (Figs. 5.2, 5.4). Over a wide range of growth rates in the silicate limited continuous culture of *Skeletonema costatum*, Harrison *et al.* (1976) divided the growth kinetics into 4 regions: (1) at very low dilution rate (<0.7 d$^{-1}$) the effluent silicate concentration increased with decreasing dilution rate; (2) silicate concentration remained at a minimum over a range of dilution rate (0.7-1.2 d$^{-1}$); (3) a
subsequent small increase in dilution rate resulted in a large increase in effluent silicate concentration; and (4) at very high dilution rate (>1.4 d\(^{-1}\)), a large increase in dilution rate resulted in a relatively small increase in silicate concentration. Experiment I results of *P. pungens f. multiseries* were similar to region 3 or 4 of *S. costatum*. Growth rates increased from 0.09 to 0.67 d\(^{-1}\) when residual silicate increased from 2.4 to 106.2 \(\mu\)M. This region was located at growth rate >0.83 d\(^{-1}\) for *S. costatum*. But the growth rate of *P. pungens f. multiseries* in Experiment I ranged from 0.09 to 0.67 with a wide portion overlapped with Experiment II data, while DA concentration markedly differed from Experiment II. The population size of the culture was relatively constant. This suggested that (1) silicate was not the limiting factor in Experiment I because there was sufficient silicate in the medium except when the growth rate was very low (<0.09 d\(^{-1}\), Fig. 5.2D), (2) growth kinetics of the culture population not only differed in separate regions of growth rate but also in various reservoir concentrations of substrate, *i.e.* the supply rate of silicate. Nitrogen and phosphorus and vitamins were in excess. Carbon was not the limiting factor because the system was continuously aerated and pH was always below 9. Although there was sufficient silicate for further growth of the population, the population size never reached more than 1.05 x 10^8 l\(^{-1}\), which was comparable to the data from batch culture experiments (Figs. 4.2A-4.5A). Light was not likely limiting compared with the low light grown population (Fig. 3.9). This suggests that population size is probably restricted by some intrinsic physiological mechanism. This intrinsic factor in regulating the population size is common for continuous cultures and for the late exponential phase of batch cultures. The DA production was initiated when this intrinsic
restriction was effective.

A large supply of silicate resulted in high cellular silicon and low DA production in Experiment I, which was consistent with the batch culture study (Fig. 4.2). Cellular silicon was less variable and was independent of growth rate. Production of DA, however, was negatively correlated with growth rate (Fig. 5.2), similar to the first stage DA production in the batch culture study (Chapter 4).

In Experiment II, a low silicate supply resulted in less cellular silicon, which was positively correlated with growth rate (Table 5.1b). Growth rate was no longer a major factor influencing DA production (Fig. 5.4). The DA production was enhanced by a low uptake of silicate (Fig. 5.9). The differences in mechanism and magnitude of DA production in chemostat Experiments I and II, parallel the differences between first and second stage DA production in batch cultures (Table 5.7). However, DA production declined when the silicate uptake rate was too low (<3.26 pg Si cell\(^{-1}\) d\(^{-1}\), Fig. 5.9C). This implies that cells produce less DA under critical stress. This result is in agreement with the decline of DA content in the cell in the senescent phase of batch culture of the same species (Subba Rao et al., 1990, Bates et al., 1991). In the senescent phase of batch culture (silicate exhausted, Bates et al., 1991) and at extreme low uptake rate of silicate (Fig. 5.4) in continuous culture, cells tended to release DA into the culture medium. This may be because the critical silicate stress not only weakened the cell frustules as in *Navicula pelliculosa* (Lewin, 1957) but also restrained both DA production and the activity of the cell membrane. Very likely, domoic acid - a small molecular water soluble compound - is transported passively through the membranes. However when cells are not
Fig. 5.9. Domoic acid in relation to silicate uptake rate. (A) DA in the whole culture, (B) DA in cells, and (C) DA production rate. Curves fitted by Equation 5.1.
severely stressed, the membrane probably limits this transport and contains most of the DA in the cells.

Experiment II cultures of *P. pungens* f. *multiseries* resemble the regions 1 and 2 of *S. costatum* (Harrison *et al.*, 1976). At very low growth rate ($\mu < 0.14 \text{ d}^{-1}$), total silicon in the medium increased although the reactive silicate remained relatively constant when growth rate decreased (Fig. 5.4D). This suggested dissolution of silicon from the cell wall when the growth rate is low which is consistent with the results from batch culture (Figs. 4.2, 4.3). Simultaneously, DA production decreased and tended to be released from cells into the medium (Fig. 5.4A). Release of DA coincided with dissolution of silicon from the cell frustule.

Table 5.7. Comparison of DA production in steady-state continuous cultures with the production in batch cultures under silicate limitation.

<table>
<thead>
<tr>
<th>DA production</th>
<th>Batch culture</th>
<th>Continuous culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>No production</td>
<td>Early exponential phase</td>
<td>Approaching μ_m</td>
</tr>
<tr>
<td>Low</td>
<td>Late exponential phase (first stage)</td>
<td>High silicate supply Experiment I</td>
</tr>
<tr>
<td>High</td>
<td>Stationary phase (second stage)</td>
<td>Low silicate supply Experiment II</td>
</tr>
</tbody>
</table>

When growth rate was greater than 0.20 d$^{-1}$ in Experiment II, silicon in the medium remained relatively constant as growth rate increased, which was similar to the region 2 in *S. costatum* (Harrison *et al.*, 1976). The relationship between growth rate and DA was similar to that in the Experiment I, i.e. DA production decreased as growth rate increased, but the magnitude was higher (Figs. 5.2, 5.4).
At the same growth rate, differences in silicate supply resulted in differences in silicate uptake rate and DA production. For example, at growth rate of 0.09 d\(^{-1}\), the supply rates were 15.22 and 5.28 µmol l\(^{-1}\) d\(^{-1}\) in Experiment I and II respectively. The corresponding uptake rates of silicate were 3.14 and 2.78 pg Si cell\(^{-1}\) d\(^{-1}\), and cellular DA and its production were 0.996, 2.245 pg DA cell\(^{-1}\) and 12.50, 32.15 µg DA l\(^{-1}\) d\(^{-1}\) (or 0.125, 0.664 pg DA cell\(^{-1}\) d\(^{-1}\)) respectively. At higher growth rate, the differences were also obvious. For example, at a growth rate of 0.31 or 0.30 d\(^{-1}\), the silicate supply rate, silicate uptake rate, cellular DA, and DA production in Experiment I were 51.27 µmol l\(^{-1}\) d\(^{-1}\), 16.72 pg Si cell\(^{-1}\) d\(^{-1}\), 0.667 pg DA cell\(^{-1}\) and 16.79 pg DA l\(^{-1}\) d\(^{-1}\) (0.226 pg DA cell\(^{-1}\) d\(^{-1}\)) respectively. The corresponding values in Experiment II were 16.80 µmol l\(^{-1}\) d\(^{-1}\), 8.35 pg Si cell\(^{-1}\) d\(^{-1}\), 1.485 pg DA cell\(^{-1}\) and 34.83 µg DA l\(^{-1}\) d\(^{-1}\) (0.569 pg DA cell\(^{-1}\) d\(^{-1}\)). At the same growth rate, DA production was higher in Experiment II under more severe silicate limitation.

Domoic acid production was enhanced by a factor of 3 (Fig. 5.7) when the steady state continuous cultures were shifted to batch mode. The dynamics of DA production during this transition period is of great interest. During the first day after the transition, silicate stress became pronounced. There was a surge in DA production soon after cessation of silicate uptake followed by a slightly decline. The DA production was slightly reduced and the proportion of DA released from the cells into medium increased by more than 100% (Fig. 5.6C) as a result of the critical silicate stress similar to that in the steady states at very low growth rate.

With silicate perturbation in Chamber 6, on the other hand, there was a surge in
silicate uptake similar to that of *S. costatum* (*Conway et al.*, 1976). The uptake rate increased from 4.68 pg Si cell$^{-1}$ d$^{-1}$ in the steady state to 16.10 pg Si cell$^{-1}$ d$^{-1}$ during the first day in batch mode. However, DA production ceased at this moment. During the following 3 days, silicate uptake rate was reduced to 8.85 pg Si cell$^{-1}$ d$^{-1}$ and DA production resumed (Fig. 5.6D) at a rate of 102.7 μg DA l$^{-1}$ d$^{-1}$ (1.39 pg DA cell$^{-1}$ d$^{-1}$). These surges in DA production and in silicate uptake were probably higher in the first few hours after the shift from the steady state continuous to batch cultivation. Short term kinetics of silicate uptake and DA production need further investigation.

Domoic acid episodes recurred in the bays around Prince Edward Island in late fall and winter during 1987-1991. Silicate concentration is much lower in the natural sea water than in the culture, but DA levels were generally higher. These culture experiments show that cells produces more DA under lower supply of silicate even at the same growth rate. It is very likely that in natural sea water, *P. pungens* f. *multiseries* is severely silicate stressed and would therefore produces more DA under such conditions.

5.4.2. Cellular chemical composition and DA production

Biomass and cellular chemical composition varied with silicate availability. Except for silicon, concentrations of particulate chlorophyll *a*, carbon, nitrogen, phosphorus, and ATP in the culture were comparable between Experiments I and II. However, individual cells in Experiment I contained less of these constituents than those in Experiment II (Table 5.1). This suggested that silicate-limited cultures attain a smaller population size at steady state, but each cell contains more of these cellular components.
Cellular chlorophyll a ranged from 0.45 to 2.23 pg Chl a cell$^{-1}$ and was comparable to the results from batch culture (Figs. 3.3, 4.2 - 4.5). Cells in Experiment I contained less chlorophyll a than those in Experiment II (Table 5.1). This also agreed with the results from batch culture (Chapter 4). In batch culture, the maximum cellular chlorophyll a on day 6 was 0.82 pg Chl a cell$^{-1}$ in the controls (Fig. 4.2) while 0.66 pg Chl a cell$^{-1}$ in Treatment B (Fig. 4.3). This suggested a negative relationship between cellular chlorophyll a and the supply of silicate in the medium. However, this relationship was not shown in either Experiment I or II because of the positive correlation between cellular chlorophyll a and growth rate (Table 5.1).

Cellular carbon ranged from 76.5 to 227.8 pg C cell$^{-1}$ and nitrogen from 9.42 to 32.9 pg N cell$^{-1}$. This values were comparable to the cells in late exponential phase and stationary phase of batch cultures (Fig. 3.3). C:N ratios differed in the two continuous culture experiments, 9.24 - 10.78 for Experiment I and 6.21 - 9.71 for Experiment II. Higher ratios and less variability were characteristics of Experiment I cells and lower ratios and high variability for Experiment II cells. The ratios of Experiment I cells are comparable to those cells at late exponential phase while Experiment II cells are comparable to stationary phase cells (Fig. 3.4). This similarity between continuous cultures and batch cultures was also valid for DA production discussed in Section 5.4.1. High C:N ratios are an indication of stressed cells (Goldman et al., 1979, Pan et al., 1991, Subba Rao and Pan, 1993). The high C:N ratios in Experiment I cells (Table 5.2) suggested that although sufficient silicate existed for further growth of the population, the cells were stressed due to a factor not determined. The low C:N ratios in Experiment II,
on the other hand, do not necessarily indicate that the culture was less stressed than Experiment I cells. In fact, they were more severely stressed by silicate limitation. The low C:N ratios in Experiment II were attributed to the faster increase in cellular nitrogen relative to carbon (Table 5.1) under silicate limitation.

Redfield et al. (1963) demonstrated atomic ratios of C:Si:N:P = 106:15:16:1 based on the data from the Western Atlantic. Silicon appears to enter the biochemical cycle in about the same proportion as nitrogen (Richards, 1958). In P. pungens f. multiseries, the mean elemental ratio (atomic) of C:Si:N:P in Experiment I was 151:29:15:1 and in Experiment II 111:10:15:1 (Table 5.2). Silicate entered the cells faster than nitrogen in Experiment I but slower in Experiment II. N:P ratios (atomic) were similar in the two experiments although both N and P were much lower in the cells from Experiment I cells. Ratios of C:P, P:Si, C:Si and N:Si were significantly different (p < 0.001, n=10) between these two experiments. The higher ratios of P:Si, C:Si and N:Si were associated with high DA production in Experiment II (Fig. 5.10) strongly suggesting that DA production was enhanced by silicate limitation. When this stress was eased during the extended batch mode period in Chamber 6 by addition of silicate, DA production was interrupted (Fig. 5.7). However, DA production increased 3 times when more severe stress was applied in Chambers 1 and 5. This further confirmed the association of DA production with silicate limitation consistent with the results from perturbation of batch culture (Figs. 4.4, 4.5).

Low silicon per cell and high DA production characterized Experiment II (Fig. 5.10A). The marked difference in the relative content of silicon in cells from
Fig. 5.10. Relationships between domoic acid production and cell chemical composition. The curve in A is fitted by Equation 5.1.
Experiments I and II (Figs. 5.10B, C, D) provided another evidence of the association of high DA production with silicate limitation. Therefore, silicon metabolism is the major factor controlling high DA production.

In Experiment II, highest DA production at $\mu=0.20$ d$^{-1}$ coincided with the highest C:Chl a, C:Si and C:P ratios (Table 5.2b) reflecting the high particulate carbon in the culture (771.4 μM). In both Experiments I and II, C:Chl a ratios were positively correlated with DA production (Table 5.2) but negatively correlated with growth rate. C:Chl a ratio in this study ranged from 418 to 811, which is an order of magnitude higher than that for other non-toxic diatoms such as *S. costatum*, *Chaetoceros debilis*, *Thalassiosira gravida* (Harrison, *et al.*, 1977). This ratio generally varies by a factor of 2 ranging from 20 to 60 in healthy, natural non-toxic populations.

Higher C:Chl a ratios are associated with silicon or nitrogen limitation in diatoms. For example, in *Thalassiosira gravida* (Harrison *et al.*, 1977), C:Chl a of silicate-limited cells increased from 26 to 46 and in ammonium-limited cells from 26 to 55. Similarly in batch cultures of *P. pungens f. multiseries* (Fig. 3.4), stationary phase cells have higher C:Chl a ratios than exponential phase cells; in continuous culture (Table 5.2), Experiment II cells have higher C:Chl a than Experiment I cells.

Ratios of N:Chl a were negatively correlated with growth rate in both Experiments I and II, with higher values in Experiment II cells than in Experiment I cells. This was primarily due to the higher cellular nitrogen in Experiment II cells than Experiment I cells by a factor of 2 (Table 5.1). The higher nitrogen content in Si-limited cells is consistent with other non-toxigenic diatoms such as *Chaetoceros debilis* and *Thalassiosira gravida*.
(Harrison et al., 1977). In addition, P:Chl \(a \), Si:Chl \(a \), C:N and other chemical ratios were related to silicate limitations (Table 5.2).

5.4.3. Domoic acid production in relation to nutrient metabolism

Domoic acid was significantly produced when growth was low in the steady state continuous culture, or completely stopped in the stationary phase of batch cultures. This is similar to the general pattern of secondary metabolism (Vining, 1986). At high growth rates, carbon assimilation, nitrogen, phosphorus and silicate uptake rates were high, establishing a higher demand for metabolic energy and resulting in less free energy in the form of adenosine triphosphate (ATP). Fast-growing cells contained less ATP (Fig. 5.11A). Production of DA could have been inhibited partly because of the deficiency of free energy (Fig. 5.11C).

Carbon assimilation rates (\(P_{\text{B}}^{\text{n}} \)) in continuous cultures ranged from 0.2 to 2.9 \(\mu \)g C [\(\mu \)g Chl \(a \)]\(^{-1} \) h\(^{-1}\), and were comparable with the results from batch culture (Figs. 3.7A, 3.13A, 3.18A). The photo-chemical (energy assimilation) process may be less influenced by nutrients except for phosphate. When carbon assimilation was reduced at low growth rate, chlorophyll \(a \) concentration was not affected (Table 5.1). This suggested that the photochemical process was still in progress at a similar rate. The photo-assimilated energy was used less for carbon assimilation and the increase in the residual free energy (ATP) was beneficial to DA production (Fig. 5.11A). The negative relationship between \(P_{\text{B}}^{\text{n}} \) and DA concentration (Fig. 5.12A) was found in both Experiments I and II. The DA production was interrupted in the stationary culture of \(P. \ pungens \ f. \ multiseries \) when
Fig. 5.11. ATP concentrations in relation to (A) growth rate, (B) silicate uptake, and (C) DA production. The lines are linear regressions, broken lines corresponding to open triangles, solid line to filled circles.
Fig. 5.12. Relationships between domoic acid concentration and other cell metabolism. The curve in A is fitted by an exponential function, as in Equation 5.1. The lines in B and C are linear regressions corresponding to open triangles (broken lines) and filled circles (solid line).
DCMU was used to block the photophosphorylation (Bates et al., 1991). Production of DA was shown to depend on photo-assimilated energy. Differences in energy partitioning existed when growth rate were low and high.

Uptake of silicate requires energy. In the freshwater diatom *Navicula pelliculosa*, for example, silicate uptake was coupled with aerobic respiration (Lewin, 1955). The respiration quotient (R.Q.) was high in Si-replete cells but low in Si-depleted cells. In *P. pungens f. multiseries*, ATP concentration was reduced at high Si uptake rates (Fig. 5.11B) due to consumption by this metabolic process. Under silicate stress, there would be less demand for energy from this metabolic process. Besides the possible connection between DA production and lipid synthesis (Section 4.4.3), energy availability was beneficial to DA production (Fig. 5.11C).

Domoic acid levels were slightly higher when nitrogen uptake was low (Fig. 5.12B). This phenomenon was significant in Experiment I. The DA production by *P. pungens f. multiseries* was reduced when nitrogen (nitrate or ammonium) concentration in the medium was less than 110 μM (Bates et al., 1993). However, in both Experiments I and II, nitrogen concentrations were never below 1000 μM. The reduced uptake rate was due to less demand for nitrogen at the low growth rate, and consequently, reduced energy consumption.

Domoic acid levels were also negatively correlated with phosphate uptake (Fig. 5.12C) although phosphate in the culture medium was never lower than 20 μM. In certain chemical respects, orthosilicate resembles orthophosphate, for example, they both react with ammonium molybdate to form a yellow complex (Section 2.5.2). Possible silicon-
phosphorus interactions have been investigated. In wheat plants, the uptake of silicate was slightly depressed in the presence of phosphate, while the uptake of phosphate was slightly enhanced when silicate was present (Rothbuhr and Scott, 1957). In *P. pungens* f. *multiserie*, uptake of phosphate was coupled with silicate. However, Experiment II cells contained twice as much phosphate as Experiment I cells (Tables 5.1a, b). The phosphate reserve was enhanced by silicate depletion. In Experiment I, DA concentration in the cultures increased when silicate as well as phosphate concentration decreased in the medium. This suggests that under phosphate limitation, DA production is also enhanced. Details of this aspect will be studied in Chapter 6.

In general, when growth declined, assimilation of carbon, nitrogen, phosphorus and silicate declined; there would be less demand for energy from those primary metabolic activities. Secondary metabolism, such as domoic acid synthesis, is favoured when this free energy is available.
6.1. Introduction

Domoic acid production is related to phosphorus (Figs. 1.4, 5.3). Phosphorus is one of the most important cell elements playing a key role in the synthesis of lipids (Siron et al., 1989; Lombardi and Wangersky, 1991) and nucleotide (Cembella et al., 1984). Recently, phosphorus has been shown to interfere with production of saxitoxins by Alexandrium tamarense (Boyer et al., 1987; Anderson et al., 1990).

Phosphate is a macronutrient in the environment. It is an important limiting factor to phytoplankton production in lakes and occasionally is a limiting factor to marine phytoplankton growth. In Cardigan Bay, PEI, when the amnesic shellfish poisoning episodes occurred in 1987, phosphate concentration in the seawater was low (<0.22 μM) and N:P ratios were high (41.2-81.5, Subba Rao et al., 1988b).

In this chapter, I examined the effects of phosphate limitation on the growth, cell chemical composition and DA production of P. pungens f. multiseries in continuous
culture and the extended batch mode. Production of DA in relation to cell bioenergetics and alkaline phosphatase activity was investigated under chemostat steady state continuous culture and extended batch culture conditions.

6.2. Materials and Methods

6.2.1. Chemostat system

The chemostat system was basically the same as that described in Section 2.10 (Fig. 2.1). Six chemostats were set up simultaneously. Glass carboys of 20 litre were used as the reservoir for the medium.

6.2.2. Preparation of culture medium and stock culture

Cardigan Bay sea water was collected at 5 m depth in 1989 and stored in light proof plastic barrels until required (> 1 year). Salinity of this sea water was adjusted to 27‰ (comparable to the salinity on site) by adding deionized water (Super Q). This sea water was then enriched to the levels of medium H (Table 2.2) with modification of silicate and phosphate concentrations. In the culture of *P. pungens f. multiseries* in standard medium H, silicate was usually depleted first. Therefore, the concentration of silicate was fortified to 245 µM to avoid silicate depletion during the experiments, and phosphate concentration reduced to 20% of normal (10.4 µM). This enriched seawater was then autoclaved in 10-litre glass carboys each containing 6 litre medium at 15 Psi for 20 minutes. Three carboys of this autoclaved medium were aseptically transfer to a pre-
autoclaved 20-litre glass carboy immediately after autoclaving and then cooled over 24-36 hours. This served as the reservoir medium.

In addition to the reservoir medium, small batches (250, 400 ml) of the medium with slightly higher phosphate concentration (17.3 μM) were prepared in 500 ml or 1000 ml Erlenmeyer glass flasks and autoclaved for 15 minutes. These flasks of medium were employed for stock cultures used to seed continuous cultures in the chemostat chambers.

Stock culture of *P. pungens f. multiseries* (strain KP-59) was grown at 15°C under 420 μmol m⁻² s⁻¹ for 18 days, subcultured every 6 days. A 50 ml culture was inoculated into a flask containing 250 ml medium.

6.2.3. Procedures for experiments

The chemostat systems were maintained at 15 (±0.2) °C under 290 (±50) μmol m⁻² s⁻¹ continuous light. When the temperature of the system was steady, 300 ml of the stock culture was inoculated into each chamber containing 400 ml fresh medium (Fig. 6.1). The culture was agitated and aerated as described in Section 2.10 immediately after inoculation. Inflow of the fresh medium started 3 days later when significant growth of the culture was evident (visually checked), and continued for 25-35 days. Cultures were monitored daily by *in vivo* chlorophyll a fluorescence; the steady state was defined as a period of 5 days in which the coefficient of variation of chlorophyll a fluorescence was not greater than 5%. Inflow rate (dilution rate) was confirmed by measuring the effluent daily. When steady state was achieved, 250 ml culture was taken from each chamber. Subsamples were taken for domoic acid (DA), particulate phosphorus and silicon,
Inoculation:
400 ml medium
300 ml culture

Batch mode growth (3 days)

Chemostat continuous mode

Steady state experiments (19)

Batch mode (9 days)

Chamber 1
D = 0.20 d\(^{-1}\)
No perturbation

Chamber 2
D = 0.13 d\(^{-1}\)
142 \(\mu\)M (day 1)
Si perturbed

Chamber 6
D = 0.15 d\(^{-1}\)
61 \(\mu\)M (day 4)
P perturbed

50 \(\mu\)M (day 4)
P perturbed

Conclusion:
DA production related to
P stress

Fig. 6.1. Schematic illustration of procedures for experiments. See text for details.
particulate inorganic phosphate, chlorophyll a, particulate carbon and nitrogen, adenosine triphosphate (ATP), alkaline phosphatase activity (APA), and cell concentration measurements using the procedures described in Chapter 2. Filtrate (GF/F, 0.7 μm) was collected for DA and dissolved phosphorus and silicon measurements. Immediately after samples were taken, new dilution rates were established. The next steady state was usually attained in 7-9 days. A total of 19 steady state experiments were conducted from the 6 chemostats.

Immediately after the last steady state experiment, inflow of the reservoir medium was stopped and the cultures in Chambers 1, 2 and 6 were maintained under the same condition of light, temperature, aeration and agitation. The phosphate and/or silicate concentrations were perturbed in Chambers 2 and 6 (Fig. 6.1). In chamber 6, 61 μM of the phosphate was added on day 4. In Chamber 2, 142 μM silicate was added on day 1 and 50 μM phosphate was added on day 4. The cultures were kept in the batch mode for 9 days. Samples for analyses of DA, phosphate and silicate concentrations, cell concentrations and chlorophyll a concentration were collected daily. Other samples for particulate phosphorus and silicon, particulate inorganic phosphate, particulate carbon and nitrogen, ATP and APA were collected periodically.

6.3. Results

6.3.1. Steady states in continuous cultures

Steady state cell concentrations ranged from 8.1 to 16.7 x 10^7 cells l^-1 and
increased as growth rate decreased (Table 6.1). Growth rate ranged from 0.06 to 0.62 d\(^{-1}\), mostly <0.3 d\(^{-1}\) (Fig. 6.2). The average growth rate of all the 19 steady state experiments was 0.25 (+ 0.18) d\(^{-1}\).

Growth kinetics were best described by equation 5.3 (Fig. 6.2). However, my data points were concentrated in the low growth rate portion. Direct fitting of equation 5.3 to the data points resulted in unreasonably higher values of \(\mu_m^*\) and \(K_v\) and huge coefficient of variation (71%-90%, Table 6.2). Therefore the highest \(\mu_m^*\) value, 1.10 from Chapter 5 was used as the high limit of \(\mu_m^*\) in the fitting, which yielded reasonable values with small standard deviations. The coefficients of variation were reduced to 2%-3.1%. The variance of fitting did increase, but the magnitude of increase was small (<8%).

Growth rate was coupled with carbon assimilation (\(P_{Bm}\), Table 6.1). Growth rate increased as \(P_{Bm}\) increased from 0.53 to 4.46 µg C [µg Chl a]\(^{-1}\) h\(^{-1}\). This was consistent with the results earlier (Fig. 3.20, Table 5.1).

Growth rate was also correlated with phosphate and silicate concentration in the medium (Table 6.1). Dissolved phosphate increased from 0.00 to 2.97 µM while silicate increased from 1.90 to 194.1 µM as growth rate increased. When growth rate was >0.30 d\(^{-1}\), it was most obvious that phosphate in the medium increased as growth rate increased. When growth rate <0.30 d\(^{-1}\), on the other hand, phosphate in the medium did not change significantly (Fig. 6.3D). When growth rate was <0.14 d\(^{-1}\), the total dissolved phosphorus slightly increased as growth decreased.

Domoic acid concentration in the culture (medium + cells) ranged from 2.2 to 474.8 µg l\(^{-1}\), which was comparable with that in the silicate limited continuous culture
Table 6.1. Steady state experiments: measured variables, their statistics and their correlations with growth rate, DA production and concentration.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Correlations (n=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Growth rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DA prod.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total DA</td>
</tr>
<tr>
<td>Growth rate (d(^{-1}))</td>
<td>0.25</td>
<td>0.06</td>
<td>0.62</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>-0.46</td>
<td>-0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(^a) (pg C [pg Chl a](^{-1}) h(^{-1}))</td>
<td>1.62</td>
<td>0.53</td>
<td>4.46</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>-0.52</td>
<td>-0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APA (ng P [pg Chl a](^{-1}) h(^{-1}))</td>
<td>79.02</td>
<td>16.14</td>
<td>194.82</td>
<td>-0.71</td>
</tr>
<tr>
<td></td>
<td>0.43</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA production (pg DA l(^{-1}) d(^{-1}))</td>
<td>12.31</td>
<td>0.99</td>
<td>42.42</td>
<td>-0.46</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.84</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total DA (pg l(^{-1}))</td>
<td>101.00</td>
<td>2.20</td>
<td>474.80</td>
<td>-0.57</td>
</tr>
<tr>
<td></td>
<td>0.84</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellular DA (pg cell(^{-1}))</td>
<td>0.53</td>
<td>0.02</td>
<td>2.21</td>
<td>-0.60</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA in filtrate (pg l(^{-1}))</td>
<td>25.07</td>
<td>0.00</td>
<td>133.30</td>
<td>-0.54</td>
</tr>
<tr>
<td></td>
<td>0.71</td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10(^7) cells l(^{-1})</td>
<td>12.88</td>
<td>8.10</td>
<td>16.78</td>
<td>-0.65</td>
</tr>
<tr>
<td></td>
<td>0.58</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chl a (pg l(^{-1}))</td>
<td>60.32</td>
<td>23.01</td>
<td>102.30</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pg Chl a cell(^{-1}))</td>
<td>0.49</td>
<td>0.14</td>
<td>0.99</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>-0.03</td>
<td>-0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC (pg C cell(^{-1}))</td>
<td>782.20</td>
<td>404.40</td>
<td>1122.90</td>
<td>-0.68</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSi (pg N cell(^{-1}))</td>
<td>75.59</td>
<td>38.61</td>
<td>126.98</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>-0.14</td>
<td>-0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PN (pg N cell(^{-1}))</td>
<td>86.07</td>
<td>50.00</td>
<td>141.43</td>
<td>-0.50</td>
</tr>
<tr>
<td></td>
<td>0.48</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved reactive Si (pg Si cell(^{-1}))</td>
<td>36.23</td>
<td>20.08</td>
<td>50.25</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>-0.21</td>
<td>-0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved reactive P (pg P cell(^{-1}))</td>
<td>63.50</td>
<td>1.90</td>
<td>194.10</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>-0.32</td>
<td>-0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP (pg P cell(^{-1}))</td>
<td>5.26</td>
<td>2.89</td>
<td>9.22</td>
<td>-0.42</td>
</tr>
<tr>
<td></td>
<td>0.19</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total dissolved P (pg P cell(^{-1}))</td>
<td>1.31</td>
<td>0.60</td>
<td>2.23</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>-0.26</td>
<td>-0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy charge (%)</td>
<td>78.18</td>
<td>54.78</td>
<td>92.15</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>-0.27</td>
<td>-0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 6.2. Relationship of growth rate and phosphate uptake rate during the continuous culture. μ_m' is fixed at 1.10 d$^{-1}$ (the maximum μ_m' from Chapter 5). $\mu = \mu_m' U/(K_U + U)$.

Table 6.2. Fitted values of Fig 6.2. During fitting, an up-limit of 1.10 d$^{-1}$ (the μ_m' value from Chapter 5) was applied in comparison with the values obtained by directly fitting. Values in the parentheses are standard deviations of fitting.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>With limit</th>
<th>No limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_m' (d$^{-1}$)</td>
<td>1.10(0.022)</td>
<td>1.99(1.41)</td>
</tr>
<tr>
<td>K_U (pg P cell$^{-1}$ d$^{-1}$)</td>
<td>0.99(0.031)</td>
<td>2.18(1.960)</td>
</tr>
<tr>
<td>Variance of fitting</td>
<td>0.003291</td>
<td>0.00305</td>
</tr>
</tbody>
</table>
Fig. 6.3. Variation with growth rate in the steady state experiments. (A) domoic acid concentration, (B) cellular DA and its production, (C) alkaline phosphatase activity (APA, ng P [µg Chl a]⁻¹ h⁻¹), and (D) dissolved phosphorus. The curves in A, B, C are fitted by Equation 5.1 and those in D are fitted by eye.
(Chapter 5). The cellular DA levels ranged from 0.02 to 2.21 pg cell$^{-1}$, which were higher than those in Experiment I, but lower than those in Experiment II of the silicate limited continuous culture (Tables 5.1, 5.2). Similarly, DA production rates were 0.99-42.42 pg l$^{-1}$ d$^{-1}$ (0.012-0.257 pg DA cell$^{-1}$ d$^{-1}$), less than Experiment II, but more than those from Experiment I of the silicate limited cultures.

Concentration and production of DA were positively correlated with cell concentration, chlorophyll a, particulate carbon, nitrogen and silicon and APA, but negatively correlated with growth and carbon assimilation (Table 6.1). At growth rates less than 0.3 d$^{-1}$, DA concentration and production rate increased when growth rate decreased. At higher growth rates (> 0.3 d$^{-1}$), no change in DA occurred in relation to growth rate (Figs. 6.3A, B).

Similarly, alkaline phosphatase activity (APA) was low when growth rate was high. There was a threshold at growth rate of 0.3 d$^{-1}$ (Fig. 6.3C), larger than that, APA was less than 60 ng P [pg Chl a]$^{-1}$ h$^{-1}$ as a result of sufficient phosphate in the medium (>0.9 μM, Figs. 6.3C, D). When growth rate was lower than 0.3 d$^{-1}$, on the other hand, APA increased exponentially although there was detectable phosphate in the culture medium.

APA was directly related to phosphate concentration in the culture medium (Fig. 6.4). When phosphate in the culture medium was less than 1 μM, APA increased drastically from 24 to 192 ng P [pg Chl a]$^{-1}$ h$^{-1}$. When phosphate concentration exceeded 1.0 μM, on the other hand, APA remained relatively constant and low regardless the change of growth rate. This suggested that APA was an indicator of severity of
161

Fig. 6.4. Relationships between alkaline phosphatase activity (APA) and dissolved inorganic phosphate. The curve is fitted by Equation 5.1.
phosphate limitation and that 15 of the 19 steady states in this experiment were phosphate limited.

Domoic acid concentration was correlated with APA (Fig. 6.5, p<0.05). Generally, values above 60 ng P [µg Chl a]h⁻¹ corresponded to high DA concentration with greater variation. The relationships between DA and N:P ratios was similar. High values of N:P (> 14) corresponded with high DA concentration (Fig. 6.6). These suggested that DA production corresponded with phosphate limitation.

Under phosphate limitation, the growth rate and the overall primary cell metabolism (Pₘ, N, P and Si uptake, etc.) were low, but DA concentration and its production were high (Fig. 6.7). This suggested a change in the energy partitioning between primary and secondary metabolism under phosphate limitation. When the growth rate was lower than 0.3 d⁻¹, ATP and total amount of ATP+ADP+AMP were generally higher but variable, which is unique in this diatom. However the adenylate energy charge (EC) was generally lower (Fig. 6.8) when growth rate was low, which was consistent with other microalgae (Cembella et al., 1984). When growth rate was lower than 0.14 d⁻¹ the concentration of ATP and ATP+ADP+AMP decreased, which coincided with an increase in total dissolved phosphorus. This suggested that cells were severely stressed and released phosphorus into the culture medium.

6.3.2. Principal component analysis

Table 6.1 shows that growth rate, DA concentration and its production correlated with cell concentration, dissolved phosphate and silicate and other chemical and biological
Fig. 6.5. Relationships of alkaline phosphatase activity to (A) DA production, (B) cellular DA, (C) DA in the filtrate, and (D) total DA in continuous cultures. The lines are linear regressions.
Fig. 6.6. Relationships of N:P (atomic) ratios to (A) DA production, (B) cellular DA, and (C) total DA in continuous cultures. Curves fitted by eye.
Fig. 6.7. Relationship of cellular DA (filled circle) and DA production (open triangles) with (A) carbon assimilation, uptake of (B) phosphate, (C) nitrate and (D) silicate in continuous cultures. Curves fitted by Equation 5.1.
Fig. 6.8. Relationships of growth rate to (A) ATP, (B) ATP+ADP+AMP, and (C) adenylate energy charge (EC) in continuous cultures. Curves fitted by eye.
parameters. However, use of linear regression analysis to relate biological properties could be highly suspectable due to multicollinearity problems introduced by high levels of correlations between the observed variables (Subba Rao and Smith, 1987), in this case between biomass and residual nutrient levels. Principal component analysis (Harris, 1985) of these biological and chemical parameters (except for the growth rate, DA concentration and its production) was applied to examine the integrated effect of these variables on growth and toxin productions. The first principal component (PC1) explained 50% of the variance, which was primarily contributed by dissolved inorganic phosphate (DIP); and secondarily by dissolved inorganic silicate (DISi), particulate silicon (PSi) and carbon (PC) (Table 6.3). Comparison of the newly derived variables, specifically the scores of

<table>
<thead>
<tr>
<th>Component</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>% variance</td>
<td>50</td>
<td>25</td>
<td>11</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Cells ml$^{-1}$</td>
<td>-0.31</td>
<td>-0.28</td>
<td>0.56</td>
<td>-0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>APA</td>
<td>-0.29</td>
<td>-0.41</td>
<td>-0.08</td>
<td>0.53</td>
<td>-0.22</td>
</tr>
<tr>
<td>DIP</td>
<td>0.44</td>
<td>0.05</td>
<td>0.06</td>
<td>0.03</td>
<td>-0.67</td>
</tr>
<tr>
<td>PP</td>
<td>-0.01</td>
<td>0.58</td>
<td>-0.38</td>
<td>-0.07</td>
<td>0.23</td>
</tr>
<tr>
<td>DISi</td>
<td>0.39</td>
<td>0.13</td>
<td>0.44</td>
<td>-0.24</td>
<td>-0.04</td>
</tr>
<tr>
<td>PSi</td>
<td>-0.39</td>
<td>0.23</td>
<td>0.22</td>
<td>-0.25</td>
<td>-0.55</td>
</tr>
<tr>
<td>PC</td>
<td>-0.39</td>
<td>0.29</td>
<td>-0.02</td>
<td>0.28</td>
<td>-0.22</td>
</tr>
<tr>
<td>PN</td>
<td>-0.32</td>
<td>0.43</td>
<td>0.29</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>ATP</td>
<td>-0.27</td>
<td>-0.27</td>
<td>-0.45</td>
<td>-0.68</td>
<td>-0.18</td>
</tr>
</tbody>
</table>
PC1, with the growth rate, DA concentration and its production showed high correlations (p<0.01), positively with growth rate and negatively with DA and its production (Fig. 6.9). The patterns of the relationship of DA concentration and its production with PC1 resembled those with growth rate (Figs. 6.3, 6.9).

The results of principal component analysis were consistent with those of correlation analysis (Tables 6.1, 6.3). It was concluded that growth and DA production were mainly controlled by phosphate or silicate concentration in the culture medium.

6.3.3. Extended batch mode

When the supply of medium from the reservoir was stopped, the magnitude of increase in cell concentration was dependent on the previous steady state growth rate. In Chamber 1 (Fig. 6.10), the growth rate in the previous steady state was 0.20 d⁻¹. Cell concentration increased from 11 to 18 x 10⁷ cells l⁻¹ in 4 days at a slightly reduced rate (≈0.12 d⁻¹). However, chlorophyll a concentration did not increase, but decreased after day 3 probably due to the exhaustion of phosphate in the culture medium.

Domoic acid increased continuously at an average production rate of 74.7 µg DA l⁻¹ d⁻¹ (0.480 pg DA cell⁻¹ d⁻¹), which was about 3 times of the previous steady state rate (25.7 µg DA l⁻¹ d⁻¹, or 0.170 pg DA cell⁻¹ d⁻¹). However, the enhanced production gradually increased during the first 4 days from 56.3 to 142.0 µg DA l⁻¹ d⁻¹ (0.427 to 0.854 pg DA cell⁻¹ d⁻¹), followed by a reduction.

APA increased continuously from 51.6 ng P [µg Chl a]⁻¹ h⁻¹ on day 0 to 388.8 ng P [µg Chl a]⁻¹ h⁻¹ on day 9. Dissolved phosphate slightly increased during the first 2 days
Variations of (A) growth rate, (B) total DA in the culture and (C) DA production in relation to the scores of first principle component (PC1. Table 6.3) in continuous cultures. The line in A is linear regression and the curves in B an C are fitted by Equation 5.1.
Chamber 1 in the extended batch mode. Variations with time in (A) biomass [concentrations of cell (left) and chlorophyll a (right)], (B) DA [cellular DA (left) and its production (right)], (C) APA (ng P [μg Chl a]⁻¹ h⁻¹, left) and percentage of DA in the medium, and (D) dissolved phosphorus (left) and silicate (right).
(from 0.39 to 0.92 μM) and then decreased to a low on day 4 (0.32 μM). Phosphate concentration remained low from day 4 onwards (0.12-0.43 μM).

Silicate concentration in the medium decreased drastically from 61.03 μM on day 0 to 1.95 μM on day 4. From day 5 onwards, silicate concentration gradually recovered from 1.28 to 12.77 μM coincident with a decrease in particulate silicon from 233.25 to 223.45 μM. This again, suggested dissolution of cell silicon, consistent with the results from silicate limited experiments (Chapters 4, 5).

In Chamber 6 (Figs. 6.1, 6.1), the previous growth rate was 0.15 d⁻¹. Phosphate concentration in the medium remained low (0.20-0.71 μM) during the first 4 days. Phosphate was perturbed on day 4 to a concentration of 61.36 μM, and subsequently remained high (>48.89 μM). The immediate response to phosphate perturbation was APA (Figs. 6.11C, D), which increased continuously from 108.0 ng P [μg Chl a]⁻¹ h⁻¹ on day 0 to 267.0 ng P [μg Chl a]⁻¹ h⁻¹ on day 4 and then decreased to 130.2 ng P [μg Chl a]⁻¹ h⁻¹ immediately after the perturbation. Silicate concentration decreased from 24.91 to 1.87 during the first 4 days and remained low (<3.38 μM) afterwards.

Cell concentration increased from 14.7 to 26.9 x 10⁷ cells l⁻¹ during the 4 days, subsequently it decreased due to the exhaustion of silicate in the medium although phosphate was perturbed on day 4. On the other hand, chlorophyll a concentration did not change during the first 4 days but increased from day 4 onwards due to the perturbation of phosphate in the culture medium.

Domoic acid increased continuously at an average rate of 31.15 μg DA l⁻¹ d⁻¹ (0.132 pg DA cell⁻¹ d⁻¹). The production also continuously increased from 4.6 μg DA l⁻¹
Chamber 6 in the extended batch mode. Legend as Fig. 6.10. (D) 61 μM phosphate was added to the culture on day 4.
d\(^{-1}\) (0.31 pg DA cell\(^{-1}\) d\(^{-1}\)) at steady state to 62.3 μg DA l\(^{-1}\) d\(^{-1}\) (0.243 pg DA cell\(^{-1}\) d\(^{-1}\)) on day 4. However, the production was interrupted on day 4 due to the perturbation of phosphate, but resumed one day later at higher rate (87.3 μg DA l\(^{-1}\) d\(^{-1}\), 0.436 pg DA cell\(^{-1}\) d\(^{-1}\)) coincident with the exhaustion of silicate in the medium. The production rate increased continuously to 201.7 μg DA l\(^{-1}\) d\(^{-1}\) (1.004 pg DA cell\(^{-1}\) d\(^{-1}\)) at the end of the experiments. Note the further enhancement of DA production when the culture was switched from phosphate limitation to silicate limitation.

At lower steady state growth (0.13 d\(^{-1}\)) in Chamber 2 (Fig. 6.12), phosphate in the culture medium was completely exhausted (0.00 μM) but slightly increased during the first day (0.50 μM). Phosphate concentration remained low (<0.61 μM) during the first 4 days but after perturbed on day 4 to 49.96 μM, it remained high (>28 μM). Silicate concentration decreased from 26.15 to 7.92 μM during the first day, but on day 1, addition of silicate raised the concentration to 150.04 μM. Surprisingly, silicate concentration did not decrease but gradually increased to 173.34 μM on day 4. After addition of phosphate on day 4, silicate concentration gradually decreased to 56.22 μM by the end of the experiment.

Domoic acid concentration increased from 326.3 to 526.5 pg l\(^{-1}\) (1.215 pg DA cell\(^{-1}\) d\(^{-1}\)) during the first day. The production was drastically reduced to 32.8 μg l\(^{-1}\) d\(^{-1}\) (0.399 pg DA cell\(^{-1}\) d\(^{-1}\)) during the following day immediately after the silicate addition. The DA production resumed on day 3 and day 4 at a rate of 126 μg DA l\(^{-1}\) d\(^{-1}\) (0.839 pg DA cell\(^{-1}\) d\(^{-1}\)). Immediately after phosphate addition on day 4, DA production was interrupted again, reduced to 13.2 μg DA l\(^{-1}\) d\(^{-1}\) (0.169 pg DA cell\(^{-1}\) d\(^{-1}\)). However, DA
Chamber 2 in the extended batch mode. Legend as Fig. 6.10. (D) 142 μM of silicate was added to the culture on day 1 and 50 μM phosphate on day 4.
production resumed at a higher rate (241.3 μg DA l⁻¹ d⁻¹, or 1.487 pg DA cell⁻¹ d⁻¹) the next day (day 6), reduced again to 37 μg DA l⁻¹ d⁻¹ (0.212 pg DA cell⁻¹ d⁻¹) on day 7. The DA production did not recover but gradually decreased from day 7 onwards because neither phosphate nor silicate was limiting during this period.

Note, APA decreased gradually from 215.2 to 173.8 ng P [μg Chl a]⁻¹ h⁻¹ after silicate addition and increased again on day 3 to 215.9 ng P [μg Chl a]⁻¹ h⁻¹ on day 4 right before phosphate perturbation. APA decreased to 162.2 ng P [μg Chl a]⁻¹ h⁻¹ immediately after the phosphate addition.

Cell concentrations slightly decreased after silicate perturbation but chlorophyll a concentration did not change significantly. After phosphate perturbation, both cell concentration and chlorophyll a increased gradually.

6.4. Discussion

6.4.1. Growth and DA production

Domoic acid was produced when growth declined. This was consistent with the results from batch (Chapter 4) and silicate limited continuous cultures (Chapter 5). The production was significantly enhanced (up to 42.4 μg DA l⁻¹ d⁻¹, 0.257 pg DA cell⁻¹ d⁻¹) when growth rate was below 0.3 d⁻¹ (Fig. 6.3). When growth rate was above 0.3 d⁻¹, on the other hand, DA production remained relatively constant and low (1.0-4.7 μg DA l⁻¹ d⁻¹, 0.012-0.043 pg DA cell⁻¹ d⁻¹).

At low growth rates (< 0.3 d⁻¹), there was still detectable phosphate in the medium.
APA, an indication of levels of phosphate limitation, increased as did DA production when growth rate decreased. When growth rate was above 0.3 d\(^{-1}\), however, APA was low as a result of the increase of phosphate in the medium. This suggested that DA production correlated with the severity of phosphate limitation.

Similarly, during the extended batch period, DA production significantly enhanced (by a factor of \(\geq 3\)) soon after inflow of medium from the reservoir was stopped although the cells were still dividing (Figs. 6.10, 6.11, 6.12). Production of DA was interrupted immediately after addition of phosphate or silicate. The magnitude of enhancement in DA production at the beginning of the batch mode and the interruption of DA production by silicate and phosphate addition were in agreement with the results from the extended batch mode after silicate limited steady state studied in Chapter 5 (Section 5.3.3).

Soon after phosphate perturbation in Chamber 6 (Fig. 6.11), particulate phosphorus increased from 5.08 to 18.91 \(\mu\)M (or 0.59 to 2.70 pg P cell\(^{-1}\)). Subsequently, phosphate uptake by the cells was not significant as evident by the relative constant values of phosphate in the medium (48.89-57.04 \(\mu\)M, Fig. 6.11D) and particulate phosphorus (16.04-18.91 \(\mu\)M, or 2.56-2.70 pg P cell\(^{-1}\)). Domoic acid production, on the other hand, resumed one day after phosphate addition at a higher rate (87.3 pg DA l\(^{-1}\) d\(^{-1}\), 0.463 pg DA cell\(^{-1}\) d\(^{-1}\)) and continued at a gradually accelerated rate (up to 201.7 pg DA l\(^{-1}\) d\(^{-1}\), 1.004 pg DA cell\(^{-1}\) d\(^{-1}\)). Similarly in Chamber 2 (Fig. 6.12), DA production was interrupted immediately after the phosphate addition and resumed one day later, but the DA production was low during the subsequent period. The differences in DA production during this period was probably because the former culture was simultaneously stressed
by silicate limitation but the later culture was not.

Production of DA resumed for one day in Chamber 2 probably resulted from the accumulation of DA precursors before the phosphate perturbation. The available energy would be channelled to phosphate uptake, therefore, there would be a short supply of energy for DA production and the production would be restrained. Soon after part of the energy was released, when phosphate uptake "stopped", DA production resumed until the available precursor was reduced. At this moment, cells were dividing as a result of sufficient phosphate and silicate in the medium. This period in Chamber 2 was similar to the early exponential phase in the batch culture. Therefore, DA production was diminished.

It is very interesting to note that DA production was interrupted immediately after silicate addition on day 1 in Chamber 2 (Fig. 6.12). Simultaneously, phosphate was limiting. The same energy partitioning theory for phosphate perturbation was applicable to the situation after silicate perturbation. Particulate silicate increased from 166.14 to 232.53 μM (or 27.36 to 39.58 pg Si cell⁻¹), while DA production reduced from 200.2 to 32.8 pg DA l⁻¹ d⁻¹ (1.215 to 0.399 pg DA cell⁻¹ d⁻¹). The silicate uptake rate was greatly reduced, but DA production gradually resumed to 126 pg DA l⁻¹ d⁻¹ (0.839 pg DA cell⁻¹ d⁻¹) one day after the perturbation (Figs. 6.12B, D).

During the continuous culture mode, when phosphate limitation relaxed in the culture, carbon assimilation increased from 1.5 to 4.5 μg C [μg Chl a]⁻¹ h⁻¹ as the growth rate increased from 0.29 to 0.62 d⁻¹. The DA production was not significant when the culture was neither limited by phosphate nor by silicate. When the growth rate was less
than 0.30 d\(^{-1}\), on the other hand, \(P_m^r\) was less than 1 (0.53-0.97) \(\mu\)g C [\(\mu\)g Chl a]\(^{-1}\) h\(^{-1}\) and DA production was significantly enhanced.

When growth rate decreased as the result of more severe phosphate limitation, domoic acid concentration increased both in the cells and in the culture medium (Fig. 6.3A). The percentage of domoic acid in the culture medium increased significantly and ranged from 13% to 85% of total DA when the growth rate was less than 0.14 d\(^{-1}\) (Fig. 6.3A). Similarly in the batch mode, the proportion of DA in the culture medium increased from 11% to 28.3% in Chamber 1 (Fig. 6.10C), and up to 32 and 51.2% in Chambers 6 and 2 respectively (Figs. 6.11C, 6.12C). The proportion of DA in the culture medium appeared not to be affected by short term perturbation. This increase of DA in the medium was consistent with results from silicate limited continuous culture (Figs. 5.2, 5.4). Under severe phosphate limitation, cell membranes might not be properly formed due to the short supply of phosphorus for the formation of lipid bilayer of the cell membrane which mainly consists of phospholipid. The resistance to the trans-membrane DA transportation might be damaged under severe phosphate stress so that DA could pass the membrane freely due to its water solubility.

6.4.2. N:P ratios and DA production

Table 6.4 shows cellular chemical compositions and their correlations with growth and DA production and indicates that DA production significantly correlated with N:P ratios in the cells. The concentration of nitrate (Table 2.2) and phosphate in the inflow medium were 1765 and 10.4 \(\mu\)M respectively resulting in a N:P ratio of 170. The Si:P
ratio in the inflow medium was 23.6. These high ratios allowed the culture to exhaust phosphate in the medium at maximum population size and created a phosphate limited environment. At this moment, the maximum particulate nitrogen in the steady state sample was 141.4 μM. Thus the dissolved nitrogen in the medium would be more than 1620 μM which resulted in extremely high values of N:P ratios, > 545.

The cellular N:P ratios in the steady state, however, changed very little, compared to the ratio in the medium. The N:P ratios ranged from 9.95 to 22.2, comparable to those from the silicate limited cultures with the mean ratios close to the optimum ratios of 10:1 proposed by Redfield et al. (1963). This does not necessary mean the cultures were in the optimum N:P conditions. Optimum N:P ratios for different species typically range from 7 to 53 (Cembella et al., 1984). For *P. pungens* f. *multiseries*, the optimum N:P ratio is around 10:1 as the uptake of phosphate did not occur in the batch culture until the cellular N:P ratios reached 10 (Pan, unpublished). After phosphate perturbation, N:P ratios dropped from 16-19 to 6-7 which coincided with the interruption of DA production in both Chambers 2 and 6. However, the continuous low ratio of N:P did not prevent the culture from producing DA in Chamber 6 because the culture was stressed by low silicate in the medium. Under more severe phosphate stress, the maximum N:P ratios of *P. pungens* f. *multiseries* cells was 23.3. This suggested that the N:P ratios in this diatom were conservative, which is unique in the phytoplankton. In *Thalassiosira pseudonana*, a marine diatom (Perry, 1976), N:P ratios ranged from 6.4 under nitrogen limitation to 61.1 under phosphate limitation. In *Scenedesmus* sp. a freshwater alga (Rhee, 1978), cell N:P ratios followed the N:P ratios in the inflow medium within the range of 5 to 80.
Nevertheless, one factor should not be ignored in the interpretation of the result, the phosphate concentration in the inflow medium may be still too high to create sufficiently severe phosphate stress. Although silicate concentration was fortified to 245 μM, it may still be too low to allow severe phosphate stress because silicate concentration in the medium was very low (1.89 μM) at the low growth rate 0.081 d\(^{-1}\). But, during the extended batch mode in Chamber 2 (Fig. 6.12), cell N:P ratios did not increase after silicate addition on day 1. Still, DA production significantly correlated with cellular N:P ratios (Fig. 6.6, p < 0.05, n=19).

Production of triglycerides, a storage class of lipids is triggered in diatoms by phosphate as well as silicate limitation (Lombardi and Wangersky, 1991; Siron et al., 1989; Healey and Hendzel, 1975). Parts of the biosynthetic cycle of lipids are different under silicate stress (Lombardi and Wangersky, 1991). However, Parrish et al. (1991) found that in batch culture of *P. pungens f. multiseries* under silicate limitation, lipid synthesis was not enhanced but a reduction was evident in late stationary phase. From the slope of the lines (broken) in Figs. 6.11B and 6.12B, we can see that DA production was triggered under stress of both nutrient limitations, up to 200 μg DA l\(^{-1}\) d\(^{-1}\) (1.215 pg DA cell\(^{-1}\) d\(^{-1}\)) under phosphate limitation and to 202 μg DA l\(^{-1}\) d\(^{-1}\) (1.004 pg DA cell\(^{-1}\) d\(^{-1}\)) under silicate limitation. This suggested that DA production was probably related to lipid synthesis because they have common precursors such as acetyl-CoA at the early stage of synthesizes (Fig. 1.4). When DA production was vigorous under severe phosphate or silicate limitation, these precursors might be used for DA production instead of lipid synthesis in *P. pungens f. multiseries*.
Table 6.4. Steady state cultures: cellular chemical compositions and their correlation with growth rate, domoic acid and its production. Values of C:Chl \(a \), N:Chl \(a \), Si:Chl \(a \) and P:Chl \(a \) are \(\mu g:\mu g \), and the rest are molar ratios.

<table>
<thead>
<tr>
<th>Ratios</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Growth rate</td>
</tr>
<tr>
<td>C:Chl (a)</td>
<td>172.00</td>
<td>103.40</td>
<td>279.60</td>
<td>-0.32</td>
</tr>
<tr>
<td>N:Chl (a)</td>
<td>21.56</td>
<td>14.63</td>
<td>33.03</td>
<td>-0.20</td>
</tr>
<tr>
<td>Si:Chl (a)</td>
<td>85.62</td>
<td>40.74</td>
<td>184.09</td>
<td>-0.11</td>
</tr>
<tr>
<td>P:Chl (a)</td>
<td>3.00</td>
<td>1.70</td>
<td>6.97</td>
<td>-0.09</td>
</tr>
<tr>
<td>ATP:Chl (a)</td>
<td>0.34</td>
<td>0.04</td>
<td>0.81</td>
<td>-0.39</td>
</tr>
<tr>
<td>P:ATP</td>
<td>449.00</td>
<td>126.00</td>
<td>2109.00</td>
<td>0.98</td>
</tr>
<tr>
<td>C:N</td>
<td>9.21</td>
<td>7.85</td>
<td>13.90</td>
<td>-0.32</td>
</tr>
<tr>
<td>C:Si</td>
<td>4.85</td>
<td>3.47</td>
<td>6.60</td>
<td>-0.24</td>
</tr>
<tr>
<td>C:P</td>
<td>153.39</td>
<td>102.96</td>
<td>243.70</td>
<td>-0.32</td>
</tr>
<tr>
<td>Si:N</td>
<td>1.93</td>
<td>1.32</td>
<td>2.94</td>
<td>0.01</td>
</tr>
<tr>
<td>Si:P</td>
<td>31.65</td>
<td>23.26</td>
<td>40.33</td>
<td>-0.16</td>
</tr>
<tr>
<td>N:P</td>
<td>16.62</td>
<td>9.95</td>
<td>22.15</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

The enhancement of DA production in phosphate-limited cultures of *P. pungens* f. *multiseriis* is similar to that in the production of saxitoxin by *Alexandrium tamarense* (Hall, 1982; Boyer *et al.*, 1987; Anderson *et al.*, 1990). Toxin content in P-limited *A. tamarense* dramatically increased at the beginning of stationary phase, reaching levels 2 to 3 times higher than that observed in control and nitrogen-limited cultures (Boyer *et al.*, 1987). The high toxin content may be attributed partly to the generally larger cells from P-limited culture (Alam *et al.*, 1979; Boyer *et al.*, 1987), but the magnitude of increase
in toxin (by a factor of 2-3) was higher than that in cell size (by a factor of 1.5). Low phosphate batch culture of *A. fundyense* showed a very high toxin production rate (161 fmol cell\(^{-1}\) d\(^{-1}\)).

6.4.3. Phosphate limitation and cellular chemical composition

Cellular chlorophyll *a* decreased under phosphate limitation compared to phosphate unlimited cultures (Chapters 3,4,5). During the extended batch period in Chamber 1 (Fig. 6.10), chlorophyll *a* concentration drastically decreased after day 3 when the culture was severely phosphate limited. Soon after phosphate perturbations in Chambers 6 and 2, chlorophyll *a* concentration gradually increased in spite of the decrease (Fig. 6.11) or increase (Fig. 6.12) in cell concentrations. Decrease in cellular chlorophyll *a* under nutrient stress has also been well documented in other diatoms, such as *Chaetoceros gracilis* (Lombardi and Wangersky, 1991), *C. curvisetus* and *Skeletonema costatum* (Finenko and Krupatkina-Akinina, 1974) under phosphate limitation, *Phaeodactylum tricornutum* (Roy, 1988) under nitrogen stress. In other diatoms however, cellular chlorophyll *a* content seems unaffected by phosphate stress (Cembella *et al.*, 1984). Under silicate limitation, on the other hand, cellular chlorophyll *a* increased in *P. pungens f. multiseries* (Chapter 5) and *Chaetoceros gracilis* (Lombardi and Wangersky, 1991).

Cellular C:Chl *a* was comparable to the results from high light batch culture experiment (Chapter 3) but was much lower (by a factor of 3) than silicate limited continuous culture (Table 5.3). This is due to the high content of carbon under silicate limitation (Tables 5.1, 5.2). In the extended batch mode in Chamber 1, for example,
silicate became exhausted in the medium after day 5, cellular carbon increased from 73 to 89 pg C cell\(^{-1}\) and the trend for Chamber 6 was similar.

Although phosphate was the limiting factor, P:Chl \(a\) ratios (3.0 ± 1.16) were slightly higher than in silicate limited cultures (2.32 ± 0.45). This suggested that cellular phosphate was conservative but chlorophyll \(a\) was sensitive to phosphate limitation. However, this was also because that cellular chlorophyll \(a\) increased under silicate limitation but decreased under phosphate limitation.

Cellular nitrogen was lower (9.66 ± 2.64) than those of phosphate unlimited batch (Chapter 3) and continuous cultures (Chapter 5). Generally, P-deficiency leads to a decline of protein in phytoplankton cells, which is due to temporary impairment of protein synthesis (Cembella et al., 1984). However, N:Chl \(a\) ratios (21.56 ± 5.07) were higher than silicate limited cultures (15.64 ± 3.89). This suggested cellular chlorophyll \(a\) was more sensitive to phosphate limitation than cellular nitrogen.

Cellular silicon ranged from 20.08 to 50.25 pg Si cell\(^{-1}\), comparable to that in silicate limited steady state chemostat culture (Table 5.1). Si:Chl \(a\) ratios, however were 3 times higher than those in the severely silicate-limited cultures (Table 5.2b).

Although the culture was phosphate limited, cellular ATP (0.15 ± 0.09 fmol ATP cell\(^{-1}\)) was comparable with silicate limited culture (0.16 ± 0.08 fmol ATP cell\(^{-1}\)), but was higher than the cultures which were neither limited by silicate nor by phosphate (0.11 ± 0.07 fmol ATP cell\(^{-1}\)). \textit{P. pungens} f. \textit{multiseries} appears to be unique in this respect. Usually, cellular ATP of microalgae decreases under phosphate or other nutrient stress (Cembella et al., 1984). However in the case of \textit{P. pungens} f. \textit{multiseries}, the pattern was
the opposite. This unique feature and its involvement in the DA production will be further discussed in Section 6.4.5.

6.4.4. Alkaline phosphatase activity and DA production

The presence of phosphate in the culture inhibited alkaline phosphatase activity (APA) in *P. pungens f. multiseries*. APA remained low (<50 ng P [µg Chl a]⁻¹ h⁻¹) when phosphate concentration in the culture medium was over 1 µM at growth rate over 0.3 d⁻¹ and at a phosphate supply rate larger than 2.1 µmol l⁻¹ d⁻¹ (Figs. 6.3, 6.4). On the other hand, when growth rate was below 0.3 d⁻¹ or phosphate supply rate was less 2.1 µmol l⁻¹ d⁻¹, APA increased continuously with a decrease of phosphate in the medium. Addition of phosphate to the culture inhibited but did not suppress APA (Figs. 6.11, 6.12). In Chamber 6 (Fig. 6.11), for example, phosphate concentration reached 61.4 pM after perturbation and then decreased to 48.9 µM the next day due to the uptake by the cells. APA decreased from 267 to 130.2 ng P [µg Chl a]⁻¹ h⁻¹ immediately after perturbation and further deceased to 100.86 ng P [µg Chl a]⁻¹ h⁻¹ the next day. In Chamber 2 (Fig. 6.12), on the other hand, APA increased during the next day after a drastic decrease due to phosphate perturbation.

Such a puzzling phenomenon can be explained by difference in the phosphate demand by cell metabolism in these two populations after perturbation. In Chamber 6, the uptake was merely to replace the previous phosphate debt; the population growth was inhibited by silicate limitation simultaneously. Cellular phosphorus increased from 0.53 to 2.44 pg P cell⁻¹. In Chamber 2, however, high APA was due to the uptake of
phosphate for the replacement of the previous debt as well as for supplying phosphate for population growth. The population size increased by 3.6×10^7 cells l^{-1} because no other limitation existed.

Production of DA was interrupted in both Chambers 6 (Fig. 6.11) and 2 (Fig. 6.12), while cellular DA decreased in Chamber 2 but not in Chamber 6. In Chamber 6, it would be more reasonable that DA production not be interrupted because it was limited by silicate simultaneously. However, the interruption implied the existence of a time lag for transition of the population from phosphate to silicate limitation and the accompanying transition of the mechanism of DA production. Different mechanisms of DA production are associated with phosphate and silicate stresses. This difference probably paralleled their difference in the cycle of lipid synthesis discussed earlier. This merits further investigation. The other explanation would be that the available energy was partitioned to phosphate uptake, which will be discussed in section 6.4.5. The toxin production resumed at a greater rate and continuously increased after the surge uptake of phosphate stopped, but APA did not increase. Silicate limitation was under the way during this period and stimulated DA production.

In Chamber 2, APA decreased from 214.8 to 188.4 ng P $[\mu g Chl \cdot a]^{-1} \cdot h^{-1}$ immediately after silicate perturbation on day 1 when silicate concentration in the medium increased from 7.9 to 150 μM (Fig. 6.10). Production of DA was restrained for 2 days, the rate being reduced from 200 $\mu g DA \cdot l^{-1} \cdot d^{-1}$ ($1.215 \mu g DA \cdot cell^{-1} \cdot d^{-1}$) to 33 $\mu g DA \cdot l^{-1} \cdot d^{-1}$ ($0.399 \mu g DA \cdot cell^{-1} \cdot d^{-1}$) and then gradually recovered. This is probably due to the chemical similarity between phosphate and silicate; e.g. they both react with ammonium...
molybdate during analysis to form the yellow complex (Section 2.5). In the silicate-limited chemostat culture, under the same phosphate supply conditions, severe silicate limitation increased cellular phosphorus by a factor of 2 (Table 5.1b compared with Table 5.1a). Detailed mechanism remains obscure.

The relationship of DA concentration with APA is similar to the syntheses of other secondary metabolites such as antibiotics streptomycin by *Escherichia coli* (Martin, 1977). Formation of most other antibiotics, such as neomycin by *Streptomyces fradiae*, vancomycin by *S orientalis* and ristomycin by *Proactinomyces fructiferi* var. *ristomicini*, are also positively correlated to APA and repressible by inorganic phosphate. This suggests that similarity exists between DA production and other secondary metabolism.

6.4.5. Relationships between DA production and other primary metabolism (energy partitioning)

Synthesis of requires metabolic energy (Fig. 1.4). The same energy source is shared by primary metabolism. When primary metabolism, such as carbon assimilation, or synthesis of protein or DNA, are vigorous as cells are actively dividing, the high demand of free energy from these metabolic processes will reduce the supply of same energy for secondary metabolism such as DA production. Therefore, DA was generally produced when overall cell metabolic activity declined due to phosphate or silicate limitation. Cellular DA content and its production increased when carbon assimilation, phosphate, nitrate and silicate uptake declined (Fig. 6.7).

Cellular ATP or the ratios of ATP to other cell elements has been frequently used
to indicate cell bioenergetic state and degree of phosphate limitations in phytoplankton (Cembella et al., 1984). During phosphate stress, cellular ATP may be depressed to a fraction of the value found in the exponentially growing cells (Healey, 1979). ATP levels in P-deficient cells may be, nevertheless, more than those under light- or N-limited conditions (Karl, 1980). In this study on *P. pungens f. multiseries*, however, cellular ATP level decreased when growth rate increased in the steady state (Table 6.1, Fig. 6.8), and this was also comparable with the levels in silicate limited cells (Table 5.1). The trend in the extended batch mode was similar; cellular ATP decreased after phosphate perturbation. It suggests a high demand of energy from primary metabolism when it is very active. In this respect, this diatom is unique.

Production of DA shares the energy source with primary metabolism. Under phosphate or silicate stress, the high content of free energy in the form of ATP is favourable for DA production. The production was interrupted due to phosphate or silicate perturbation during the extended batch mode, and then the production resumed after a day or so. Uptake of phosphate (Cembella et al., 1984) and silicate (Lewin, 1955) are energy-requiring processes. When the uptake rates were high, most free energy was partitioned to uptake of phosphate or silicate leading to a decrease in the cellular ATP content and adenylate energy charge (EC) upon phosphate or silicate perturbation. After the surge of uptake following phosphate and silicate perturbation, cellular phosphorus increased by a factor of 5, then uptake decreased, i.e. the competition for the available free energy was reduced and DA production resumed. After the surge uptake of silicate, however, DA production resumed gradually because silicate uptake was still carrying on.
at reduced rate.

In Chamber 2 (Fig. 6.12), although neither phosphate nor silicate was limiting after phosphate perturbation on day 5 and APA was low, the toxin production resumed at a higher rate for one day and then drastically decreased. This strongly suggested that availability of phosphate and silicate did not suppress DA production, but uptake of them competed for energy with the toxin production immediately after silicate or phosphate perturbation. As discussed earlier (Section 6.4.1), no significant uptake of phosphate or silicate was evident one day after the perturbation, which reduced the energy demand from these metabolic processes and was favourable for DA production. The resumed DA production was probably due to 1) decrease in energy demand from phosphate uptake or other primary metabolism, 2) accumulation of DA precursors.
Production of domoic acid has been associated with physiological stress resulting from silicate (Chapters 4 and 5) and phosphate (Chapter 6) limitation, or with decline of growth. A change in the partitioning of biogenic energy and precursors between primary and secondary metabolism appears to be the main mechanism initiating DA production.

Decline of growth in the late exponential phase of batch culture is probably due to self-limiting regulation. During the post μ_m period, the cells reduce their division rate in response to a reduction in resources, in this case silicate, or probably to the accumulation of extracellular excreta, which inhibit growth. During this period, self-shading was not evident because significant decrease in light will result in increase in cellular chlorophyll a content (Chapter 3), which did not happen in the culture. The final cell yield was proportional to the added silicate, which also suggested that light was not a limiting factor. The cells may have adjusted their internal metabolism according to the changed environment. Therefore, this self-limiting regulation is both intrinsic and extrinsic. These growth kinetics suggest that $P. pungens$ f. multiseries is probably a "K" strategist. This will be further discussed in Section 7.3.4.
Domoic acid production is greatly enhanced when a severe stress is applied after a period of active growth. The production is accelerated by a factor of 3 during the transition period from steady state growth to batch mode (Chapters 5 and 6) when growth is slowed and uptake of silicate or phosphate diminished. There was a similar trend in the early work by Bates et al. (1989, Table 3 in their paper). Although the authors did not mention it, their data showed higher maximum cellular domoic acid (pg DA cell\(^{-1}\)) associated with shorter duration in the exponential phase and higher population size in the stationary phase. This suggests that the accumulation of energy and precursors generated during the period of active growth is important for DA production under stress at later stages.

DA production is interrupted when growth or other specific metabolism resumes. During the perturbation experiments (Chapters 4-6), for example, DA production was reduced when the stress was eased when active uptake of nutrients, and growth, were resumed.

7.1. Biochemical perspective

The domoic acid molecule consists of two parts (Fig. 1.2). They are derived from glutamate and a C\(_{10}\) geranyl pyrophosphate (Laycock et al., 1989; Douglas et al., 1992) respectively. These two parts are then condensed to form a proline ring and release 4 phosphates for each domoic acid molecule (Fig. 1.4). Biosynthesis of isopentenyl pyrophosphate from acetyl-CoA requires 2 NADPH and 3 ATP for each molecule of
isopentenyl pyrophosphate formed. This process is strongly energy consuming. The other part, glutamate derivative, is synthesized originally from α-oxoglutarate, which may be derived from the Krebs cycle (Douglas et al., 1992). It is obvious that biosynthesis from α-oxoglutarate, the immediate precursor of glutamate, to proline, which requires 3 NADPH and 2 ATP molecules (Fig. 1.4), is also a high energy consumer. This part is believed to be accomplished during the period of DA production (Douglas et al., 1992).

Physiological stress due to phosphate or silicate limitation restricts population growth leading to less energy demand from primary metabolism. This facilitates the synthesis of the two precursors, which are then condensed into domoic acid.

As pointed out earlier (in this chapter), active growth prior to DA synthesis is important in the production process. Exponential growth produces early precursors and assimilates energy in the form of carbon storage products (Chapter 3). The large amount of carbon assimilated during the exponential phase is not only beneficial for later survival of the population but also to DA production. Some of the precursors of DA may be produced during the exponential phase. For example, Douglas et al. (1992) labelled batch cultures of *P. pungens f. multiseries* with (1-13C-, or 1,2-13C-) acetate at the onset of, and during, the stationary phase. They found that only a very small proportion (<4.3%) of 13C was incorporated into the isoprenoid part of the DA molecule, but a larger proportion (14.5-30.6%) was found in the glutamate part. Douglas et al. (1992) concluded that the isoprenoid precursor was probably synthesized during the period before the addition of the labelled acetate, i.e. probably during the exponentially growing period.

However, isoprenoid might be synthesized through other pathways, such as those
suggested by Luckner (1984) and Mann (1987). A number of C₅ acid (base of isoprenoid) aldehydes occur naturally and were considered as possible precursors of the isoprenoids (Mann, 1987). Isoprenoid is usually formed from acetyl-CoA, but its derivation from leucine, an α amino acid, has been found in animals and higher plants (Luckner, 1984).

Cessation of growth is not essential to DA production. Domoic acid is produced in continuously dividing cells in steady states under either phosphate or silicate limitation. Furthermore, DA production rate is higher (0.55 - 90.35 μg DA l⁻¹ d⁻¹, 0.0067 - 1.35 μg DA cell⁻¹ d⁻¹) during steady state growth (Chapters 5, 6) than that in batch cultures (0.97 - 20.20 fg DA cell⁻¹ d⁻¹, see Chapter 4, Subba Rao et al. 1990 and Bates et al. 1991, 1993). However, the production rate is highest (up to 200 μg DA l⁻¹ d⁻¹, 3.17 pg DA cell⁻¹ d⁻¹) during batch mode after steady state growth. These differences in the production rate strongly suggest that biogenic energy and precursors during the period of growth are important in DA production. A continuous supply of energy and early precursors facilitates better DA production in the steady state under silicate or phosphate stress.

During the period of batch mode after steady state growth, when the stresses are more severe and growth declines, DA production is markedly enhanced. In batch culture (Chapter 4), DA is produced during late exponential phase (first stage) or in the stationary phase when silicate is severely limiting (second stage). The DA production rate of the second stage is much higher (0.36 - 3.8 μg DA l⁻¹ d⁻¹, 5.14 - 30.20 fg DA cell⁻¹ d⁻¹) than that of the first stage (0.06 - 0.19 μg DA l⁻¹ d⁻¹, 0.97-3.67 fg DA cell⁻¹ d⁻¹). This implies two types of conditions associated with DA production (Table 7.1) Type I condition is
essential to DA production and occurs when ambient nutrients are moderately low, while Type II condition promotes high DA production when an ambient nutrient is exhausted and the stress is severe.

Table 7.1. Characteristics of two types of conditions for DA production

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Type I</th>
<th>Type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA production rate</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Nutrient concentration</td>
<td>Low</td>
<td>Depleted</td>
</tr>
<tr>
<td>Cell division</td>
<td>Yes</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Source of the effects</td>
<td>External and Internal</td>
<td>External</td>
</tr>
<tr>
<td>Examples</td>
<td>Batch (Chapter 4)</td>
<td>First stage</td>
</tr>
<tr>
<td></td>
<td>Continuous (Chapter 5)</td>
<td>Experiment I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Experiment II</td>
</tr>
</tbody>
</table>

Condensation of the two precursors into domoic acid releases 2 pyrophosphates (or 4 phosphates). Therefore, physiological stress due to phosphate limitation not only diminishes the energy demand from primary metabolism, but also creates a low phosphate environment, which in turn feeds back to stimulate the condensation process.

There is a difference between silicate-limited (Chapter 5) and phosphate-limited (Chapter 6) cultures in the kinetics of DA production during the batch mode period after steady state growth. In the silicate-limited cultures, surge DA production is the highest during the first day after initiation of batch mode and the production declines gradually during the following 3 days. In the phosphate-limited cultures, on the other hand, the surge DA production increases gradually during first 3 or 4 days. As time progresses, the
culture becomes more severely phosphate limited, which facilitates a better feedback, creating circumstances for the condensation process in DA production.

7.2. Bioenergetics in relation to DA production

As discussed earlier (in this chapter as well as in Chapters 5 and 6), biogenic energy plays an important role in DA production. It is possibly unique to this diatom that free energy in the form of ATP increases when growth decreases. This is favourable for DA production.

The linkage between DA production and photosynthesis is obvious. Domoic acid is produced during the period of photosynthesis but stops 2 hours after transition from light to dark (Bates et al., 1991). Addition of DCMU blocks the electron transport from photosystem II to photosystem I, phosphorylation is inhibited; simultaneously DA production is impeded. This suggested that photophosphorylated NADPH and ATP might be directly used for DA production.

Carbon assimilation is highest during the mid-exponential phase of batch culture (Chapter 3) and at high dilution rates in the continuous cultures (Chapters 5 and 6) when growth and other cell metabolic activities are most pronounced. Assimilation of each molecule of CO$_2$, requires 3 molecules of ATP and 2 of NADPH, generated from the photophosphorylation reaction (Devlin and Witham, 1983). During the period of high carbon assimilation, photophosphorylated ATP and NADPH are mainly used for this metabolic process. There would be very little, if any, of these high energy compounds
left for other related metabolism. Uptake of nutrients, such as phosphorus and silicon in the present case, also requires similar energy source.

Synthesis of one molecule of DA from the substrate produced in the Krebs cycle requires 5 ATP and 5 NADPH (Fig. 1.4), which is a strong energy consuming process. During the active growth period, the high demand for energy from the primary metabolism, such as carbon assimilation, chlorophyll a synthesis and nutrient uptake, restrains DA production. When energy demands from these metabolic process decline at low growth rates or at cessation of cell division, another energy consuming process, such as DA production, will be automatically favoured. Therefore, DA production is initiated when growth declines.

The low carbon assimilation in the stationary phase of batch culture or at low dilution rate in continuous cultures might be thought of as a reduction of supply of the electron acceptor NADP. Domoic acid production, on the other hand, is activated and the oxidized NADP is produced simultaneously. This continuous supply of NADP from the process of DA synthesis during the period of low carbon assimilation maintains the electron transfer process active in the photochemical reaction and creates mutually beneficial circumstances.

An active growth period is necessary for synthesis of chlorophyll pigments, the major component in the photochemical reaction. More cellular chlorophyll a is found in low light than in high light conditions (Figs. 3.3, 3.10). This permits comparable carbon assimilation and growth to some extent between the high and low light. Similarly, DA production is not significantly different between the incident light of 45 and 145 μmol m$^{-2}$.
s\(^{-1}\) (Bates et al., 1991). I believe that the similar DA production is due to the differences in cellular content of chlorophyll pigments, which accomplish similar rates of photophosphorylation reactions in spite of the difference in the incident light. Similar light dependence of toxin production has been found in *Alexandrium* spp (Proctor et al., 1975, Ogata et al., 1987). Production of saxitoxins by *A. catenella* is proportional to the duration, but not to the intensity, of irradiance (Proctor et al., 1975).

Unlike most other toxigenic micro-algae such as the dinoflagellate *Alexandrium* spp. (Anderson et al., 1990) and the cyanobacterium *Microcystis* spp. (Watanabe et al., 1989), which produce toxins during the exponential phase when cells are actively dividing, *P. pungens* f. *multiseriades* produces toxin when cell division is restrained or stopped. This further suggests that the energy and precursor partition theory is applicable in this diatom but not in other micro-algae.

7.3. Ecological perspective

7.3.1. Effects of light and temperature

Production of DA requires energy. However, reduction of PPFD resulted in a decrease of α^B and P^B_m during the exponential phase, but not in the stationary phase (Figs. 3.12, 3.13). In fact, both α^B and P^B_m increased as PPFD decreased in the stationary phase. This is probably a survival strategy of the diatom as discussed in the Chapter 3. On the other hand, this also suggests that change in PPFD levels will not have much effect on the DA production. The results of Bates et al., (1991) support this hypothesis.
In the fall-winter in PEI bays solar radiation levels are usually low (373 - 875 megajoules m2 per month, Atmosphere Environmental Service Canada, 1988), but this would not affect DA production. In contrast, it would reduce the metabolic cost and keep the bloom persistent for a longer period. For example, in Cardigan Bay 1987, the bloom of *P. pungens* f. *multiseries* probably started around October. It lasted until December and probably to January of 1988 (Subba Rao *et al.*, 1988b), i.e. for a period of 3 months, which is unusual for temperate diatom blooms. The duration of the bloom may explain why contamination of mussels was so severe.

Temperature is a major factor affecting cell metabolism, which in turn affects DA synthesis. Photosynthesis and other metabolic rates decrease when temperature decreases. As discussed earlier, the photochemical process is linked with DA synthesis and this process is less affected by temperature. Therefore, as a result of lowering temperature, carbon assimilation and growth were greatly reduced (Figs. 3.14, 3.18). The decrease in electron transfer and photophosphorylation may not be as significant as the decrease in carbon assimilation. That is, there could be relatively more free energy, which favours DA production as discussed earlier in Section 7.2, paralleling the increase in production of saxitoxin by *Alexandrium* spp (Boyer *et al.*, 1987) when temperature decreased.

In the fall and winter in the PEI bays, sea water temperature is around 10 °C or below (Hudson and Bernard, 1988, 1989; Bernard, 1990, 1991). This low temperature would facilitate reasonably high DA production and maintain the blooms at low metabolic cost.

However, Lewis *et al.* (1993) found enhancement of domoic acid production at
higher temperatures, which is not the case for saxitoxins. Nevertheless, synthesis of glutamate and isoprenoid involves many enzymes. For example, Mann (1987) showed that the enzymes involved in the production of 3(R)-mevalonate from acetyl-CoA are subject to very complex regulatory controls. Relatively higher temperature might favour the activity of certain enzymes, and this needs further investigation.

7.3.2. Implication of abnormal nutrient ratios

Diatoms require nitrogen, phosphorus and silicon in certain proportions for active growth, but the ratios differ between species (Chapters 5 and 6). *P. pungens f. multiseries* seems to require more phosphorus relative to nitrogen than other diatoms (Chapter 6); but it is able to grow at a similar rate under different silicate concentrations (Chapters 4 and 5). The major difference in the physiology of *P. pungens f. multiseries* under different silicate concentrations is that DA production rate increases as the silicate concentration decreases in the medium (Chapter 5).

The frequency of novel and toxic phytoplankton blooms has been increasing globally. Smayda (1989, 1990) documented the increases and proposed that they are due to altered nutrient compositions in aquatic ecosystems. Because of the increase in the anthropogenic enrichments of N and P but not Si due to soil fertilization and disposal of city sewage, etc., algal blooms occur more frequently. The bloom diatoms reduce the reservoir of silicate by sequestering it in benthic substrates and subsequently alter the ratios of N:P, N:Si, P:Si in lakes, coastal waters and inland seas (Conley, *et al.*, 1993). These altered nutrient ratios lead to successions of phytoplankton in which species that
are more competitive in low-silicate environments, particularly non-diatom species, are favoured.

In the culture media with various levels of silicate, cellular silica in *P. pungens* f. multiseries cells changed by a factor of 15 (Table 4.2), which is unusual in diatoms and suggested that *P. pungens* f. multiseries is a more competitive species in a low-silicate environment. When other diatom species are reduced in sea water due to insufficient concentration of silicate, *P. pungens* f. multiseries is probably still able to grow and simultaneously produces DA.

The abnormally wide range of cellular silica associated with *P. pungens* f. multiseries probably also explains the ubiquity of this species. It is able to flourish in different habitats with a wider range of silicate than other diatoms by reducing or increasing its cellular silicon (Chapters 4, 5; Table 4.2). *P. pungens* f. multiseries occurs between 62 °N and 40 °S in both the Atlantic and the Pacific (Table 1.1). Besides the differences in temperature and salinity over such wide geographical area, nutrient concentrations will also be different. Some waters may be rich in silicate, while others are not. It is likely that cells of *P. pungens* f. multiseries can establish themselves in these waters by varying their silicate demand according to the available resources as they did in culture (Chapter 4).

In 1988 in Cardigan Bay, the bloom of *P. pungens* f. multiseries occurred in the fall and produced DA soon after a bloom of *Skeletonema costatum* (Smith *et al.*, 1990b). A bloom of diatoms in the spring followed by a bloom of flagellates in the summer is a normal event in temperate marine habitats (Mann, 1993; Cushing, 1989), and there are
numerous examples of non-diatom blooms that have been preceded by a diatom bloom. For example, Silva (1985) found the *Prorocentrum minimum* bloom in the Obidos Lagoon (Portugal) was preceded by blooms of *S. costatum*. Maestrini and Graneli (1991) attributed the cause of a 1988 *Chrysochromulina polylepis* bloom in Scandinavian coastal waters to preceding diatom blooms.

A diatom bloom preceding a bloom of toxic dinoflagellates or *P. pungens* f. *multiseries* would obviously result in a reduction of silicate in the sea water. This is because after a diatom bloom, a large proportion of the silicate in sea water will be taken up and transported to the sediment (Conley, *et al.*, 1993). Although there is evidence of dissolution of silicon from diatom cell walls (Chapters 4, 5, Lewin, 1957), the regeneration cycle for silicate is much longer than that of nitrogen and phosphorus (Conley *et al.*, 1993). This condition obviously favours growth of dinoflagellates and some other more competitive diatoms, such as *P. pungens* f. *multiseries*. This low silicate also facilitates a better DA production as is evident from Chapters 4 and 5.

In addition to lowering the silicate concentration in the sea water, the preceding diatom blooms may also enrich the sea water in organic nutrients. This effect of enhancing dissolved organic materials in sea water by a preceding algal bloom has been termed preconditioning, implying biological effects on succeeding algal population growth (Provasoli, 1979; Barber, 1973). The presence of organic nutrients, released from the same species or from another species, may extend the duration of a bloom (Provasoli, 1979). The 1987 toxic bloom of *P. pungens* f. *multiseries* in Cardigan Bay PEI persisted for 3 month. This persistence could have been related to the organic materials produced
by the bloom itself. *P. pungens f. multiseries* grew better when a small proportion of the filtrate from stationary phase culture of *R. alata* was added (Subba Rao *et al.*, 1994). Results of Chapter 3 together with the unpublished work of Subba Rao and Wohlgeschaffen show that this toxigenic diatom may be able to grow and survive heterotrophically.

The production of domoic acid under nutrient depletion is similar to the situation of production of dissolved organic material, especially glycolate excretion, which has received much attention in the last 3 decades (Sharp, 1977; Harris, 1980 and reference therein). Glycolate excretion appears to be under conditions when growth rates are limited either in oligotrophic waters (Anderson and Zeutschel, 1976; Berman and Holm-Hansen, 1974) or in the populations under temporary nutrient depletion (Berman, 1976). Also, there are many reports on algal excretion during the stationary or senescent phase (Sharp, 1977; Harris 1980 and references therein). Cells under metabolic stress (Sharp, 1977) or photoinhibition (Harris, 1980) seem to excrete rapidly. Harris (1980) concluded that in all the situations described above, photosynthetic production of Calvin cycle intermediates is faster than the synthesis of carbohydrates, fats and proteins. Nutrient depletion is known to cause large changes in the pathways of carbohydrate and protein synthesis within the cells (see Chapters, 4, 5, 6 and also Harris, 1980).

Several lines of similarity between the production of domoic acid and that of glycolate are revealed. Firstly, they appear to occur in similar situations, i.e. nutrient depletion, physiological stress and growth limitation. Secondly, glycolate production is due to surplus of Calvin cycle intermediates (Harris, 1980) and DA production is
dependent on the surplus of metabolic energy and precursors (Section 7.1, 7.2). Thirdly, neither are primarily essential for overall cell metabolism, i.e. they are secondary metabolites. However, the linkage between production of these two secondary metabolites remains unclear.

When the toxigenic bloom of *P. pungens f. multiseries* was at its height in Cardigan Bay on December 16, 1987, silicate concentration was as low as 0.62 μM and phosphate was less than 0.22 μM (Subba Rao *et al.*, 1988b). As the bloom declined by January 7, both nitrate and silicate concentrations increased and continued until February 21, 1988, while phosphate did not clearly follow a similar pattern. This suggests that the bloom may have been limited by low phosphate or low silicate in the sea water, or by both. Production of DA is enhanced under limitation of either or both of these nutrients. The relationship between phosphate depletion and high toxin production has been reported for the dinoflagellate *A. tamarense* (Anderson *et al.*, 1990; Boyer *et al.*, 1985, 1987; Hall, 1982) and the chrysophyte *C. polylepis* (Edvardsen *et al.*, 1990; Carlsson *et al.*, 1990; Maestrini and Granéli, 1991) and is also true for *P. pungens f. multiseries*.

Nitrogen has often been considered a limiting nutrient for potential algal growth (Ryther and Dunstan, 1971 and others). However, there is now evidence that phosphorus is a limiting nutrient, at least regionally or during certain periods (Granéli *et al.*, 1990; Harrison *et al.*, 1992; Pan *et al.*, 1994). As a result of increasing anthropogenic disturbance, there has been increase in the nitrogen input in the coastal waters, which has altered the nutrient composition of the sea water and led to changes in the phytoplankton species composition. In the practice of controlling coastal pollution, reducing phosphorus
in waste water is easier than lowering nitrogen (Granéli et al., 1990), so coastal waters are more likely to receive waste water with increasing N:P ratios. This has the potential for increasing toxic algal blooms.

7.3.3. Implication of heavy precipitation and freshwater discharge

In the Cardigan Bay area, upwelling usually is not evident (Drinkwater and Petrie, 1988). The significant landward current suggests a possible downwelling in this area (Lauzier, 1965, Fig. 7.1). Therefore, the main contribution of nutrients to this region is from the land nearby, carried by the Cardigan, Brudenell and Montague Rivers. Precipitation data for the September-November period from 1982 to 1987 show that 1987 was 64% above average. The magnitude of the fall-winter blooms of *P. pungens f. multiseries* in Cardigan Bay decreased between 1987 and 1990, and so did the September precipitation (J. C. Smith, presentation at Bedford Institute of Oceanography, February, 1991). This suggests a possible relationship between the magnitude of blooms and precipitation prior to the blooms.

Change in the direction of surface current may occur during a period of a strong freshwater runoff, which drives surface water seaward in buoyancy current and causes estuarine upwelling (Mann and Lazier, 1991). Therefore, the pre-bloom heavy precipitation would cause a stronger freshwater runoff in the Cardigan Bay area carrying nutrients from terrestrial sources. Simultaneously, strong estuarine upwelling would carry nutrients from the bottom. This is likely to stimulate an algal bloom in water derived partly from freshwater runoff and partly from estuarine upwelling.
Fig. 7.1. The study area. The surface circulation pattern as described by Lauzier (1965).
The N:P and Si:P ratios in the upper reaches of the Cardigan Bay were 81.5 and 51.7 respectively, while in the lower reaches they were 41.2 and 65.6 (Subba Rao et al., 1988b). This suggests that the nutrients carried by the river are not balanced for diatom growth, and a bloom in this water will ultimately be phosphate limited, which favours high production of domoic acid.

During the 3 months of the 1987 bloom in Cardigan Bay, both the concentration and flux of N, P and Si were consistently low. The phosphate and silicate limited steady growth in the continuous cultures can be considered as analogues of this bloom. The stress due to phosphate or silicate limitation in the Cardigan Bay sea water allows this diatom to produce DA continuously at a high rate similar to the continuous DA production during the steady state growth (Chapters 5 and 6).

This concept is illustrated in Fig. 7.2. Abnormally high precipitation in the fall of 1987 resulted in freshwater discharge which brought higher concentrations of nitrogen from terrestrial source to Cardigan Bay but very little phosphorus and silicate. *P. pungens f. multiseries* population grew and exhausted the phosphate and/or silicate in the seawater at the height of the bloom, resulting in vigorous DA production due to phosphate or silicate limitation and decline of population growth.

A toxic algal bloom following a heavy precipitation or an abnormal freshwater runoff has been a prevalent event (Shumway, 1990) and there are many examples of the association of toxic algal bloom with abnormal freshwater discharge. For example, in the lower St. Lawrence estuary in 1986, the peak of PSP toxicity and *A. tamarense* concentration corresponded to the height of freshwater runoff (Cembella et al., 1988).
Fig. 7.2. Proposed explanation for the toxigenic blooms of *Pseudonitzschia pungens f. multiseries* in Cardigan Bay PEI.
Blooms of *C. polylepis* in Scandinavian waters are related to abnormally high precipitation prior to the bloom (Maestrini and Granéli, 1991). The less-reported number of toxic blooms of *A. tamarense* along the coasts of Maine and Massachusetts in 1981 and absence of toxicity in the 3 salt ponds monitored by Anderson *et al.*, (1983) was attributable to the extremely low precipitation in March. Blooms of *A. tamarense* usually start in April or May in this region.

7.3.4. *Population dynamics of P. pungens f. multiseries and DA production*

Growth of the *P. pungens f. multiseries* culture population was fast in the mid-exponential phase of batch culture when the population density was at intermediate levels (Figs. 3.1, 3.2, 4.2). High growth rate in continuous culture can not be maintained when cell concentrations are high and ambient nutrients are low. This suggests that growth of *P. pungens f. multiseries* follows the Allee growth model (Allee, 1951), one of the three density-related population growth patterns (Odum, 1993). Growth of *P. pungens f. multiseries* was slow when population density was less than 10⁶ cells l⁻¹ in the lag phase, or larger than 10⁸ cells l⁻¹ (see Figs. 3.1A, 3.2A). In a mixed culture of *P. pungens f. multiseries* with *Rhizosolenia alata*, growth rate was highest at an intermediate density with small proportion of *R. alata* in the culture (Subba Rao *et al.*, 1994). Besides the allelopathic effects we proposed, the effects of population density in governing the population growth should not be ignored.

This population density-related growth probably relates to the self-limiting effects on population and inversely on DA production discussed earlier in this chapter. In batch
culture, DA is produced in the lag phase (Douglas and Bates, 1992, Douglas et al., 1993), late exponential phase (Chapter 4) and stationary phase (Chapter 4; Subba Rao et al., 1990; Bates et al., 1989, 1991, 1993) when growth is slow, declining or stopped. In continuous culture, DA is produced in significant quantities when growth rate is less than 0.3 d\(^{-1}\) whether or not there is silicate or phosphate limitation (Figs. 5.2, 5.4, 6.3).

However, the existence of nutrient stress due to silicate or phosphate limitation in the continuous culture greatly enhanced DA production. Similarly in batch culture, second stage DA production is about an order of magnitude higher than that in the first stage (Chapter 4). Some self-limiting factor, associated with regulation of growth rate, initiates DA synthesis, but nutrient stress is needed before DA production approaches the levels comparable to those in Cardigan Bay.
CHAPTER 8

CONCLUSIONS

Pseudonitzschia pungens f. multiseries is an unusual diatom. It is the first diatom reported to produce toxin and its toxin production is high when cells are not actively dividing. In this respect, it differs from most other toxic algae, which produce toxin during the period of active growth. The monospecific blooms of this diatom occurred in the late fall and winter when the physical conditions are apparently not suitable for other diatom blooms. Cells of *P. pungens f. multiseries* are more capable of adjusting their silicate reserves than most other marine diatoms. This facilitates the establishments of this diatom in various marine habitats with a wide range of silicate concentrations and allows it to be more competitive than other diatoms in low silicate habitats. The physiological and ecological characteristics of *P. pungens f. multiseries* in relation to DA production are summarized.

1. **Domoic acid is produced by Pseudonitzschia pungens f. multiseries both in dividing and non-dividing populations.**

 Production of domoic acid has been reported only after *P. pungens f. multiseries* populations entered stationary phase when cell division has ceased (Subba Rao et al., 209).
1990, Bates et al. 1989, 1991, 1993). The present study shows that both exponential and stationary populations produce domoic acid, and the cessation of cell division is not essential to DA production. The events that coincided with DA production were the decline of growth or severe external nutrient stress.

2. Domoic acid production in cultures of *Pseudonitzschia pungens* f. *multiseries* is greatly enhanced when the cells are stressed by limitation of nutrients, such as phosphate or silicate.

The present study clearly demonstrates that DA production was greatly enhanced under severe phosphate or silicate limitation. The negative relationships between total silicate supply and yield of domoic acid (Fig. 4.7) in the batch culture, and the negative correlation between growth rate and DA production in continuous culture (Tables 5.1, 6.1; Figs 5.2, 5.4, 6.4) support this conclusion. Bates et al. (1991) reported effects of silicate limitation on DA production but they attributed the 35% enhancement in DA production to differences in the duration of the lag phase.

3. Conditions for DA production can be divided into two types. The first type is associated with moderately low nutrient environments and triggers low DA production. The second is a severe external stress, such as severe limitation of one nutrient when other nutrients are present in excess, and promoted high DA production.
The two stage phenomenon in DA production in the batch cultures of P. pungens f. multiseries further facilitates our understanding of DA production both in dividing and non-dividing populations, and attributed to Type I and Type II conditions respectively (Table 7.1). When nutrients are reduced (but not exhausted) during the late exponential phase, cells adjust their internal metabolism, for example, reducing growth rate, and initiate DA production (Type I). This regulation may be intrinsic, such as genetically and enzymatically related, and extrinsic, such as population density related. When a nutrient becomes exhausted, the external stress vigorously restrains cell metabolism and promotes DA production (Type II). Type I production is low but essential, while Type II production is high (5 to 10 time higher).

4. Since biogenic energy is essential in DA production, partitioning of energy and precursors between primary and secondary metabolism is the main mechanism in the regulation of DA production.

Initiation of DA production coincides with decline or stoppage of population growth. Production of DA declines when a renewed supply of phosphate and silicate leads to a resumed growth, but recommences when the surge of uptake ends. Also, DA production coincides with the period of photophosphorylation, as in Bates et al., (1991). Present studies together with results in the literature suggest that changes in partitioning of photoassimilated energy and metabolic precursors between primary metabolism or secondary metabolism control DA production.
5. The domoic acid poisoning episodes in Cardigan Bay, Prince Edward Island were due to the abnormal nutrient ratios, which ultimately resulted in the depletion of phosphorus or silicon at the height of the blooms and triggered DA production.

The work of Subba Rao et al., (1988b) showed that the N:P ratio in the Cardigan Bay sea water was very high (41-81) and silicate was low when *P. pungens f. multiseries* bloom was at its height. This suggests either an imbalance of nutrient composition in the fresh water runoff or an earlier diatom bloom may have stripped the water column of its silicate. This mechanism of triggering DA production is consistent with those postulated for most other toxic algal blooms (Chapter 7). The general increase of anthropogenic disturbance in coastal regions may be leading to more frequent examples of severe nutrient imbalance, often after heavy rains, and a world wide increase in the frequency of toxic algal blooms.
APPENDIX A1. LIST OF PUBLICATIONS

1) Refereed journal and book publications:

2) non-refereed contributions

APPENDIX B1. ONE EXAMPLE OF STANDARD CURVES FOR PARTICULATE (A) PHOSPHORUS AND (B) SILICON MEASUREMENTS (CHAPTER 2).
APPENDIX B2. EXAMPLES FOR THE STANDARD CURVES FOR THE MEASUREMENTS OF ATP, ATP+ADP, ATP+ADP+AMP (CHAPTER 2).
APPENDIX B3. EXAMPLES FOR THE MEASUREMENTS OF ALKALINE PHOSPHATASE ACTIVITY. (A) STANDARD CURVE, (B) ONE EXAMPLE (JULY 13, CHAMBER 2; CHAPTERS 2, 6).
APPENDIX B4. SENSITIVITY AND COEFFICIENT OF VARIATION OF VARIOUS METHODS USED (CHAPTER 2)

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Low limit</th>
<th>Number of replicate per sample</th>
<th>Coefficient of variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell conc.</td>
<td></td>
<td>5-8</td>
<td>5-15</td>
</tr>
<tr>
<td>Chl a</td>
<td>0.01 ng ml</td>
<td>2</td>
<td>0-1</td>
</tr>
<tr>
<td>PC</td>
<td>1 µg</td>
<td>2</td>
<td>1-3</td>
</tr>
<tr>
<td>PN</td>
<td>0.05 µg</td>
<td>2</td>
<td>1-8</td>
</tr>
<tr>
<td>PP</td>
<td>0.01 µM</td>
<td>2</td>
<td>0.5-5</td>
</tr>
<tr>
<td>PSi</td>
<td>0.05 µM</td>
<td>2</td>
<td>0-3</td>
</tr>
<tr>
<td>DIN</td>
<td>0.1 µM</td>
<td>2</td>
<td>0-2</td>
</tr>
<tr>
<td>DIP</td>
<td>0.01 µM</td>
<td>2</td>
<td>0.5-1.5</td>
</tr>
<tr>
<td>DISi</td>
<td>0.05 µM</td>
<td>2</td>
<td>0-1</td>
</tr>
<tr>
<td>CO₂</td>
<td></td>
<td>2</td>
<td>0-5</td>
</tr>
<tr>
<td>DA</td>
<td>FMOC</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>DAD</td>
<td>0.5 µg</td>
<td>0-2</td>
</tr>
<tr>
<td>ATP</td>
<td></td>
<td>3</td>
<td>2-10</td>
</tr>
<tr>
<td>APA</td>
<td></td>
<td>3</td>
<td>0-3</td>
</tr>
</tbody>
</table>
APPENDIX C1. SILICATE CONCENTRATIONS (µM) IN THE CONTROL AND IN THE RESERVOIR DURING THE SILICATE LIMITED CONTINUOUS CULTURE EXPERIMENTS (CHAPTER 5).

<table>
<thead>
<tr>
<th>Description</th>
<th>Time (day)</th>
<th>Control</th>
<th>Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before autoclaving</td>
<td></td>
<td></td>
<td>59.93</td>
</tr>
<tr>
<td>After autoclaving</td>
<td>2</td>
<td>147.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>161.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>168.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>167.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>175.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>171.66</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>165.39</td>
</tr>
<tr>
<td>Std</td>
<td></td>
<td></td>
<td>9.01</td>
</tr>
<tr>
<td>Exp. II</td>
<td></td>
<td></td>
<td>59.85</td>
</tr>
<tr>
<td>Before autoclaving</td>
<td>1</td>
<td>61.15</td>
<td></td>
</tr>
<tr>
<td>After autoclaving</td>
<td>3</td>
<td>51.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>53.70</td>
<td>56.49</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>57.95</td>
<td>58.39</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>58.62</td>
<td>57.00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>49.68</td>
<td>49.23</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>57.16</td>
<td>51.02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>57.28</td>
<td>57.05</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>53.76</td>
<td>57.67</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>57.28</td>
<td>57.16</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>55.68</td>
</tr>
<tr>
<td>Std</td>
<td></td>
<td></td>
<td>2.84</td>
</tr>
</tbody>
</table>
APPENDIX C2. SILICATE LIMITED STEADY STATE EXPERIMENTS (CHAPTER 5). (A) DA CONCENTRATIONS (LEFT: DA IN CULTURES, RIGHT: DA PER CELL) AND (B) DA PRODUCTION, IN RELATION TO BACTERIAL ABUNDANCE.
APPENDIX C3. BACTERIAL EFFECTS ON DA PRODUCTION (CHAPTER 5).

In the silicate limited continuous cultures (Chapter 5), bacterial abundances were measured in steady state continuous cultures (Experiment II) and batch mode extension (Experiment III) in addition to other variables observed in Experiment I. In the steady states (Experiment II), as growth rate increased, the pattern of DA production matched with the variation of bacteria abundance (Figs. 5.4A, D). Bacteria concentration significantly correlated with domoic acid concentration and its production (Appendix C2). In the batch mode extension (Experiment III), on the other hand, bacterial abundance did not always follow and same pattern as domoic acid concentrations (Fig. 5.6E).

The roles of bacteria in phycotoxin production has been studied since late 1970s (Silva, 1979, 1982; Kodama et al., 1989; Ogata et al., 1990). However, there has been no reported study on the relationships between the bacteria abundance and phycotoxin production in culture.

Existence of bacteria enhanced domoic acid production. In *P. pungens* f. *multiseries*, Douglas and Bates (1992) found the significant difference in DA production between axenic and non-axenic batch cultures. In promoting DA production, species of bacteria may not be specific. Bacteria isolated either from *P. pungens* f. *multiseries* or from *Chaetoceros* sp. had similar enhancement in DA production when they were introduced to the axenic cultures of *P. pungens* f. *multiseries* (Bates et al., 1994). DA production was related to the abundance of bacteria (Appendix C2). This suggested that
production of domoic acid probably rely on certain precursors, which existed in *P. pungens f. multiseries*, but bacteria may be an important supplier of this. The other alternative mechanism might be bacteria are involved in the synthesis of domoic acid. The role of bacterial might be to accelerate the synthetic process, which needs further investigation.

During the extended batch mode period, decrease of bacteria abundance corresponded to the increase of algal cell concentration, i.e. the period of population growth (Figs. 5.6A, E). For example, in Chamber 1, *P. pungens f. multiseries* cell concentration increased from 49.4 to 60.4 x 10⁶ cells l⁻¹, bacterial concentration dropped from 224 to 127 x 10⁶ cells l⁻¹ during the first day. In the following 3 days, on the other hand, algal concentration slightly decreased (no growth), bacterial concentration increased to 247 x 10⁶ cells l⁻¹. Similar patterns were found in Chamber 6. However, DA production differed in these two chambers. In the chamber 1, DA production was constant and its concentration increased linearly during the whole batch mode period. Whereas in Chamber 6, DA production was interrupted during the first day due to the silicate perturbation. The patterns of DA concentration and *P. pungens f. multiseries* concentration in Chamber 5 were the reverse of those in Chamber 1.

Bactericidal agent is reported to be produced by exponentially growing phytoplankton (Fogg, 1962; Fogg and Thake 1987). The decrease of bacterial concentration in the culture during the period when *P. pungens f. multiseries* was growing probably because of the effects of some bactericidal agent produced by the diatom. Further investigation is needed.
Which is the more important factor in DA production, silicate stress or existence of bacteria? DA is produced in the late exponential phase of batch culture or in Experiment I when silicate are not necessarily limiting (Figs. 4.1, 4.2, 5.2), and also in the axenic culture (Douglas and Bates, 1992; Douglas et al., 1993). The action of silicate stress and bacteria are similar, i.e. they both seem to enhance domoic acid production. However the mechanisms of their action are different. Silicate stress reduces the energy demand from primary metabolism and probably induces change in the partitioning of early precursors between primary and secondary metabolism (discussed in Chapters 5 and 7). The role of bacteria is probably i) to supply more precursor(s) ii) to accelerate the process of DA synthesis or iii) to regenerate nutrient from organically bond compounds (Azam et al., 1983; Harrison, 1992).
D1.1. Domoic acid as a valuable compound

Amnesic shellfish poisoning has resulted in human poisoning and closure of shellfisheries and has incurred approximately 3×10^6 of economic loss. However, domoic acid is a naturally occurring neuroexcitory amino acid. It can be used as a tool in neuro-biological research (McGeer et al., 1978). It can also be used as an insecticide (Maeda et al., 1984, 1987).

The high production rate of domoic acid in the silicate- or phosphate-limited continuous culture of *P. pungens* f. *multiseriis* and even higher production during extended batch mode after steady state growth suggests that the synthesis of domoic acid using continuous culture of this diatom has great commercial potential. Production of DA is very high at the steady state with a growth rate between 0.15 and 0.3 d$^{-1}$. The surge production during the extended batch mode was up to about 200 μg DA l$^{-1}$ d$^{-1}$ (3.17 pg DA cell$^{-1}$ d$^{-1}$). Suppose a 100 litre chamber is built, up to 20 litres of the culture can be obtained every day. This culture can be left at the same condition for 2-4 day before being extracted for domoic acid. A production of 4 - 14 mg d$^{-1}$ domoic acid is expected from each chamber. This suggests a real potential for commercial exploitation of this diatom as a source of a valuable neurobiological compound, domoic acid.
D1.2. Further research potential

Domoic acid is produced when growth has declined or stopped under silicate limitation. Usually, lipid production in diatoms is enhanced in the stationary phase when the culture is limited by silicate as discussed in Chapter 4, while this is not the case in *P. pungens* f. *multiseries*. This suggested that biosynthesis of DA and fatty acid may share a common portion in the synthetic pathway and there must be a "switch" which manipulates the passage of substrate and energy into either fatty acid or domoic acid. This mechanism could perhaps manipulate the synthesis of isoprenoid compounds (Fig. 1.4).

Figure 1.4 suggests that part of domoic acid is derived from glutamate, which could be derived from another amino acid. Also, as discussed earlier in Section 7.1, isoprenoids could be derived from leucine. Stationary phase culture could be associated with degradation of protein to individual amino acids. Therefore, domoic acid production could also be linked to protein synthesis or degradation.
REFERENCES

Karl, D. M., 1980. Cellular nucleotide measurements and applications in microbial

Lewin, J. C., 1957. Silicon metabolisms IV. growth and frustule formation in *Navicula*

Takano, H. and K. Kuroki, 1977. Some diatoms in the section *Pseudonitzschia* found in

