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Abstract

Model interpretability is a requirement in many applications in which crucial decisions
are made by users relying on a model’s outputs. The recent movement for “algorithmic
fairness” also stipulates explainability, and therefore interpretability of learning models.
The most notable is “a right to explanation” enforced in the widely-discussed provision
of the European Union General Data Privacy Regulation (GDPR), which became
enforceable beginning 25 May 2018. And yet the most successful contemporary
Machine Learning approaches, the Deep Neural Networks, produce models that are
highly non-interpretable. Deep Neural Networks have achieved huge success in a
wide spectrum of applications from language modeling and computer vision to speech
recognition. However, nowadays, good performance alone is not sufficient to satisfy the
needs of practical deployment where interpretability is demanded for cases involving
ethics and mission critical applications. The complex models of Deep Neural Networks
make it hard to understand and reason the predictions, which hinders its further
progress.

In this thesis, we attempt to address this challenge by presenting two methodologies
that demonstrate superior interpretability results on experimental data and one method
for leveraging interpretability to refine neural nets.

The first methodology, named CNN-INTE, interprets deep Convolutional Neural
Networks (CNN) via meta-learning. In this work, we interpret a specific hidden layer
of the deep CNN model on the MNIST image dataset. We use a clustering algorithm
in a two-level structure to find the meta-level training data and Random Forests as
base learning algorithms to generate the meta-level test data. The interpretation
results are displayed visually via diagrams, which clearly indicate how a specific test
instance is classified.

In the second methodology, we apply the Knowledge Distillation technique to
distill Deep Neural Networks into decision trees in order to attain good performance
and interpretability simultaneously. The experiments demonstrate that the student
model achieves a significantly higher accuracy performance (about 1% to 5%) than
conventional decision trees at the same level of tree depth.

In the end, we propose a new method, Quantified Data Visualization (QDV),
to leverage interpretability for refining deep neural nets. Our experiments show
empirically why VGG19 has better classification accuracy than Alexnet on the CIFAR-
10 dataset through quantitative and qualitative analyses on each of their hidden layers.
This approach could be applied to refine the architectures of deep neural nets when
their parameters are altered and adjusted.
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Chapter 1

Introduction

A complete task of knowledge acquisition from data comprises three stages: data

pre-processing (to process the input data that are noisy, inconsistent, or incomplete),

training of the machine learning algorithm and data post-processing (integration,

filtering, evaluation, and explanation of learned knowledge). In this thesis, we focus

on data post-processing, more specifically, the explanation of the learned knowledge.

With the fast development of sophisticated machine learning algorithms, artificial

intelligence has been gradually penetrating a number of brand new fields with unprece-

dented speed. One of the outstanding problems hampering further progress is the

interpretability challenge. This challenge arises when the models built by the machine

learning algorithms are to be used by humans in their decision making, particularly

when such decisions are subject to legal consequences and/or administrative audits.

For human decision makers operating in those circumstances, to accept the professional

and legal responsibility ensuing from decisions assisted by machine learning, it is

critical to comprehend the models. This is generally true for areas like criminal justice,

health care, terrorism detection, education systems and financial markets.

For areas like the healthcare domain, business, crime prediction, etc., mistakes in

these areas can be catastrophic. For instance, to develop safe self-driving cars we need

to understand their rare but costly mistakes. Therefore, it is imperative to explain the

learned representations, relationships between the inputs and the dependent variables

and decisions made by these models. To trust the model, decision makers need to

first understand the model’s behavior, and then evaluate and refine the model using

their domain knowledge. Even for areas like book or movie recommendations [66]

and automated aids [44], explanations for a recommendation and an error made could

increase the trust and reliance on these systems.

One critical issue associated with future automated systems based on machine

learning is its misalignment with the objectives of its stakeholders. That is, whether

1
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these systems really behave reliably in unforeseen situations. They may perform pretty

well on test cases, but might do the wrong thing in deployment in the wild. Ironically,

it could also be revealed later that they were doing the right things for the wrong

reasons. Hence, interpretability plays a significant role in assisting us to reduce errors.

At present, in the US, the practical application of interpretable models resides in

“the Right to explanation” in certain circumstances such as credit card approvals, health

insurance rates and so on. In comparison, Europe has a more advanced regulation: the

European Union (EU) General Data Protection Regulation (GDPR) (enacted 2016,

taking effect 2018): “.....In any case, such processing should be subject to suitable

safeguards, which should include specific information to the data subject and the

right to obtain human intervention, to express his or her point of view, to obtain

an explanation of the decision reached after such assessment and to challenge the

decision......”. Canada has long been at the forefront of data protection. As early at

2000, Canada enacted its privacy law: Personal Informational Protection and Electronic

Documents Act (PIPEDA) [34]. It is based on the 10 principles [34] which could also

be found in the EU GDPR today. Six months before the final text of the GDPR,

the Data Privacy Act (an amendment to PIPEDA) was adopted on June 18, 2015.

To comply with GDPR, canada amended PIPEDA again and the new requirements

came into effect in November 1, 2018 [125]. Moreover, the Government appointed

Canadian Institute for Advanced Research (CIFAR) (a charitable organization based

in Canada) to develop and lead a $125 million Pan-Canadian Artificial Intelligence

Strategy, the world’s first national AI strategy. In 2017, CIFAR launched a key

pillar of the CIFAR Pan-Canadian AI Strategy: the AI & Society program, in which

interpretability would play a critical role. Hence, there is an urgent need for the

technology to enable explanations of the internal logic of black box models where

automated decision making happens.

Some advanced machine learning algorithms exhibit extraordinary predictive

abilities. However, it is now recognized as a common problem that they fall short

on trust/transparency/interpretability/explainability in the models and the decisions

they generate. Deep Neural Networks (DNNS) in particular could even surpass human

predictions in areas like speech processing, machine translation, image classification,

etc. [106] [161] [4]. However, their inner workings still remain as black-boxes for
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the practitioners, which hinders their application to mission-critical tasks that have

profound consequences and human-machine hybrid networks.

1.1 The Necessities for Interpretation

it is not surprising that the tremendous amount of data produced daily inevitably

contains human biases/discriminations. And subsequently the predictions produced

by a machine learning model based on these data also inherit these prejudices, which

could result in wrong decisions. Except for ethical issues, interpretability is also

required for the following reasons.

• Accountability & Transparency

Automated decision making is now more and more widely applied in areas such

as vote counting, immigration visa applications, loan and credit card approval,

etc. However, based on past experiences, sometimes the automatically generated

results could be incorrect, unjustified, or unfair. And when things go wrong,

there are usually not enough resources available to reason about. Therefore,

there is a great interest from society as a whole to make these automatic systems

accountable, governable and compliant with key standards of legal fairness [89].

• Safety

The biggest concern about automated systems is their unreasonable risk to

safety. Recent serious accidents on Self-Driving Cars [179] [178] stimulate the

requirements for regulating autonomous systems. However, the ambiguous con-

texts in which autonomous systems execute pose a huge challenge to traditional

regulatory schemes which use performance standards [32] for stable contexts.

The noisy, uncertain and rapidly changing context makes it even harder to

reason the decisions of autonomous systems: for example, how to avoid striking

a pedestrian or vehicle when an autonomous vehicle tries to get around an

obstacle on the road. Knowledge about the inner workings of the algorithms

behind the decision would help the understanding of the interactions between

the autonomous system and the context.

• Legal Liability
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Let’s reconsider the accidents of Self-Driving Cars. One would wonder which

laws to apply and to whom (the user or the programmer or the vendor?) they

might apply in such cases. Should we apply criminal liability or product design

legislation or the tort of negligence [171]? One of the factors that would help to

answer these questions is whether we are fully aware of the limitations of the AI

systems. Besides some well known limitations: the lack of general knowledge,

the insufficiency of programmed knowledge to cover all possibilities and the fast

variations of background knowledge, the key limitation is the interpretability of

the AI systems.

1.2 Properties of Interpretability

As a matter of fact, interpretability is very difficult to define and no consensus has

yet been reached [99]. In the machine learning community, recently, interpretability

is defined in [42] as “the ability to explain or to present in understandable terms

to a human”. Besides definition, a much harder task is to quantify and measure

interpretability. Hence, in [128], the effort is extended beyond typical machine learning

research into human-computer interaction. There are also other studies on aspects of

interpretability such as the plausibility of models: the likeliness that a user accepts it

as an explanation for a prediction [56]. In this section, we first discuss some popular

evaluation methods and then, based on these evaluations, we give a formal definition

of interpretability.

1.2.1 Evaluations of Interpretation Methods

For evaluation metrics, there are no mutually agreed standards. Sometimes the

evaluation methods are only applicable to a specific model. For example, a set of

evaluation metrics for rule-based models is proposed in [92]. Besides experimental

simulations, a few studies [133] [128] [92] also use human judgments for evaluations.

Here we present some general evaluation metrics: fidelity, comprehensibility and

accuracy, which are frequently used by some state-of-art works [162] [163] [133] [107].

These could serve as a general guide to the design of interpretation methods. It should

be noted that these metrics are limited to the Post-hoc Interpretations that we are
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about to introduce in chapter 2.

• Fidelity

It is not realistic for the interpretation model to be entirely faithful to the

black-box model. Fidelity demands that the interpretation model’s prediction

should match that of the black-box model as closely as possible. In other words,

the interpretation model tries to mimic the behavior of the model itself on the

instance being predicted.

• Comprehensibility

Comprehensibility requires that the interpretation results are understandable

to the users. When building an interpretation method, we should take into

consideration the limitation of human cognition. For instance, decision trees

involving thousands of nodes and decision rules having hundreds of levels of

if-then conditions are not interpretable in this sense, although they are commonly

regarded as inherently interpretable algorithms for textual representations.

• Accuracy

Accuracy measures the performance of the interpretation model on the original

training data used to train the black-box model to check if the interpretation

model could outperform the black-box model. The measurements could be

traditional evaluation metrics in machine learning such as accuracy score, AUC

score, F1-score, etc.

1.2.2 Definition of Interpretability

Apparently, a good interpretation model needs to at least satisfy the three aforemen-

tioned general evaluation metrics. Here we provide a mathematical objective function

to define interpretability, inspired by [92] [133].

We treat different interpretation methods as different interpretation models and

each of them is represented as g

g ∈ G (1.1)

G is the family of all the interpretation models that could be used to interpret a

black-box model. We denote the black-box model to be explained as f and use L(f, g)
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to represent the unfaithfulness (to include fidelity into the objective function) of g to

f . What is opposed to Comprehensibility is the complexity of g, which is represented

as Ω(g). The final factor to consider is accuracy of g on original training data of X,

which is specified as e(g(X)). Hence, we formalize our objective function for finding

the best interpretation as

ξ(x) = argmin
g∈G

L(f, g) + Ω(g) + e(g(X)) (1.2)

ξ(x) is the final interpretation results we obtained when simultaneously minimizing

the unfaithfulness of g to f (ensuring fidelity), reducing the complexity of g (ensuring

comprehensibility) and lowering the prediction error of g on X (ensuring accuracy). As

stated in [92] [133], there is a trade off between fidelity+accuracy and comprehensibility.

The objective is to find an optimal interpretation model that could find a sweet spot of

the trade off. It should be noted that this optimal minimum cannot always be found,

but at a practical level, one could simply try several values for the minimized function

and choose the smallest. At the theoretical level one could use Pareto optimality [27]

instead of strict optimality.

1.3 Contributions

In this thesis, we first summarize and provide our own taxonomy on the current

interpretation methods and then present our two methods designed to improve in-

terpretability and one method for employing interpretability to refine neural nets.

More specifically, chapter 3 provides a method to understand the behavior of a neural

network model; chapter 4 presents an approach to resolving the tension between

interpretability and accuracy ; chapter 5 demonstrates a way to refine the structure of

a neural network model.

The first of our two interpretation methods is a visualization technique that

interprets deep Convolutional Neural Networks (CNN) via meta-learning, which we

name CNN-INTE . The main contributions of this method are

• Compared to LIME [133] which provides local interpretations for the entire model

in specific regions of the feature space, our method provides global interpretation

for any test instances on the hidden layers in the whole feature space.
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• Compared to models which apply inherently interpretable algorithms, e.g. [92],

our method has the advantage of not compromising the accuracy of the model

to be interpreted. This produces more reliable interpretation.

• In contrary to [133] and[93] which treat the model to be interpreted as black

box, we access the hidden layers of deep CNN models and interpret them.

Our second interpretation method applies the Knowledge Distillation technique to

distill Deep Neural Networks into decision trees in order to attain good performance

and interpretability simultaneously. The contributions for this second method are:

• Instead of distilling complex and deep neural nets into simple and shallow neural

nets as done in [138] [172] [191], we employ knowledge distillation for another

purpose: interpretation.

• We resolve the tension between interpretability and accuracy performance by

distilling deep neural nets into conventional decision trees. To the best of our

knowledge, we are the first to distill Deep Neural Networks into decision trees

on multi-class datasets.

• The main obstacle to execute this plan is that for pure classification tasks there

exist no logits in decision trees as in neural nets which could be used in the

loss function. We address this issue by reformulating it into a multi-output

regression problem [17] and achieve significant accuracy improvements (about

1% to 5%) on the experiments.

• The success of our approach opens a window for turning those inherently in-

terpretable algorithms (which are highly interpretable, but worse in accuracy

performance) into models attaining both accuracy and interpretability simulta-

neously.

The previous two methods attempt to solve the issues from the perspective of the

end users so that they can understand the models better. In order for the model

designers to benefit from interpretability, our method for refining neural nets leverages

interpretability for refining the structure of deep neural nets. The contributions for

this method are:
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• The main purpose of this method is to refine neural network models more

convincingly via interpretability, which was seldom studied before.

• Besides the definition of interpretability, a much harder task is to quantify and

measure it. Within this method, we propose a way to quantity interpretation.

• To the best of our knowledge, we are the first to interpret the neural net models

trained on the CIFAR-10 dataset when applying Alexnet and VGG19 as “Warm

Restart”.

The three methodologies proposed in this thesis are peer-reviewed and evaluated

in the field of machine learning interpretability, as the results presented here are

published. Our published and submitted papers related to this thesis are as follows:

• Xuan Liu, Xiaoguang Wang, and Stan Matwin. “QDV: Refining Deep Neural

Networks with Quantified Interpretability.” In 2020 European Conference on

Artificial Intelligence (ECAI), submitted.

• Liu, Xuan, Xiaoguang Wang, and Stan Matwin. “Improving the Interpretability

of Deep Neural Networks with Knowledge Distillation.” In 2018 IEEE Interna-

tional Conference on Data Mining Workshops (ICDMW), pp. 905-912. IEEE,

2018.

• Liu, Xuan, Xiaoguang Wang, and Stan Matwin. “Interpretable deep convolu-

tional neural networks via meta-learning.” In 2018 International Joint Conference

on Neural Networks (IJCNN), pp. 1-9. IEEE, 2018.

The publications during my phd study are listed below:

• Jiang, Xiang, Xuan Liu, Erico N. de Souza, Baifan Hu, Daniel L. Silver, and Stan

Matwin. “Improving point-based AIS trajectory classification with partition-wise

gated recurrent units.” In Neural Networks (IJCNN), 2017 International Joint

Conference on, pp. 4044-4051. IEEE, 2017.

• Jiang, Xiang, Erico N. de Souza, Xuan Liu, Behrouz Haji Soleimani, Xiaoguang

Wang, Daniel L. Silver, and Stan Matwin. “Partition-wise Recurrent Neural Net-

works for Point-based AIS Trajectory Classification.” ESANN 2017 proceedings,

European Symposium on Artificial Neural Networks.
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• Liu, Xuan, Xiaoguang Wang, Stan Matwin, and Nathalie Japkowicz. “Meta-

MapReduce for scalable data mining.” Journal of Big Data 2, no. 1 (2015):

14.

• Wang, Xiaoguang, Xuan Liu, Bo Liu, Erico N. de Souza, and Stan Matwin.

“Vessel route anomaly detection with Hadoop MapReduce.” In Big Data (Big

Data), 2014 IEEE International Conference on, pp. 25-30. IEEE, 2014.

• Wang, Xiaoguang, Xuan Liu, and Stan Matwin. “A distributed instance-weighted

SVM algorithm on large-scale imbalanced datasets.” In Big Data (Big Data),

2014 IEEE International Conference on, pp. 45-51. IEEE, 2014.

• Wang, Xiaoguang, Xuan Liu, Stan Matwin, and Nathalie Japkowicz. “Applying

instance-weighted support vector machines to class imbalanced datasets.” In Big

Data (Big Data), 2014 IEEE International Conference on, pp. 112-118. IEEE,

2014.

• Wang, Xiaoguang, Xuan Liu, Stan Matwin, Nathalie Japkowicz, and Hongyu

Guo. “A multi-view two-level classification method for generalized multi-instance

problems.” In Big Data (Big Data), 2014 IEEE International Conference on, pp.

104-111. IEEE, 2014.

We notice that there has been an explosion of interest in designing high-accuracy

models that are easy to interpret. These approaches are either model agnostic or model

specific. In the following chapter, we review some powerful mainstream approaches

that make great endeavors to reason deep neural networks. Although interpretability

is an interest for the whole machine learning community and a variety of approaches

are also proposed to other algorithms such as SVM, ensemble methods and so on, here

we focus on deep neural networks.



Chapter 2

Taxonomy of Interpretation Methods

Until now, numerous Interpretation methods for neural networks have been proposed

or are underway. Faced with the overwhelming research published in this area, it is

quite beneficial that we could organize these methods to get a general idea of what

has been happening and hopefully to figure out some valuable ideas and directions for

future work. In this chapter, we provide a taxonomy of these interpretation methods

which is shown in Fig. 2.1. This taxonomy includes three main parts: Post-hoc

Interpretations, Inherently Interpretable Models and other methods that don’t belong

to the first two categories. In the following sections, we will discuss each of them

starting from the simplest to the most complex and challenging and review their

progresses. For a broader inclusion, please refer to the Explainability Fact Sheets [152],

recently published in 2020.

Figure 2.1: The Taxonomy of Interpretation Methods

10
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2.1 Post-hoc Interpretations

Post-hoc Interpretations [63] interpret black box models after they are trained, hence,

the name “Post-hoc”. Usually, this requires the building of a separate explanation

model or technique to explain the predicted decisions or the model itself. A large

number of interpretation methods belongs to this class and here we roughly divide

them into four subcategories: Interpretation by Perturbation, Local Interpretations,

Global Interpretations and Visualization, and we review each of them in detail in the

following sections.

2.1.1 Interpretation by Perturbation

Interpretation by Perturbation stands for the methods that try to inspect the black

box model’s properties or to find evidence responsible for a classification decision by

perturbing the inputs. These methods are somewhere between the global interpreta-

tions and local interpretations. In this section, we introduce one such perturbation

technique: Sensitivity Analysis.

Sensitivity Analysis

In machine learning, sensitivity analysis (SA) [142] refers to the technique that tests

whether the model and predictions remain stable or they change but in a predictable

way when the inputs undergo subtle and intentional changes. If the answer is yes,

then the model’s trust is increased. The reality is that minor perturbations of the

inputs could sometimes result in drastically different predictions, e.g. the adversarial

examples for neural networks [160] and the instability for decision tree learning [43].

Some of the visualization methods we would introduce in section 2.1.4 could also be

treated as sensitivity analysis methods when the inputs are intentionally varied to

evaluate the stability of the neural network model. Moreover, LIME [133] could also

be regarded as a sensitivity analysis method.

Interpretability has been observed as an important issue long before the current

onset of interest in this topic. In ecological sciences, a number of methods are adopted

in [124] [35] to understand the mechanisms of neural networks. One of them is the

sensitivity analysis. Figuring out the contributions of input variables on the modeling
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process is critical to find the causal relationships driving ecological phenomena. They

find the influence of the independent variables on the predictions of a model by

interpreting the neural network connection weights because the former depends on

the latter’s magnitude and direction. Using sensitivity analysis, they quantitatively

interpret the connection weights by constructing contribution plots for the variables

in the neural network. They vary one variable at one time across the entire range

while holding the other variables constant.

Based on past work with one-dimensional (1-D) SA [78] and two-dimensional

(2-D) SA [45], a global framework for interpreting machine learning models using

SA: GSA (global sensitivity analysis) is proposed in [35] which extends the previous

work to classification tasks, discrete variables, distinct scanning functions and up

to n dimensions where n is the dimension of the inputs. SA is able to rank the

input features by measuring the change of the outputs when the inputs are perturbed

and it is originally used for feature selection. In this paper [35], they apply it to

open the black box. They also propose several visualization techniques such as Input

Importances, Variable Effect Characteristic Curve and Variable Effect Characteristic

Surface and Contour Plot to display the sensitivity analysis results. More recent work

[36] is done by the same authors, in which three novel SA methods are proposed:

Data-based SA (DSA), Monte-Carlo SA (MSA) and Cluster-based SA (CSA). They

also introduce a new sensitivity measure approach: Average Absolute Deviation (AAD)

from the median and novel functions for aggregating multiple sensitivity responses.

A family of Quantitative Input Influence (QII) measures are introduced in [40] to

address the issue of algorithmic transparency, which measures the influence of inputs

on the outputs of a machine learning system and aids the design of transparency

reports in forensic cases. The influence is measured on a quantity of interest: one

property of the model when given some input distributions. The Quantitative Input

Influence is defined by calculating the difference of the quantity of interest when the

original feature is changed via an intervention. In this paper [40], they replace the

value of every input with a random independently chosen value. This is a causal model

that takes into account the correlations between the inputs. Specifically, besides an

individual input’s influence, they also quantify the joint influence of a set of inputs

and the marginal influence of individual inputs within such a set. Moreover, they
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apply cooperative game theory to calculate the average marginal influence of the input.

They also use sensitivity analysis to conquer the problem of the transparency-privacy

tradeoff, which is accomplished by calculating the sensitivities of the QII measure to

determine the amount of noise needed to make the influence measure differentially

private.

A region perturbation method is introduced in [143] to quantitatively evaluate

the visualization techniques (introduced in section 2.1.4) such as deconvolution (a

back propagation method) [187], saliency maps (a sensitivity analysis approach) [149]

and Layer-wise relevance propagation (LRP) [13] which present the interpretations

as heatmaps. In this method they apply a greedy iterative procedure to perturb

the pixels that are relevant for a classification decision. They measure how the class

encoded in the image disappears when they progressively remove information from

the image at a specific location in the image. Moreover, a “deep Taylor decomposition”

method is proposed in [113] based on the layer-wise relevance propagation method,

which decomposes the predictions of neural networks into contributions of the input

elements. They also prove that Sensitivity Analysis can be viewed as a special instance

of Taylor decomposition.

2.1.2 Local Interpretations

Local Interpretations stand for the type of methodologies that explain the individual

predictions to understand the model at the level of smaller regions. Usually the

smaller sections of a nonlinear model tend to be linear and monotonic. Therefore, it is

expected that local interpretations could be more accurate than global interpretations.

However, although these methods are locally faithful, they may not align with the

global behavior of the entire black box model. Here we present a series of works

that fit in this category. It should be noted that “Neural Feature Visualization”

and “Attribution” introduced in section 2.1.4 also belong to the local interpretation

techniques.

Most local interpretation methods explain black box models via linearly weighted

combinations of the input features, i.e. contributions of feature values.

A “ExplainD” framework is proposed in [127] to provide graphical explanations

on decision, decision evidence, decision speculation, ranks of evidence, and source
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of evidence. This is fulfilled by reformulating the machine learning algorithms such

as naïve Bayes, linear support vector machine and logistic regression into additive

models [51] [2]. They claim that this framework is extensible to any classifier.

A local explanation framework applicable to any classifier is introduced in [8].

They use local explanation vectors to understand the predictions generated by single

data instances. The vectors are calculated with class probability gradients. The found

features relevant to the predictions are indicative of local peculiarities which could

otherwise be neglected in the global view. However the reliance on the coefficients of

gradients could sometimes be difficult because for confident predictions the gradient

is near zero.

Based on the few applications of Shapley value [182] in the machine learning

community, the authors in [85] link the individual feature values’ contribution to the

Shapley value in the coalitional game theory [77] [33] [115]. This is also proven by

rigorous theoretical analysis by finding the prediction difference between the the cases

where the feature values are given versus those in which all feature values are “ignored”.

They present a general explanation method which works for any type of classifier.

They also provide an efficient sampling-based approximation method to tackle the

exponential time complexity of going through all subsets of the features, which doesn’t

require retraining the classifier.

To resolve the problems for “trusting a prediction” and “trusting a model”, two

methods are proposed in [133] to explain individual predictions and understand

a model’s behavior respectively: Local Interpretable Model-agnostic Explanations

(LIME) and Submodular Pick LIME (SP-LIME). The main idea for LIME is to use

inherently interpretable models g to interpret complex models f locally. They designed

an objective function to minimize the unfaithfulness (when g is approximating f in

a local area) and the complexity of g. Although it is stated in their paper that the

objective function g could be any interpretable model, they set g as sparse linear

models in [133]. Based on the individual explanations generated by LIME, they design

a submodular pick algorithm: SP-LIME to explain the model as a whole by picking

a number of representative and non-redundant instances. A toy example for LIME

is shown in Fig. 2.2. In this figure, the pink and blue background represents the

decision boundary learned by the black box model. The dashed line is a local linear
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model used to approximate the decision boundary of the black box model around the

neighbourhood of the instance represented by the bold red cross.

Figure 2.2: A toy example from [133] illustrating the intuitions behind LIME.

It was suggested in [132] that coverage, precision and effort should be used to

evaluate the results of the model interpretation. Although LIME achieves high

precision and low effort, the coverage is not clear. In other words, LIME is able to

explain why a specific prediction is made using the weights of the local model g, but

can’t indicate in what local region the explanation is faithful. To solve this problem,

the Anchor Local Interpretable Model-Agnostic Explanations (aLIME) method was

introduced in [132]. In aLIME, the if-then rules are used instead of using the weights

in a linear model to explain a specific prediction (as was executed in LIME). The

idea is based on the Decision Sets algorithm [92]. These if-then rules are easy to

comprehend and have good coverage. A further extension on anchors is proposed in

[134].

Without sacrificing the performance of black box models, a model explanation

system is presented in [169] which aims to provide explanations for a single prediction

to augment black box predictions with explanations. This is applicable to fraud

detection in scenarios such as computer vision, credit risk, spam detection, etc. They

construct a scoring function to find a good explanation system by integrating four

desired properties: Eligibility, Generality, Accuracy and Validity. Then they use a

Monte Carlo algorithm to approximate the optimization with black box models.
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2.1.3 Global Interpretations

The set of techniques that uncover the overall logic behind black box models belong to

the category of Global Interpretations. They also provide global explanations of the

prediction results and the learned relationships between the inputs and the dependent

variables.

Surrogate Models

Applying surrogate models is the strategy of solving the interpretability problem of

machine learning by using more machine learning! Surrogate models employ those

inherently interpretable models (discussed in section 2.2) to approximate the learned

functions of black box models. These surrogate models are usually trained on the inputs

and predictions of the complex black box models. Hence, the internal mechanisms

of the black box models could be easily interpreted through analyzing the surrogate

models’ coefficients, variable importance, trends, and interactions.

The research on surrogate models dates back to the very early ages of neural

networks when an algorithm: TREPAN [38] was proposed in 1996! It uses a symbolic

representation: decision tree to approximate the concepts learned by a neural network

with one hidden layer. Different from conventional decision trees, the surrogate model

is trained on synthetic data generated by querying the trained neural network. It is

noticeable that fidelity is also taken into account in the training process. The use

of synthetic data solves the problem of lacking training data to split further down

the depth of the tree for typical tree induction algorithms. Based on TREPAN, a

variety of works [86] [18] [73] on tree surrogates are followed. In the most recent

years, Knowledge Distillation: a concept proposed by Hinton et al. [67] [54] also

shares some similarities with TREPAN. They all attempt to transfer the knowledge

from a cumbersome model to a small model. The difference is that TREPAN uses

the cumbersome model as an oracle to query the labels of an instance and also to

select splits for each of the tree’s internal nodes to improve the fidelity. Knowledge

distillation utilizes the soft targets (probabilities for all classes) instead of the hard

targets to train a smaller model.

Earlier research on using rules as surrogate models are in [3] [74] [192] [6]. A

more recent one is Black Box Explanations through Transparent Approximations
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(BETA) introduced in [93]. BETA is a framework which attempts to produce global

interpretation for any classifiers which are treated as black box classifiers. Based on

their previous work on Decision Sets [92], the authors designed a framework with two

level decision sets to take into account fidelity (faithfulness to the black box model),

unambiguity (single and deterministic explanations for each instance), interpretability

(complexity minimized) and interactivity (user specified explorations of the feature’s

subspace). In this two level structure, the outer if-then rules are the “neighborhood

descriptors” and the inner if-then rules are “decision logic rules” (how the black box

model labels an instance under the outer if-then rules). Similar to [92], an objective

function is built and near-optimal solutions are found. However, rules may not be

suitable for the applications with text or image data [134].

In the health care domain, two pipelines [30] [31] are proposed to interpret DNN

applying Gradient Boosting Trees (GBTs) [52] [53] as surrogates. One of them

extracts the logits from a learned DNN and uses the logits and the true labels of

the original training data to train a logistic regression algorithm to obtain the soft

prediction scores. Then they train GBTs with the original training data’s features and

the soft predictions. The second pipeline directly applies the soft prediction scores of

the trained DNN on the original training data as targets for training a mimic model

with GBTs. This second pipeline is shown in Fig. 2.3.

Figure 2.3: A surrogate model from [31] applying Gradient Boosting Trees (GBTs) as
the surrogate.

Another approach that explains neural networks with GBTs as surrogate models

is in [162]. They tried two student models: tree-based generalized additive models

(GA2Ms) [24] [104] [105] and GBTs. The black box model they interpret is multilayer

perceptrons. For the student model’s training process, they applied the method of

matching logits instead of soft targets in [30] [31]. They investigated both classification

and regression problems. Then a following work [163] used the Global Additive
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Explanation model as a surrogate model to explain fully connected neural networks.

The interpretation tool they adopted is feature shapes. They also validated their

method on real world datasets. It is remarkable that they compare their results with

several contemporary interpretation techniques quantitatively.

A two-part surrogate model: Partition Aware Local Model (PALM) is proposed in

[87]. The meta-model is a decision tree which partitions the training data while the

sub-models could be arbitrarily complex models which learn within each partition. The

sub-models are built applying a variation of the Expectation-Maximization algorithm

with gradient descent.

Other Models

For neural network visualizations, in contrast to the Activation Maximization (AM)

method (which we would introduce in section 2.1.4), a global, network level inspection

method is proposed in [160]. They argue that individual units don’t contain semantic

information. A stronger support for this argument is available in the area of word

representations [111]. They [160] further prove with experiments that the random

basis (linear combinations of high level units) could generate results that are just as

semantically meaningful as a natural basis (individual high level units). They claim

that it is questionable to say that neural networks disentangle variation factors across

coordinates. They essentially compare the results from these two equations

x∗ = argmax
x∈I

⟨ϕ(x), ni⟩ (2.1)

x∗ = argmax
x∈I

⟨ϕ(x), r⟩ (2.2)

where I is the held-out data, ϕ(x) is the activation values of some layer, ni is the

natural basis vector for the i-th hidden unit and r is random direction. They examine

the visual results from these two equations and find that they are semantically equal.

It is also shown that without regularization, the approach would end up by generating

adversarial examples.

It is noticeable that a recent research [10] designed a Network Dissection framework

to quantify interpretability of CNNs and test the conclusion of [160]. They found that

interpretability was not axis-independent. In other words, individual units are partially
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disentangled representations and natural basis could actually produce meaningful

results.

A method called Measure of Feature Importance (MFI) which works for both

global interpretation and local interpretation is proposed in [176]. MFI is designed

based on previous works of positional oligomer importance matrices (POIMs) [153]

in computational biology and the feature importance ranking measure (FIRM) [193].

Specifically, FIRM is an extension of POIMs which is constrained to specific DNA

applications. Although FIRM is applicable to a broad family of machine learning

algorithms and considers the correlations between features, the generated scores are

intractable for arbitrary input distributions [193]. MFI generalizes the concepts of

POIMs and FIRM and considers nonlinear feature interactions. It provides both

model-based feature importance (global interpretation) and instance-based feature

importance attribution (local interpretation).

A method that also manipulates the attributes of the input datasets is introduced

in [65]. The algorithm is called “GoldenEye”, which detects the interactions of groups of

attributes by a randomization technique. This method is a generalization of approaches

in [19] [123] [97] and applicable to the interpretation of any classifier. Previous

randomization methods work by randomly permuting the values of the attributes

and measuring their impact on the predictive performance. However, they [65] only

investigated one attribute at a time neglecting the interactions between features. By

building an optimization algorithm and using fidelity as a metric, “GoldenEye” is able

to detect the interactions between attributes and also provide information on which

attributes are interacting.

2.1.4 Visualization

Neural Feature Visualization

With the thriving progress made in the past few years, feature visualization has estab-

lished itself as the most promising research direction for neural network interpretations.

Usually, the most commonly applied technique is Activation Maximization (AM)

[46]. This method enables the interpretation of arbitrary layers of a neural network,

not just the first layer representation that could be easily interpreted by the learned

filters: linear weights in the input-to-first layer weight matrix. It also assumes that
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the input data are meaningful and displayable for humans, e.g. image data.

The idea of Activation Maximization is remarkably simple, but could generate

high-quality visualizations. It essentially searches for input patterns which maximize

the activation of a given hidden unit. This works because the patterns which fire the

maximum activation could be a good first-order representation of what a unit is doing.

This idea could be formulated as an optimization problem:

x∗ = argmax
x

hij(θ, x) (2.3)

Here x is the input pattern and x∗ is the optimal input pattern that the method tries

to find and hij stands for the activation at unit i from a given layer j of the previous

layers and θ represents the parameters of model. For an already trained neural network,

these parameters are known. The maximum of hij is found by calculating the gradient

of hij(θ, x) and moving x in the direction of this gradient. This step is called gradient

ascent.

However, there are two shortcomings to this approach. First, it is hard to do

initialization. It was mentioned that different random initializations sometimes

generate the same optimal stimulus [46]. Second, the information about the invariance

(the range of inputs that the unit is invariant to) is not available from the optimal

stimuli which is just a single image. To address the second disadvantage of AM, the

creators of Tiled convolutional neural networks (TCNN) [118] applied the method in

[11] and extended it to arbitrary networks in order to visualize the invariant directions

of a hidden unit 1. However, the output of hidden neurons for TCNN are non-quadratic

functions of inputs while [11] studies quadratic functions. This makes the extremely

complex invariance of TCNN hard to be precisely captured.

Hence, another visualization approach [187] which utilizes a multi-layered Decon-

volutional Network (Deconvnet) [188] (initially designed for unsupervised learning)

is proposed to find non-parametric views of invariances. This approach maps the

feature activities back to the input pixel space and could find the optimal stimulus

at any layer in the model. The Deconvnet architecture is shown in Fig. 2.4 and the

visualization results are displayed in Fig. 2.5. It is noticeable that when just examining

the image patches of layer 5 it seems that they have nothing in common. An image
1The visualization results are here: http://ai.stanford.edu/ quocle/TCNNweb/
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patch is a small (generally rectangular) piece of an image or a container of pixels. But

after looking at its feature visualization we realize that it detects the grass in the

background. This method is also a successful case that employs visual interpretation

to diagnose and debug the problems of an already existing model [88] to improve the

results.

Figure 2.4: The Deconvnet architecture from [187].

Another method called Saliency Maps (SM) is provided in [149]. Both AM and

SM are classified as gradient-based visualization techniques in this paper [149]. It

tries to rank the pixels of a image according to their impact on the class score function

and actually belongs to the local interpretations category. The class score function

Sc(I) is defined as follows:

Sc(I) = ωT
c I + bc (2.4)

Here c is a specific class, I is the input pattern, ω and b are the corresponding weights

and biases respectively. Intuitively, we may think that the magnitude of the weight in ω

for each pixel of the image I represents its importance in contributing to the class score.

Unfortunately, the relationship between Sc(I) and I is highly non-linear. However,

in the neighbourhood of a given image I0, we can approximate the relationship as a
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(a) layer 3:feature visualization (b) layer 3:image patches

(c) layer 5:feature visualization (d) layer 5:image patches

Figure 2.5: Feature visualizations and image patches of the top 9 stimuli that excite a
specific feature map at layer 3 and 5 for a trained neural network from [187].
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linear function and this could be accomplished applying a first-order Taylor expansion:

Sc(I) = ωT I + b (2.5)

where

ω =
∂Sc

∂I

⃓⃓⃓⃓
I0

(2.6)

It is also proved in this paper that the gradient-based visualization technique is a

generalization of the deconvnet method used in [187] and the main difference [154]

is how they handle back propagation through the rectified linear (ReLU) nonlinearity.

They also mention that Saliency Maps is image-specific while their Class Model

Visualisation (which uses AM) is not.

The all convolutional network (a homogeneous network solely consisting of con-

volutional layers) is introduced in [154]. To analyze this network and visualize the

concepts learned by higher layers, a new technique: “guided propagation” which

combines deconvnet with the gradient-based visualization technique is proposed [154].

This works remarkably well on all convolutional networks which don’t have pooling

layers.

A method for inverting representations, that is, reconstructing the original inputs

from the outputs of a model, is presented in [109]. The main difference between

this method and the deconvnet approach is that the latter reconstructs the inputs

for certain neural activations and hence requires information about activations in the

intermediate layers; the former uses only the final image code. This paper considers

the interactions between neurons because they study sets of neurons as a whole.

One novelty of this method is that they apply different regularization panalties as

natural image priors to re-create the input image from scratch using random noise

as initials. These priors are helpful as they can recover the low-level image statistics

that are removed when building the model. More specifically, they formulate their

reconstruction process as an optimization problem which tries to minimize the objective

x∗ = argmax
x∈RC×H×W

ℓ(ϕ(x), ϕ0) + λR(x) (2.7)

Here, C is the color channels, H and W are height and width of the input images,



24

ϕ(x) is the learned representation and ϕ0 is the representation to be inverted, ℓ is the

loss function, R is the regulariser standing for a natural image prior.

Another paper which considers regularized optimization is [186]. In this paper,

two software tools for visualization are introduced. One visualizes the activations

on each layer of a trained neural network interactively and lively. The other adds

several regularization methods into the optimization process in the effort to generate

better visualizations of the learned features. The reason they use regularization is

that, without regularization or priors, the aforementioned gradient-based techniques

would generate high frequency patterns that are unrecognizable.

More recently, the authors in [122] point out a shortcoming of the previously

introduced techniques: these techniques assume that one neuron detects only one

type of feature while the detection could be actually multifaceted. For instance, a

bell pepper detector detects green, red and orange peppers as belonging to the same

class. Paper [122] proposes a method to visualize these different facets. These types of

algorithms are called: multifaceted feature visualization (MFV). The first approach of

MFV is introduced in [181], which is only able to visualize two facets per neuron. This

paper provides a more systematic method to visualize all facets. They also included a

new regularization method: the center-biased regularization technique to reduce the

production of repeated object fragments.

Then a learned natural image prior, a deep generator network, is applied in [120]

aiding AM to produce better visualizations. This method is called deep Generator

Network-based Activation Maximization (DGN-AM). An extended work is presented in

[119] to tackle some of the limitations of DGN-AM. They also provide a probabilistic

framework to unify and interpret AM approaches as energy-based models.

Attribution

Attribution is the type of visualization method that attributes the reason for a

prediction by a DNNs to the importance of the input features. If the inputs are

images, it tells us which pixels of the images are responsible for a specific predicted

label. It also represents a set of techniques that explains the connections between

neurons. It explains how individual neurons work together to arrive at a decision,

which is different from the Neural Feature Visualization approach that just presents
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what the network detects. As a matter of fact, the aforementioned methods of SM

[149], deconvnet [187] and “guided propagation” [154] also belong to the attribution

approach. Here we elaborate on more recent progress in this area.

An approach named Gradient-weighted Class Activation Mapping (Grad-CAM)

is introduced in [144] based on a localization technique: Class Activation Mapping

(CAM) [190]. Unlike CAM which alters the architecture of CNN and sacrifices model

performance for transparency, Grad-CAM interprets the existing state-of-art deep

models. It is also pointed out that although the techniques of Guided Back-propagation

[154] and Deconvnet [187] provide fine-grained high-resolution visualizations they are

not class discriminative. They [144] also show the possibility to fuse these techniques

with their Grad-CAM to create a high-resolution and class-discriminative method

called Guided Grad-CAM. Fig. 2.6 shows the comparisons between different approaches.

Note that Grad-CAM and Guided Grad-CAM are highly class-discriminative (only

highlights the cat region without the dog region) compared to Guided Backprop.

Figure 2.6: Comparison of visualizations for the ’tiger cat’ class among Guided
Backprop, Grad-CAM and Guided Grad-CAM from [144].

Due to the challenge that it is hard to discriminate the error produced by a

model and that of an attribution method, two fundamental axioms: Sensitivity and

Implementation Invariance are provided in [158]. Sensitivity essentially means that

a baseline is needed and Implementation Invariance implies that attribution should

be invariant to the implementation details of models if their functions are equal.

They point out that Saliency Maps (SM) [149], Guided Back-propagation [154]

and Deconvnet [187] violate the sensitivity axiom whereas the methods of DeepLift

[147] and Layer-wise relevance propagation (LRP) [13] breaks the Implementation

Invariance axiom. Then a method: Integrated Gradients satisfying both of the axioms
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is presented in the paper.

A counter-factual approach is provided in [81] which instead of interpreting the

DNNs directly evaluates many of the previously proposed interpretation methods on

linear models as linear models are simple neural networks. The theoretical evaluations

prove that the prevailing methods can’t explain correctly the linear models, not to

mention DNNs. Based on the theoretical framework they designed, they propose

two explanation techniques: PatternNet and PatternAttribution which could produce

improved explanations on DNNs. They formulate the theoretical model as

x = s+ d (2.8)

where

s = asy (2.9)

d = adϵ (2.10)

Here x is the input data, s is the signal which represents the part of x contributes to

y, d is the distractor that obscures the detection task, as is the signal direction. They

use a linear regression model to extract y from x and filter out d by a weight vector

wT .

wTx = wTas⏞ ⏟⏟ ⏞
=1

y + wTad⏞ ⏟⏟ ⏞
=0

ϵ = y (2.11)

They indicate that in the case of linear models the interpretation methods of Saliency

Map, Deconvnet and Guided Back-Propagation just analyze the weights which are

determined by the distractor not the signal and hence have flaws. They also divided

the current state-of-art interpretation methods into: Gradients, Signal methods and

Attribution methods.

Based on the work of [170], a more general and formal framework for treating

explanations as meta-predictors is introduced in [49]. They also identify the shortcom-

ings of the existing interpretation models and provide a model-agnostic interpretation

by image perturbations. Their proposed method modifies the Saliency Maps [149]

technique by integrating the information over several rounds of back propagation.

Ironically, a big drawback of Saliency methods (which is believed to be a highly

valued tool for interpretation) is presented in [80]. That is, the Saliency methods
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are input variant: a constant shift of the input data which doesn’t change a model’s

prediction would result in wrong attributions of some Saliency methods. Input

variance is not a new concept as it has been demonstrated before on DNNs that human

imperceptible perturbations on test images could arbitrarily change the network’s

predictions [160] [121]. Here the authors apply this idea to interpretation methods

and propose another axiom related to [158]: input invariance. They also prove that

Gradient and Signal methods satisfy this axiom while attribution methods fail. More

recently, Generative Adversarial Network (GAN) combined with the autoencoder

representation learning algorithm is proposed in [62] for the visual interpretations.

Data Visualization

Understanding data by visualizing them is an intuitive and important approach.

Plotting two or three dimensional data is an easy task for most graphing tools. But for

data that has more than three dimensions, special techniques are needed to transform

them into a more visually understandable two-dimensional space. These techniques

are called Dimension Reduction [175]. They could also be potentially helpful for

assisting the interpretation of black box models.

Some of the popular dimension reduction techniques are Principal Component

Analysis (PCA) [70], Multidimensional Scaling (MDS) [168] [37], t-distributed

Stochastic Neighbor Embedding (t-SNE) [108] and Autoencoder networks [69].

Among these, t-SNE has become the de facto standard for interpreting deep neural

nets. t-SNE mitigates the two problems that SNE [68] has: the optimization problem

and the ‘crowding problem’. It is able to reveal the local structure of the data as well

as the global structure (such as clusters at multiple scales). And it also generates

significantly better visualizations which was demonstrated in experiments [108] by

comparison with many other non-parametric visualization techniques such as Sammon

mapping, Isomap, and Locally Linear Embedding. The diagram in Fig. 2.7 produced

by t-SNE shows a near perfect separation of the ten digit classes of the MNIST data

set.

In [122], PCA and t-SNE are employed combined with the k-means algorithm for

the purpose of different facet visualizations. Similarly, a dimension reduction technique

(not specified in the paper) is applied in [166] to present the final visualization of
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Figure 2.7: Visualization of the MNIST data set applying t-SNE from [108].

the treeview method they proposed for peeking into the classification process of a

multi-layer perceptron. More recently, DarkSight [184] combines dimension reduction

with knowledge distillation to generate better visualizations, which are claimed to be

better than those produced by t-SNE.

T-SNE is a flexible approach but the produced results are tricky to evaluate.

it is a tool to generate understanding but not to reach conclusive evidence. The

visualization results heavily depend on the hyperparameters associated with the

optimization process, especially the parameter: perplexity [180]. The users have to

fine tune “perplexity” and “iterations” to achieve stable outcomes. T-SNE can’t be

used to find outliers and the cluster size and distances between clusters mean nothing.

It may also split a natural cluster into different parts due to the local minimas in

minimizing a nonconvex objective [174]. Moreover, some structures will never be able

to be displayed in the t-SNE plots, e.g. the non-metric similarities [174].
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2.2 Inherently Interpretable Models

Inherently Interpretable Models refers to the machine learning algorithm that doesn’t

need an extra explanation model to explain its decisions. That is, these kind of models

are transparent and explainable by themselves. Here, we review some recent advances

for transparent model design instead of focusing on the more traditional inherently

interpretable models such as decision trees, lists and linear models.

To construct decision trees that are both accurate and interpretable simultaneously,

a new classification method: Optimal Classification Trees (OCT) is proposed in

[12]. It is motivated by the fact that traditional decision trees are built applying a

greedy heuristic top-down approach, which splits each node in isolation neglecting

the underlying characteristics of the dataset. This could ultimately impair the

generalization ability of the model. Another problem for traditional decision trees

is that they can’t use the natural objective of misclassification rate of the training

process (traditional use is impurity measure) for optimizing the trees as it is limited by

the current top-down induction method’s one-step optimization procedure. To solve

these problems, it is best to construct an overall optimal decision tree and build new

splits based on the information of all other splits. This is also a potential approach

mentioned by the creators of decision trees: Breiman et al. [21], but was not able to be

fulfilled limited by the computer technology at that time. Thanks to the algorithmic

advances and the astonishing increase of computational power, it is now feasible to

solve the NP-hard problem of the overall optimal decision trees via the mixed-integer

optimization (MIO) solvers.

Motivated by the similar reason (the heuristic structure of decision lists [137]),

a new transparent algorithm, decision sets, is proposed in [92]. This time the

interpretability term is explicitly included in the objective function. It was pointed

out that there is a trade off between interpretability and accuracy for machine learning

algorithms. In terms of inherently interpretable models, rule-based models, e.g.

Decision Trees and Decision Lists are often preferred, as they can find a balance

between these two factors. Decision lists are usually considered more interpretable

than decision trees, as they use the if-then-else statements with a hierarchy structure.

But this structure reduces to some extent the interpretability, as to interpret an

additional rule all previous rules should be reasoned about. Also new rules down
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the list are applied to much narrower feature spaces, which makes the multi-class

classification difficult where the minority classes deserves equally good rules. This

motivates the proposal of the Decision Sets algorithm in [92], which produces the

isolated if-then rules, where each rule could be an independent prediction. To realize

this, an objective function which takes into account both interpretability (expressed

by precision and recall of rules) and accuracy (expressed by size, length, cover and

overlap) is configured. They show that solving the objective function is a NP-hard

problem, and finding near-optimal solutions of it is possible. However, Decision sets’

accuracy only approaches random forest, and its expressive power just catches up with

decision tree.

Instead of doing post-hoc interpretations, work [183] focuses on finding more

interpretable neural networks during the training process. They created a new model

complexity penalty function: tree regularization to favor models whose decision

boundaries could be well approximated by small decision trees. They measure human

simulatability (“human simulation requires stepping through every calculation required

to make a prediction” [183]) as the average decision path length and make the decision

tree loss differentiable by adopting the technique of derivative-free optimization [5].

Their experiments show that using tree regularization could achieve high accuracy at

low complexity.

2.3 Other Methods

This section introduces methods that don’t fit in the categories of post-hoc interpre-

tations and inherently interpretable models. Such methods apply novel ideas such

as Influence Functions, Game Theory and Information Theory from other disciplines

outside of the pure machine learning community to interpret current deep learning

models.

A powerful technique, Influence Functions, is applied in [84] to understand model

behaviors. Influence Functions is a classic method from statistics but seldom adopted in

the machine learning community. Different from the Post-hoc Interpretation methods

in section 2.1 where the trained models are fixed, in this paper, the model to be

interpreted is treated as a function of the training data. Instead of using model

parameters or test data to explain a model in Post-hoc Interpretations, the paper
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traces a model’s behavior back to its training data and tries to find out what training

examples lead to certain predictions of the model. To inspect the model, they are

curious about what would happen if a specific training point is removed from the whole

training data or if a training point is perturbed. This is achievable by retraining the

model from scratch without the specific training point or with the modified training

point, but it is prohibitively slow and expensive for very complex models. Fortunately,

Influence Functions can provide efficient approximations on the parameter change

under the two cases without retraining the model. For example, in the first case, it is

proved that removing a point produces the same parameter change as upweighting the

training point by a small value. As this method upweights a specific training point by

an infinitesimally small value, it is actually a local interpretation method. More work

still needs to be done to solve the global interpretation problem.

Although many interpretation methods are proposed in recent years, it is not clear

about how these methods are related and when to prefer one method over the other.

To address this issue, the authors in [107] identified six previous methods, namely,

LIME [133], DeepLIFT [147], Layer-wise relevance propagation (LRP) [13], Shapley

regression values [98], Shapley sampling values [157] and Quantitative Input Influence

[40] as additive feature importance methods, which share a common attribute that

they have an explanation model that is a linear function of binary variables. Then they

unify these methods by proposing a new framework: SHapley Additive exPlanations

(SHAP). They use concepts from game theory to prove that there exists a single

unique solution (that is, Shapley values) in this class of additive feature attribution

methods with three desirable properties: Local accuracy, Missingness and Consistency.

They define the solutions as SHAP values and to satisfy these three properties they

present novel Model-Agnostic and Model-Specific Approximations to approximate the

SHAP values.

A different approach [148] which doesn’t explain the decisions made by neural

networks sheds some light on the theoretical understanding of the inner workings of

Deep Learning and Deep Neural Networks. It is based on their previous work on

Information Plane and the information bottleneck principle [167]. This previous work

suggests that the goal of the network is to optimize the Information Bottleneck (IB)

tradeoff between compression and prediction. Their more recent work demonstrates the
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effectiveness of the Information-Plane visualization of DNNs. They find that Stochastic

Gradient Descent (SGD) optimization in deep learning has two different and distinct

phases: empirical error minimization (ERM) and representation compression. Also,

the representation compression phase begins when the training errors become small.

The experiments also demonstrate that the converged layers lie on or very close to

the IB theoretical bound and the main advantage of adding more hidden layers is to

reduce training time.

2.4 Conclusions

Based on our reviews, we find that not all methods strictly obey the taxonomy we

present here. These interpretation techniques are more likely to exhibit hybrid features:

usually overlaps of the taxonomy. The taxonomy discussed in this chapter could be

regarded as the building blocks to construct much better and complete interpretations.

It should be kept in mind that more and more new papers are increasingly published

at a speed much faster than ever before. It seems that we can’t even keep up with

their pace and as a finite document we have to stop the review here. In the following

chapters, chapters 3 and 4, we present our two different approaches for establishing

interpretable models to interpret deep neural nets. In chapter 5 we provide our solution

for utilizing interpretability from the perspective of the model designers.



Chapter 3

Interpretable Deep Convolutional Neural Networks via

Meta-learning

This chapter provides a method to understand the behavior of a neural network model.

We propose our methodology named CNN-INTE [102] to interpret deep Convolutional

Neural Networks (CNN) via meta-learning. In this work, we interpret a specific hidden

layer of the deep CNN model on the MNIST image dataset. We use a clustering

algorithm in a two-level structure to find the meta-level training data. Subsequently,

Random Forest is applied as base learning algorithms to generate the meta-level test

data. The interpretation results are displayed visually via diagrams, which clearly

indicate the manner in which a specific test instance is classified. Our method achieves

global interpretation for all the test instances on the hidden layers without sacrificing

the accuracy obtained by the original deep CNN model. This means our model is

faithful to the original deep CNN model, which leads to reliable interpretations.

This method is essentially a combination of techniques from data visualization and

surrogate models based on the taxonomy in chapter 2. Specifically, Random Forests

and Decision trees are employed as surrogate models to construct the interpretable

model and PCA (a data visualization technique) is adapted to visualize the interpre-

tation results. It should be noted that Random Forest is applied as base learners to

generate meta-level test data and not applied for meta-level interpretation purposes.

Our method is inspired by the idea of generating different facets within a class in

[122]. However, there are many differences. Instead of performing neural feature

visualizations, we employ the techniques of data visualization combined with other

machine learning algorithms to explain how a specific decision is made by analyzing

the activations of a specific hidden layer.

33
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3.1 Introduction

The disadvantage for the Inherently Interpretable Models is that there is a trade off

between interpretability and accuracy: it is not easy to learn an interpretable (so

presumably simple) model expressing a complex process with a very high accuracy.

In contrast, post-hoc interpretations take the opposite approach and do not sacrifice

accuracy : they first build a highly accurate model without worrying about inter-

pretabilty, and subsequently use a separate set of re-representation techniques to assist

the user in understanding the behavior of the algorithm. Among these techniques

surrogate models use the aforementioned relatively simple and interpretable algorithms

to explain the behavior of a complex model and the reasons why a given classifier,

treated as a black box, classifies a given instance in a particular way, e.g. TREPAN[38],

LIME [133], BETA [93].

Deep learning methods have lately been very successful in image processing and

natural language processing. They are sometimes viewed as a representation learning

approach [60], which learns refined features that could improve a model’s generalization

ability. In this approach, we interpret a neural network model by providing visual

presentations of the connections between input features and the output predictions.

We are reporting our work where we try to interpret the inner mechanisms of deep

learning. Our method: CNN-INTE is inspired by [122]. We design and implement

a tool that helps the user understand how the hidden layers in a deep CNN model

work to classify examples. And the results are expressed in graphs which indicate

sequential separations of the true class and the hypothesis. The main contributions of

our method are as follows:

• Compared to LIME [133] which provides local interpretations for the entire

model in specific regions of the feature space, our method provides a global

interpretation for any test instance on the hidden layers in the whole feature

space.

• Compared to models which apply inherently interpretable algorithms, e.g. [92],

our method has the advantage of not compromising the accuracy of the model

to be interpreted. This produces more reliable interpretation.
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• Contrary to [133] and[93] which treat the model to be interpreted as black box,

we access the hidden layers of deep CNN models and interpret them.

The experiments are implemented in the TensorFlow [1] platform, which makes our

model scalable to big datasets more easily. Scalability is an issue pointed out as future

work in [133] and [93] but not implemented yet.

3.2 Methodology

Our methodology could be classified as the post-hoc interpretations (chapter 2.1),

where a trained model is given and the main task is to interpret it. This method is

close to the approach of surrogate models, but is also different in many ways. First,

when building the interpretations we have to access the inner structure of the trained

network and we directly interpret the hidden layers of a deep CNN. In comparison,

surrogate models use a separate interpretation model to interpret the relationships

between the input variables and the outputs leaving the trained black-box model

untouched. Second, compared to LIME [133] which only has local interpretability, our

method achieves global interpretability. Similar to LIME, we also provide qualitative

interpretation with graphs to visualize the results. As our method interprets deep

CNN via Meta-learning, we first briefly introduce deep CNN, meta-learning and then

discuss our framework in details.

3.2.1 Deep Convolutional Neural Network

This section introduces the deep CNN model we plan to interpret. As we implement

our program in TensorFlow, we use its TensorBoard function to present the structure

of the deep CNN we constructed in Fig. 3.1.

There are three major components of a deep CNN: convolutional layer, pooling

layer and fully connected layer (the same as in regular neural networks). A deep CNN

model is usually a stack of these layers. In the convolutional layer, a filter is used

to compute dot products between the pixels of the input image at specific positions

and values of the filter, producing one single value in the output feature map. The

convolution operation is completed after the filter is slided across the width and height

of the input image. Following the convolutional layer, an activation function, often a
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rectified linear unit (ReLU) [116], is applied to inject nonlinearities into the model

and speed up the training process. Following ReLU is the pooling layer which is a

non-linear down-sampling layer. A common algorithm for pooling is the max pooling

algorithm. In this algorithm, each sub-region of the previous feature map is turned

into a single maximum value in this region. Max pooling reduces computation and

controls overfitting. In order to calculate the predicted class, after performing max

pooling, the feature map needs to be flattened and fed into a fully connected layer. In

the last layer, the output layer, a softmax classifier is applied for prediction.

The structure of the deep CNN model we designed is illustrated in Fig. 3.1. Since

it was generated by TensorBoard automatically, some of the words were not fully

displayed. Here we explain accordingly from bottom to top. “Placeholder” represents

the interface for inputting the training data. “Reshape” is needed first to convert

the input one-dimensional image data into two dimensional data. It should be noted

that the images themselves are two-dimensional, but the data are presented in a

one-dimensinal form. To go through convolutional process, the data hence needed to

be converted into a two-dimensional format. In our experiment, we use the MNIST

dataset [95]. The 784 input features are converted into a two-dimensional 28 × 28

image. Our model has two series of a convolutional layer followed by a pooling layer:

“conv1”-“pool1”-“conv2”-“pool2”, which are followed by one fully connected layer “fc1”.

As a fully connected network is susceptible to overfitting, the “dropout” operation [155]

applied after “fc1” aims to reduce it. In this operation, a probability parameter p is

set to keep a specific neuron with probability p (or drop it with probability 1-p). The

“Adam optimizer” [82], rather than a standard Stochastic Gradient Descent optimizer

is used to train the model via modifying the variables and reducing the loss. “fc2” is

the output layer with 10 neurons: each represents one of the classes: 0-9.

3.2.2 Meta-learning

Meta-learning is a learning method which learns from the results of the base classifiers.

It has a two-level structure, where the algorithms used in the first level are called

base-learners and the algorithm in the second level is called the meta-learner. The

base-learners are trained on the original training data. The meta-learner is trained by

the predictions of the base classifiers and the true class of the original training data.
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Figure 3.1: Structure of our deep CNN model generated by TensorFlow’s TensorBoard.
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When training the meta-learner, the “Class-combiner” strategy [28] is applied here,

where the predictions include just the predicted class.

To understand the meta-learning algorithm intuitively, Fig. 3.2 illustrates a sim-

plified training process for meta-learning [103]. The numbers 1, 2, 3, 4 represent the

four steps of training. In the 1st step, the base learning algorithms 1 to m are trained

on the training data. In the 2nd step, a validation dataset is used to test the trained

classifiers 1 to m. In the 3rd step, the predictions generated in step 2 and the true

labels of the validation dataset are used to train a meta-learner. Finally, in the 4th

step, a meta-classifier is produced and the whole meta-learning training process is

completed.

Figure 3.2: Meta-learning training process.

Once the training process is accomplished, the test process is much easier to

execute. Fig. 3.3 presents a simplified test process [103]. In the 1st step, the test data

is applied to the base classifiers to generate predictions which, combined with the

true labels of the test data, comprise the meta-level test data in 2nd step. In the 3rd

step, the final predictions are generated by testing the meta-level classifier with the

predictions in the 2nd step and the accuracy could be calculated.
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Figure 3.3: Meta-learning test process.

3.2.3 Framework

Our framework is named CNN-INTE which stands for Convolutional Neural Network

Interpretation. It is similar to meta-learning, but different in a few ways. In this work,

we interpret the first fully connected layer “fc1” of the deep CNN model illustrated in

Fig. 3.1.

The training process is shown in Fig. 3.4. In the 1st step, the original training

data is used to train a CNN model. In the 2nd step, the trained parameters (such

as weights, biases, etc.) generated in the 1st step are used to calculate the values for

the activations of the first fully connected layer: fc1. In the 3rd step, a clustering

algorithm is used to cluster the data generated in step 2 into a number of groups

which we define as explanation factors henceforth. In the 4th step, the data belonging

to each of the explanation factors are clustered again generating a number of clusters,

each assigned a unique ID. In the 5th step, these IDs are grouped together as the

training features in the meta-level, using the labels of the original training data as

the label for the meta-learner. In the 6th step, the features of the original training

data and the IDs (set as labels) in step 4 are used to train several random forests [96].

These trained random forest classifiers would be applied to generate test-level features

for the meta-learner: Decision Tree. In the 7th step, a Decision Tree is trained based

on the data generated in the 5th step.

Now we discuss the training process in more detail. Assume that the training data

T has N numbers of instances and that layer “fc1” has H neurons. The labels of the

training data are Ty = {l1, l2, ..., lN}. Once the deep CNN model is trained, for each

training instance ti, we calculate the activations at each hidden neuron on this layer.
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Figure 3.4: CNN-INTE training process.

Hence, we obtain a matrix S with size H ×N . To construct the meta-level training

data, we use a clustering algorithm to cluster S along the hidden layer axis into several

explanation factors F = {f1, f2, ..., fK}. According to [122], the value of K is user

defined. In our experiments, this value is determined as the one which produces the

best accuracy performance for the meta-learning algorithm. We also discuss how to

avoid this problem in chapter 6. Then within each of the explanation factors, we

cluster the data again, this time along the axis of the instances. The clustering results

are the IDs each instance belongs to. For instance, if the number of clusters is 10,

after the second level clustering each instance will have an ID number between 0-9.

All the IDs combined with the true labels of the training data builds up the meta-level

training data.

To present the technical details of the CNN-INTE training process, we provide the

pseudo code in Algorithm 1. Line 1-3 is the initialization of the algorithm. In line 4,

the activations S are clustered into K explanation factors, where K is the number of

clusters set in the first level clustering algorithm C l. In lines 5-7 the same clustering

algorithm C l is applied to all the explanation factors to generate K sets of ID numbers.

Lines 8-9 use the generated ID numbers and the true labels of the original training

data to train the meta-learner: Cm. Until now, the training process is not done yet.

We still need to generate the base models to be used in the test process. Lines 10-12

use the features of the original training data and the ID numbers to train K base
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models. The output of the training process would be the meta-lever classifier: M̃ and

K base models: B = {M1,M2, · · · ,MK}.

Algorithm 1 CNN-INTE Training Process
1: Input: activations: S; training data: T ; Meta learning algorithm: Cm; Clustering

algorithm: C l; Base learning algorithms: {C1, C2, · · · , CK}
2: E = ∅
3: Scv = ∅
4: {f1, f2, · · · , fK} = C l(S) ▷ figure 3.4, step 3
5: for k = 1 · · ·K do
6: IDsk = C l(fk) ▷ figure 3.4, step 4
7: end for
8: Scv = {IDs1, IDs2, · · · , IDsK , Ty} ▷ figure 3.4, step 5
9: for k = 1 · · ·K do

10: Mk = Ck(Tx, IDsk) ▷ figure 3.4, step 6
11: end for
12: M̃ = Cm(Scv) ▷ figure 3.4, step 7
13: E = ({M1,M2, · · · ,MK} , M̃)
14: Output: Ensemble E

Fig. 3.5 is a toy example that illustrates the above process. In this example,

there are 5 hidden neurons and 6 training instances. We set the number of clusters

for both the first and second level clustering as 3. Hence, the matrix S with size

5 × 6 is first clustered into 3 explanation factors {f1, f2, f3} horizontally. For each

factor, the activations are again clustered into three clusters vertically, e.g. f1 is

clustered into {C11, C12, C13}. If we set the ID numbers for these cluster as {0, 1, 2},
then the corresponding ID numbers for t1 to t6 in factor f1 according to Fig. 3.5 are

{0, 0, 1, 1, 2, 2}. Hence, the meta-level training features are expressed as:⎡⎢⎢⎣
0 0 1 1 2 2

0 0 0 1 1 2

0 1 1 1 2 2

⎤⎥⎥⎦
These data combined with the corresponding training labels of the original training

data are used to train the meta-learner. Here the meta-learner we used is the Decision

Tree [130], an inherently interpretable algorithm. Its tree structure provides an

excellent visual explanation of the predictions.

The test process of the meta-model is exactly the same as the meta-learning test
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Figure 3.5: Toy example for the generation of Meta-level training data.
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process, which is shown in Fig. 3.6.

Figure 3.6: CNN-INTE test process.

In the test process, we use the original test data to test the base classifiers generated

in the meta-level training process to obtain the meta-level test data’s features. The

base-learner we applied is random forest. The number of base models is equal to the

number of explanation factors. Hence, we have K base models: B = {M1,M2, ...,MK}.
In the toy example, there are three explanation factors which lead to three base models.

The training data for the first base model corresponding to f1 are:

(t1− l1) 0

(t2− l2) 0

(t3− l3) 1

(t4− l4) 1

(t5− l5) 2

(t6− l6) 2

Here ti − li represents the features of the original training instance i. Once we

obtain K base models, we can use the original test data to test them to produce the

meta-level test data. These data are then fed into the trained decision tree model to

interpret individual test predictions.

3.3 Experiments

The dataset we use is the MNIST database of handwritten digits from 0 to 9 [95]. The

original dataset has 60,000 examples for training. As a default behavior of Tensorflow,
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when reading the inputs, 55,000 examples are set as the training data, 5000 are saved

separately for validation purpose. There are also 10,000 examples for testing. Each of

the examples represents a 28× 28 image with pixels flattened as 784 features. The

experiments are performed on the TensorFlow platform.

3.3.1 Experimental Setup

First of all, we need to train a deep CNN model having a high accuracy. We first

reshape the input training data into 55000 images each with size 28× 28. Training all

the data on every epoch is expensive, which requires a lot of computing resources and

may lead to the termination of the program. Here we apply stochastic training: on

the first epoch, we select a mini-batch of the training data and perform optimization

on this batch; once we loop through all the batches, we randomize the training data

and start a new epoch. In our experiment, we set the epoch e = 1000, batch size

b = 50. Stochastic training is cheap and achieves similar performance to using the

whole training data in every epoch. For each mini-batch, in the first convolutional

layer, we apply 32 filters (or kernels) each with size 5× 5, which generates 32 feature

maps. In the first pooling layer we apply filters with size 2 × 2. The stride size is

set as 2. The second convolutional layer uses 64 filters with the same size as the

first convolutional layer. The second pooling layer has the same parameters as the

previous one. Immediately after this pooling layer is the first fully connected layer:

fc1. We set the number of neurons for this layer as 128. To reduce overfitting we also

set the dropout [155] parameter d = 0.5, which means a neuron’s output has a 50%

probability of being dropped. The last layer is the second fully connected layer (or the

“readout layer”), which has 10 neurons, with each neuron outputting the probability of

the corresponding digits 0-9. The test accuracy of this trained CNN model on the

test data is 93.9%.

Now comes the key part related to interpretability. We understand interpretability

of a model as being the ability to provide visual or textual presentation of the

connections between input features and output predictions. We first feed the trained

fully connected layer fc1 with the original training data, which would produce a

data S with size of 128× 55000. We then cluster S into several explanation factors.

The clustering algorithm we applied is the k-means algorithm [64]. The number of
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explanation factors is equal to the number of clusters which we set as 8 in this level.

Hence, S is now turned into a list F = {f1, f2, ..., f8} with size 8× 55000 having each

row representing the data belonging to each factor. In the second level clustering, for

each factor in F we use the k-means algorithm again to cluster them into a number

of clusters. We set the number as 10 in our experiment. Hence each cluster will be

assigned a unique ID number between 0 and 9. Then we use the IDs belonging to each

training instance and the true labels of the original training data to train a decision

tree algorithm. Since the trained decision tree is huge, we show the structure of it in

this link 1. We set the maximum depth of the decision tree as 5. Although a deeper

decision tree would generate better accuracy, it makes it harder to interpret with too

many tree levels.

To obtain the test data for decision tree, we first use the original training data’s

feature as features and the IDs for each factor in F as labels to train the corresponding

random forest algorithm [96], generating 8 base models. For random forest, we set the

number of trees as 20 and the maximum nodes as 2000. Finally we use the original

test data to test the 8 trained base models. The generated predictions become the

features of meta-level test data with sizes of 10000 × 8. Using the meta-level test

data on the trained decision tree produces an accuracy of 92.8% with tree depth=5.

This value is comparable to the test accuracy on the trained deep CNN model: 93.9%.

It should be noted that the decision tree’s accuracy could be further improved by

increasing the depth of tree and tuning other related parameters.

3.3.2 Experimental Results

To interpret the deep CNN model’s behavior on the test data, we intend to use

diagrams generated by our tool, CNN-INTE, to examine individual predictions on

the test data. Hence, we provide qualitative interpretations visually. We arbitrarily

selected two test instances that were correctly classified by the decision tree and one

test instance that was wrongly classified. It should be noted that this tool could

be used on any test instances globally and not just limited to the three cases we

provide. The details of the selected test instances are shown in Table 3.1. Here

1https://drive.google.com/file/d/1X2ingiAy0COZtfDKFmuNSNXWsL6mC-
A3/view?usp=sharing



46

“f0-f7” represents the features of the meta-level test data, “label” is the test label

in the original test data, “pred” is the prediction generated by the decision tree on

the meta-level test data. “True1” and “True2” represent the two correctly classified

instances and “Wrong1” is the wrongly classified instance.

Table 3.1: Instances Selected From the Meta-level Test Data

Features and labels
f0 f1 f2 f3 f4 f5 f6 f7 label pred

True1 4 0 7 7 0 0 0 0 3 3
True2 5 0 0 5 9 5 3 6 0 0

Wrong1 5 6 7 9 6 4 7 9 5 9

In order to examine the classification process visually, we check each feature value

according to the trained structure of the decision tree and plot the graphs of the

activations corresponding to the true label and the hypothesis. The interpretation

result for instance “True1” is shown in Fig. 3.7. As the true label for this instance is 3,

all other classes could be regarded as hypotheses and this is why there are no graphs

for “Hypothesis: 3” in Fig. 3.7. Each row represents the examination of the feature

values corresponding to different explanation factors in different levels of the trained

decision tree, e.g. the first row represents the root level of the decision tree. Since we

set the depth of the decision tree as 5, there are 5 rows in all. Each column stands for

the query of whether the test instance belongs to the corresponding hypothesis over

the nodes visited.

To prove that the generated visual interpretations are correct, we examine the

structure of the generated decision tree together with the visual interpretations. It

should be noted that X in the decision tree structure is the same as f and ‘value’

stands for the number of data points belonging to each of the ten digits. One question

arises in this procedure as to how do we separate the projection error from the error

of the model itself. This should be regarded as one of the limitations of post-hoc

interpreations which we would address in chapter 6.

Take the column of “Hypothesis:0” as an example. The goal is to find if the label of

the test instance is 0. In the 1st row we extract the activations corresponding to “f6”

which satisfies the condition that f6 ⩽ 4.5 (this is determined by the trained decision
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Figure 3.7: Example of a correctly classified test instance: True1. Each point represents
an activation belong to either the true label (in red) or the hypothesis (in blue)

tree) and we draw a graph between activations that belong to label=0 (hypothesis) and

label=3 (true). Then we check the graph to evaluate whether the data corresponding

to the true class could be separated from the hypothesis. The answer is no because

the hypothesis, represented as blue points, overlaps with the true class, shown as red

points. Hence, we need to query the trained decision tree further. The values of the

explanation factors we need to check are: f6 ⩽ 2.5 for 2nd row; f6 ⩽ 0.5 for 3rd row;

f7 ⩽ 0.5 for 4th row; f1 ⩽ 0.5 for 5th row. In this process, we noticed that in the 4th

row the true class and the hypothesis class are successfully separated, as only the red

points corresponding to the true label are left. Therefore, we don’t need to examine

further and that’s why the graph for the 5th row is not displayed. We highlight the

graph with green rectangles if the final results are separable and red vice versa. The

same idea is applied on other hypotheses. We also draw the graphs for instances

“True2” and “Wrong1” in Fig. 3.8 and Fig. 3.9 respectively.

3.4 Conclusions and limitations

In this work, we present an interpretation tool CNN-INTE, which interprets a hidden

layer of a deep CNN model: to find out how the learned hidden layer classifies new
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Figure 3.8: Example of a correctly classified test instance: True2.

test instances. Although we just show the results for the first fully connected layer

before the read-out layer, the approach could be applied on any hidden layers. The

interpretation is realized by finding the relationships between the original training

data and the trained hidden layer “fc1” via meta-learning. We used two-level k-means

clustering algorithm to find the meta-level training data and random forests as base

models for generating meta-level test data. The visual results generated by our

program clearly indicate why a test instance is truly or wrongly classified by checking

if there are any overlaps of the corresponding activations. One limitation of this

approach is that it only applies to CNN at the moment. To expand this method to

other networks the approach would need to be adapted. Moreover, we also need to

perform more experiments to demonstrate the effectiveness of this method on other

datasets. One such example is the Cifar10 dataset which is also an image dataset and

could also apply the similar structure of the CNN that the MNIST dataset trained on.

The same approach we proposed in this chapter would therefore be applicable and

relevant to understand how a given hidden layer classifies a given instance.
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Figure 3.9: Example of a wrongly classified test instance: Wrong1.



Chapter 4

Improving the Interpretability of Deep Neural Networks with

Knowledge Distillation

In this chapter, we contribute to resolve the tension between interpretability and

accuracy . We propose to apply the Knowledge Distillation technique to distill

Deep Neural Networks into decision trees in order to attain good performance and

interpretability simultaneously. Knowledge Distillation is pertinent to the “surrogate

models” we introduced in chapter 2. When designing the model, we formulate the

problem of learning a surrogate model, decision tree, from the probabilities of a

complex model as a multi-output regression model. The experiments demonstrate that

the student model achieves significantly better accuracy performance (about 1% to

5%) than conventional decision trees at the same level of tree depth. The experiments

are implemented on the TensorFlow platform to make it scalable to big datasets.

To the best of our knowledge, we are the first to distill Deep Neural Networks into

conventional decision trees on multi-class datasets.

4.1 Introduction

For high stakes domains such as clinical decision support, decision trees are preferred

over DNN for disease diagnosis due to their ease of interpretation [16] [185] [48].

However, decision trees overfit easily and perform poorly on large heterogeneous

electronic health records (EHR) datasets [31]. For inherently interpretable models, it

is therefore desirable to develop models to find a spot where both interpretability and

performance could be ultimately optimized.

As introduced in chapter 2, an intuitive and natural way to interpret neural networks

is through visualization. However, recent research [160] shows that it is space, not

the individual units, that contains the semantic information in the higher layers of

neural networks, which means that the common approach: activation maximization

[187] [61] [59] [149] [114] applied previously for interpretation has flaws. A related

50
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suggestion was given in [54] to abandon the idea of inspecting individual hidden units.

Thus alternative solutions for interpretation are required.

For inherently interpretable models, this approach presents a severe constraint on

the selection of algorithms. Besides, although humans can comprehend these models,

they fail to model more complex problems with high accuracy performance.

In this chapter, we apply the most recent model-agnostic approach [134] which

performs post-hoc explanations on the trained models. Past research for model-

agnostic interpretations focused on either global interpretations or local explanations

as discussed in chapter 2. We strive here for global interpretations. And we adopt

knowledge distillation to improve the global interpretation results.

Knowledge distillation refers to the process of transferring the dark knowledge

learned by a teacher model (usually sophisticated and large) to a student model

(usually shallow and small). Dark Knowledge [67] [9] is the salient information hidden

in the “soft targets”: predicted probabilities for all classes, which are more informative

than the “hard targets”: predicted classes. One example for “soft targets” and “hard

targets” is illustrated in Fig. 4.1. Maybe the pioneer work to distill the knowledge

from a neural network into another algorithm is by Craven and Shavlik [38] who used

a symbolic algorithm, the decision tree [130], to approximate the functions learned by

a neural network with one hidden layer using hard targets.

Figure 4.1: Examples of hard and soft targets.

Knowledge distillation originates from model compression [23]. In [23], the teacher

model was built using the ensemble selection algorithm [25], which was then used to

label unseen unlabeled data: the training data for the student model (also called the

transfer data). This approach uses the hard targets produced by the teacher model.

A following work [7] distills deep nets into shallow feed-forward nets adopting the

method of “matching logits” (scores before the softmax activations), which would avoid

the information loss when passing through logits to the probability space.
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Then the concept of “knowledge distillation” was officially introduced in [67]. It is

a more general solution to transfer knowledge from a cumbersome model to a compact

model. There is a critical parameter that their method depends on: temperature.

Remember in section 3.2.1 when we introduced a typical convolutional neural network,

the last layer is the softmax layer. This layer has the function of converting logits

into probabilities. it is calculated by the equation of (4.8) in section 4.3.2. This is

essentially the temperature T set to 1 in the equation of (4.10). In their approach

T is varied. They try to find an optimal temperature by raising the temperature of

the final softmax layer of the teacher model until a suitable set of soft targets are

generated. Then they apply the same temperature to the student model. They also

proved that “matching logits” was actually a special case of their distillation approach.

Afterwards, a number of works followed such as [138] [172] [191], just to name

a few. Most of these works concentrate on distilling complex and deep neural nets

into simple and shallow neural nets; and are mainly applied for scenarios like edge

computing hardware and on-the-fly training where there are memory, resource, power,

time and space constraints, without significant loss in performance.

In our work, we employ knowledge distillation for another purpose: interpretation.

We resolve the tension between interpretability and accuracy performance by distilling

deep neural nets into conventional decision trees. This is a work in progress and as

the first step of our attempts we apply the matching logits approach in [7]. The main

obstacle to executing this plan is that for pure classification tasks there exist no logits

in decision trees as in neural nets which could be used in the loss function. We address

this issue by reformulating it into a multi-output regression problem [17] and achieve

significant accuracy improvements (about 1% to 5%) on the experiments. Hence, the

success of our approach establishes a new path for turning those inherently interpretable

algorithms (which are highly interpretable, but worse in accuracy performance) into

models attaining both accuracy and interpretability simultaneously.

4.2 Related Work

In the health care domain, two pipelines [30][31] are proposed to distill the knowledge

from a DNN to Gradient Boosting Trees (GBTs) [52][53]. One of them extracts the

logits from a learned DNN and uses the logits and the true labels of the original
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training data to train a logistic regression algorithm to obtain the soft prediction

scores. The next step is to train GBTs with the original training data’s features and

the soft predictions. The second pipeline directly applies the soft prediction scores of

the trained DNN to the original training data as targets for training a mimic model

with GBTs. However, GBTs lack transparency as they rely on post-hoc determinations:

partial dependence [52], which would result in bias in this process [53]. The differences

between their approach and ours are apparent. The strategy we applied when training

the mimic model is matching logits, not the soft targets. Also, our student model is

decision tree.

Another approach that distills neural networks into GBTs is in [162]. They tried

two student models: tree-based generalized additive models (GA2Ms) [24][104][105]

and GBTs. The teacher model they adopted is multilayer perceptrons. For the student

model’s training process, they applied the method of matching logits instead of soft

targets in [30][31]. They investigated both classification and regression problems.

However, their model is limited to binary class problems and their results are not

conclusive and not yet published. Compared to their method, our teacher model is

DNN and the student model is decision tree. We aim at multi-class classification

problems.

Instead of doing post-hoc interpretations, [183] focuses on finding more interpretable

neural networks during the training process. They created a new model complexity

penalty function, tree regularization, to favor models whose decision boundaries could

be well approximated by small decision trees. They measure human simulatability

(“human simulation requires stepping through every calculation required to make a

prediction” [183]) as the average decision path length and make the decision tree loss

differentiable by adopting the technique of derivative-free optimization techniques [5].

Their experiments show that using tree regularization could achieve high accuracy at

low complexity. Our method belongs to the post-hoc interpretations, which is different

to what they proposed.

A more recent work [184] combines knowledge distillation and dimension reduc-

tion to visualize the results of deep classifiers. They pointed out that the method:

t-distributed stochastic neighbor embedding (t-SNE) [108], commonly used for vi-

sualizing the activations of hidden layers, was problematic. Their experiments of
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t-SNE show that points which actually lie near the decision boundary are presented

well-separatd in t-SNE plots. This may mislead the analysts on the performances

of classifers. They propose to visualize the data points that are assigned similar

probability vectors to give practitioners a sense of how the decisions are made on test

cases. They train a simpler and more interpretable classifier using the soft targets

generated by a deep classifier. The student model they applied is Naive Bayes.

Perhaps the most related work is the model in [54] which uses a type of soft decision

tree to mimic the input-output functions of a trained DNN. The reason they adopt

a soft decision tree is that these trees can generate soft decisions to “facilitate easy

distillation of the knowledge acquired by a deep neural net into a decision tree”. In

our case, we apply a different approach by using a multi-output regression model to

facilitate distillation on a conventional decision tree. The way they design the soft

decision tree is quite similar to [72].

4.3 Methodology

Rather than common approaches that distill DNN into shallow neural networks,

we investigate distillation into non-neural nets. And the deep models we focus on

are Convolutional Neural Networks (CNN). We first introduce some background

information about decision trees and knowledge distillation and then describe our own

methodology in detail.

4.3.1 CART for Regression

There are several versions of the decision tree algorithm. The earliest version: Iterative

Dichotomiser 3 (ID3)[129] was proposed by Quinlan in 1986. It uses information gain

as its attribute selection measure and requires features to be categorical. C4.5[130] is

a successor of ID3 by Quinlan and the restrictions of ID3 on features are removed.

Classification and Regression Trees (CART) [20] was introduced in 1984 by Breiman

et al. Although CART and C4.5 were invented by different authors, they follow

similar ideas for training decision trees. Owing to the reason that CART supports

numerical target values (regression) and the key to our methodology is to solve a

multi-output regression problem, we introduce briefly here the algorithm of CART.

CART applies a greedy approach which constructs the decision tree in a top-down
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recursive divide-and-conquer manner. As our experiments apply CART for regression,

the descriptions focus on regression tasks.

This algorithm partitions the feature space and groups instances with the same

labels together. Initially, it constructs a root node with all training samples S with

features as xi ∈ Rn for i = 1...l and labels as yi ∈ Rl and splits the node into two

child nodes recursively. The splitting criterion is: C = (a, tn), where a is the attribute

to split on and tn is the threshold at node n. This criterion partitions S into

Sleft(C) = (x, y)|xa ⩽ tn (4.1)

Sright(C) = S \ Sleft(C) (4.2)

The impurity at node n is calculated with an impurity function I. For our regression

task, we applied the Mean Squared Error method to calculate the impurity. Hence, I

is calculated as

y′n =
1

Mn

∑︂
i∈Mn

yi (4.3)

I(Xn) =
1

Mn

∑︂
i∈Mn

(yi − y′n)
2 (4.4)

Mn is the number of instances in the corresponding child node. Hence, based on I,

the impurity for both nodes can be expressed as

f(S,C) =
Mleft

Mn

I(Sleft(C)) +
Mright

Mn

I(Sright(C)) (4.5)

Then the parameters in C could be optimized by minimizing f(S,C)

C∗ = argminCf(S,C) (4.6)

Thus, the optimal attribute and the splitting threshold are found. Then the algorithm

recursively splits Sleft(C) and Sright(C) until the maximum depth specified by the

user is reached, a node becomes pure, Mn < minsamples or Mn = 1.
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4.3.2 Matching Logits

Knowledge distillation transfers the generalization ability of a complex teacher model

to a simple student model. Using the teacher model’s soft targets for distillation

could produce a much better outcome than hard targets, which was proven by the

experiment results in [7]. Fig. 4.1 shows an example of hard and soft targets. Hard

targets just contain the information for the predict label while soft targets reveal all

the predicted probabilities for all the classes. Many previous works [38] [23] [133] just

adopt the hard targets (the predicted labels of the teacher model) for distillation,

where soft targets could as a matter of fact boost the results significantly.

When we examine Fig. 4.1 closely, we notice that the probabilities for “cow” and

“car” are much smaller than those for “dog” and “cat”. When training student models

applying the cross-entropy cost function, these much smaller probabilities would vanish

to zero. Take CNN for example, the last hidden layer l before the softmax layer is a

fully connected layer with logits z as the output

zi =
∑︂
j

Wijx
l−1
j + bi (4.7)

Here zi is the logit for one of the classes: i. j is the number of hidden nodes for layer

l − 1. W and b are weights and bias respectively. The softmax layer calculates the

output probabilities for each class as

qi =
ezi∑︁
j e

zj
(4.8)

The cross-entropy function is then applied to calculate the loss of the model

Hp(q) = −
∑︂
i

pilog(qi) (4.9)

Hence, to avoid the loss of information, it is desirable to use logits z as per equation (4.7)

instead of the predicted probabilities q. This method is called “matching logits” and

the pioneer work was done in [7]. Hinton et al. [67] extended their work to a more
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general case by inserting a temperature term T into (4.8)

qi =
e

zi
T∑︁

j e
zj
T

(4.10)

and they demonstrated mathematically that in the high temperature limit and when

the logits were zero-meaned separately for each training instance of the student model,

matching logits was a special case of using the soft targets for distillation. They proved

it by performing gradient descent on the cross-entropy function

∂H

∂zi
≈ 1

NT 2
(zi − vi) (4.11)

Here vi is the logit of the student model for training instance i, N is the number of

instances of the training data for the student model. For more elaborated derivations,

please refer to [67].

4.3.3 Distilling CNN into Decision Trees

In this work, as the first step of our attempts, we employ the matching logits method

when distilling CNN into conventional decision trees. Fig. 4.2 illustrates the framework

of our method. In this figure, the architecture of the CNN is the one used to train the

MNIST data as in [102]. It comprises two convolutional layers and two pooling layers

followed by two fully connected layers: fc1 and fc2. After this deep CNN is trained,

we feed the feature part X of the original training data into the trained model to

obtain the corresponding logits Z. Then we train CART with X and Z which are

treated as the targets.

However, here arise some problems for deployment. First, for classification tasks,

the targets are limited to categorical, not numerical and continuous values. We can

resolve this by treating it as a regression problem. Second, even for regression tasks,

most algorithms only support single-output regressions. For multi-class datasets,

this is actually a multi-output regression problem [17]. The whole point of using

multi-output regression is to facilitate distillation. As we mentioned at the end

of section 4.2, since the student model learns from the soft targets of the teacher

model, we need to adopt multi-output regression to facilitate this learning process.



58

We apply the algorithm adaptation method, where we use decision trees to directly

handle multi-output data sets simultaneously. This is anticipated to produce much

better results than the problem transformation method which transforms the multi-

output regression problem into independent single-output problems which are then

solved by single-output regression algorithms. This is due to the fact that problem

transformation methods do not consider the dependencies among the targets.

Figure 4.2: Framework of our method.

So the key novelty of this chapter is that we treat the problem at hand as a

multi-output regression problem first and then try to translate the regression results

to achieve the goal of classification. Hence, the regression data for CART should

have features as X with xi ∈ Rn for i = 1...l and labels as Z with zi ∈ Rl. And the

impurity function I in CART is calculated as

z′n =
1

Mn

∑︂
i∈Mn

zi (4.12)

I(Xn) =
1

Mn

∑︂
i∈Mn

(zi − z′n)
2 (4.13)

Once CART is trained, in order to obtain the final prediction results on test cases

we need to add a softmax layer over the test results of CART to turn numerical test
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results into categorical ones. Assuming the test results on CART is k, the final output

probabilities for class i therefore is

Oi =
eki∑︁
j e

kj
(4.14)

4.4 Experiments

We performed the experiments on two datasets to demonstrate the effectiveness of

our distillation approach. All teacher models are implemented on the TensorFlow [1]

platform to make them scalable to big datasets.

4.4.1 Datasets

The two datasets we selected are the MNIST dataset [95] and the Connect-4 dataset

from the UCI repository [41]. MNIST is a famous benchmark dataset for deep learning.

It contains the pixel values of handwritten digits from 0 to 9. Each instance is a 28×28

grayscale image and contains 784 features when flattened into a one dimensional space.

The Connect-4 dataset stores the information about the two players’ positions for

the the game of connect-4. It has a seven-column, six-row vertically suspended grid.

There are two players and each spot on the grid represents whether it has been taken

by the first player, or the second player or left blank. The classes are the outcome for

the first player. Details of these datasets could be found in Table 4.1.

Table 4.1: Datasets

Dataset Details
#Features #Train #Test Labels

MNIST 784 55,000 10,000 0-9
Connect-4 42 57,557 10,000 win, loss, draw

4.4.2 Experimental Setup

The deep learning model we applied to train the MNIST dataset is a deep CNN

which has an architecture of two convolutional layers followed by two fully connected
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layers. The parameter settings for this network are depicted in Table 4.2. The first

convolutional layer uses filters with window size 5 × 5, stride = 1 and the ‘same’

padding in TensorFlow. When the stride length is 1, ‘same’ padding generates a

feature map with the same size as the input image. This stage produces 32 feature

maps each with size 28× 28. The following max pooling layer over 2× 2 blocks with

stride = 2 generates 32 feature maps with size 14× 14. The parameter settings for

the second convolutional layer and pooling layer are the same as the previous one

except that this stage generates 64 feature maps. Hence, we have 64 feature maps

each with size 7× 7. Then we flatten these 7× 7× 64 features into a one dimensional

list and then apply a fully connected layer: fc1 with 1024 hidden nodes. Immediately

after fc1 is the dropout [155] layer, where we set the dropout rate as 0.5. The second

fully connected layer: fc2 is the output layer with 10 hidden nodes, each representing

one of the 0-9 digits. These outputs are also the logits of this model.

The Connect-4 dataset has a class distribution of win (65.83%), loss (24.62%) and

draw (9.55%). We randomly sample 10,000 test instances which satisfy the original

class distributions. The algorithm we applied to train the Connect-4 dataset is a

multilayer perceptron (MLP) with parameter settings in Table 4.3. It has three hidden

layers, the first hidden layer with 256 hidden nodes, the second hidden layer with

128 hidden nodes, the third hidden layer also with 128 hidden nodes and the output

layer with 3 nodes representing the three outcomes of the connect-4 game. We also

apply the dropout rate after each of the hidden layers and the value is set as 0.8.

When calculating the training loss, in addition to TensorFlow’s own cross entropy

function, we also added an L2 penalty (regularization term) parameter as in Python’s

scikit-learn machine learning tool. This penalty parameter is set as 0.0001 which could

help to improve the MLP’s performance.

Table 4.2: Parameter settings for MNIST

Network Type: CNN
conv:filter conv:stride pool:block pool:stride fc1

MNIST 5× 5 1 2× 2 2 1024
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Table 4.3: Parameter settings for Connect-4

Network Type: MLP
1st hidden 2nd hidden 3rd hidden out dropout

Connect-4 256 128 128 3 0.8

4.4.3 Experimental Results

For decision tree classifications, we apply the modules in the scikit-learn machine

learning tool. When we are performing classification tasks applying a decision tree,

there are a variety of parameters to tune such as the minimum number of samples

per leaf, the strategy used to choose the split at each node (either the best split or

the best random split) and so on. We select two parameters that would influence the

performance of a decision tree substantially: the maximum depth of the tree and the

functions to measure the impurity of a split (either “gini” or “entropy”). The other

parameters are left as default values as in scikit-learn.

For the MNIST dataset, the teacher CNN model achieves an accuracy of 99.25%.

The performance for the student model and the conventional decision tree classification

results are shown in Table 4.4. “Acc_student” represents the accuracy of the student

decision tree trained using the logits of the teacher CNN model on TensorFlow.

Table 4.4: Test Accuracy Results for MNIST

Tree Methods
Depth Acc_student Acc_gini Acc_entropy

6 0.7119 0.6644 0.6849
7 0.7685 0.7534 0.7228
8 0.8125 0.7914 0.8007
9 0.8512 0.8151 0.8304
10 0.8655 0.8445 0.8450

“Acc_gini” is the accuracy of the decision tree without distillation when the impurity

measure is “gini” in scikit-learn when trained utilizing the same training and test data

as the CNN model. “Acc_entropy” is the classification accuracy of the decision tree

when the impurity measure is “entropy”. We highlighted the best performance in bold.
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Under different tree depths, the student model always outperforms the conventional

decision tree. The same conclusion holds true for the Connect-4 dataset in Table 4.5

where the accuracy for the MLP teacher model is 86.62%. The reason we limit the

tree depth to 10 is that we would like to construct interpretable models, and trees

over a depth of 10 become extremely hard for human cognition to comprehend. We

also illustrate these results in graphs in Fig. 4.3 and Fig. 4.4 to present the results

more intuitively.

Table 4.5: Test Accuracy Results for Connect-4

Tree Methods
Depth Acc_student Acc_gini Acc_entropy

6 0.6943 0.6816 0.6835
7 0.6999 0.6919 0.6832
8 0.7070 0.6750 0.6625
9 0.7230 0.6927 0.6974
10 0.7342 0.7044 0.7006

Figure 4.3: Distillation results for MNIST.

4.4.4 Discussion

For the Connect-4 dataset, although we can fine tune the parameters of the teacher

model or switch the teacher model to CNN to improve the teacher model’s performance,

the distillation effect still relies largely on the student model’s own generalization

ability. For instance, the teacher model for the MNIST dataset already has a very
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Figure 4.4: Distillation results for Connect-4.

high accuracy of 99.25%, but the student model’s highest accuracy in Table 4.2 is

only 86.55%. However, from our experiments we found that training a good teacher

model indeed helped to boost the distillation results. In our experiments, we notice

that distillation helps to improve the accuracy by 1% to 5%. Hence, there is still a

long way to go for the student model to match the results of the teacher model.

We are also curious about the performance of the student models and the conven-

tional decision trees when the maximum depth of the tree is not specified. In this

situation, for the MNIST dataset, we found that the accuracy for the student model

was 88.28% and the decision tree classification achieved 87.4% for the criterion of “gini”.

For the Connect-4 dataset, when the teacher model has an accuracy of 83.22% the

student model achieves 79.06% and conventional decision tree has 77.57% when using

“gini” as the impurity measure. We notice that the accuracy improvements are smaller

than in the cases where the depth of the trees are specified. This is easy to explain

as when the tree levels are not set the conventional decision tree takes much deeper

tree levels than the student model to arrive at the current accuracy results. Hence

these decision trees are far less interpretable than the student models because the

level of tree depth determines the interpretability for decision trees. After all, in our

experiments we already demonstrated that under the same tree level, the conventional

decision tree performs worse than the student models.
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4.5 Conclusions and limitations

Based on the fact that inherently interpretable algorithms perform worse than some

non-interpretable algorithms such as the deep learning algorithm, this chapter presents

an approach to improve the accuracy performance of an inherently interpretable

algorithm: decision tree. This is achieved by utilizing the dark knowledge hidden in

the soft predictions of DNN. We apply the matching logits method which employs the

logits of DNN for training student decision tree models. Experiments on two datasets,

MNIST and Connect-4, demonstrate significant improvements on the accuracy of the

distilled student model over conventional decision trees.

The most valuable contribution of our approach in this chapter is that we improved

the accuracy of the surrogate model, which is one of the three pillars for developing

a good interpretation method (in chapter 1.2.1 on the evaluations of interpretation

methods). At the same time, this method also meets the goal of improving fidelity

and comprehensibility. Fidelity is improved by applying the teacher student training

strategy. And comprehensibility is achieved by choosing an inherently interpretable

algorithm: decision tree.

Although we used image data in the experiments to prove the efficacy of our

approach (the accuracy of student models are improved), decision tree is more suitable

to interpret datasets which have meanings on their own features. For image data, each

feature is just a small piece of pixels of the entire image and visualization seems to

be a better option to interpret the classification process on the image data. Hence,

there are two reasons we are not showing the structure of the produced tree in this

paper: (1) the data is enormous and the tree could hence be huge; (2) it seems to

be meaningless to interpret an image using a tree structure pixel by pixel. Hence,

one of the differences between the approaches of chapter 3 and chapter 4 is that

chapter 3 directly presents visual interpretations while chapter 4 strives to improve the

interpretation method’s accuracy. In sum, our approach would work best on datasets

which have meaningful features themselves and could be reasoned about, e.g. emails.

For image datasets, to apply this approach we should adapt the surrogate model so

that it could present the visualization on each level of the tree, which could be a future

research direction.



Chapter 5

QDV: Refining Deep Neural Networks with Quantified

Interpretability

In this chapter, we demonstrate a way to refine the structure of a neural network model.

Current research (including our own research in chapters 3 and 4) on interpretability

tends to focus on building interpretable models for highly non-interpretable neural nets.

Little work has been done on employing interpretability for refining models. We propose

a new method, Quantified Data Visualization (QDV), to leverage interpretability for

refining deep neural nets. The key novelty of this method is that we combine the

methods of transfer learning and t-SNE to achieve our goal. Although transfer learning

and t-SNE are mature and successful techniques in their separate fields, to the best

of our knowledge, we are the first to combine them for the purpose of refining deep

neural nets. Our experiments show empirically why VGG19 has better classification

accuracy than Alexnet on the CIFAR-10 dataset through quantitative and qualitative

analysis on each of their hidden layers. This approach could be applied to refine the

architectures of deep neural nets when their parameters are altered and adjusted.

Compared with a previous approach, which mainly applies the method of neural

feature visualization, we are able to show and explain not only qualitatively but also

quantitatively why one model has higher accuracy than another one. Compared with

Knowledge Distillation, we directly interpret a complex neural net through a “Warm

Restart” via a simpler dataset, without distilling the complex model into a shallow

one.

5.1 Introduction

Discussing interpretability, we should be cautious that the meaning is two-fold: one

from the perspective of the end users and the other from the perspective of the model

designers, which demands different explanations and measures of efficacy. For end

users, it is mainly employed to illustrate predictions in unforeseen circumstances and

65



66

build a sense of trust. For model designers, it is useful to diagnose and refine the

models [146]. Current research [133, 93, 164, 114, 102] tends to focus on learning

interpretable models, but these models are seldom leveraged to help diagnose [189]

and refine the non-interpretable complex models. In this chapter, we demonstrate

from the angle of the model designers how interpretability could help to improve a

model’s accuracy to refine neural nets.

The research most relevant to ours is the neural feature visualization approach

proposed in [187] that employs visual interpretations to diagnose the problems of

an already existing deep learning model, Alexnet [88], to refine it. They utilize

a multi-layered Deconvolutional Network (Deconvnet) [188] (initially designed for

unsupervised learning), which maps the feature activities back to the input pixel

space and finds the optimal stimulus at any hidden layer in the model. The structure

of Deconvnet is shown previously in Fig. 2.4. After visualizing the first and second

hidden layers of the Alexnet, they reduced the filter size of the first hidden layer from

11 × 11 to 7 × 7 and the stride of convolution from 4 to 2. The resulting model

outperforms the architecture of Alexnet for their single models by 1.7% (test top-5).

However, the justification/intuition for the choice of smaller filters just relies on

qualitative comparisons, which is shown in Fig. 5.1. They changed the parameters of

the first hidden layer and stated (and we quote here) “the smaller stride (2 vs 4) and

filter size (7x7 vs 11x11) results in more distinctive features and fewer “dead” features.”

However, when we examine the corresponding visualizations in the first hidden layer

in Fig. 5.1, we don’t see much difference visually. In this chapter, we propose a

new method, Quantified Data Visualization (QDV), to quantitatively measure the

visualizations on each hidden layer for the sake of measuring more accurately the

impacts of parameter variations.

The contributions of this chapter are as follows:

• The main purpose of this paper is to refine neural network models more con-

vincingly via interpretability.

• Besides the definition of interpretability, a much harder task is to quantify and

measure it. In this paper, we propose a way to quantity interpretation.

• To the best of our knowledge, we are the first to interpret the models trained on
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Figure 5.1: Applying Deconvnet on the 1st layer features for Alexnet (b) and modified
Alexnet (c) [187]. However, we don’t observe much differences between (b) and (c)
visually.

the CIFAR-10 dataset when applying Alexnet and VGG19 as “Warm Restart”.

5.2 Method

Neural feature visualization has the advantage of showing intuitively what information

a neural net relies on to make a specific decision. For instance, in figure 2.5(c) and (d)

taken from [187], for the results in layer 5, it is noticeable that when just examining

the image patches of layer 5 it seems that they have nothing in common. But after

examining its feature visualization results we realize that it detects the grass in the

background.

However, the main disadvantage of this approach is the question of how to measure

the interpretability quantitatively (to what extent one interpretation is better than

another), which is also a common problem for other visualization techniques. Once we

have the quantitative information, we are able to evaluate more convincingly whether

one neural network structure is better than another. For this reason, in the following

sections we develop and present our Quantified Data Visualization (QDV) method for

quantifying interpretability.

5.2.1 QDV

The neural nets that we are interested in studying are the advanced models trained

on the ImageNet dataset [141]. This dataset has 1000 classes and its two-dimensional
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embedding for the hidden layer “fc7” of the Alexnet is computed and presented in [76].

However, with 1000 classes to be shown all at once in the same two-dimensional space,

it is very hard to understand the interpretation. Therefore, to take advantage of

human visual ability, in our model, we choose a benchmark dataset C which has only

10 classes. In order to compare the performances of sophisticated neural nets which

were pre-trained on the ImageNet data, we apply transfer learning [60] on the dataset

C. In spite of the diverse applications of transfer learning, here we leverage it for

“Warm Restart”: we use the trained models on the ImageNet dataset to fine tune the

algorithm on the dataset C. On the new model Mn, as the lower layers are already

trained on recognizing shapes and sizes, we just need to refine the upper layers on the

dataset C. In this chapter, the technique of “Warm Restart” are applied on Alexnet

and VGG19 neural nets. The pseudo code of our algorithm is shown in Algorithm 2.

Algorithm 2 QDV
1: Input: training dataset Ctr; test dataset Cte; dimension reduction parameters:

perplexity perp, iterations T , learning rate η, momentum α(t); pre-trained neural
net model: M .

2: Ctr
resize−−−→ (Ctr)

r

3: Mn = M((Ctr)
r)

4: Cte
resize−−−→ (Cte)

r

5: H = Mn((Cte)
r)

6: for hidden activations hi = h1 · · ·hH do
7: compute pj|i with perp

8: set pij =
pj|i+pi|j

2n

9: Initialize Y (0)

10: for t = {1, 2, · · ·T} do
11: compute qij in d-dimensional space
12: compute gradient dL

dy

13: set Y (t) = Y (t−1) + η dL
dy

+ α(t)(Y (t−1) − Y (t−2))
14: end for
15: compute AR for Y
16: end for
17: Output: {AR1, AR2, · · · , ARH}

In this algorithm, after setting all the input parameters (Step 1), we resize the

training dataset Ctr (Step 2). This is due to the reason that the input image size for

the pre-trained model is different from the training dataset Ctr. Then we apply the

resized training dataset (Ctr)
r to finetune the pretrained model M . The new model
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generated is denoted as Mn (Step 3). We then apply the resized test dataset(Cte)
r

on the newly generated model Mn, which produces the m-dimensional activation

values on all the H hidden layers (Steps 4-5). Then for the hidden activation values

hi at each hidden layer, we first compute the conditional probability pj|i which is

then applied to calculate the joint probability pij in the m-dimensional space (Steps

6-8). The mathematical reasons behind these are followed in the section Quantifying

Visualizations. The low dimensional representation is then calculated iteratively within

T iterations employing the derived gradient in equation (5.10) (Steps 9-14). Finally,

the agreement ratios are calculated for each of the hidden layers (Steps 15-17).

We also demonstrate QDV’s architecture in Fig. 5.2. In this figure, we present

our method in the case where we apply “Warm Restart” on the pre-trained Alexnet

which has five hidden layers. In this architecture, the ImageNet data is first applied

to train the Alexnet and then the pre-trained model M is employed as the “Warm

Restart” model. Then a new dataset C is applied on M to fine tune the parameters

generating a new model Mn (retrained model). With the retrained model, we could

then calculate the test accuracy. In this process, the blue blocks in Fig. 5.2 represent

the portions that the two models, M and Mn, share. The green blocks are the fully

connected layers, which are different for the two models because the ImageNet dataset

has 1000 classes while the new dataset has only 10 classes. After we obtain the newly

trained model Mn, we extract the hidden activation values from all of the five hidden

layers by testing Mn with (Cte)
r. In the end, we acquire the agreement ratios AR on

the two-dimensional representations Y of X. AR is then the indication of quantified

interpretations.

Quantifying Visualizations Let X = {x1, x2, ..., xn} be the set of values of the

hidden activations of a specific hidden layer of a neural network and xi be the m-

dimensional value of the hidden activation of the ith hidden node, n is the number of

hidden nodes at this hidden layer. We try to find a set of points Y = {y1, y2, ..., yn}
in a d-dimensional space with d = 2. Let δ(xi, xj) represent the dissimilarity measure

between two hidden nodes in the m-dimensional space and d(yi, yj) be the distances

of two points in the d-dimensional space. We apply a dimension reduction approach:f
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Figure 5.2: Architecture of QDV when applying “Warm Restart” on the pre-trained
Alexnet.

on X to obtain its d-dimensional representations Y

f : X → Y (5.1)

So that

|δ(xi, xj)− d(f(xi), f(xj))| → 0 ∀xi, xj ∈ X (5.2)

Instead of using high-dimensional Euclidean distances between two points to rep-

resent the similarities between two data points, we employ the concepts of conditional

probabilities of SNE [68]. For hidden nodes xi and xj, pj|i stands for the conditional

probability that hidden node xi would choose xj as its neighbour. This probability

conforms to the Gaussian probability density centered at xi. The nearer xj to xi, the

higher the probability pj|i. Therefore, we can express pj|i as

pj|i =
exp(−∥xi − xj∥2/2σ2

i )∑︁
k ̸=i exp(−∥xi − xk∥2/2σ2

i )
(5.3)

Here σi is the variance of the Gaussian distribution. Meanwhile, each m-dimensional
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hidden node xi will have a corresponding d-dimensional counterpart yi. The similarity

between yi and yj could also be modeled as a probability qj|i. When we set the variance

of the probability distribution of qj|i as 1√
2

qj|i =
exp(−∥yi − yj∥2)∑︁
k ̸=i exp(−∥yi − yk∥2)

(5.4)

In order to attain a good representation in the d-dimensional space, we need to

minimize the mismatch between the probabilities pj|i and qj|i. According to (5.2), we

use the Kullback-Leibler divergence to measure whether qj|i is faithful to pj|i. It has a

form of the additions of cross-entropy as follows [68]

L =
∑︂
i

KL(Pi||Qi) =
∑︂
i

∑︂
j

pj|i log
pj|i
qj|i

(5.5)

This is also the cost function. In t-SNE, by using joint probability distribution P

and Q in high-dimensional and low-dimensional spaces respectively, the cost function

could be reformulated as

L = KL(P ||Q) =
∑︂
i

∑︂
j

pij log
pij
qij

(5.6)

Then the gradient descent method is used to find the optimal solution. If we set

pij and qij as joint probabilities in the high-dimensional and low-dimensional spaces

respectively, pij could be expressed as [108]

pij =
pj|i + pi|j

2n
(5.7)

Employing the Student t-distribution with one degree of freedom in the low-dimensional

map, the joint probability qij could be expressed as

qij =
(1 + ∥yi − yj∥2)(−1)∑︁
k ̸=l(1 + ∥yk − yl∥2)(−1)

(5.8)
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When

pij = pji

qij = qji (5.9)

the gradient dL
dy

could be derived as

dL

dyi
= 4

∑︂
j

(pij − qij)(yi − yj)(1 + ∥yi − yj∥2)−1 (5.10)

To evaluate the optimal solution, we need to measure its information loss. A

straightforward way is to calculate “stress” [90]. It measures the differences of distances

between two points before and after dimension reduction, which could be expressed as

stress =

√︄∑︁
i<j(δ(xi, xj)− d(f(xi), f(xj)))2∑︁

i<j d(f(xi), f(xj))2
(5.11)

However, it is observed that sometimes the calculated values of stress don’t match the

actual projections: better projections are assigned worse stress [126].

Therefore, we propose to leverage the information of the nearest neighbors of a

point in the d-dimensional space. To search for the nearest neighbors, there are two

major techniques: pivot-based algorithms and clustering techniques [29]. Here we

apply a different one which we name Agreement Ratio (AR), which was previously

known as neighbourhood preservation [126]. This could generate quantitative values

about the interpretations on each hidden layer of a neural net.

For a specific point yi in the d-dimensional space, we select its k nearest neighbours

and calculate its AR: ARyi as the ratio of the number of points belonging to the same

class c as yi. Let N be the total number of nearest neighbors of yi and Nc the nearest

neighbors which have the same class label as yi. Then ARyi could be expressed as

ARyi =
Nc

N

⃓⃓⃓⃓
k

(5.12)

The AR for all the points of the projection in the d-dimensional space is the

average of AR over all the points in the d-dimensional space. This is the value that

we adopt to evaluate interpretability, and is denoted as
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AR =

∑︁
i ARyi

n
(5.13)

5.2.2 Comparison with Knowledge Distillation

Another related research to ours is Knowledge Distillation [67] [54] [164] [101], which

refers to the process of distilling the dark knowledge learned by a teacher model

(usually sophisticated and large) to a student model (usually shallow and small). The

distillation model we designed in [101] is illustrated in Fig. 4.2.

However, this method sacrifices accuracy for interpretability. In our experiment,

the teacher model achieves an accuracy of 99.25% on the MNIST dataset whereas the

best accuracy the student model (a conventional decision tree) obtains is only 86.55%.

When we compare the two frameworks, QDV in Fig. 5.2 and knowledge distillation

in Fig. 4.2, different from the Knowledge Distillation technique, our approach QDV

interprets the deep neural nets directly through “Warm Restart” without distilling it

into a separate shallow neural network.

5.3 Experiments

Experimental Setup We apply our method QDV to interpret two deep neural

nets: Alexnet [88] and VGG19 [150]. Both of them are pre-trained on the ImageNet

dataset [141]. We then use these pre-trained models as ”Warm Restart” and apply

the CIFAR-10 dataset to fine tune these models. it is noticeable that the image size

for the ImageNet dataset is 224× 224× 3 while it is 32× 32× 3 for the CIFAR-10

dataset. Hence, we resized the image size of the CIFAR-10 dataset to 224× 224× 3

to fit the pre-trained neural nets. The details for the CIFAR-10 dataset is shown

in Table 5.1 and the parameters used for fine tuning the pre-trained models are

displayed in Table 5.2. The experiments are executed on the platform of Google

Colaboratory [14] on a single GPU.

When fine-tuning the Alexnet, instead of applying the two-GPU net in the original

Alexnet paper[88], we adapt it to the one-GPU net. The complete order of the hidden

layers is “conv1-relu1-lrn1-maxpool1-conv2-relu2-lrn2-maxpool2-conv3-relu3-conv4-

relu4-conv5-relu5-maxpool5-fc6-fc7-fc8”. “conv” denotes the convolutional layer. “relu”

is Rectified Linear Units. “lrn” stands for Local Response Normalization[88] and “fc”
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Table 5.1: CIFAR-10 Dataset

Dataset Details

#Features #Train #Test Classes

32× 32× 3 50,000 10,000 10

Table 5.2: Parameter settings for fine tuning

Alexnet & VGG19

learning rate batch size #epochs

0.00001 16 10

is fully connected layers. All convolutional layers are followed by ReLUs and only the

first two convolutional layers are followed by lrn. The structural details and settings of

Alexnet is shown in Table 5.3. In this table, only layers before fully connected layers

are shown. Since the image sizes after going through relu and lrn are unchanged, we

just list the output sizes of convolutional layers and maxpooling layers. In Table 5.3,

“SAME” and “padding” represent for different padding algorithms. Especially, When

“SAME” is selected and the stride size is 1, the layer’s outputs will have the same

spatial dimensions as its inputs.

The structure of VGG19 is similar to Alexnet, but consists of multiple convolutional

layers in each of the convolutional blocks. The stacks of convolutional layers all have

filters with kernel size 3× 3, stride=1 and “SAME” padding. For maxpooling layers,

they all share the same 2 × 2 kernel with stride=2. The brief network structure

of VGG19 could be expressed as “conv1(2)-maxpool1-conv2(2)-maxpool2-conv3(4)-

maxpool3-conv4(4)-maxpool4-conv5(4)-maxpool5-fc6-fc7-fc8”. The numbers in the

brackets that follow each covolutional layer are the numbers of stacks of convolutional

layers. The detailed parameter settings for VGG19 are displayed in Table 5.4.

Experimental Results The program takes around 6-7 mins for training for one

epoch when using Alexnet as “Warm Restart” and processes about 7-8 batches/s with

a batch size of 16. For VGG19, one epoch takes about 12-13 mins and the program

processes about 4 batches/s. In order to obtain quantitative visualization results,

we randomly subsampled 1000 test instances guaranteeing a balanced distribution
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Table 5.3: Alexnet’s Structure before fully connected layers

Alexnet
Layer Stride Padding Kernel Output
conv1 4 “SAME” 11× 11× 96 56× 56× 96

maxpool1 2 “VALID” 3× 3 27× 27× 96
conv2 1 “SAME” 5× 5× 256 27× 27× 256

maxpool2 2 “VALID” 3× 3 13× 13× 256
conv3 1 “SAME” 3× 3× 384 13× 13× 384
conv4 1 “SAME” 3× 3× 384 13× 13× 384
conv5 1 “SAME” 3× 3× 256 13× 13× 256

maxpool5 2 “VALID” 3× 3 6× 6× 256

Table 5.4: VGG19’s Structure before fully connected layers

VGG19
Layer Stride Padding Kernel Output

conv1 1 “SAME” 3× 3× 64 224× 224× 64
1 “SAME” 3× 3× 64 224× 224× 64

maxpool1 2 “VALID” 2× 2 112× 112× 64

conv2 1 “SAME” 3× 3× 128 112× 112× 128
1 “SAME” 3× 3× 128 112× 112× 128

maxpool2 2 “VALID” 2× 2 56× 56× 128

conv3

1 “SAME” 3× 3× 256 56× 56× 256
1 “SAME” 3× 3× 256 56× 56× 256
1 “SAME” 3× 3× 256 56× 56× 256
1 “SAME” 3× 3× 256 56× 56× 256

maxpool3 2 “VALID” 2× 2 28× 28× 256

conv4

1 “SAME” 3× 3× 512 28× 28× 512
1 “SAME” 3× 3× 512 28× 28× 512
1 “SAME” 3× 3× 512 28× 28× 512
1 “SAME” 3× 3× 512 28× 28× 512

maxpool4 2 “VALID” 2× 2 14× 14× 512

conv5

1 “SAME” 3× 3× 512 14× 14× 512
1 “SAME” 3× 3× 512 14× 14× 512
1 “SAME” 3× 3× 512 14× 14× 512
1 “SAME” 3× 3× 512 14× 14× 512

maxpool5 2 “VALID” 2× 2 7× 7× 512
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of classes (each class has 100 instances) from the original 10,000 test instances. The

test accuracy on the new model Mn is 79.6% for pre-trained Alexnet and 89.4% for

VGG19. In our experiments, the accuracies could be further improved by increasing

the number of epochs.

We then extracted the values of the hidden activations for these test instances

corresponding to each of the hidden layers. The two dimensional visualizations of

the hidden activations generated by QDV for both neural nets are shown in Fig. 5.3.

The work that most relevant to ours is the one proposed in [131]. One big difference

between their work and ours is that we applied warm restart on Alexnet and VGG19

and strive for quantitative interpretations for refining neural nets. In these figures,

we also show the quantitative results: AR generated by our algorithm QDV for both

cases. It is noticeable that for the fifth layer (maxpool5), we observe more clearer

patterns of clusters when using VGG19 as pre-trained model. Hence, in this layer we

conclude that VGG19 demonstrates better ability of separating classes than Alexnet.

However, for the first four hidden layers for both neural nets, if we just inspect the

two dimensional visualizations it is more difficult to figure out which neural net is

better at learning representations. Fortunately, the AR values attached to each of

the visualizations demonstrates that VGG19 is better than Alexnet on all the hidden

layers. The AR values are also listed in Table 5.5. Comparing the corresponding AR

values, we notice that VGG19 has higher AR values than Alexnet. The discrepancy is

most apparent in the fifth hidden layer, which also matches the visualization results

in this layer.

Discussion The quantitative results generated by the QDV method indicate that

the VGG19 structure leads to better performance (in terms of model accuracy) than

Alexnet. This provides stronger proof than just applying the Deconvnet approach,

which mainly relies on qualitative interpretation. By applying “Warm Restart” on

pre-trained neural nets, we can also avoid the performance loss of distilling a complex

model (teacher) into a simpler one (student) [101]. Also, applying this method on

a simpler dataset (CIFAR-10) enables clearer visualizations (due to smaller classes)

than those on the original ImageNet data (1000 classes) [76].

Due to the resource constrains on one GPU of Google Colaboratory which only
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Table 5.5: AR values at each hidden layers of newly trained models Mn: higher values
implies better representations learned

hidden layers Alexnet VGG19

1st 0.21 0.22
2nd 0.24 0.25
3rd 0.29 0.34
4th 0.35 0.42
5th 0.46 0.80

supports 12 hours of consistent runtimes, we limited our training epochs to 10 and the

test samples to 1000. Because even for test instances of just 1000, the disk size for the

activations values of the first layer for the VGG19 pre-trained model is 3.3 GB, which

already imposes a huge processing burden to the QDV algorithm. In the future, if

permitted more powerful computing resources, it would be interesting to have a more

comprehensive analysis on all the test instances.

5.4 Conclusions

In this chapter, we seek to develop a reasoned way of refining neural nets with the

QDV method we propose. This method is implemented on two pre-trained neural nets:

the Alexnet and the VGG19. We apply them on the CIFAR-10 dataset. Our results,

obtained with QDV, demonstrate quantitatively why VGG19 has higher accuracy than

Alexnet on the same dataset. This quantitative conclusion could hence aid refining

neural nets in [187] where the visualizations of Deconvnet are utilized to justify the

selection of filter sizes and stride of convolutional layers. Our proposed method could be

applied in situations when we try to understand and refine the architectures of neural

nets. It should be noted that the main purpose of this approach is not to interpret the

internal architectures of neural nets. The goal is to use visualizations/interpretability

results to refine neural nets.

Applying QDV also enables us to interpret the neural nets directly on a simpler

dataset (e.g. CIFAR-10), without distilling a complex model into a shallow model, as

in knowledge distillation. This is more advantageous by maintaining the accuracy of

the complex model while still obtaining easier interpretations on a smaller dataset

compared to those on the original ImageNet data (1000 classes) [76].
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(a) Alexnet:maxpool1(AR=0.21) (b) VGG19:maxpool1(AR=0.22)

(c) Alexnet:maxpool2(AR=0.24) (d) VGG19:maxpool2(AR=0.25)

(e) Alexnet:CONV3(AR=0.29) (f) VGG19:maxpool3(AR=0.34)

(g) Alexnet:CONV4(AR=0.35) (h) VGG19:maxpool4(AR=0.42)

(i) Alexnet:maxpool5(AR=0.46) (j) VGG19:maxpool5(AR=0.80)

Figure 5.3: QDV visualization results and AR values for pre-trained Alexnet and
VGG19. Higher AR implies better representation.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we discussed the need for interpretability of machine learning models,

we have presented the taxonomy of the state of art interpretation approaches, and

we have developed two methods to interpret deep neural networks and one method

for refining deep neural nets. The two methods we introduced to interpret deep

neural nets achieved good interpretation performance without sacrificing much of the

prediction power of the investigated deep neural networks: the CNN-INTE method

visually explains how a specific test instance is classified and the knowledge distillation

technique improves the accuracy of distilled decision trees. In other words, we

augmented black box predictions with explanations. The method we presented in

chapter 5 for refining neural networks provides quantified explanations that could

assist in refining the structure of neural nets.

6.2 Limitations

While reviewing the vast and constantly growing amount of literature on the topic of

interpretability, we also noticed a few issues that are beyond the scope of this thesis

but need to be addressed in the future.

• First, most current interpretation models assume that the original training data

which is used to train the black-box model is available. However, in practice,

these data might be proprietary in cases like extensive market surveys or financial

analyses.

• Second, traditional transparent algorithms may not always be more interpretable

than deep neural networks. For example, on high dimensional big data sets,

the number of nodes for a decision tree and the number of conditions for a

79
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rule is overwhelming to inspect. Moreover, to achieve comparable performance,

the features used to train a linear model are usually heavily engineered, which

reduces its interpretability. For instance, in [100], to achieve similar performance

as RNNs the features of linear models are heavily hand-engineered whereas

the RNNs operate on raw features. In this sense, neural networks sometimes

exhibit more interpretabilty since they require little feature engineering and the

representations can be visualized or verbalized.

• Third, it is a frequently encountered situation that the performance of deep

neural networks is easily impacted by the adversarial examples [160] [121]. These

adversarial examples could be designed manually to attack the neural network

models. They have imperceptible subtle variations for humans but could result

in totally reversed predictions on neural networks. One consequence is that they

may cause the unreliability of those local interpretation methods that rely on

the neighbourhood data points for interpretation because these data points may

inadvertently be adversarial. For example, LIME [133] uses perturbations to

find sparse linear models as explanations. During this process, in order to fit

a local linear model around a specific data point, a number of instances are

randomly sampled around this point. However, these random samples might be

adversarial examples which may lead to the unreliability of the LIME approach.

• Finally, Post-hoc Interpretation is brittle. Several criticisms about post-hoc

interpretations are raised in [140]. It was mentioned that the explanations are not

reliable and misleading because they are not faithful to the original model and just

provides correlations instead of information about the original computation. It

was argued in [58] that robustness of current post-hoc interpretation approaches

was a big issue. These approaches are susceptible to adversarial attacks. Their

results show that small systematic perturbations to the input data would result

in the approaches generating different interpretations, although the altered

input data are assigned the same predicted label as the unaltered ones. It was

pointed out in [112] that the vast majority of explainable AI (xAI) produced

functions that are more like scientific models rather than ‘everyday’ explanations

and to bridge the gap they suggested to shift the field’s attention to build
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interactive methods. It was even proposed [71] that there was no hope of

having interpretable models without intervention at training time (instead of

post-hoc). To systematically demonstrate the vulnerabilities in current popular

post-hoc techniques, especially those that rely on input perturbations such as

LIME [133] and SHAP [107], a scaffolding technique is proposed in [151] where

these techniques are so fooled that the explanations don’t reflect the biased

predictions at all.

6.3 Future Work

In this section, first, we describe the extensions of the three methods that we have

presented in the previous chapters. In the end, we discuss some possible directions for

further research.

6.3.1 Future Work for CNN-INTE

For the future work on the CNN-INTE approach, first we plan to introduce quantifi-

cation of the interpreted results. Also, in our experiments, one of the things we find

difficult is the setting of the number of clusters for the k-means algorithm. In the

future, we plan to replace the k-means algorithm with DBSCAN [47] which doesn’t

require specifying the number of clusters. As stated in [92], “decision sets” seems to

be a better option than decision tree as an inherently interpretable algorithm, so we

also plan to replace decision tree with decision sets. Last but not least, it would be

quite meaningful to apply this tool on real world applications with more complex data

where interpretations are demanded either between the training data and the hidden

layer or between the hidden layer and the predictions.

6.3.2 Future Work for Interpretation with Knowledge Distillation

For this work, there are several directions for future work. First, as specified in [17],

there are various methods to solve the multi-output regression problem. The method

we adopted is the algorithm adaptation method. It is worthwhile to explore other

methods to fully take advantage of the power of knowledge distillation. Second, this

approach makes it possible to improve the performance of all inherently interpretable
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models and it is therefore rewarding to design new inherently interpretable models

that could hopefully match the performance of non-interpretable models. Last, it

should also be feasible to add a temperature term into the softmax layer (as introduced

in the methodology part) and use both soft targets and the true labels together (as

carried out in [67]) to train the student model in order to further improve the accuracy

performance of the student model.

6.3.3 Future Work for Refining Neural Nets

As we’ve already mentioned in chapter 5, our method QDV directly interprets a neural

net on a simpler dataset, without distilling a complex model into a shallow model, as

in knowledge distillation. It would be interesting to compare the accuracies on the

following two cases: (1) use a simpler dataset to fine tune a pre-trained deep neural

net; (2) apply knowledge distillation to distill a pre-trained deep neural net into a

shallow neural net. In our method QDV, we applied a dataset CIFAR-10 which has

only 10 classes. It would be worth exploring the techniques for visualizing the results

of datasets that have more than 10 classes. After all, lots of real-life data nowadays

have more than 10 classes. However, presenting more than 10 classes in a figure is a

big challenge and methods need to be figured out to avoid the mess as in [76]. Our

method QDV then should be accommodated for this case.

6.3.4 Future Work for Further Research

Debugging Machine Learning Models Debugging machine learning models is

critical for identifying and correcting the systematic mistakes of machine learning

models before deploying them in the real world. Fig. 6.1 illustrates the general

idea of discovering bugs in a machine learning model. Currently, there are a few of

methods for fulfilling this task such as debugging using interpretability [145], program

verification [75], visualization tools [26] [159] [177], novel adversarial attacks [135], etc.

In the area of health care, it is also possible to apply inherently interpretable models

such as GA2Ms [24] to verify and debug machine learning models.

Detecting Bias There have been more and more indications that machine learning

models may be biased. The bias we mention here is NOT the statistical bias when
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Figure 6.1: A common framework for debugging machine learning models.

designing a machine learning model where usually a bias/variance tradeoff exists [57].

And high bias means the algorithm is not fitting the training data properly. The bias

here we discuss is the undesirable behavior learnt from the data which could influence

the decisions of models but which is not aligned with the ethics of our society.

For instance, it was reported that Amazon hiring tool biased against women for

software developer jobs and other technical posts [39]. Leveraging methods inspired

by Cognitive Psychology, it is found that state-of-the-art one shot learning models

were biased towards shape rather than color when categorizing objects [136]. it is also

shown that word embedding exhibits gender bias: female/male stereotypes.

Interpretability could play an important role in detecting bias and be a tool for

“debiasing”. Methods are developed to “debias” the embedding [15]. By applying a

particular form of example-based explanation, model criticism [79], detecting the biases

is enabled in the predictions of the models [156]. And they also prove that adversarial

examples could be employed for model criticism. There are also other interesting

approaches that are proposed to detect bias in machine learning models [110] [165].

Especially, an overview of cognitive biases and “debiasing” methods are given in [83].

Evaluations of Interpretability In chapter 1.2.1, we discussed three general

evaluation metrics for post-hoc interpretation, fidelity, comprehensibility and accuracy,

which could serve as general guides to design interpretation methods. However, it is

more and more recognized recently that learning from human feedback is also critical

for evaluating interpretability [42] [117] [128]. The reason is that in many situations

human preferences are very hard to incorporate into the computational property of

models and this information must be learned from human data.
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When designing inherently interpretable models, a number of proxies/regularizations

are directly formulated and included in the interpretation models, which when opti-

mized could maximize the interpretability of the model. For instance, the decision tree

depth [50], overlaps between decision rules [92], sparsity penalties [139] etc [173] [183].

However, in practical cases, these proxies are not reliable because different contexts

require different interpretability. For example, longer decision trees are preferred

over shorter decision trees by doctors in [94]. Whereas when designing the model

shorter decision trees are preferred as they have lower complexity. The crowdsourcing

experiments in [55] also arrive at similar conclusion: from the angle of interpretability

shorter rules are not desirable although the machine learning bias perfers it. This

indicates the importance of including humans in the optimization loop. And the

recommendations of incorporating cognitive bias into machine learning algorithms

and using user studies to evaluate interpretability are also given [55]. Recently, an

algorithm is proposed in [91] which could include the subjective notion of human

interpretability as well as minimize the number of user studies.

Alternative Inherently Interpretable Models A recent argument [140] provided

by Dr.Cynthia Rudin actually opposes applying black box machine learning models

for high stake decisions. She suggests to adopt inherently interpretable models instead.

However, it is easier said than done. We all recognize that it is a huge challenge for

constructing transparent yet accurate models.

Here we propose a possible solution: multivariate decision trees. Different from

the widespread application of univariate decision trees, multivariate decision trees

were proposed in the 1990s but seldom applied in practice. The difference between

multivariate and univariate decision trees is whether they test more than one feature at

a node. Therefore, univariate decision trees are potentially much larger than multivari-

ate decsion trees and not as succinct as the latter. The experiments [22] demonstrated

that multivariate tests improved the accuracies of the resulting decision trees. As

far as interpretability concerned, it may depend on the strategies adopted [22]. For

instance, there is a trade-off to consider when applying multivariate tests: univariate

tests produce large trees which are difficult to understand; multivariate tests gener-

ate smaller trees wither fewer nodes, but the nodes are more difficult to interpret.
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There are multiple strategies to construct multivariate decision trees and hence the

interpretability varies by the strategies.
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