
SEA: A FRAMEWORK TO ENSURE SECURITY, EFFICIENCY,
AVAILABILITY OF DYNAMIC WIRELESS SENSOR NETWORK

by

Sumanth Gundappagari

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2020

c© Copyright by Sumanth Gundappagari, 2020

I dedicate this thesis to my father, my greatest source of inspiration;

to my mother, for her unconditional love and to my beloved sister.

ii

Table of Contents

List of Tables . v

List of Figures . vii

Abstract . ix

List of Abbreviations and Symbols Used x

Acknowledgements . xiv

Chapter 1 Introduction . 1

1.1 Introduction to Wireless Sensor Networks 1
1.1.1 Applications . 1
1.1.2 Challenges . 3

1.2 Motivation and Objectives . 4

1.3 Thesis Contribution . 5

Chapter 2 Background . 7

2.1 Sensor Network Model . 7

2.2 Sensor Network Hardware Technology and Communication Architecture 9

2.3 Blockchain . 10

2.4 Radix Distributed ledger Technology 13

2.5 Elliptic Curve Cryptography . 15

2.6 Logical Clocks and Hashing . 17

Chapter 3 Related Work . 21

3.1 Research on Wireless Sensor Network 21

3.2 Research on Memory Allocation . 26

3.3 Literature on Security, Blockchain, Logical Clocks, and Data Storage 27

Chapter 4 SEA (Security, Efficiency, Availability) Framework . . 39

4.1 Network Assumptions . 39

iii

4.1.1 Sensor Nodes . 39
4.1.2 Relay Nodes . 39
4.1.3 Base Stations . 40

4.2 Research Scope . 41

4.3 Secure Topology Setup . 41
4.3.1 Configuration Phase . 41
4.3.2 Neighbour Selection Phase . 43
4.3.3 Key Update Phase . 45

4.4 Data Transmission and Store . 47
4.4.1 Sensing Phase . 47
4.4.2 Memory Management . 47
4.4.3 Replication Factor . 47
4.4.4 Synchronization . 49
4.4.5 Commitments . 51

Chapter 5 Evaluation Methodology and Analysis 54

5.1 Evaluating Availability of Data . 54
5.1.1 Computer Emulation . 54
5.1.2 Comparison of Memory Management 72

5.2 Security Evaluation . 77
5.2.1 Formal Security Analysis . 77

Chapter 6 Conclusion . 86

6.1 Conclusion . 86

6.2 Future Work . 87

Bibliography . 100

iv

List of Tables

Table 5.1 Configuration file format . 56

Table 5.2 Memory file format . 58

Table 5.3 Neighbour file format . 58

Table 5.4 Sensor data file format . 58

Table 5.5 Format of Topology.txt file . 58

Table 5.6 The log file provides information on Memory flush with Base
Station ID . 59

Table 5.7 Config CSV file entry based on scenario 1 60

Table 5.8 Memory CSV file entry based on scenario 1 61

Table 5.9 Sample neighbour file data . 63

Table 5.10 Sample sensor data . 64

Table 5.11 Sample data of Topology.txt file 65

Table 5.12 Sample log file . 67

Table 5.13 Comparison of data transmission between SEA and Blockchain 78

Table 5.14 Security Analysis of the SEA Framework using Scyther during
Configuration Phase . 79

Table 5.15 Security Analysis of the SEA Framework using Scyther during
Key Update Phase . 82

Table 5.16 Security Analysis of the SEA Framework using Scyther during
Key Commitments Validation with Public Key Encryption . . . 84

Table 1 Config CSV file entry based on scenario 2 88

Table 2 Sample neighbour file data . 89

Table 3 Memory file entry based on scenario 2 90

Table 4 Sample sensor data for Scenario 2 91

Table 5 Sample data of Topology.txt file 92

Table 6 Sample log file . 93

v

Table 7 Config CSV file entry based on scenario 3 94

Table 8 Sample neighbour file data . 95

Table 9 Memory file entry based on scenario 3 96

Table 10 Sample sensor data for Scenario 3 97

Table 11 Sample data of Topology.txt file 98

Table 12 Sample log file . 99

vi

List of Figures

Figure 2.1 Traditional wireless sensor network model 7

Figure 2.2 A standard topology of multiple base stations deployed in a
sensor network . 8

Figure 2.3 Sensor Node Architecture . 9

Figure 2.4 Blockchain Block example . 11

Figure 2.5 Example of Blockchain - chain of blocks 11

Figure 2.6 Example of payload atom [36, 69] 14

Figure 2.7 Example of Elliptic Curve . 16

Figure 2.8 Processes and Events without Logical Timestamps 18

Figure 2.9 Processes and Events with Logical Timestamps 20

Figure 4.1 Wireless Sensor Network setup with sensor nodes, relay node(s),
and multiple base stations . 40

Figure 4.2 Sending request message from every base station to all other
base stations . 43

Figure 4.3 Response message from some remote base stations to the source
base station . 44

Figure 4.4 Base Station Memory Distribution 47

Figure 4.5 Base stations memory with replication factor 3. The memory
on the left is local memory and on the right is remote memory.
Local data is replicated in the remote memory of connected
neighboring base . 48

Figure 4.6 4 sensor nodes communicating with 1 base station in WSN . . 49

Figure 4.7 4 sensor nodes connected to a base station β1. For every sensor
node si where i = 1 to 4, base station β1 keeps independent
logical clocks. 50

Figure 4.8 Increment of logical clock by 1. New sensor data is stored in
the local memory of the base station 51

vii

Figure 4.9 Commitment request from source base station to neighbour
base station . 52

Figure 4.10 Commitment response from neighbour base station to source
base station . 53

Figure 4.11 Commitment verification done by source base station 53

Figure 5.1 The flow chart shows how the programming framework executes
its logic . 57

Figure 5.2 Occupied memory graph over time in SEA framework for sce-
nario 1 . 61

Figure 5.3 Randomly configured topology 66

Figure 5.4 Graph shows occupied memory of base stations, where topology
is designed based on scenario 2 67

Figure 5.5 Topology of scenario 2 . 69

Figure 5.6 Topology of scenario 3 . 70

Figure 5.7 Occupied memory graph over time in SEA framework for sce-
nario 2 . 73

Figure 5.8 Topology of the network with 5 base stations and 10 sensor nodes 74

Figure 5.9 Occupied memory graph over time in Blockchain framework for
scenario 2 . 76

Figure 5.10 Topology of the network with 5 base stations and 10 sensor nodes 77

Figure 5.11 Scyther analysis displays possible security issue during infor-
mation exchange - proposed commitments validation fails . . . 83

viii

Abstract

Growing demand for the wireless sensor network has made it a hot research area and a

new technology trend. Since sensor network technology can adapt to its environment,

draw conclusions and learn from it, it makes more strategic use of the application

environment in an efficient manner. It has now become widely available to deliver

various advantages, from convenience, security, efficiency to time and money savings.

Studies show that in the near future, wireless sensor networks will become more of

an essential part of our lives than our actual personal computer. It is changing the

face of the world altogether.

The wireless sensor network base station, which acts as a processing unit and

gateway for all sensor data, is believed to be free from security threats. Unattended

wireless sensor networks, however, should treat security as a primary concern, be-

cause it collects and processes sensitive data within networks. When the base station

is compromised, the sensors connected to it are at risk and communications in the

network are adversely affected. Significant security concerns surrounding these spec-

ifications include threats such as eavesdropping, data falsification, denial of service

and disruption of physical nodes.

The proposed SEA (Security, Efficiency and Availability) framework is motivated

from highly secure and scalable distributed ledger technology called Radix. The

framework is designed to meet wireless sensor network security requirements using

minimum replication and various key techniques. It promotes the use of public key

cryptography among base stations to securely distribute keys, data, commitments and

clocks. The proposed replication allows the network to continue functioning without

data loss, and ensures the availability of the network. In addition, it can withstand

vulnerabilities, such as man-in-the-middle and replay attacks. The proposed memory

management scheme is validated in terms of memory storage and secure communica-

tion configuration. The security of message exchange in this framework is evaluated

using Scyther protocol analyzer. The research findings exhibit that the solution pro-

posed ensures security, efficiency, and availability of dynamic wireless sensor networks.

ix

List of Abbreviations and Symbols Used

k total number of neighbour base stations

memβ
local local memory of base station

memβ
remote remote memory of base station

r replication factor

si a sensor node

x number of sensor nodes

IDβ base station ID

IDs sensor node ID

βi a base station

δtd time of the response message received from the des-
tination base station

δts broadcast message sent time from a base station βi

δtdiff time difference between broadcast configuration re-
quest and response

⊕ XOR operation

h hash function

h(location) hash of base station’s location

lc Logical Clock

memβ base station memory

mems sensor node memory

memβ
free free memory of base station

memβ
occupied occupied memory of base station

n number of base stations

privβi private key of base station βi

pubβi public key of base station βi

skβi base station’s symmetric key

skβiβj symmetric key used between base stations βi, and
βj

x

AAP Aerostat acoustic payload

ACE Analytical and Computing Engines

AODV Ad Hoc On-Demand Distance Vector

ASW anti-submarine warfare

ATS Acoustic threatening sound

BATM Blockchain Authentication Trust Module

BL blast localization

BS Base Station

BTM Blockchain Trust Model

CBM Condition Based Monitoring

CCT Configuration Change Time

CH Cluster Head

CNP Centroid of Nodes in the Partition

CPU Central Processing Unit

CSV Comma separated values

EARS Early attack reaction sensor

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

GPS Global positioning system

GSP Geographic Sink Placement

HMV Harmony Memory Vector

IDE Integrated Development Environment

xi

INS Inertial Navigation System

IoT Internet of Things

LEACH Low Energy Adaptive Clustering Hierarchy

MAC Media Access Control

MCM missile canisters continuous monitoring

MERS Multi-Error Report Simultaneously

MESS Multiple Enhanced Specified-deployed Subsinks

MRMS Multipath Routing with Multiple Sink nodes

NSA Networked Sensors and Actuators

P2P peer-to-peer

PDP Provable Data possession

PoS Proof of Stake

PoW Proof of Work

PP Perimeter protection

PRNG Pseudo Random Number Generator

PRV Pressure Relief Valve

PSO Particle Swarm Optimization

R-IP-DS Raw Information and Processed Data Storage

RCS remote chemical sensor

SDL Sniper detection and localization

SDT Soldier detection and tracking

SF Sensing Frequency

SHLM Self-healing land mines

SLR Systematic Literature Review

xii

ST Sensing Time

VDM vapor detection with micro cantilever array sensors

WSN Wireless Sensor Networks

xiii

Acknowledgements

Foremost, I express my sincere gratitude to my supervisor, Dr. Srinivas Sampalli,

for encouraging and guiding me throughout my masters program. As a supervisor,

he brought many remarkable inputs and encouraged me in my work presented in

this thesis. He also involved me into different research projects, that gave me the

opportunity to gain knowledge of great subjects and also make new friends. Your

support helped me greatly in my success here. Thank you for always being so cool

and understanding.

It was a wonderful opportunity and I am honored to be the first student under

the guidance of Dr. Saurabh Dey. I thank you for supporting this thesis idea and

giving such thoughtful feedback. I am deeply indebted to you for all your help in

every aspect until the end of my research. You have been a perennial fountainhead

of kindness, an inspiring guide who helped me thoroughly in improving my thesis

quality and also in the creation of a fantastic looking document using Latex.

I would like to thank my committee members, Dr. Qiang Ye and Dr. Musfiq

Rahman for accepting to be a part of the committee. I am grateful to have such

experts in my defense.

I must thank my Mom (Swarna), Dad (Venkatesham) and my Sister (Sushma) for

supporting me and helping me overcome all the stress. I would like to thank Lakshmi

Kande who has always been encouraging, caring and supportive throughout my thesis

and beyond. Dear best friend Ramya Kota, thank you for being there in my tough

times. Last but not the least, I would like to thank P. Yaswanth, K. Manish, Ch.

Chandu, B. Yashwanth, M. Deepak, B. Rahul, D. Akhil, B. Rohit, D. Santosh and

all my other friends for your continuous support and motivation.

xiv

Chapter 1

Introduction

1.1 Introduction to Wireless Sensor Networks

Wireless communication advancements have allowed the development of Wireless Sen-

sor Networks (WSNs) consisting of small devices that cooperate and gather informa-

tion together. These tiny sensing devices are called sensor nodes consisting mainly

of CPU (for processing information) , memory (for storing data), transceiver (for

receiving and transmitting signals from one node to the other) and a battery [74]. It

is a network (WSN) comprising large number of small sensor nodes that are used in

a certain area to detect, monitor and measure several events through wireless com-

munication. The traditional WSN has two main components: the sensor nodes and

the base station. The main function of the sensor nodes is to sense, collect and send

the required data where it is needed. The base station (BS) also called as sink node,

is where the information collected, received and sent to the user via the internet or

through a central hub [90].

1.1.1 Applications

These wireless sensor networks have received significant attention in the last decade,

with their wide range of applications. The wireless sensor networks today are exten-

sively used in commercial and industrial sectors including environmental surveillance,

disaster anticipation, smart traffic management, health care, process control, ecosys-

tem protection etc. [40] Some of the key implementation fields include:

Military Applications:

In military applications, the major concern generally extends from data collection to

enemy tracking, monitoring of the battlefield or target classification [59, 40]. Differ-

ent classes of military applications include self-healing land mines (SHLM), aerostat

1

2

acoustic payload (AAP) for transient detection, soldier detection and tracking (SDT)

, low-cost acoustic sensors for littoral anti-submarine warfare (ASW), early attack

reaction sensor (EARS), sniper detection and localization (SDL), time difference of

arrival blast localization (BL) using a network of disposable sensors, perimeter pro-

tection (PP), chemical, biological and explosive vapor detection with micro cantilever

array sensors (VDM), A low-cost remote chemical sensor for E-UAV platforms (RCS),

novel optical sensor system for missile canisters continuous monitoring (MCM), in-

ertial navigation system (INS) and Acoustic threatening sound recognition system

(ATS) [27]. Usage of wireless sensor networks in highly vulnerable areas and hostile

environments such as international borders and large military barracks need wireless

sensor networks with multiple base stations to increase network lifetime and security

[32]. The accuracy of data and the availability of information is very essential in these

types of applications. The effect of data loss could be catastrophic.

Power System Applications:

A power system comprises of three important components, i.e. generation, trans-

mission, and distribution. Power System applications include - Thermal Rating and

Monitoring of Conductors, Smart Grid Sensor and Actor Application, Performance

Monitoring of Electrical Distributed Systems, Automatic Remote Meter Reading Sys-

tems [53, 11, 52]. The overall surveillance and fault detection of these power grid

systems is very crucial. In addition, wireless sensor deployment requires prompt and

accurate transmission of observed information to ensure efficient monitoring of the

power system [70].

Oil, Gas and Resources Industries:

Specific applications for Oil and Gas Remote Monitoring using the wireless sensor

network technology are Pipeline Integrity Monitoring, Tank Level Monitoring, Equip-

ment Condition Based Monitoring (CBM), Pipeline Pressure Relief Valve Monitoring

(PRV), Refineries Pressure Relief Valve Monitoring (PRV), Wellhead Automation

and Monitoring and several others[3].

Critical applications which include military applications, health care and robotic

3

wireless sensor networks can be good examples of a dynamic network to use pro-

posed framework. Border protection/ surveillance where military tanks or vehicles

are equipped with base stations moving from one place to another. Health care ser-

vices also consider wireless sensor network technology to provide reliability in addition

to enhanced mobility such as in hospitals where doctors/nurse carrying base stations

can sense and keep track of patients data using their devices such as mobile phones.

Many emerging fields such as robotic wireless sensor networks having mobile robots

moving from one place to another assigned with specific set of tasks can be another

significant application area.

1.1.2 Challenges

The advancement of dynamic wireless sensor networks and its usage in critical sectors

make it susceptible to various challenges, such as security, efficiency and availability

of data. The use of sensor nodes in an unsupervised area makes the network prone

to a range of possible attacks. Furthermore, conventional security solutions are im-

practical due to inherent power and memory limits of sensor nodes[65]. Since sensor

networks can communicate sensitive information and/or employed in adversarial un-

secured conditions, security issues need to be addressed from the start of network

design[82]. The short lifetime, smaller coverage and connectivity range, maintenance

and reliability are some of the challenges that limit the usefulness of WSN. For this

reason, energy efficiency is a major barrier to implementing sensor networks[10, 30].

Additionally, the larger the sensor network, the more intelligent and responsive we

become, the more useful and informative our visualization becomes. However, as

the network size increases, so does the related complexity and secure management of

data[33].

Despite serious resource limitations of wireless sensor nodes, some of the current

extremely important security requirements are:

Data Confidentiality:

A sensor network should not be able to leak sensor measurements; data stored within

the sensor node may be highly sensitive particularly in the military application. The

standard method for keeping sensitive information is to encrypt data with a private

4

key, which is completely secret for only intended recipients[82].

Data Integrity:

An attacker may be unable to obtain information by enforcing confidentiality. How-

ever, this does not mean that the data is protected. The integrity of the data ensures

that no data obtained was manipulated during communication[82, 10].

Availability

The phrase “data availability” refers to the ability to guarantee that the data is always

available to users even when breakdowns occur[65, 82].

Data Freshness

The freshness of the data indicates that the information collected is new and that

there is no relaying of older duplicate messages[44, 65, 82].

1.2 Motivation and Objectives

Most recent WSN work focused on increasing lifespan, energy efficiency and reli-

ability through enhancement of existing routing protocols[9], employing relay nodes

deployment[29], implementing energy efficient clustering algorithms[68], wireless power

transfer to sensor nodes[16], dynamic channel sensing and topology control mechanisms[72].

A lot of research has been done on the security of WSNs to this day in terms of in-

creasing confidentiality, data integrity, authentication with the use of secure routing

protocols[89, 34, 35], key management protocols[34, 42] etc. Nonetheless, very few

research studies concentrate on availability of information, data immutability and ef-

ficient data storage. Some important applications, such as the deployment of wireless

sensor networks in military services[27], hospitals[40], nuclear power plants[28], oil

and gas industries[3], require continuous data availability[80] even in the event of an

attack. In order to improve service availability few research works considered multi-

ple base stations deployment. In all those researches little or no cooperation is found

among the BSs. Ultimately, related data is lost from the base station and some areas

of the network often go orphaned due to the BS compromisation. Data immutability

5

implies the integrity of data when it is stored in the BSs. Related researches have

discussed the integrity of data while in transit but do not provide a comprehensive

protection that guarantees data integrity at the BSs[39]. Previous researches that

have focused on multiple base stations do not include the concept of data replication.

Such replicated data helps to maintain the validity of the data and to ensure the

availability of data when the base station is compromised.

This research proposes an efficient method for replicating data across base sta-

tions to tackle service availability, data immutability, data freshness at base stations.

Public key encryption[81] is also used for the secure transfer of data between base

stations without the need of key management protocols. Every base station or sink

node maintains and partitions its data storage capacity into two logical sections. One

for local storage and one for remote data storage. Local storage is the logical memory

partition which includes data collected from the sensor nodes directly connected to

the base station, while remote storage is the other logical memory partition used to

store the copy of the local storage of other base stations. This thesis suggests a way

to efficiently store the data logically and securely at the base stations. It also clears

memory and increases storage capacity when necessary by sending information online

to the server. This approach uses a variety of techniques such as replication, the use

of logical clocks and the concept of commitments to achieve data availability, data

integrity, prompt data synchronization and data freshness at base stations. With a

certain amount of data duplication in the network, no data will be destroyed even in

the case of failure or compromisation of the base station. This method ensures that

a compromised base station does not result in data loss as the complete and total

replicated information is present in the storage of another base station(s) and is sub-

sequently sent to the server. The presence of black hole nodes and compromised base

stations can eventually be identified and tracked through the utilization of periodic

commitments.

1.3 Thesis Contribution

Much work has been performed so far on the security of WSNs. The emphasis of

most of these research works is anonymity, integrity and authentication through the

design of energy-efficient cryptography protocols. Most of these works, however, are

6

not very concerned about supporting the network with better service availability, data

freshness and immutability. Service availability implies the availability of sensor data

in base stations even when some nodes are affected in the network. Data freshness is

the presence of recent data at base stations rather than outdated and obsolete data.

Immutability is the integrity of base station data, which cannot be altered or changed.

Many researchers assume that the base station is secure and they emphasize more on

sensor node security protocols and the secure data transmission between the sensor

node and base station. This thesis focuses primarily on security requirements such

as data availability, data freshness and immutability of information. To satisfy all

these requirements, the proposed framework adopts the concept of asymmetric key

encryption, data distribution among a network of multiple base stations and logical

clocks. Some of the ideas are powered by a new innovative distributed ledger tech-

nology called Radix, with a built-in consensus architecture which is highly scalable,

secure and efficient. In addition, the proposed framework prevents security issues

such as replay attacks, node compromise, etc.

Chapter 2

Background

2.1 Sensor Network Model

Wireless Sensor Network (WSN) is a self-configured network for physical or environ-

mental monitoring of conditions such as temperature, sound, vibration and pressure.

Sensor nodes collectively transfer the sensed data to a central location called base

station or sink node where the data is gathered and is analysed. There are more

than hundreds and thousands of sensor nodes in a traditional sensor network. A

base station or a sink node is the central location which acts as a network-to-user

interface. Information needed from the network can be obtained by inserting queries

and collecting data from the sink. Most of the recent networks are bi-directional,

which also allows for sensor activity monitoring and control. Military applications

such as battlefield surveillance inspired the development of wireless sensor networks,

that are nowadays used in various industrial and business applications such as indus-

trial process management and surveillance, health monitoring, etc. [58]. The main

components of traditional WSN are shown in the fig. 2.1.

Figure 2.1: Traditional wireless sensor network model

7

8

Sensing area: The region in which the nodes are located is called as a sensor

area.

Sensors: Sensor nodes are the core of the network and are responsible for data

collection and redirection to the sink.

Base Station: A Base station is a node that collects, processes and stores data

from other sensor nodes for a specific purpose. It is the central control point of the

network which also establishes a bridge to other networks serving as an efficient data

processing and storage center. Base station is also a point of access for the user to

control the network.

For several motivating factors, recent approaches consider using multiple base

stations. Multiple base stations not only increase network life, but are also capable

of enhancing network security. The main focus of this research is to enhance the

security of the wireless sensor network taking into account data availability integrity,

confidentiality and data freshness. Fig. 2.2 shows a standard topology of multiple

base stations deployed in a sensor network.

Figure 2.2: A standard topology of multiple base stations deployed in a sensor network

9

2.2 Sensor Network Hardware Technology and Communication

Architecture

A wireless sensor node is a device consisting primarily of a microprocessor, a memory,

a radio transceiver, a power source and one or more sensors attached to it (Fig. 2.3).

Sensor nodes can also include a Global positioning system (GPS) to receive location

information if required.

Figure 2.3: Sensor Node Architecture

The transceiver is used to communicate with other sensors and the base station via

wireless links, while external parameters and data sensing is measured by the sensing

unit. Additional elements such as power harvesting modules or actuators may also

be mounted with sensors. To minimise the overall cost of the system, the price of

nodes must be kept low, and a decent trade-off must be found between the amount

of functionalities that the sensor offers and its price. The processing unit analyses

sampled data and stores data on the memory unit. Sensor nodes usually are powered

by batteries, but can also scavenge energy from their surroundings[14]. The potential

of the network to auto-heal and to make adjustments itself to changing environmental

conditions is another significant benefit when using WSNs for data data collection

and reporting. Even if WSNs manage wireless connection they do not rely on costly

10

communications infrastructure. For a diverse variety of applications, WSNs utilize

small and low cost embedded units and do not rely on existing infrastructure for

operation.

Three types of communication patterns can be addressed in this type of net-

work: broadcast, Group communication and Node to Node gossiping. Broadcasting

is usually used by a base station (sink) to transfer certain information into all of the

network’s sensor nodes, such as network configurations, requesting sensor data, send-

ing configuration updates, etc. Node to Node gossiping is a type of communications

method in which a sensor node sends a message to other sensor node to relay the

data back to the base station. Sensor node to base station communication and base

station to base station communication also fall within this node to node gossiping

category. Finally, group communication is the process where a set of sensors interact

within themselves or with a base station.

2.3 Blockchain

Blockchain started when people wanted to timestamp digital documents so that it is

not possible to backdate them or to tamper with them. This went by unused until

it was adapted by Satoshi Nakamoto in 2008 to create the digital cryptocurrency

Bitcoin [1]. Blockchain is a distributed ledger that maintains an immutable continuous

connected list of data in the form of blocks [77]. It has an interesting property that

the data recorded in blockchain is difficult to change. The term ’distributed ledger’

represents a ledger system that contains more than one copy of the same ledger spread

throughout the network. Distributed ledger across the network helps to minimize

the risk and potential negative impact of data loss, data corruption or fraudulent

alterations. If there are several replicas in the network, loss or corruption of a single

copy will not affect the network[63]. Each block contains some data, nonce, the hash

of the block and the hash of the previous block as shown in fig. 2.4.

The data that is stored inside the block depends on the type of blockchain, for

example bitcoin blockchain contains the data related to transactions in bitcoins from

one to another. Hash present inside the block is made using some hashing algorithm

which always produces the same hash given the same set of input. This is used to

identify that block and all of its contents, and is always unique just as a fingerprint

11

Figure 2.4: Blockchain Block example

for humans. Once a block is created its hash is calculated, even minor changes

in the block can lead to a complete different hash which makes it useful to detect

changes and manipulations in the block. The third elements inside this block is the

hash of the previous block, this is used to create and join a chain of blocks forming a

blockchain. Nonce is used to solve the hashing difficulty problem in bitcoin blockchain

and to connect a linear sequence of blocks together. Fig. 2.5 shows how 3 blocks are

connected to each other to form a chain of blocks.

Figure 2.5: Example of Blockchain - chain of blocks

The previous block hash in the first block is 0000 as it is the first block and no

other block is before it, also called as genesis block. The next block has the previous

hash value of the first block i.e., 5VE6 and so on. If a blocks data is tampered

in between, it causes the hash of the block to change as well. in turn making the

following blocks invalid as they no longer store the correct hash. Nonce help the

blockchain to secure the data and restrict others to create a new chain easily. Thus

the security of bitcoin blockchain mainly comes from its creative use of hashing, nonce

mechanism and the data being distributed. This approach creates consensus among

all the nodes in the network. The blockchain protocol helps to make decisions to

12

agree about which blocks are valid and which are not.

The ledger is replicated across a peer-to-peer (P2P) platform among several users

or devices in order to avoid centralization. When a node joins the blockchain, it

gets full copy of the data. The blockchain network has users, miners and nodes.

Three primary tasks that are performed by nodes within the blockchain network

are receiving transactions, distributing or relaying transactions; updating blockchain

databases with the current valid transaction records [15]. A blockchain node is a

computer or a decentralized unit, which operates blockchain applications and stores

the data connected to a blockchain network [88].

Current blockchain networks are categorized into three different forms; public

(permission less), private (permissioned) and consortium or hybrid blockchains [85].

The public decentralized blockchain is an open network that is accessible to anyone

with access to the Internet. Such blockchains have no centralized authority and often

employ powerful consensus methods which need a huge amount of power to deter

malicious users from interfering in the network [78]. Private blockchains have prob-

lems, especially when companies want to work together, as it is impossible for one

another to read or access each others database. In that case, building a permissioned

blockchain helps to share data between the two companies and to track the data

transferring across different ledgers. Consensus algorithms and implementations in

private or permissioned blockchains are not as powerful as public blockchains and do

not need large amounts of power, however access to the ledger database is limited to

authorized users. The owner of the private blockchain has complete access to add or

remove authorized users. Identifying individuals and permitting them to access the

ledger is required in private blockchain whereas public blockchain users are completely

anonymous. Consensus algorithm is determined by the participants engaged in the

private blockchain, and those who created this blockchain [88]. Between private and

public blockchains are the hybrid blockchains in which a group of approved individ-

uals or companies decide to share decision-making equally among themselves. The

consortium blockchains are most often related to corporate or industrial use, where

a group of companies interact with blockchain technology to support their businesses

[76]. Blockchains are also constantly evolving, one of the most recent developments

is the creation of smart contracts. These contracts are simple programs stored in the

13

blockchain network and used to execute transactions when some conditions are met.

This technology is now used for other things like transferring of assets and so on [18].

As the name suggests, blockchain technology is a chain of connected blocks that

comprises a small set of transactions or messages in each block. These blocks are

linked with each other through the use of a cryptographic fingerprint called hash.

This linear sequential order of the hashes in different blocks is referred to as chain.

The transactions in blockchain has information about the message being added to

the ledger, source address and destination address of the message, while the block

has a group of these transactions along with the hash of that block and random

number called nonce which is used to connect another block to it. A transaction in

a blockchain is successful when it is sent to the blockchain node, verified using the

signature of the source address, stored in a block and added to the blockchain after

numerous trials of various nonce numbers.

2.4 Radix Distributed ledger Technology

Radix DLT is a new and unique platform that is highly scalable and easy to build

on, unlike Bitcoin or Ethereum blockchain technology. The design is entirely different

from blockchain and can be used by millions of users at the same time without compro-

mising speed or centralization problem. The system is asynchronous and byzantine

fault tolerant of errors, ensuring it can identify and avoid fraudulent transactions

present in the network. Radix is a very reliable and highly scalable architecture pri-

marily used for storing and accessing immutable data with a decentralised logic design.

Moreover, to achieve overall system security, there is no need for large quantities of

computing power (PoW) or huge amount of capital (PoS). This Decentralized Ledger

Technology provides a revolutionary platform for digital data storage and verification

of the stored data; it is also cryptographically robust, very hard to hack, and highly

adaptable. Radix uses logical clocks, public key encryption and a hashing mechanism

to accomplish all of these requirements. Even with 99 percent of malicious nodes on

the network, Radix is able to identify and differentiate false data to reach consensus

[69, 12]

The Radix Ledger has three main elements:

• A group of connected nodes

14

• A complete database spread across all the nodes

• An algorithm for generating secure cryptographical record of transactions

In this architecture, any event or transaction is represented by an object called

Atom. Atoms are of two types, Payload atoms and Transfer atoms. An example of

a payload atom is some information sent as a message where as Transfer Atoms are

used to transfer the ownership of atoms.

Figure 2.6: Example of payload atom [36, 69]

Fig. 2.6 is an example of payload atom containing data in an encrypted form

along with source address and Destination addresses. Users can generate and send

payload atoms to the network via any node to which they are connected. The Radix

consensus algorithm (called as Tempo) then processes this transaction by checking if

it is valid and then adds it to the ledger database. This information of submitting

event to validate it by the nodes is called as a ledger event. Thus, an event is called

a ledger event as it changes the state of the ledger. The current node after validation

of the event, sends the information of this update to other neighboring nodes via

broadcasting using gossip protocol. about the addition of new event, this is termed

as protocol event. These two different events help Radix to achieve consensus with the

use of Asynchronous Byzantine Fault tolerance for Ledger Events and Asynchronous

Byzantine Fault detection for Protocol events. Tempo is very collaborative and fast

as nodes communicate each other, move events to each other and ensure that all nodes

15

in the network update their ledger to eventually obtain consensus among the whole

network [36, 12].

2.5 Elliptic Curve Cryptography

Cryptography is the study of secure communication methodologies in the presence

of foreign entities called adversaries. It involves the development and analysis of

the protocols that prevent private or secret messages to be read by foreign entities

or unauthorized individuals. Cryptography plays a major role in various areas of

information security, such as data confidentiality, data integrity, authentication and

non-repudiation. Data encryption is the transformation of information from read-

able state to non-sensical data. Two different kinds of cryptography techniques exist,

symmetric or private key cryptography and asymmetric or public key cryptography.

Transmission of data encryption messages was by symmetric key until the end of

1970s. That indicates that a person with sufficient information to encrypt messages

can also decrypt those encrypted messages. Nevertheless, new cryptography needs

grew with the increased technological advances of economic life [46]. Public-key en-

cryption is not previously developed mainly because it was not really needed until

recently due to the computerization of economic life [54, 46].

Three main fundamental methods that are are available for public key cryptogra-

phy systems are

• The RSA Algorithm [62]

• Diffie-Hellman Algorithm [24]

• Elliptic Curve Cryptography [87]

The most popular and widely used public key cryptography implementation was

by Ronald Rivest, Adi Shamir and Leonard Adleman called as RSA Algorithm. It is

used in various applications and is primarily implemented in digital signatures, key

exchanges and data encryption.

Diffie and Hellman developed their own algorithm after the RSA algorithm was

released to the public. Diffie-Hellman Algorithm is used only for the key exchange

16

mechanism, not for digital signatures or data encryption, as opposed to RSA Algo-

rithm.

Elliptic Curve Cryptography (ECC) is a public key cryptography algorithm based

upon elliptic curves. This algorithm is not vulnerable to those algorithms that make

solving discrete logarithm problem easier. Elliptic Curve cryptosystem is invented

in 1985 by Neal Koblitz and Victor Miller[41]. It is one of the most efficient and

commonly used algorithms today. RSA and Diffie-Hellman were revolutionary when

they were first released mainly due to the introduction of a new public key cryp-

tographic scheme rather than symmetric key cryptography which removes the need

to share secret keys. However, with the introduction of Elliptic curve cryptography,

smaller ECC keys are sufficiently good to achieve the same security level as larger

keys in other algorithms, such as RSA. Interesting property of elliptic curves is that,

a non-vertical line drawn through any two points on an elliptic curve A and B will

intersect the curve in at most one other point C. An example of an elliptic curve is

shown in the fig. 2.7.

Figure 2.7: Example of Elliptic Curve

If we flip this new point C ′ over the x-axis, we get C. And if we continue to

do this operation again and again for n number of times, we get randomly new n

17

number of points. This method of getting new points is called as dot operation. This

operation of getting new random points is similar to that of exponential problem,

even if we know a point on the curve, it is really impossible to figure the n (number of

dot operations performed) for which that point is reached. Similar to Diffie-hellman,

where (Gn)c = (Gc)n, the dot operation performs the same calculation in elliptic

curve cryptography which is c dot (nG) = n dot (cG).

An Elliptic curve E is a curve over finite space F which is not equal to 2 and 3

and is satisfying the equation

Y 2 = x3 + ax+ b[46]

In ECC an elliptical curve is a plane curve on a finite space comprised of points that

follow the above equation where a, b belongs to the finite space F with pn elements,

, where p is a prime number and a, b satisfying 4a3 + 27b20 [50].

Using this concept of elliptic curve, it is mathematically much more harder to solve

the elliptic curve discrete logarithm problem compared to RSA discrete logarithm

problem. This makes it is much more efficient as it can get away with shorter key

sizes, which means less computation when we are calculating. Thus it is much easier

and helps better to compute faster as shorter keys mean smaller calculations and

less data sent from server to the client. The standard ECC key of 256 bits equals a

3072-bit RSA key and is 10,000 times more powerful than an RSA key of 2048 bits.

Additionally, the ECC requires minimal computational power (CPU) and storage,

which allows for significantly higher response rates and performance on Web servers

when used [2].

2.6 Logical Clocks and Hashing

Logical clocks is an algorithm created by Leslie Lamport in 1978. This is mainly used

to determine the ordering of events in a distributed network. This algorithm helps to

perfectly synchronize different nodes with the use of happened before relation. The

main problem of the distributed computer system is the synchronization of events

happening in the network. As the distributed system lacks a global clock and all the

events in the system are unordered due to different timestamp in different device.

This is called as the clock synchronization problem. Leslie Lamport have solved this

18

problem by the use of logical clocks for every process. It provides a partial ordering

of events with the use of a counter which increments by a predefined value for every

event encountered by the system. This partial ordering of events happens with each

process Pi having a clock Ci. The time stamp of the event A in process P1 is C1(a)

and the time timestamp of event B in process P2 is C2(a). So logical clocks can be

thought of as counters which takes events as inputs and outputs the timestamp for

that event. The happened before related is denoted by the symbol “→” [49].

Lamport ordering of events has three main rules to logically relate events in a

distributed system:

• If A and B are events in the same process Pi then A → B if timestamp of A

i.e., Ci(A) is less than timestamp i.e., Ci(B)

• If A is an event where process P1 sends a message M and B is an event where

process P2 receives the message M , then A → B because one cannot receive a

message before it is sent.

• If A → B and B → C, then A → C (Transitive property) [8]

This happens before relationship creates only partial ordering among events, this

means that only some events are related to each other between different processes.

Events within a process are still related to each other within the same process. Each

process uses a local counter which is an integer, a process increments the counter

when a send event or an instruction execution event happens at it. The incremented

counter or the logical clock value is assigned to that particular event as its timestamp.

A send event carries its timestamp along with the message and then the receiving

process updates its counter by 1 based on the max value of (received timestamp or

the local clock value) [43].

Figure 2.8: Processes and Events without Logical Timestamps

19

An example of how logical clocks work is shown using fig. 2.8, which consists of

three processes with different events, and executions that are happening in and among

those processes. An example of an instruction execution happening in process P2 is

the event E, H is an example of sending event, while A is an example of receiving

event. Initially all the processes start with counters with timestamp 0.

Following are the steps to assign timestamps to all the events.

• Process P2 executes an instruction E and assigns a timestamp of 1

• Process P1 sends the event H assigning it timestamp 1

• Process P3 receives the event A and checks the max (local timestamp, message

timestamp) i.e., max(0, 1) and adds 1 to it assigning timestamp 2

• Process P2 assigns F the timestamp equals to 2 by incrementing its local clock

value by 1 and sends it.

• Process P3 receives the event I and checks the max (local timestamp, message

timestamp) i.e., max(1, 2) and adds 1 to it assigning timestamp 3

• Process P1 executes an instruction and assigns B a timestamp of 3 by incre-

menting its local clock by 1

• Process P3 executes an instruction and assigns J a timestamp of 4 by incre-

menting its local clock by 1

• Process P3 sends the event K assigning it timestamp 5 by incrementing its local

clock by 1 and sends it

• Process P1 receives the event C and checks the max (local timestamp, message

timestamp) i.e., max(3, 5) and adds 1 to it assigning timestamp 6

• Process P1 sends the event D assigning it timestamp 7 by incrementing its local

clock by 1 and sends it

• Finally, Process P2 receives the event G and checks the max (local timestamp,

message timestamp) i.e., max(2, 7) and adds 1 to it assigning timestamp 8

20

Figure 2.9: Processes and Events with Logical Timestamps

Fig. 2.9 shows how Lamports algorithm rules work to increment timestamps and

assign them to events across the nodes in a distributed network.

Thus, having these logical clocks help in partial ordering of events to show causal-

ity across the network [49].

Chapter 3

Related Work

This chapter highlights some of the key researches that are performed in the area of

wireless sensor networks, cryptography, effective memory management, and energy

efficiency etc. To present the existing studies in an organized manner, the papers are

categorized into various segments, which are provided in the following sections.

3.1 Research on Wireless Sensor Network

Multiple Base Stations

Deployment of multiple base stations is considered in order to reduce the overall en-

ergycostsinwireless sensor networks.This paper uses MRMS (Multipath Routing in

Large Sensor Networks with Multiple Sink Nodes) , a protocol used to improve dy-

namic cluster maintenance, path selection and path switching in order to improve

energy efficiency.A significant number of recentresearchesfocuses onoptimizingrouting

protocols with the clustering approach, but not many studies have taken multiple base

stations into consideration.While few researchers have considered the use of multiple

sink nodes, there are still problems with saving residual energy from sensor nodes,

path switching, ormanagingexcessive energy consumption.The reconstruction of the

cluster is triggered by the nodes near the sink, as the energy consumption is higher

with the nodes closest to the sink than the nodes far from the sink.Performance eval-

uation is performedon the basis oftime to first node failure, total number of dead

nodes, mean energy consumption of one packet, average hop count to sink and packet

delivery ratio.Based on the results, the proposed MRMS protocol greatly outper-

forms other protocols, nearly doubling or tripling the time to failure of the first

sensor node.The study shows that MRMS substantially reduces the number of dead

nodes and isactually moreenergy efficient.Particularly in comparison to the Voronoi

21

22

algorithm,TopDiskalgorithm and Direct Flooding, MRMS significantly reduces en-

ergy consumption.Exploring the impact of a loss MAC layer on the MRMS as well as

building node-disjoint multipaths for multiple sink nodes is still required[17].

Base station mobility in wireless sensor networks has been introduced to maxi-

mize energy efficiency and lifetime of the network. This article provides a new method

for data recovery in order to improve energy consumption and to boost network life

through the use of Multiple Enhanced Specified-deployed Subsinks (MESS) process.

Previous work [56] includes a routing protocol that achieves an extension of the net-

work life, however each node needs to maintain the current location of the sink in real

time that causes communication overhead to the sink as it needs to inform each node

of the change in the network. Many studies have proposed different algorithms, some

of which are not feasible at the moment or only applicable to particular WSNs. In this

article, the suggested MESS system uses the installation of subsinks to collect data

from other remote nodes. This can eliminate the node-to-mobile sink long-distance

transmission and reduce the delay generated by long-distance. Results of simulation

demonstrate that the strategy introduced outperforms conventional solutions and

manages to save moreresources [79].

Multiple Base Stations and Increase Network Lifetime

Maximization of network lifetime is one of the most important design targets of WSNs.

Data relaying to a static base station may extend the entire lifespan of the WSN,

but the hotspot problem still exists. Having several base stations can help mitigate

this issue with the hotspot problem and increase the lifespan of WSN even further.

The researchers explore various mobility patterns in order to understand the optimal

features for maximization of WSN lifetime. Different base station deployments are

also discussed in this paper. In consideration of the same set of sensor nodes and base

stations, three mobility patterns are compared. Regardless of the static or dynamic

form of sinks, the lifespan of the network is significantly increased in all three patterns

compared to the use of single base station. According to the tests, the performance

of the network life is greater when spiral mobility is used in a single base station

network where grid mobility is best suited to multiple base station deployments. The

findings also show that there is limited difference in performance between multiple

23

static and multiple dynamic base stations. Hence, this paper presents various results

and recommendations for better network performance [13].

Multiple Base Stations Placements

Alsalih et al. [6] aim to improve energy efficiency in a wireless sensor network by

employing multiple mobile base stations. Numerous researches have been done to

improve the existing routing protocols and satisfy the energy efficiency requirement;

however, topology related problems are still in place. The advantage of multiple base

stations is more reliable network load distribution. This paper primarily focuses on

designing a base station placement scheme to distribute in the network, thus help

to prolong the lifetime of the entire network, overcome bottleneck problems for the

sensor nodes and faster delivery of collected data to the base stations. Base station

placement is calculated based on the routing patterns and maximally overlapping

regions. In this way, unlike other strategies and approaches, base station location

varies over time by optimizing the network and prolonging the network lifetime. The

results show that the developed approach even has the ability to double the network’s

lifespan.

It is desirable for sink nodes to be closer to sensor nodes, not just because sen-

sor nodes lose significant amounts of energy to transmit other node data, but also

fordisaster management. An effective multiple sink location strategy will significantly

reduce issues such as shortening multi-hop distances between sensor nodes and sinks.

Some previous works used grids to partition the network and used one sink node

per partition, few others proposed using linear integer programming, iterative clus-

tering methods, and random placements of sink nodes that are not very suitable

for time-critical purposes. This proposed work considers number of sensors present,

sink nodes present and forms grids. The sink placement is also based on geographic

based method, candidate location with minimum hops and centroid of the nodes in a

partition. The simulation results state that centroid of nodes in the partition (CNP)

method performs very well compared to other algorithms and it even outperforms the

GSP benchmark algorithm [67] which is used to solve the sink placement algorithm

[22].

24

Multiple Base Stations For Key Management

Most of the current literature works consider a single base station WSN. Neverthe-

less, as the sensor network size increases, the distances between the base station and

the corresponding sensor nodes increase which causes various problems. Most of the

previous works use traditional key management algorithms to manage sensor nodes,

but in the case of multiple base station systems, the preloading of a shared key with

sensor nodes or the distribution of a pair wire key with a base station has several

issues, such as the compromise of the base station making keys exposed. The ma-

jority of research studies assume that the base station is reliable and considers only

the compromise of the sensor nodes, Nonetheless, key distribution and key revoca-

tion schemes are used in this design to prevent malicious network-connected nodes.

The use of the node revocation list helps in situations of base station compromise,

sensor node compromise or both. The proposed method does not add any additional

communication overhead and the revocation time of the key is very well optimized

[91].

Security of WSN with Multiple Base Stations

Due to the absence of good wireless network infrastructure, networks are exposed

to security attacks and threats [4]. This paper by Alattas focuses on the black hole

problem in wireless sensor networks. In this network attack, the intruder re-programs

nodes to prevent them from relaying or sending any network traffic data further to the

destination. In order to resolve this problem efficiently, multiple base stations and

check agents have been used. The researcher adopted two different algorithms for

providing efficient routing based on security risks, and this design also helps in saving

energy. Check agents randomly visit nodes existing in the network and checks the

frequency of packets obtained from neighboring nodes. This process helps in verifying

if a neighboring node is acting as a black hole node. The use of check agents helped

in identifying black holes attacks by 99%. The use of multiple base stations is proved

to increase efficiency, security and also in the reduction of energy consumption.

25

Energy Efficiency of WSN

Many researches have been done in wireless sensor networks to reduce energy con-

sumption of the sensor nodes using different new protocols and algorithms. The

central focus of this work is to improve LEACH protocol and deploy multiple base

stations to obtain better consumption of energy [71]. Several assumptions are made

with sensor nodes and base stations and various properties like reachability, power

efficiency and clustering interface are evaluated. Through increasing the number of

nodes and the number of base stations, energy consumption per node is examined.

Based on the results, a new design is proposed to enhance the protocol by replacing

cluster heads with base stations, removing the leach protocol’s limitations with only

one hop communication.

Mobile Base Stations

In this scheme, the lifetime of the sensor network is divided into equal time periods

called rounds, the base stations are moved for each round in order to conserve energy

at each node of the sensor. The proposed protocol also helps to create new base

station locations and aflow-based routing protocol. An integer linear system is used

to assess the new locations for the base stations to be placed in the network, taking

into account the energy spent on each node. It helps to reduce the total energy

consumed in a round by the sensor nodes. The flow information obtained by solving

the linear integer program can be used by sensor nodes to route messages in an

energy efficient way. In order to calculate efficiency of the proposed system, different

performance metrics such as time until anode dies, time untila percentage of nodes

die, the amount of messages received and energy expended per round are considered.

This paper suggests the energy-efficient usage design, for the reliability of wireless

sensor networks withmultiple mobile base station systems [31].

This paper presents a new energy-efficient network model that uses Harmony

Search algorithm to dynamically relocate a mobile BS to a cluster-based network

infrastructure. Optimal CH’s are selected from the sensor group to distribute the

sensor roles equally. Efficient data transmission is extremely important given the

large proportion of energy consumption due to relaying of the sensed data to the

sink node or base station. Harmony search algorithm works on considering memory

26

factors, random consideration and pitch adjustment to create a new solution vector.

This solution vector is improved by iterating the algorithm multiple times until an

efficient optimal HMV is selected. This algorithm is responsible for creating a suitable

network infrastructure that carefully selects the optimum number of clusters and their

members. For every round, repositioning of the base station to the midpoint of all the

CHs is considered which helps in minimizing the energy consumption. The results

show that the proposed model obtained best score and outperforms other existing

algorithms in terms of first node failure, last node failure and total packets sent to

BS [5].

3.2 Research on Memory Allocation

Pathak [66] addressed the problem of developing efficient memory management strate-

gies to enable new technologies that need more storage to handle real-time traffic.

The researcher acknowledges that this memory management issue in wireless sensor

networks has a significant gap in research and also identifies several constraints in

developing effective memory management implementations. Memory management

refers to various techniques for allocating and releasing memory blocks to different

processes and threads on a system. Several problems are listed, including virtual

memory, secondary storage management, small footprint, dynamic memory alloca-

tion, reprogramming and memory management. As more memory capacityis needed

for new applications with real-time traffic, secondary storage for sensor nodes is con-

sidered because large amounts of data are captured and processed at the nodes, and

this data have to be stored and retained. There is very limited research in memory

management for multiple concurrent programs and support for virtual memory man-

agement in current WSN operating systems. Although substantial amount of work is

completed, a broad range of research gapstillexist in this area [66].

Machaya et al. [57] aimed at working on reliable memory and storage manage-

ment in wireless sensor nodes during the key generation phase. Current wireless

sensor networks are a new formof distributed embedded systems with a wide range of

applications in real time that need powerful memory management techniques. The

authors addresseshow memory is handled by various operating systemsof wireless

sensor networkslikeMANTIS,LiteOS,TinyOS, Nano-RK, LIMOS, SOS, Contiki, Enix

27

and µC/OS-II. However, the other studies do not discuss the memory management

during key generation which is the primary focus of this paper. This research goal is

accomplished by means of minimaxsampling, resulting in increased signal compres-

sion and improved memory management. The proposed solution reduces the number

of samples and reduces the use of memory in the WSN node, however practical im-

plementation of this approach on a real wireless sensor network is required.

The primary function of wireless sensor-networks storage protocols is to accurately

duplicate and distribute data through nodes and to improve data collection and query

via sink nodes. In network protocols are responsible to do this replication of data in

the network. This article explains and illustrates the key principles of such current

protocols that are further subdivided into multiple classes based ontopology, load bal-

ancing, transmission strategy and reliability. The main purpose of WSN is to collect

environmental data and send it to users via a sink node, a powerful node connecting

WSN to an external network like Internet. Many in-network storage systems were

primarily designed for mobile sink management and node fault tolerance aiming to

make information available to the users even in the case of node unreachability due

to node damage or battery exhaustion. The assumptions by the researcher include,

large scale wireless sensor network, limited resources, limited power, dynamic network

and the use of in-network storage. Benefits and disadvantages of various approaches

are discussed in terms of in-network storage requirements and additional challenges.

All of these approaches rely on data replication utilizing sensor nodes, although not

many research studies concentrate on the availability of data and network efficiency

at base station level [60].

3.3 Literature on Security, Blockchain, Logical Clocks, and Data

Storage

Elliptic Curve

Several experiments are carried out to determine the energy consumption of public

key encryption in WSN. One of such research is by [83], where comparison of two

asymmetric key cryptography algorithms, RSA and Elliptic curve cryptography is

presented. Comparison is made regarding mutual authentication and key exchange

28

between two untrusted nodes within a network wireless sensor. The impact of pub-

lic key encryptions on battery capacity and other variables that influence energy

consumption are considered. Strong encryption will help secure communication and

maintain confidentiality, completeness, authentication and non-repudiation. All these

objectives can be achieved by incorporating symmetric key algorithms, asymmetrical

key algorithms and hash functions. RSA algorithms are extensively used in many

applications today in view of public key cryptography. Nonetheless, elliptic cryptog-

raphy provides the same advantages with far less number of keys, which particularly

helps WSN nodes to save more energy and to increase overall lifetime. The energy

consumption to digitally sign a message using RSA-1024 is 304 whereas ECDSA-160

is 22.82 which shows that RSA consumes more than 13 times of energy compared

to ECDSA providing similar level of security. This cost is more than 37 times to

sign a message using RSA-2048 compared to ECDSA-224 having similar amount of

security. This clearly shows that RSA costs way more due to the use of larger keys

when signing messages. However, verification consumes more energy using ECDSA

than RSA algorithm. In addition to this, key exchange operation is very efficient in

ECDSA at server side and is almost the same at client side with negligible difference

of energy. Hence, use of elliptic curve cryptography provides great computational and

communication efficiencies [83].

ECC for WSN

WSNs can be run in large numbers and are often deployed in unattended environ-

ments where tampering, eavesdropping, altering information transmitted and adding

unauthorised messages can be introduced in the network. Taking these attacks into

account and to combat these threats, robust and effective security approach is neces-

sary. Elliptic Curve Cryptography (ECC) enables this level of security to be achieved,

as conventional security mechanisms are inadequate to provide much security in wire-

less sensor networks. This paper introduces a key management strategy to securely

distribute secret keys to authenticated motes using ECC-based cryptographic algo-

rithms. The proposed approach uses TinyECC implementation of elliptic curve en-

cryption for wireless sensor networks that incorporates Elliptic Curve Digital Signa-

ture Algorithm (ECDSA), Elliptic Curve Diffie-Hellman (ECDH) and Elliptic Curve

29

Integrated Encryption Scheme (ECIES). This use of TinyOS implementation helps

achieve scalability. Even if the network size increases significantly, the system requires

little or no alteration. The time required to send a message using this approach shows

26% overhead, although the random number generator offers several advantages for

resisting hardware attacks and provides great security against replay attacks. Thus,

a robust ECC-algorithm security system has been designed for a reliable and efficient

key distribution scheme [55].

Logical Clocks

The problem of timestamping and ordering of events in a distributed system can be

solved using logical clocks. Leslie Lamport proposed this algorithm which is helpful

in synchronizing a system with logical clocks and is useful in the ordering of events.

Changing partial ordering of events to a consistent total ordering is the main objec-

tive of this system, which is achieved without using physical clocks, as they are not

perfectly accurate. The concept of logical clocks uses “happened before” relation to

create a partial ordering of the events in a distributed multiprocessing system. Five

rules are defined by the algorithm for total ordering of the events with the help of par-

tial ordering of events, which can be used to solve the problem of synchronization. As

total ordering is considered somewhat arbitrary, additional use of physical clocks can

prevent that problem. Hence, this paper benefits to understand the synchronization

problem in a distributed system and a solution to solve the problem [49].

Merkle Hash for Commitments

This paper proposes a digital signature based on conventional encryption function

which does not depend on difficulty of factoring and it does not require high compu-

tational costs. It clearly explains how one-way functions work, Lamport’s one-time

signature concept and its limitations are described. To overcome the limitation of

signature size, Merkle proposed an improved version which is further improved by

Winternitz’s one-time signature. But the problem of signing more messages still ex-

ists as the storage and computational requirements are very high. This led to the

proposal of an Infinite tree of one-time signatures now called as Merkle Trees. This

algorithm requires very small amount of check signatures and is very fast compared

30

to other algorithms. Thus, digital signature system which works rapidly and requires

less memory requirements is presented [61].

Blockchain Use

Different methods to protecting data are established using trust-wide encryption,

such as cryptographic schemes and routing protocols. These approaches, however,

are very critical in identifying the network’s optimal path but unauthorized node

attacks cannot be prevented. A special algorithm is implemented by combining the

routing protocol AODV (Ad Hoc On-Demand Distance Vector) with the Particle

Swarm Optimization (PSO) to produce trustable routing through the blockchain at

all locations. Because the blockchain has an immutable digital economic transaction

ledger that can record all financial transactions with their virtual values, if any breach

happens through a node in the network, the other nodes will receive the alert details

about this failure. The findings of the simulation work have shown how the AODV

and PSO algorithms can be applied using the Poisson distribution probabilistic ap-

proach. This experiment has therefore contributed successfully to the distribution of

information through blockchain, and the PSO algorithm helps to recognize congestion

[7].

This paper proposes a blockchain trust model (BTM) in wireless networks for

malicious node detection. Malicious nodes are one of the biggest threats in wireless

sensor networks to launch attacks from within the network. Previous works may

have the ability to detect malicious nodes effectively, however the detection process

documentation is not stated, nor the mechanism to safely store the original data for

later traceability. A new way to detect malicious nodes in wireless sensor networks is

the advent of Blockchain technology and smart contract. This model’s configuration

has several sink nodes linked to multiple sensor nodes and a base station as the data

destination. The architecture of the blockchain guarantees that the data cannot be

changed, while the smart contract built on the distributed ledger is used to calculate

the η value for the identification of malicious nodes. Many parameters are considered,

such as delayed transmission, forward rate and response time. The results of the

simulation show that the model can effectively identify malicious nodes in WSNs and

ensure the detection process is traceable [75].

31

Several researchers continue to use different network development techniques and

consensus algorithms to incorporate Blockchain technology in WSN and IoT. In this

concept of rolling blockchain, smart cars were used as network nodes for building

WSN. This paper suggests the process of block formation and structure in the chain

and provides a statistical model for it. The existing projects recommend using ex-

ternal blockchains to pass transactions. As a consequence, customers are required to

pay the fee for each transaction or pay the block formation chargeto miners. This

paper focuses on building a private blockchain network and a node consensus pro-

tocol. It discusses the network structure, the chain structure, the block structure,

the blockchain formation, the segmented network and the mathematical model of the

proposed framework. Building a fixed sensor network and randomly spreading addi-

tional sensors until a certain density is attained to form a network. Shortest paths

are then created using Monte Carlos algorithm by removing random paths. The test

results revealed that even with an increase in attack density (increased number of

lost connectionsand nodes) the network remains stable and the Blockchain can stillbe

built. The security analysis and hacking problems of the proposed method have not

been addressed. Not many studies are carried out to apply the findings of this article

to the sensor networks and the Internet of Things [48].

Most research focuses on integrity, privacy, confidentiality, key management, effi-

cient routing, secure data storage and availability of wireless sensor networks. Only

few such research focuses on recovery of failure nodes. This paper uses WSNs node

recovery scheme based on blockchain to first identify the failed nodes using cluster

heads status. Only through the cluster head can sensor nodes or non-cluster heads

communicate with the sink node. The cluster headscontinue to track the stateof the

other connected nodes. Smart contracts are used to initiate the cluster head’s recov-

ery process, which in turn helps with node recovery. In the case of working CH, a

consensus algorithm will be executed between the CHs to ensure that state is in place.

If 51% of the consensus for CH is reached, it receives data from the sensor nodes and

forwards it to the sink. If a failed cluster head is detected, recovery process starts

by selecting the replacement for the failed CH. The security analysis of the proposed

framework is carried out in order to ensure high security and cost analysis shows that

the resulting cost is very low in order to recover the node in the network [80].

32

Using Blockchain for Data Storage

Reliable data storage and support is very important when it comes to wireless sensor

networks. As the storage space increases and it requires energy from each node to

hold data and provide its storage, efficient incentive mechanism supports and pro-

motes nodes to store more data. This paper proposes an incentive mechanism which

gives incentives in the form of real money based on the amount of data stored by the

nodes. It also focuses on how to ensure normal operation of the network when there

is a data conflict among the nodes and to eliminate those false nodes. Many such re-

searches proposed different solutions to this problem of limited storage capacity. Data

storage capacity is an important resource, which usually is performed using external

storage, local storage or data centric storage. Blockchain based incentive mechanism

is proposed to encourage nodes to store data. This system has different layers in or-

der to achieve various services like data encapsulation, incentive mechanism, network

consensus, and programmability. Instead of the proof of work algorithm to achieve

consensus, Provable Data possession mechanism is used which needs very less com-

putational power when compared to proof of work mining algorithm in the bitcoin

protocol. This way, the proposed design takes the advantage of blockchain protocol

eliminating its limitations by replacing pow with PDP mechanism and promoting

data storage in a wireless sensor network [73].

Using Blockchain for Encryption and Security

The motivation behind this proposal is to design a complete model which works for

security, privacy, trust management and node authentication in a sensor network.

Previous works on these areas have developed several solutions but none of them

satisfy all these requirements altogether. With the presence of authentication and

trust management issues in wireless sensor networks due to its security constraints,

a design with blockchain data structure helps in storing decentralized authentication

and trust management information. This paper proposes one such model which is

adaptable, and it ensures reliability over time. Blockchain Authentication and Trust

Module (BATM) is designed which provides confidentiality with encryption, authen-

tication using digital signatures, identity validation with the help of peers. Different

payloads are present in this model which is used for different purposes such as miner

33

approval to validate the payload, credential payload to approve a node, renew payload

to renew credentials, blame payload and revoke payload. As trust is a probability,

it needs to be evaluated which is carried out with the use of reputation factor, this

helps to decide whether to allow or restrict actions in the network by the network

node. However, this model still needs to be improved by considering the results of

every BATM part reputation. Thus, a new design for secured decentralized storage

of cryptographic keys, trust information using blockchain in a wireless sensor network

is proposed [64].

Even with the rapid growth in research and technology for IoT, the problem of

traditional security and privacy still exists. Blockchain has increasingly been used to

establish privacy and security in peer-to-peer platforms with identical systems to IoT.

This blockchain technology is used as the providing solution in this paper on the field

of IoT by taking smart home architecture as an example. Regardless of blockchains

limitations when it comes to latency, resource intensiveness, and scalability, Dorri et

al., introduces a lightweight and decentralized blockchain based architecture for IoT.

Blockchain is mined and maintained by one or more resource capable devices like

smart hubs or home computers. The homeowner controls and maintains any smart

home device and an overlay network is used to connect to other networks externally.

There may be an optional local storage for local data storage in each home or they

may use cloud storage if they want to store information on cloud. Homeowner also

has the option to use the miner’s monitor transaction to track and access information.

Not only does the blockchain store data, it also stores access information and policies

to allow or reject network transactions. Unlike the blockchain used in Bitcoin, this

conceptual design does not use any consensus mechanism as it is private blockchain

and is operated by the homeowner. Performance of the proposed architecture under

specific security and privacy risks was assessed and qualitatively analyzed [26].

Synchronization Problem

When using existing client server model with thousands of IoT devices connected to

each other, synchronization issues are expected, and the server client model may have

some limitations and issues. Therefore, the research uses blockchain architecture to

monitor and customize IoT devices instead of the client-server model. Ethereum,

34

which provides Turing complete programming, allows developers to write smart con-

tracts and has a high speed. Ethereum is used by the proposed design to control and

configure a group of IoT devices. This model uses a smart phone and three Rasp-

berry Pis where each one of them is viewed as an air conditioner, Light bulb and a

meter for monitoring electricity use. There are three smart contracts built on the

Ethereum blockchain for tracking electricity usage, writing policies and key manage-

ment functions. The results indicate that, even with Ethereums high speed, it is still

not fast enough and the absence of a lightweight client makes it prone to security

problems. Thus, this experiment proposes a new way of managing IoT devices using

the Ethereum blockchain platform [37].

Use of Blockchain and other Peer-to-Peer Technologies to Increase

Distributed design

The research objective in this paper is to understand if the approaches to blockchain

and peer-to-peer can be used to advance distributed and private-by-design IoT. Var-

ious blockchain implementations have been found in the literature in which four of

them are IoT related. This entire study is based on Kitchenham’s SLR guidelines

[45]. Requirements such as blockchain uses outside cryptocurrency, IoT applications,

implementation discrepancies with bitcoin blockchain, degree of integrity, privacy and

flexibility are taken into account. From eighteen blockchain uses beyond cryptocur-

rencies, four of them are linked to IoT. Data storage location and distinct techniques

used for blockchain mining are identified. With regards to blockchain integrity, dif-

ferent attacks found in the papers have been analyzed to ascertain the vulnerability

of blockchain. The security risks include significant problems in reaching consensus,

deliberate forking of the blockchain, delay in publishing mined blocks to erase and

replace existing chain, creating a new branch via historical revision attack and so on.

Four classes of de-anonymization strategies various adaptability issues are recognized.

There are thus many applications for blockchain, but it is viewed as less ideal for IoT

with the scalability issues [20].

35

Comparison of Blockchain with Centralized Network

Kumar et al. [47] discuss potential security and privacy issues related to information

exchange and data authentication via central server, and examine how this is solved

withthe blockchain-based distributed ledger network. As the number of devices in-

creases, communicating using a centralized network can result in many problems.

In order to understand the role of blockchain technology, different issues related to

IoT and IoT with BC were also addressed. Interaction between the three elements

i.e., Networked Sensors and Actuators (NSA), Raw Information and Processed Data

Storage (R-IP-DS), Analytical and Computing Engines (ACE) has been analyzed to

examine the risks of security and privacy issues arising. A comparison of data flow is

made using a centralized server and Blockchain technology. To large-scale IoT appli-

cations, blockchain technology has the following benefits such as tamper proof data,

trustless and peer to peer connection, robustness, high reliability, accelerated trans-

actions. Category-based blockchain implementations in various sectors and different

usage cases are clearly shown. This paper therefore provides a basic idea of the need

for blockchain in IoT.

Blockchain Smart Home Framework to Increase Confidentiality,

Integrity, and Availability

Safety and privacy of the Internet of Things (IoT) is a significant challenge, especially

due to the vast size and the deployment of IoT networks. With the purpose of en-

suring confidentiality, integrity and availability, the proposed blockchain Smart Home

Framework is thoroughly evaluated through its security objectives with simulation re-

sults which illustrate the overhead costs. Through eliminating the use of the mining

algorithm POW (Proof of Work), this architecture relies on hierarchical structure and

mutual trust to preserve the security of blockchain and is compatible with IoT. The

key smart home components are transactions which are used to interact between local

nodes and external networks, local blockchain processed and stored by local storage,

and then a home miner managing this blockchain. In this design, the dedicated home

miner plays a significant role from initialization to transaction handling and shared

overlay communication management. This design is evaluated on the basis of security

and performance aspects. In terms of security, malware deployment in smart devices

36

is unlikely because they are not directly accessible, eliminating the possibility of var-

ious attacks, symmetric encryption is used for confidentiality, hashing is employed to

ensure integrity and policies are needed for authorization. For performance measure-

ment, packet overhead, time overhead as well as energy consumption are used. The

results show that this blockchain design for smart homes involve low overheads and

that the protection and privacy benefits are worth their weight [25].

Using Blockchain Technology for Immutability of Data

In order to make sensor data unmodifiable and permanent, thus increasing availabil-

ity of the data, Ibba et al. [38] have adopted blockchain technology in their urban

smart city sensor network. Due to blockchain’s property of immutability, security

and transparency, it is very much suitable in this smart city environment monitoring

system. Mobile devices and sensors are used to connect and modify the blockchain

by adding information, providing reports, feedback from users. Data is collected by

various sensors and is sent to the collection end point by distributed sensors, this data

is validated by a specific mining software. Sensors send data themselves or by using

mobile devices to the blockchain. Ethereum system is used as the blockchain technol-

ogy in this paper. Thus, from this blockchain network, users can access information

about the environment.

Black Hole Problem

The crucial issue for wireless sensor networks is how reliable data collection can be

done under different conditions. Many captured sensor nodes in wireless sensor net-

works (WSNs) are converted into black hole nodes by tapping, destroying and shield-

ing information received. Most of the sensor nodes near the sink node are captured to

avoid the information being sent to the destination. First, the construction of secure

multi-path routing is done and then the secure collection of data is done on a secure

multi-path basis. Based on the simulation performance, the authors claimed that the

proposed algorithm does not ignore the node compromise near the sink node, unlike

other algorithms. The design of MERS (Multi-Error Report Simultaneously) helps

the sink node to reuse the number of data items which are incorrectly received. Thus,

a feedback-based algorithm to implement a secure multi-path data collection routing

37

has been presented [84].

Use of Storage Nodes

A large amount of data has been collected for future data query and analysis in most

wireless sensor network applications, so how to store them becomes a major challenge

in such wireless sensor networks. A kind of storage node has recently been adopted

as a useful strategy for solving the storage challenge, but storage node placement has

become a critical issue in such wireless sensor networks. The aim of this algorithm is

to balance wireless sensor energy in each storage node and to reduce a performance

measure called total energy costs, and to provide the most efficient solution to the

energy consumption of the wireless sensor networks. Data is typically stored by either

the sink node or the sensor nodes. Data request processing is much more difficult

when the data is stored in sensors compared to the data storage in the sink node. But

if all the data needs to be present in the sink node, it needs to travel very far from the

sensor nodes all the way to the sink node and this process may use intermediate nodes

to relay the data which takes even more energy. The positioning of the storage node

problem is resolved in a fixed tree model rooted at the sink. This paper uses sensor

nodes, storage nodes, as well as forwarding nodes for the tree T . The storage node is

configured in such a way that the cost of sending processed data plus processing costs

is lower than sending large raw data. The results showed that this algorithm helps

to reduce the overall cost of energy by putting a storage node and has additional

advantages when using the storage node [86].

Data Storage Using Routing Algorithm

The sensors need to use multi-dimensional range queries to retrieve data with range

values and various attributes. This paper proposes a new storage method for multi-

dimensional attribute data. Using a geographic hashing algorithm, multi-dimensional

space is mapped to a 2-d geographic range space that helps address multi-dimensional

range queries. First, the design of the distribution index for multidimensional data is

completed. It involves the insertion of data that stores observed events at appropriate

nodes in a corresponding range space, the query processor then analyses the user query

and can subdivide the query into multiple sub-queries. A hashing algorithm is used to

38

map an event to an appropriate range of space in the data insertion phase. To store

events in appropriate nodes this approach makes use of a routing algorithm. In the

second phase of the query processing mechanism, in order to get the matching events,

query resolution and recovery of events are performed. The tests of the simulation

are performed using average cost of insertion and average cost of querying. The

proposed data storage and range query system reduces the cost of message and hotspot

problems even with the presence of a large number of events and sensor nodes in the

network to achieve load balancing [51].

Chapter 4

SEA (Security, Efficiency, Availability) Framework

In this chapter we propose a new approach for the replication of data between base

stations in a large dynamic wireless sensor network. This approach is motivated

by a distributed ledger technology called Radix. We begin with an overall view of

the topology and the assumptions made for the network, base stations and sensor

nodes. Using the proposed scheme, we demonstrate data transmission and storage

mechanisms in base station. The proposed framework efficiently works for both static

and dynamic wireless sensor networks. Besides these, various schemes are proposed

to achieve integrity and freshness of data are addressed.

4.1 Network Assumptions

4.1.1 Sensor Nodes

A sensor node is an intelligent, small sensor that can collect information, process

and interact with other connected network nodes. The proposed system includes a

number of sensor nodes evenly distributed for sensing data in a large network area.

Sensor nodes are homogeneous and have very limited memory to store sensed data.

Because the sensor nodes are computationally constrained and have a small range,

data is transmitted by relay nodes or multi-hop communication to the nearest base

station. Information is periodically sensed and also when the basestation requests

current data.

4.1.2 Relay Nodes

These nodes are primarily responsible for transmitting / relaying sensor data from

other sensor nodes to the closest base station. Data from various sensor nodes are

collected to send it to the nearest connected base station (Fig. 4.1). Similar to sensor

nodes, relay nodes are powered by battery and have the capability of communicating

39

40

Figure 4.1: Wireless Sensor Network setup with sensor nodes, relay node(s), and
multiple base stations

wirelessly.

4.1.3 Base Stations

Sensor nodes need a collection point where the sensed data can be analyzed, stored,

or distributed to other networks through wireless communication systems of longer

range and greater-throughput. Base stations often referred to as sink nodes, are

mainly responsible to collect this sensed data in the wireless sensor network. The

proposed architecture is designed for sensor networks with mobile base stations and

also static base stations. It functions as gateway between the sensor node and the user,

when requested, by sending data. The network has multiple base stations and has

a higher memory capacity, computational power and battery life. Each base station

communicates and replicates data with a set ofother base stations. We assume that

there are N numbers of base stations on the network. We also believe that the base

stations in thisprotocol are mobile and can switch from one place to another. Mobile

41

base stations are considered to have more power but are considered to be battery

operated. They are also considered to have very long range, all the base stations have

the capability to communicate with the server irrespective of its location. However,

if a network having base stations with limited range is considered, base stations can

request its neighbouring base stations to send the related data in its remote memory

to the server, thus achieving data availability in such situations.

4.2 Research Scope

The scope of the proposed research does not include configuration setup between

sensor nodes and base stations. There are, however, several other methodologies and

techniques for efficient and secure communication between sensor nodes and base

stations. The sensor data storage allocation in the base stations local memory take

place when a sensor node is connected and starts storing the data sent by the sensor

node. If it is disconnected from the base station due to number of factors that could

be related to sensor node failure or sensor node connecting to another base station,

the related existing sensor node data will be offloaded to the server and this change

is reflected in the connected neighbour base stations replica memory.

From a technology point of view, Blockchain is used specifically to eliminate the

concept of centralization and to achieve a distributed agreement. This requires secu-

rity across the network, but the key concept is to get the same data across the network

that is accomplished by replicating the ledger across all nodes as several copies. Such

identical multiple copies are important for achieving consensus, security of that allows

the information to be consistent. Actual data without manipulation is perceived to

be more essential in the area of distributed ledger technology. The proposed protocol

considers this replication and other security requirements as a crucial aspect, however

the analysis of confidentiality and data integrity in regards to blockchain is not tested.

4.3 Secure Topology Setup

4.3.1 Configuration Phase

We consider n number of base stations (β1, β2, ..., βn) randomly deployed in the net-

work. Every base station (βi) will have its own public, and private keys (pubβi , privβi)

42

generated using a standard assymetric key generation algorithm, such as elliptic curve

cryptography. Upon generating a pair of asymmetric keys, a base station (βi) broad-

casts its public key to all the other nodes. In addition, each base station generates

an initial symmetric key (skβi), which is updated at later stage. The symmetric key

is used to setup connection between neighbouring base stations. Using the asym-

metric keys, a base station (βi) tries to send a connection request (Eq. 4.1) that

contains its symmetric key (skβi) to other (n − 1) number of base stations. Once

n initial symmetric keys are created in the network, every base station encrypts the

key one by one using the public key of the destination base station and sends it to

that base station to establish a connection. The proposed approach uses elliptic curve

cryptography to securely communicate symmetric keys between base stations. These

established symmetric keys are then used for sending and receiving data between con-

nected neighbouring base stations. The process of key establishment between base

stations is done in this configuration phase. The number of base stations connected

to each other depends on the replication factor which is also responsible to manage

different number of data replicas in the sensor network. This number is predefined

into the base station when it is deployed.

reqConfig(β1, β2) = ENCpubβ2 (skβ1 ||ENCprivβ1 (skβ1)||h(location))

reqConfig(β1, β3) = ENCpubβ3 (skβ1 ||ENCprivβ1 (skβ1)||h(location))

reqConfig(β1, β4) = ENCpubβ4 (skβ1||ENCprivβ1 (skβ1)||h(location))

...

reqConfig(β1, βn) = ENCpubβn (skβ1||ENCprivβ1 (skβ1)||h(location))

(4.1)

As indicated in eq. 4.1, the connection request message sent from each base station

to the other base stations contain initial symmetric secret key (skβi) encrypted with

private key of source base station. This acts as a digital signature of the source

base station (βi). The hash of location h(location) of the source is also sent as part

of the connection request message. The time at which a base station (skβi) sends

this broadcast to other base stations is denoted as δts and the time of the response

message received from the destination base station is denoted as δtd. Each source base

station computes the time difference (Eq. 4.2) to identify the nearest base stations

43

or available base stations. This is used in order to choose neighbours for connection

establishment. The fig. 4.2 illustrates the connection request message to other base

stations.

δtdiff = δtd − δts (4.2)

Figure 4.2: Sending request message from every base station to all other base stations

In general, SEA framework is not suitable for a highly dynamic network due to

configuration overhead. However, high network speed, resourceful base stations and

sensor nodes can minimize the configuration setup time.

4.3.2 Neighbour Selection Phase

The request (Eq. 4.1) from source base station is decrypted by all the destination

base stations using their private keys. Each destination base station checks its remote

memory to determine, if it is storing r number of other base stations local memories.

The parameter r is the replication factor, which is configured at the time of the

initial deployment of the network. If there is no room for adding another remote base

station’s data, then the destination base station will not send any reply to the request

message. If remote memory is available, then it sends a response message (Eq. 4.3) to

the source base station as an acknowledgement. The response message is generated by

performing logical XOR of obtained initial symmetric secret key (skβi), and the source

44

base station’s hash location (h(location)). The XORed parameter is further encrypted

with the private key of the base station to be used as the digital signature of the remote

or destination base station. Since the network is dynamic in nature, the location value

changes, and that minimizes the probability of replay attack. Fig. 4.3 shows the reply

message acknowledging the confirmation and connection establishment by some of the

destination base stations.

resConfig(β2, β1) = ENCpubβ1 (ENCprivβ2 (skβ1 ⊕ h(location)))

resConfig(β3, β1) = ENCpubβ1 (ENCprivβ3 (skβ1 ⊕ h(location)))

...

resConfig(βm, β1) = ENCpubβ1 (ENCprivβm (skβ1 ⊕ h(location)))

(4.3)

Figure 4.3: Response message from some remote base stations to the source base
station

When the source base station gets acknowledgement from Destination base sta-

tion, it decrypts the received message using its private key, privβ1 . The source base

station (βi) confirms the signature of destination base station by decrypting the data

using destinations public key to get the XORed message (skβ1 ⊕ h(location)). The

source computes the message and compares with the obtained message. This process

helps to determine the security and integrity of the message.

45

Now, the source base station computes the time difference between the configura-

tion request sent and receive (Eq.4.2), and selects r number of neighbours based on

r number of minimum δtdiff values. The source base station (βi) sends its acknowl-

edgement to the selected neighbours by encrypting the acknowledgement message

(Eq. 4.4) with the public key of the neighbour base stations. δtdiff is sent as part of

the acknowledgement, which is used later in the key update phase.

ackNeighbour(β1, β2) = ENCpubβ2 (ENCprivβ1 (h(location))||δtβ2diff)

ackNeighbour(β1, β3) = ENCpubβ3 (ENCprivβ1 (h(location))||δtβ3diff)
...

ackNeighbour(β1, βk) = ENCpubβk (ENCprivβ1 (h(location))||δtβkdiff)

(4.4)

4.3.3 Key Update Phase

Periodically, for every time t base stations need to update the established symmetric

keys which are used to connect to other base stations. This time t is set during the

configuration phase of the system. Every base station (βi) initiates this key update

request to increase security by updating keys periodically and ensure secrecy of the

network connections. During this phase, every base station (βi) (where i = 1 to n−1,

n is the number of base stations) tries to send a key update request to connected base

stations (βk), where k is a value between 1 to n − 1 and k 6= i. The key update

request message (Eq. 4.5) contains digital signature of source base station, which

is created by encrypting the XORed hashed location of source base station and the

δtdiff . This message is encrypted with the public key of the destination base stations

before sending it to the destination base stations (Eq. 4.5).

reqKeyUpdate(β1, β2) = ENCpubβ2 (ENCprivβ1 (h(location)⊕ h(δtβ2diff)))

reqKeyUpdate(β1, β3) = ENCpubβ3 (ENCprivβ1 (h(location)⊕ h(δtβ3diff)))

...

reqKeyUpdate(β1, βk) = ENCpubβk (ENCprivβ1 (h(location)⊕ h(δtβkdiff)))

(4.5)

Upon receiving the key update message, the neighbour or destination base station

46

generates a key using ”Intermediate Key Generation Process”. The source base sta-

tion generates the same key after receiving the key update acknowledgement message

(Eq. 4.6) from neighbour base stations. Both the neighbour base station and the

source base station use ”Intermediate Key Generation Process” to generate the same

symmetric key.

ackKeyUpdate(β2, β1) = ENCpubβ1 (ENCprivβ2 (h(location)))

ackKeyUpdate(β3, β1) = ENCpubβ1 (ENCprivβ3 (h(location)))

...

ackKeyUpdate(βk, β1) = ENCpubβ1 (ENCprivβk (h(location)))

(4.6)

Intermediate Key Generation Process

In an intermediate key generation process, the source base station, and the destination

or neighbour base station generates a symmetric key without sharing any parameters.

This ensures minimal predictability of the key. If the intermediate key generation

phase is invoked for the first time, then it replaces the first key (skβi) generated by

a source base station (βi) with the newly generated key skβiβj , where βi represents

source base station, and βj represents destination base station. After the initial key

update, skβiβj is replaced with the newly generated key sk′βiβj .

To generate the identical symmetric keys at both ends the source base station

(skβi), and destination base station (skβj) use PRNG (pseudo random number gen-

erator). During the first key generation skβi is used as the seed value for the PRNG.

From the output stream, a particular sequence of bits identified by h(δtdiff) is consid-

ered as the skβiβj key (Eq. 4.7). For the subsequent key generation skβiβj is considered

as the seed (Eq. 4.8). Changing the seed ensures variability in the generated keys.

skβi
PRNG−−−−→
seed

OUTPUT STREAM
h(δt

βj
diff)

(4.7)

skβiβj
PRNG−−−−→
seed

OUTPUT STREAM
h(δt

βj
diff)

(4.8)

47

4.4 Data Transmission and Store

4.4.1 Sensing Phase

After the configuration phase is setup, sensors will have established a symmetric key

with the nearest base station, this key is then used to transmit data to the base

station either directly or through relay nodes. Sensor nodes sense data and send this

data periodically or when queried to get the current data.

4.4.2 Memory Management

Memory management in the proposed protocol is focused on managing base stations

memory. Base stations memory is split into two different virtual partitions. One

for local memory and another for remote memory (Fig. 4.4). Local memory is the

memory where data related to all connected sensor nodes is stored whereas remote

memory is the replica memory used to store other base stations data based on the

number of replicas it need to store which is the replication factor. The figure (Fig.

4.4) shows how the partition is done in base stations for storing connected sensor

nodes memory and providing storage space for remote memory storage of other base

stations local memory.

Figure 4.4: Base Station Memory Distribution

4.4.3 Replication Factor

We propose a dynamic replication strategy that meets both availability and per-

formance specifications while taking the memory requirements into consideration.

Distributed storage needs are growing as WSN produces large volumes of data from

different sensor nodes. The duplication and distribution of data is a well-known

method to achieve availability and efficiency in many other applications. This makes

several copies of data in different locations of the network. In the case of failure of

48

nodes, at least one copy of the data will be available and present in the network,

thus achieving fault tolerance and increasing the availability of data. The suggested

solution does not overwhelm base stations with large volumes of redundant data but

maintains service availability. This replication factor value is decided before the base

station gets deployed. After the configuration is done, connected base stations share

a part of data. When a base station connects to other base stations, the local memory

of the source base station is stored in remote memory of the replication base station.

As local memory only has connected sensor nodes data, the data replication is parti-

tioned base on the sensor nodes. This replication of data is among the whole network

which replicates the sensor data from one base station to multiple base stations. The

approach suggested discusses the following issues of (i) what sensor data should be

replicated, (iv) what is the replication factor considered, (ii) To which base stations

should the data be replicated and (iii) when will data replication process start.

Figure 4.5: Base stations memory with replication factor 3. The memory on the left
is local memory and on the right is remote memory. Local data is replicated in the
remote memory of connected neighboring base

49

Data from sensor nodes are stored in the local memory of connected base stations,

the goal is to replicate this data to other base stations. Replication factor (r) is the

number considered before the network is deployed. It can vary from base station to

base station. For simplicity, we considered the same replication factor for every base

station. However, variation of replication factor provides varied rate of replication

among the network. Base stations reply to those (r − 1) connection requests having

minimum time difference (δtdiff). These base stations are used to send the data to

create replicas of the source base stations local memory. The process of sending data

to other base stations is dynamic. Base stations try to always keep their replicas

updated by sending new data to achieve data freshness. Fig. 4.5 shows how data

from one base station is replicated to other base station with replication factor 3.

4.4.4 Synchronization

Use of logical clocks helps in achieving data synchronization. For every sensor node

connected to the base station, the base station keeps track of the sensor node infor-

mation using a value called logical clock (Fig. 4.6).

Figure 4.6: 4 sensor nodes communicating with 1 base station in WSN

When a sensor node senses data and sends it to the base station for the first time,

this information is stored in the base station with logical clock value 0. This logical

value is incremented every time a sensor node sends information about the current

50

sensed value and is stored with the new logical clock value appended to it. If base

station sends this data as a replica to other base stations, it also sends the logical

clock value to the other base station. The destination base station will keep track of

the incoming sensed data replicas and checks the logical clock value order. This helps

in determining, if any sensed data value is missing.

Figure 4.7: 4 sensor nodes connected to a base station β1. For every sensor node si
where i = 1 to 4, base station β1 keeps independent logical clocks.

Considering 4 sensor nodes connected to a base station β1. For every sensor node

si where i = 1 to 4, base station β1 keeps independent logical clocks. If every sensor

node si sends information for the first time, base station updates its local memory as

shown in fig 4.7.

Local memory of base station contains data about 4 connected sensor nodes from

si where i = 1 to 4. The first sensed data by those sensor nodes is sent to the

base station through relay nodes or directly. This is received by the base station

and is appended with an independent logical clock value for every base station that

starts with 0. The term d1(s1) denotes the data sent from the sensor node s1 which

is appended with the logical clock value 0 as it is the first data received for that

sensor node. Further data received by the sensor nodes is added to the local memory

of the base station with a new logical clock value incremented by 1. This helps in

51

uniquely identifying every value of the sensor node data and can be helpful in data

synchronization with other base stations. Fig. 4.8 shows how the logical clock value

is incremented by 1, and the new sensor data is stored in the local memory of the

base station appended with the new logical clock value.

Figure 4.8: Increment of logical clock by 1. New sensor data is stored in the local
memory of the base station

4.4.5 Commitments

Commitments is the concept of verifying replica data by the source base station. The

proposed approach verifies its data by sending periodic commitment request to the

destination base station where the data is being stored. This commitment request

contains all the sensor ids present in the local memory of the source base station i.e.,

connected to the source base station and signature of the base station generated by

encrypting the location of source base station using its private key. The fig. 4.9 shows

the commitment request (Eq. 4.9) being sent from the source base station βi to the

respective neighbour base stations βj where replica data of its local memory is being

stored.

reqCommitment(βi, βj) = {s1, s2, ..., sn, ENCprivβi (h(location))} (4.9)

52

Figure 4.9: Commitment request from source base station to neighbour base station

The reply message from the destination base station should contain all the sensor

node data hashes along with their respective logical clock values and a signature

generated by the destination base station by encrypting the obtained source location

using its private key. Appending logical clock and sending this value helps the source

base station to check the data only until that value in its local memory. It also helps

in maintaining data freshness and synchronization of data among base stations as

they will receive the up to date logical clock value of replica base stations. This helps

the source base station to find missing data and to send the newer data if present to

replica base station. Fig. 4.10 shows destination base station sending data to source

base station as a commitment response (Eq. 4.10).

resCommitment(βj, βi) = {h(s1), lc(s1), ..., h(sn), lc(sn), ENCprivβj (h(location))}
(4.10)

This commitment response from the destination or neighbour base station (βj)

helps source base station (βi) to calculate the same hash of every sensor node in the

local memory using the obtained logical clock. The source base station also verifies

if the signature from the destination base station matches, this helps in achieving

integrity. The fig. 4.11 shows source base station verifying the replica data.

53

Figure 4.10: Commitment response from neighbour base station to source base station

Figure 4.11: Commitment verification done by source base station

Chapter 5

Evaluation Methodology and Analysis

This chapter evaluates the various components of the SEA framework employing

different methodologies, such as computer emulation, comparison with existing ap-

proach, and formal security analysis. We have used Python based framework for the

computer emulation, and Scyther protocol analyzer for the formal verification of the

secured phases. The following section highlights these methodologies in details.

5.1 Evaluating Availability of Data

5.1.1 Computer Emulation

Platform Setup

The platform used to simulate the sensor data movement among sensor nodes, base

stations is called Spyder Integrated Development Environment. It is an open source

cross-platform integrated development environment for scientific programming in the

Python programming language bundled with numerous Python packages such as

NumPy, SciPy, Pandas, IPython, Matplotlib etc. Spyder IDE is from the Anaconda

Scientific Python Distribution Environment. This IDE is installed on windows 10 op-

erating system with 12 GB of RAM having 2 physical cores and 4 logical processors.

Programming Framework

The memory allocation and replication concepts are evaluated by the generated CSV

files and text files, which are created using python programming. A random 8-bit

binary numbers data file is generated in order to resemble 8 bit sensor data. This data

is generated using the random library of Python, which produces random numbers

based on the specified seed. A python program ”8BitNumGen.py” creates a file

”Random8BitFile.txt” that includes 1 billion records. This file is used as a source

of input data for the sensor nodes. The data in the file are randomly generated

54

55

and used by the main program ”SEA.py”. Apart from the data input, the main

program requires 7 different input parameters for the dynamic wireless sensor network

configuration setup. The parameters are defined as follows:

1. Number of sensor nodes (x): Based on the input value for x number of sensor

nodes, x number of variables are created in the program.

2. Number of base stations (n): Number of CSV files generated depends on the

number of base stations input.

3. Replication factor (r): This is used to create replicas randomly between base

stations using random choice function from random library.

4. Sensing Time: Sensing time is the number of times every sensor should sense

data.

5. Configuration Change Time: The input from this is used to change the complete

configuration of the network. This is used to resemble the dynamic movement

of sensor nodes and base stations across the network.

6. Sensing Frequency: This input is in seconds, which is used by the sensors to

understand how often they need to sense data in the network.

7. Base Station Storage Capacity: This is used to calculate the free memory

(memβ
free) and keep track of occupied memory (memβ

occupied).

In this phase of configuration, various sensor nodes are randomly assigned to one

base station. Base stations are also randomly connected in this emulator using the

imported random library. The replication factor determines the number of connec-

tions among base stations. Replication factor r indicate r − 1 number of random

connections to the other base stations. After the configuration of the network is set

up, sensors start sensing data randomly from the Random8BitFile.txt. Data from the

sensor nodes is sent to its connected base station. Based on the other connected base

stations, incoming data will be replicated by the source base station to the connected

destination base stations. All the data from sensor nodes, base stations local memory

(memβ
local) and remote memory (memβ

remote) along with their connections are recorded

56

using CSV and text files. The common files generated for any network configuration

include config.csv, memory.csv, neighbor.txt, sensordata.csv, topology.txt, trigger.csv

and other m number of base station CSV files.

Fig. 5.1 highlights the working principle of the program execution. The program

execution starts with the prompt for inputs to configure and design a network with

a set of sensor nodes and base stations. Based on the provided replication factor and

other inputs, connections between base station and neighbor selection takes place.

This is then followed by random selection of sensor data into the sensor nodes and

sending this data to its connected base stations. The next step allows the data

replication based on the neighbour connection setup. After this process, the program

waits for some time based on the provided sensing frequency. This process is again

repeated until base station is about to overflow and then the base station flushes its

local or remote memory based on the amount of data it is stored for every round.

This memory freeing is also reflected in the other neighbouring sensor nodes. After

this check, base station also checks if it has reached the configuration change time and

according changes its configuration by flushing all its memory. This entire process

comes to a stop when the current time reaches the provided sensing time.

Output File Description

Configuration File

This file describes the configuration of the network at different times. It has infor-

mation of the network such as number of base stations (n) present in the network,

number of sensor nodes present in the network, base station memory in bits (memβ),

sensor memory in bits (mems), replication factor (r) in the network (Tab. 5.1).

Table 5.1: Configuration file format
Time No. of Base stations (n) No. of sensors (x) memβ mems r

Memory File

It has all the information of base station memory along with the ID of the base

station (IDβ) at time ti. Tab. 5.2 shows the amount of memory free (memβ
free) and

the amount of memory occupied (memβ
occupied) with sensor data.

57

Figure 5.1: The flow chart shows how the programming framework executes its logic

58

Table 5.2: Memory file format
ti IDβ memβ

free memβ
occupied

Neighbour Information

It has information on the number of neighbors connected to every base station at

different times (Tab. 5.3). It also shows all the ID’s of connected neighboring base

stations to the source base station at time ti.

Table 5.3: Neighbour file format
ti IDβ No. of Neighbours (k) Neighbours (βk)

Sensor Data

This CSV file (Tab. 5.4) has information on the number of sensor nodes connected

to a base station along with all the data the sensor nodes have sensed at a different

time ti.

Table 5.4: Sensor data file format
ti sensor IDs (IDs) sensor readings (datas)

Local and Remote Sensors

The Topology.txt file gives overall view of the sensor nodes connected to a base station

(Tab. 5.5). It provides information about directly connected sensor nodes to the base

station which represents what local memory is being stored. It also shows the remote

sensors data being stored in its memory at different time ti.

Table 5.5: Format of Topology.txt file
ti IDβ Local Sensors Remote Sensors

Memory Flush

This file serves as the log file showing all the information of every base station at

different times, when ever data is being flushed due to configuration change or when

its memory is used up (Tab. 5.6).

59

Table 5.6: The log file provides information on Memory flush with Base Station ID
ti Base Station IDs (IDβ) Flush Type

Flushing or offloading the base station data to the server or user is done when

the configuration changes or when the base station memory limitations are met. The

concept of flushing involves base stations to send all the data to the server and erase

its existing memory to free up space for new sensor data. The proposed protocol uses

two different flushing mechanisms, local and complete flush which offloads either local

memory or complete memory of the base station respectively.

Based on computer simulation, we check how efficiently memory allocation and

deallocation will be performed in order to minimize the over and under-utilization of

memory. Memory requirements and storage capacity of base stations differ in real

world scenarios, the proposed approach assumes the storage capacity of base station

to be 256 bits. Furthermore, this simulation provides a way of replicating real world

scenarios by introducing forced delay in the programming framework.

Configuration for experiment, in scenario 1:

Number of Sensor Nodes (x): 9

Number of Base Stations (n): 3

Replication Factor (r): 3

Sensing Time (ST): 360 times

Configuration Change Time (CCT): 120 times

Sensing Frequency (SF): sense every 10 seconds

Sample outputs:

Config.csv: Tab. 5.7 configuration file is a sample snapshot of scenario 1 that

shows the configuration of deployed sensor network at time t0 to t15. It contains

information about number of base stations, number of sensor nodes, base station

memory or storage capacity, sensor memory and Replication factor. This file is used

to identify the status of the network. Any change in the network configuration is first

reflected in this file i.e., compromising of nodes, addition of new nodes is periodically

updated in this configuration file. The file is updated with new data when a round

of sensing, base station storing and replication is completed at every time ti.

60

Table 5.7: Config CSV file entry based on scenario 1
T NumBS NumSN BaseStationMemory SensorMemory ReplicationFactor
t0 3 9 256 8 3
t1 3 9 256 8 3
t2 3 9 256 8 3
t3 3 9 256 8 3
t4 3 9 256 8 3
t5 3 9 256 8 3
t6 3 9 256 8 3
t7 3 9 256 8 3
t8 3 9 256 8 3
t9 3 9 256 8 3
t10 3 9 256 8 3
t11 3 9 256 8 3
t12 3 9 256 8 3
t13 3 9 256 8 3
t14 3 9 256 8 3
t15 3 9 256 8 3

Memory.csv: The memory.csv file shows amount of memory used and the amount

of free memory present in every base station periodically. Tab. 5.8 is a sample snap-

shot of the memory.csv file from time t0 to t6. The data of each base station along

with its free memory is monitored. If the base station reaches a point where the

free memory is less than base stations associated sensor nodes memory, it does a

whole flush of its data and sends this information to neighboring base stations. If the

base stations memory is less than its directly connected sensor nodes plus remotely

connected sensor nodes memory, it flushes the local data in its memory and sends a

request to the neighboring replica base stations. In this configuration, the occupied

memory of each base station at time t0 is 72 and increases by 72 at time t1, making

it 144, and at time t2 it is 216. However, the base stations can not accommodate

more data with a configuration storage capacity of 256, since the data is increased

by 72 bits each time, it flushes its entire memory to accommodate more memory by

freeing up its storage capacity. This memory flushing helps the base station manage

its memory periodically.

Fig. 5.2 highlights how a base station manages its memory. Occupied memory is

captured based on the storage capacity of a base station. For every time ti, a base

station performs a memory check and depending on the situation, either executes a

61

Table 5.8: Memory CSV file entry based on scenario 1
T BS ID Occupied memory Free Memory
t0 2 72 184
t0 1 72 184
t0 0 72 184
t1 2 144 112
t1 1 144 112
t1 0 144 112
t2 2 216 40
t2 1 216 40
t2 0 216 40
t3 2 72 184
t3 1 72 184
t3 0 72 184
t4 2 144 112
t4 1 144 112
t4 0 144 112
t5 2 216 40
t5 1 216 40
t5 0 216 40
t6 2 72 184
t6 1 72 184
t6 0 72 184

Figure 5.2: Occupied memory graph over time in SEA framework for scenario 1

local memory flushing or entire memory flushing. The type of flushing performed is

logged in the trigger.csv for every flush. Base stations store and manage its replica

62

data in addition to managing its locally connected sensor data. If the storage ca-

pacity has reached its full capacity, it sends a request to the user if the memory is

required. Based on the user response, the data will be sent and discarded from the

base station storage or will be discarded directly. In the case of no response, data will

be forwarded to the user and base station memory is flushed, thus preventing a mem-

ory overload crash of the base station and preserving availability. This allows base

station to not communicate excessively with the end server, thus it reduces network

usage and also minimizes the probability of man in the middle attacks. The proposed

scheme functions better even with less memory resources and attempts to optimize

the usage of existing memory automatically and because of this over-utilization or

under-utilization of memory is avoided. This memory management and minimal repli-

cation in a distributed network enables data collection and processing in an effective

manner by maximizing data availability and consistency across the network.

Neighbour.txt:

Neighbor.txt file has the information about base station ID, number of neighbors

for every base station and the ids of neighboring base stations. The text file data

provides information about 3 base stations β0, β1, β2 and the number of connected

neighboring base stations with IDs. According to the information in the text file ,

configuration change is not recorded in the sample data provided (Tab. 5.9). Thus

connection between the base stations remain unchanged. The file provides information

on neighbour data from time t0 to time t6.

Sensordata.csv: Sensordata.csv table shows the information about sensed data

by different sensor nodes from time to time. (Tab.5.10) is a snapshot of the sensor-

data.csv file shows the sensed data by 7 sensor nodes s0 to s6 from time t0 to time

t20. This file is used to validate if the base stations data being stored is actually the

data being sensed by the sensor nodes.

Topology.txt

Topology.txt file has the information about base station ID and all the local sen-

sors, and remote sensors data stored by the base station at regular intervals of time.

Configuration changes can be tracked using this csv file, as we can see the change of

the connected sensor nodes to the base station. The following sample data is the con-

figuration of the base stations and the complete sensor nodeID’sstored in the network

63

Table 5.9: Sample neighbour file data
ti IDβ No. of Neighbours (k) Neighbours (βk)

t0, 2, 2, [1, 0]

t0, 1, 2, [2, 0]

t0, 0, 2, [2, 1]

t1, 2, 2, [1, 0]

t1, 1, 2, [2, 0]

t1, 0, 2, [2, 1]

t2, 2, 2, [1, 0]

t2, 1, 2, [2, 0]

t2, 0, 2, [2, 1]

t3, 2, 2, [1, 0]

t3, 1, 2, [2, 0]

t3, 0, 2, [2, 1]

t4, 2, 2, [1, 0]

t4, 1, 2, [2, 0]

t4, 0, 2, [2, 1]

t5, 2, 2, [1, 0]

t5, 1, 2, [2, 0]

t5, 0, 2, [2, 1]

t6, 2, 2, [1, 0]

t6, 1, 2, [2, 0]

t6, 0, 2, [2, 1]

from time t0 to t10. Base station β0 stores sensor nodes s1, s6, s7, s0, s4 in its local

memory as they are directly connected and stores data of sensor nodes s3, s5, s2, s8

remotely, as these sensor nodes are being managed by neighboring base stations β1

and β2. Base station β1 stores sensor nodes s8 in its local memory as they are directly

connected and stores data of sensor nodes s3, s5, s2, s1, s6, s7, s0, s4 remotely as these

sensor nodes are being managed by neighboring base stations β2 and β0. Base station

β2 stores sensor nodes s3, s5, s2 in its local memory as they are directly connected

and stores data of sensor nodes s8, s1, s6, s7, s0, s4 remotely as these sensor nodes

are being managed by neighboring base stations β1 and β0. Change of configuration

introduces changes to the number of connected sensor nodes and connected sensor

ID’s, as the network is dynamic.

Fig. 5.3 shows how the topology is configured randomly using the emulator ac-

cording to the given inputs during initial configuration. Bi-directional arrows denote

64

Table 5.10: Sample sensor data
T 0 1 2 3 4 5 6
t0 1010010 110 1111 101010 110111 10011110 11011110
t1 10110100 10101101 10100011 100111 10100100 1110110 111
t2 10100100 10001000 11110001 11010110 10000001 1100 1101000
t3 10111101 1001010 11111011 10010001 11111111 11011110 110011
t4 11111110 11000100 111011 10011101 110 10010011 1101110
t5 10101011 10011000 10010100 11010101 1000001 1101011 11010010
t6 11000111 11000000 11010101 10101 11111110 11001001 10001001
t7 10011110 11011 100101 10001111 111000 11001011 1111111
t8 1011101 11101110 10101 1011110 111110 1110010 110011
t9 10011000 10001110 10000 11110011 110010 101000 11100100
t10 10101101 1111000 1111011 1101000 1101110 11000101 11100101
t11 11110100 1111001 10010 11100110 1101100 11000010 111110
t12 100100 11100010 10010 11010 11101010 1001101 1111101
t13 10110011 1011010 10001000 10001010 10000001 10100 101110
t14 1010101 1011100 10001101 10011001 111111 1110001 111110
t15 111 1001011 11011110 10010010 1000110 10111111 10101010
t16 101011 1011010 10111011 1101001 11011111 11100010 10100110
t17 1111110 11101101 11011100 11010111 1101100 1000110 10101100
t18 10101100 111000 1010010 10011010 10011011 10100101 10100111
t19 11000111 110101 1100110 11011 10101011 1011 11011111
t20 1011101 10001110 10100101 1010001 11101010 1101 11110000

two-way communication between the nodes, unidirectional arrow denotes informa-

tion is being sent from the one node to the pointing node. This configuration has no

one-way arrows, as every base station is connected to each other as a mesh network.

Trigger.csv

Trigger.csv is a log file having information about flushing of memory. For every

flush at time tn, data in this log file is updated. To understand memory management

in this proposed scheme and match the memory.csv file, we use trigger.csv file to

check what type of flush has occurred. Sample data in (Tab. 5.12) shows logs from

time t0 to t21. Local flush has not occurred according to this configuration and data

being sent and stored.

Configuration for experiment, in scenario 2:

Number of Sensor Nodes (x): 15

Number of Base Stations (n): 5

Replication Factor (r): 4

65

Table 5.11: Sample data of Topology.txt file

T, BS ID, Local_Sensors, Remote_Sensors

t0, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t0, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t0, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

t1, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t1, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t1, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

t2, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t2, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t2, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

t3, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t3, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t3, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

t4, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t4, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t4, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

t5, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t5, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t5, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

t6, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t6, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t6, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

t7, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t7, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t7, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

t8, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t8, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t8, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

t9, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t9, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t9, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

t10, 0, [1, 6, 7, 0, 4], [3, 5, 2, 8]

t10, 1, [8], [3, 5, 2, 1, 6, 7, 0, 4]

t10, 2, [3, 5, 2], [8, 1, 6, 7, 0, 4]

Sensing Time (ST): 360 times

Configuration Change Time (CCT): 120 times

Sensing Frequency (SF): sense every 10 seconds

66

Figure 5.3: Randomly configured topology

Outputs:

The memory.csv file displays the amount of memory used and the amount of free

memory available in each base station from time to time. The table in Appendix -

Scenario 2 is a sample snapshot of the memory.csv file from time t0 to t5. Each base

stations data along with its free memory is tracked. If the base station reaches a point

where the available memory is less than base stations connected sensor nodes memory,

it does a whole flush of its data and sends the information to neighboring base stations.

If the usable base station memory is less than its directly connected sensor nodes and

remotely connected sensor nodes memory, it flushes local data fromits memory and

sends a request to the neighboring replica base stations. In this configuration, base

station β0 gets 112 bits of data for every round, base station β1 gets 96 bits of data,

base station β2, β3 and β4 gets 88, 160, 104 bits of data respectively. At a certain

point, base stations can not store additional data with a hardware storage capacity

of 256 bits, since the data is increased by more than 88 bits each second, base station

flushes its whole memory to avoid memory overload to handle more data by freeing

up the storage space. This flushing of memory helps the base station manage memory

its memory from time to time.

67

Table 5.12: Sample log file
T BS ID
t3 0 complete data flushed
t3 1 complete data flushed
t3 2 complete data flushed
t6 0 complete data flushed
t6 1 complete data flushed
t6 2 complete data flushed
t9 0 complete data flushed
t9 1 complete data flushed
t9 2 complete data flushed
t12 0 complete data flushed
t12 1 complete data flushed
t12 2 complete data flushed
t15 0 complete data flushed
t15 1 complete data flushed
t15 2 complete data flushed
t18 0 complete data flushed
t18 1 complete data flushed
t18 2 complete data flushed
t21 0 complete data flushed
t21 1 complete data flushed
t21 2 complete data flushed

Figure 5.4: Graph shows occupied memory of base stations, where topology is de-
signed based on scenario 2

68

Neighbour.txt file has information about base station ID, number of neighbors for

every base station and the IDs of neighboring base stations. This sample neighbour

file in Appendix - Scenario 2 provides information about 5 base stations β0, β1, β2,

β3, β4 and the number of connected neighboring base stations with IDs. According

to the topology file information in Appendix - Scenario 3, configuration change is not

recorded in the sample data provided. Thus connection between the base stations

remain unchanged. This information provides neighbor data from time t0 to time

t6. Sensordata.csv table shows the information about sensed data by different sensor

nodes from time to time. Snapshot of the sensordata.csv file in Appendix - Scenario

2 shows the sensed data by 15 sensor nodes s0 to s14 from time t0 to time t20. This

file is used to refer if the base stations data being stored is actually the data sensed

from the sensor nodes.

Topology.txt file has the information about base station ID’s along with all lo-

cal sensors + remote sensors data stored by the base station from time to time.

Changes in the configuration can be tracked using this csv file as we can see the

change of connected sensor nodes to the base station. The sample data in Appendix

- Scenario 2 is the configuration of base stations and complete sensor data IDs being

stored in the network from time t0 to t6. Base station β0 stores sensor nodes s6,

s13, s1 in its local memory as they are directly connected and stores data of sensor

nodes s9, s4, s14, s5, s7, s10, s0, s2, s8, s3, s12 remotely as these sensor nodes are being

managed by neighboring base stations β1, β3 and β4. Base station β1 stores sensor

nodes s9, s4, s14, s5 in its local memory as they are directly connected and stores data

of sensor nodes s7, s10, s0, s2, s8, s3, s12, s11 remotely as these sensor nodes are being

managed by neighboring base stations β3, β4 and β2. Base station β2 stores sensor

nodes s11 in its local memory as they are directly connected and stores data of sen-

sor nodes s6, s13, s1, s7, s10, s0, s2, s8, s3, s12 remotely as these sensor nodes are being

managed by neighboring base stations β0, β3 and β4 and so on. However, base station

β2 which only stores s11 data is not being underutilized as it supports the network

by storing replicas and thus increasing availability. Changes in configuration will

cause variations in the number of connected sensor nodes and different sensor ID’S

connected, as the network is dynamic.

Configuration for experiment, in scenario 3:

69

Figure 5.5: Topology of scenario 2

Number of Sensor Nodes (x): 30

Number of Base Stations (n): 10

Replication Factor (r): 4

Sensing Time (ST): 360 times

Configuration Change Time (CCT): 120 times

Sensing Frequency (SF): sense every 10 seconds

Outputs:

The table in Appendix - Scenario 3 is a sample snapshot of the memory.csv file

from time t0 to t5. Each base stations data along with its free memory is monitored to

avoid memory overload. If the base station reaches a point where the free memory is

less than base stations connected sensor nodes memory, it does a whole flush of its data

and sends the information to neighboring base stations. If the base stations memory

is less than its directly connected sensor nodes + its remotely connected sensor nodes

memory, it flushes its local data in its memory and sends a request to the neighboring

70

replica base stations. In this configuration, base station β0 gets 96 bits of data for

every round, base station β1 gets 96 bits of data, base station β2, β3, β4, β5, β6, β7, β8

and β9 gets 120, 88, 64,112,80,104,104 and 96 bits of data respectively. After a certain

time, base stations cannot accommodate more data having its storage capacity at 256

bits (according to the configuration). As the data is increased by more than 80 bits

every time except for base station β4 and β6,these base stations flushes its complete

memory before the overflow after sensing at time t2 to accommodate more memory

and free its storage capacity. While base station β6 flushes its memory after time

t3 since it only adds 80 bits of memory each time and β4 flushes after time t4 as it

only adds 64 bits of memory each time respectively. This flushing of memory helps

the base station manage its memory periodically. (Fig. 5.6) demonstrates how base

stations handle memory from time to time and control its capacity by saving and

flushing data as necessary. This strategy allows base stations support each other and

exchange data with each other to prevent a single point of failure.

Figure 5.6: Topology of scenario 3

Neighbor.txt file has the information about base station ID, number of neigh-

bors for every base station and the IDs of neighboring base stations. The neigh-

bour file data in Appendix - Scenario 3 provides information about 10 base stations

β0, β1, β2, β3, β4, β5, β6, β7, β8, β9 and the number of connected neighboring base sta-

tions with IDs. According to the information in Appendix - Scenario 3 file, configu-

ration change is not recorded in the sample data provided. Thus, connection between

the base stations remain unchanged. The file provides neighbor data from time t0 to

71

time t3. Sensordata.csv table shows the information about sensed data by different

sensor nodes. Snapshot of the Sensordata.csv file in Appendix - Scenario 3 shows the

sensed data by 30 sensor nodes s0 to s29 from time t0 to time t20. This file is used

to refer if the data being stored in base stations is actually the data sensed from the

sensor nodes. Topology.txt file in Appendix - Scenario 3 has the information about

base station ID and all the local sensors + remote sensors data stored by the base

station from time to time. Changes in the configuration can be tracked using this

csv file as we can see the change of connected sensor nodes to the base station. The

sample data in Appendix - Scenario 3 is the configuration of base stations and com-

plete sensor data IDs being stored in the network from time t0 to t6. Base station

β0 stores sensor nodes s2, s17, s8 in its local memory as they are directly connected

and stores data of sensor nodess7, s1, s27, s15, s9, s3, s24, s11, s4remotely as these sensor

nodes are being managed by neighboring base stations β9, β4 and β5. Base station β1

stores sensor nodes s12 in its local memory as they are directly connected and stores

data of sensor nodes s25, s18, s28, s20, s7, s1, s27, s15, s2, s17, s8 remotely as these sensor

nodes are being managed by neighboring base stations β2, β9 and β0. Base station β2

stores sensor nodes s25, s18, s28, s20 in its local memory as they are directly connected

and stores data of sensor nodes s5, s6, s19, s13, s14, s22, s26, s21, s24, s11, s4 remotely as

these sensor nodes are being managed by neighboring base stations β8, β6 and β5 and

so on. This makes sure that, when base stations have less connected sensor nodes, it

will help the network by storing remote data from neighboring base stations. Base

station β1, β3 only stores one sensor node data in its local memory, however it stores

more than 10 other sensor node replicas data, hence base station’s β1, β3 storage is not

underutilized, thus increasing availability. Change of configuration can bring changes

in the number of sensor nodes connected, and sensor ID’s connected as the network

is dynamic.

Memory limitation of base station varies from hundreds of kilobytes to megabytes.

The proposed approach considers 256 bits as the storage capacity to show the memory

management, data flushing of the proposed approach and also to compare the perfor-

mance with blockchain. In real world scenario, the framework is believed to perform

even better due to larger storage capacity of base stations which requires far fewer

72

flushing with the proposed approach, whereas base stations using blockchain technol-

ogy replication consume memory frequently due to higher replication factor leading

to over utilization of storage limits. In addition, the sensor data size varies in real

world scenarios from 20 bits or more which includes timestamp, actual sensed data

value etc. The storage capacity could be increased from 256 bits to a larger number

in the emulator, if required, and it will not have any negative impact on the proposed

framework in terms of security. Similarly, the sample size of the sensor nodes data

does not have any undesirable effect on the proposed system, it still guarantees the

efficiency and promises security as with 8 bit sensor data.

5.1.2 Comparison of Memory Management

SEA Memory Management

Configuration for experiment, in scenario 1:

Number of Sensor Nodes (x): 9

Number of Base Stations (n): 3

Replication Factor (r): 3

Sensing Time (ST): 360 times

Configuration Change Time (CCT): 120 times

Sensing Frequency (SF): sense every 10 seconds

A dynamic wireless sensor network having 3 base stations and 9 sensor nodes in

this scheme will have 3 replicas in total. This is because our approach considers 3

number of replicas as ideal and efficient replication factor [19] to increase availability

of data in the network with minimal storage needs. Even in the case of adversaries

or attacks in the network, chances of data loss or compromising is less. This scenario

generates data of about 72 bits for every 10 seconds due to the sensing frequency. As

every base station stores all the 9 sensors data, running this network for 10 minutes

produce 540 bytes of sensor data with 1620 bytes of total data including duplicates.

One hour of running this network will generate 9720 bytes of total data considering

this replication factor. At each base station, 3240 bytes of data is stored.

Configuration for experiment, in scenario 2:

Number of Sensor Nodes (x): 10

73

Number of Base Stations (n): 5

Replication Factor (r): 3

Sensing Time (ST): 360 times

Configuration Change Time (CCT): 120 times

Sensing Frequency (SF): sense every 10 seconds

Figure 5.7: Occupied memory graph over time in SEA framework for scenario 2

According to our approach, three replicas are considered for this configuration

with 10 sensor nodes and 5 base stations. This network generates 80 bits of data

for every round (i.e., 10 seconds as per the sensing frequency). The number of base

stations in this configuration is not equal to the replication factor, that causes base

stations not to have all the network data present in their storage. As per the figure

above, base station β0 stores 40 bits of data every 10 seconds with 0 bytes of data

in its local memory, as no sensor nodes are directly connected to it, however it helps

the network by storing 40 bits of replica data every 10 seconds in its remote memory.

Base stations β1, β2, β3, β4 stores 56, 56, 32 and 56 bits of data respectively in

its memory for every 10 seconds. According to the amount of data being stored for

every round, base station keeps track of storage overflow by releasing its memory when

required. This configuration allows the presence of replicas in the network providing

availability with minimal duplication of data. This also helps in the reduction of

network bandwidth usage and increases throughput, as every data is not replicated

74

more than required number of times. After 10 minutes of running this network, it

generates a total of 1,800 bytes of memory. For one hour, 10800 bytes of data will be

shared between the base stations.

Fig. 5.8 shows the topology of the network with 5 base stations and 10 sensor

nodes. We also see that different sensor nodes are being managed by different base

stations. The arrows denote the base stations connections to each other. β1 → β0

denotes β0 base station storing β1 base stations data in its replica memory and so on.

Bidirectional arrow represents two-way communication.

Figure 5.8: Topology of the network with 5 base stations and 10 sensor nodes

Evaluation in this research is in terms of memory overhead and communication

overhead, which is optimized by considering the replication factor to a value which

depends on the security requirements of the user for the network. Based on the net-

work needs, replication factor can be variable. As it is configured before the network

is deployed, network needs such as security and energy efficiency should be consid-

ered before the replication factor is determined. The higher the replication factor,

the more communication overhead occurs, and the more energy is utilized, however

data availability is equally increased in a similar fashion. The proposed approach

considers 3 as the minimum replication factor value while the current literature in

many other applications consider it to be an efficient and secure replication factor

75

value. Replication is considered to achieve data availability across the network. Re-

gardless of the type of network either static or dynamic, if the network is considered

to have sensitive and highly important information, deployed in unsecured and adver-

sarial network conditions, requirements such as data availability and data Integrity

are satisfied when the replication of data is considered in the network.

Blockchain Memory Management

Configuration for experiment, in scenario 1:

Number of Sensor Nodes (x): 9

Number of Base Stations (n): 3

Sensing Time (ST): 360 times

Configuration Change Time (CCT): 120 times

Sensing Frequency (SF): sense every 10 seconds

Replication in blockchain depends on the number of base stations present in the

network. As per the above configuration, presence of 3 base stations mean 3 as

the replication factor. This is similar to the proposed approach. The amount of

data distributed and flushed remains the same with both the approaches in this

configuration [39].

Configuration for experiment, in scenario 2:

Number of Sensor Nodes (x): 10

Number of Base Stations (n): 5

Sensing Time (ST): 360 times

Configuration Change Time (CCT): 120 times

Sensing Frequency (SF): sense every 10 seconds

Because of the existence of 5 base stations in the network, the replication factor

would be 5 considering blockchain for this setup. Increasing the number of replicas

would produce more duplicates in the network, resulting in increased network usage,

increased communication overhead, memory overhead, increased required computa-

tional power and power consumption. As this network generates 80 bits of data for

every round i.e., 10 seconds of sensing frequency, amount of data stored in the base

stations vary by a large number. The figure above shows that each base station stores

76

Figure 5.9: Occupied memory graph over time in Blockchain framework for scenario
2

80 bits of data every 10 seconds. For 10 min of this network execution, base stations

store 3000 bytes of data altogether. 1 hour network run produces nearly 18000 bytes of

data to be exchanged between base stations. In the next section, analysis of scenario

2 will be explained in detail.

Fig. 5.10 shows the topology of the network with 5 base stations and 10 sensor

nodes. We can also see various sensor nodes being managed by different base stations.

The arrows denote the base stations connected to each other. Bidirectional arrow

represents two-way communication.

Comparison using output files in detail: Considering scenario 2: The

amount of total memory stored in SEA for 1 min is 180 bytes, whereas network im-

plemented using blockchain produces 300 bytes of data. After 10 minutes of network

operation, the data stored in SEA is 1800 bytes compared to 3000 bytes produced

using blockchain. With the increase in the amount of time to 1 hour, SEA needs

to handle 10800 bytes of data compared to blockchain dealing with 18000 bytes of

data. As time progresses, the amount of data generated by blockchain varies greatly

in comparison with SEA.

Regarding the number of data flushes needed for the two methods, each base sta-

tion in SEA flushes its memory 12.4 times in average for one minute; while blockchain

base stations have to flush their data twenty times a minute. This difference is even

77

Figure 5.10: Topology of the network with 5 base stations and 10 sensor nodes

greater when compared to one hour of network operation, as each base station in

SEA flushes its data 71 times compared to blockchain base stations flushing its data

117 times. This comparison is conducted using SEA and blockchain configuration

variants provided by trigger.csv files.

The sensed data transfer from each neighbouring base station is determined by

means of the generated topology.txt file for different times. Detailed information

based on the comparison is presented in (Tab. 5.13):

In contrast with the proposed solution, communication between base stations in

blockchain increases by a huge amount. In addition, the configuration used to compare

and simulate the scenario has fewer sensor nodes and less base stations, we assume

that real-time scenarios display much greater data distribution and delivery efficiency

using SEA, helping to minimise energy usage and improve network lifetime.

5.2 Security Evaluation

5.2.1 Formal Security Analysis

We evaluate the proposed security schemes using Scyther tool. Scyther is used to au-

tomatically verify security protocols and analyze different classes of adversary models

or vulnerabilities present in the framework. The number of runs is configured in this

78

Table 5.13: Comparison of data transmission between SEA and Blockchain

Time Base Stations SEA Blockchain

1 Minute

β0 30 bytes 60 bytes
β1 30 bytes 48 bytes
β2 36 bytes 54 bytes
β3 6 bytes 42 bytes
β4 18 bytes 36 bytes

10 Minutes

β0 300 bytes 600 bytes
β1 300 bytes 480 bytes
β2 360 bytes 540 bytes
β3 60 bytes 420 bytes
β4 180 bytes 360 bytes

1 Hour

β0 1.7578 KB 3.5156 KB
β1 1.7578 KB 2.8125 KB
β2 2.1093 KB 3.1640 KB
β3 0.3515 KB 2.4609 KB
β4 1.0546 KB 2.1093 KB

protocol analyzer according to the security scheme we are testing. For every run,

Scyther is set to test different types of attacks possible with the proposed scheme in

order to compromise the system. The proposed scheme mainly focuses on avoiding

replay attacks and is validated to ensure the strongness of the system. Three different

phases of the proposed framework are tested with this tool [21, 23].

Configuration Validation

The proposed configuration phase uses public key encryption and signing mechanism

for the purpose of key distribution and neighbor selection. It also involves a simple

hashing algorithm to generate hash values of data to ensure integrity of the message

and for authentication. Every base station will send a connection request to all the

base stations with a message containing a randomly generated symmetric key, signing

this key using the private key from generated asymmetric cryptography key pair and

hash of its location. This message is encrypted by the public key of destination base

station to maintain secrecy of the message. This is followed by a response message to

confirm the connection from the destination which has symmetric key XORed with

h(location) signed by the private key of destination base station and encrypted using

79

Table 5.14: Security Analysis of the SEA Framework using Scyther during Configu-
ration Phase

Role Sl.Num. Claim Status Comment
βi 1 secret skβiβj Ok No Attacks

2 secret δt
βj
diff Ok No Attacks

3 secret location Ok No Attacks
4 secret {(location)⊕ skβiβj} Ok No Attacks
5 Alive Ok No Attacks
6 Weakagree Ok No Attacks
7 Niagree Ok No Attacks
8 Nisynch Ok No Attacks

βj 1 secret skβiβj Ok No Attacks

2 secret δt
βj
diff Ok No Attacks

3 secret location Ok No Attacks
4 secret {(location)⊕ skβiβj} Ok No Attacks
5 Alive Ok No Attacks
6 Weakagree Ok No Attacks
7 Niagree Ok No Attacks
8 Nisynch Ok No Attacks

public key of source base station. The final message includes acknowledgement from

the source base station, thus sending hash of its location along with the timediff for

that destination base station. This is signed by its private key and encrypted using

destinations public key to ensure confidentiality. As this configuration phase only

occurs once, Scyther is set to only run for once and test using all types of attacks. We

focused on analyzing the vulnerability and secrecy of δtdiff , location, symmetric key,

skβiβj and the XORed symmetric key and h(location). Every parameter is verified

to evaluated if it fails to establish a secure connection and avoid the presence of

vulnerabilities. Tab. 5.14 outlines our arguments and the security of the scheme for

several different cases. We also present detailed security assessment of claims verified

using Scyther in this part.

Claim 1: δtdiff remains secret and confidential throughout the configuration

process Timediff is mainly used by the source base station to decide and choose what

base stations to connect. Base stations try to connect with other base stations having

minimal timediff value. This value is also used for authentication purpose and key

generation purpose in the key update phase. Timediff value is thus maintained secret

in this process as it is encrypted using public key of the destination which can only

80

be decrypted by the private present with the destination base station.

Claim 2: location of source base station is fully encrypted and is kept secret

Location of the base station stays the same until the end of the configuration. This

value is hashed and sent to the other base stations. The source base station sends

hash of location to destination base station which is used in the further process in

commitments and key update phases after configuration. So this needs to be secret

and its confidentiality is proved by Scyther tool.

Claim 3: hash function is kept secret Hash function is decided before dispersing

the base stations into the network. So decision of hash function is not done in the

communication, thus keeping it a secret.

Claim 4: XOR of location hash and symmetric key is kept confidential After

destination base station receives symmetric key from the source base station. It

confirms the connection by sensing a response containing symmetric key xored with

hash of location. This xored message is signed by its prvate key and also encrypted

using the source base stations public key. Thus keeping the message confidential and

hidden.

Claim 5: Source base station and destination base stations remain alive during

this configuration setup Both the base stations are believed to be alive in this con-

figuration phase throughout the process. This claim is validated and verified using

Scyther protocol analyzer tool. This protocol guarantees the aliveness of one base

station to the other base station.

Claim 6: Ensures Weakagree The proposed protocol also guarantees the weak-

agreement between base stations. The source base station is running the proposed

scheme with the destination base station, likewise the destination base station is

running the proposed scheme with the source base station. Communication is not

affected by any adversary during the operation of the proposed scheme. This ensures

and satisfies the weakagree claim. No adversary can initiate the start of the protocol

by sending a request message.

Claim 7: Guarantees Niagree between source and destination base station Ni-

agree or non-injective agreement implies that during the activity of the proposed

scheme, the source and the destination base station agree to any data exchange. The

source base station can securely transmit information to the destinationbase station

81

during the operation of the proposed scheme and vice-versa. If Niagree fails, then

we can infer that a man-in-the-middle attack occurs during protocol execution. Our

argument, however, is evaluated using Scyther protocol analyzer.

Claim 8: Maintains Nisynch throughout this process Nisynch or non-injective

synchronization is true if all steps before the claim are carried out in accordance

with the proposed scheme definition. Nisynch ensures that during the authentication

process, no synchronization issue occurs between source and destination base station.

Nisynch further demands that the occurrence ofeach message isfollowed by the event

that the message was sent. Nisynch in the proposed scheme is validated using the

Scyther protocol analyzer.

Key Update Validation

Key update phase in this approach helps both the base station and destination base

stations to update the previously setup symmetric key without any transmission of

new key between them. Source base station sends the key update request to which

destination base station sends a response to acknowledge this request confirmation.

The message from source base station contains hash of its location and timediff, xored

together, signed by the source and encrypted using the public key of neighboring

base station. This is followed by the response message containing hash of source base

stations location signed by the neighboring base stations private key and encrypted

using source base stations public key. This response message includes location to

make authenticate the neighboring base station as well as to act as the confirmation

of key update request. This is tested using many attacks and is run for 5 times using

the Scyther protocol. The results are provided in tab. 5.15 along with the description

of the claims.

Claim 1: XORed message of location hash and timediff hash is maintained as

a secret Current location and δtdiff values from the configuration phase are xored

together and sent to the destination base station as a request for key update. This

request is message is signed by the private key of source base station to generate

a value and encrypted by the public key of destination for confidentiality. This is

evaluated and verified using Scyther and no attacks were found.

Claim 2: Confidentiality of hash function used Hash function is decided before

82

Table 5.15: Security Analysis of the SEA Framework using Scyther during Key Up-
date Phase

Role Sl.Num. Claim Status Comment
βi 1 secret {(location)⊕ skβiβj} Ok No Attacks

2 Alive Ok No Attacks
3 Weakagree Ok No Attacks
4 Niagree Ok No Attacks
5 Nisynch Ok No Attacks

βj 1 secret {(location)⊕ skβiβj} Ok No Attacks
2 Alive Ok No Attacks
3 Weakagree Ok No Attacks
4 Niagree Ok No Attacks
5 Nisynch Ok No Attacks

dispersing the base stations into the network. So choice of a particular hash function

is not decided in the communication, thus keeping it a secret.

Claim 3: Aliveness of both the base stations Both the neighboring base stations

are believed to be alive in this configuration phase throughout the process. This

claim is validated and verified using Scyther protocol analyzer tool. This protocol

guarantees the aliveness of one base station to the other base station.

Claim 4: Weakagree The proposed protocol also guarantees the weakagreement

between neighboring base stations. The source base station is running the proposed

scheme with the neighboring base station, likewise the neighbouring base station is

running the proposed scheme with the source base station. Communication is not

affected by any adversary during the operation of the proposed scheme. This ensures

and satisfies the weakagree claim. No adversary can initiate the start of the protocol

by sending a key update request message.

Claim 5: Presence of Niagree between the base stations Niagree or non-injective

agreement implies that during the activity of the proposed scheme, the source and

the neighbor base station agree to any data exchange. The source base station can

securely transmit information to the neighborbase station during the operation of the

proposed scheme and vice-versa. If Niagree fails, then we can infer that a man-in-the-

middle attack occurs during protocol execution. Our argument, however, is evaluated

using Scyther protocol analyzer.

Claim 6: Ensuring Nisynch during the key update phase Nisynch or non-injective

83

synchronization is true if all steps before the claim are carried out in accordance with

the proposed scheme definition. Nisynch ensures authentication process during the

key update phase, there are no synchronization issues between source and neighbour

base station. Nisynch further demands that the occurrence ofeach message isfollowed

by the event that the message was sent, to ensure synchronization. Nisynch in the

proposed scheme is validated using the Scyther protocol analyzer.

Commitments Validation

Commitments are used to achieve data integrity along with the use of logical clocks

concept. Source base station makes sure that its replica data stored in neighboring

base stations matches its data. This is accomplished by sending a commitment request

to the destination base station containing the Ids of sensor nodes along with the

encryption of location with source base stations private key to generate a sign. This

request is satisfied by the destination base station by sending hash of sensor Ids along

with respective logical clock values plus the hash of location signed with its private

key. There is a chance of an attack using this approach, when the intruder has initial

knowledge of the network as per given fig. 5.11.

Figure 5.11: Scyther analysis displays possible security issue during information ex-
change - proposed commitments validation fails

Digital signature is used to verify source base station and is directly sent to the

destination base station without any encryption of the data, which causes the follow-

ing attack. As commitments are sent very frequently, In a dynamic sensor network,

84

Table 5.16: Security Analysis of the SEA Framework using Scyther during Key Com-
mitments Validation with Public Key Encryption

Role Sl.Num. Claim Status Comment
βi 1 secret location Ok No Attacks

2 Alive Ok No Attacks
3 Weakagree Ok No Attacks
4 Niagree No at least 1 Attack
5 Nisynch No at least 1 Attack

βj 1 secret location Ok No Attacks
2 Alive Ok No Attacks
3 Weakagree Ok No Attacks
4 Niagree Ok No Attacks
5 Nisynch Ok No Attacks

these commitments do not require Public key encryption every time. Considering

the present setup of the network, we are prioritizing efficiency over security for this

section. However, semi dynamic or static network needs public key encryption as

location and other parameters do not change. While also considering the system ca-

pacity as it takes considerable amount of time to encrypt and decrypt these messages.

In case of more security requirement, the request message can be entirely encrypted

with the public key of destination as shown in eq. 5.1, and eq. 5.2.

reqCommitment(βi, βj) = ENCpubβj (s1, s2, ..., sn, ENCprivβi (h(location))) (5.1)

resCommitment(βj, βi) = ENCpubβi (h(s1), lc(s1), ..., h(sn), lc(sn), ENCprivβj (h(location)))

(5.2)

The response message can be encrypted by the public key of source base station.

This ensures security, although frequent use of such encrypted commitment request

and response messages reduces the efficiency of the entire system which is not desir-

able. Tab. 5.16 shows different claims resulted by the use of this approach.

Claim 1: location is kept secret Hash of location is obtained by the destination

base station from the configuration phase, this is used for authentication purpose in

the commitments process. The source base station sends the hash of location signed

by its private key for authentication. The response is sent by signing using private

85

key of neighbor base station. As hash of the location is being sent everytime, location

is always a secret.

Claim 2: Aliveness of both parties Both the neighboring base stations are be-

lieved to be alive in this commitment phase throughout the process. This claim is

validated and verified using Scyther protocol analyzer tool. This protocol guarantees

the aliveness of one base station to the other base station.

Claim 3: Niagree No session establishment in here from source to destination,

no public key encryption on outer package, it is assumed that network is dynamic

and frequently changing so multiple publickey encryption operation affects the per-

formance of the network. However from destination to source there is no problem

with non injective agreement. The primary reason is usage of hashed message and

digital signature.

Claim 4: Nisynch No synchronization from source to destination because it is

assumed that commitments is a part of the entire communication. However, for

experimental purposes a separate program on commitments is presented here, and

therefore, the current scenario does not indicate any synchronization between the

two parties.

Chapter 6

Conclusion

6.1 Conclusion

Wireless sensor networks are designed to collect physical information using tiny wire-

less sensors in different environments, including forest fires, battlefield monitoring and

home sentry systems. Such technological innovations and advancements have brought

forward new demands for data availability, immutability and network confidentiality.

This research introduces SEA, a reliable and secure framework for dynamic wire-

less sensor networks. SEA ensures data storage robustness by dynamically handling

data duplication in base stations across the network. We suggest a replication strategy

that satisfies both availability and performance requirements while taking memory

requirements into account. It operates in an optimal way through efficient memory

management under data loss conditions and reduces the overhead of distributed mes-

sages. The implemented scheme is used not only to replicate data, but to achieve data

integrity in different neighbouring base stations using the logical clock principle. In

addition, the proposed data replication scheme allows to reduce network traffic that

has a significant impact on power consumption. The framework could be designed

reconfigurable to accommodate changes such as replacing symmetric key encryption

with asymmetric key encryption to enhance the security feature of the framework.

The SEA framework operates in a secure manner, which is achieved by a well

designed configuration phase, key update phase, memory management phase and

commitment phase. In addition, the proposed framework offers efficient key manage-

ment, neighbour selection, key updating mechanism and the concept of logical clocks.

This framework guarantees freshness of data and efficiency in data synchronisation

among all base stations. In the past, insufficient memory and limited power did not

allow low energy devices to execute resource intensive encryption techniques, how-

ever, due to emerging cryptographic technologies and the latest hardware innovation,

this research work uses asymmetric key encryption.

86

87

In this research, the SEA framework is validated using computer emulation of

dynamic wireless sensor network. SEA is considered efficient as the memory manage-

ment between base stations is represented using computer simulation and the perfor-

mance evaluation in terms of memory and communication overhead is compared with

blockchain technology. The computer emulation exhibits that the proposed frame-

work efficiently engages and disengages memory, which is beneficial for any dynamic

wireless sensor applications such as smart hospitals, military applications etc. The

outcome indicates promising results which helps in achieving efficiency of the net-

work. Furthermore, formal security analysis performed by Scyther protocol analyzer

indicates that the proposed framework can withstand numerous attacks. One key

concept that the SEA framework highlights is, inclusion of variable replication factor,

which ensures availability of data.

6.2 Future Work

The data replication of the WSN system in this scheme is set up in a static manner

when the network is deployed. The replication factor remains unaltered until an

individual manually interferes to adjust the number of replicas. As future work, it

would be interesting to assess the data distribution efficiency considering dynamic

replication factor which changes according to the network needs.

The designed SEA framework is validated by performing an efficiency comparison

with blockchain technique. Operation of Radix DLT motivates the workflow of the

current research, therefore the performance of SEA framework should be validated

against Radix DLT. However, due to unavailability of the aforesaid technology, this

validation can be considered as a future work. For the current scope of research

we have considered blockchain for availability and efficiency comparison, however, to

design a more robust framework we will evaluate the security of the current frame-

work against blockchain and Radix DLT. Furthermore, a hardware implementation

of SEA framework memory management could be considered as potential research

area because of fast development of storage technologies.

88

Appendix I

Scenario 2

Scenario 2 Files are added in this section.

Table 1: Config CSV file entry based on scenario 2
T NumBS NumSN BaseStationMemory SensorMemory ReplicationFactor
t0 5 15 256 8 4
t1 5 15 256 8 4
t2 5 15 256 8 4
t3 5 15 256 8 4
t4 5 15 256 8 4
t5 5 15 256 8 4
t6 5 15 256 8 4
t7 5 15 256 8 4
t8 5 15 256 8 4
t9 5 15 256 8 4
t10 5 15 256 8 4
t11 5 15 256 8 4
t12 5 15 256 8 4
t13 5 15 256 8 4
t14 5 15 256 8 4
t15 5 15 256 8 4

89

Table 2: Sample neighbour file data
ti IDβ No. of Neighbours (k) Neighbours (βk)

t0, 1, 3, [3, 4, 2]

t0, 2, 3, [0, 3, 4]

t0, 4, 3, [2, 1, 0]

t0, 3, 3, [1, 0, 2]

t0, 0, 3, [1, 3, 4]

t1, 1, 3, [3, 4, 2]

t1, 2, 3, [0, 3, 4]

t1, 4, 3, [2, 1, 0]

t1, 3, 3, [1, 0, 2]

t1, 0, 3, [1, 3, 4]

t2, 1, 3, [3, 4, 2]

t2, 2, 3, [0, 3, 4]

t2, 4, 3, [2, 1, 0]

t2, 3, 3, [1, 0, 2]

t2, 0, 3, [1, 3, 4]

t3, 1, 3, [3, 4, 2]

t3, 2, 3, [0, 3, 4]

t3, 4, 3, [2, 1, 0]

t3, 3, 3, [1, 0, 2]

t3, 0, 3, [1, 3, 4]

t4, 1, 3, [3, 4, 2]

t4, 2, 3, [0, 3, 4]

t4, 4, 3, [2, 1, 0]

t4, 3, 3, [1, 0, 2]

t4, 0, 3, [1, 3, 4]

t5, 1, 3, [3, 4, 2]

t5, 2, 3, [0, 3, 4]

t5, 4, 3, [2, 1, 0]

t5, 3, 3, [1, 0, 2]

t5, 0, 3, [1, 3, 4]

t6, 1, 3, [3, 4, 2]

t6, 2, 3, [0, 3, 4]

t6, 4, 3, [2, 1, 0]

t6, 3, 3, [1, 0, 2]

t6, 0, 3, [1, 3, 4]

90

Table 3: Memory file entry based on scenario 2
T BS ID Occupied memory Free Memory
t0 0 112 144
t1 0 224 32
t2 0 112 144
t3 0 224 32
t4 0 112 144
t5 0 224 32
t0 1 96 160
t1 1 192 64
t2 1 96 160
t3 1 192 64
t4 1 96 160
t5 1 192 64
t0 2 88 168
t1 2 176 80
t2 2 88 168
t3 2 176 80
t4 2 88 168
t5 2 176 80
t0 3 80 176
t1 3 160 96
t2 3 240 16
t3 3 80 176
t4 3 160 96
t5 3 240 16
t0 4 104 152
t1 4 208 48
t2 4 104 152
t3 4 208 48
t4 4 104 152
t5 4 208 48

91

Table 4: Sample sensor data for Scenario 2
T 0 1 2 3 4 5 6
t0 1010010 110 1111 101010 110111 10011110 11011110
t1 111 1110 1010101 10100100 10001000 11110001 11010110
t2 10010001 11111111 11011110 110011 10101010 11100 11111110
t3 10101011 10011000 10010100 11010101 1000001 1101011 11010010
t4 10001001 1100001 11001101 10011110 11011 100101 10001111
t5 1011110 111110 1110010 110011 10 1111010 10011000
t6 10101101 1111000 1111011 1101000 1101110 11000101 11100101
t7 111110 100110 1010100 100100 11100010 10010 11010
t8 10001010 10000001 10100 101110 10110000 10111000 1010101
t9 111 1001011 11011110 10010010 1000110 10111111 10101010
t10 10100110 10110101 11000 1111110 11101101 11011100 11010111
t11 10011010 10011011 10100101 10100111 10100 1110111 11000111
t12 1011101 10001110 10100101 1010001 11101010 1101 11110000
t13 11100000 1011100 10101111 1010010 11110011 10001111 11000010
t14 11100101 11011010 11000010 1011011 10000100 1100001 10010000
t15 10001111 10110111 1010010 111010 10001000 10111010 10000010
t16 1010100 1001100 10111011 1100111 11110111 1011001 1101111
t17 11010 10100010 1011110 110 1111110 11011110 10101001
t18 1111110 100011 111101 1010110 10010001 1011101 10000101
t19 11011010 1110100 11001001 11111110 10100010 11001101 11100110
t20 1110000 11010101 11101110 10111101 10100110 10100100 11010111

92

Table 5: Sample data of Topology.txt file

T, BS ID, Local_Sensors, Remote_Sensors

t0, 0, [6, 13, 1], [9, 4, 14, 5, 7, 10, 0, 2, 8, 3, 12]

t0, 1, [9, 4, 14, 5], [7, 10, 0, 2, 8, 3, 12, 11]

t0, 2, [11], [6, 13, 1, 7, 10, 0, 2, 8, 3, 12]

t0, 3, [7, 10], [9, 4, 14, 5, 6, 13, 1, 11]

t0, 4, [0, 2, 8, 3, 12], [11, 9, 4, 14, 5, 6, 13, 1]

t1, 0, [6, 13, 1], [9, 4, 14, 5, 7, 10, 0, 2, 8, 3, 12]

t1, 1, [9, 4, 14, 5], [7, 10, 0, 2, 8, 3, 12, 11]

t1, 2, [11], [6, 13, 1, 7, 10, 0, 2, 8, 3, 12]

t1, 3, [7, 10], [9, 4, 14, 5, 6, 13, 1, 11]

t1, 4, [0, 2, 8, 3, 12], [11, 9, 4, 14, 5, 6, 13, 1]

t2, 0, [6, 13, 1], [9, 4, 14, 5, 7, 10, 0, 2, 8, 3, 12]

t2, 1, [9, 4, 14, 5], [7, 10, 0, 2, 8, 3, 12, 11]

t2, 2, [11], [6, 13, 1, 7, 10, 0, 2, 8, 3, 12]

t2, 3, [7, 10], [9, 4, 14, 5, 6, 13, 1, 11]

t2, 4, [0, 2, 8, 3, 12], [11, 9, 4, 14, 5, 6, 13, 1]

t3, 0, [6, 13, 1], [9, 4, 14, 5, 7, 10, 0, 2, 8, 3, 12]

t3, 1, [9, 4, 14, 5], [7, 10, 0, 2, 8, 3, 12, 11]

t3, 2, [11], [6, 13, 1, 7, 10, 0, 2, 8, 3, 12]

t3, 3, [7, 10], [9, 4, 14, 5, 6, 13, 1, 11]

t3, 4, [0, 2, 8, 3, 12], [11, 9, 4, 14, 5, 6, 13, 1]

t4, 0, [6, 13, 1], [9, 4, 14, 5, 7, 10, 0, 2, 8, 3, 12]

t4, 1, [9, 4, 14, 5], [7, 10, 0, 2, 8, 3, 12, 11]

t4, 2, [11], [6, 13, 1, 7, 10, 0, 2, 8, 3, 12]

t4, 3, [7, 10], [9, 4, 14, 5, 6, 13, 1, 11]

t4, 4, [0, 2, 8, 3, 12], [11, 9, 4, 14, 5, 6, 13, 1]

t5, 0, [6, 13, 1], [9, 4, 14, 5, 7, 10, 0, 2, 8, 3, 12]

t5, 1, [9, 4, 14, 5], [7, 10, 0, 2, 8, 3, 12, 11]

t5, 2, [11], [6, 13, 1, 7, 10, 0, 2, 8, 3, 12]

t5, 3, [7, 10], [9, 4, 14, 5, 6, 13, 1, 11]

t5, 4, [0, 2, 8, 3, 12], [11, 9, 4, 14, 5, 6, 13, 1]

t6, 0, [6, 13, 1], [9, 4, 14, 5, 7, 10, 0, 2, 8, 3, 12]

t6, 1, [9, 4, 14, 5], [7, 10, 0, 2, 8, 3, 12, 11]

t6, 2, [11], [6, 13, 1, 7, 10, 0, 2, 8, 3, 12]

t6, 3, [7, 10], [9, 4, 14, 5, 6, 13, 1, 11]

t6, 4, [0, 2, 8, 3, 12], [11, 9, 4, 14, 5, 6, 13, 1]

93

Table 6: Sample log file
T BS ID
t2 0 complete data flushed
t2 1 complete data flushed
t2 2 complete data flushed
t2 4 complete data flushed
t3 3 complete data flushed
t4 0 complete data flushed
t4 1 complete data flushed
t4 2 complete data flushed
t4 4 complete data flushed
t6 0 complete data flushed
t6 1 complete data flushed
t6 2 complete data flushed
t6 3 complete data flushed
t6 4 complete data flushed
t8 0 complete data flushed
t8 1 complete data flushed
t8 2 complete data flushed
t8 4 complete data flushed
t9 3 complete data flushed
t10 0 complete data flushed
t10 1 complete data flushed
t10 2 complete data flushed
t10 4 complete data flushed

94

Scenario 3

Scenario 3 Files are added in this section.

Table 7: Config CSV file entry based on scenario 3
T NumBS NumSN BaseStationMemory SensorMemory ReplicationFactor
t0 10 30 256 8 4
t1 10 30 256 8 4
t2 10 30 256 8 4
t3 10 30 256 8 4
t4 10 30 256 8 4
t5 10 30 256 8 4
t6 10 30 256 8 4
t7 10 30 256 8 4
t8 10 30 256 8 4
t9 10 30 256 8 4
t10 10 30 256 8 4
t11 10 30 256 8 4
t12 10 30 256 8 4
t13 10 30 256 8 4
t14 10 30 256 8 4
t15 10 30 256 8 4
t16 10 30 256 8 4
t17 10 30 256 8 4
t18 10 30 256 8 4
t19 10 30 256 8 4
t20 10 30 256 8 4

95

Table 8: Sample neighbour file data
ti IDβ No. of Neighbours (k) Neighbours (βk)

t0, 7, 3, [8, 6, 3]

t0, 8, 3, [7, 5, 3]

t0, 9, 3, [1, 8, 4]

t0, 2, 3, [8, 6, 5]

t0, 3, 3, [0, 9, 6]

t0, 4, 3, [2, 1, 3]

t0, 5, 3, [7, 2, 0]

t0, 0, 3, [9, 4, 5]

t0, 1, 3, [2, 9, 0]

t0, 6, 3, [4, 1, 7]

t1, 7, 3, [8, 6, 3]

t1, 8, 3, [7, 5, 3]

t1, 9, 3, [1, 8, 4]

t1, 2, 3, [8, 6, 5]

t1, 3, 3, [0, 9, 6]

t1, 4, 3, [2, 1, 3]

t1, 5, 3, [7, 2, 0]

t1, 0, 3, [9, 4, 5]

t1, 1, 3, [2, 9, 0]

t1, 6, 3, [4, 1, 7]

t2, 7, 3, [8, 6, 3]

t2, 8, 3, [7, 5, 3]

t2, 9, 3, [1, 8, 4]

t2, 2, 3, [8, 6, 5]

t2, 3, 3, [0, 9, 6]

t2, 4, 3, [2, 1, 3]

t2, 5, 3, [7, 2, 0]

t2, 0, 3, [9, 4, 5]

t2, 1, 3, [2, 9, 0]

t2, 6, 3, [4, 1, 7]

t3, 7, 3, [8, 6, 3]

t3, 8, 3, [7, 5, 3]

t3, 9, 3, [1, 8, 4]

t3, 2, 3, [8, 6, 5]

t3, 3, 3, [0, 9, 6]

t3, 4, 3, [2, 1, 3]

t3, 5, 3, [7, 2, 0]

t3, 0, 3, [9, 4, 5]

t3, 1, 3, [2, 9, 0]

t3, 6, 3, [4, 1, 7]

96

Table 9: Memory file entry based on scenario 3
T BS ID Occupied memory Free Memory
t0 0 96 160
t1 0 192 64
t2 0 96 160
t3 0 192 64
t0 1 96 160
t1 1 192 64
t2 1 96 160
t3 1 192 64
t0 2 120 136
t1 2 240 16
t2 2 120 136
t3 2 240 16
t0 3 88 168
t1 3 176 80
t2 3 88 168
t3 3 176 80
t0 4 64 192
t1 4 128 128
t2 4 192 64
t3 4 256 0
t0 5 112 144
t1 5 224 32
t2 5 112 144
t3 5 224 32
t0 6 80 176
t1 6 160 96
t2 6 240 16
t3 6 80 176
t0 7 104 152
t1 7 208 48
t2 7 104 152
t3 7 208 48
t0 8 104 152
t1 8 208 48
t2 8 104 152
t3 8 208 48
t0 9 96 160
t1 9 192 64
t2 9 96 160
t3 9 192 64

97

Table 10: Sample sensor data for Scenario 3
T 0 1 2 3 4 5 6
t0 1010010 110 1111 101010 110111 10011110 11011110
t1 10010001 11111111 11011110 110011 10101010 11100 11111110
t2 10001001 1100001 11001101 10011110 11011 100101 10001111
t3 10101101 1111000 1111011 1101000 1101110 11000101 11100101
t4 10001010 10000001 10100 101110 10110000 10111000 1010101
t5 10100110 10110101 11000 1111110 11101101 11011100 11010111
t6 1011101 10001110 10100101 1010001 11101010 1101 11110000
t7 11100101 11011010 11000010 1011011 10000100 1100001 10010000
t8 1010100 1001100 10111011 1100111 11110111 1011001 1101111
t9 1111110 100011 111101 1010110 10010001 1011101 10000101
t10 1110000 11010101 11101110 10111101 10100110 10100100 11010111
t11 10010 11000100 1110001 11011001 10100000 1110100 11010000
t12 111000 11000 1110110 1110010 1100011 1001111 100
t13 110011 1111010 10000011 111001 111100 10100000 11110100
t14 11111011 11101011 110110 110 1111110 11101000 10111000
t15 10001111 10101111 101011 1010001 1101 10111101 11010001
t16 1011101 1101010 111100 10011111 11011010 11100 11000111
t17 10111001 1000011 11111000 1010101 1100111 1000100 1001010
t18 11000 11111100 1000110 1001101 1010010 1101011 11111110
t19 10101010 10001010 11111001 110100 1111110 1010110 1111
t20 10011100 11111011 100110 1011101 11111100 11110010 10100010

98

Table 11: Sample data of Topology.txt file

T, BS ID, Local_Sensors, Remote_Sensors

t0, 0, [2, 17, 8], [7, 1, 27, 15, 9, 3, 24, 11, 4]

t0, 1, [12], [25, 18, 28, 20, 7, 1, 27, 15, 2, 17, 8]

t0, 2, [25, 18, 28, 20], [5, 6, 19, 13, 14, 22, 26, 21, 24, 11, 4]

t0, 3, [10], [2, 17, 8, 7, 1, 27, 15, 22, 26, 21]

t0, 4, [9, 3], [25, 18, 28, 20, 12, 10]

t0, 5, [24, 11, 4], [23, 16, 29, 0, 25, 18, 28, 20, 2, 17, 8]

t0, 6, [22, 26, 21], [9, 3, 12, 23, 16, 29, 0]

t0, 7, [23, 16, 29, 0], [5, 6, 19, 13, 14, 22, 26, 21, 10]

t0, 8, [5, 6, 19, 13, 14], [23, 16, 29, 0, 24, 11, 4, 10]

t0, 9, [7, 1, 27, 15], [12, 5, 6, 19, 13, 14, 9, 3]

t1, 0, [2, 17, 8], [7, 1, 27, 15, 9, 3, 24, 11, 4]

t1, 1, [12], [25, 18, 28, 20, 7, 1, 27, 15, 2, 17, 8]

t1, 2, [25, 18, 28, 20], [5, 6, 19, 13, 14, 22, 26, 21, 24, 11, 4]

t1, 3, [10], [2, 17, 8, 7, 1, 27, 15, 22, 26, 21]

t1, 4, [9, 3], [25, 18, 28, 20, 12, 10]

t1, 5, [24, 11, 4], [23, 16, 29, 0, 25, 18, 28, 20, 2, 17, 8]

t1, 6, [22, 26, 21], [9, 3, 12, 23, 16, 29, 0]

t1, 7, [23, 16, 29, 0], [5, 6, 19, 13, 14, 22, 26, 21, 10]

t1, 8, [5, 6, 19, 13, 14], [23, 16, 29, 0, 24, 11, 4, 10]

t1, 9, [7, 1, 27, 15], [12, 5, 6, 19, 13, 14, 9, 3]

t2, 0, [2, 17, 8], [7, 1, 27, 15, 9, 3, 24, 11, 4]

t2, 1, [12], [25, 18, 28, 20, 7, 1, 27, 15, 2, 17, 8]

t2, 2, [25, 18, 28, 20], [5, 6, 19, 13, 14, 22, 26, 21, 24, 11, 4]

t2, 3, [10], [2, 17, 8, 7, 1, 27, 15, 22, 26, 21]

t2, 4, [9, 3], [25, 18, 28, 20, 12, 10]

t2, 5, [24, 11, 4], [23, 16, 29, 0, 25, 18, 28, 20, 2, 17, 8]

t2, 6, [22, 26, 21], [9, 3, 12, 23, 16, 29, 0]

t2, 7, [23, 16, 29, 0], [5, 6, 19, 13, 14, 22, 26, 21, 10]

t2, 8, [5, 6, 19, 13, 14], [23, 16, 29, 0, 24, 11, 4, 10]

t2, 9, [7, 1, 27, 15], [12, 5, 6, 19, 13, 14, 9, 3]

t3, 0, [2, 17, 8], [7, 1, 27, 15, 9, 3, 24, 11, 4]

t3, 1, [12], [25, 18, 28, 20, 7, 1, 27, 15, 2, 17, 8]

t3, 2, [25, 18, 28, 20], [5, 6, 19, 13, 14, 22, 26, 21, 24, 11, 4]

t3, 3, [10], [2, 17, 8, 7, 1, 27, 15, 22, 26, 21]

t3, 4, [9, 3], [25, 18, 28, 20, 12, 10]

t3, 5, [24, 11, 4], [23, 16, 29, 0, 25, 18, 28, 20, 2, 17, 8]

t3, 6, [22, 26, 21], [9, 3, 12, 23, 16, 29, 0]

t3, 7, [23, 16, 29, 0], [5, 6, 19, 13, 14, 22, 26, 21, 10]

t3, 8, [5, 6, 19, 13, 14], [23, 16, 29, 0, 24, 11, 4, 10]

t3, 9, [7, 1, 27, 15], [12, 5, 6, 19, 13, 14, 9, 3]

99

Table 12: Sample log file
T BS ID
t2 0 complete data flushed
t2 1 complete data flushed
t2 2 complete data flushed
t2 3 complete data flushed
t2 5 complete data flushed
t2 7 complete data flushed
t2 8 complete data flushed
t2 9 complete data flushed
t3 6 complete data flushed
t4 0 complete data flushed
t4 1 complete data flushed
t4 2 complete data flushed
t4 3 complete data flushed
t4 4 complete data flushed
t4 5 complete data flushed
t4 7 complete data flushed
t4 8 complete data flushed
t4 9 complete data flushed
t6 0 complete data flushed
t6 1 complete data flushed
t6 2 complete data flushed
t6 3 complete data flushed
t6 5 complete data flushed
t6 6 complete data flushed
t6 7 complete data flushed
t6 8 complete data flushed
t6 9 complete data flushed

Bibliography

[1] A Very Brief History Of Blockchain Technology Everyone Should
Read. https://www.forbes.com/sites/bernardmarr/2018/02/16/

a-very-brief-history-of-blockchain-technology-everyone-should-read.
[Online; accessed Feb-2020].

[2] Benefits of Elliptic Curve Cryptography. Technical report, 2012.

[3] Mohammad Reza Akhondi, Alex Talevski, Simon Carlsen, and Stig Petersen.
Applications of wireless sensor networks in the oil, gas and resources industries.
In Proceedings - International Conference on Advanced Information Networking
and Applications, AINA, pages 941–948, 2010.

[4] Reem Alattas. Detecting black-hole attacks in WSNs using multiple base stations
and check agents. In FTC 2016 - Proceedings of Future Technologies Conference,
pages 1020–1024. Institute of Electrical and Electronics Engineers Inc., jan 2017.

[5] Osama Moh d. Alia. Dynamic relocation of mobile base station in wireless sensor
networks using a cluster-based harmony search algorithm. Information Sciences,
385-386:76–95, apr 2017.

[6] Waleed Alsalih, Selim Akl, and Hossam Hassanein. Placement of multiple mobile
base stations in wireless sensor networks. In ISSPIT 2007 - 2007 IEEE Inter-
national Symposium on Signal Processing and Information Technology, pages
229–233, 2007.

[7] S Raj Anand, Rama Chaithanya Tanguturi, and Soundara Rajan. Blockchain
Based Packet Delivery Mechanism for WSN. International Journal of Recent
Technology and Engineering, (2):2277–3878, 2019.

[8] James Aspnes. LogicalClocks. https://www.cs.yale.edu/homes/aspnes/

pinewiki/LogicalClocks.html. [Online; accessed Feb-2020].

[9] oko Banur, Branimir Jakšić, Miloš Banur, and Sran Jović. An analysis of energy
efficiency in Wireless Sensor Networks (WSNs) applied in smart agriculture.
Computers and Electronics in Agriculture, 156:500–507, jan 2019.

[10] Stefano Basagni, M Yousof Naderi, Chiara Petrioli, and Dora Spenza. WIRE-
LESS SENSOR NETWORKS WITH ENERGY HARVESTING. Technical re-
port.

[11] Wasana Boonsong and Widad Ismail. Wireless Monitoring of Household Electri-
cal Power Meter Using Embedded RFID with Wireless Sensor Network Platform.
International Journal of Distributed Sensor Networks, 10(6):876914, jun 2014.

100

101

[12] Florian Cäsar, Daniel P Hughes, Josh Primero, and Stephen J Thornton. Cer-
berus A Parallelized BFT Consensus Protocol for Radix. Technical report.

[13] Omer Cayirpunar, Bulent Tavli, Esra Kadioglu-Urtis, and Suleyman Uludag.
Optimal Mobility Patterns of Multiple Base Stations for Wireless Sensor Network
Lifetime Maximization. IEEE Sensors Journal, 17(21):7177–7188, nov 2017.

[14] Sravanthi Chalasani and James M. Conrad. A survey of energy harvesting sources
for embedded systems. In Conference Proceedings - IEEE SOUTHEASTCON,
pages 442–447, 2008.

[15] Rishav Chatterjee and Rajdeep Chatterjee. An Overview of the Emerging Tech-
nology: Blockchain. In Proceedings - 2017 International Conference on Com-
putational Intelligence and Networks, CINE 2017, pages 126–127. Institute of
Electrical and Electronics Engineers Inc., mar 2018.

[16] Ruirui Chen, Yanjing Sun, Yan Chen, Xiaoguang Zhang, Song Li, and Zhi
Sun. Energy Efficiency Analysis of Bidirectional Wireless Information and Power
Transfer for Cooperative Sensor Networks. IEEE Access, 7:4905–4912, 2019.

[17] Yuequan Chen, Edward Chan, and Song Han. Energy Efficient Multipath Rout-
ing in Large Scale Sensor Networks with Multiple Sink Nodes. pages 390–399.
2005.

[18] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and Smart Con-
tracts for the Internet of Things, 2016.

[19] Hilmi Egemen Ciritoglu, Leandro Almeida, Eduardo Almeida, Teodora Buda,
John Murphy, and Christina Thorpe. Investigation of replication factor for per-
formance enhancement in the hadoop distributed file system. pages 135–140, 04
2018.

[20] Marco Conoscenti, Antonio Vetro, and Juan Carlos De Martin. Blockchain
for the Internet of Things: A systematic literature review. In Proceedings of
IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA. IEEE Computer Society, jul 2017.

[21] Cas J. F. Cremers. The Scyther Tool: Verification, Falsification, and Analysis of
Security Protocols. In Aarti Gupta and Sharad Malik, editors, Computer Aided
Verification, pages 414–418, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[22] Debasree Das, Zeenat Rehena, Sarbani Roy, and Nandini Mukherjee. Multiple-
sink placement strategies in wireless sensor networks. In 2013 5th International
Conference on Communication Systems and Networks, COMSNETS 2013, 2013.

[23] S. Dey, Q. Ye, and S. Sampalli. Amlt: A mutual authentication scheme for
mobile cloud computing. In 2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)

102

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), pages 700–705, July 2018.

[24] Whitfield Diffie and Martin E Hellman. New Directions in Cryptography Invited
Paper. Technical report.

[25] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. Blockchain in internet of things:
Challenges and Solutions. aug 2016.

[26] Ali Dorri, Salil S. Kanhere, Raja Jurdak, and Praveen Gauravaram. Blockchain
for IoT security and privacy: The case study of a smart home. In 2017 IEEE
International Conference on Pervasive Computing and Communications Work-
shops, PerCom Workshops 2017, pages 618–623. Institute of Electrical and Elec-
tronics Engineers Inc., may 2017.

[27] M.P. Durisic, Zhilbert Tafa, Goran Dimic, and Veljko Milutinovic. A survey of
military applications of wireless sensor networks. pages 196–199, 01 2012.

[28] P. L. Fuhr. Wireless sensor networks for the monitoring and control of nuclear
power plants. In Industrial Wireless Sensor Networks: Monitoring, Control and
Automation, pages 125–154. Elsevier Inc., jan 2016.

[29] Xiong Gan, Hong Lu, and Guangyou Yang. Improving energy efficiency by opti-
mizing relay nodes deployment in wireless sensor networks. In 2017 9th IEEE In-
ternational Conference on Communication Software and Networks, ICCSN 2017,
volume 2017-Janua, pages 306–310. Institute of Electrical and Electronics Engi-
neers Inc., dec 2017.

[30] Shashidhar Rao Gandham, Milind Dawande, Ravi Prakash, and S Venkatesan.
Energy Efficient Schemes for Wireless Sensor Networks with Multiple Mobile
Base Stations. Technical report.

[31] Shashidhar Rao Gandham, Milind Dawande, Ravi Prakash, and S. Venkatesan.
Energy Efficient Schemes for Wireless Sensor Networks with Multiple Mobile
Base Stations. In GLOBECOM - IEEE Global Telecommunications Conference,
volume 1, pages 377–381, 2003.

[32] Kaushik Ghosh, Sarmistha Neogy, Pradip K. Das, and Mahima Mehta. Intrusion
Detection at International Borders and Large Military Barracks with Multi-sink
Wireless Sensor Networks: An Energy Efficient Solution. Wireless Personal
Communications, 98(1):1083–1101, jan 2018.

[33] Vehbi C. Gungor and Gerhard P. Hancke. Industrial wireless sensor networks:
Challenges, design principles, and technical approaches. IEEE Transactions on
Industrial Electronics, 56(10):4258–4265, 2009.

103

[34] Guangjie Han, Mengting Xu, Yu He, Jinfang Jiang, James Adu Ansere, and
W. Zhang. A dynamic ring-based routing scheme for source location privacy in
wireless sensor networks. Information Sciences, 504:308–323, dec 2019.

[35] Thaier Hayajneh, Razvi Doomun, Ghada Al-Mashaqbeh, and Bassam J. Mohd.
An energy-efficient and security aware route selection protocol for wireless sensor
networks. Security and Communication Networks, 7(11):2015–2038, nov 2014.

[36] Dan Hughes. Tempo - Radix Knowledge Base. https://docs.radixdlt.com/

kb/learn/whitepapers/tempo. [Online; accessed Feb-2020].

[37] Seyoung Huh, Sangrae Cho, and Soohyung Kim. Managing IoT devices using
blockchain platform. In International Conference on Advanced Communication
Technology, ICACT, pages 464–467. Institute of Electrical and Electronics En-
gineers Inc., mar 2017.

[38] Simona Ibba, Andrea Pinna, Matteo Seu, and Filippo Eros Pani. CitySense:
Blockchain-oriented Smart Cities. In ACM International Conference Proceeding
Series, volume Part F1299. Association for Computing Machinery, may 2017.

[39] Nazmul Islam. TOWARDS A SECURE AND ENERGY EFFICIENT WIRE-
LESS SENSOR NETWORK USING BLOCKCHAIN AND A NOVEL CLUS-
TERING APPROACH. Technical report, 2018.

[40] S. R. Jino Ramson and D. Jackuline Moni. Applications of Wireless Sensor
Networks - A survey. In Proceedings of IEEE International Conference on
Innovations in Electrical, Electronics, Instrumentation and Media Technology,
ICIEEIMT 2017, volume 2017-Janua, pages 325–329. Institute of Electrical and
Electronics Engineers Inc., nov 2017.

[41] Don Johnson, Alfred Menezes, £, and Scott Vanstone. The Elliptic Curve
Digital Signature Algorithm (ECDSA). Technical report.

[42] Ashish Joshi and Amar Kumar Mohapatra. Authentication protocols for wire-
less body area network with key management approach. Journal of Discrete
Mathematical Sciences and Cryptography, 22(2):219–240, feb 2019.

[43] Vaidehi Joshi. Logical Time and Lamport Clocks (Part
2) - baseds - Medium. https://medium.com/baseds/

logical-time-and-lamport-clocks-part-2-272c097dcdda. [Online; ac-
cessed Feb-2020].

[44] Ibrahim Kamel and Hussam Juma. A lightweight data integrity scheme for sensor
networks. Sensors, 11(4):4118–4136, apr 2011.

[45] B. Kitchenham, B. Kitchenham, and S Charters. Guidelines for performing
Systematic Literature Reviews in Software Engineering. 2007.

104

[46] Neal Koblitz and Alfred J Menezes. A Survey of Public-Key Cryptosystems.
Technical report, 2004.

[47] Nallapaneni Manoj Kumar and Pradeep Kumar Mallick. Blockchain technology
for security issues and challenges in IoT. In Procedia Computer Science, volume
132, pages 1815–1823. Elsevier B.V., 2018.

[48] Sergii Kushch and Francisco Prieto-Castrillo. A Rolling Blockchain for a Dy-
namic WSNs in a Smart City. jun 2018.

[49] Leslie Lamport. Operating R. Stockton Gaines Systems Editor Time, Clocks,
and the Ordering of Events in a Distributed System. Technical report, 1978.

[50] Kristin Lauter. The Advantages of Elliptic Curve Cryptography for Wireless
Security, feb 2004.

[51] Wen Hwa Liao and Chun Chu Chen. A multi-dimensional data storage algorithm
in wireless sensor networks. In Proceedings of the 2010 IEEE/IFIP Network
Operations and Management Symposium, NOMS 2010, pages 854–857. IEEE
Computer Society, 2010.

[52] Yujin Lim, Hak-Man Kim, and Sanggil Kang. A Design of Wireless Sensor
Networks for a Power Quality Monitoring System. Sensors, 10(11):9712–9725,
nov 2010.

[53] Zhi Ting Lin, Jie Zheng, Yu Sheng Ji, Bao Hua Zhao, Yu Gui Qu, Xu Dong
Huang, and Xiu Fang Jiang. EMMNet: Sensor networking for electricity meter
monitoring. Sensors, 10(7):6307–6323, jul 2010.

[54] Julio López, Julio López, and Ricardo Dahab. An Overview of Elliptic Curve
Cryptography. 22, 2000.

[55] J. Louw, G. Niezen, T. D. Ramotsoela, and A. M. Abu-Mahfouz. A key distri-
bution scheme using elliptic curve cryptography in wireless sensor networks. In
2016 IEEE 14th International Conference on Industrial Informatics (INDIN),
pages 1166–1170, July 2016.

[56] Jun Luo, Jacques Panchard, Michal Piórkowski, Matthias Grossglauser, and
Jean Pierre Hubaux. MobiRoute: Routing towards a mobile sink for improv-
ing lifetime in sensor networks. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 4026 LNCS, pages 480–497. Springer Verlag, 2006.

[57] Lunda Machaya and Simon Tembo. A Study on Memory Management in Wireless
Sensor Nodes during Key Agreement Generation. 6(2):19–23, 2016.

[58] Mohammad Matin and Md Islam. Overview of Wireless Sensor Network, pages
1–22. 09 2012.

105

[59] C. Meesookho, S. Narayanan, and C. S. Raghavendra. Collaborative classification
applications in sensor networks. In Proceedings of the IEEE Sensor Array and
Multichannel Signal Processing Workshop, volume 2002-Janua, pages 370–374.
IEEE Computer Society, 2002.

[60] Kais Mekki, William Derigent, Eric Rondeau, and André Thomas. In-network
data storage protocols for wireless sensor networks: A state-of-the-art survey.
International Journal of Distributed Sensor Networks, 15(4):155014771983248,
apr 2019.

[61] Ralph C. Merkle. A digital signature based on a conventional encryption func-
tion. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 293 LNCS,
pages 369–378. Springer Verlag, 1988.

[62] Evgeny Milanov. The RSA Algorithm. Technical report, 2009.

[63] David Mills, Kathy Wang, Brendan Malone, Anjana Ravi, Jeff Marquardt,
Clinton Chen, Anton Badev, Timothy Brezinski, Linda Fahy, Kimberley Liao,
Vanessa Kargenian, Max Ellithorpe, Wendy Ng, and Maria Baird. Distributed
Ledger Technology in Payments, Clearing, and Settlement. Finance and Eco-
nomics Discussion Series, 2016(095), dec 2016.

[64] Axel Moinet, Benôıt Darties, and Jean-Luc Baril. Blockchain based trust &
authentication for decentralized sensor networks. jun 2017.

[65] G Padmavathi and Mrs D Shanmugapriya. A Survey of Attacks, Security Mech-
anisms and Challenges in Wireless Sensor Networks. Technical Report 1, 2009.

[66] Manjiri Pathak. An Approach to Memory management in Wireless Sensor Net-
works. Technical report.

[67] Wint Yi Poe and Jens B Schmitt. Minimizing the Maximum Delay in Wireless
Sensor Networks by Intelligent Sink Placement. Technical report.

[68] Boselin Prabhu and N. Balakumar. Highly Distributed and Energy Efficient
Clustering Algorithm for Wireless Sensor Networks, nov 2016.

[69] Radix. Radix Platform - Radix Knowledge Base. https://docs.radixdlt.

com/kb/learn/platform. [Online; accessed Feb-2020].

[70] Bushra Rashid and Mubashir Husain Rehmani. Applications of wireless sensor
networks for urban areas: A survey, jan 2016.

[71] N. Gouthamsekhar Reddy, Neeranjan Chitare, and Srinivas Sampalli. Deploy-
ment of multiple base-stations in clustering protocols of wireless sensor networks
(WSNs). In Proceedings of the 2013 International Conference on Advances in
Computing, Communications and Informatics, ICACCI 2013, pages 1003–1006,
2013.

106

[72] Ju Ren, Yaoxue Zhang, Ning Zhang, Deyu Zhang, and Xuemin Shen. Dynamic
Channel Access to Improve Energy Efficiency in Cognitive Radio Sensor Net-
works. IEEE Transactions on Wireless Communications, 15(5):3143–3156, may
2016.

[73] Yongjun Ren, Yepeng Liu, Sai Ji, Arun Kumar Sangaiah, and Jin Wang. In-
centive Mechanism of Data Storage Based on Blockchain for Wireless Sensor
Networks. Mobile Information Systems, 2018, 2018.

[74] Kay Römer and Friedemann Mattern. The design space of wireless sensor net-
works, dec 2004.

[75] Wei She, Qi Liu, Zhao Tian, Jian Sen Chen, Bo Wang, and Wei Liu. Blockchain
trust model for malicious node detection in wireless sensor networks. IEEE
Access, 7:38947–38956, 2019.

[76] Mazn Adnan Shkoor. Everything You Need to Know About Public, Private, and
Consortium Blockchain.

[77] Melanie Swan. Blockchain - Blueprint for a new economy - EPDF.PUB.

[78] Tim Swanson. Consensus-as-a-service: a brief report on the emergence of per-
missioned, distributed ledger systems. Technical report, 2015.

[79] Bo Tang, Jin Wang, Xuehua Geng, Yuhui Zheng, and Jeong-Uk Kim. A Novel
Data Retrieving Mechanism in Wireless Sensor Networks with Path-Limited Mo-
bile Sink. Technical Report 3, 2012.

[80] Raja Jalees ul Hussen Khan, Zainib Noshad, Atia Javaid, Maheen Zahid, Ish-
tiaq Ali, and Nadeem Javaid. Node Recovery in Wireless Sensor Networks via
Blockchain. In Lecture Notes in Networks and Systems, volume 96, pages 94–105.
Springer, 2020.

[81] S. Viswanathan and A. Kannan. Elliptic key cryptography with Beta Gamma
functions for secure routing in wireless sensor networks. Wireless Networks,
25(8):4903–4914, nov 2019.

[82] John Paul Walters, Zhengqiang Liang, Weisong Shi, and Vipin Chaudhary. Se-
curity in Distributed, Grid, and Pervasive Computing Yang Xiao. Technical
report.

[83] Arvinderpal S. Wandert, Nils Gura, Hans Eberle, Vipul Gupta, and Sheuel-
ing Chang Shantz. Energy analysis of public-key cryptography for wireless sensor
networks. In Proceedings - Third IEEE International Conference on Pervasive
Computing and Communications, PerCom 2005, volume 2005, pages 324–328,
2005.

107

[84] Haiyong Wang, Geng Yang, Jian Xu, Zhengyu Chen, Lei Chen, and Zhen Yang.
A noval data collection approach for Wirelsee Sensor Networks. In 2011 In-
ternational Conference on Electrical and Control Engineering, ICECE 2011 -
Proceedings, pages 4287–4290, 2011.

[85] Huaimin Wang, Zibin Zheng, Shaoan Xie, Hong-Ning Dai, and Xiangping Chen.
Blockchain challenges and opportunities: a survey. International Journal of Web
and Grid Services, 14:352 – 375, 10 2018.

[86] Yang Wang, Xiong Fu, and Liusheng Huang. A storage node placement algo-
rithm in wireless sensor networks. In 4th International Conference on Frontier
of Computer Science and Technology, FCST 2009, pages 267–271, 2009.

[87] Jeremy Wohlwend. ELLIPTIC CURVE CRYPTOGRAPHY: PRE AND POST
QUANTUM. Technical report.

[88] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. Blockchain Technology
Overview.

[89] Jidian Yang, Shiwen He, Yang Xu, Linweiya Chen, and Ju Ren. A Trusted Rout-
ing Scheme Using Blockchain and Reinforcement Learning for Wireless Sensor
Networks. Sensors, 19(4):970, feb 2019.

[90] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network
survey. 2008.

[91] Byrav ; Yong; Ramamurthy and Yuyan Xue. A Key Management Protocol for
Wireless Sensor Networks with Multiple Base Stations. page 111, 2008.

