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Abstract

Convolutional neural networks were used to classify and analyse a large magnetoen-

cephalography (MEG) dataset. Networks were trained to classify between active and

baseline intervals recorded during cued button pressing. There were two primary ob-

jectives for this study: (1) develop networks that can effectively classify MEG data,

and (2) identify the important data features that inform classification. Networks

with a simple architecture were trained using sensor and source-localised data. Net-

works trained with sensor data were also trained using varying amounts of data. The

important features within the data were identified by applying different visualisa-

tion techniques to trained networks. An ensemble of networks trained using sensor

data performed best (average test accuracy 0.974 ± 0.001). It was determined that

a dataset containing on the order of hundreds of participants was required for this

particular network and task. Visualisation maps highlighted features known to occur

during neuromagnetic recordings of cued button pressing.
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Chapter 1

Introduction

Big data in medical imaging has the potential to inform new models in diagnostics.

In recent years there has been an exponential increase in the amount of data in many

fields, including health care [1]. With appropriately large datasets, approaches found

in the field of deep learning can be applied in order to augment and improve currently

established methods for diagnosing patients.

Machine learning systems learn patterns that have been extracted from raw data in

order to perform some task without the need for explicit programming or instruction

sets [2]. However, the performance of these systems heavily relies upon the represen-

tation of the input data. Traditional machine learning approaches typically require

specialised feature engineering in order to develop an appropriate data representation.

The construction of an effective data representation typically requires expert knowl-

edge of the problem domain and results can be highly sensitive to changes within

the representation. One solution to feature engineering is to use machine learning

to discover the appropriate representation as well as the functional mapping between

the representation and the output. Whereas traditional machine learning uses mod-

els that act as discriminators in classifying or clustering data, deep learning models

generate latent representations of input data. This is referred to as representation

learning and it is central to deep learning [3].

Models in deep learning are constructed using artificial neural networks (ANN).

ANNs were inspired by early models of brain functioning with the base unit of infor-

mation being the neuron [3]. A neuron accepts a set of inputs which are multiplied

by an associated weight and summed together. This summation is passed through

a non-linear transformation known as an activation function before being outputted.

These outputs are then passed along to other neurons or as output of the network.

By assembling networks of neurons, and by tuning the set of weights within the net-

work via optimisation, an ANN can be thought of as a function approximator that

1
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constructs a functional mapping between some set of inputs and a set of outputs [3].

The layers of neurons within the network are called hidden layers in that they are

hidden between the input and output layers. By varying the number of hidden layers,

and the number of neurons within each layer, the capacity of a model can be tuned

to theoretically approximate any function [3].

A convolutional neural network (CNN) is a type of ANN that was designed for

processing images and video. First introduced by LeCun [4] and popularised by

Krizhevsky et al. [5], a CNN contains layers that perform the mathematical oper-

ation of the convolution on inputs passed to them. Input passed to these layers is

convolved with small matrices known as kernels in order to extract specific types of

information. When many convolutional layers are stacked together, a nested hier-

archy is formed with some layers being responsible for detecting different types of

structure within the data [3]. For instance, one layer may detect lines with a specific

orientation whereas another layer may detect textures. The combined function of

these layers would be to detect a specific type of object within input images. The

outputs from the convolutional layers are input into dense neuron layers as found

in a standard neural network in order to construct functional relationships. A CNN

therefore performs a combination of efficient feature extraction (via weight sharing)

and functional approximation using data with topographic structure.

Within the field of medical imaging, recent research has focused on developing

networks that perform classification, detection, and segmentation using medical im-

ages [1, 6]. These networks are currently being developed for applications such as

the detection and segmentation of tumours, the classification of lung nodules into

benign and malignant, and classification of heart disease in cardiac imaging [1, 7].

The networks within these studies are designed to work with data from computed to-

mography (CT), ultrasound (US), and magnetic resonance imaging (MRI) [1, 6, 7, 8].

One imaging modality that has not been used within these types of studies is mag-

netoencephalography (MEG).

MEG sensitively measures magnetic fields generated by neuronal activity within

the brain with a good combination of localisation accuracy and temporal resolu-

tion [9]. Medical applications of MEG include classification of patients with multiple
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sclerosis [10, 11], Alzheimer’s disease [12], and the detection and localisation of patho-

logical activity in patients with epilepsy [13, 14, 15]. MEG has been shown to be an

effective tool in localising eloquent cortex in order to guide pre-surgical planning in

patients with brain tumours and intractable epilepsy [14, 15]. Given these use-cases,

models developed using deep learning have the potential to improve diagnostics and

outcomes for patients. As an initial step in this direction, we are interested in de-

veloping models of healthy brain functioning constructed using large collections of

normative data which could help to delineate between healthy and unhealthy brain

activity.

The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) is a large, col-

laborative research project aimed at investigating the effects of ageing and cognition.

As a part of this project, Cam-CAN provides a large open-access dataset that includes

demographic, behavioural, and neuroimaging data recorded across a large, healthy

adult population [16]. Of specific interest for our research was a set of MEG scans

from 700 participants recorded during a cued button pressing task (with auditory

and visual cues). We were interested in investigating this data because it contains

records from healthy controls with a simple, well-understood task. Thus, we could

determine if the data representations learned by the CNN match expectations based

on previous literature. These data provided a collection of normative data measured

during an understood and well-established activity across a diverse population.

The MEG correlates of cued-button pressing have been well-studied. Auditory and

visual cues both generate a reproducible complex of magnetic field deflections over

approximately 300 ms following the cue. The deflections, termed the auditory and

visual evoked fields (AEF and VEF respectively) [17], are clearly shown by averaging

MEG data recorded from a number of repetitions of stimulus presentation. The

VEF and AEF are observed bilaterally on sensors over the occipital and temporal

cortex, respectively. As well, bursts of magnetic field deflections centred on 10 Hz are

observed on occipital sensors when no stimulus is occurring. These “alpha” bursts

are suppressed for up to one second when a visual stimulus occurs [18].

The act of button pressing also generates a reproducible complex of magnetic field

deflections that are most clearly revealed by averaging MEG data over a number of
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repetitions of button pressings. This evoked field includes a pre-movement compo-

nent observed on sensors over the contralateral primary motor cortex (M1), known

as the readiness field, and a combination of components that are localised to M1 and

primary somatosensory cortex (S1) and the broader sensorimotor network, in the ap-

proximately 300 ms after movement [19]. As well, bursts of magnetic field deflections

centred on 10 Hz and 20 Hz are observed on bilateral sensors over M1/S1 in the

absence of stimulus or movement. These “mu” (∼8-12 Hz) and “beta” (∼15-30 Hz)

bursts are suppressed for about 750 ms following a button press [18, 20]. At 750 ms

to 2000 ms, beta bursts are more common than in the pre-movement interval, such

that more beta band activity is measured in this interval, termed the beta rebound.

When a simple button press is cued by auditory and visual stimulus, we expect

that all of these responses will sum, with very little change to the spatiotemporal

dynamics. The only exception is that the pre-movement readiness field should occur

over a substantially shorter period, since it does not begin until the cue is received.

Furthermore, there are likely additional responses involved in integrating the pro-

cesses associated with the cue and required response. Responses associated with

these higher-level cognitive processes are not considered in this study.

Whereas the data used in this study contain activity from a well known task, the

intention of this research is to pave the way for the development of networks that

can identify pathological activity within a clinical setting. Eventually, we want to be

able to not only identify pathological activity, but also provide a means of identifying

the regions responsible for it. Ideally, trained networks would provide high quality

classification and visualisation techniques would allow for localisation.

In this paper we present a CNN designed to classify between MEG measurements

recorded during active and baseline intervals. Given successes in other medical imag-

ing studies, we believe that a CNN is an appropriate choice of network for this task

and should therefore produce high quality classification results when classifying sensor

measurement and source-estimated records. Although MEG measurements typically

have low SNR, there is underlying structure that is consistent across sets of channels

and times which a CNN can learn. With enough training data, we hypothesise that a

CNN will learn to effectively classify MEG records by extracting this underlying struc-

ture. We examine and compare the performance of networks that have been trained
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using minimally processed sensor records and source-localised data. We investigate

network performance in terms of dataset size by varying the number of participants

included in training. We also present visualisation and attribution methods in order

to reveal the features that these networks extract. We hypothesise that these features

will relate back to what is previously known about the task of cued button pressing.

Specifically, we hypothesise that the visualisation of the CNN will reveal a sensitivity

to occipital and temporal activity (due to the cue) and motor-related activity (due

to the button press).



Chapter 2

Methods

2.1 Participants & Paradigm

The datasets used with the networks in this project were derived from magnetoen-

cephalography (MEG) measurements recorded during the second, or core cognitive

neuroscience stage, of the Cam-CAN study [16]. This stage included 700 individuals

with a distribution of 100 participants within each 10-year age bracket (18-87 years

of age). Participants completed a series of sessions in which structural and func-

tional magnetic resonance imaging (MRI), along with the MEG measurements were

collected.

MEG data were acquired from 306 channels (102 magnetometers and 204 planar

gradiometers) at a sampling rate of 1000 Hz. Inline band-pass filtering between 0.03

and 330 Hz was applied using a 306-channel Vectorview system (Elekta Neuromag,

Helsinki, Finland). Digitisation of anatomical landmarks (i.e., fiducial points; nasion

and left/right preauricular points) as well as additional points on the scalp was also

performed for registration of MEG and MRI coordinate systems. Head position was

monitored continuously, and electrooculogram (EOG) and electrocardiogram (ECG)

were recorded concurrently along with stimulus/response event markers. T1-weighted

magnetic resonance images (MRI) were acquired using the 3T Siemens Tim Trio

system with a 32-channel head coil.

Participants performed the task of pressing a button using their right index finger

after the presentation of visual, auditory, or combined audio-visual stimuli. The onset

time of these stimuli was randomised between two and 26 seconds within each trial

in order to prevent anticipatory effects. This temporal separation between button

presses also meant that most magnetic field deflections due to the previous button

press would have completed with sufficient time before the next cue occurred. This

ensured that the MEG data of the current trial was not contaminated by the activity

recorded within the preceding trial.

6
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For the purposes of the binary classification scheme for this project, one-second

MEG data segments centred on the button press within each trial served as a record

belonging to the “Active” class. Participant response times were 300 ms on average

(across all participants). Thus, the active records included both cue- and motor-

related activity. One-second MEG data segments ending 700 ms prior to the button

press were extracted from each trial and provided the “Baseline” class records.

2.2 Data Preparation

2.2.1 Data Pre-processing

Prior to constructing datasets of sensor-level and source-estimated records appropri-

ate for use with a CNN, there were two sets of pre-processing pipelines applied to the

data. One set of pre-processing tasks was performed by the Cam-CAN group prior

to the public release of the data [21]. The other pre-processing was applied by our

lab [22].

The pre-processing performed by the Cam-CAN group included the application

of temporal signal space separation (tSSS) [23]. This technique was used to remove

noise introduced by external EM sources, perform head movement corrections, and

provide a virtual data transformation to a common head position for each dataset.

The tSSS process also allowed for the reconstruction of missing or corrupted MEG

channels. The virtual data transformations were especially important for our project

because they allowed for a straightforward aggregation of data across participants,

giving consistent sensor location with respect to the head across all participants.

The set of pre-processing tasks performed in-house by our group included splitting

up each participant’s dataset into individual trials and applying independent compo-

nent analysis (ICA) [24]. Using the event markers within the MEG data, the time

series for each participant was separated into trials and synchronised to the time of

each button press. Each trial contained a total of 3.4 seconds of measurements with

a pre-stimulus (baseline) period of 1.7 seconds in duration. Trials were excluded if

poor task performance occurred (button press occurred more than one second after

cue) or if the button press occurred within three seconds of the previous button press.

This second exclusion criteria ensured that all records derived from the pre-stimulus
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interval, which provided records for the baseline class, were not contaminated by

field deflections due to task performance. In particular, this criterion avoided the

inclusion in the baseline of a prolonged increase in the magnitude of the centrally-

generated beta rhythm in the roughly three seconds following a movement, termed

the post-movement beta rebound.

The automated FastICA routine was used to remove artefacts by decomposing the

data into individual components [25, 26]. Those data components with amplitudes

and phases similar to those of the electrooculogram and electrocardiogram signals

were removed [27]. Trials with signal amplitudes that exceeded 5 pT (magnetometers)

or 400 pT/cm (gradiometers) were also excluded. The remaining components were

reconstructed to form the artefact-removed datasets. For each participant, these

processes resulted in MEG trial data as a tensor with dimensions [# Trials, # Sensors,

# Time Samples].

MEG data were averaged across all trials and participants to generate the grand-

average evoked field data for cued button pressing. These data were visualised to

reveal the average magnetic field deflections associated with the task. It was expected

that these field deflections would match the features based upon past literature.

2.2.2 Sensor Record Processing

A set of processing tasks were performed in order to prepare the processed MEG

sensor data for use with a CNN. Specifically, individual trials were split up into

class records and the dimensionality of these records were reduced in order to reduce

computational complexity of the networks used.

The number of dimensions were reduced by first choosing only the magnetometer

channels thereby reducing the number of sensors in each dataset from 306 to 102.

Magnetometers were chosen instead of planar gradiometers for ease of interpretation

of the resultant field topographies. Since we expected the activity of interest to be

within a relatively low frequency range, a low-pass filter of 40 Hz was applied to all

trials. Each trial was also down-sampled to one quarter of the number of time samples

(i.e. 250 Hz).

With all of the processing applied, each trial was split up into baseline and active

intervals. The baseline interval included data acquired between 1.7 and 0.7 seconds
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prior to the button press and the active interval was taken from between -0.5 and 0.5

seconds around the button press. Thus, each participant trial provided two classified

records: one record labelled as baseline in the case of the data extracted from the

interval prior to button press, and one active class record from the interval around

the button press. All records were scaled to unit normal by subtracting the mean

and dividing by the standard deviation across each sensor.

After all processing tasks were complete, there were 75,396 records across 605

participants with an even distribution between the active and baseline classes. Each

record was essentially represented as an image with each row representing an MEG

sensor and each column representing a time sample. The dimensions of each record

contained 102 magnetometer channels and 250 time samples.

2.2.3 Source Localised Record Processing

Experimentation with classifying MEG data was also performed on representations

of the sensor data transformed into source space. (i.e., estimated as current flow

at specific locations in the brain, rather than magnetic field deflection outside of

the head). Estimated data in source space has the advantage of providing more

spatially-specific data, although there is the potential for inaccuracy in the source

data due to the estimation process. Source localisation was performed using the

same cleaned data that was used to process the sensor records. Similar to the sensor

record processing described above, a 40 Hz low-pass filter was applied to the data

and each trial was down-sampled to 250 Hz. Unlike the sensor record processing,

all sensors (magnetometers and gradiometers) were kept in order to provide more

accurate source estimations.

A boundary element model based upon each participant’s MRI was used to provide

an accurate model for source localisation. Accurate MEG/MRI co-registration was

performed manually [22] and used in these calculations. The method of dynamical

Statistical Parametric Mapping (dSPM) [28] was used to generate time courses of

source estimates at 11,656 vertices over the cortex. The number of source estimates

was reduced by taking single vertices from each of 68 regions of interest (FreeSurfer

aparc cortical parcellation) [29]. Specifically, the vertex associated with the centre of

mass of each anatomical region was used.
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Upon completing the source transformations, each trial was split up to form active

and baseline records. The same intervals as used in the sensor records were used with

1.7 to 0.7 seconds prior to button press forming the baseline class, and the interval

0.5 seconds before and after button press serving as the active class. As with the

sensor-level records, each record was scaled to unit normal using the mean and stan-

dard deviation across each region. After processing was completed there were a total

of 72,518 source-level records from 582 participants. Participants were excluded from

this process if no valid epochs were available after the pre-processing step. Further

exclusions were made if MRI/MEG registration could not be performed, if a valid

boundary element model could not be constructed, or if anatomically prescribed

dipole locations could not be determined. Each record consisted of 68 anatomical

regions by 250 time samples.

2.2.4 Training, Validation, and Testing Subsets

For classification experiments using both the sensor and source-estimated records,

the processed datasets were split into training, validation, and testing subsets. All

subsets were constructed by randomly sampling on the basis of participants. This

sampling was performed such that all records from a specific participant only existed

within a single subset in order to avoid data leakage. For example, if a participant was

selected for the validation subset, their records would only exist within the validation

subset. The largest subset was used for training the networks and was an 80% portion

of the available participants. The validation subset contained a random sampling of

5% of the participants and was used to guide training and inform hyper-parameter

tuning. The testing dataset contained the remaining 15% of the data and served as

an unbiased estimate of the classification accuracy of fully trained networks.

2.3 CNN Architecture

The CNN architecture for this study was developed with simplicity and efficiency

in mind. It was systematically designed with the smallest number of components

required to effectively classify MEG records. By developing networks in this way,

training could be performed quickly and analysis of the trained networks was simpli-

fied.
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The CNN design consisted of four layers: two convolutional layers, one fully-

connected layer, and a softmax classification layer. The network architecture for this

study is shown in Figure 2.1. The first convolutional layer contained eight kernels

that were convolved with the input MEG records. This meant that the input data

was convolved with eight different kernels producing eight feature maps as output for

this layer. The feature maps produced by this layer, as well as by the second layer,

had the same dimensions as the input data because convolutions were performed

using zero padding with a stride of one. The dimensions of the first layer kernels were

8x16 (channels x time samples). While typical convolutional kernels used in image

classification have dimensions of 5x5 or 3x3, 8x16 was chosen in order to capture the

structure within the MEG data associated with button-pressing which is expected to

occur on the timescale of tens of milliseconds. Furthermore, the kernel spanned 8

channels due to the fact that MEG data is spatially less resolved than image data.

The output feature maps from the first convolutional layer were used as input into the

second convolutional layer. The second layer performed convolutions using 16 kernels

with a more standard 3x3 dimensionality. A standard set of dimensions were used in

the second layer because, unlike the first layer, we had no a priori justification for a

different kernel dimensionality.

Following the two convolutional layers, the outputs were flattened and connected

to a fully-connected layer, which contained 64 neurons for sensor records and 32

neurons for source-estimated records. Each of these first three layers used standard

rectified linear units (ReLU) for non-linear activation. Finally, a two neuron layer

with softmax activation transformed the two class neuron values in order to output

a probability distribution across the active and baseline classes.
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Figure 2.1: The architecture used to classify the 2D MEG sensor record with di-
mensions containing 102 channels by 250 time samples. The network contained four
layers: 2 convolutional layers, a dense layer containing 64 neurons, and a softmax
classification layer containing 2 neurons. This same design was used to classify the
source-estimated records but with dimensions of 68 sources by 250 time samples prop-
agated through the network and a dense layer containing 32 neurons.

Batch normalisation was also employed within each layer prior to passing the

weighted sums to the ReLU activation functions. Batch normalisation is a technique

that normalises layer outputs across training batches in order to provide gradient

stability between layers, and to speed up network training [30].

In order to prevent over-fitting to the data, the network used dropout regularisa-

tion in which a proportion of network weights were randomly excluded during each

training step. The fully-connected layer excluded 50% of neurons during each training

step. Within each of the convolutional layers, spatial dropout was used to exclude

25% of the feature maps at each step.

2.4 Training Methodology

Binary cross entropy was the loss function that provided a measure of the difference

between the predicted and target class distributions during training. For each record

evaluation, the binary cross entropy was calculated as follows:

J = −y log ŷ − (1− y) log(1− ŷ), (2.1)

where y was the ground truth class label and ŷ was the network predicted label.



13

The AdaGrad algorithm was used to minimise the loss function by updating the

network weights during training [31]. AdaGrad is a gradient-based optimisation al-

gorithm that minimises a function via iterative updates using gradient calculations

and an adaptive learning rate strategy. It performed these updates using batches of

input records during each training step (i.e. mini-batch gradient descent).

At each training step, batches of training records were used by the optimiser to

evaluate the loss function, calculate the loss function gradient using backpropagation,

and compute the network weight adjustments. Batches of 25 records were used at

each training step when training using the sensor records whereas networks trained

on the source-estimated records used batch sizes of 50 records. Each batch was made

up of a random sampling of records from the training dataset. A training epoch

was said to occur when sufficient training steps had taken place such that all of the

available training data had been used to train the network. This meant that in the

case of the sensor records, with 60,310 training records and a batch size of 25, a single

epoch occurred after 2,413 training steps. The process of training the networks was

typically repeated for several epochs until the network had sufficiently converged.

Convergence, described in more detail below, was determined using an approach that

considered a combination of classification accuracy and loss function values.

After each epoch, the classification accuracy of the network was calculated using

the training and validation datasets. The classification accuracy was simply the

proportion of correctly classified records to the total number of records within a

given dataset. The classification accuracy values along with the cross entropy loss

values over both datasets were recorded. These values were used to guide training,

inform the training routine when to save network weights, and to allow for offline

analysis of network performance.

Since gradient-based minimisation approaches cannot guarantee convergence, a

heuristic approach was employed for obtaining optimally trained networks. During

training, the weights of the network were saved if the validation accuracy surpassed

that of all previous training epochs. Optimal networks were then chosen based upon

a combination of largest validation accuracy achieved and smallest associated cross

entropy values. In this way, the best networks had a combination of sufficiently large

validation accuracy values and loss function values within the neighbourhood of a
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minimum.

2.5 Characterising Network Performance with All Available Data

When gauging the range of performance one can expect from networks that have a

specific architecture and that were trained upon a specific dataset, analysis must be

performed using a collection of networks. Ensembles of 10 identical networks were

trained using all of the available data in order to characterise the performance of our

network design. One ensemble was trained using the sensor record data and a second

ensemble was trained with the source localised data. All networks were trained for

50 training epochs while the classification accuracy and cross entropy values were

calculated using the training and validation datasets.

After training was completed the classification accuracy and cross entropy values

were averaged across the ensembles at each epoch. These values were plotted with the

standard deviations in order to assess expected network performance and variability.

2.6 Characterising Network Performance with Limited Data

Due to the poor performance of networks trained using source localised records (see

Figure 3.2), further investigations were limited to the sensor data only. Datasets with

varying numbers of participants were constructed by randomly sampling from the

original sensor records to characterise network performance in terms of dataset size.

Sampling was performed on the basis of participant such that all of a participant’s

records were taken to avoid leakage. Like the original record set that contained all

records, these datasets were split up into subsets consisting of training, validation,

and testing records. Table 2.1 lists the number of participants within each dataset

along with the number of participants that were split up into each subset.
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Table 2.1: Datasets were generated with a varying number of participants. Each
dataset was randomly sampled from the original set of MEG records and then ran-
domly split up into training, validation, and testing subsets.

Total Training (80%) Validation (5%) Testing (15%)

20 16 1 3
40 32 2 6
60 48 3 9
80 64 4 12
100 80 5 15
200 160 10 30
300 240 15 45
400 320 20 60
500 400 25 75
600 480 30 90

Ensembles of 100 identical networks were trained using each dataset for a maxi-

mum of 15 epochs. Due to the initially smaller dataset sizes and a constant model

capacity (number kernels, fully-connected neurons were not altered), a higher degree

of variability in performance was expected due to over-fitting. As such, a larger

number of networks were included in each ensemble in order to better capture this

variability within the analysis. Training was also limited to 15 epochs in order to

limit the degree to which the networks would over-fit. As described in Section 2.5,

classification accuracy was calculated using the training and validation subsets, and

was saved for offline analysis. When training was completed, classification accuracy

was also calculated using the optimally trained weights from each network along with

the test subset of the sensor records. For each dataset, the training, validation, and

testing classification accuracies were averaged and plotted as a function of the number

of participants included in each dataset. The standard deviations calculated across

each ensemble and classification accuracy type served as a measure of the spread in

values.

2.7 Network Visualisation & Attribution

In the past, neural networks had been criticised for being difficult to interpret when

compared to models developed using more traditional machine learning techniques.
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However, there exist a number of methods that can be employed in order to investigate

what features these networks extract from input data and identify the features most

informative for classification.

In the case of models developed specifically using CNN architectures, extracted

features can be observed directly by examining kernels and the feature maps they

produce. Feature maps are constructed by convolving trained kernels with input

data. Using these maps, one can examine the learned representations of the data

that are propagated down through the network.

Recently, researchers in computer vision and image recognition have developed

further methods for investigating and visualising trained networks. Some of these

methods include activation mapping [32, 33], saliency mapping [32], and occlusion

mapping [34]. Although not restricted exclusively to CNNs, activation mapping is a

method of visualising the types of inputs that a specific network layer is sensitive to.

Saliency and occlusion mapping, on the other hand, are attribution techniques that

identify the portions of an input that contribute most to successful classification.

Since these approaches were developed for networks trained with photographs,

we had to adapt them for use with networks trained on MEG. Typically maps are

generated and analysis is performed on the basis of individual input records or im-

ages. Maps generated over a single image provide a readily interpretable and intuitive

visualisation of feature importance. In contrast, when these techniques are employed

with networks trained on MEG data, an ensemble approach is more appropriate. Like

image data, MEG records will contain consistent, underlying structure. Whereas im-

ages contain features such as specific shapes that may be scaled, rotated, or occluded

(e.g. windows, doors, and roofs within an image inform the presence of a house), fea-

tures contained within MEG records are in the form of peaks within magnetic fields

that occur at particular, reproducible times and on particular, reproducible sets of

sensors. Due to the relatively low SNR in MEG measurements, these field deflections

must be elucidated by aggregating over many records, which is not required when

these techniques are applied to photographs. As such, we have developed analysis

strategies that leverage maps generated over an ensemble of input records.

For the purposes of visualisation and attribution analysis, a single network was

selected which was fully trained upon MEG sensor records. From the ensemble of 10
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identically initialised and trained networks discussed in section 2.5, the best network

was chosen. This network was one that exhibited the best performance in terms of

classification accuracy and cross entropy loss from the ensemble. The above visuali-

sation and attribution methods were then performed using this network in order to

investigate the features specific to MEG that inform model performance.

2.7.1 Trained Kernels

Using the selected network, the trained kernels within the first layer were examined

directly by plotting them using a colour palette such that negative values were blue

and positive values were red. These plots were visually inspected in order to determine

if they contained suggestive, identifiable structure. Specifically we looked for the

presence of peaks, their sign, as well as the distance of separation between peaks.

2.7.2 Feature Maps

The eight kernels from the first layer of the trained network were convolved with all

of the records from the test dataset in order to generate eight sets of feature maps.

A total of 11,396 feature maps were generated for each of the eight kernels (91,168

total feature maps).

A random selection of feature maps were plotted and visually inspected in order

to investigate the general effects that each kernel had on individual MEG records.

In order to examine the overall ‘response’ of each kernel, the channel averages were

computed over each of the active and baseline classes for the eight sets of feature maps.

These map averages were then compared with the grand-average of the (unconvolved)

test dataset for the active and baseline classes.

The peaks associated with different events within the active class tend to occur

within specific time periods around the button press, but with some variance among

participants. The process of averaging can have the effect of flattening out or other-

wise smoothing specific components within the signal. For instance, averaging across

trials would eliminate sensitivity to the change in alpha bursts associated with the

presentation of a visual cue, or similarly, the beta burst suppression associated with

button pressing. Signal content related to these bursts would be effectively removed

because bursts are not phase-locked to the button press time.
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In order to investigate peaks within specific channels and times, peak detection

was performed on each feature map, and the spatial and temporal distribution of

peaks across all feature maps was studied. Peaks that were greater than or equal to

four standard deviations (4σ) were identified and the peak channels and peak times

were recorded. Both positive and negative peaks (i.e., local maxima and minima) were

included as peaks of interest because large amplitude positive and negative values both

represent neuromagnetic signals in MEG data. These sets of channels and times were

recorded across all feature maps for each of the eight kernels. From these data, two-

dimensional histograms (102 channels x 250 time samples) that counted the number

of times a peak was detected for a particular channel and time combination were

generated across the set of feature maps for each kernel. Using these histograms we

investigated the channels and times that had the largest overall contribution to the

data representation that propagates through the network.

2.7.3 Activation Maps

Activation maps can be thought of as input records that maximally activate neurons

within a network associated with a specified class. In the case of networks trained

with photographs, they represent the types of objects and structures that a network

is sensitive to when successfully classifying an object within an image. They are

generated by iteratively optimising via gradient ascent within input space in order to

maximise the probability associated with a target class [35]. The optimisation process

can be initialised using random values or using representative data as seed input.

For the purposes of visualisation, a set of activation maps were generated using the

MEG sensor records in the test dataset. These records provided the initial conditions

for the optimiser in generating each activation map. A set of 11,136 maps were

generated in this way with an even distribution of active and baseline records.

Peak detection and histogram construction was performed as described above in

Section 2.7.2. Both the positive and negative large amplitude peaks were detected and

went into the construction of the class-specific histograms. The histograms were ex-

amined in order to determine which sets of channels and times this method identified

as having the most contribution to class-specific probability.
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2.7.4 Saliency Maps

Saliency maps provide a representation of which individual data points within a given

record have the largest impact on classification. In order to generate these maps, the

softmax activation function was removed and the values of the class-specific neurons

were computed directly upon processing input. The output values from these neurons

can be thought of as a score function with respect to a specific class. By calculating

the gradient of the score function with respect to each data point within an input,

the importance of each data point was mapped. The data points that provided large

gradients were considered to have a large saliency whereas data points associated with

small gradient values had a smaller impact on classifying a particular record.

In order to investigate the most frequently salient points, saliency maps were

generated across all MEG sensor records within the test dataset. Peak analysis as

described above was also performed using the collection of saliency maps. However,

since this type of mapping contains positive-definite values, only the positive peaks

outside of four standard deviations were identified and recorded.

2.7.5 Occlusion Maps

Occlusion maps provide similar information as saliency maps but by using a different

approach. The output of the class-specific neurons were again calculated directly

and served as values of a class score function. Occlusion maps were generated by

systematically setting portions of input records to zero while recording the change in

this score function. Heat maps were generated as a moving window of 2x2 (channels

x time samples) dimensions was systematically placed over the input records. As

the occlusion window was placed over each region, the score function was recorded.

The resulting heat map was re-scaled to the range [0,1]. When covered, those regions

most important for classification provided the lowest values within the heat map (i.e.

values closest to 0). The least important regions contained the largest heat map

values since covering them had little or no impact on the score function.

Similar to the activation and saliency maps, occlusion maps were generated over

the sensor records within the test dataset. Because the minimum of the score function

infers region importance, the occlusion maps were re-scaled by subtracting 0.5 from
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them (i.e. maps were re-scaled to the range [-0.5, 0.5]) prior to performing peak anal-

ysis. The channels and times that contained negative peaks outside of four standard

deviations were recorded and considered regions important for correct classification.

2.7.6 Topographic Analysis

One interesting feature within the feature map histograms was an observed decrease

in peak counts between times before and after button press within the active records.

An advantage of constraining feature maps to the same dimensionality as the input

sensor records is that phenomena found within feature maps can be mapped back

to MEG sensor locations around the head. In this way, topographic maps could be

generated using feature maps and feature map histograms. The intention of these

topographic maps was to provide insight at an approximately anatomical level.

Based on an observed reduction in the number of peaks occurring after the button

press in Active records, the difference in counts between the time ranges of -400 ms

to -300 ms before button press, and 152 ms to 252 ms after was calculated across all

eight feature map histograms. These calculated differences were then mapped back to

the original sensor locations in order to construct topographic maps that highlighted

areas where counts decreased most prominently.

Whereas feature maps illustrate which features are directly extracted from input

data, activation, saliency, and occlusion maps attempt to identify features of impor-

tance via different approaches. In order to examine the common features across these

importance mapping techniques, we investigated the peak channels and peak times

that were commonly identified by all methods. To facilitate this, topographic maps

were generated by mapping the histogram counts within selected time samples onto

the associated MEG sensor locations. Time intervals were selected based on the 2D

histograms, to investigate the spatial distribution during periods of time that were

reliably deemed relevant to the CNN. Histogram values were averaged and projected

over the following time ranges with respect to button press: (1) -200 ms to 0 ms, (2)

-65 ms to -55 ms, (3) 50 ms to 60 ms, (4) 125 ms to 135 ms, and (5) 250 ms to 400

ms. In terms of known neuromagnetic activity for this task, these intervals encompass

cue-related evoked responses, the motor readiness field, the movement-evoked fields

in M1/S1, and the suppression of beta and alpha bursts.
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There were five topographic maps generated from each of the activation, saliency,

and occlusion map histograms. These topographic maps were then compared to one

another to identify common peak locations. Topographic plots over these time ranges

were also generated using the grand-average of the active records within the test

dataset. These grand-average plots identified expected regions of activity with which

to compare the features identified by the visualisation and attribution techniques in

the context of the expected neuromagnetic responses.



Chapter 3

Results

3.1 Network Performance: Training Epoch Dependence

3.1.1 Sensor Records

The classification accuracy and loss function (cross entropy) values of ensembles of

10 networks trained for up to 50 epochs were calculated and recorded. Plots of the

average classification accuracy and average cross entropy from these ensembles are

shown in Figure 3.1. The average classification accuracy is shown on the left and the

average cross entropy is shown on the right. The metrics calculated over the training

subset are shown as blue circles and validation subset values are represented as or-

ange squares. The networks tended to converge quickly with the average validation

accuracy reaching a maximum of 0.960 ± 0.001 after only six epochs. Subsequent val-

idation accuracy values tended to fluctuate about this maximum value. Conversely,

the average loss function values attained a minimum around the same epoch value be-

fore trending towards an increase. The variance in the validation cross entropy among

the ensembles also trended towards an increase as training progressed. This observed

trend in the validation cross entropy would suggest that network performance did not

improve after approximately six training epochs and that networks tended to over-fit

to the data after this point. An increase in cross entropy would suggest that the

optimisation process was increasing the difference in class probabilities away from

the correct labels, essentially increasing the probabilities associated with incorrect

labels. The average classification accuracy calculated over the test dataset and using

optimal network configurations was 0.974 ± 0.001. Of the 11,396 records within the

test dataset, a single network within the ensemble mislabelled 302 records. There

was a relatively even split between the active and baseline records with 161 and 141

respectively.

Another point of interest is that the average training accuracy was lower than the
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kernels however, do not appear to contain readily discernible patterns.

The structure contained within these kernels is constructed during training in

order to extract specific features from the data. These extracted features go into

forming an informative representation of the data with which the network uses to

perform classification. Of particular importance for MEG data are the temporal

dynamics of the patterns within the kernels. Among the kernels, there is varying

temporal separation among peaks with some appearing to be separated by 32 up to

64ms (8 to 16 kernel elements). For example kernels (I) and (II) show this, as well

as within channels three and four of kernel (VI). This suggests that some kernels

may have a sensitivity to temporal dynamics with a particular associated period. In

some cases, these time scales equate to the beta burst frequency range. For example,

channels two and five on kernel (IV) have positive and negative peaks separated by

20 ms. These channels will be maximally sensitive to an oscillation with a 40 ms

period, which equates to 25 Hz.
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times a peak of 4σ or larger within a set of channels and times were constructed

across all sets of feature maps. The left panel of Figure 3.7 contains the histogram

constructed from the feature maps produced by kernel (I) in Figure 3.5. Each trace

represents the peak counts for a specific channel at each time sample. A key feature

observed within this (and other) histograms was an apparent decrease in counts after

the button press, in comparison to the interval prior to the button press. This decrease

in counts following the button press appeared to match the temporal dynamics of

expected beta suppression in S1/M1. Therefore, the difference in counts between

intervals before (-400 ms to -300 ms) and after (152 ms to 252 ms) button press were

calculated over each channel. The intervals from which the count differences were

calculated are shown in blue. These differences were mapped onto the sensor location

to construct topographical plots in order to investigate the location with the largest

decreases.

The topographical map constructed by mapping the change in counts following

the button press to the associated sensor locations is shown on the right side of 3.7.

The largest decreases in counts appeared to occur over the central sensors overlying

S1/M1, as would be expected with beta suppression.

Along with beta suppression, this particular kernel appeared to be sensitive to

features along the edge of sensor space. This could be the result of the representation

used for the senor records. Within the sensor record array, sensors were listed by row

in an order that matched the naming convention set by the hardware manufacturer.

This ordering only partially resembled the spatial relationship among the sensors with

groups of sensors clustered together within specific regions of the head. While sets of

sensors were listed together in regional groups, there were some spatial discontinuities

among these groups.

Reminiscent of the grand-average and feature map average curves shown in Figure

3.6, two peaks were observed prior to button press between -200 ms to 0 ms, and

afterwards between 0 ms to 150ms. These appear to be associated with expected

peaks related to stimulus onset and the sensorimotor response respectively. Two

prominent peaks can be seen within the first few time samples as well as the last few.

These peaks are artefacts that were possibly the result of edge effects introduced by

zero-padding the convolution operations. These artefacts did not affect our analysis
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and to compare these locations among the methods used, as well as to the locations

of activity that we expect to observe during the task of cued button pressing.

For reference, the top of Figure 3.11 contains a plot of the grand-average over

the active test records. Immediately below are the topographic plots containing the

average sensor values over five selected time intervals. Similar to the topographies over

the grand-average of the MEG data (Figure 3.4), the topographic plots were generated

over regions containing evident peaks and highlight regions of activity associated

with the cue and button press. Specifically, the first two plots prior to button press

show topography that suggests bilateral occipital activity related to the cue. The

topographic plot in the middle (50 to 60 ms) suggests sources that are bilateral

and likely related to the sensorimotor activity involved in button pressing. The last

two plots over 125 to 135 ms and 250 to 400 ms show topographies that are less

interpretable with activity that is likely the result of multiple brain regions involved

in later processing.

Following the grand-average topographic plots are those constructed over the acti-

vation maps, the saliency maps, and the occlusion maps. Each set of the topographic

plots shows some correspondence with the grand-average activity across the same

time intervals. These similarities range from singular peaks as in the case of the

activation maps, to collections of different peaks associated with activity and edge

artefacts.

The activation maps for each time interval appeared to identify a single loci of

strongly activated sensors. This loci is in a different location for each time interval,

and sometimes overlaps with an associated channel set within the grand-average.

There were no counts during the 125 ms to 135 ms interval, although there is clearly

activity in the grand-average at this time. This lack of counts is not surprising, given

the sparsity of data in the 2D histogram (see left panel of Figure 3.8). The lack of

consistency between the activation maps and the movement-related neuromagnetic

signals is perhaps not surprising, given that activation maps often do not result in

visualisations that look like any record in the original image set. When applied

to photographs, activation maximisation techniques typically result in mappings that

contain class-related shapes and textures with varying colours and orientations. Image

activation maps represent inputs that maximally activate class-specific neurons, or in



36

other words, the types of inputs the network is sensitive to. As such, MEG activation

maps cannot be considered representative MEG records of the target classes. In the

case of these maps, it appears that optimisation was performed by tuning only a small

subset of the input data points. So while these activation maps may not represent

records belonging to a particular class, they do suggest the importance of a small

subset of the possible channels and times.

Upon visual inspection, the saliency maps appear to have the most correspondence

to the features observed within the grand-average, as well as our expectations based

on prior studies of cued-button pressing. The saliency maps seemed to identify most

of the same peaks as the activation maps. Specifically, during -200 to 0 ms, important

features in central and occipital sensor sets were observed that align very closely with

the sensors activated within the grand-average during this time interval. During

-65 to -55 ms, high counts on a small locus of left central sensors was observed,

which overlaps with a positive locus in the grand-average. Interestingly, the other

strongly activated sensor loci in the grand-average at this time interval show a weaker

correspondence in the saliency map, indicating that not all of the field represented

in the grand-average is particularly salient for classification by the CNN. During

the remaining three time intervals, consistently high saliency is measured on central

sensors that overlap with the measured grand-average. Interestingly, the saliency

topography matches closely with the feature map topography in Figure 3.7. This

suggests some commonality between these visualisation/attribution methods, and

points to a possible representation of beta suppression in the saliency map.

Lastly, the topographic plots from the occlusion maps also identified some of the

same regions of activity but they also seemed to identify loci of sensors along the

edge of the array. This is also true for the saliency map in the -200 to 0 ms time

interval, and is uncommon in results generated by standard approaches to analysing

neuromagnetic recordings. This result likely represents an artefact of the analysis

method. These are termed “edge effects”, as they might be the result of the fact

that the sensor order has only a loose relationship to their spatial location. Thus,

there are spatial discontinuities in the representation of the records, wherein channel

order within the data arrays did not fully correspond with the relative locations of

the MEG sensors on the head. Kernels that are selective for sensors (rather than
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time) may enhance the saliency at these discontinuities.

It is important to note that the grand-average provides a basis for identifying

regions of importance but it may not contain some of the features that visualisation

methods are sensitive to. Specifically, the grand-average will not include any signals

associated with rhythmic bursts because these bursts are not phase-locked to the

button press. However, the results of the feature map visualisation make it clear that

the CNN is sensitive to both rhythmic bursts and evoked activity. This may partly

explain why the topographic plots show only partial overlap with the grand-average

in regions and time intervals.





Chapter 4

Discussion

4.1 Summary of Main Findings

In this study we developed a CNN that can classify between active and baseline

intervals within MEG sensor records with minimal processing. We have shown that

high quality classification can be achieved using a relatively small network constructed

using only the basic building blocks of CNNs and without specialised architectures.

These results suggest that a CNN is a viable choice for constructing models using

MEG data. This is an important step within the field because previous research has

mostly focused on the application of traditional machine learning techniques to MEG.

Any examination of deep learning has primarily been limited to studies with small

datasets.

Despite successes using sensor-level records however, networks trained on source-

localised records performed poorly. Further research into appropriate data repre-

sentations and network designs will be required in order improve performance with

source-estimated data.

We also studied the effect of dataset size on the performance of our networks.

By training ensembles of networks on datasets that contained sensor records from

a variable number participants, we showed network performance increased dramat-

ically with dataset size, particularly with smaller datasets (on the order of tens of

participants). These dramatic increases were observed for datasets that included up

to 200 participants. For datasets larger than 200 participants, performance contin-

ued to improve but with less pronounced increases in classification accuracy. As

expected, optimal performance was observed when networks were trained using all

available data. These results suggest that any future application of deep learning to

minimally-processed MEG data should employ datasets containing on the order of

hundreds of participants.

39
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Using visualisation and attribution techniques developed within the field of com-

puter vision, we showed that a CNN trained using MEG sensor data can learn the

underlying structure within MEG data in order to perform classification. It was

shown that one can determine the features that are extracted by a trained network in

order to effectively represent the data. This can be achieved by examining the trained

kernels and the features maps they produce. With the use of activation, saliency, and

occlusion maps, we investigated the specific channels and times within active records

that the network focused upon in order to identify records. Our analysis showed that

these regions corresponded well with the activity associated with perceiving an audi-

tory and/or visual cue, as well as the motor response elicited during button pressing.

These visualisation and attribution techniques offer a means of investigating network

training as well as a way of determining which features of brain activity are important

for accurate classification.

Importantly, these techniques allow for analysis on a single-trial basis. Traditional

analysis of MEG data is performed on aggregates from a dataset in order to elucidate

phase-locked activity as well as changes in rhythmic bursting activity. The approach

described here allows for the investigation of both. Feature maps from a trained net-

work showed network sensitivity to beta suppression as well as the activity associated

with the auditory,visual, and the sensorimotor evoked fields.

4.2 Poor Performance on Source-Estimated Data

Although our CNN design could effectively classify sensor-level records, networks

trained on the source-localised data produced poor results. One factor that could

contribute to this is the fact that source localisation methods provide an estimate

of the current flow within different regions of the brain. These estimates can be

effected by factors including the model that was used to facilitate the calculations

as well as the specific mathematical method employed. While one can achieve rel-

ative agreement among localisation methods when dealing with a well-understood

paradigm, variability can exist among the results of various methods. For example,

the beamformer spatial filter used to estimate current flow has a tendency to atten-

uate spatially separated sources that are highly correlated [36]. If any such activity

was important for classification at the sensor level, then it will be attenuated in the
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source-estimated data, which would negatively impact on classification accuracy.

Another likely challenge for the source-estimated model is the spatial representa-

tion of the data. Although these estimates are calculated over a large collection of

vertices, a reduction in the number of vertices is required to form practical represen-

tations. Thus, the number of sources is reduced from 10,000’s to less than 100 by

taking the source estimate at the centre of anatomically defined regions of interest.

The source activity at each region is represented in the same way that MEG sensors

are represented in the sensor-level CNN. This reduction in the number of channels

makes it convenient to investigate source activity in terms of projections onto models

and aggregate calculations. Importantly, at the sensor level there is a rough spatial

correlation between sensor index and sensor position, such that adjacent rows in the

record tend to represent data from nearby sensors. This spatial correlation is lost in

the source-estimated representation, when reducing 3-dimensional positions to rows

in the record. Likely, this is problematic for training the kernels. Thus, there is a loss

of information, in terms of representing these records effectively as input photographs.

In order to fully exploit the advantages of source space estimates and the abil-

ity to extract features using convolutions, a different representation is required. As

stated, we trained networks directly on arrays that contain the time courses over each

region. Better results might be attained by using a four-dimensional representation of

the data. This representation could include three dimensions to represent the spatial

projection of activity onto the brain with temporal dynamics over the fourth dimen-

sion. This particular representation of the data would be much more computationally

intensive, as it would mean using the original 10,000’s of vertices. To address this,

records could be restricted to particular regions of interest (e.g., ranges in x, y, and z)

for tasks involving more localised activity. However, we specifically wished to avoid

feature engineering (such as region selection) in this study. With sufficient time and

CPU access, a four-dimensional CNN would be an interesting future direction for this

study.
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4.3 Representation Learning Versus Feature Engineering

One main advantage of using deep learning is that feature engineering is not required

in order to develop viable and effective models. Guided by probability, neural net-

works learn representations of the data automatically in order to accomplish a task.

Feature engineering employed in more traditional machine learning applications, on

the other hand, requires expert-level knowledge of a problem area and model predic-

tions can be sensitive to the choice of representation. Furthermore, these representa-

tions may fail to capture the more subtle factors of variability within the data that is

required to effectively represent class membership. The representations generated by

a deep learner empower models that are both more robust and allow us to gain insight

into highly complex systems. When provided with enough data, and a network with

an appropriate capacity, deep learning models can be developed to solve problems

within highly complicated subject areas.

Using various visualisation and attribution methods, we showed that these repre-

sentations can be examined both to ensure that networks are performing correctly,

and in an exploratory manner to reveal which features in the data are important

for classification. Our results provide evidence that visualisation and attribution

methods are effective at identifying features of the neuromagnetic recordings that are

previously known to be generated during cued button pressing. This is an important

validation of the proposed CNN before its utilisation in more challenging problems

(i.e., more complicated cognitive tasks). Our results do not provide clear evidence

that these visualisation and attribution methods can identify previously unknown

features within MEG data. However, this possibility is difficult to rule out entirely,

as these unknown features may be subtle or non-obvious. This points to one of the

challenges of visualisation and attribution, which is that it still falls to a human to

interpret the maps. It is also worth noting that the network we employed was shal-

low. Our choice of model allowed rapid development toward a proof of concept but

possibly limited the interpretability of its results. Perhaps a more specialised, deeper

CNN implementation, can readily identify more features within these data as well as

any hierarchical relationships that exist between features.
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4.4 Relative Value of Visualisation and Attribution Techniques

Among the visualisation and attribution methods presented, saliency maps appeared

to provide the most informative results. While the active and baseline saliency his-

tograms were very similar, there were some noticeable differences between these and

the activation and occlusion histograms. The activation histograms tended to show

sparse regions of activation and produced results that were difficult to interpret.

These differences were likely due to the optimisation process that produced them.

The occlusion histograms showed similar structure to the saliency histograms but

with importance being more spread out over the baseline records. This intuitively

suggests that specific regions were more important for classifying active records as

compared to the baseline ones.

Visual inspection of the topographic plots showed that the saliency maps tended to

more accurately capture the regions of activation as demonstrated within the evoked

field. Furthermore, the late component represented in the saliency maps (approxi-

mately 200-400 ms) may represent a sensitivity to suppression of cortical rhythms.

By calculating the change in the output with respect each data point, the resulting

mappings provided a reasonably intuitive representation of feature importance. One

thing to note about the implementation shown in this study is that the absolute

values of the gradients were propagated through the network to generate the maps.

This meant that small changes in data points that had a positive impact on class

score were represented as well as those with a negative effect. Other gradient-based

techniques can be employed that use only positively impactful gradient information

[37].

The gradient-based saliency method identified more of the expected regions than

those sparsely identified using input activation and did so with fewer edge effects than

what was observed in maps generated via occlusion. The activation maps contained

limited regions with relevant activation. This was probably due to the fact that the

input could be tuned at arbitrary data points in order to make patterns that give

high probability for a specific class. In our examples, it appears that the activation

maps were generated by maximising activity over a small subset of sensors and times.

The occlusion maps lacked the specificity of the saliency maps and attributed im-

portance to unrelated sensors. They were generated by systematically setting a grid
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of data points to zero using a 2x2 moving window. At certain locations within the

records the occluder would cover both informative regions as well as non-informative

ones at the same time. A decrease in the score function would still be observed when

this occurred. When this occurs in photographs, a gradient of gradually changing

values can be seen in the resulting occlusion maps. However, due to the spatial dis-

continuities within the representation of the MEG sensor records, importance can

be attributed to sensors that were spatially unrelated. These regions where the oc-

cluder overlapped with spatial discontinuities were likely the cause of the edge effects

observed within the topographic plots.

4.5 Application to New Datasets

Following a few guidelines, the methods we have demonstrated can be used to train

and analyse networks using new data. First, an appropriately large dataset is re-

quired in order to take advantage of deep neural networks. In the case of our simpli-

fied, shallow model, and the particular binary classification task we used, we found

that a dataset that contained records from hundreds of participants was essential for

accurate classification. This was equivalent to having a dataset on the order of tens

of thousands of individual records with an even distribution of records between the

classes. The reason for requiring such a large dataset is two-fold: more training data

means better classification accuracy, and the dataset should be divided into subsets

in order to guide training and test model performance.

To ensure that networks train correctly, and to avoid over-fitting to the data,

classification accuracy as well as loss function evaluations should be considered. These

metrics should be calculated using the validation subset of the data after each training

epoch. Training of a network should proceed until the network has converged to a

classification accuracy maximum and an associated loss function minimum. With

this combination of metrics, the resulting models should generalise to new data.

4.6 Future Steps for Clinical Applications

A number of steps must be taken in order to prepare the technologies from this study

for use in a clinical setting. Ideally, a system employing these networks would provide



45

an informative model of healthy and pathological brain activity for a given paradigm.

Such a network would provide high quality classification for diagnosis, and analysis

using some form of visualisation and attribution methods would localise regions of

the brain presenting the activity of interest.

Future studies will be required in order to develop network architectures that

improve classification accuracy using MEG data and provide more refined visualisa-

tions. For instance, a deeper network with more convolutional layers may allow for

the construction of a hierarchy among the learned features. This could improve the

overall performance of the network as well as the interpretability of the learned data

representations.

Further research will also be required in order to frame the application of these

networks within the context of current diagnostic practices. Application to a specific

paradigm and a comparison to current standards of care will be required. For exam-

ple, the use of simulated MEG data could provide the ground truth with which the

performance of the developing technologies can be compared to the current standards.

With careful consideration these technologies have the potential to enhance clinical

diagnostics.
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The vector ẑ is the unit vector that points along the axis of the sensor. This expres-

sion shows that MEG sensors specifically measure the tangential component of the

primary current. The measured magnetic field Bz falls off with the inverse square of

the distance between the sensor and the source. Therefore, MEG sensors are more

sensitive to sources near the surface of the cortex.

5.2 Supervised Machine Learning

Machine learning is the study of algorithms and statistical models that computer

systems use in order to learn to perform tasks. These algorithms are designed such

that models can be developed without the need for sets of instructions or explicit

direction from an operator. Instead, model parameters are tuned in order to optimise

a performance criterion using data or past experience [2]. Models developed using

machine learning can be predictive, descriptive, or both.

The goal of any machine learning algorithm is to learn to perform some task.

Machine learning tasks can be described in terms of how a system should process a

record. Most machine learning approaches fall into two main categories: supervised

and unsupervised learning [2, 3, 40]. These categories are determined by how an

algorithm processes datasets during the training process. A dataset is a collection of

records and each record is a collection of features which have been measured from

some object or event. More specifically, a record can be represented as a vector

x ∈ R
n with a set of elements xi as features. These features can be anything from

raw sensor measurements, location coordinates, or specially engineered features such

as averages, median values, or variances.

Models developed using unsupervised learning come from a class of algorithms

that process datasets with the objective of learning useful properties or discovering

unknown structure within the data. These types of algorithms can be used to con-

struct what are called generative models. The objective of a generative model is to

represent the entire probability distribution that generated the data [40]. Other types

of unsupervised learning algorithms perform clustering in which a dataset is divided

up into subsets of records that have similar or related properties.

Unlike unsupervised learning, supervised learning involves training models on a

dataset that contains properties or structure that is known beforehand. Supervised
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learning algorithms process datasets containing records such that each record is as-

sociated with a label or a target class. These associations between record and target

are known a priori and guide the development of a model. The learning is said to

be supervised in that a target is provided to the model by an instructor in order

to guide the training process. Some examples of supervised machine learning tasks

include regression, machine translation, and of particular importance to this project,

classification. Classification is the task of specifying to which of c categories some

input belongs.

Formally, a model that is trained to perform classification produces the functional

mapping f : R
n −→ {1, ..., c}. During training, a model randomly observes input

records x and the associated class value encoded as y = f(x). For each record, the

model learns to produce a class prediction ŷ by estimating the probability p(y|x) [3].

Within other classification schemes, such as the approach used within this project, the

probability distribution P (y = j|x) over j classes is produced by the model instead.

In order to guide training and provide a metric for performance, the classification

accuracy of a model is calculated. The classification accuracy is simply the proportion

of correct class predictions within a given dataset. For the purposes of training

and testing models, datasets can be divided up into two or three subsets: training,

validation, and testing. The training set is the largest subset of the data and is used

to directly train a model. A validation set is used to calculate classification accuracy

during training at different stages in order to gauge the progress of training. Although

not always used, a separate test subset can also be used to perform offline testing

after the completion of training. The classification accuracy is calculated using each

dataset for differing purposes. The classification accuracy calculated over the test set

serves as an unbiased measure of model performance because it was not used during

the process of training. Although other training methodologies such as k-folds cross

validation can use all of the data during training, the dataset within this project was

split up into train, validate, and test subsets.

5.3 Deep Learning with Artificial Neural Networks

Machine learning systems learn the patterns that have been extracted from raw data.

The performance of these systems heavily relies upon the representation of the input
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data. Each piece of information included in the data representation is known as a

feature and it is the selection of features that directly affects outcomes [3]. In order to

achieve optimal performance, the collection of features within a representation must

adequately capture or separate out the factors of variability within the data.

Traditional machine learning approaches require specialised feature engineering in

order to develop an appropriate representation of the data. Raw data can contain

too many dimensions (i.e. “the curse of dimensionality”) for traditional models to be

tractable. In cases such as these, feature engineering is required in order to reduce

the dimensionality of the data while preserving the factors of variability within data.

In other cases, the separation of classes may not be obvious in the current feature

space without some additional transformation. This transformation (which could very

well be non-linear) is required in order to make the problem tenable for a traditional

machine learning approach. Effective feature engineering requires expert knowledge

of the problem domain in order to understand the important patterns within the data

so that an informed representation can be developed [3]. Feature engineering tasks

can include data transformations, statistical approximations, or the calculation of

other aggregate data. The performance of these systems can vary widely depending

on the method of feature engineering. For instance, one might find that the median

value over a set of measurements produces a better way to discriminate among a set

of classes as compared to the mode or mean values.

In contrast to this, deep learning techniques avoid this problem by performing

what is known as representation learning [3]. Deep learning builds up complicated

representations of the data from simpler ones using artificial neural networks. These

networks are inspired by functioning in the brain with the neuron forming the basic

unit. A neuron is a mathematical construct that takes a set of inputs, multiplies

them by a set of weights, sums them, and in some cases, a scalar known as a bias

is added. The output of a neuron is then put through a non-linear transformation

known as an activation function before being passed along as input into other neurons

or as network output. The most commonly used activation function is known as the

rectifier and neurons that use it are referred to as rectified linear units (ReLU). The

operation they perform is simply expressed as follows:

f(x) = max(0, x) (5.3)
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where the value of an input x is returned if is greater than zero and zero is returned

for all negative values. Networks are developed by constructing layers of neurons

that can be interconnected in various configurations. These networks are called deep

because model complexity is increased as a factor of the number of layers that make

up the network.

In order to train a neural network to perform a supervised task, a function that

expresses the difference between network output and target class is required. This

function is called the loss function and a basic one is the mean squared error:

MSE =
1

n

n∑

i=1

|yi − ŷi|
2. (5.4)

This function represents the average difference between the predicted class and target

class for each record with n records. With an expression of the difference between

network prediction and target label, training can be framed within the context of

optimisation.

Neural network training typically employs some variant of the gradient descent

algorithm that tunes the network parameters in order to find a loss function minimum.

This process therefore minimises the difference between the predicted and target

labels. If the loss function is expressed as a function of the set of network weights

E(θ), then the standard gradient descent algorithm can written as:

θn+1 = θn − η∇θE(θ), (5.5)

where each future weight value is made up of the current weight, adjusted along

the direction of the negative gradient. The magnitude of each step is dictated by a

learning rate η. The gradient of the loss function with respect to the network weights

(∇θE(θ)) is determined using the backpropagation algorithm. In simple terms, this

iterative algorithm works in two main stages: first the loss function is evaluated by

forward propagation of an input example, and secondly, the chain rule is used to

propagate backwards calculating the activation function derivatives over the weights

within each successive layer.
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5.4 Convolutional Neural Networks (CNN)

The basic building blocks of a CNN typically include three stages: convolutions,

nonlinear activation functions, and pooling [3]. The convolutions in these networks

sparsely extract features from inputs while the activation functions facilitate the for-

mation of nonlinear interactions between input and output. In some networks, pooling

is introduced in order to reduce computational complexity and to allow for represen-

tations that are invariant to translations within the input. The idea being that it is

more important to determine the presence of particular features and not the precise

location of them.

For the purposes of classifying MEG data, a CNN using the first two basic build-

ing blocks was designed. Pooling was not incorporated because we required more

specificity in the times that events occurred within each record. We further required

feature maps to possess the same dimensionality as the input records. This was im-

portant because we wanted the feature maps produced by the first layer to contain

one-to-one correspondence with input MEG records. This simplified investigation of

feature maps and allowed for direct comparison to topological sensor location.

5.5 CNN Visualisation and Attribution Examples

For the purposes of demonstration, a VGG16 network [35] that was trained on the

ImageNet 1000 [41] dataset was used. Figure 5.1 shows an image of a cat on the left

along with a square grid of images that illustrate the visualisation and attribution

techniques that were used in this project. The features maps that were examined

in this study were generated by convolving input records with the first layer kernels

of a trained network. Within the example shown in Figure 5.1, some of the kernels

appeared to act as edge detectors. Features such as the shape of the cat’s head and

body can be clearly observed in the example image. Features such as these were

propagated through the network in order to form an informed representation of the

data. Activation maps are generated by tuning input space in order to maximise

output with respect to a specific class. The resulting maps typically contain an

assortment of features with varying colours, rotations, and scalings that the network

is sensitive to when determining a particular class. In the case of the example shown





Chapter 6

Supplemental Material: Additional Results

The figures in this section show results relating to the feature maps from all eight first

layer kernels of a network trained using the sensor records. These plots are shown to

demonstrate the consistency of the results across all of the feature maps. The active

class plots were centred at the button press whereas the baseline class plots were

centred at -1200 ms prior to button press. Figure 6.1 shows the grand-average over

the active and baseline records from the test dataset as a basis for comparison.

Figures 6.2 and 6.3 show the channel averages over the eight sets of feature maps,

highlighting kernel I to IV in figure 6.2 and kernel V to VIII in figure 6.3. The overall

structure within the active class averages show peaks consistent with those shown in

the record grand-average. The overall amplitude of these peaks tended to increase

across all feature maps. As well, the amplitudes of peaks are different for different

kernels, indicating changing patterns of sensitivity across kernels for different peaks

in the data. For example, kernel V shows equal sensitivity to the peaks at −100 ms

and 50 ms, while kernel VIII appears to be more sensitive to the earlier peak than

the later. Changing sensitivity to different components is likely due to differences in

how each kernel act as channel selectors.

It is also clear that the peak times were also shifted across some channels. For

example, the first peak in the grand-average feature map for kernel I has a minimum

at approximately -150 ms. The neuromagnetic peak is clearly at -100 ms based

on Figure 6.1. Importantly, many of the kernels (including kernel I) act as “edge-

detectors” in time, where a row of the kernel includes a strong negative and a strong

positive separated by some period. An edge detector of this type would convert the

start of a neuromagnetic peak (where there is a large rate of change) into a peak in

the feature map.

Figure 6.4 (kernels I-IV) and Figure 6.5 (kernels V-VIII) show the histograms

(right) that count the number of times peaks greater than or equal to 4σ occurred
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Chapter 7

Supplemental Material: 3D Sensor Representation

7.1 3D Record Transformation

Expression of the spatial relationships among sensors were limited within the two-

dimensional records that were used throughout this study. Within each record, sensors

were represented by rows with the order determined by the manufacturer sensor

naming convention. In this way, sensors were grouped together in related regions but

discontinuities existed among them. Visualisation showed possible sensitivity to these

discontinuities manifested as the edge artefacts seen in Figure 3.11.

In order to overcome some of these limitations and to better utilise the ability of

a CNN to extract spatial structure from data, a three-dimensional representation was

constructed and tested. Using the pre-processed records from the dataset described

in Section 2.2.2, channel values were mapped back to associated sensor locations.

The intermediate values between sensors in the grid were estimated using linear in-

terpolation. The new records contained three dimensions for 42 x positions, 42 y

positions, and 250 time samples. Figure 7.1 shows the arrangement of sensors within

the left plot along with an example of a time sample with interpolated values on

the right. All values outside the bounds of the MEG helmet were set to zero. The

records within the new representation therefore were three-dimensional tensors, which

contained two-dimensional topographies over time.

59









63

Along with these potential advantages, using this representation comes with ad-

ditional costs in terms of computing and storage resources that affect all facets of the

training, testing, and analysis pipeline. In addition to the standard MEG data pre-

processing, and sensor record preparation, additional time was needed to interpolate

values between sensors at each time point. This required an additional 1.3 hours of

processing time to perform across all 2D sensor records. The additional dimension

also meant an increase in data storage with a file size of 146 GB compared to the 15

GB file required to store the 2D sensor records. Furthermore, the amount of time

required to train these networks was also increased. For comparison, a 3D network

using two graphics processing units (GPUs) required 17.7 ± 0.2 hours on average in

order to train for 25 epochs. A 2D network using a single GPU required 45.0 ± 0.6

minutes on average to train for the same number of epochs.



Chapter 8

Conclusion

Using an appropriately large dataset, deep learning models such as convolutional neu-

ral networks (CNNs) can be developed to be applied to neuroimaging. In this study

we designed a CNN to classify between active and baseline intervals within a large,

open-access MEG dataset. We experimented with networks using different represen-

tations of the data. These representations included 2D sensor records, source-localised

records, and 3D sensor records. The networks trained using source-estimated records

did not perform well, probably due to the loss of dimensionality during the localisation

process. The networks trained using the sensor records provided the highest quality

classification. The 3D representation of the sensor records provided networks with

comparable results to the 2D counterparts but with increased overhead. Due to the

additional dimension there was an associated increase in computational complexity

when training the model along with increased memory and file size requirements.

Visualisation and attribution techniques were used to analyse a fully trained net-

work. Feature maps generated by convolving input with a trained kernel provided a

means of investigating the features the network extracted from the data in order to

form a representation of the data. The visualisation and attribution techniques found

within the field of computer vision provided a means of identifying the portions of

the data that informed classification. It was shown that the important data features

identified by these techniques could be related back to the activity within brain re-

gions associated with cued button pressing. These results suggest that these types

of analyses are not only useful for investigating network training and performance,

but have the potential to be used in a research capacity. For instance, regions of

activity involved in tasks that are not well understood could be investigated through

visualisation and attribution mapping.

There are a number of future directions that can explored in order to expand

upon this study. The most obvious next step would be to extend the current network
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implementation to perform multi-label classification using the demographic data pro-

vided by Cam-CAN along with the MEG data. Previous studies have established

significant age-related differences in these data [22] and a study could investigate

whether or not a CNN is sensitive to this variability. The network design could be

further developed using deeper networks or networks with specialised architectures

in order to improve upon the performance as well as data representation constructed

by the network. Another extension of this work could include classifying MEG data

that was recorded during the performance of different tasks. The ability to classify

among different tasks would help to explore the general applicability of CNNs to MEG

data as well as the visualisation and attribution methods demonstrated here. With

generalisability and further improvements to architecture and analysis techniques,

these networks could be developed for use in a clinical setting for augmenting current

diagnostic techniques.
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