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Abstract

In wireless communication systems, synchronization is one of the most important

issues. The requirement for synchronization is especially intensified when there is

strong channel distortion. For instance, the Doppler effect can shift the carrier in the

frequency domain and scale the signal in the time domain. Similarly, the multipath

propagation channel poses problems to the conventional synchronization methods.

This dissertation studies the synchronization techniques, including the symbol

timing and carrier frequency recovery for coherent wireless receivers. The application

is focused on the underwater acoustic communications, where time-varying multipath

fading dominates the channel characteristics. The conventional synchronization tech-

niques are generally derived based on the maximum likelihood principle, such that

the second order statistics of the received data are utilized. However, this may not

be an optimum solution in fading channels.

In this work, a new entropy-based synchronization criterion is explored. Synchro-

nization is achieved by minimizing the entropy estimated from the eye diagram and

the constellation diagram. Key implementation details are addressed towards the re-

alization of entropy based synchronization algorithms. In addition, the performance

is evaluated in controlled conditions. It is shown that entropy minimization has great

potential and offers certain advantages for synchronization in wireless communica-

tion, particularly for pulse shaping filters with small excess bandwidth, as well as in

multipath fading channels.

Furthermore, the latest deep learning technique is applied to synchronize the

baseband signal. A neural network based coherent receiver is designed. Unlike the

conventional receiver which consists of a series of function blocks, the neural network

based receiver does not explicitly implement any function blocks. Its function is

trained from end to end to achieve over all optimization. As such, this new receiver

structure has the potential to outperform the conventional receivers in nonlinear or

nonparametric propagation channels.

ix
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Chapter 1

Introduction

1.1 Background

This dissertation is motivated by the demand for high speed, reliable underwater

acoustic communication. Using acoustic propagation, the communication quality is

highly affected by the acoustic channel conditions. Specifically, the acoustic propa-

gation channel in the ocean is dispersive in both time and frequency domain. This

is due to the channel characteristics such as multipath propagation, time variability

and Doppler effect. The symbol timing and carrier frequency recovery that are inves-

tigated in this dissertation are key techniques that can maintain the reliability of the

underwater acoustic communication link by mitigating the channel dispersion.

These tasks are approached in this dissertation in two different ways. One relies on

information theory, which has been studied by researchers for decades. The second

method is based on the fast development of deep learning techniques, which draw

huge attention in the last few years. In this section, the background of underwater

acoustic communication is reviewed, and the basics of deep learning techniques are

introduced.

1.1.1 Underwater Acoustic Communication

The Earth’s oceans are often recognized to be the last frontier. The lack of air and

high pressure makes it inhospitable for human beings; therefore, it remains extremely

difficult for people to explore. However, there is an increasing level of interest to

deploy instruments below the sea. For example, oceanographers and geologists wish to

track the underwater ecosystem activities and the seismic activities. Also, the oil and

gas industry is deploying colossal platforms to extract natural resources. Finally, there

is also a need from the military to survey our littoral coast for suspicious activities.

Because of the vastness of the ocean, combined with the fact that there is no

1
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infrastructure to transfer data, a key challenge in the exploration of the oceans is to

establish wireless communication from or between the instruments deployed in the

sea without the burden of heavy cables.

Commonly used electromagnetic (EM) transmission in free space is not suitable for

long distance underwater communication, because its range is significantly restricted

by the attenuation introduced by the high permittivity and high conductivity char-

acteristics of seawater [37]. Radio communication, although it has renowned merits

in the terrestrial wireless network field, has only be applied in short-range and high-

bandwidth underwater communications systems. In 2006, an underwater microwave

communication was demonstrated system with a transmission data rate of 500 kbps

over 90 m [48]. This performance was improved to 10 Mbps over 100 m for under-

water sensing networks in 2009 [55]. Also, a variant of EM communication, magnetic

induction (MI) communication has also been applied under the water [18]. Nonethe-

less, acoustic transmission remains the preferable technique for long transmission

range [10].

Optical wave or laser technology, which is known for its very high capacity, has also

recently drawn increasing attention in the research community. The latest research

developments can be found in [28, 59, 61], where the highest bit rate can reach up

to 25 Gbps with 680-nm red-light vertical-cavity surface-emitting laser. However,

the major drawbacks are the requirement of clear water, strict alignment of devices

and very short reliable transmission distance (normally less than 10 meters). These

requirements greatly limit its underwater application.

In comparison to the technologies described above, water is a relative ideal medium

for acoustic waves to propagate for tens or even hundreds of kilometers [24], including

in salty, fresh or even muddy water. For this reason, the acoustic wave or sound wave

is the preferred technology for wireless underwater communication.

Similar to other telecommunication systems, the physical layer of the underwater

acoustic communication system is responsible for the transmission and reception of

the modulated acoustic wave between devices in the water medium, and its goal is

to deliver the data through the channel with a high degree of reliability. A clear

understanding of the underwater channel physics and dynamics is critical for the

design of the transmitter and receiver. Therefore, the next section will provide a high
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level review on the underwater acoustic channel characteristics.

1.1.2 Underwater Acoustic Propagation Channels

The fundamental feature that differentiates underwater acoustic communication with

other wireless communication is the acoustic propagation channel. In other words,

the acoustic propagation channel defines the design of underwater acoustic commu-

nication. Therefore, it is critical to understand the behaviour of the channel before

building underwater acoustic communication systems. A comprehensive description

of underwater acoustic channels can be found in [51]. In short, the dynamic na-

ture makes the channel doubly dispersive, with multipath propagation effects causing

time dispersion and Doppler shifts causing frequency dispersion. Below is a brief

introduction of the four major channel characteristics.

Bandwidth

In an unbounded media, the acoustical signal propagates spherically, and the power

decays with the square of the distance. The path loss in an acoustic channel also

depends on the signal frequency. For frequencies above a few tens of kHz, absorption

due to chemical relaxation reduces the energy of the signal as the frequency increases.

As a result, the acoustic propagation is preferred at low frequencies, and the avail-

able bandwidth for communication is extremely limited in comparison to that of RF

communication. To achieve reasonable throughput, acoustic transmission bandwidth

is often more than 10% of the carrier frequency. Since the bandwidth is not negligi-

ble with respect to the centre frequency, the underwater acoustic channel is in fact

wideband. This channel characteristic makes the communication system sensitive to

the multipath channel condition.

Multipath

A notable property of underwater acoustic channels is that the sound can be reflected

by the surface, bottom and other objects. For propagation in deep water conditions,

the sound path bends due to the inhomogeneity of the water, which is known as the

refraction phenomenon. Because of the above two effects, the signal at the receiver
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is the sum of copies from all paths with independent delays and magnitudes. In

addition, the sound speed in the water is very low, about 1500 m/s, therefore, the

delays between each path arrival spread over tens or even hundreds of milliseconds,

resulting in frequency-selective signal distortion. To model such a channel, a common

practice is to use a FIR filter, so that the overall impulse response that is contributed

by p path arrivals is given by

h(t) =
∑
p

hp(t− τp), (1.1)

where hp is the signal amplitude from each path. The corresponding path delay τp

is obtained by τp = lp/c, where lp is the path length, and c is the sound speed in

the water. The sound speed is usually variable as a function of depth, tempera-

ture and salinity, but in the shallow water, it can be considered as a constant value

approximately equal to 1500 m/s for convenience of calculation.

Small Scale Time Variation

The channel is subject to large-scale and small-scale time variation [43]. However,

only the small-scale or short-time variation is often considered within one transmis-

sion. It comes from two sources: the changes in the propagation medium and those

that occur due to the relative motion between the transmitter and the receiver. The

latter cause will be discussed next. Short-time variation is usually introduced by

surface waves and the water current, which cause the displacement of the scatterers

and reflectors. This results in the change of path length with respect to time. Un-

like a RF channel, where several statistical models are available to characterize the

channel probability distribution, there is no consensus on statistical characterization

of acoustic communication channels [51].

Experimental results suggest that some channels exhibit Rician or Rayleigh fad-

ing [6]. Both models describe the channel impulse response as a Gaussian process

irrespective of the distribution of the individual components. If there is no dominant

path, the envelope of the channel response is Rayleigh distributed. In comparison,

the Rician fading occurs when one of the paths, typically a line of sight signal or some

strong reflection signals, is much stronger than the others.
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Doppler Scaling

The relative motion between the transmitter and the receiver results in the received

signal being subject to a shift in the frequency domain as well as a scaling in the

time domain (wave length). This phenomenon is known as Doppler scaling, and it

contributes to an additional change in the channel response with respect to time. The

Doppler scaling caused by motion is illustrated in Fig. 1.1.

Figure 1.1: Doppler scaling caused by motion.

The scaling factor is found by

α =
v

c
, (1.2)

where v is relative velocity (positive if the receiver is moving towards the source), and

c is the sound speed. Then, the observed frequency is given by

f ′ = (1 + α) f, (1.3)

where f is the source frequency. Because the speed of sound c is very low, α is usually

not small enough to be negligible.

Especially for coherent communications, the symbol phase is extremely sensitive

to the change of the carrier frequency. Therefore, even with small Doppler scaling, the

reliability of the communication fails if there is no compensation. For an underwater

acoustic communication application using fixed nodes, the Doppler effect can still exist

because of drifting with waves or currents, as well as water surface motion. Fig. 1.2 is

an example that shows how the impulse response of an underwater acoustic channel

evolves with time due to the motion.

1.1.3 Deep Learning and Machine Learning

This dissertation is trying to solve the synchronization problem brought by the acous-

tic propagation channels through two approaches. One is based on the information
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Figure 1.2: Channel impulse response evolving with time due to motion.

theory, which is well documented in many literature. The other method is to apply

the latest deep learning techniques, which has become one of the most popular and

fast developing technologies, and is applied in a ubiquitous fashion.

In 2018, self-driving vehicles have become available, and our daily routines are

being organized by virtual assistants. As such, a society managed using artificial in-

telligence (AI) can be envisaged for the near future. This section will briefly introduce

the basic concept of AI, machine learning and deep learning.

Artificial Intelligence and Machine Learning

The concept of AI was born in the 1950s, when Turing proposed to make computers

“think” like a human being. AI is a general field that encompasses machine learning

and deep learning, but that also includes many more approaches.

Machine learning is trying to make the computer learn on its own to solve certain

problem without specific human orders. Therefore, the programmers don’t need to

write data processing rules by hand, but the computer can automatically learn the

rules by examining the data. This is quite different from the conventional data pro-

cessing programming, where humans input rules and data to be processed, and the

computer gives answers. In comparison, using machine learning, humans input data
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and the answers expected from the data, and the computer gives rules. Then, the

rules can be applied to new data to generate answers.

Machine learning has a short history, but it has become the most popular and

successful subset of AI thanks to the availability of large data set and fast computing

platforms. A machine learning algorithm searches for useful representations of some

input data, within a predefined space of possibilities, using guidance from a feedback

signal.

During the short history of machine learning, a few algorithms have been intro-

duced [17]. The logistic regression is one of the earliest forms of machine learning,

and it is still widely used to this day. It may be the first algorithm a data scien-

tist will try on a dataset to get a feel for the classification task at hand. Later,

the early-stage neural networks, or artificial neural networks (ANN), were invented

during mid-1980s to 1990s. Although it has been replaced by its modern variants,

some of its core ideas are still kept today. The support vector machine (SVM) with

kernel methods was considered the most powerful machine learning algorithm until

around 2010, and then, the decision trees, such as the random forests, and gradient

boosting machines took its place. Until today, the random forests algorithms are the

first choice as a shallow learning technique for nonperceptual data processing.

The reason that these algorithms do not perform well for nonperceptual data pro-

cessing is that the inputs of these algorithms listed above are usually the features

extracted from a given dataset. The process of feature extraction from the dataset

is a crucial step and it is known as the “feature engineering”. The feature extraction

is usually done manually, because classical shallow algorithms do not have hypothe-

sis spaces rich enough to learn useful features by themselves. However, the feature

engineering is rather difficult for perceptual data processing.

Deep Learning

Deep learning is a subset of machine learning, and its relationships between AI and

machine learning are shown in Fig. 1.3. It has not been researched actively until early

2010s, then, it became a revolution. Today, it is a highly preferred algorithm in the

field.
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Figure 1.3: Artificial intelligence, machine learning and deep learning.

Deep learning features successive layers, and the number of layers, usually tens or

hundreds, is called the depth of the model. In contrast, other machine approaches

(shallow learning) normally have one or two layers. Almost all layers in deep learning

consist of artificial neural layers, so the deep learning always refers to the deep neural

networks. Fig. 1.4 shows the difference between a shallow neural network and a deep

neural network.

Figure 1.4: Example of a shallow neural network (left) and a deep neural network
(right).

The increasing number of layers enables the models to have hypothesis spaces

rich enough to learn useful features by themselves. As a result, the deep learning

technique brought remarkable results on problems such as image recognition [53] and

natural language processing [9] that are natural to humans but tough to machines.

The reasons for which the capability of deep learning techniques have grown fast

only in recent years are: 1) the availability of graphical processing units (GPUs) that

excel at massively parallel computing; 2) the availability of a large amount of labeled

data that can be used for network training; and 3) more sophisticated algorithms are
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developed to help the training of deep learning models.

1.2 Problem Statement

In a wireless communication system, the purpose of the physical layer is to deliver raw

data through a dispersive channel as accurately as possible. This includes the study

of the transmitter, the channel characteristics and the receiver. This dissertation

mainly focuses on the signal processing at the receivers, and focuses especially on the

synchronization problem. In this section, a standard receiver structure to mitigate

distortion in a doubly dispersive channel is introduced in Section 1.2.1, and the need

for symbol timing and carrier recovery are detailed in Section 1.2.2. Specifically, the

need for synchronization is intensified when there is channel introduced distortion

(such as multipath and Doppler).

1.2.1 A Standard Coherent Receiver Structure

In this dissertation, a single carrier, phase coherent communication system is utilized,

because of its widespread use in underwater acoustic modems [50]. The transmit

signal has two features: 1) the information is modulated to the carrier’s phase symbol

by symbol, and 2) the bandwidth is limited by a pulse shaping filter at the transmitter.

A standard digital receiver (without the synchronizer) has a sequential structure as

shown in Fig. 1.5.

Figure 1.5: A standard coherent receiver structure.

The roles of each these functional blocks to process the data in a digital modem

are introduced briefly here.

1. Analog-to-digital converter (ADC): The continuous-time signal is sampled

and discretized at the receiver front-end by an ADC. The sampling is triggered

by a local clock.
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2. Down converter: The down converter converts the passband signal to complex-

valued baseband by multiplying the signal with a pair of locally generated or-

thogonal carriers.

3. Receiver filter: Usually a root raised cosine (RRC) filter matched to the the

transmitter filter is applied at the receiver for maximizing the signal-to-noise

ratio (SNR).

4. Equalizer: An equalizer is required to mitigate the multipath introduced inter-

symbol interference (ISI).

5. Demodulator: The demodulator maps the complex-valued baseband data

samples into bit streams based on the modulation schemes.

1.2.2 Symbol Timing and Carrier Recovery

Ideally, the sampling clock of the ADC is synchronized to the signal symbols. To

achieve maximum noise immunity, the samples upon which the receiver’s decision is

based should be taken in the middle of the shaping pulse, or in other words, at the

instants of maximum eye opening. However, the ADC has a free-running sampling

clock, and therefore, are not synchronized to the symbols. Consequently, the receiver

must include a timing recovery block which makes an estimate of the symbol clock,

compensates the error digitally and applies the estimate before making decisions.

To demodulate coherent signals, such as phase-shift keying (PSK) and quadrature

amplitude modulation (QAM), the receiver must generate a local carrier that has the

same frequency and initial phase as the received signal. If the initial phase is not

accurate, the baseband signal has a constant phase offset, which is relatively easy to

correct. However, if there is a frequency offset, the phase error of the baseband signal

varies as a function of time, making it impossible to demodulate the correct symbol,

especially when the frequency offset is time-varying.

The time-varying symbol delay and carrier frequency offset is particularly common

in mobile channels, and is particularly apparent for the underwater acoustic channel.

The relative motion between the transmitter and the receiver causes a scaling of

symbol period in the time domain and a shift of the carrier frequency because of
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the Doppler effect. Therefore, a continuous estimation and compensation of the

synchronization error is essential to maintain the link reliability. Note that the term

synchronization used in this dissertation only refer to the symbol timing and carrier

recovery if without further explanation.

The received signal after the multipath propagation is a summation of arrivals

from multiple paths with various delays and amplitudes. The synchronization under

such extreme conditions are rarely studied. Note that the fractionally-spaced deci-

sion feedback equalizer (FS-DFE) can compensate for the symbol timing and carrier

frequency offset in multipath conditions. However, there are some drawbacks that

are difficult to overcome. These are:

1. The additional synchronization task increases the computational load of an

equalizer and makes it difficult to converge and track the time-varying chan-

nel. Especially when there is strong Doppler effect, the equalizer window may

become invalid after a long period of time [49].

2. The fractionally-spaced feedforward filter that intends to compensate for sym-

bol timing offset significantly increases the order and the complexity of the

equalizer.

3. The FS-DFE is not sensitive to the symbol timing phase, or a constant timing

offset within a symbol period. However, it does not consider the time domain

dilation of the signal. A leading symbol rate recovery is required to prevent

failure of tracking symbols if operating in strong Doppler conditions.

Therefore, an FS-DFE cannot totally replace a synchronizer in a wireless receiver.

1.3 Contributions

There are two major contributions in this dissertation. They are the study of entropy

minimization as a synchronization criterion [29,30], and the application of deep learn-

ing technique for wireless receivers. Other contributions and studies can be found in

Chapter 2 and in [2, 31].
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Synchronization based on entropy minimization

A unified synchronization criterion, relying on entropy minimization (EM) as an al-

ternative to the maximum likelihood (ML) criterion is studied in this dissertation.

Specifically, the entropy of the eye diagram is evaluated for symbol timing recovery,

and the entropy of the constellation diagram is measured for carrier frequency recov-

ery. For both applications, the synchronization parameter that leads to a minimum

entropy value is considered to be optimum.

For demonstration purposes, a custom estimation algorithm is provided to evaluate

the entropy of the signal eye diagram and constellation. Many practical issues such

as the undesired local minima, insufficient oversampling rate and the vanishing of the

gradient are addressed to improve the practicability of the algorithm.

The performance of the proposed symbol timing and carrier frequency recovery

criterion is also evaluated in controlled conditions. The effects of various channel im-

pairments, including noise and multipath, are analyzed on the system performance.

Particularly, in multipath fading and small excess bandwidth conditions, the timing

recovery using the EM algorithm can significantly improve the equalizer’s conver-

gence, and its symbol error rate outperforms that of the ML algorithm.

Deep learning for wireless receivers

In recent years, deep learning has received significant attention. However, it is rarely

applied to solve problems in wireless communications. In this dissertation, the deep

convolutional neural networks (CNN) is applied to solve the symbol timing and carrier

frequency problems. In addition, a coherent receiver design is proposed, which is

entirely based on CNN.

The neural networks for synchronization are trained with supervised learning.

The training process does not presume any channel conditions or sampling rate but

only learning from the training data set. The training set can be either synthesized

from numerical simulation or measured from all kinds of realistic channel conditions.

Therefore, such an algorithm is more versatile, providing significant advantage com-

pared to the conventional algorithms, particularly for extremely varying conditions
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The network for symbol timing offset estimation uses the magnitudes of the base-

band sample sequences as the input. It is also insensitive to the carrier frequency

offset. The network for carrier frequency recovery uses timing recovered samples as

the input to estimate the frequency offset. Both estimation networks have similar

structure and process data in a feedforward manner. To test the feasibility of such

neural networks, the sea trial measurement data are used for verification. The re-

sults show that the proposed CNN based synchronization algorithms have comparable

performance to the conventional algorithms.

Deep neural networks are considered as a type of complex nonlinear function. Sim-

ilarly, a standard wireless receiver that is composed of several function blocks can also

be treated as one nonlinear function. Its input is the passband signal and the output is

the demodulator decisions. Based on this analogy, a wireless receiver that is entirely

redesigned using CNN is proposed in this dissertation. Unlike the standard CNN

structure for image processing, several modifications have been made to accommo-

date the nature of coherent communications. The symbol timing is achieve implicitly,

similar to that in the fractionally-space equalizer. However, the real challenges come

from the carrier frequency recovery and equalization, and they are addressed carefully

in the dissertation.

1.4 Outline

There are two fundamental synchronization problems encountered in wireless coher-

ent communication systems: symbol timing and carrier recovery. This dissertation

addresses these two problems for coherent communication, where the modulation

scheme embeds the information in the symbol phases.

Chapter 2 summarizes the current synchronization techniques. These algorithms

are generally categorized by the need of reference data and their structures. This

chapter also covers the topic of the cost function, the algorithm complexity, as well

as the figure of merit for performance evaluation. In addition, an original feedfor-

ward timing recovery circuit structure is presented. Also, a classic receiver structure,

fractionally-spaced equalizer with build-in phase lock loop (PLL), is implemented

to recover the sea trial measurement data. This is an especially powerful receiver
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structure for severe multipath and Doppler effect dominated channels.

Chapter 3 presents a new entropy minimization criterion for both symbol timing

and carrier frequency recovery for wireless receivers [29]. Synchronization is achieved

by minimizing the entropy estimated from the eye diagram and the constellation di-

agram. Key implementation details are addressed towards the realization of entropy

based synchronization algorithms. In addition, the performance is evaluated in con-

trolled conditions. It is shown that, as an alternative to the maximum likelihood

criterion, entropy minimization has great potential and offers certain advantages for

synchronization in wireless communication, particularly for pulse shaping filters with

small excess bandwidth, as well as in multipath fading channels.

Chapter 4 takes one step forward and bring the latest deep learning techniques

to wireless communications as an advanced signal processing method. An overview

of the deep learning methodology is given in the beginning of the chapter. Then, the

symbol timing and carrier frequency recovery problems are reengineered using the

CNN models. Customized CNN models are designed to accommodate the charac-

teristics of coherent communications. Next, a new coherent wireless receiver entirely

based on CNN models is proposed. The major issues including carrier frequency

compensation and model training are addressed, and the performance is tested with

both synthesized and measurement data.

Chapter 5 summarizes and concludes the whole dissertation.



Chapter 2

Symbol Timing and Carrier Recovery for Coherent Receivers

In this chapter, three aspects of conventional synchronization techniques are dis-

cussed. Section 2.1 reviews the fundamentals of the conventional symbol timing and

carrier recovery method. It begins with the synchronizer structure, and then focuses

on the estimation and error detection algorithms. For both synchronization tasks, the

complexity and the performance are analyzed. Section 2.2 demonstrates a feedfor-

ward synchronization implementation. It is designed to compensate for the Doppler

effect introduced time scaling and carrier frequency offset at the time. Section 2.3

presents a realistic underwater acoustic communication example. The channel intro-

duced distortion is analyzed with the received signal. A classic coherent receiver that

is specifically designed for such a scenario is implemented and tested. Note that all

the synchronization algorithms and the corresponding receivers discussed are digitally

implemented in discrete-time.

2.1 A Review of Standard Synchronization Techniques

2.1.1 Fundamentals of Synchronization

In this section, the system architecture will be presented first, and then, maximum

likelihood estimation will be discussed. Finally, the figures of merit will be introduced.

System Architecture

Several issues must be considered for the implementation of the synchronizer at a

coherent wireless receiver. If the expected symbol timing or frequency offsets are very

large, a coarse recovery is required to reduce the error before fine tuning [47]. Also, the

order of the two synchronization tasks, symbol timing and carrier recovery, is generally

interchangeable. However, as a convention, the timing recovery is always assumed to

be realized before the carrier frequency recovery in the following discussion, unless

15
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explicitly mentioned. This is because many timing recovery schemes are insensitive

to the carrier frequency offset and the carrier recovery schemes can be implemented

at the symbol rate.

The most important issue is the choice of configuration and algorithms of the syn-

chronizer. There are fundamentally two types of synchronizer configurations: feedfor-

ward and feedback. The feedforward structure directly extracts the synchronization

parameter from the incoming signal x with a symbol timing or carrier frequency offset

estimator, and applies the correction to the data samples, as shown in Fig. 2.1 The

objective is to make the estimate γ as close to its true value as possible. This config-

uration offers a fast acquisition speed but may be slow for tracking in time varying

environment, therefore, it is best suit for burst communications.

Figure 2.1: A general feedforward synchronizer configuration.

On the other hand, the feedback configuration is known for its good tracking per-

formance, so it is usually applied in continuous communications. Instead of the direct

estimation of the synchronization parameters, it feeds the error signal back to correct

the received signal as shown in Fig. 2.2. The objective is to achieve synchronization

by minimizing the error signal. The feedback configuration features an error detec-

tor, which produces an error signal e proportional to the difference between the local

estimation and the actual synchronization parameter. The error signal is filtered by a

loop filter to reduce the error variance, and the filter output γ is used to compensate

for the received signal.

The estimator in the feedforward configuration and the error detector in the feed-

back configuration can be further classified depending on the availability of reference

data: when reference data is available, data-aided (DA) estimation is preferred to op-

timize the accuracy of the estimator; whereas the non-data-aided (NDA) estimators

are unaware of the information that was transmitted, and provide synchronization
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Figure 2.2: A general feedback synchronizer configuration.

using the spectral and temporal characteristics of the received signal. Decision-

directed (DD) estimation is a variant of NDA method: it uses the decisions made

at the receiver as the reference data. It has better performance than the ordinary

NDA methods in benign conditions. However, it is highly subjective to the reliability

of the decision device. As such, in practical scenarios, it can be unstable.

Maximum Likelihood Estimation

In [32], it is indicated that most of the existing synchronization algorithms can be

derived from the maximum likelihood (ML) criterion or its approximation. A simple

explanation of the ML based synchronization parameter estimation is given below.

First, the received signal r(t) is modelled as the sum of transmit signal and the

additive noise, as

r(t) = s(t,γ) + w(t), (2.1)

where s(t, γ) is the transmit signal as a function of time, and γ is a set of unknown

synchronization parameters, including the carrier frequency offset f∆, carrier phase

offset θ and the symbol timing offset τ . The noise is denoted as w(t).

The synchronization parameter set γ is obtained with the observation r(t). One

popular and intuitive approach to this problem is based on the ML criterion. For

a trial γ̃, the estimated received signal is defined as s̃(t) = s(t, γ̃), where the tilde

indicates a trial value. So the estimated received signal with the synchronization

parameters is modelled as

s̃(t) ≜ ej(2πf̃∆t+θ̃)
∑
i

cig(t− iT − τ̃), (2.2)
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where ci is the i-th modulated symbol, g(t) is a pulse shaping filter that used in the

transmitter and T represents the symbol period. The resemblance between s̃(t) and

r(t) is expected to be maximized. The most likely value of γ is obtained when the

probability p(r|γ̃) achieves a maximum. Hence, the ML estimate of γ is expressed as

γ̂ML(r) = arg
{
max

γ̃

{
p(r|γ̃)

}}
. (2.3)

To be specific, if the noise is assumed to be Gaussian with a spectral density N0,

and the observation interval is 0 < t < T0, without detailed derivation, the likelihood

function for carrier frequency recovery that is maximized is given by [33]

Λ(r|f̃∆, θ̃) = exp

{
1

N0

∫ T0

0

Re {r(t)s̃∗(t)} dt− 1

2N0

∫ T0

0

|s̃(t)|2dt
}
, (2.4)

where {}∗ is the complex conjugate operator. The first integral in (2.4) is the inner

product of r(t) and s̃(t), and the inner product represents the resemblance of the two

signals, while the second integral is simply the average transmit signal energy.

For symbol timing recovery, the likelihood as a function of the trial timing offset τ̃

is given by

Λ(r|τ̃) = exp

{
1

N0

∫ T0

0

r(t)s̃(t)dt− 1

2N0

∫ T0

0

s̃2(t)dt

}
. (2.5)

It can be found that (2.5) has a very similar format to (2.4).

ML based synchronization estimators are derived from the likelihood functions in

various approaches. For example, the second integral part might be dropped in the

carrier frequency recovery since it is independent of the synchronization parameters.

Also, when deriving many types of NDA symbol timing error detectors [15], the

second integral part is dropped for simplification purpose, but it will bring high

level self noise in return [33]. Moreover, when searching for the maximum point of

a likelihood function, one common approach is to take the derivative of likelihood

function. The maximum occurs with the vanishing of the derivative with respect

to the synchronization parameters. This approach is the theoretical origin for many

error detectors, and particularly used in feedback configurations.

It should be stressed that the ML estimation assumes that the additive Gaussian

noise is the only channel distortion, in other words, the channel is modeled using
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second order statistics. However, in doubly dispersive channels, the second order

statistics based ML estimation may not lead to the optimal solution. This issue will

be future discussed in the next chapter.

Performance and Limitation

A figure of merit must be defined to evaluate the accuracy that can be achieved by

a synchronizer. The accuracy limit shall be established, such that it can provide

benchmarks for the synchronizer implementations. From the parameter estimation

theory, this limit is known as the Cramer-Rao bound (CRB) [23]. However, the true

CRB is difficult to obtain when applied to synchronization problems. Therefore, the

modified Cramer-Rao bound (MCRB), a variant to the CRB is adopted [34]. Similar

to the previous discussion on the ML estimation criterion, only a brief overview is

given here, and a more rigorous demonstration can be also found in [33].

Consider an estimation procedure for a synchronization parameter γ̃, and the cor-

responding estimate γ̂(r), where r is the observation. The estimate γ̂(r) is a random

variable depending on the different observations r, and its expectation coincides with

the true value of τ if it is an unbiased estimation. Being unbiased means that on

average, the estimator yields the true value of the unknown τ .

As a first order statistic, the unbiased expectation is not a concern for most

estimators, whereas the second order statistic of the estimation error is often used as

the figure of merit to evaluate a estimator’s performance. The errors γ̂(r)−γ usually

scatter around zero, and its dispersion is quantified by the variance. The minimum

error dispersion that can be achieved is given by the Cramer-Rao bound, which is a

lower limit to the variance of any unbiased estimator. This bound is given by

Var
{
γ̂(r)− γ

}
≥ CRB(γ), (2.6)

However, this limit is not quite feasible, and as indicated in [8], this drawback is

resolved by the modified Cramer-Rao (MCRB) bound.

The MCRB for the carrier frequency estimation is given by

MCRB(f∆) =
3

2π2L3
0T

2Es/N0

, (2.7)
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where L0 symbols with period T are used for estimation, and the energy per symbol

to noise power spectral density is denoted as Es/N0. On the other hand, the MCRB

for the symbol timing offset estimation is given by

MCRB(τ) =
T 2

8π2L0ξEs/N0

, (2.8)

where ξ is a function of the rolloff factor α and is defined as

ξ =
1

12
+ α2

(
1

4
− 2

π2

)
. (2.9)

One direct conclusion that can be drawn from (2.7) and (2.8) is that the MCRB is

inversely proportional to the signal-to-noise ratio Es/N0, as well as the the observa-

tion length L0. Moreover, for symbol timing recovery, the MCRB is also inversely

proportional to the signal bandwidth.

2.1.2 Symbol Timing Recovery

The purpose of symbol timing recovery is to recover a clock at the symbol rate or

a multiple of the symbol rate from the received modulated waveform. The symbol

clock is essential for demodulation but rarely transmitted with the signal. Therefore,

it is more common to implement the additional circuit which can derive the clock

from the received signal itself.

As discussed in Section 2.1.1, there are feedback and feedforward configurations

for symbol timing recovery. There are four popular timing error detectors (TED) for

the feedback configuration: Zero-Crossing, Mueller-Muller, Gardner, and Early-Late.

The most widely used feedforward configuration is the O&M estimator. Note that

all these algorithms assume that there is single significant path in the channel with

additive Gaussian noise.

In the following discussion, only the input’s in-phase component x(kT + τ̂k) is

considered. For complex valued input, the expression can be easily expanded by

adding a quadrature component.
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Zero-Crossing Detector

The Zero-Crossing detector [15] is a DD technique that requires two samples per

symbol at the synchronizer’s input. The expression is given by

e(k) = (ĉk−1 − ĉk)x(kT − T/2 + τ̂), (2.10)

where ĉk is the correctly estimated k-th decision symbol. It performs well in low SNR

conditions for all values of excess bandwidth, and in moderate SNR conditions for

large rolloff factors. But its timing variance increases significantly with a reduced

rolloff factor.

Mueller-Muller Detector

The Mueller-Muller is a DD timing error that requires one sample per symbol at the

synchronizer’s input. When the input signal has Nyquist pulses, this method has no

self noise. However, it is sensitive to the noise, especially when there is a large excess

bandwidth. The expression is given by

e(k) = ĉk−1x(kT + τ̂)− ĉkx
(
(k − 1)T + τ̂

)
. (2.11)

Gardner Detector

The Gardner detector [14] is an NDA feedback method that is independent of carrier

phase recovery. It requires two samples per symbol at the synchronizer’s input. In

the presence of noise, the performance of this timing recovery method improves as

the excess bandwidth increases. Its expression is given by

e(k) =
[
x(kT − T + τ̂)− x(kT + τ̂)

]
x(kT − T/2 + τ̂) (2.12)

Early-Late Detector

The Early-Late detector is an NDA feedback method that requires two samples per

symbol at the synchronizer’s input. In the presence of noise, the performance of this

timing recovery method improves as the pulse’s excess bandwidth increases. Com-

pared to the Gardner method, the Early-Late method has higher self noise and thus
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does not perform as well as the Gardner method in systems with high SNR values.

The expression is given by

e(k) = x(kT + τ̂)
[
x(kT + T/2 + τ̂)− x(kT − T/2 + τ̂)

]
(2.13)

The performance of these four TEDs in terms of the timing error variance as a function

of Eb/N0 has been presented in the literature. One feature that should be stressed is

that the timing error variance which is also known as jitter variance, has an irreducible

error floor as Eb/N0 increases. The explanation is that timing errors generate ISI

which, in turn, produces decision errors even in the absence of noise.

O&M Timing Estimator

The O&M algorithm is a simple implementation of feedforward symbol timing esti-

mation algorithm. It uses as low as 4 samples per symbol, and the timing offset is

directly given by

τ̂ =
T

2π
arg

{
N∑
i=1

x2
i e

−j2π(i−1)/Nsps

}
, (2.14)

where N samples with the oversampling rate Nsps ≥ 4 are used. The operation arg {·}
returns the phase angles in radians. It has a similar performance as the Gardner de-

tector with large rolloff factor, and superior performance with small rolloff factor. The

O&M algorithm is generally the best choice when applying the feedforward symbol

timing recovery.

2.1.3 Carrier Frequency Recovery

Due to the clock mismatch and the Doppler scaling, the local generated carrier is not

equal to that of the received signal. As the frequency difference accumulates, it leads

to an increasing phase error in the down-converted baseband signal. This issue is

especially critical for coherent communications where the information is transmitted

by the carrier’s phase.

A well known feedback frequency tracking method is to implement a phase lock

loop (PLL) with a phase error detector (PED), such that the frequency is recovered

by phase compensation. However, a traditional PED can only find a phase error from

a single tone without coherent modulation. Therefore, the core idea of designing
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a PED, or a frequency estimator for feedforward carrier recovery is to remove the

modulation.

Data-Aided Phase Error Detector

If the transmitted symbol is known, the modulation of the input sample can be

removed by multiplying it with the complex conjugate of the data symbol. The DA

PED is obtained in a straightforward fashion by

ek = arg {xkc
∗
k} . (2.15)

The DA method is the first choice when the data is known, since it always outperforms

the NDA or DD methods.

Power-of-N Phase Error Detector

Power-of-N carrier recovery is an NDA feedback method. An integer N is defined

such that cNk = 1 for all ck. For example, if the modulation scheme is M-PSK , then

N = M . So the error signal using power-of-N method is given by

ek = arg
{(

xkx
∗
k−1

)N}
, (2.16)

where the purpose of xkx
∗
k−1 is to eliminate a constant symbol phase offset, and the

power-of-N can remove the modulation. This PED can be also converted to a carrier

frequency estimator for a feedforward configuration. The estimator’s expression is

given by

f∆ =
1

2NπT
arg

{
L0−1∑
k=1

(
xkx

∗
k−1

)N}
(2.17)

Note that the power-of-N operation also amplifies the noise, making it only suitable

for high SNR conditions.

Decision-Directed Phase Error Detector

At high SNR, the DD carrier recovery usually provides better performance than those

NDA methods, therefore, it is a standard PED in feedback carrier recovery.
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The expression of a DD PED depends on the modulation scheme. For BPSK or

PAM, the error signal is given by

ek = sgn
{
Re(xk)

}
Im(xk), (2.18)

where sgn{·}is the sign operator, which gives a decision from xk. As for QAM or

QPSK, the phase error is given by

ek = sgn
{
Re(xk)

}
Im(xk)− sgn

{
Im(xk)

}
Re(xk). (2.19)

Data-Aided Frequency Offset Estimator

Unlike the PED, the carrier frequency offset estimator is utilized in the feedforward

configuration. As discussed before, the modulation can be removed by multiplying

with the complex conjugate of the data symbol. Define zk ≜ xkc
∗
k; then, the autocor-

relations of zkis obtained by

R(m) ≜
1

L0 −m

L0−1∑
k=m

zkz
∗
k−m, (2.20)

where 1 ≤ m ≤ L0 − 1. So the Fitz’s estimator is given by

f∆ =
1

πN(N + 1)T

N∑
m=1

arg
{
R(m)

}
. (2.21)

While the L&R’s estimator is expressed as

f∆ =
1

π(N + 1)T
arg

{
N∑

m=1

R(m)

}
. (2.22)

The detailed derivation and their performance analysis are omitted, since they can

be found in [33], [35] and their references.

2.2 A Feedforward Synchronization Implementation

The previous section summarizes the standard synchronization techniques. In this

section, a Doppler compensation implementation is presented to maintain a reliable

communication link at the receiver in highly mobile condition. In Section 2.2.1, the

effects of Doppler scaling on the synchronization are detailed. The standard feedback
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timing recovery loop has been modified into a feedforward structure to achieve fast

timing convergence and power efficiency in Section 2.2.2. The timing error is tracked

by a Gardner detector through all samples before down-sampling. A control unit uses

the timing error information to dynamically adjust the sampling time as well as the

carrier frequency offset such that the Doppler shift is fully compensated. Finally in

Section 2.2.3, the synchronizer’s behaviour is tested in controlled conditions.

2.2.1 Doppler and its Effects on Synchronization

The Doppler effect has a significant impact on coherent underwater communication

systems, particularly in mobile conditions. When sound wave propagates through

water, the Doppler effect manifests itself in both frequency shift and time scaling.

The Doppler scaling factor α is defined as the ratio of the speed of motion with

respect to the velocity of sound. The expression can be found in (1.2), and the

shifted frequency of received signal is given by (1.3). In passband communication,

modulation with a carrier is used to transmit high speed data in a limited frequency

band. At the receiver, an undesirable carrier frequency offset will be present at the

output of the down-converter. Consequently, the constellation of the received data

will rotate.

Excessive Doppler also results in a scaling of the waveform in the time domain. If

the symbol period of the transmitted signal is T0, the period of received signal T ′ is

given by

T ′ = (1− α)T0 (2.23)

In other words, after 1/α symbol periods, the down sampler will have one symbol

offset, and it increases with time. To track the symbol timing at the receiver, after

conversion to baseband, the received signal can be decimated or interpolated at the

symbol rate to align at the center of the symbol period. However, in a time varying

environment in which the Doppler scaling factor α is variable, the sampling will

be shifting slowly off the ideal sampling instant due to time-domain compression or

dilation. In highly mobile underwater acoustic applications, only multiplying a time

dependent frequency shift ej2παt to the signal can not represent the effect of Doppler

accurately, and the time scaling is a more accurate model. Note that time scaling is
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a nonlinear process, that can excessively increase simulation time, so is often avoided

in practice. In these conditions, to compensate the Doppler shift, symbol timing

recovery must also be realized along with carrier frequency recovery [47].

In conventional DA Doppler estimation techniques, a known waveform is trans-

mitted in the frame as a preamble. At the receiver, a bank of discrete correlators with

different Doppler shifted replicas of the transmitted waveform are implemented. The

branch yielding the largest correlation peak is then selected to determine the Doppler

estimate [22]. It is a fast parallel algorithm but typically requires significant hardware

resources. Another technique is to measure the duration of a received data packet by

interleaving known waveforms before and after a data packet [47]. These DA tech-

nique are spectrally inefficient, particularly the latter, because the known waveform

is repeated twice. More importantly, these algorithms do not allow tracking of the

timing within a fraction of the symbol period during the frame acquisition.

2.2.2 A Feedforward Doppler Compensation Structure

The proposed Doppler compensator is shown in Fig. 2.3. In the upper branch, the

signal is decimated to the symbol rate before carrier frequency recovery. A high

oversampling rate is assumed, such that the symbol clock recovery does not need

interpolation between samples. The lower branch in Fig. 2.3 includes the Gardner

TED and a control unit. It shall be stressed that the Gardner TED is applied in a

feedforward configuration. The Gardner TED feeds the error signal forward to the

control unit. The control unit is programmed to adjust a counter which provides the

down-sampler with sampling instances (strobes) at the symbol rate, such that it will

sample at maximum eye opening and minimize the ISI. Moreover, the control unit

also interprets the timing information to generate an estimate of the carrier frequency

offset. The output from the down-sampler is weighed by the carrier frequency offset

estimation to compensate it.

The features of the proposed Doppler compensation circuitry are: 1) a feedforward

configuration, 2) carrier frequency offset estimation with symbol timing, and 3) a

control unit for both symbol timing and carrier recovery. Note that in this design,

a symbol error detector is used in a feedforward manner such that it can achieve a
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Figure 2.3: A feedforward Doppler compensation structure using Gardner detector.

faster convergence rate and keep a good tracking ability at the same time.

The S-curve provides the output of TED S (τ) at different sampling phase τ . For

the Gardner TED, the S-curve is given by [33]

S (τ) = K sin

(
2πτ

T

)
(2.24)

where the ideal sampling phase is τ = 0. The factor K is a function of symbol period

T and rolloff factor. It can be treated as a constant for a certain signal setting. In this

work, the errors fed by the Gardner TED to the control unit can be analyzed with the

S-curve. A decision can be made when S (τ) = 0. It indicates that τ = 0 is reached at

the current sample. However, the Gardner TED also obtains zero values at τ = ±T/2,

in which case a false decision is made. Instead of looking for zeros, considering the

sinusoidal curve in (2.24), the decisions should be made at zero-crossing points on

the curve where the slope is positive. Another feature of the Gardner TED is that

its accuracy relays on the symbol transition. If the symbols in the window of interest

have the same polarity, the detector’s output is not reliable.

In this work, to avoid false detection due to no symbol transition, the slope of

the error is also evaluated, and compared to a threshold. The clock is re-aligned only

when the TED error sequence (averaging may applied at low SNR) is crossing zero

and that the slope is greater than the threshold.

There is a configurable counter inside the control unit that triggers the down-

sampler. The counter is reset to zero once it reaches the oversampling rate, and at

this instant, the down-sampler selects the current sample. The counter is useful when

consecutive symbols have the same polarity, and there is no output from the Gardner

TED.
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Without Doppler scaling, the Gardner TED’s decisions are always made when the

counter is back to zero. In contrast, with Doppler scaling, the counter leaps forward

or backward by 1 step (to avoid instability) to re-align its zero with the decision

instant when they are not aligned. Through this process, although the scaled symbol

rate may be a fraction multiple of the sampling rate, the average sampling frequency

of down-sampler is adjusted to 1/T ′.

After symbol timing recovery, the next task is to compensate for the carrier fre-

quency offset. There are several DA methods [12] [34] which require ideal symbol

timing. Alternatively, in this work, the carrier frequency offset is estimated from the

symbol period scaling.

From (2.23), α can be estimated using

α =
T0 − T ′

T0

(2.25)

The Doppler scaling factor α can either be smoothed through several symbols or

dynamically adjusted symbol by symbol. The output of the down-sampler is then

multiplied with e−jαw0t to compensate for the Doppler introduced carrier frequency

offset.

2.2.3 Simulation Results

To verify the behaviour of the timing recovery circuit, the performance of the pro-

posed implementation in an AWGN channel is modeled. To demonstrate Doppler

compensation for a constant envelope modulation, QPSK is chosen here. An RRC

pulse g(t) with a rolloff factor 0.5 is employed. The Doppler scaling factor α is 1%,

and the SNR in the channel is 10 dB. At the receiver, after coarse down-conversion

and the matched filter, the baseband signal is processed by the Gardner TED.

Fig. 2.4 shows a 10-symbol window of the received baseband signal in the in-

phase branch, as well as the Gardner TED’s output and the “Set Counter” events

that corrects the sampling decision instant. The the “Set Counter” events are located

in the middle of symbols, and they only appear when the error sequence is crossing

zero with a large positive slope. Between Symbols 6 and 7, there is no transition,

leading the Gardner TED incapable of making a decision. That is where the free

running counter inside the control unit becomes useful.
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Figure 2.4: Baseband signal, Gardner TED’s output and corresponding sampling
decisions

The baseband signal before synchronization suffers from undesired phase and am-

plitude modulation. The purpose of symbol timing is to define the ideal sampling

time to minimize the phase and amplitude variation. Moreover, if a carrier frequency

offset is introduced, the scatter plot rotates. Fig. 2.5 shows the scatter plots at the

different stages of the synchronizer.
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Figure 2.5: Representations of a typical scatter plot at different stages of the syn-
chronizer.
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In Fig. 2.5(a), the signal before down-sampling rotates, and is subject to varia-

tions in amplitude. Fig. 2.5(b) shows that after timing recovery, only samples at the

middle of the symbols left, and they are distributed around a rotating constellation

with nearly same amplitudes. The last step, carrier frequency recovery is shown in

Fig. 2.5(c). The samples are aggregated near four constellation points. Note that

rotation due to frequency offset is removed, and the signal is only subject to a phase

offset, and the remaining error can be modelled as additive Gaussian noise. Also,

the estimation error of the carrier frequency offset may accumulate after a number of

symbols if it is not monitored. Nonetheless, these results can still prove that the pro-

posed implementation can compensate for the symbol period scaling and the carrier

frequency shift introduced by the Doppler effect.

2.3 Synchronizer Performance in Realistic Conditions

A set of sea trials were conducted to test underwater communication algorithms in

the Summer 2017. The overarching goal is to demonstrate the communication perfor-

mance of new algorithms in controlled underwater acoustic environmental conditions.

A preliminary trial took place in Northwest Arm near Halifax, while the final set

of experiments were run 10 km off the coast of St. Margaret’s Bay, NS, Canada in

July 2017. The experiment provided an opportunity to evaluate a variety of synchro-

nization algorithms for underwater communications.

A transmission frame was divided into pilot and data blocks. The pilot block was

a wideband, linear frequency modulated chirp signal for frame synchronization. The

data block was divided into four sections, and each section had a symbol rate of 240,

80, 60, 15 and 5 baud respectively. The data consisted of a pseudo-random noise (PN)

sequence that had a length of 512 chips, and that was repeated 16 times. A QPSK

modulation scheme was chosen, and the transmitted waveform was pulse shaped using

a RRC filter with a rolloff factor 0.5. The centre frequency was 2.048 kHz.

2.3.1 Synchronization in Benign Conditions

During the test in Northwest Arm, the depth is reported to be approximately 10-13 m,

and the receiver’s deployment location is around 220 m away from the transmitter.
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There was mild current observed during the experiments, and the sea state is generally

favourable to the test. The acoustic propagation properties can also be observed using

the channel impulse response in Fig. 2.6, where the color represents the intensity of

the arrival signal at a certain path delay. It can be found that there is a strong and

stable direct path of arrival and very few multipath interference.

Figure 2.6: Channel impulse response as a function of time.

At the receiver, all signals are sampled at 44.1 kHz. The frame is first coarse

synchronized with the pilot block so that the data block can be extracted. Down

conversion and a matched filter are applied to the data block to generate the baseband

signal. If the baseband signal is directly down-sampled and demodulated, the bit error

rate (BER) is 0.49, which means no information is recovered.

To recover the data, the feedforward synchronizer discussed in Section 2.1.2 and

2.1.3 is used before demodulation. For demonstration purposes, results from the

80 baud data are presented here. In each iteration, 200 symbols are fed into the

synchronizer to estimate the timing and carrier frequency offsets. The synchronizer

outputs are plotted in Fig. 2.7.

Several observations can be made from Fig. 2.7. There are 8192 QPSK symbols

for a total duration of 102.4 s. Both symbol timing and carrier frequency offset are

varying with time. One possible cause is the Doppler effect due to the relative motion

between the transmitter and the receiver. After demodulation, the BER is 4.1×10−3.
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(a) Symbol timing offset as a function of time

(b) Carrier frequency offset as a function of time

Figure 2.7: Symbol timing and frequency offset estimation results.

2.3.2 Synchronization in Highly Dispersive Conditions

For the trial in St. Margaret’s Bay, the channel conditions are much more dispersive

than that in Northwest Arm. The transmission distance tested in the trial is between

1 km and 10 km, and moderate current introduced drift is experienced. Compared

to the channel in Northwest Arm, this is a typical underwater acoustic propagation

channel with strong time variation, Doppler and multipath conditions.

To mitigate the channel conditions, a case of a slow symbol rate at 60 baud with

1 km transmission distance is studied. The transmitted signal is a QPSK modu-

lated PN sequence with length of a 512 symbols and repeated 5 times. A coarse

rescaling is applied using pilot blocks before any synchronization process [27]. To

be specific, the duration between two consecutive chirp signals is known and can be

restored by resampling. As such, the Doppler introduced linear, time domain scaling

is compensated coarsely. The received signal is down-converted to baseband and the

oversampling rate is 10. The symbol timing recovery is applied first using the O&M

algorithm. For demonstration purpose, a DA PLL is used for carrier frequency recov-

ery. The resulting constellation diagram and the phase offset are shown in Fig. 2.8.
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Figure 2.8: Synchronization using a data-aided PLL.

It can be observed that in Fig. 2.8(b), the phase varies significantly with both a

low frequency trend and high frequency random components. It illustrates that an

effective frequency recovery is essential to the underwater acoustic communications.

Note that the phase offset is fully recovered using a DA algorithm, which is not

practical. Also, even with good synchronization, the overall symbol error rate (SER)

is 7.3 × 10−2. The resulting constellation for these conditions can be observed in

Fig. 2.8(a), where the color coding identifies the expected quadrant for each symbol.

The practical receiver algorithm is developed based on a standard coherent un-

derwater acoustic receiver proposed by M. Stojanovic [50]. A fractionally spaced

decision feedback equalizer (FS-DFE) is used to mitigate the ISI introduced by the

multipath propagation. The FS-DFE uses sampling interval smaller than the symbol

period (half symbol period in this case) and is insensitive to the timing phase of the

incoming signal. Channel tracking is accomplished through the use of an adaptive

algorithm which is a combination of recursive least squares (RLS) and a second-order

digital PLL. The RLS algorithm is known for its fast equalizer convergence speed.

The PLL is not commonly found in an equalizer, since the equalizer itself can track

and compensate for small carrier frequency offset. However, the frequency offset in

the measured conditions is too strong to be compensated by the equalizer alone.

The receiver structure is shown in Fig. 2.9. Note that the frequency compensation
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in the original structure is relocated to the front of the feedforward filter to achieve

a faster convergence. The equalizer’s output is given by

d̂ = axe−jθ̂ + bd̃ (2.26)

Note that in (2.26), the input x, decision d̃, equalizer filter weights a and b are

vectors. In this case, the number of taps for the feedforward and feedback filters

are 8 and 3 respectively. Detailed Matlab code can be found in Appendix A. At the

beginning, the equalizer works in training mode, and the number of training symbols

is 1000. After training, the equalizer switches to the decision directed mode. The

final SER is 9× 10−3, and this result is not sensitive to the symbol timing.

Figure 2.9: The structure of the FS-DFE with PLL

As a comparison to this receiver structure, three other designs are also tested.

1. The symbol timing is recovered first and a symbol spaced DFE is applied without

a PLL. The resulting SER is 4.29× 10−2.

2. The symbol timing is recovered first and a symbol spaced DFE is applied with

a PLL . The resulting SER is 1.09× 10−2.

3. Finally, an FS-DFE without a PLL is also tested. The resulting SER is 5.83×
10−2.
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Note that the performance of a symbol spaced DFE is very sensitive to the timing

recovery result. An inaccurate symbol timing can easily lead to the equalizer con-

vergence failure. Although the fractionally spaced equalizer reduces the burden of

symbol timing recovery, it also increased the complexity of the equalizer. Also, it can

be found that a build-in PLL can significantly improve the SER performance of an

equalizer.

2.4 Summary

In this chapter, three topics have been discussed. The first is a description of the

standard symbol timing and carrier frequency recovery techniques. Both have similar

feedforward and feedback configurations and consist of an error detector or estimator.

Several popular detector/estimator algorithms are described and compared.

Next, a feedforward configuration with a Gardner detector that can compensate for

the Doppler effect introduced symbol timing and carrier frequency offset is detailed.

In this design, a symbol error detector is used in a feedforward manner such that it

can achieve a faster convergence rate and keep a good tracking ability at the same

time.

The last section focuses on the underwater acoustic communication in realistic

conditions. The processed data is acquired in a sea trial, where strong Doppler and

time varying fading can be observed. For a benign propagation channel, the synchro-

nization can be easily realized with standard techniques, while for complex channel

conditions, a more sophisticated receiver structure is required. The classic receiver

that consists of a FS-DFE and a built-in PLL is adopted, and shows good performance

in such complex channel conditions. The performance of this receiver structure and

its variants show that the synchronization is critical for coherent underwater acoustic

receivers.



Chapter 3

Synchronization Based on Entropy Minimization

3.1 Introduction

In coherent wireless communications systems, synchronization is a key operation at

the receiver; it is usually realized between the matched filter and the equalizer. The

two main functions of the synchronizer are symbol timing and carrier recovery. The

purpose of symbol timing recovery is to recover the symbol clock from the modulated

waveform, so that it can down-sample the waveform with the correct symbol timing

offset (STO). Hence, at the output of a matched filter, a signal that is sampled at

the ideal instant can have maximum signal to noise ratio (SNR) and no intersymbol

interference (ISI) [33]. Also, to recover the information embedded in the phase mod-

ulation in coherent communication systems, the down converter must have exactly

the same frequency as the carrier of the signal. However, in practice, the local oscilla-

tor frequency deviates from the input signal’s carrier frequency. As such, the carrier

frequency offset (CFO) has to be compensated. Moreover, in some applications, such

as underwater acoustic communications, the channel may constantly change due to

the time-variant environment or Doppler effect. Therefore a continuous and fast es-

timation and compensation of the STO and CFO is essential to maintain the link

reliability.

Various synchronization algorithms have been described in the literature. While

data-aided (DA) synchronization offers a superior performance, in this work, non-

data-aided (NDA) schemes are approached to maintain a high spectral efficiency. A

feedforward timing correction architecture is described for fast convergence rate.

Most synchronization algorithms follow the maximum likelihood (ML) criterion

or its approximation. For example, the Oerder and Meyr (O&M) algorithm [38] is

a square-law nonlinearity (SLN) estimator exploiting the cyclostationary properties

of the modulated signal, and is one of the most commonly used NDA feedforward

36
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STO estimator. It has been proven that this algorithm and its variants [25] can be

asymptotically interpreted as an ML estimator [32, 57]. For feedback configurations,

the NDA Gardner timing error detector and its DA counterpart, the zero-crossing

detector can also be derived from the ML criterion [33]. The NDA feedforward CFO

estimator proposed in [56] employs the fourth-order cyclostationary property, and

still follows the ML criterion. Also, various DA feedforward CFO estimators attempt

to maximize the inner product between the training sequence and the data samples.

All these CFO estimators can be treated as generalized ML estimators [33].

The primary contribution of this work consists in the definition of a unified syn-

chronization criterion, relying on entropy minimization (EM) as an alternative to the

ML criterion. Specifically, the entropy of the eye diagram is evaluated for symbol

timing recovery, and the entropy of the constellation diagram is measured for carrier

frequency recovery. For both applications, the synchronization parameter that leads

to a minimum entropy value is considered to be optimum. A similar concept, the

minimum error entropy which is an important and highly effective optimization cri-

terion in information theoretic learning can be found in [5]. Note that it has been

shown in [41] that the CFO of phase-shift keying (PSK) and quadrature amplitude

modulation (QAM) modulated signals can be recovered by minimizing the entropy of

the instantaneous phase probability density function (PDF), and the phase entropy is

obtained by linear search with high computational complexity. In comparison, in the

proposed work, a more generic entropy criterion is employed, where both the phase

and amplitude components are considered. This concept has been briefly introduced

in our previous work [30]. However, to the best of the authors’ knowledge, this is

the first work that provides a non-ML, unified criterion for both symbol timing and

carrier recovery and that also includes an extensive conceptual analysis.

For demonstration purposes, a custom estimation algorithm is provided to evaluate

the entropy of the signal eye diagram and constellation. Many practical issues can be

encountered when implementing EM based synchronization algorithms. These issues

include undesired local minima, insufficient oversampling rate and the vanishing of

the gradient. The next contribution of this work is a practical implementation that

addresses these issues.

The performance of the proposed symbol timing and carrier frequency recovery
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criterion is also evaluated in controlled conditions. The effects of various channel

impairments, including noise and multipath, are analyzed on the system performance.

The EM based algorithms are found to have improved performance when the pulse

shaping filter has a small excess bandwidth, so that it allows better spectral efficiency.

It is also demonstrated that the EM criterion provides a higher SNR than the ML

criterion for timing recovery in multipath channels.

This chapter is organized as follows. In Section 3.2, an entropy minimization cri-

terion for synchronization is introduced. A customized entropy estimation algorithm,

and its implementation issues are discussed in Section 3.3. In Section 3.4, the perfor-

mance of the algorithm is evaluated in controlled conditions. Finally, conclusions are

drawn in Section 3.5.

3.2 Entropy Minimization based Synchronization

In this section the entropy minimization criterion is presented. Specifically, the signal

model adopted in this paper is presented in Section 3.2.1. The standard ML criterion

is briefly introduced in comparison to the EM criterion in Section 3.2.2. Then, the

application of the EM criterion to symbol timing using the eye diagram entropy is

explained in Section 3.2.3, while the constellation diagram entropy used for carrier

frequency recovery is explained in Section 3.2.4.

3.2.1 Signal Model

In this work, it is assumed that the signal is transmitted using coherent modulation

schemes with an alphabet size of M , where M is a power of two. In the following

discussion, quadrature phase shift keying (QPSK) modulation is used to validate the

performance, but the application is not limited to low order modulation schemes.

In fact, the discussion can be easily extended to other PSK or QAM modulations.

The received binary information follows an independent identical distribution (i.i.d.).

The modulated data is pulse shaped to limit the bandwidth occupancy. A standard

pulse shaping filter is used at the transmitter, which is designed under the Nyquist

criterion, such that there is no ISI at the ideal sampling instants.

At the receiver, the over-sampled passband signal goes through a down converter
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and a matched filter first. Then, a timing recovery is applied, and it is followed by a

carrier frequency recovery. Such a design is based on the idea that the decimated sam-

ples are sufficient for the CFO estimation, and the estimation has less computational

burden because it operates at a reduced rate.

At baseband, the i-th data sample xi after timing and carrier frequency recovery

can be expressed as [60]

xi[τ, f∆] = y(iT + τ, f∆)e
−j2πf∆iT , (3.1)

where y is the output of the matched filter, τ and f∆ are the STO and the CFO

respectively, and T is the symbol period. To estimate the STO and CFO, the EM

criterion will be presented in Section 3.2.3 and Section 3.2.4 respectively.

3.2.2 Maximum Likelihood Versus Entropy Minimization

The estimation of the STO and CFO can be considered to be an optimization problem.

Except for a few heuristic methods, most algorithms are based on maximizing a

likelihood function. In [33], for the NDA symbol timing recovery, this criterion yields

the objective function Λ(τ), which is equal to

Λ(τ) =
N∑
i=1

|xi(τ)|2, (3.2)

while the DA carrier frequency recovery often uses the objective function Λ(τ), defined

as

Λ(f∆) =

⏐⏐⏐⏐⏐
N∑
i=1

c∗ixi(τ, f∆)

⏐⏐⏐⏐⏐ , (3.3)

where c∗i is the complex conjugate of the i-th training symbol. These two objec-

tive functions are actually aimed at maximizing the energy of the data sample set.

This ML based estimation method uses second-order statistics of the samples and is

suitable for linear channels with additive white Gaussian noise (AWGN). However,

for channels that are dominated by ISI, and cannot be modelled with second-order

statistics appropriately [16], a criterion that considers higher order statistics is a more

reasonable approximation.

The entropy is a measure of randomness or uncertainty of a signal, and it is

a function of the signal PDF. As explained in [45], the higher order statistics are
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taken into consideration by measuring entropy. According to information theory, the

minimum entropy of any type of communication signal is equal to the entropy of

the transmitted information. It is understood that the purpose of synchronization

is to remove the interference due to the STO and CFO. This specific interference

introduces extra entropy to the received signal and, as such, the entropy can be used

as a cost function towards synchronization. Unlike the ML criterion, the EM criterion

does not model the interference using a statistical model, making it difficult to prove

the EM criterion mathematically. However, it will be demonstrated through rigorous

numerical simulations in the rest of the paper.

The Shannon entropy is the most commonly used measure of the quantity of infor-

mation embedded in a signal. AssumingM possible observations of a one-dimensional

discrete signal, with pk representing the probability of the k-th occurrence, the Shan-

non information entropy HS is expressed as [46]

HS = −
M∑
k=1

pk log pk, (3.4)

where the logarithmic function usually uses base two, and the corresponding entropy

unit is expressed in bits. In the next two sections, the Shannon entropy is used as a

metric to evaluate the eye diagram and constellation diagram.

3.2.3 Eye Diagram Entropy and Symbol Timing Recovery

To recover the symbol timing, in this work the entropy of the eye diagram is utilized.

Ideally, the down-sampling instant should be located in the middle of the eye diagram

where the eye opening reaches its maximum. The symbol timing recovery can be then

interpreted as an algorithm to adjust the timing instant with a proper STO on the

eye diagram.

The eye diagram is composed of time domain signal traces that are periodically

overlaid in a window with a length of one or two symbol periods. The eye diagram

entropy is defined as the entropy of the signal that is distributed at a certain timing

instant on the eye diagram. This can be further explained using Fig. 3.1. The

eye diagram in Fig. 3.1(a) is sliced vertically at four timing instants. The signal

probability distributions at each timing instant are estimated using the histogram in
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Fig. 3.1(b). The histogram is a simple visualization of the data distribution where

bins are defined, and the number of data samples within each bin is tallied. Here

the number of samples is normalized and presented as probabilities. Then, the eye

diagram entropy can be found using (3.4).
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Figure 3.1: Signal probability distribution on four timing instants on a typical eye
diagram.

For example, a given modulation scheme with an alphabet size of M is imple-

mented to transmit random data in an ideal channel. At the receiver, with perfect

timing recovery, the signal samples can only be distributed equally within M possible

symbols. The probability that the samples belong to the k-th symbol is pk = 1/M .
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Substituting pk into (3.4), the minimum eye diagram entropy is defined as

minHeye = −
M∑
k=1

1

M
log2

1

M
= log2M, (3.5)

which is exactly the same as the amount of information carried by each symbol.

The minimum eye diagram entropy only exists when the perfect symbol timing is

achieved, because according to the Nyquist criterion, there is zero ISI at these timing

instants. For a timing instant that deviates from the middle of the eye, the Nyquist

criterion is violated and the interference from adjacent symbols increases the ran-

domness. An analytical relationship between the eye diagram entropy and the timing

instant is difficult to demonstrate; however, it can be observed that as the timing

instant shifts away from the centre, the signal energy from current symbol decays,

and the interference energy grows, leading to increased randomness. Therefore, the

entropy, being a measure of randomness, will also increase. Since each interference

pulse from adjacent symbols carries the same amount of information, if the span of

the pulse shaping filter is Nspan, the maximum eye diagram entropy will be Nspan

times the amount of information carried by each symbol, which can be presented as

maxHeye = Nspan log2M. (3.6)

To summarize, the EM based symbol timing recovery seeks the timing instant

with minimum eye diagram entropy. The eye diagram entropy can be seen as an

indicator of the ISI that is introduced by adjacent symbols. Effectively, the desired

timing instant with zero ISI is the instant with minimum eye diagram entropy.

3.2.4 Constellation Diagram Entropy and Carrier Frequency Recovery

The EM criterion can also be applied to recover the carrier frequency. When the

passband signal is down converted to baseband, the complex data can be visualized

as a constellation diagram. However, if the frequency of the local oscillator is different

(even by a very small margin) from the carrier of the signal, the resulting constellation

diagram rotates and cannot be demodulated reliably. The estimation of a CFO that

is much smaller than the symbol rate is discussed in this section, since for a large

CFO, a preceding coarse carrier recovery is usually required.
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The randomness of the signal distribution on the constellation diagram can be

quantitatively measured by the constellation diagram entropy. Similar to the eye

diagram entropy, the histogram can be used for probability estimation. However, a 2D

histogram is needed to present both in-phase and quadrature components (or phase

and amplitude components when considering the polar coordinate system) on the

constellation diagram. Examples of noise free QPSK constellation diagrams with zero,

mild and strong CFO with their corresponding histograms are shown in Fig. 3.2. The

constellation diagram entropy can be estimated with these 2D histograms. According

to (3.4), the highest probability peaks in the histogram indicate the lowest entropy

(as observed in Fig. 3.2(a)). The probability that a sample occupies a given bin can

be roughly considered to be equal in all bins. Therefore, it can be approximated

by pconst ≈ 1/nbin, where nbin is the number of histogram bins loaded with signal

samples. Thus, the constellation entropy is given by

Hconst ≈ −nbinpconst log2 pconst ≈ − log2
1

nbin

. (3.7)

For example, when the CFO is zero, minnbin = M , and the minimum constellation

entropy is

minHconst = log2M, (3.8)

which is the same as (3.5). There is also an upper limit on the constellation en-

tropy when the rotation of the constellation results in samples that are uniformly

distributed along a circle such that separate clusters can no longer be distinguished.

This phenomenon will be further discussed in Section 3.3.3. Note that an analytical

discussion is provided in [41] and demonstrates that, for PSK modulation, the entropy

has a global minimum and corresponds to a CFO equal to zero.

3.3 Implementation Entropy based of Symbol Timing and Carrier

Frequency Estimation

In this section, a customized entropy estimation algorithm is provided. Then the EM

criterion will be implemented for symbol timing and carrier frequency estimation.

Practical issues are addressed, and the estimation algorithms are discussed in detail.
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Figure 3.2: Constellation diagrams with different CFOs and the corresponding his-
tograms of signal probability distribution.
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3.3.1 Customized Entropy Estimation Algorithm

According to the Shannon entropy defined by (3.4), the entropy is a function of the

PDF of the observations. A common technique is to use the histogram for probability

estimation as shown in Fig. 3.1 and Fig. 3.2. In this section, the Rényi entropy is

utilized as an alternative customized entropy estimation algorithm for the purpose of

conceptual verification.

The Rényi entropy is a generalization of the Shannon entropy. It is defined as [44]

HR =
1

1− β
log

(
M∑
k=1

pβk

)
, (3.9)

where β is the order of the Rényi entropy. As explained in [3], when the order

β → 1, the Rényi entropy tends to be equal to the Shannon entropy. Following [45]

the quadratic Rényi entropy (β = 2) is chosen in this work such that a further

simplification can be made. Using β = 2 in (3.9), the quadratic Rényi entropy is

given by

HR2 = − log

(
M∑
k=1

p2k

)
. (3.10)

Note that in (3.10), the logarithm function is external to the sum of the quadratic

probabilities. Because the logarithm function is monotonic, minimizing (3.10) is

equivalent to maximizing its internal portion. Since the search for a minimum en-

tropy relies on a relative value of HR2, the logarithm function can be dropped out

without affecting the estimation result. This can be attractive when implemented on

elementary processors that cannot process advanced math functions. Recall that for

the Shannon entropy given in (3.4), the sum of pk log pk is simplified to the sum of p2k

here.

As suggested in [42], the kernel density estimation (KDE) is used to evaluate

the argument of the logarithm function in (3.10). As such, for a set of N samples,

i = 1, . . . , N , the sample probability at an observation ξ can be estimated by

p(ξ) =
1

N

N∑
i=1

Kr (ξ − xi), (3.11)

where Kr(·) is a kernel function with a positive parameter r. Then, by substituting
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(3.11) into (3.10) and after some simplification, we have

HR2 = − log

(
1

N2

N∑
i=1

N∑
j=1

Kr (xi − xj)

)
, (3.12)

where p2k in (3.10) is directly estimated by the kernel function. The simplest kernel

function, the top-hat kernel is given by

Kr(x) =

⎧⎪⎨⎪⎩1, |x| ≤ r

0, otherwise.
(3.13)

where the threshold r is used to determine the quantization level in which samples are

grouped for entropy estimation. The choice of r will be detailed later in this section.

Using (3.12) and (3.13), the entropy can be estimated by measuring the distances

between samples instead of using histograms.

From the discussion above, the customized entropy estimation algorithm is sum-

marized using the following steps:

1. For a given set of observations with N samples, calculate all the distances dij

between each sample pair xi and xj, where 1 ≤ i < N and i < j ≤ N . Then,

the distance dij is given by

dij = ∥xi − xj∥ , (3.14)

where ∥·∥ represents the Euclidean norm.

2. Define a separation threshold r and count the number of dij that satisfy dij > r,

and denote the number of separated sample pairs as Hsp.

3. After normalization, express the modified Rényi entropy (MRE) as

HMRE =
Hsp

N(N − 1)/2
. (3.15)

The resulting HMRE is the modified version of the quadratic Rényi entropy in

which the logarithm function is dropped. Because of the normalization, the value of

HMRE is limited between 0 to 1 and is unitless. Intuitively, HMRE is a measure of

the amount of sample dispersion, since it counts the number of sample pairs with

distances greater than the threshold r.
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The choice of the threshold r (often referred as bandwidth in KDE [1]) exhibits

a strong influence on the results. It can be derived arithmetically from sophisticated

algorithms to achieve an optimal probability estimate [1]. Note that the absolute

entropy value is not important, and the threshold r is empirically set to be equal to

the root-mean-square value of the noise.

Another design parameter for MRE estimation is the number of samples, which

is equal to a few hundred in our application. Entropy estimation is more accurate

with a growing number of samples, but the number of distance calculations grows

quadratically. Note that the computational complexity can be reduced by using other

distance metrics presented in [4]. However, this will cause a reduced tracking ability,

which means that the algorithm cannot adapt to the time varying channel effectively.

As such, the choice for the number of samples depends both on the dynamic channel

conditions and the hardware capabilities.

3.3.2 Symbol Timing Offset Estimation

STO estimation can be implemented by searching for the instant with minimum en-

tropy in the eye diagram. In this section, the following practical issues are addressed:

1) resolving local minima in the entropy curve, 2) examining the timing recovery in

presence of CFO, and 3) providing accurate STO estimation at low oversampling rate.

The entropy reaches a global minimum in the centre of the eye diagram, but in

practice, when the timing instant is close to the symbol transition area, the entropy

may decrease and create local minima. Local minima could result in false STO es-

timation especially at low SNR conditions, and particularly if gradient based search

algorithms are used. Since the entropy local minima occur when the sample mag-

nitude is small, an additional threshold can be introduced to eliminate these data

samples in the entropy estimation.

The following steps summarize the MRE estimation algorithm with the additional

threshold:

1. Define a threshold rmg and build a new sample set where all samples with a

magnitude greater than rmg are included. The number of samples in the new

set is denoted as Nmg;
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2. Find all the Euclidean distances dij between each sample pair xi and xj in the

new sample set, where 1 ≤ i < Nmg and i < j ≤ Nmg;

3. Define an aggregation threshold r. Count the number of dij for which dij < r

(note this inequality is different from its counterpart in Section 3.3.1), and

denote the number of aggregated sample pairs as Hag;

4. Express the bounded modified Rényi entropy (BMRE) as

HBMRE = 1− Hag

N(N − 1)/2
. (3.16)

A typical case is given here to show how the EM based STO estimation works.

The received signal consists of a frame of QPSK modulated random symbols, which

are pulse shaped to generate a baseband complex envelope. The oversampling rate is

40 to provide a better eye diagram resolution. An AWGN channel is assumed with

Es/N0 = 18 dB. After the matched filter, the eye diagram of the real component

of the signal is shown in the upper part of Fig. 3.3, and both the MRE and BMRE

estimation results are shown in the lower part. The thresholds are r = 0.25 and

rmg = 0.3.

In Fig. 3.3, the entropy reaches a global minimum in the centre of the eye dia-

gram, and its value is close to 0.75. This minimum entropy value can be derived as

follows. Since the QPSK symbols are i.i.d, there are four clusters distributed on the

constellation diagram, and each cluster consists of N/4 samples. The threshold r is

designed such that the condition of dij < r can only be satisfied between samples

located in the same cluster. For 4 clusters, Hag ≈ 4 (N/4)2 /2 (assuming N ≫ 1).

Thus, the minimum value of the BMRE is approximated by

minHBMRE ≈ 1− 4 (N/4)2 /2

N2/2
= 0.75. (3.17)

The minimum value of MRE in the eye diagram centre can also be derived in a

similar way to the BMRE. The entropy increases with the absolute value of STO,

indicating more randomness introduced by ISI. When the STO is beyond ±0.35, the

MRE estimation decreases and creates a local minimum in the symbol transition.

This phenomenon is also illustrated in the eye diagram, where the samples aggregate

into three visible groups (with amplitudes of ±1 and 0).
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Figure 3.3: An typical eye diagram (upper) and the corresponding eye diagram en-
tropy (lower).

The result of the BMRE algorithm coincides with that of the original MRE al-

gorithm in most of the timing instants, but the local minima near ±0.5 become flat.

As such, with the BMRE estimation algorithm, the local entropy minima due to the

symbol transitions are removed, and the STO can be estimated with higher accuracy.

Next, the impact of timing recovery in presence of uncompensated CFO will be

evaluated. Theoretically, the previous analysis of eye diagram entropy still holds, but

the CFO does introduce extra entropy in the estimation. To understand how the

CFO affects the eye diagram entropy, another simulation that is similar to what was

demonstrated in the early part of this section is conducted with an extra CFO at 1%

of the symbol rate introduced. The eye diagram and the corresponding entropy are

depicted in Fig. 3.4.

The eye diagram shows an eye that is completely closed: the centre of the eye

or optimum timing instant cannot be identified by only observing the eye diagram.

However, the optimum timing instant can be clearly identified with the entropy curve.

Both the MRE and the BMRE algorithms have the same global minimum at zero
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Figure 3.4: An eye diagram with carrier frequency offset (upper) and the correspond-
ing eye diagram entropy (lower).

STO.

In Fig. 3.4, it is also interesting to observe the entropy plot at a symbol transition.

With the MRE algorithm, the local minima are more noticeable and may lead to a

false STO estimate. However, the BMRE algorithm shows superior performance: the

curve is not flat anymore but continues growing with the same gradient as a function

of timing offset. This feature shows a good adaptation of the BMRE algorithm and

proves that the “symbol timing recovery before carrier recovery” receiver configuration

is feasible.

In the previous discussion, a global search for STO with minimum eye diagram en-

tropy requires a high oversampling rate (normally more than 10 samples per symbol).

However, this is not always available in practice, especially for high speed communi-

cation. Recall that the O&M algorithm uses as low as 4 samples per symbol, and its

STO is given by

τ =
T

2π
arg

{
N∑
i=1

x2
i e

−j2π(i−1)/Nsps

}
, (3.18)
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where T is the symbol period and Nsps is the oversampling rate. The operation arg {·}
returns the phase angles in radians. The guiding principle of the O&M algorithm is

to apply a discrete Fourier transform (DFT) to the squared signal x2
i , and the STO

is extracted from the angle of the resulting spectrum line at the symbol rate.

The theory behind (3.18) is that the squared signal x2
i is a periodic signal with

the same frequency and phase as the pulse shaped symbols due to the cyclostation-

ary property of xi. Thus, even with a low oversampling rate, the STO can still be

estimated by DFT. The eye diagram entropy curve exhibits a similar property as x2
i

within one period. Therefore, the same approach can be applied to the EM based

symbol timing algorithm. To be specific, x2
i in (3.18) can be replaced with the eye

diagram entropy Hi, such that the STO can be found with

τ =
T

2π
arg

{
Nsps∑
i=1

Hie
−j2π(i−1)/Nsps

}
. (3.19)

Note that (3.19) assumes that the entropy curve is symmetric to the centre of the

eye diagram, but the symmetry may not be maintained at low SNR or in a multipath

channel. In these conditions, the algorithm may result in large estimation variance.

Although the complexity of the STO estimation is reduced by using less sam-

ples (similar to the O&M algorithm), the EM based method still requires higher

computational load than conventional algorithms, because of the nature of entropy

estimation. The MRE and BMRE algorithms can relieve certain computational load

by using approximation methods, but the complexity remains higher than the con-

ventional methods. Nonetheless, the entropy analysis provides more insights on the

signal eye diagram and helps locate the maximum eye opening, as will be shown in

Section 3.4.

The STO estimation discussed in this section assumes that the symbol period is

known to the receiver and that there is no time scaling during transmission. Thus,

the symbol timing recovery discussed here is equivalent to locating a timing offset

on the eye diagram. If this assumption does not hold, a symbol period estimation is

required. Such an estimation can be done by searching for the symbol period that

can minimize the whole eye diagram entropy.
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3.3.3 Carrier Frequency Estimation

In this section, the implementation of the EM based CFO estimation algorithm is

detailed. Similarly to the STO estimation discussed above, the proposed algorithm

is also NDA. The constellation diagram entropy is measured by defining an adequate

range for the trial CFO, and a global search is applied to find the minimum entropy.

The characteristics of the entropy curve are shown first and then a method that can

increase the global search efficiency is proposed.

In Section 3.2.4, it can be noted that the constellation entropy is almost flat

when the CFO is greater than a maximum frequency. This maximum frequency

can be considered as the effective search range for EM based CFO estimation. The

entropy curve within the frequency limit has a V-shape “trough” (negative peak)

and the entropy global minimum is located in the middle of the trough. For a given

modulation scheme, the range of the trough is affected by the CFO (f∆), the symbol

rate 1/T , and the number of data samples N in the window. For example, the M -

PSK modulated signal has a minimum constellation phase difference 2π/M . The

accumulated phase shift due to CFO is given by 2πf∆NT . The constellation entropy

increases with the CFO until the accumulated phase shift is greater than the minimum

constellation phase difference. Therefore, the CFO search range is given by

|f∆| <
1

MNT
, (3.20)

and when the CFO is larger than 1/MNT , the entropy curve becomes flat.

Using (3.20), if N is equal to a few hundred samples, a given CFO that can

fall into the entropy search range must be on the order of 0.1% of the symbol rate,

which is relatively small compared to the CFO range that needs to be covered. The

resulting entropy curve as a function of trial CFO is generally flat with the exception

of a sharp trough. A similar result has also been reported in [41]. Consequently, the

linear search requires very fine steps to achieve high frequency resolution, and the

potential gradient descent algorithm may not converge due to lack of gradient. In

other words, an efficient search algorithm cannot be applied.

In order to cover a large estimation range without intensive computation, an

algorithm that can expand the width of the trough is required. To increase the

trough width, a possible solution is to reduce N . However, the lack of samples will
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lead to an inaccurate PDF and entropy estimation. Instead, a block average algorithm

inspired by [21] is adopted to smooth the entropy curve. The data samples are equally

segmented into L blocks, and the entropy of the i-th block is denoted as Hi(f∆). The

block averaged constellation diagram entropy is given by

Hconst(f∆) =
1

L

L∑
i=1

Hi(f∆). (3.21)

The CFO is assumed to be constant for the set of data samples. Thus, each

block possesses the same entropy curve but with random fluctuation due to the lack

of samples for probability estimation. By averaging the entropy curve using small

blocks, a wide and smooth entropy trough is achieved. The new trough is L times

wider than the original one.

With the same settings as in Section 3.3.2, the numerical simulation of the constel-

lation diagram entropy is compared using 1) 400 samples, 2) 50 samples and 3) block

averaged 400 samples with a block size of 50 samples (L = 8). The results are plotted

as a function of the CFO in Fig. 3.5. Perfect symbol timing is assumed, and the CFO

search range is swept within 1% of the symbol rate.
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Figure 3.5: Constellation diagram entropy for carrier frequency recovery.

As discussed in Section 3.2.4, the entropy curve should reach the global minimum

with the CFO equal to zero. In Fig. 3.5, the entropy curve using 400 samples has only

one global minimum when the CFO is equal to zero and no other local minimum.
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But its curve has a very narrow trough as predicted. The entropy estimated using

50 samples has a trough boundary at ±0.5% of the symbol rate, which agrees with

(3.20). In fact, the trough range is expanded by 8 times, but many fluctuations and

local minima appear. In comparison, the entropy curve using the block averaging has

the same expanded trough as the entropy estimated using 50 samples, but the local

minima are smoothed out, leaving only the global minimum at the zero CFO.

Given the expanded entropy trough, a more efficient two-step linear search, similar

to the algorithm described in [41], can be readily applied. First, a coarse search

through the frequency range of interest with step size equal to the half trough width

can provide an approximate CFO estimate. A second search with a fine frequency

step near the coarse estimation result can improve the accuracy of the CFO estimate.

Recall that the computation complexity grows quadratically with the number of

samples, so breaking down the sample set into small blocks can significantly reduce

the required computation. For example, if the 400 samples are equally divided into 8

blocks, it is easy to find that compared to the algorithm without block averaging, this

algorithm requires eight times less number of Euclidean distance calculations (defined

by (3.14)). This is a significant reduction in computational complexity.

Compared to the linear search algorithm proposed in [41], the block average

method for CFO estimation reduces the computational complexity by calculating

less sample pair distances. However, similar to the STO estimation using (3.19), it

still more complex than the conventional ML based algorithms because of the esti-

mation of entropy instead of energy. The EM based algorithms are not appropriate

for computation sensitive tasks. On the other hand, note that since the computing

of the entropy for each trial STO or CFO is independent, it is possible to perform

in parallel mode (such as using a multi-core processor or FPGA) to accelerate the

estimation.

3.4 Performance Evaluation

In this section, the performance of the symbol timing and carrier frequency estimation

algorithms presented in the previous section are assessed in controlled conditions. The

estimation error variance in AWGN channel is used as the major figure of merit. Also,
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the effect of multipath impairment is analyzed on the system performance.

First, the performance of the symbol timing estimation algorithm (3.19) is exam-

ined in presence of AWGN. The O&M algorithm described by (3.18) is used here to

represent the ML estimator for comparison.

The performance comparison in presence of AWGN is shown in Fig. 3.6. In this

figure, the QPSK modulation is evaluated, but similar results are expected for other

PSK or QAM modulation schemes. A pulse shaping filter is used to limit the band-

width. The rolloff factor used in the evaluation is α = 0.25 and 0.05 respectively. The

small excess bandwidth conditions are chosen to accommodate a recent bandwidth

efficient communication standard [36]. The choice is also motivated by the fact that

using small rolloff factor represents the worst case with respect to the timing error

variance.

AWGN is introduced at the receiver, such that the symbol energy to noise spectral

density ratio (Es/N0) ranges from 5 to 40 dB. For each Es/N0 setting, the average of

500 Monte Carlo trials are taken. In each trial, a block size of 100 symbols are used

to estimate the STO. The proposed algorithm (3.19) is used for the EM based STO

estimation. After normalization by the symbol period, the variances of the timing

error (also known as the jitter variance in some literature [13]) with respect to the

symbol period are represented in Fig. 3.6. Following [33], the modified Cramér-Rao

bound (MCRB) is also shown as the theoretical limit.

Several conclusions can be drawn from Fig. 3.6. Generally, the EM based symbol

timing algorithm has lower error variance than the O&M algorithm for both rolloff

factors and for a large range of Es/N0. With the O&M algorithm, larger rolloff

factor generates smaller error variance. When the Es/N0 is greater than 25 dB, the

variance value reaches a lower limit because of its strong self-noise [33]. In contrast,

the timing error variance of the EM based algorithm changes less significantly with

different rolloff factors. Also, it suffers less from the self-noise.

The O&M algorithm has less error variance when Es/N0 < 9 dB and α = 0.25.

This is because the O&M algorithm, as an example ML algorithm, is designed under

AWGN assumption. In fact, the EM based algorithm is favoured in small excess

bandwidth conditions, because the eye diagram entropy estimation can effectively

measure the ISI. However, if a pulse shaping filter with larger excess bandwidth is



56

5 10 15 20 25 30 35 40

E
s
/N

0
 (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

N
o
rm

a
liz

e
d
 t
im

in
g
 v

a
ri
a
n
c
e

=0.25, EM

=0.25, O&M

=0.05, EM

=0.05, O&M

MCRB

Figure 3.6: Timing error variance of two symbol timing algorithms with two rolloff
factors.

used (α > 0.5 for example), the O&M algorithm will have a performance very close

to the MCRB [33].

As explained in Section 3.3.2, the EM based symbol timing estimation is insensi-

tive to the CFO, but it is interesting to understand how the performance changes in

the presence of CFO. The simulation settings are generally the same as for the last

one, except that different modulation schemes, BPSK and QPSK, are evaluated, and

the rolloff factor is set to 0.25. The introduced CFO is 1% of the symbol rate, and

the timing variances are plotted in Fig. 3.7.

For BPSK modulation, the EM based algorithm shows a good performance that

is close to the MCRB when the Es/N0 is below 30 dB. It has the highest performance

improvement compared to the O&M algorithm. However, for QPSK modulation, the

performance improvement is marginal. This is because, for the EM based algorithm

in (3.19), it is assumed that the eye diagram entropy curve is symmetrical to the

centre of the eye diagram, and this only stands with low modulation order and low

noise level. Another example of an asymmetrical eye diagram entropy condition will

be analyzed in the following simulation.

A key issue that coherent communication systems are facing is the multipath

channel impairment. Unpredictable channel impulse responses violate the Nyquist
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Figure 3.7: Performance of two symbol timing estimation algorithms in the presence
of CFO.

ISI criterion, and the communication performance is compromised. The nature of

EM based symbol timing estimation is to search for the timing instant with minimum

ISI, which makes it more suitable for these conditions than ML based algorithms. To

demonstrate this, a set of BPSK modulated symbols with α = 0.5 is transmitted. For

simplicity, a multipath channel with impulse response h(t) is given by

h(t) = δ(t) + 0.5δ(t− 1.4T ) + 0.2δ(t− 3.5T ). (3.22)

At the receiver, the eye diagram and the timing instants estimated by both O&M

and EM algorithms are plotted in Fig. 3.8 for Es/N0 equal to 15 dB.

The eye diagram in Fig. 3.8 is almost closed and shifted from the centre due to ISI.

The bit error rates (BER) of demodulated samples recovered by the two algorithms

are compared without equalization. The EM algorithm can find the maximum eye

opening and achieves a BER of 1.2%. In contrast, the BER is 5.9% if using the

O&M algorithm. As one can observe in Fig. 3.8, the samples recovered by the O&M

algorithm have the highest energy output, but with strong ISI.

The results from the channel given by (3.22) is not a special case. To evaluate

the timing recovery algorithms in realistic multipath channel conditions, a measured

impulse response of an underwater acoustic channel in Fig. 3.9 is considered. The
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multipath channel models utilize the amplitudes and delays of the five greatest im-

pulses from the measured data. Both Rayleigh and Rician fading are tested, where

the Rician K-factor is set to 3. The channel model is quasi-static, such that the

channel parameters are constant within each trial. The final results are the average

of 500 Monte Carlo trials.
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Figure 3.9: Impulse response of a multipath channel.

The transmit signal are QPSK modulated, and 3000 random symbols are sent in

each trial with a symbol rate of 240 Bd. At the receiver side, a symbol-spaced decision

feedback equalizer is placed after the timing recovery to compensate for the multipath

channel. Both the equalizer’s feedforward and feedback filters have 6 complex weights.

The adaptive algorithm used in the equalizer is a recursive least square (RLS) with
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Table 3.1: Symbol error rate (%) in multipath fading channels
Fading Rolloff Mid O&M EM

Rayleigh

0.75 0.36 13.35 1.59
0.5 1.10 16.02 2.67
0.25 6.27 16.43 5.85
0.05 20.38 26.34 14.04

Rician

0.75 0.17 11.92 1.27
0.5 0.58 11.47 1.64
0.25 3.64 12.57 3.59
0.05 11.92 19.45 8.38

a forgetting factor of 0.95. The first 1000 symbols are the training signal for the

equalizer, and the symbol error rate (SER) is calculated with the equalizer’s output

for the rest 2000 symbols.

The simulation results are summarized in Table 3.1. The SER when synchroniz-

ing to the middle of the first arrival is also calculated as a reference. Note that if

the equalizer converges during the training, the SER of a single trial is negligible.

However, if it fails to converge, the SER can be up to around 75% for QPSK mod-

ulation. Therefore, the averaged SER listed in the table is a indicator of how often

the equalizer fails to converge with the given timing recovered samples.

As can be observed, the SER of the EM algorithm significantly outperforms that

of the O&M algorithm for all rolloff factor settings and fading conditions. As such,

the equalizer is much more likely to converge using the EM based timing recovery

algorithm. It can be observed in Table 3.1 that in small rolloff factor conditions, using

the first arrival does not always provide optimum down-sampling positions, since the

maximum eye opening is shifted due to ISI as shown in Fig. 3.8. In fact, it is clear

that the EM algorithm provides better SER when the rolloff factor is small.

Next, the performance of CFO estimation in presence of AWGN is evaluated. For

the carrier frequency recovery test, perfect symbol timing is assumed. The signal is

QPSK modulated with a CFO equal to 1% of the symbol rate. Three algorithms

are compared for CFO estimation: the EM based algorithm, the open loop and the

classic ML algorithm.

The open loop algorithm proposed in [7] estimates the CFO by averaging the

differential phase error over the window. For QPSK modulation, the CFO is given



60

by [33]

f∆ =
1

8πT
arg

{
N∑
i=2

(
xix

∗
i−1

)4}
. (3.23)

The classic ML algorithm uses the same global search method as the EM algo-

rithm. The objective function is given by

Λ(f∆) =

⏐⏐⏐⏐⏐
N∑
i=1

x4
i e

−j8πf∆iT

⏐⏐⏐⏐⏐
2

. (3.24)

In (3.24), the CFO is estimated by searching for the trial CFO that yields the highest

energy or alternatively by applying a computationally efficient FFT based implemen-

tation [56]. Note that both (3.23) and (3.24) are NDA algorithms and a power of 4

is applied to the signal to remove the modulation. This is not necessary in the EM

algorithm. The CFO that is estimated using the three algorithms is normalized by

the symbol rate, and for each Es/N0 condition, 500 trials are conducted to compute

the variance. The results are shown in Fig. 3.10, where the MCRB is also included

as a reference.
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Figure 3.10: Performance of three carrier frequency recovery algorithms.

In Fig. 3.10, the EM algorithm shows a much smaller frequency variance than the

open loop algorithm. This demonstrates its robustness for CFO estimation. How-

ever, the performance of the classic ML algorithm is mostly the same as the MCRB,



61

making it slightly better than the EM algorithm. It is not surprising that the classic

ML algorithm provides a smaller variance than the EM algorithm in AWGN, since

theoretically it is the optimum solution in these conditions.

The CFO estimation performance for both the EM and classic ML algorithms in

multipath channels has also been examined. The performance of the two algorithms

has no significant difference in terms of SER if the same timing recovery is given.

This is because no ISI gain can be provided to the EM based algorithm in contrast to

its gain for the STO estimation. The EM algorithm has an estimation variance that

is slightly larger than that of the classic ML algorithm, similar to the results observed

in AWGN channel. Nonetheless, this demonstrates the usefulness of the proposed

estimator as a universal timing recovery algorithm.

3.5 Summary

In this chapter, entropy minimization has been proposed as a synchronization crite-

rion for wireless coherent receivers. It is an alternative to the maximum likelihood

criterion, which is the foundation of most standard synchronization algorithms. The

symbol timing and carrier frequency offset estimation are implemented by measur-

ing the entropy of the eye diagram and the constellation diagram. The optimum

timing delay is found by searching the timing instant with minimum eye diagram

entropy, while the carrier frequency offset is estimated by searching through a range

of frequencies to minimize the constellation diagram entropy.

Implementation constraints have also been presented. A modified version of the

quadratic Rényi entropy and the kernel density estimation method are employed to

estimate the probabilities. The proposed method is insensitive to the local minima

and the carrier frequency offset. Also, it can extract the timing delay without the

need for a high oversampling rate. The carrier frequency recovery algorithm uses

block averaging to expand the estimation range without compromising its accuracy.

Although the estimation requires more computational load than the conventional

ML based algorithms, it can provide more insights on the signal eye diagram and

constellation diagram as well as better estimation performances. The performance

of the proposed timing and frequency recovery algorithms is compared with that of
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standard approaches by running a set of numerical simulations. It is shown that the

entropy minimization has great potential and offers certain advantages for synchro-

nization. Particularly, in multipath fading and small excess bandwidth conditions,

the timing recovery using the EM algorithm can significantly improve the equalizer’s

convergence, and its symbol error rate outperforms that of the ML algorithm, by at

least a factor of two.



Chapter 4

Application of Deep Learning Techniques for Wireless

Receivers

4.1 Introduction

In the recent years, the signal processing algorithms for coherent underwater acous-

tic receivers are getting much more sophisticated than before. One reason is that

the design and analysis of communication systems typically rely on the development

of mathematical models that describe the underlying communication channel, which

dictates the relationship between the transmitted and the received signals. Hence,

researchers are building more complex underwater propagation models, hoping to

obtain a comprehensive understanding of the channel properties [51]. In the same

time, data processing algorithms are developed based on these channel models, such

that the algorithms can eliminate the interference properly. Consequently, the per-

formance of sophisticated designed algorithms rely on the accuracy of the channel

models. As discussed before, the acoustic propagation channel is highly spatially and

temporally variable. therefore, it is impossible to exhaust every possibility, but only

a few approximate statistical models.

In the field of perception signal processing, researchers are facing similar problems,

such as image recognition and classification. The challenge is to design an algorithm

that can recognize a certain item. There is an excessive number of parameters that

need to be taken into account to build the statistical model. Therefore, the essential

features of an object used to be engineered manually for building recognition algo-

rithms. Using this methodology, it is difficult to generalize algorithms to recognize

other objects.

In Section 4.2, the state-of-the-art deep learning technique for perception signal

processing is introduced. It is the most promising and popular subset of machine

learning. Instead of engineering the features, deep learning technique can learn the

63
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features from the dataset automatically. The deep learning models after training have

surprisingly outstanding performance and their cognition capabilities have already

outperformed human perception in various of areas.

Because of the remarkable performance of deep learning, researchers are apply-

ing it to broader areas, such as medical diagnosis, self-driving, language translation

and playing games. However, there are very few study in the area of communica-

tions. Deep learning applications to wireless communication that can be found in the

literature are still in the exploration phase [39,40,58].

There are two contributions in this chapter: the first is the implementation of

CNN models for both symbol timing and carrier frequency offset estimation; the

second contribution is a new CNN based coherent wireless receiver. This model can

compensate for small symbol timing and carrier frequency offset. Since this chapter

does not provide rigorous analytic demonstration of the performance, the results of

this chapter can be used as a proof of concept. Nonetheless, it is demonstrated that

deep learning techniques can be applied to wireless communications in various ways

and are expected to have great potential.

4.2 Basics of Deep Neural Networks

The artificial neural network (ANN) or multilayer perceptron (MPL) shares many

concepts with the modern deep neural networks. This section provides an introduction

on the fundamental components of deep neural networks, including the layers, the

loss functions and optimizers. Also, the iterative process that trains a model to fit a

certain application is covered. Then, the convolutional layer, a type of neural layer

that makes the training of a deep learning model possible, is detailed. Finally, a few

deep learning frameworks that essentially enable the democratization of deep learning

are introduced.

Neural Network Layers

A feedforward neural network consists of multiple layers that are connected in series.

Mathematically, the l-th layer describes a mapping function fl of an input vector rl−1
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to an output vector rl [39]:

rl = fl(rl−1). (4.1)

The output vector depends on the input vector rl−1, which is the output from the

previous layer fl−1. Moreover, it also depends on a set of layer parameters θl. The

classic neural networks use fully-connected layers which are also known to be dense

or linear layers, , and the output rl is related to the input rl−1 by

rl = fl(rl−1) = wlrl−1 + bl, (4.2)

where wl is the weight vector and bl is the bias vector. With an input layer, an

output layer, and two fully-connected layers in between, a classic neural network is

shown in Fig. 4.1, where the circles represent the input and output vectors r, and the

arrow lines represent the multiplications with weight vectors w. Note that the bias b

are not plotted. Other than the input and output layers, all other layers are invisible

to the user, so they are often referred as hidden layers.

Figure 4.1: A typical artificial neural network.

One reason that an ANN usually has very few hidden layers is that the stack

of fully connected layers is simply a linear function. Linear equations are easy to

solve mathematically, but they have limited power to learn complicated functional

mappings from data. Adding more layers does not improve the capability of the

model, but increases the complexity of the network itself. To learn from complicated,

high dimensional, non-linear dataset, non-linear layers are required. Such layers are
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known as the activation functions. To be specific, in a deep neural network, multiple

(sometimes tens even hundreds of) fully-connected layers are stacked on top of each

other. The activation functions are usually directly connected at the output of a

layer, such that the expressive power of a neural network can be improved [17]. With

an activation function σ, (4.2) is rewritten as

fl(rl−1) = σ(wlrl−1 + bl). (4.3)

Three popular activation functions are given as:

1. Sigmoid or Logistic:

Sigmoid(x) =
1

1 + e−x
(4.4)

2. Tanh (Hyperbolic tangent):

Tanh(x) =
ex − e−x

ex + e−x
(4.5)

3. ReLu (Rectified linear units):

ReLU(x) = max(0, x) (4.6)

The corresponding plots are shown in Fig. 4.2.

Figure 4.2: Plots of the three activation functions.

The detailed comparison of different activation functions can be found in many

references. Although the Sigmoid and Tanh have been used in the past, their usage

is avoided nowadays. Since the ReLU avoids and rectifies the vanishing gradient

problem, almost all modern deep learning models use ReLU.

There are also many other types of layers that are commonly used in deep neural

networks. Some of them are:.
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• Pooling: layers that can down down-sample or compress the input data.

• Normalization: layers that normalize the input data.

• Dropout: layers that randomly zero some of the elements of the input data.

This has proven to be an effective technique for regularization and preventing

the co-adaptation of neurons as described in the paper [20].

Loss Function and Optimizer

With the layers introduced above, a basic deep learning model can be built. Initially,

the weights and the bias of the layers are filled with small random values (a step called

random initialization). The resulting representation of the function is meaningless,

Next, the parameters are incrementally adjusted based on a feedback signal. This

gradual adjustment is also called the process of training or learning. The training

process applies the following process:

• Step 1: select a batch of training samples x and corresponding targets y.

• Step 2: apply x to the network and obtain the prediction ypred.

• Step 3: measure the mismatch between ypred and y using a loss function.

• Step 4: Using an optimizer, update the weights of the network to reduce the

output mismatch on this batch of data.

The training loop stops when a low mismatch between predictions ypred and ex-

pected targets y is obtained.

In Step 3, the mismatch is measured with a loss function, which is a measure of

the error that needs to be minimized. Examples of loss functions are:

• The mean absolute error (L1 loss), which is the simplest loss function;

• The mean squared error (MSE or L2 loss), that is the most widely used loss

function;

• The cross entropy loss, which is useful in training a classification problem.
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The most difficult step in the training loop is Step 4, where the network weights

are updated. A practical approach is to compute the gradient of the loss with respect

to the network’s coefficients. Such a method is known as back propagation. Popular

optimization algorithms include:

• The stochastic gradient descent (SGD) algorithm [52] and its variants, which

are a group of classical optimization algorithms with optional momentum to

improve performance;

• The Adagrad algorithm [11] and its modification [62];

• Adam algorithm [26], which is a widely used highly efficient optimization algo-

rithm.

Convolutional Layers

Originally, the convolutional neural networks (convnets) are designed to provide an

efficient learning method for image classification. It has become the most important

branch in the modern era of deep learning research. As suggested by its name, it

features convolutional layers which can learn local patterns instead of global patterns

as fully-connected layers do. In the case of images, patterns are found in small 2D

windows of the inputs. In the case of time series data, patterns would be 1D windows

of the samples. An illustration of a 2D convnet is shown in Fig. 4.3. The image

spatial features are extracted by translating the pattern (the small orange square on

top of the blue image) on the image and find the dot product between the pattern

and a patch of the image. Therefore, its output is the convolution between the image

and the pattern. When there are multiple features are extracted, the output is a

stack of feature maps (the orange layer). Its features will be extracted again by

convolving with patterns (the small green square on top of the orange feature map)

and propagate to the next layer (the green feature map). In other words, each layer

is a collection of the extracted features of its previous layer.

From the perspective of digital signal processing, such patterns in convnets can

be considered as finite impulse response (FIR) filters. Specifically, the weights of

the learned patterns are equivalent to the filter coefficients. The pattern weights are
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Figure 4.3: Three convolutional layers for 2D image processing.

translation (in the sense of geometry) invariant, while the filter coefficients are kept

constant during the filtering. The mathematics behind both the pattern translation

and the filtering are convolution operations. However, convnets can learn spatial

hierarchies of patterns, and there is no counterpart in FIR filters.

Note that compared to fully-connected layers, the translation invariant patterns

also reduce the number of free parameters (weights and bias). This feature reduces

the converge time of training deep neural networks significantly.

Deep Learning Frameworks

One key factor that drives the development of deep learning is the existence of many

engineering tools. Although there are deep learning codes written in Matlab, C++

and Java, the most popular programming language is Python. Nowadays, few re-

searchers develop their own deep learning frameworks or libraries, because of the

availability of mature tensor manipulation frameworks for Python. Some of the most

widely used frameworks are listed below.

• Theano has been powering scientific deep learning investigations and educa-

tion since 2007. It is primarily developed by Montreal Institute for Learning

Algorithms (MILA) at the Université de Montréal. However, the development

ceased in late 2017.

• TensorFlow is developed by Google since late 2015. It is used for both research

and production and has become the most widely used and supported deep

learning library.
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• Keras is not technically a deep learning framework, but a high-level API, capa-

ble of running on top of TensorFlow or Theano. Because of its user friendliness,

it allows for easy and fast prototyping. Keras development is backed primarily

by Google.

• Caffe was originally developed at the University of California, Berkeley. It is

known for its expressive architecture and high speed. Caffe is backed primarily

by Facebook.

• PyTorch is a relative new deep learning framework with its first release in

2017. However, its growth is fast and its support in the industry is increasing.

It is also backed by Facebook and will merge Caffe as its backend in a future

release.

In this research, most of the codes are written in the latest PyTorch release (0.4.1).

4.3 Synchronization Using Deep Convolutional Networks

In this section, the deep convnet is used to estimate both the symbol timing off-

set (STO) and the carrier frequency offset (CFO). To be specific, the STO and CFO

estimation are approached with CNN models, where synthesized data are used for

training. In practice, the measurement data are preferred. However, the purpose of

this section is to demonstrate the feasibility that CNN models can be implemented for

synchronization applications for wireless communications. In addition, by modifying

network parameters and training dataset, the resulting networks can adapt to various

modulation, pulse shaping or channel conditions.

4.3.1 Symbol Timing Offset Estimation

Since the STO is a continuous value, it is good practice to model the STO estimation

as a regression problem. As such, the function of the network is defined such that it

can produce the estimate of the STO utilizing the input baseband coherent modulated

signal samples. The design objectives of the network are: 1) insensitivity to the CFO

in the signal; 2) capability to compensate for error in the sample rate; 3) capability

to correct the STO for different modulation schemes and shaping pulses.
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Network Model

The implemented network model has a standard structure. The first few layers are

convolutional layers incorporated with ReLU and pooling layers. Two fully-connected

layers are attached after the convolutional layers to generate a single output repre-

senting the STO estimate. The network structure is shown in Fig. 4.4. The input of

the network are one-dimensional baseband samples with STO. These samples are ob-

tained from the magnitude of the complex-valued baseband signal. There are several

reasons that the magnitude of the baseband signal is used as the network instead of

the complex-valued baseband signal. A first reason is that such operation can avoid

the CFO interference. Also, the PyTorch deep learning framework as well as other

popular frameworks do not support complex-value input.

Figure 4.4: CNN based symbol timing offset estimation.

Model Training and Performance

The training dataset are synthesized with random STOs. The network output as

the estimate of STO is compared with the true STO directly by applying an L1

loss function. The weights of the network are updated by the Adam optimization

algorithm.

Some training parameters are reported here. The signal is originally generated

by an oversampling rate of 16 and pulse shaping filter rolloff factor of 0.4. Complex-

valued Gaussian noise is added with Es/N0 = 20 dB. Symbol timing offset is applied

by randomly shifting the signal samples and then down-sampling by a factor of 4.

As such, the oversampling rate of the input signal is 4. The rolloff factor and the
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oversampling rate can be learned by the network. Therefore, if a signal has a differ-

ent set of parameters, the network can adapt to it with minimum modification and

retraining.

Each time, 16 symbols (64 samples) are fed into the network. The network consists

of 5 convolutional layers and 2 linear layers. Note that these parameters may not be

the optimum candidates. In fact, choosing appropriate hyperparameters (the number

of layers and filters, etc.) is not an easy task in the study of deep learning, and it is

beyond the scope of this section.

The loss as a function of training epoch is plotted in Fig. 4.5. It can be found that

the designed network does converge as the training epoch increases. The convergence

is relative fast: after around 250 iterations of training, the normalized STO (with

respect to the symbol period) loss has been reduced to about 4%. Note that the

training signal and the STO are synthesized randomly, so there is no concern of

overfitting (learning features only from the training set, and cannot be generalized)

due to limited number of samples in the dataset.

Figure 4.5: The training of CNN based STO estimation.

4.3.2 Carrier Frequency Offset Estimation

After the symbol clock is recovered, the next task of synchronization is to estimate

the CFO. A feedforward convnet, similar to the STO estimation is implemented.
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The network structure is almost the same as the network used for STO estimation

in Fig. 4.4. It consists of a few convolutional layers for the first stage and fully-

connected layers for the last stage. There are two major differences with the network

in Fig. 4.4. The input samples are down-sampled signals, that are decimated to

the symbol rate. In addition, the complex-valued samples cannot be fed into the

network directly and the absolute operation cannot be applied, because it will erase

the phase information. Instead of the magnitude, the signal phase component is taken

as the input. It is a reasonable operation with the PSK modulated signal, since the

amplitude component does not carry information.

Model Training and Performance

The training data are synthesized QPSK symbols with random CFOs. Because the

down-sampling has been done beforehand, the vector size of network input is signifi-

cantly reduced to 16. Consequently, the network has a reduced complexity, therefore,

it requires less convolutional and fully-connected layers or less filters in the convo-

lutional layers. Alternatively, if the CFO needs to be recovered before the STO, a

larger network scale is required.

The same loss function and the optimization algorithm as the STO estimation are

used. The loss is plotted as a function of training iteration in Fig. 4.6. One distinction

in this training process is that the step size used in the optimizer is much smaller

than that in the STO estimation. It provides a smoother loss curve but takes more

iterations to converge to its minimum error.

A set of collected sea trial data that has been discussed in Section 2.3.1 is processed

with the proposed CNN. In Fig. 4.7, the constellation of the down-sampled symbols

are plotted. Also, the symbol phases before and after CFO recovery are plotted as a

function of time. Each color represents a unique symbol in the QPSK modulation. It

is shown that, before the CNN, the symbol phases are highly distorted and the CFO

is time variant.

The feedforward CFO recovery requires that the signal samples are separated into

small segments with a length of 16 samples with overlaps. Each segment is processed

by the network to estimate its local CFO and compensate for it. Before moving to
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Figure 4.6: The loss in the training of CFO estimation.

the next segment, an initial phase correction that is inherited from all the previous

segments is also applied. This step is critical because the symbol phase error is

essentially the integration of frequency error through time. More discussion can also

be found in the next section. This loop iterates until the end of the symbol sequence,

and in Fig. 4.7(c), the symbol phases have been restored successfully.

4.4 Passband Receiver Based on Deep Convolutional Networks

In the previous sections, it is shown that the STO and CFO can be estimated by

applying trained CNN models. However, the structure of these CNN models is not

very different from standard CNN models built with general purpose. In fact, one

distinguishing feature of deep neural networks is that despite different scales and ap-

plications, they all share very similar components and structures. In other words,

various problems that are traditionally solved by sophisticated and customized algo-

rithms can be solved with a standardized structure. As such, algorithms discussed

in Chapter 2 can be replaced by trained deep neural networks. This motivates us to

design a complete wireless receiver with a CNN. A related work for OFDM receiver

can be found in [63].

To this end, in this section, a CNN model that can replace a classic coherent
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(a) Rotating constellation of the received symbols.

(b) Symbol phases before CFO recovery.

(c) Symbol phases after CFO recovery.

Figure 4.7: CFO recovery with CNN based algorithm.
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wireless receiver is designed. To the best of the authors knowledge, there is no related

study available. This research is rather experimental and considered to be a proof of

concept.

The major function of the network is to convert the passband, over-sampled PSK

signals to symbols. Specifically, the design has the following functions: 1) down-

convert passband signal into baseband; 2) down-sample signal to symbol rate; 4) pro-

vide insensitivity to timing offset; 5) recover carrier frequency offset; 3) produce the

symbol phases as output.

Commonly, the signal processing in a wireless receiver is at baseband. In this work,

the signal is processed at passband. The most important reason is that the baseband

signal is complex-valued, and the complex convolutions can not be simply replaced by

two independent convolutions representing the real and imaginary components. Also,

there is no well accepted deep learning framework that directly supports complex-

valued data, but only a few experimental projects [54]. Moreover, the passband

signal preserves all the information, while the down-conversion can be considered as

a way for feature extraction, which may not be necessary for deep learning. One

obvious drawback of processing at passband is that, the sample rate is usually much

higher than the baseband signal. However, for research purpose and considering the

low frequency characteristic of underwater acoustic communications, this drawback

is acceptable.

Network Structure

The overall CNN based receiver structure is shown in Fig. 4.8. The network consists of

two major modules: the demodulation module (Module 1) and the carrier frequency

recovery module (Module 2). Note that the output of Module 2 is added with the

output of Module 1 to compensate for the carrier frequency offset. This structure

resembles the famous Deep Residual Network [19].

To build an actual CNN model, the first task is to prepare the training data

set, as well as the input and the output of the model. The input is a segment of

over-sampled passband signal. With such an arrangement, one can take advantage

of the translation invariant property of the convolutional layers, so that the designed
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Figure 4.8: CNN based receiver design, top level.

CNN model can tolerate mild symbol timing offsets. If the transmitted signal is

M-PSK modulated, the desired outputs from the receiver are symbols representing

0 ∼ (M − 1). Apparently, it suggests that the neural network model generates M

unique classes as the output. However, the M discrete symbols are actually extracted

from continuous symbol phases ranging from 0 to 2π. Also, considering the need of

phase compensation due to carrier frequency offset, it is reasonable to output symbol

phases instead of symbol classes.

One modification in this design that is different from standard CNN model is the

output layer. As discussed above, there is a single output in this layer representing

the symbol phase. This layer has a two-channel input, representing the baseband IQ

components. As such, this layer is essentially an arc tangent operation. This receiver

module (Module 1) is summarized in Fig. 4.9, where the total number of convolutional

layers is adjustable.

Figure 4.9: CNN based receiver design, Module 1.

The module output is the phase of the passband signal for each symbol. Note

that this phase output is the combination of carrier phase and the embedded symbol

phase. If the carrier frequency is an integer multiple of the symbol rate, the carrier

phase is constant for each symbol. In such condition, the network can easily learn
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from the training data set. On the other hand, if the assumption does not stand,

the carrier introduced phase component for each symbol is a function of time, such

that the network cannot learn from the training set. The solution is to explicitly

compensate this carrier introduced phase offset in the output of the Module 1. In

fact, the phase difference between two consecutive symbols can be found by:

ϕdiff = 2π
fc

fsym
, (4.7)

where fc and fsym are the carrier frequency and the symbol rate respectively.

In Module 1, the carrier phase compensation can not recover the CFO due to

the uncertainty of carrier frequency. Therefore, Module 2 is introduced for CFO

estimation and its structure is shown in Fig. 4.10.

Figure 4.10: CNN based receiver design, Module 2.

Module 2 can be directly borrowed from Section 4.3.2. The input is the symbol

phase sequence that is generated by Module 1. After several convolutional layers and

fully-connected layers, the output is the CFO estimate. Module 2 can be considered

as an CNN implementation of feedforward, non-data-aided CFO estimator. Then,

the CFO compensation is applied to the output of Module 1 by adding the phase

offset and applying modulus operation to prevent results exceeding 0 ∼ 2π.

Training and Performance of the Network

Choosing a right loss function is also critical in building a deep neural network. One

reason for using symbol phase as the output is that it is good for designing a loss

function. For classification problems, a cross-entropy loss function is the common
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choice. However, it dose not reflect the relationship between symbols in terms of the

phase. In addition, the standard loss functions for regression, such as MSE loss or

L1 loss are not suitable either due to the circularity of the phase representation. For

example, if the target phase is 0 and the model output is 1.99π, they are fairly close

in the polar coordinate, but the MSE or L1 loss functions will give a large loss that

should be minimized. The solution is straightforward. If the absolute difference is

greater than π, it will be subtracted by 2π. This modified L1 loss function is given

as:

loss =

⎧⎨⎩ |x− y| if |x− y| ≤ π,

2π − |x− y| if |x− y| > π,
(4.8)

where x and y represent the network output and the target value respectively.

During the training, L1 loss provides an improved training result compared to

the L2 loss in our application. The optimizer is using the Adam algorithm with a

learning rate of 0.001. For demonstration purpose, the input data is a synthesized

QPSK signal. The symbol rate is set to 1.1 kHz, and the carrier frequency is set

to 5 kHz such that their ratio is not an integer. Each input consists of 32 over-

sampled symbols. A deep learning model is usually trained in batch to accelerate the

convergence. In our case, the number of signals in a batch is 512. Note that the CFOs

for 512 signals in a batch are randomly assigned, between ±10 Hz. No other channel

introduced interference is considered except for white Gaussian noise. Detailed code

can be found in the Appendix A.

The training results are shown in Fig. 4.11. It can be found that the average loss

starts from 90◦ and decreases with the training epoch. After 2000 epochs, the average

loss is 8.4◦. Note that unlike training with a limited data set, there is no concern of

over fitting when training with randomly synthesized data. So, a verification or test

set may not be necessary to examine the network performance: the decrease of loss

itself is the figure of merit.

It is also interesting to verify that Module 2 can actually estimate the CFO effec-

tively. The standard deviation of the loss with and without the CFO compensation

is plotted in Fig. 4.12. The deviation is calculated with 512 symbols in a batch. In

a sequence of 32 symbols, the CFO introduced symbol phase offset increases with

time. Therefore, the loss deviation increases with time when no CFO compensation



80

Figure 4.11: Loss decreasing as the training iteration.

is applied. On the other hand, the deviation with CFO compensation keeps a relative

low value for all 32 symbols.

4.5 Summary and Future Work

In this chapter, the latest deep learning techniques are implemented to estimate the

symbol timing and carrier frequency offset. Additionally, a coherent wireless receiver

which is entirely based on a CNN is proposed.

The first section in this chapter is a brief introduction of deep learning techniques.

The essential components of a deep learning model for both building and training are

introduced, as well as several popular deep learning frameworks.

The second section studies the application of CNN based deep learning models

for synchronization tasks. For the estimation of STO, the proposed CNN model

is insensitive to the carrier frequency offset, and can adapt to the sampling rate,

modulation schemes and the rolloff factors. The neural network proposed for CFO

estimation has a similar structure with that used for STO estimation. It has been

tested with real sea trial data and good results are produced.

The third section proposes a complete passband coherent receiver based on a CNN
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Figure 4.12: Error deviation with and without CFO compensation.

model. There is a significant difference between this model and the conventional re-

ceivers in terms of the structure. Except for the down-conversion and down-sampling

functions, it also recovers both STO and CFO.

As a proof of concept, the performance of the proposed deep learning models

for wireless receivers are not compared with that of the standard synchronizers or

receivers. However, because of their strong capability and adaptation, deep neural

networks can be fit to complex nonlinear functions. It makes the deep neural net-

work a potential solution for wireless communications in nonlinear or nonparametric

channels.

To implement deep learning techniques for underwater acoustic communications,

there are still many future works:

• A quantitative performance comparison between traditional solutions and deep

learning based solutions.

• A large, comprehensive synthetic data base, and measurement data base for

effective model training.

• Application specific model design (complex-valued neural network, etc.)



Chapter 5

Conclusion

The synchronization problem is one of the most important issues in coherent wireless

receivers. To be specific, it includes both symbol and carrier recovery. Especially

for underwater acoustic communications, due to the channel characteristics, such as

the multipath and Doppler effect, the received signal shows spreading in both time

and frequency domain. This condition makes the synchronization a critical issue to

maintain a reliable underwater acoustic communication link.

This dissertation approaches the synchronization problem for underwater acoustic

communications in three different ways: 1) standard synchronization algorithms that

used in radio frequency applications, 2) information entropy based symbol timing

and carrier frequency estimation, and 3) application of deep learning techniques for

synchronization as well as a complete receiver.

The maximum likelihood principle is the foundation of most of the standard syn-

chronization algorithms. In Chapter 2, a comprehensive review of the principle, algo-

rithm and synchronizer structure is presented. Then, a feedforward synchronization

implementation is proposed. It is used to compensate for the Doppler introduced

symbol and carrier offset. The simulation results show that this structure can jointly

synchronize symbol and carrier of the received baseband signal efficiently. To demon-

strate the application in a real scenario, the synchronizer performance is tested at

sea. The data is collected during sea trials in both benign and highly dispersive con-

ditions. In the benign condition, a basic timing and frequency recovery is needed to

demodulate the signal, while in the dispersive condition, strong multipath in combi-

nation with the Doppler effect requires a more sophisticated receiver structure. The

fractionally spaced decision feedback equalizer is used to compensate for the multi-

path distortion, and intense frequency offset is recovered by an integrated phase lock

loop.

It has been shown that in dispersive channel conditions, the standard maximum
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likelihood based synchronizers cannot achieve an optimum solution. This is because

their derivation usually assumes a parametric Gaussian channel model. However,

this assumption does not hold in time varying, doubly spread channels, such as that

in underwater acoustic communications. A unified principle aiming to minimize the

information entropy of the received signal is proposed in Chapter 3. To be specific,

the symbol timing estimation is achieved by minimizing the eye diagram, while the

carrier is recovered by minimizing the constellation diagram. Its implementation and

performance are studied extensively. It has been proven that in multipath fading

channels, the entropy minimization principle can provide more reliable synchroniza-

tion estimation results than the maximum likelihood.

In recent years, machine learning techniques are improving at very fast speed.

Problems in various fields have been solved using deep learning, a powerful subset

of machine learning. However, there are few studies of deep learning applications in

wireless communications. In Chapter 4, the deep learning models are implemented

as a synchronizer, as well as a complete coherent receiver. Note that unlike standard

synchronizers and receivers, the deep learning models are all similar with respect to

their structures. Their functions are actually realized by training with specific data

set. Although it does not mean that the structure of a deep learning model is not

important, this result show that deep learning models have powerful adaptation, such

that they can be fit to non-linear functions. This characteristic indicates a potential

advantage of replacing the standard receiver components with a deep learning model.

If the channel is nonlinear or nonparametric, the carefully trained deep learning model

will have superior performance. This inference has not been proved in this chapter,

but it is a valuable topic for future research.



Appendix A

Source Code

A.1 Decision Feedback Equalizer with Build in PLL

This piece of Matlab code shows how the FS-DFE with PLL presented in Fig. 2.9 is

implemented for sea trial data processing.

clc; clear; close all

h = commsrc.pn('GenPoly', [10 7 0],'NumBitsOut', 512);

pn seq1 = generate(h)*2-1;

pn seq2 = generate(h)*2-1;

pn seq = 0.707*(pn seq1+1j*pn seq2);

load('data for em 60bps.mat') % offset = 2

% truncate the last half data with less distortion

rept = 5;

ref = repmat(pn seq,rept, 1);

data for em = data for em(1+512*5*10:512*10*10);

nSym = length(ref);

% prepare the data, sps = 2

offset = 3;

rxTrainPayloadSamp = data for em(offset:5:end);

%% equalizer setup

hPSKMod = comm.PSKModulator(4, ...

'PhaseOffset',pi/4, ...

'SymbolMapping','Binary');

hPSKDemod = comm.PSKDemodulator(4, ...

'PhaseOffset',pi/4, ...

'SymbolMapping','Binary');
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PSKConstellation = constellation(hPSKMod).';

sampPerSymPostRx = 2;

nFwdWeights = 8; % Number of feedforward equalizer weights

nFbkWeights = 3; % Number of feedback filter weights

forgetFactor = 0.96; % RLS algorithm forgetting factor (sensitive)

alg = rls(forgetFactor); % RLS algorithm object

eqObj = dfe(nFwdWeights, nFbkWeights,alg, ...

PSKConstellation,sampPerSymPostRx);

eqObj.ResetBeforeFiltering = 0; % important for iteration

%% PLL setup

Bn = 0.03; % NormalizedLoopBandwidth (sensitive)

xi = 1; % DampingFactor

Kp = 2; % for BPSK QPSK

K0 = 1; % SamplesPerSymbol

theta = Bn/(xi+1/(4*xi));

d = 1+2*xi*theta+thetaˆ2;

g1 = 4*(thetaˆ2/d)/(Kp*K0);

gp = 4*xi*(theta/d)/(Kp*K0);

lambda = 0;

phi = 0;

lambdaHis = zeros(1, nSym); % optional save the phase history

rxTrainPayloadSym = nan(nSym,1);

err = rxTrainPayloadSym;

nTrain = 1000;

xTrain = ref;

for n = 1:nSym

if n ≤ nTrain % training

[rxTrainPayloadSym(n), ¬, err(n)] = equalize(eqObj,...

rxTrainPayloadSamp(n*sampPerSymPostRx-1: ...

n*sampPerSymPostRx)*exp(-1i*lambda),xTrain(n));

errPh = angle(rxTrainPayloadSym(n)*xTrain(n)'); % DA phase err
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else % decision directed

[rxTrainPayloadSym(n), d, err(n)] = equalize(eqObj, ...

rxTrainPayloadSamp(n*sampPerSymPostRx-1: ...

n*sampPerSymPostRx)*exp(-1i*lambda));

errPh = angle(rxTrainPayloadSym(n)*d'); % NDA phase err

end

% update PLL

phi = g1*errPh + phi;

% comment this line to disable the PLL

lambda = (gp*errPh+phi)+lambda;

lambdaHis(n) = lambda;

end

% calculate err for payload

rxPayloadSym = rxTrainPayloadSym(1+nTrain:end);

rxData = step(hPSKDemod, rxPayloadSym);

txData = step(hPSKDemod, ref(1+nTrain:end));

[¬, BER DFE PLL] = biterr(txData, rxData);

BER DFE PLL

figure

plot(rxPayloadSym(ref(1+nTrain:end)==ref(1)),'o'); hold

plot(rxPayloadSym(ref(1+nTrain:end)==ref(2)),'o');

plot(rxPayloadSym(ref(1+nTrain:end)==ref(4)),'o');

plot(rxPayloadSym(ref(1+nTrain:end)==ref(14)),'o');

xlim([-2, 2])

ylim([-2, 2])

hold off
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A.2 Passband Receiver Based on Deep Convolutional Networks

This piece of Python code shows how to build a CNN based wireless coherent receiver.

import torch

from torch import nn

import numpy as np

import matplotlib.pyplot as plt

def rrcosdesign(beta, span, sps):

n = sps*span

rrc = np.zeros(n, dtype=float)

for x in np.arange(n):

t = (x-n/2)/sps

if t == 0.0:

rrc[x] = 1.0 - beta + (4*beta/np.pi)

elif beta != 0 and t == 1/(4*beta):

rrc[x] = ((beta/np.sqrt(2))*(((1+2/np.pi)*(np.sin(np.pi/(4*

beta))))+((1-2/np.pi)*(np.cos(np.pi/(4*beta))))))

elif beta != 0 and t == -1/(4*beta):

rrc[x] = ((beta/np.sqrt(2))*(((1+2/np.pi)*(np.sin(np.pi/(4*

beta))))+((1-2/np.pi)*(np.cos(np.pi/(4*beta))))))

else:

rrc[x] = ((np.sin(np.pi*t*(1-beta))+4*beta*(t)*np.cos(np.pi*

t*(1+beta)))/(np.pi*t*(1-(4*beta*t)*(4*beta*t))))

return rrc

def upsample(x, n):

zo = np.zeros((len(x), n), dtype=x.dtype)

zo[:, 0] += x

return zo.flatten()

# get the CNN, optimizer and loss func ready
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CUDA = True

LR = 1e-3 # learning rate

dtype = torch.float

class NET(nn.Module):

def init (self):

super(NET, self). init ()

# find the IQ component of each symbol

# down sample by 16

self.cnn 1 = nn.Sequential(

# in channels, out channels, kernel size, stride, padding

nn.Conv1d(1, 32, 3, 1, 1),

nn.ReLU(),

nn.MaxPool1d(2),

nn.Conv1d(32, 16, 3, 1, 1),

nn.ReLU(),

nn.MaxPool1d(2),

nn.Conv1d(16, 8, 3, 1, 1),

nn.ReLU(),

nn.MaxPool1d(2),

nn.Conv1d(8, 4, 3, 1, 1),

nn.ReLU(),

nn.MaxPool1d(2),

nn.Conv1d(4, 2, 3, 1, 1),

)

self.cnn 2 = nn.Sequential(

nn.Conv1d(1, 16, 3, 1, 1),

nn.ReLU(),

nn.MaxPool1d(2),

nn.Conv1d(16, 8, 3, 1, 1),

nn.ReLU(),

nn.MaxPool1d(2),

nn.Conv1d(8, 8, 3, 1, 1),

nn.ReLU(),

nn.Conv1d(8, 4, 3, 1, 1),

)
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self.lin 2 = nn.Linear(32, 1)

def forward(self, x, carr off, time cfo):

# down convert, output absolute symbol phase

symb IQ = self.cnn 1(x) # [batch, 1, 32]

# convert IQ to phase

symb phase = torch.atan2(symb IQ[:, 0, :], symb IQ[:, 1, :])

# remove carrier introduced phase

symb phase = (symb phase-carr off-np.pi) % (2*np.pi)-np.pi

# estimate CFO

x2 = symb phase.unsqueeze(1) # [batch, 32] to [batch, 1, 32]

cnn out2 = self.cnn 2(x2)

cfo = self.lin 2(cnn out2.view(cnn out2.size(0), -1))

# apply CFO

cfo mat = cfo.mm(time cfo) # [batch, 1]*[1, 32]=[batch, 32]

symb phase comp = (symb phase+cfo mat-np.pi) % (2*np.pi)-np.pi

return symb phase, cfo, symb phase comp

net = NET()

if CUDA:

device = torch.device('cuda:0')

net.cuda()

else:

device = torch.device('cpu')

optimizer = torch.optim.Adam(net.parameters(), lr=LR)

def circ loss(input, target, cyc):

dif = torch.abs(input-target)

dif[dif > cyc/2] = dif[dif > cyc/2]-cyc

# return torch.mean(dif**2)

return dif.abs().mean()
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M = 4 # QPSK

SYMB = 32 # num of symbols

BATCH = 512

beta, span, sps = 0.4, 6, 16

rrc = rrcosdesign(beta, span, sps)

fc = 5.0e3 # carrier freq

baud = 1.1e3

# note there is an assumption that timing is perfect

fs = baud*sps # signal sample rate 16k>2*fc

# initialization

sig batch = np.zeros((BATCH, 1, SYMB*sps)) # (128, 1, 512)

msg batch = np.zeros((BATCH, SYMB))

carr off = 2*np.pi*fc/baud*torch.arange(0, SYMB).float()

time cfo = torch.arange(0, SYMB).float().view(1, -1)

if CUDA:

carr off = carr off.cuda()

time cfo = time cfo.cuda()

cyc = 2*np.pi

loss log = []

for epoch in range(2001):

# prepare the training input with numpy

for batch in range(BATCH):

msg = np.random.randint(0, M, SYMB) # 0¬3
sig mod = np.exp(1j*(np.pi/M+msg*(2*np.pi/M))) # k/4*pi k=0¬3
sig phase = np.angle(sig mod)

# pluse shaping

sig up = upsample(sig mod, sps) # SYMB*sps (512,)

sig pulse = np.convolve(sig up, rrc) # (607,)

# up convert

samp len = len(sig pulse)

time carr = np.arange(samp len)/fs

# include CFO

# cfo = 0
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cfo = np.random.rand()*20-10

carrier = np.exp(1j*(2*np.pi*(fc+cfo)*time carr))

sig pass = np.real(sig pulse*carrier) # (607,)

noise = 0.04*np.random.randn(sig pass.size)

sig pass = sig pass+noise

sig batch[batch, 0, :] = ...

sig pass[int(rrc.size/2):int(-rrc.size/2+1)]

msg batch[batch, :] = sig phase

# numpy to torch tensor

sig input = torch.tensor(sig batch, dtype=dtype, device=device)

target = torch.tensor(msg batch, dtype=dtype, device=device) # ...

[128, 32]

# training

symb phase, cfo est, symb phase comp = net(sig input, carr off, ...

time cfo)

phase est = symb phase comp

loss = circ loss(phase est, target, cyc)

optimizer.zero grad()

loss.backward()

optimizer.step()

if epoch % 50 == 0:

degree = loss.item()/np.pi*180

# degree = loss.item()**0.5/np.pi*180

print("epoch = ", epoch, "; loss = %7.4f" % degree)

loss log.append(degree)

x = np.arange(0, 2001, 50)

ax = plt.plot(x, loss log)

plt.xlabel('Training epoch', fontsize=15)

plt.ylabel('L1 loss (degree)', fontsize=15)

plt.xticks(fontsize=15)

plt.yticks(fontsize=15)

plt.show()

x = np.arange(0, 32)
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indx = 35

print(cfo)

y1 = phase est[indx].cpu().detach().numpy()/np.pi*180

y3 = symb phase[indx].cpu().detach().numpy()/np.pi*180

y2 = target[indx].cpu().detach().numpy()/np.pi*180

plt.plot(x, y1, label='symbol phase with CFO compensation')

plt.plot(x, y2, label='real symbol phase')

plt.plot(x, y3, label='symbol phase without CFO compensation')

plt.legend(loc='upper left')

plt.show()

std1 = ((phase est-target)/3.1416*180).std(dim=0)

std2 = ((symb phase-target)/3.1416*180).std(dim=0)

plt.plot(std1.cpu().detach().numpy(),

label='With CFO compensation', marker="o")

plt.plot(std2.cpu().detach().numpy(),

label='Without CFO compensation', marker='s')

plt.legend(loc='upper left', fontsize=12)

plt.xlabel('Symbols', fontsize=15)

plt.ylabel('Standard deviation (degree)', fontsize=15)

plt.xticks(fontsize=15)

plt.yticks(fontsize=15)

plt.show()
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