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Abstract 
 

The anti-diabetic drug metformin has been shown to exhibit broad in vitro and in 

vivo anti-neoplastic activity in various cancer types, including breast cancer. Despite 

numerous clinical trials ongoing, no targeted biomarkers currently exist to predict or 

monitor patient response to metformin treatment. Our lab previously conducted 

quantitative proteomics on MDA-MB-231 triple-negative breast cancer cells conditioned 

to physiologically-relevant doses of metformin. In this study, I have aimed to evaluate the 

genes encoding the top 12 most up-regulated proteins for their potential use as metformin 

biomarkers. I have found that several genes may modulate metformin sensitivity in 

MDA-MB-231 cells in a glucose-dependent manner. Most notably, I have identified aldo-

keto reductase family 1 member C3 (AKR1C3) to be a novel metformin response marker 

and a modifier of metformin sensitivity in breast cancer via both up- and down-

regulation. AKR1C3 protein expression may also have some predictive value to estimate 

metformin response in vitro.  
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Chapter 1: Introduction 

1.1 Preamble 

The central focus of this thesis project is to characterize novel response and 

sensitivity biomarkers for the re-purposed anti-diabetic drug metformin to lay the 

foundational groundwork for more targeted therapies in breast cancer. I will begin by 

discussing the molecular characteristics and existing clinical treatments for breast cancer, 

with emphasis on the difficult-to-target subtype of triple-negative breast cancer (TNBC). 

Subsequently, I will discuss how metformin can be re-purposed to potentially treat and 

prevent cancer, and will outline existing knowledge about the mechanisms underlying 

metformin’s anti-neoplastic activity. I will focus on the existing applications and 

limitations of metformin in various cancer models including triple-negative breast cancer, 

specifically focusing on biomarkers and their potential uses for optimizing treatment. 

Finally, I will outline the previous work our lab has done to help characterize metformin 

mechanism in triple-negative breast cancer, and how I have proceeded to investigate 

novel putative modifiers of metformin action to validate as biomarkers in vitro.  

 

1.2 Breast cancer  

1.2.1 Clinical presentation 

Breast cancer is the most common malignancy in women, accounting for 25.8% of 

all new cancer cases in Canadian females in 2016 (Canadian Cancer Society’s Advisory 

Committee, 2016). Although individuals carrying certain hereditary gene variants (such 

as mutations in tumour-suppressor genes like breast cancer 1 [BRCA1] and breast cancer 

2 [BRCA2]) have an increased risk of developing breast cancer during their lifetime 

(Ghoussaini et al., 2012; Hedenfalk et al., 2001), most cases have no clear familial 
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association and are highly multifactorial. These cancers develop spontaneously due to a 

variety of risk factors including age, ethnic status, and lifestyle (Mcpherson, Steel, & 

Dixon, 2000). The 5-year survival rate for breast cancer patients in Canada is 87% 

(Canadian Cancer Society’s Advisory Committee, 2016), although exact prognosis varies 

significantly with histological and molecular subtype, stage, and grade of tumour at time 

of diagnosis (Malhotra et al. 2010).  

 

1.2.2 Pathological origin and histological subtypes 

Breast cancer is generally epithelial in origin and deemed a carcinoma, with only 

rare instances of connective tissue sarcomas being reported (Adem et al., 2004; 

Breastcancer.org, 2017). Carcinomas are broadly classified into two categories: in situ, 

meaning the cancer is isolated to the location of origin, or invasive, indicating that the 

cancer has infiltrated the surrounding normal tissue. The most common type of invasive 

carcinoma of the breast originates from the epithelial lining of milk ducts, and is 

classified as invasive ductal carcinoma (IDC). A carcinoma may also form in the lobular 

tissue of the breast, thus characterizing it as invasive lobular carcinoma (ILC) (Fisher et 

al., 1975). Invasive ductal carcinomas account for about 80% of all invasive breast cancer 

cases, with invasive lobular carcinomas representing roughly 10% (Breastcancer.org, 

2017; Makki, 2015). Each carcinoma type may be further sub-classified based on its 

histopathological profile of structural and cytomorphological features (such as papillary, 

medullary, or mucinous invasive ductal carcinomas), with each sub-type being associated 

with modest prognostic variability (Fisher et al., 1975; Makki, 2015; Malhotra et al., 

2010).  
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1.2.3 Molecular subtypes 

Under current pathology guidelines, breast cancers are generally classified into 5 

broad subtypes based on their intrinsic molecular characteristics, gene expression, and 

hormone receptor status: luminal A, luminal B, HER2-enriched, triple-negative 

phenotype (sometimes referred to as ‘basal like’), and normal-like (Parker et al., 2009; 

Perou et al., 2000; Voduc et al., 2010).  Numerous assays have been developed to further 

delineate these subtypes according to their gene expression profile to make predictions 

about clinical behaviour. These include the 21-gene panel (Paik et al., 2004) developed 

into the Oncotype DX® (Genomic Health) test, as well as the “PAM50” (Prediction 

Analysis of Microarray 50) gene signature (Parker et al., 2009) recently adapted for 

clinical use by Prosigna.  The molecular details and prognostic implications of each of 

the five main breast cancer subtypes will be discussed further below.  

 

1.2.3.1 Luminal A  

Luminal A cancers express the estrogen receptor (ER+) and/ or the progesterone 

receptor (PR+), do not over-express the human epidermal growth factor 2 receptor 

(HER2-), and have low levels of the tumour proliferation marker Ki-67. These tumours 

are typically low-grade and present the best prognoses of all breast cancers, with a 5-year 

relative survival rate of 92-96% (Minicozzi et al., 2013). 

 

1.2.3.2 Luminal B 

Luminal B cancers may be ER+ and/or PR+ and have high levels of Ki-67. This 

category can be subdivided into luminal B-HER2-enriched where HER2 is over-
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expressed, and luminal B-HER2- where it is not (Voduc et al., 2010). The 5-year relative 

survival rate is about 82-92%, slightly lower than luminal A due to a higher proliferative 

index (Minicozzi et al., 2013). 

 

1.2.3.3 HER2-enriched 

Breast cancers that are ER-/PR- but enriched for HER2 expression tend to have 

worse prognosis than luminal subtypes, with a 5-year survival rate around 68-81% 

(Minicozzi et al., 2013). Survival statistics for these cancers is expected to improve 

significantly over the coming years with the advent of HER2-targeted therapies (see 

1.2.4. Existing treatments for breast cancer).  

 

1.2.3.4 Triple-negative  

Triple-negative breast cancers (TNBC) are negative for all three major molecular 

markers (ER-/PR-/HER2-) and represent 12-17% of all breast cancer cases (Foulkes, 

Smith, & Reis-Filho, 2010). They are associated with BRCA1 germline mutations and 

occur more frequently in pre-menopausal women and populations of African descent than 

other subtypes (Carey et al., 2006). Triple-negative malignancies tend to present at a later 

stage and more advanced grade than other breast cancers,  and carry the worst prognosis 

of all subtypes with a 5-year relative survival rate of 69-80% (Dent et al., 2007; 

Minicozzi et al., 2013). Triple-negative breast cancers are highly molecularly 

heterogeneous, making consensus on further sub-classification challenging.  Intrinsic 

histological properties sometimes divide the triple-negative category into two subgroups, 

basal-like and non-basal, depending if they are positive for epidermal growth factor 
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receptor (EGFR+) and/or cytokeratin 5/6 (CK5/6+) (Voduc et al., 2010). More recently it 

has been shown that non-basal TNBCs make up the majority of claudin low breast 

cancers, a molecular subtype that is characterized by an absence of luminal 

differentiation markers and an enrichment in gene expression related to immune 

response, epithelial-to-mesenchymal transition (EMT), and cancer stem cell phenotype 

(Prat et al., 2010). Through detailed clustering analysis of TNBC gene expression 

profiles, Lehmann et al. (2011) identified 6 alternative molecular subgroups all with 

sizeable representation, which include: basal-like 1 (BL1), basal-like 2 (BL2), 

immunomodulatory (IM), mesenchymal-like (M), mesenchymal stem-like (MSL), and 

luminal androgen-receptor (LAR). It was shown that all subtypes are represented in 

panels of commercially-available cell lines, thus confirming that in vitro models of triple-

negative breast cancer are useful in capturing the molecular heterogeneity of TNBC 

biology (Lehmann et al., 2011).  

 

1.2.3.5 Normal-like 

Breast tumours defined as “normal-like” have similar gene expression patterns to 

those found in normal breast tissue; they mimic the gene signatures of basal epithelial or 

adipose cells rather than luminal epithelial cells (Perou et al., 2000). They are the rarest 

subtype of breast cancer and only account for 3.5-5% of breast malignancies. Hormone 

status (ER/PR/HER2) and prognosis are similar to that of luminal A cancers, although 

detailed gene expression assays have proven more effective for predicting their clinical 

behaviour than that of other subtypes (Liu, Zhang, & Zhang, 2014; Sweeney et al., 2014).  
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1.2.4 Existing treatments for breast cancer 

It is estimated that with advances in breast cancer screening and more effective 

therapies, over 32,000 breast cancer deaths have been prevented in Canada since 1988 

(Canadian Cancer Society’s Advisory Committee, 2016). Primary breast tumours are 

removed surgically, either through lumpectomy for localized cancer, or mastectomy in 

cases of further invasion. Following surgery, chemotherapy regimens are chosen 

depending on molecular subtype (Prat et al., 2015). Luminal cancers are frequently 

treated with taxanes or anthracyclines, with some successes also reported using 

nucleoside analogs (such as 5-fluorouracil) in luminal B cancers. HER2-enriched 

tumours generally do not respond well to endocrine therapies such as tamoxifen, but 

recent advances in HER2-targeted treatments (i.e. trastuzumab or lapatinib anti-HER2 

therapy) have been shown to produce a complete response in a modest proportion of 

patients, and may even benefit luminal HER2+ patients when combined with other 

therapies such as paclitaxel. Triple-negative breast cancers cannot be effectively targeted 

by any single therapy and are comparatively difficult to treat (Dent et al., 2007; Foulkes 

et al., 2010; Prat et al., 2015). A treatment regimen would typically involve multiple 

drugs used in combination (polychemotherapy), sometimes incorporating platinum-based 

agents as well. Anti-androgen therapies have been proposed for triple-negative cancers 

with high rates of androgen signalling (LAR subtype, Lehmann et al., 2011) but the 

clinical benefit of this approach is not yet clear (Prat et al., 2015). Overall, better 

treatments are required for triple-negative breast cancer either as a singular therapy or as 

a polychemotherapy adjuvant. 
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1.2.5 Models for studying breast cancer 

Immortalized breast cancer cell lines are by far the most common model for 

investigating the signalling pathways underlying breast cancer behavior. Cell lines are 

generally robust, survive much longer than primary cultures, and are easy to adapt to a 

wide variety of experimental assays (Burdall et al., 2003). In contrast to malignancies like 

prostate cancer, for which there are only a handful of in vitro models,  there are dozens of 

cell lines available to study breast cancer (American Type Culture Collection, 2017). This 

allows researchers to better capture the genetic heterogeneity of the disease. It is easy to 

control individual variables under in vitro conditions, making cell lines the model of 

choice for initial drug sensitivity screening and genetic manipulation (Burdall et al., 

2003; Holliday & Speirs, 2011; Vargo-Gogola & Rosen, 2007). However, a major 

limitation of these cell models is that they are mostly cultured 2-dimensionally on plastic 

surfaces, which do not accurately represent the 3-dimensional (3-D) growing patterns of 

tumours in vivo.  Such models cannot account for the impact of the structural and 

biological components of the tumour microenvironment, and have been shown to 

potentially affect a cancer’s molecular signalling profile and treatment response (Kenny 

et al., 2007). Although 3-D culturing substrates such as Matrigel (Corning) may address 

some of these concerns (Lee et al., 2007), xenotransplantation of human cell lines into 

immunocompromised animals (for example, NOD/scid rodents or zebrafish embryos) is 

often the preferred model to address these in vivo considerations (Konantz et al., 2012; 

Vargo-Gogola & Rosen, 2007). If an immune component is suspected, one could employ 

either a chemically-induced or oncogene-induced spontaneous tumour rodent model, or a 

syngeneic mammary epithelial cancer cell model (such as mouse 4T1 cells) that can be 
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manipulated in vitro and injected into an immunocompetent animal (Fantozzi & 

Christofori, 2006). These approaches come with their own limitations - rodents and 

humans are sufficiently different organisms genetically such that cancer biology is 

usually not identically modeled (Vargo-Gogola & Rosen, 2007). Alternatively, patient-

derived xenografts (PDX) have been shown to harness considerable predictive power for 

clinical drug response (DeRose et al., 2011; Whittle et al., 2015). However, aside from 

the difficulty in obtaining clinical samples, PDX models are strongly affected by the non-

human host microenvironment, and tend to under-represent certain subtypes of breast 

cancer, such as luminal A/ ER+ cancers (Whittle et al., 2015). PDX models are also 

generally not well-suited for foundational studies of gene knock-down or over-expression 

to assess changes in cellular behaviour.  

Overall, in vitro cultures of immortalized human breast cancer cells are likely to 

remain the preferred model for foundational work into drug response and molecular 

signalling pathways, with xenotransplantation and syngeneic rodent models playing 

important roles in pre-clinical evaluation and validation.  

 

1.3 Cancer risk and energy metabolism 

Chronic states of energy surplus and physical inactivity often result in obesity, 

metabolic syndrome, and type-2 diabetes mellitus, but are also strongly associated with 

increased cancer risk (Fair & Montgomery, 2009; Gallagher & LeRoith, 2015; Peairs et 

al., 2011). This may be due to a multitude of factors including the release of 

inflammatory cytokines, adipokines, hormones, and growth factors from adipose tissue 

(Diaz, Herzig, & Schafmeier, 2016), as well as high circulating concentrations of blood 
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glucose and insulin that may promote tumorigenesis (Gallagher & LeRoith, 2015; 

Wahdan-Alaswad et al., 2013). Impaired energy homeostasis has been associated with 

immunosuppression and changes in tissue oxygenation, which are known to promote 

immune-evading and aggressive cancer phenotypes, respectively (Conroy et al., 2016; 

Park et al., 2010; Young & Anderson, 2008). Meta-analyses have shown that type 2 

diabetics have a 1.5-fold or higher increased risk of developing liver, pancreatic, kidney, 

and endometrial cancer, and a modest increase in risk (relative risk: 1.12-1.43) of 

colorectal, bladder, and breast cancer compared with non-diabetics (Vigneri et al., 2009). 

This phenomenon is thought to be due to dysfunctional energy homeostasis, increased 

insulin-like growth factor 1 (IGF-1) signalling, and the potential mitogenic effects of 

insulin-based or insulin-stimulating anti-diabetic therapies like insulin analogues or 

sulfonylureas (Giovannucci et al., 2010). In contrast, other anti-diabetic therapies, such as 

metformin and thiazolidinediones, do not attempt to directly target or mimic pancreatic 

insulin production to control blood glucose. Metformin decreases hepatic 

gluconeogenesis, while thiazolidinediones activate peroxisome proliferator-activated 

receptors (PPARs) to re-sensitize the body’s tissues to insulin (Nathan et al., 2009). Both 

drugs often have a more durable effect on regulating blood insulin and glucose levels 

compared with other therapies (Nathan et al., 2009) and improve overall energy 

homeostasis in the body, which may also reduce cancer risk (Giovannucci et al., 2010).  
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1.4 Metformin 

1.4.1. Metformin use for type-2 diabetes mellitus 

Metformin, marketed under trademark names such as Glucophage (Merck Santé), 

Glumetza (Valeant Pharmaceuticals), and Fortamet (Andrx Labs), was first synthesized 

in the 1920s at the University of Vienna but was not utilized clinically until decades later 

(Fischer & Ganellin, 2010). Metformin’s parent compound (guanidine) was originally 

isolated from goat’s rue (Galega officinalis), a plant that had been used in European folk-

lore medicine for hundreds of years to treat symptoms of hyperglycemia. Guanidine 

proved too toxic for standard use - this prompted research into better-tolerated analogues 

of the drug (Fischer & Ganellin, 2010). Physician Dr. Jean Sterne demonstrated that one 

of these biguanide compounds, metformin, possessed significant efficacy in treating 

diabetes while minimizing general toxicity, and worked to develop metformin as a 

clinical treatment (Sterne, 1959). Metformin was first approved for use in France in 1979 

and was adopted into diabetes treatment regimens worldwide over the following decades 

(Fischer & Ganellin, 2010). Since it is both extremely cost-effective to manufacture and 

generally well tolerated, metformin was added to the World Health Organization’s list of 

essential medicines (WHO, 1999) and has become the front-line drug to treat type 2 

diabetes worldwide.  

 

1.4.2 Metformin mechanism in diabetes 

 Metformin’s action in treating diabetes is to reduce hepatic gluconeogenesis while 

also stimulating glucose uptake in target tissues, thus resulting in a marked decrease of 

circulating blood glucose (Hundal et al., 2000; Stumvoll et al., 1995). This mechanism is 
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primarily the result of AMP-activated protein kinase (AMPK) activation through 

inhibition of oxidative phosphorylation, which results in decreased in glucose output by 

hepatocytes and increases glucose uptake in muscle cells (Zhou et al., 2001). AMPK 

activation also results in decreased lipogenesis and induction of hepatic fatty acid 

oxidation to reduce levels of circulating triglycerides (Zhou et al., 2001). Furthermore, 

metformin increases the activity of the insulin receptor (IR) and insulin receptor substrate 

2 and increases the translocation of glucose transporters (e.g. GLUT1) to the plasma 

membrane, thus further enhancing glucose uptake (Pernicova & Korbonits, 2014).  

 

1.4.3 Alternative uses of metformin 

   Metformin has been evaluated for numerous alternative uses in recent decades. 

For example, metformin was shown to improve treatment outcomes for non-diabetic 

obese women with polycystic ovary syndrome (PCOS) (Nestler et al., 1998). This effect 

was linked to reduced insulin signalling causing alterations in gonadotrophin secretion 

and intra-ovarian androgen production (Nestler & Jakubowicz, 1996). Metformin has also 

been shown to improve appetite regulation and cause significant weight loss in both 

diabetic and non-diabetic overweight patients (Kay et al., 2001; Lee & Morley, 1998). 

This effect is associated with an AMPK-dependent reduction in ghrelin secretion 

(Gagnon, Sheppard, & Anini, 2013) and changes in circulating leptin levels in diabetic 

patients (Ida, Murata, & Kaneko, 2017).  

 
1.4.4 Metformin and cancer risk  

The idea that metformin might have anti-neoplastic properties first came to light in 

2005 when an observational, population-based study in Scotland found that diabetics 
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taking metformin had a 21% (95% C.I.: 7-33%) reduced lifetime cancer risk compared 

with diabetics receiving other treatments (Evans et al., 2005).  Subsequent observational 

cohort studies and meta-analyses have shown that metformin treatment decreases overall 

cancer incidence by an estimated 31-37%, with effects trending towards a dose-

dependent relationship  (DeCensi et al., 2010; Libby et al., 2009; Noto et al., 2012). Even 

when stringent bias-prevention analyses are employed to account for confounding 

variables of metabolism, lifestyle, and general health, metformin use is still associated 

with a modest (10-18%) reduction in overall cancer incidence (Gandini et al., 2014).  

However, no clear trends have yet been established when moving from 

observational cohort studies to controlled clinical trials.  In a 4-year study following 

diabetic men, metformin use did not significantly change prostate cancer incidence (Feng 

et al., 2015). Other small, randomized, controlled clinical trials evaluating the benefits of 

metformin use and other diabetes medications showed no significant change in cancer 

incidence (Home et al., 2010; Home et al., 2009; Kahn et al., 2006). It is important to 

note that the clear majority of past clinical studies have been limited to small sample 

sizes, short study durations, and variable treatment regimens, making it difficult to 

determine how exactly metformin impacts overall cancer incidence.  

It should also be noted that there is debate as to how metformin-associated cancer 

risk studies should be best interpreted. Specifically, the selection of appropriate control 

groups remains controversial. Since diabetes is inherently associated with increases in 

cancer risk, some researchers (Gandini et al., 2013) argue that the most appropriate 

comparisons remain within diabetic patient pools only, and that comparing diabetic 

metformin users with diabetic non-users is the best way to determine if metformin 
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treatment alone reduces cancer risk. Others (Chlebowski, Aragaki, & McTiernan, 2013) 

have argued that there is value in choosing non-diabetic patients as case-controls. In such 

studies, a decrease in cancer risk would not only account for the effects of proper disease 

management reducing the diabetes-associated cancer risk, but would indicate an overall 

protective effect beyond improved glucose and insulin regulation. While there is no clear 

consensus on this issue, either approach may provide useful information for researchers, 

as long as appropriate care is taken to interpret findings within the proper context 

(Chlebowski et al., 2013).   

 
1.4.5 Metformin and breast cancer risk  

The organ-specific effects of metformin on cancer risk are not yet clearly 

established, especially when it comes to breast cancer models. Several longer-term 

observational studies have presented evidence that metformin may decrease the risk of 

invasive breast cancer in diabetics by 25-37% (Chlebowski et al., 2012; Col et al., 2012; 

Tseng, 2014). Remarkably, this protective effect is also observed when comparing 

diabetic metformin-users with non-diabetic individuals. In an observational study in post-

menopausal women, Chlebowski et al. (2012) showed that diabetics not using metformin 

had an increased risk of invasive breast cancer (HR: 1.16, CI: 0.93-1.45) while 

metformin users had a decreased risk (HR: 0.75, CI: 0.57-0.99) compared to the non-

diabetic control group. This supports the notion that metformin likely has anti-cancer 

properties in vivo independent of its ability to regulate hyperglycemia and 

hyperinsulemia. The same study observed that metformin treatment may have subtype-

specific anti-breast cancer effects: the incidence of ER+/PR+ and HER2- breast cancers 

was reduced most dramatically (HR: 0.64, CI: 0.45-0.92 and HR: 0.58, CI: 0.40-0.84, 
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respectively), with risk of ER-/PR- cancers (most commonly triple-negative) also being 

reduced by an estimated 32%, although the small sample size limited statistical power of 

this observation. A similar study focusing on triple-negative breast cancer found a trend 

towards decreased risk of distant metastases in metformin users compared with both 

diabetic non-users and non-diabetics (Bayraktar et al., 2012). 

In contrast, however, certain studies have shown that metformin may not robustly 

reduce overall breast cancer incidence and mortality in diabetics  (DeCensi et al., 2010; 

Kowall et al., 2015). It is important to note the lack of consensus on this issue to 

emphasize the need for further research into the potential effects of metformin on breast 

cancer.  

 

1.4.6 Metformin mechanism in cancer 

 It is stipulated that the anti-cancer activity of metformin involves a complex 

interaction between direct and indirect effects. These are thought to manifest in both the 

protective qualities of metformin, reducing tumorigenesis and cancer incidence, as well 

as its acute anti-neoplastic activity to target existing disease. A more detailed discussion 

on current knowledge of each of these factors is outlined below.     

 

1.4.6.1 Indirect and global effects  

The same mechanisms that make metformin a highly effective anti-diabetic drug 

may also be responsible for some of its global anti-cancer action. Decreased hepatic 

gluconeogenesis and increased glucose uptake by muscle tissue reduces overall glucose 

concentration in the blood. Glucose is well-established as a pro-growth molecule that 
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fuels cancer metabolism and proliferation; a reduction in circulating glucose would thus 

be predicted to prevent carcinogenesis and inhibit tumour progression (Wahdan-Alaswad 

et al., 2013). Furthermore, the concurrent reduction of circulating insulin helps to 

alleviate activation of insulin receptor (IR) and insulin-like growth factor 1 receptor 

(IGF-1R) signaling, which both lie upstream of several pro-growth pathways (Belfiore & 

Frasca, 2008; Pollak, 2008). The inhibitory effect of metformin on these growth-

associated signaling axes leads to decreased cellular proliferation, biogenesis, and cancer 

growth, as will be further discussed in section 1.4.6.2.2.  

  Metformin has additionally been shown to modulate inflammation and tumour-

associated immune signaling, which may further heighten its overall anti-cancer effects. 

In a murine inducible breast cancer model, metformin was shown to inhibit activation of 

nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB) and prevent 

inflammation-associated cellular transformation (Hirsch, Iliopoulos, & Struhl, 2013). In 

mice, metformin has been shown to reduce the activity of cytokine-producing helper T-

cells (Zhao et al., 2015) and tumour-associated macrophages (TAMs) (Incio et al., 2015), 

thus attenuating their pro-cancer inflammatory signaling. Metformin was additionally 

shown to increase the quantity and effectiveness of CD8+ tumour-infiltrating 

lymphocytes in mouse models by preventing their exhaustion and apoptosis (Eikawa et 

al., 2015) to  support anti-cancer immune function. 

Furthermore, recent studies have shown that metformin may also affect cancer 

growth by modulating aspects of the tumour microenvironment. Metformin decreases 

production of pro-angiogenic factors like vascular endothelial growth factor (VEGF) 

from various microenvironment-associated cells, resulting in decreased angiogenesis and 
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inhibited cancer progression (Kolb et al., 2016; Orecchioni et al., 2015; Qu & Yang, 

2014).   

Taken together, these indirect effects likely play a significant role in the anti-

neoplastic activity of metformin and are important elements to consider moving forward. 

 

1.4.6.2 Direct effects on existing cancer cells 

Metformin is known to be shuttled into both non-transformed and cancer cells 

through organic cation transporters (OCTs), mainly OCT1, OCT2, and OCT3 (Checkley 

et al., 2017; Dresser et al., 2002; Wang et al., 2002). However, it is not yet clear exactly 

which transporters are the most important for cancer cells, as distribution varies 

depending on tissue type (Dowling et al., 2012). Once present in the cancer cell 

environment, the direct actions of metformin are diverse and multifaceted (Figure 1.1). 
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Figure 1.1 Direct and indirect mechanisms of metformin anti-cancer activity.  In 
vivo, metformin inhibits hepatic gluconeogenesis to reduce blood glucose and insulin 
levels, resulting in suppression of insulin receptor (IR) and insulin-like growth factor 1 
receptor (IGF-1R) signalling. This effect is complemented by the direct action of 
metformin on the insulin receptor to inhibit phosphatidylinositol 3-kinase (PI3-K) via the 
phosphatase and tensin homolog (PTEN) tumour suppressor, which signals through 
protein kinase B (Akt) to regulate mammalian target of rapamycin (mTOR) activity and 
reduce overall tumour growth. Metformin is shuttled into cells via organic cation 
transporters (OCTs). It inhibits both mitochondrial complex I and hexokinase 1 and 2 
(HK1/2) activity to suppress oxidative phosphorylation and glycolysis, respectively. The 
resultant increase in the intracellular adenosine monophosphate/ triphosphate 
(AMP/ATP) ratio results in the activation of AMP-activated protein kinase (AMPK) 
through mechanisms that are both dependent and independent of liver kinase B1 (LKB1). 
Activated AMPK suppresses nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB) activity and further inhibits mTOR signalling to suppress protein synthesis, 
resulting in reduced cell growth and decreased viability.  Metformin has also been shown 
to inhibit signal transducer and activator of transcription 3 (STAT3) signalling through 
suppressed interleukin 6 (IL-6) production, leading to decreased cell proliferation and 
increased apoptosis. Metformin increases oxidative stress in cancer cells through 
enhanced production of reactive oxygen species (ROS), an effect that can be both 
inhibitory or stimulatory. Through still unknown mechanisms, metformin signals through 
Nrf2 (encoded by nuclear factor erythroid-derived 2-like, NFE2L2) to transcriptionally 
regulate genes associated with anti-oxidant response elements (AREs), such as heme 
oxygenase 1 (HMOX1).   
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1.4.6.2.1 AMP activated protein kinase (AMPK)-mediated effects 

Metformin’s most direct mechanism of action in cancer is to reduce glucose 

metabolism and ATP production through inhibition of glycolysis and oxidative 

phosphorylation. Metformin blocks the hexokinase 1 and 2  (HK 1/2)-dependent 

sequestration of glucose into the glycolytic pathway, while simultaneously inhibiting 

complex I of the electron transport chain and inducing proton leak to uncouple 

mitochondrial respiration from ATP production (Marini et al., 2013; Salani et al., 2013; 

Wheaton et al., 2014). Given the metabolic reprogramming and high energy needs of 

many cancer cells, metformin effectively starves cells of energy and results in cancer-

specific growth inhibition (Sanchez-Alvarez et al., 2013). Reduced oxidative 

phosphorylation also causes a rise in the intracellular adenosine monophosphate (AMP)/ 

adenosine triphosphate (ATP) ratio, which induces phosphorylation and activation of 

AMP-activated protein kinase (AMPK) through liver kinase B1 (LKB1)-dependent and 

independent means (Long & Zierath, 2006; Shaw et al., 2004; Zhou et al., 2001). This 

effect has been well established in numerous cancer models including breast cancer, 

where in vitro doses as low as 0.6 mM metformin may activate AMPK (Hadad et al., 

2014). Once activated, AMPK regulates multiple pathways involved in cell proliferation 

and growth, with main targets in cancer being mammalian target of rapamycin (mTOR) 

and S6 kinase (Zakikhani et al., 2006). AMPK-mediated inhibition of these pathways 

results in reduced translation and global protein synthesis to cause decreased cell growth 

and proliferation (Dowling et al., 2007; Zakikhani et al., 2006). It is important to note, 

however, that certain cell lines, such as MDA-MB-231 triple-negative breast cancer cells, 
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lack LKB1 (Dowling et al., 2007). These cancers may be subject to alternative activation 

pathways of AMPK, as well as AMPK-independent avenues of metformin mechanism.  

 

1.4.6.2.2 Downstream effects of insulin signalling  

In addition to the indirect effects of metformin on insulin production in vivo, 

metformin also acts directly on the insulin receptor (IR), thus feeding into direct 

mechanistic pathways inside cancer cells (Dowling et al., 2012). Downstream of both the 

insulin receptor and the insulin-like growth factor 1 receptor (IGF-1R) lie several key 

pathways frequently dysregulated in cancer, including the phosphatidylinositol 3-kinase 

(PI3-K)/ protein kinase B (Akt)-mTOR axis (Huang & Houghton, 2003) and Ras-

dependent mitogen-activated protein kinase (MAPK) cascade signalling (Ceresa & 

Pessin, 1998). The PI3-K-Akt-mTOR axis is normally regulated by the phosphatase and 

tensin homolog (PTEN) tumour suppressor, but this regulation mechanism is often lost in 

cancer (Cantley, 2002; Di Cristofano & Pandolfi, 2000). Metformin has been shown to 

inhibit activation of Akt to suppress mTOR activity in an AMPK-independent manner 

through suppression of IR/IGF-R1 activity to reduce protein biogenesis and cancer cell 

growth (Janjetovic et al., 2011; Zakikhani et al. 2010).  

 

1.4.6.2.3 Reversal of epithelial-to-mesenchymal transition (EMT) 

In triple-negative breast cancer models (MDA-MB-231 cells), 1 mM metformin 

was shown to suppress expression of key markers associated with epithelial-to-

mesenchymal transition (EMT): zinc finger E-box-binding homeobox 1 (ZEB1), twist 

family BHLH transcription factor 1 (TWIST1), Slug (SNAI2), and transforming growth 
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factor beta 1 (TGF-ß1) (Vazquez-Martin et al., 2010). Suppression of the mesenchymal 

phenotype resulted in decreased migration ability and reduced capacity to form 3-

dimensional mammospheres in culture. Similar EMT reversal effects are also seen in 

other cancer models (Li et al., 2014; Qu et al., 2014), indicating that metformin may 

target EMT markers to reduce cancer aggression and colony formation. 

 

1.4.6.2.4 Inflammatory cytokine interleukin 6 (IL-6) signalling 

In numerous cancer models, metformin has been shown to inhibit interleukin 6 (IL-

6) signalling to prevent the phosphorylation and activation of signal transducer and 

activator of transcription 3 (STAT3) (Hirsch et al., 2013; Li et al., 2014).  Reduced levels 

of IL-6 have been linked to metformin-dependent inhibition of NF-kB (nuclear factor 

kappa-light chain-enhancer of activated B cells), a positive regulator of IL-6 production 

(Hirsch et al., 2013; Iliopoulos, Hirsch, & Struhl, 2009; Kim et al., 2011).  The effects of 

IL-6/STAT3 inhibition are particularly prominent in triple-negative breast cancer models, 

where reduced STAT3 activation significantly inhibits cell growth, induces apoptosis, 

and reduces expression of the epithelial-to-mesenchymal transition phenotype (Deng et 

al., 2012).  

1.4.6.2.5 Modulation of the cell cycle 

Apart from impacting cell growth and cell death as part of its anti-neoplastic 

activity, metformin also acts on the cell cycle to control proliferation. Metformin has 

been shown to inhibit cyclin D1 through an AMPK-dependent mechanism to induce cell 

cycle arrest  (Zhuang & Miskimins, 2008). Metformin-mediated decreases in cyclin D1 

expression have also been shown to occur through AMPK-independent mechanisms 
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(Ben-Sahra et al., 2008), thought to be in part through up-regulation of DNA-damage-

inducible transcription 4 (DDIT4) and reduction of mTOR activity (Ben-Sahra et al., 

2011). In breast cancer, it has been shown that some of these effects may be subtype-

specific; certain effects on cyclins and cyclin-dependent kinases are only seen in models 

of luminal A/B and HER2+ cancers, whereas others appear to be triple-negative 

phenotype-specific (Liu et al., 2009).  

 
1.4.6.2.6 Modulation of oxidative stress   

Oxidative stress, categorized by an excess of free oxidative or nitrogen radicals, can 

cause cellular damage through numerous mechanisms that include lipid peroxidation, 

protein oxidation, and DNA damage (Sies, 1997). Aside from their direct harmful effects, 

these processes can also result in the formation of toxic by-products such as reactive 

aldehydes that further compound damage to normal cellular function (Esterbauer & 

Cheeseman, 1990). Metformin appears to have a complex relationship in modulating 

oxidative stress by changing intracellular levels of reactive oxygen species (ROS). In 

pancreatic cancer and glioma cell models, metformin treatment was suggested to 

attenuate ROS production (Cheng & Lanza-Jacoby, 2015; Janjetovic et al., 2011), which 

is similar to its metabolic cyto-protective effects in non-cancerous tissues (Cahova et al., 

2015; Kocer, Bayram, & Diri, 2014). In contrast, studies in melanoma and breast cancer 

show that levels of oxidative stress are increased as a result of metformin treatment 

(Janjetovic et al., 2011; Marinello et al., 2016; Queiroz et al., 2014). This was shown to 

be a key mechanism of metformin action in both triple-negative and luminal A breast 

cancer cells, where increased levels of ROS resulted in DNA damage accumulation and 

apoptosis (Marinello et al., 2016; Queiroz et al., 2014). Mechanistically, this effect has 
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been linked to suppression of transcription factor activity by Nrf2 (encoded by the gene 

NFE2L2, nuclear factor erythroid-derived 2-like 2) which regulates key mediators of 

cellular redox and oxidative stress protection (Truong Do et al., 2014).  It is evident that 

the impacts of metformin on oxidative stress in cancer may depend on the model of 

study.  

 

1.4.7 Metformin anti-cancer action in experimental studies 

Metformin has been shown to have broad anti-neoplastic effects in vitro in 

numerous cancer types, as will be discussed further in 1.4.7.1. Some findings have been 

replicated in in vivo models (section 1.4.7.2), with the most promising moving into early 

clinical trials as outlined in section 1.4.7.3. 

 

1.4.7.1 In vitro models  

1.4.7.1.1 All cancers 

Metformin has been shown to have potent anti-neoplastic effects in a variety of in 

vitro models. Endometrial cancer cells are some of the most sensitive, with significant 

cell death seen in doses as low as 1 mM (Cantrell et al., 2010). Numerous studies have 

shown metformin to be highly effective at targeting prostate cancer cells, notably while 

leaving normal prostate tissues unaffected (Ben-Sahra et al., 2010; Whitburn, Edwards, & 

Sooriakumaran, 2017). 

Metformin also significantly attenuates cell proliferation, migration, and 

invasiveness in pancreatic cancer (Bao et al., 2012) as well as in ovarian cancer (Lengyel 

et al., 2015) models, which also show synergistic effects between metformin and 
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paclitaxel, carboplatin, and doxorubicin (Erices et al., 2013; Lengyel et al., 2015). 

Metformin has been shown to be effective in targeting non-small cell lung cancer 

(NSCLC) both as a monotherapy and in combination with other treatments like sorafenib, 

epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI), and radiation 

(Li et al., 2017).  

 
1.4.7.1.2 Breast cancer 

  Metformin has been studied extensively for its breast cancer-specific anti-

neoplastic effects in vitro. As a monotherapy, metformin targets a broad variety of 

subtypes to varying degrees (Dowling et al., 2012).  More recently, researchers have been 

evaluating the use of metformin in combination therapies. There is significant evidence 

of synergistic action when using metformin with 2-deoxyglucose (2-DG) (Cheong et al., 

2011), 5-fluorouracil (5-FU), paclitaxel, and doxorubicin (Qu et al., 2014), among others 

(Dowling et al., 2012; Hirsch et al., 2009). Interestingly, metformin specifically may 

target cancer stem cells (CSCs) in numerous breast cancer subtypes, which may have an 

impact on re-sensitizing treatment-refractory breast cancer to chemotherapy (Hirsch et 

al., 2009). 

 
1.4.7.2 In vivo models 

1.4.7.2.1   All cancer 

  When working in vivo, it is not possible to achieve some of the highly 

supra-physiological concentrations of metformin that may have been effective against 

cancer cells in vitro (Dowling et al., 2016). Nonetheless, some in vitro findings have been 

successfully translated into in vivo models, primarily by using xenografts of human cell 
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lines or patient-derived tumours. Some examples include studies in colon (Wheaton et al., 

2014), liver (Zhao et al., 2015), pancreatic (Kisfalvi et al., 2013), and prostate cancer 

(Ben-Sahra et al., 2008). Many in vivo successes have also come from using metformin in 

combination therapies (Dowling et al., 2012; Quinn et al., 2013). For example, treatment-

refractory lung cancer xenografts were partially re-sensitized to EGFR-TKIs through 

adjuvant metformin therapy (Li et al., 2014), and combination treatment of doxorubicin 

and metformin significantly reduced relapse in lung and prostate cancer xenograft models 

compared with either drug as a monotherapy (Iliopoulos, Hirsch, & Struhl, 2011).  

 

1.4.7.2.2 Breast cancer 

Some of metformin’s monotherapeutic action seen in in vitro breast cancer models 

translates into in vivo studies as well, although the anti-neoplastic effects tend to be less 

pronounced and are often difficult to predict (Dowling et al., 2012). Specific 

observations, like the finding that metformin preferentially targets breast cancer-stem 

cells with the CD44+ CD24-/low immunophenotype, have been successfully replicated in 

multiple in vivo models (Cufí et al., 2012; Hirsch et al., 2009). Metformin has also been 

shown to induce significant tumour shrinkage and longer disease-free survival in breast 

cancer xenograft models when combined with doxorubicin, 2-deoxyglucose (2-DG), or 

trastuzumab compared with each individual monotherapy (Cheong et al., 2011; Cufí et 

al., 2012; El-Ashmawy et al., 2017; Hirsch et al., 2009).  Although in vivo studies mark 

an important step towards human applications, controlled clinical studies are needed to 

make any definitive observations about the efficacy of metformin treatment in breast 

cancer.  
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1.4.7.3 Pre-clinical studies and clinical trials  

Some of the more promising in vivo findings on metformin and cancer have been 

investigated for their direct human applications through clinical studies. The results have 

been variable and largely depend on the model studied. For example, a metformin 

neoadjuvant study in endometrial cancer patients showed that pre-operative metformin 

treatment significantly decreased tumour proliferation markers and had a Ki-67 response 

rate of 65% (Schuler et al., 2015).  A randomized early clinical trial in non-diabetics 

showed that over the span of one month, low-dose metformin significantly reduced the 

number of aberrant colon crypt foci compared to the control group, indicating that 

metformin may be effective at preventing carcinogenesis in colon tissue (Hosono et al., 

2010).  Another study showed that diabetic metformin users with non-metastatic 

pancreatic cancer had significantly improved median survival when adjusting for other 

clinical predictors (Sadeghi et al., 2012).  However, a double blind, randomized, placebo-

controlled clinical trial evaluating metformin in combination with erlotinib and 

gemcitabine in patients with advanced pancreatic cancer showed no significant benefit 

(Kordes et al., 2015).  Additionally, a recent review of clinical studies combining 

metformin and radiation found that results were highly variable, with no clear benefits in 

treatment outcome or survival observed (Samsuri, Leech, & Marignol, 2017). Given that 

many metformin clinical trials have been done on late-stage cancers that are already 

highly refractory to therapy, more studies are needed to determine if metformin may 

provide a clinical benefit at earlier stages of disease.  
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1.4.7.3.1 Clinical studies in breast cancer 

Of the 139 active clinical trials currently listed on ClinicalTrials.gov that are 

evaluating metformin use in the context of cancer therapy, 25 of these involve a focus on 

breast cancer. These include long-term studies, like a 10-year phase III clinical trial with 

over 3,600 patients recruited (NCT01101438), as well as studies involving metformin in 

combination with other therapies that include atorvastatin (NCT01980823), erlotinib 

(NCT01650506), and doxycycline (NCT02874430).  

Studies for which results are available show mixed benefits for metformin use in 

breast cancer. It was found that metformin co-treatment increased the effectiveness of 

radiotherapy in diabetic breast cancer patients compared with both diabetic non-users and 

non-diabetics (Ferro et al., 2013). In another study, metformin use was associated with a 

near 3-fold higher pathologic complete response rate to chemotherapy compared with 

control subjects not taking metformin  (Jiralerspong et al., 2009). This result was 

independent of diabetes status, body mass index, and clinical and molecular tumour 

characteristics. Other clinical studies, however, have shown no significant anti-neoplastic 

effect associated with metformin use in breast cancer  (Bonanni et al., 2012). 

Given these variable results, more controlled neoadjuvant studies are needed, 

especially to evaluate metformin use in non-diabetic patients. One such study was 

completed in non-diabetic women with early stage breast cancer. Pre-operative 

metformin treatment was shown to significantly decrease tumour proliferation markers 

and increase indicators of apoptosis by more than 2-fold (Niraula et al., 2012). This trial 

also found that metformin is well-tolerated in non-diabetic individuals, inducing only 

mild adverse effects such as nausea, bloating, and gastrointestinal upset (Niraula et al., 
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2012). These results suggest that metformin may have beneficial clinical applications in 

breast cancer, especially during early stages of the disease.  

 

1.4.8 Biomarkers for optimizing metformin treatment 

Biomarkers are signatures of DNA, RNA, or protein that are associated with a 

specific clinical outcome or diagnosis. The era of increasingly cost-effective molecular 

screening techniques has brought biomarker identification and validation to the forefront 

of cancer therapy. Predictive cancer biomarkers have disease-associated expression 

patterns that may either: 1) indicate a specific prognostic pattern such as increased cancer 

invasiveness or poor survival, or 2) predispose a cancer to sensitivity or resistance to a 

given treatment. Such information allows clinicians to better tailor cancer therapies for 

their patients so as not to waste time or resources on ineffective treatment. Response 

biomarkers may also be used in the clinic to monitor cancer recurrence, or to track a 

cancer’s active response to therapy (Lord et al., 2015).  

Several studies have attempted to identify biomarkers for the monitoring and 

prediction of metformin response in cancer. A clinical study in endometrial cancer 

patients suggested that phospho-Akt, phospho-AMPK, phospho-S6, phospho-eukaryotic 

translation initiation factor 4E-binding protein 1 (4E-BP-1), and estrogen receptor (ER) 

may all be metformin response markers, as they are significantly down-regulated with 

treatment (Schuler et al., 2015). Using paired core tumour biopsies from non-diabetic 

breast cancer patients that had received neoadjuvant metformin, it was demonstrated that 

phosphodiesterase 3B (PDE3B), signal sequence receptor subunit 3 (SSR3), tumour 

protein 53 (TP53), and coiled-coil domain containing 14 (CCDC14) transcripts, as well 
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as protein levels of phospho-Akt, were significantly down-regulated with metformin 

treatment (Hadad et al., 2015). Interestingly, phospho-AMPK was shown to be 

significantly up-regulated with metformin in this breast cancer study (Hadad et al., 2015), 

whereas the opposite effect was seen in a clinical endometrial cancer study where 

phospho-AMPK levels were decreased (Schuler et al., 2015).  

Insulin-like growth factor 1 receptor  (IGF-1R) has been previously investigated as 

a metformin biomarker with clinical significance (Quinn et al., 2013). Around this time, a 

team with the British Columbia Cancer Agency determined that a patient enrolled in their 

Personalized Onco-Genomics trial (Laskin et al., 2015) with recurrent stage IV breast 

cancer had a 75-copy gain in IGF-1R. Believing their patient may benefit from metformin 

therapy, they suggested a combination treatment approach of standard anti-estrogen 

chemotherapy and metformin. Within several months of commencing this treatment, the 

cancer became undetectable and has been in remission for 4 years (unpublished data – 

personal correspondence, Dr. Janessa Laskin). This study further speaks to the potential 

benefits of utilizing metformin biomarkers for guiding metformin-based treatment in 

oncology practice.   

 

1.5 Rationale 

The re-purposed anti-diabetic drug metformin has been shown to exhibit broad in 

vitro and in vivo anti-neoplastic activity in various cancer types, including breast cancer. 

These promising results have resulted in several clinical trials that are currently underway 

to evaluate metformin use in breast cancer therapy. However, some in vivo and early 
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clinical results are showing that metformin response varies greatly between patients, with 

outcomes ranging from complete pathological response to zero benefit.  

Validated genetic or protein biomarkers isolated from a tumour biopsy can indicate 

if that cancer will respond readily to a chosen treatment. Furthermore, some biomarker 

expression patterns can indicate if a cancer already under treatment is readily responding.   

Except for IGF-1R, there are no targeted biomarkers currently in clinical use to predict a 

cancer’s sensitivity to metformin, or to monitor patient response during and after 

metformin treatment.  

Metformin biomarkers validated for use in breast cancer would allow clinicians and 

researchers to make more informed decisions about their patient’s treatment regimen. 

This is of special relevance for the treatment of triple-negative breast cancers, which have 

no targeted therapies and are often difficult to treat successfully before progressing to 

terminal stage. The first step in identifying biomarkers for metformin sensitivity and 

treatment response in breast cancer is to better understand the molecular pathways that 

underlie metformin’s mechanism of action. Once candidate genes are identified, further 

studies can be undertaken to validate their use as potential clinical biomarkers. 

 

1.5.1 Previous work - quantitative proteomics on metformin-conditioned triple-negative 

breast cancer cells 

To identify the pathways involved in metformin response in triple-negative breast 

cancer, our lab recently completed a quantitative proteomics analysis of metformin-

treated cells using an in vitro TNBC model. Three biological replicates of MDA-MB-231 

cells (Met-231A, Met-231B, and Met-231C ) were conditioned for 12 weeks to 1 mM 
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metformin (Bentley, 2014). This was previously shown to be a physiologically-relevant 

dose in vitro to induce a genetic response in MDA-MB-231 cells (Dowling et al., 2016). 

Furthermore, a 1 mM concentration of metformin in other in vitro cancer models has 

been shown to cause intracellular metformin accumulation equivalent to the blood plasma 

concentration of intraperitoneally-injected mice (Dowling et al., 2016). This further 

increases the in vivo relevance of the chosen dose.  

 Metformin-conditioned cells were analyzed for their quantitative proteomic profile 

against wild-type MDA-MB-231 cells using isobaric labeling of peptides with tandem 

mass tags (Ross et al., 2004; Thompson et al., 2003) and a triple-stage mass spectrometry 

(MS3) strategy for quantification (Ting et al., 2011). Further methodology, including 

statistical analysis of rough data as completed by Dr. Jayme Salsman (unpublished data – 

Salsman, Murphy, Bentley, Dellaire.), has been outlined in Murphy et al., 2015 (Murphy 

et al., 2015). A total of 4241 unique peptides were quantified in this analysis 

(unpublished data). Of these, a total of 12 proteins were up-regulated a minimum of 2-

fold within 1 standard deviation of the mean (Figure 1.2).  

 

1.5.1.1 Known functions of the 12 most up-regulated proteins 

 The 12 most up-regulated proteins in metformin-conditioned MDA-MB-231cells 

identified through our proteomics study are highly diverse in their known functions, 

although none have been previously implicated in metformin mechanism in breast cancer. 

As is further discussed in section 3.1.2 (Knock-down of AKR1C3), aldo-keto-reductase 

family 1 member C3 (AKR1C3) is primarily involved in sex hormone metabolism 

(Penning et al., 2000) but has also been shown to confer cancer resistance to docetaxel, 
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abiraterone, doxorubicin, and radiation therapy (Heibein et al., 2012; Liu et al., 2017; 

Matsunaga et al., 2016; Xiong et al., 2014). Ancient ubiquitous protein 1 (AUP1) has 

only been studied in non-cancerous tissues, and has been implicated in integrin 

signalling, protein quality control, and mitophagy regulation in response to energy 

deprivation (Journo, Mor, & Abeliovich, 2009; Kato et al., 2002; Klemm, Spooner, & 

Ploegh, 2011; Mueller et al., 2008). Connective tissue growth factor (CTGF) has 

sweeping functions in fibroblast maintenance and proliferation, cell adhesion, and 

promotion of angiogenesis (Moussad & Brigstock, 2000; Song et al., 2017; Wang et al., 

2017; Yang et al., 2016). CTGF was previously shown to be suppressed with metformin 

treatment in murine renal fibroblast model (Lu et al., 2015).  

Little is known about ectonucleotide pyrophosphatase (ENPP4), although it has been 

shown to promote platelet aggregation, is expressed on tumour-associated macrophages, 

and is associated with a metastatic phenotype in osteosarcoma (Albright et al., 2012; 

Miretti et al., 2008; Yan et al., 2016).  High mobility group nucleosome binding domain 5 

(HMGN5) functions as a tissue-specific transcriptional regulator and has been shown to 

promote autophagy and invasive phenotypes in cancer (King & Francomano, 2001; Meng 

et al., 2017; Shirakawa et al., 2000; Weng et al., 2015; Yang et al., 2014), while also 

suppressing expression of hexokinase I (HK1) (Ciappio et al., 2014). Insulin like growth 

factor binding protein 7 (IGFBP7) binds to insulin like growth factor (IGF) to regulate its 

signalling activity, and has been suggested to function as a tumour suppressor in part 

through regulating oncogene-induced senescence and apoptosis (Horikawa et al., 2017; 

Wajapeyee et al., 2008; Wen-jing et al., 2006). Microtubule associated protein RP/EB 

family member 2 (MAPRE2) shares significant homology to the tumour suppressor gene 
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adenomatous polyposis coli (APC) and is involved in regulating mitotic progression and 

genome stability (Goldspink et al., 2013; Iimori et al., 2016; Su & Qi, 2001).  

Phosphoglycerate dehydrogenase (PHGDH) regulates the early steps of L-serine 

synthesis, an essential process for breast cancer cell growth and proliferation (Klomp et 

al., 2000; Locasale et al., 2011; Possemato et al., 2011). Although L-serine starvation has 

been shown to potentiate the anti-neoplastic activity of metformin in other cancer models, 

PHGDH depletion alone was shown to not affect metformin sensitivity in murine colon 

cancer cells (Gravel et al., 2014).  Mitochondrial RNA polymerase (POLRMT) is 

required for the successful transcription of mitochondrial genes and is hence essential for 

mitochondrial reprogramming in response to energy stress, such as may be caused by 

metformin (Blomain & Mcmahon, 2012; Gaspari et al., 2004; Salem et al., 2012). SH3-

domain binding glutamate rich protein like (SH3BGRL) is a thioredoxin fold protein that 

is associated with cellular transformation and is upregulated in TNBC (Majid et al., 2006; 

Muñiz et al., 2014; Yin et al., 2005). Few studies have been conducted on sperm 

associated protein on the X chromosome B1 (SPANXB1); current knowledge suggests it 

is involved in sperm development and may be an ectopically-expressed tumour antigen 

that is recognized by cytotoxic T cells (Almanzar et al., 2009; Frank et al., 2008; 

Westbrook et al., 2000). Finally, titin (TTN) is a giant protein that helps maintain muscle 

elasticity and ensures proper contraction. TTN has been shown to be frequently mutated 

in cancer, including TNBC and other breast cancers (Göhler et al., 2017; Kim et al., 

2013; Lips et al., 2015).    
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 Given that none of these proteins have been previously implicated in metformin 

response in breast cancer, they may collectively present a unique opportunity to explore 

novel pathways involved in metformin mechanism of action.   
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Figure 1.2 Methodology and results of quantitative proteomics profiling of 
metformin-conditioned triple-negative breast cancer cells.  A. Experimental set-up of 
proteomics screen. MDA-MB-231 cells were cultured for 12 weeks in the presence or 
absence of 1 mM metformin to create “Met-231” and “wild type (WT)-231” cell lines, 
respectively. N= 3 biological replicates. To quantify protein changes occurring with 
metformin conditioning, peptides were labeled with tandem mass tags and identified 
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using triple-stage mass spectrometry. B. 4241 unique peptides were quantified between 
Met-231 and WT-231 cells. C. A subset of 12 genes, indicated with red boxes, were up-
regulated in Met-231 cells a minimum of 2-fold within 1 standard deviation of the mean. 
For quality control, all changes had to be significant (p<0.05) and proteins must have 
been quantified with at least 2 independent mass tags to ensure the best clarity and 
reproducibility of analyses going forward.  
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1.6  Hypothesis 

I hypothesize that the genes encoding the 12 most up-regulated proteins in our 

metformin-conditioned MDA-MB-231 cells, as identified through quantitative 

proteomics (Figure 1.2), are putative modifiers of metformin response and are involved in 

metformin’s mechanism of action. I hypothesize that knocking down or over-expressing 

these genes to mimic their naturally-occurring up- or down-regulation in tumours will 

alter metformin sensitivity in breast cancer cells, especially in triple-negative breast 

cancer. I further hypothesize that the basal expression levels of proteins encoded by these 

genes may predict metformin sensitivity of a breast cancer, and/or that the expression of 

these proteins may change before and after treatment as a “response” to metformin, 

indicating that they may have potential uses as clinical biomarkers.  
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Chapter 2: Materials and Methods 

2.1 Cell lines and tissue culture 

All wild-type cell lines were obtained from the American Type Culture Collection 

(ATCC) except SUM149, which were sourced from Asterand Bioscience. Cells were 

cultured according to ATCC guidelines outlined in Table 2.1 in humidified 37°C 

incubators, and split on a 3-4 days basis once cells were 80-90% confluent. Dulbecco’s 

Modified Eagle’s Medium (DMEM – 11995, 11885, 11966), Roswell Park Memorial 

Institute medium (RPMI-1640 – 11875), Leibovitz’s medium (L-15 - 11415), Minimal 

Essential Medium (MEM - 12492), fetal bovine serum (FBS – 10437, 12484), phosphate-

buffered saline (PBS - 10010), 0.05% Trypsin-EDTA (25300), non-essential amino acids 

(NEAA – 11140), and sodium pyruvate (11360) were sourced from Gibco Cell Culture/ 

Thermo Fisher. Glucose-free DMEM was supplemented with 4.5 mM sterile-filtered 

galactose (Sigma). Human insulin (I9278), bovine insulin (I0516), and glutathione 

(G6013) were sourced from Sigma-Aldrich. Early passage cells were frozen in growth 

media containing 7.5 % dimethyl sulfoxide (DMSO – D2650, Sigma) and stored in liquid 

nitrogen.  
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Table 2.1 In vitro media and culturing conditions for cell lines used. Triple-negative 
breast cancer (TNBC) sub-classification taken from Lehmann et al. 2011: mesenchymal 
(M), mesenchymal stem-like (MSL), luminal androgen receptor (LAR), basal-like 1 
(BL1), basal-like 2 (BL2), unknown (Unk.). Terminology: Dulbecco’s Modified Eagle’s 
Medium (DMEM), Leibovitz’s medium (L-15), Roswell Park Memorial Institute 
Medium (RPMI-1640), fetal bovine serum (FBS), non-essential amino acids (NEAA), 
carbon dioxide (CO2).  
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2.2 Drugs   

Metformin hydrochloride (MW: 165.62g/mol, D150959, Sigma) was re-

suspended in sterile ddH2O and diluted into 200 mM working stocks with cell-specific 

media. Aliquots were frozen at -20°C, protected from light and with freeze/thaw cycles 

avoided. 

  

2.3 RNAi 

MDA-MB-231 cell lines with stable gene knock-down were generated using 

lentivirus-delivered pGIPZ-based short hairpin RNAs (Table 2.2, Thermo Fisher/ GE 

Dharmacon) obtained from the Dalhousie University Enhanced Gene Analysis and 

Discovery (EGAD) construct library. DNA was purified using Plasmid Mini and Midi 

Plus kits (27106 and 12945, Qiagen) and co-delivered into HEK293T cells with lentivirus 

packaging vectors pMD2.G, pCMV-8.92, and pCMV-8.93 via calcium phosphate 

transfection (Promega) according to manufacturer’s protocol. After 48 hr, lentivirus-

containing media was removed from cells and filtered at 0.45 µm to remove cellular 

debris. This stock was diluted 50:50 with 10% FBS-containing DMEM and placed on 

MDA-MB-231 cells for 48 hr. Transduced cells recovered in fresh media for 24 hr before 

a selection period of 72 hr with 1.5 µg/mL puromycin (A11138, Gibco). Cells were 

maintained in 0.25 µg/mL puromycin until further experimental manipulation. Successful 

gene knock-down was confirmed using quantitative reverse-transcription PCR, and 

protein immunoblotting in the case of AKR1C3.   
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Table 2.2 pGIPZ-based short hairpin RNA constructs used to knock down genes of 

interest. All clones were sourced from Thermo Fisher/ GE Dharmacon. Details shown on 

given name of short hairpin (sh)RNA for use in this study in format of sh(target gene)_#. 

Control shRNA is not known to target any mammalian gene. Accessions targeted 

indicates how many isoforms are targeted by the mature antisense shRNA sequence (5’-

3’), as well as location of binding. ORF: open reading frame, 3’UTR: 3’ untranslated 

region.  
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2.4 AKR1C3 cDNA expression  

AKR1C3 cDNA (clone ID: 2988160, accession: BC001479.2, GE Dharmacon) 

was cloned into the pClover-J1 vector, which is based on the pEGFP-C1 plasmid 

(AddGene) and contains a modified multiple cloning site. Successful integration of the 

AKR1C3 cDNA sequence was validated using restriction digest and DNA sequencing. 

Competent Escherichia coli (E. coli) bacteria were transformed with pClover-AKR1C3 

using heat-shock technique and plasmid DNA was isolated using a Plasmid Midi Plus kit 

(12945, Qiagen) according to manufacturer’s instructions. Target cell lines were 

transfected via electroporation using the Neon Transfection System (Life Technologies) 

with parameters outlined in Table 2.3. Transfected cells were immediately plated into 

fresh DMEM + 10% FBS and left to recover for 24 hr prior to beginning metformin 

treatment.  

Table 2.3 Electroporation protocol for transfection of pClover plasmid into breast 

cancer cells. Adapted from manufacturer’s protocol, Neon Transfection System (Life 

Technologies). DNA is purified Clover-Control or Clover-AKR1C3 plasmid.  

 

2.5 Cell counting and viability  

2.5.1 Cell counting  

General cell counts and approximate cell death measurements were obtained using 

Type S cassettes (MXC002, Orflo Technologies) with the Moxi Z Mini Automated Cell 
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Counter (Orflo Technologies) and Trypan blue (T8154, Sigma) exclusion dye with a 

manual haemocytometer. Cells were trypsinized and re-suspended in pre-warmed media 

to be counted within 15 min.  

2.5.2 Cell viability assay 

Cell viability was measured using the alamarBlue fluorogenic assay. Cells were 

seeded in 96-well plates at concentrations of 2-5 x 104 cells/ mL depending on cell line 

growth rate (consistent between replicates). After a 24 hr settling period, cells were 

treated with experimental media +/- metformin treatment for 72 hr in technical 

quadruplicate. Following treatment, media was aspirated and replaced with pre-warmed 

cell-line specific media (Table 2.1) containing 10% alamarBlue reagent (DAL1100, 

Invitrogen). After 3-8 hr incubation, dye conversion was quantified using the Infinite 200 

Pro plate reader (Tecan) set at 560 nm excitation and 590 nm emission wavelength. 

Please see Appendix A for further description of alamarBlue methodology.  

 

2.6 Protein immunoblotting 

Adherent cell cultures were washed thoroughly with PBS and collected by scraping. 

Cell pellets were obtained by centrifugation at 4ºC (1,200 × g for 15 min) and re-

suspended in ice-cold lysis buffer consisting of radioimmunoprecipitation (RIPA) buffer 

(R0278, Sigma) and 1x protease inhibitor (P8340, Sigma). After 20 min, samples were 

centrifuged, 14,000 × g at 4ºC, to precipitate cellular debris. Supernatants were removed 

and protein concentrations were determined using the spectroscopic Bradford protein 

assay (50000, Bio-Rad) according to manufacturer’s instructions. Samples were diluted 

to 1x with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
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protein sample buffer (62.5 mM Tris-HCl pH 6.8, 2.5 % SDS, 0.002 % Bromophenol 

Blue, 0.7135 M (5%) β-mercaptoethanol, 10 % glycerol – all Sigma-Aldrich) and were 

boiled for 5 minutes to denature proteins.  Lysates were either immediately utilized in 

SDS-PAGE or were stored at -80ºC to be re-boiled prior to use. After wet-transfer of 

samples, nitrocellulose membranes (88018, Thermo Fisher) were blocked using 4% milk 

(Nestlé Carnation) in PBS for 1 hr, washed 3 x 5 min with PBS and incubated with 

primary antibody against rabbit anti-AKR1C3 (PA5-28065, Thermo Fisher, 1:1,000), 

mouse anti-ß-Tubulin (T7816, Sigma, 1:50,000), or rabbit anti-Vinculin (18058, Abcam, 

1:1,000), in 4% milk overnight on a 4ºC roller. Membranes were washed 4 x 5 min with 

PBS, followed by 45 min incubation at room temperature with secondary antibody: goat 

anti-rabbit-HRP (A120-101P, Bethyl, 1:5,000) or sheep-anti-mouse-HRP (ab6808, 

Abcam, 1:5,000). Following 4 x 5 min PBS washes, Western blots were developed using 

Clarity Western ECL Blotting Substrates (17050, Bio-Rad) and imaged using a VersaDoc 

molecular imager (Bio-Rad) with optimized exposure settings.  

 

2.7 Immunofluorescence Microscopy 

Cells grown on glass coverslips were washed 2 x 5 min with PBS and fixed in 2% 

paraformaldehyde-PBS solution (15710, Electron Microscopy Sciences) for 10 min. 

Following 3 x 5 min PBS wash, cells were permeabilized using 0.5% Triton-X100 

(Sigma) in PBS for 5 min, PBS-rinsed 3 x 5 min, and blocked in 4% bovine serum 

albumin (BSA-PBS, A2058, Sigma) in a humidified chamber for 30 min. Cells were 

immunoblotted with primary antibody rabbit anti-AKR1C3 (ab137545, Abcam, 1:100) 

for 1 hr, PBS-rinsed 3 x 5 min and blotted with fluorescently-labeled secondary antibody: 
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goat anti-rabbit DyLight 488- conjugated (A120-101D2, Bethyl, 1:100) or goat-anti-

rabbit DyLight 550-conjugated (A120-101D3, Bethyl, 1:100), for 30 min protected from 

light. After 1 x 5 min wash, cells were stained with DAPI (D9564, Sigma, 1:1000) in 

PBS for 10 min to visualize nuclei. After 1 x 5 min PBS wash, coverslips were mounted 

on frosted glass slides (12-550-15, Fisher Scientific) using fluorescent mounting medium 

(S3023, Dako). Fluorescent micrographs were captured using a custom-built Zeiss Cell 

Observer Microscope (Intelligent Imaging Innovations, 3i), equipped with a solid-state 

Light Engine (Lumencor) and an HQ2 CCD camera (Photometrics) using a 63x 1.4 NA 

immersion oil objective lens. Slidebook capture software v. 6.0.12 (3i) was used and final 

images were exported as 16 or 8-bit TIFs, with linear adjustments made to the contrast 

and levels of each channel (red, green, blue) using Adobe Photoshop CS5.  

 

2.8 RNA extraction and RT-qPCR 

Cells cultured in 10 cm dishes were lysed using 2 mL TRIzol reagent (15596, 

Invitrogen) and stored in 1 mL aliquots at -80ºC until further use. Total RNA was 

extracted according to manufacturer’s protocol using the PureLink RNA Mini Kit 

(12183, Ambion) with on-column deoxyribonuclease (DNase) treatment (12185, 

Invitrogen) to prevent genomic DNA contamination. In concordance with the MIQE 

publication guidelines for quantitative PCR (Bustin et al., 2009), RNA quality and 

quantity were assessed using spectrophotometry (Eppendorf) and agarose gel 

electrophoresis. Complementary DNA (cDNA) was generated from RNA using iScript 

Reverse Transcription Supermix (17088, Bio-Rad) according to manufacturer’s protocol.  

Quantitative PCR was conducted for each sample in technical quadruplicate using the 
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CFX96 Touch real-time PCR detection system (Bio-Rad) with SsoAdvanced Universal 

SYBR Green Supermix (17252, Bio-Rad) and gene-specific primers (Integrated DNA 

Technologies). Primers were designed using the Basic Local Alignment Search Tool 

(BLAST, NCBI-NIH) to target maximum number of gene isoforms and were evaluated 

for efficiency according to MIQE (Minimum Information for Publication of Quantitative 

Real-Time PCR Experiments) guidelines (Bustin et al., 2009). Relative expression levels 

were calculated between experimental conditions by normalizing target gene expression 

to 2 reference genes, HMBS and HUWE1 (target stability values: M <0.5, CV< 25%), 

using the ΔΔCq method in CFX Manager v. 3.1 (Bio-Rad).  

 

2.9 Statistical analysis 

The 12 proteomics peptides identified for further investigation were chosen based on 

a minimum 2-fold average up-regulation within 1 standard deviation of the mean, at a 

significance level of p=0.05. Excel 2016 (Microsoft) was used for basic statistical 

analysis, including: calculation of means and standard deviations, linear regressions, 

Spearman’s correlation coefficients, and student’s T-Test (2-tailed, unpaired, assuming 

unequal variances). For cell viability assays, experimental condition values were 

normalized to the mean of the untreated control (0 mM) for each cell line to assess 

viability remaining out of 1. Two-way repeated measures ANOVAs (Analyses Of 

Variance) with Bonferroni post-hoc correction were conducted using SPSS Statistics 

(build 1.0.0.580, IBM) to test for differences between AKR1C3 knock-down/ over-

expression and control cells.  
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Protein density quantification from Western blotting was determined using the 

rectangular and circular volume functions and global background subtraction on 

unsaturated, raw VersaDoc images, using Quantity One (v. 4.6.6) and Image Lab 

(v.5.2.1) software (Bio-Rad).  

The cBioPortal platform was used to create Kaplan-Meyer survival curves using 

the TCGA breast cancer dataset (Cerami et al., 2012; Gao et al., 2013). 
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Chapter 3: Results 
 

3.1 Evaluation of genes potentially modulating metformin sensitivity 

The proteins that were the most significantly up-regulated in metformin-

conditioned (Met-231) MDA-MB-231 cells in our previous proteomics study (Figure 1.2) 

may potentially be involved in modulating metformin sensitivity in triple-negative breast 

cancer. Along this line of investigation, the genes for the top 12 up-regulated proteins 

(Figure 1.2, panel C) were stably knocked down in individual pools of MDA-MB-231 

cells using lentivirus-delivered pGIPZ-based shRNAs, as annotated in Table 2.2. The 

pool of MDA-MB-231 cells transduced with shPOLRMT_1 and shPOLRMT_2 

displayed extensive cell death before and during puromycin selection. Quantitative RT-

PCR showed that the remaining puromycin-resistant population of cells did not have 

effective POLRMT knock-down, confirming previous studies that indicate POLRMT is 

likely an essential gene (Hart et al., 2015). Quantitative RT-PCR showed that 

shIGFBP7_2, shENPP4_2, and shTTN_2 did not result in efficient knock-down of their 

respective target transcripts (data not shown); cells expressing these constructs were 

hence excluded from further analysis.  Cell lines with AKR1C3 knock-down are 

discussed separately in 3.1.2.  

3.1.1 Short hairpin (shRNA)-mediated depletion of gene expression of putative metformin 

response genes 
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AlamarBlue cell viability studies showed that effects of knock-down on 

metformin sensitivity depended on the target gene, and sometimes changed with glucose-

availability and extent of gene knock-down. Under high-glucose (25 mM glucose) 

culturing conditions, knock-down of all 10 remaining genes (AUP1 - Figure 3.1.1, CTGF 

- Figure 3.1.2, ENPP4 - Figure 3.1.3, HMGN5 - Figure 3.1.4, IGFBP7 - Figure 3.1.5, 

MAPRE2 - Figure 3.1.6, PHGDH - Figure 3.1.7, SH3BGRL - Figure 3.1.8, SPANXB1 - 

Figure 3.1.9, TTN – Figure 3.1.10) resulted a trend towards higher sensitivity at 25 mM 

metformin, with some effects also seen at 10 mM and 50 mM doses. 

 At 25 mM metformin, average sensitivity was further increased by a minimum of 

35% (shSH3BGRL_1, Figure 3.1.8) and a maximum of 53% (shTTN_2, Figure 3.1.10) 

compared with control. At 10 mM metformin, knock-down of HMGN5, IGFBP7, 

MAPRE2, SPANXB1, and TTN each resulted in a trend of increased sensitivity, with a 

maximum effect of 42% increased average sensitivity (shSPANXB1_2, Figure 3.1.9). At 

50 mM tested dose, knock-down of CTGF, ENPP4, MAPRE2, and TTN showed possible 

sensitization effects compared to control to a maximum of 30% further loss of viability 

(shTTN_1, Figure 3.1.10). Significance was not tested for these trends as only a single 

biological replicate of each assay was completed. 

In certain cases, the possible sensitizing effect of gene knock-down was 

reproduced under glucose deprivation conditions (trace glucose, + 4.5 mM galactose).  

IGFBP7 knock-down resulted in a trend of 31% further-decreased cell viability compared 

with control at 1 mM metformin (Figure 3.1.5).  Knock-down of MAPRE2 

(shMAPRE2_1, Figure 3.1.6), PHGDH (Figure 3.1.7), SH3BGRL (shSH3BGRL_2, 

Figure 3.1.8), SPANXB1 (shSPANXB1_1 – Figure 3.1.9), and TTN (Figure 3.1.10) also 
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each showed possible trends towards increased sensitivity at 1 mM metformin under 

glucose-deprived conditions.  

In other cases, the trends seen with glucose deprivation contrasted those seen 

under high-glucose conditions.  Knock-down of AUP1 (Figure 3.1.1), CTGF (Figure 

3.1.2), ENPP4 (Figure 3.1.3), HMGN5 (Figure 3.1.4), PHGDH (Figure 3.1.7), and 

SH3BGRL (Figure 3.1.8) sometimes resulted in lower average metformin sensitivity, 

especially at higher doses (5 mM+). These results suggest that the effects of gene knock-

down on metformin sensitivity in triple-negative breast cancer may be glucose-

dependent.  
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Figure 3.1.1 Effects of AUP1 knock-down on metformin sensitivity relative to 
glucose concentration. A. Effective knock-down of AUP1 transcript was confirmed 
using qPCR with expression normalized to control, N=1 and error bars = SEM. B. A 
trend towards increased metformin sensitivity at 25 mM dosing was seen under high-
glucose media conditions. C. Under glucose-deprived conditions, AUP1 knock-down 
may result in increased resistance to some higher doses of metformin. MDA-MB-231 
cells were transduced with lentivirus carrying each of two pGIPZ-based AUP1-targeting 
shRNAs (shAUP1_1 and shAUP1_2) or a non-targeting control (shControl). Cells were 
treated with indicated doses of metformin for 72 hr and cell viability was measured using 
an alamarBlue assay. ShAUP1_1/2: n=1, error bars = SEM (technical replicates). 
ShControl: n=3, error bars = SEM (biological replicates).  
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Figure 3.1.2 Effects of CTGF knock-down on metformin sensitivity relative to 

glucose concentration. A. Effective knock-down of CTGF transcript was confirmed 

using qPCR with expression normalized to control, N=1 and error bars = SEM. B. A 

trend towards increased metformin sensitivity at 25 mM and 50 mM dosing was seen 

under high-glucose media conditions. C. Under glucose-deprived conditions, strong 

CTGF knock-down may result in increased resistance to some higher doses (2.5 mM and 

above) of metformin. MDA-MB-231 cells transduced with lentivirus carrying each of 

two pGIPZ-based shRNAs targeting CTGF (shCTGF_1 and shCTGF_2) or a non-

targeting control (shControl). Cells were treated with indicated doses of metformin for 72 

hr and cell viability was measured using an alamarBlue assay. ShCTGF_1/2: n=1, error 

bars = SEM (technical replicates). ShControl: n=3, error bars = SEM (biological 

replicates).  
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Figure 3.1.3 Effects of ENPP4 knock-down on metformin sensitivity relative to 
glucose concentration. A. Effective knock-down of ENPP4 transcript was confirmed 
using qPCR with expression normalized to control, N=1 and error bars = SEM. B. A 
trend towards increased metformin sensitivity at 25 and 50 mM dosing was seen under 
high-glucose media conditions. C. Under glucose-deprived conditions, ENPP4 knock-
down showed a weak trend towards increased resistance 2.5 mM and 50 mM metformin. 
MDA-MB-231 cells were transduced with lentivirus carrying a pGIPZ-based shRNA 
targeting ENPP4 or a non-targeting control (shControl). Cells were treated with indicated 
doses of metformin for 72 hr and cell viability was measured using an alamarBlue assay. 
ShENPP4_1: n=1, error bars = SEM (technical replicates). ShControl: n=3, error bars = 
SEM (biological replicates).  
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Figure 3.1.4 Effects of HMGN5 knock-down on metformin sensitivity relative to 
glucose concentration.  A. Effective depletion of HMGN5 expression was confirmed 
using qPCR with expression normalized to control, N=1 and error bars = SEM. B. A 
trend towards increased metformin sensitivity at 10 and 25 mM dosing was seen under 
high-glucose conditions. C. Under glucose-deprived conditions, HMGN5 knock-down 
with shHMGN5_1 showed increased resistance to some higher doses (5 mM +) of 
metformin, but this effect was not reproduced with the second knock-down 
(shHMGN5_2). MDA-MB-231 cells were transduced with lentivirus carrying each of 
two pGIPZ-based HMGN5-targeting shRNAs (shHMGN5_1 and shHMGN5_2) or a 
non-targeting control (shControl). Cells were treated with metformin for 72 hr and cell 
viability was measured using alamarBlue assay. ShHMGN5_1/2: n=1, error bars = SEM 
(technical replicates). ShControl: n=3, error bars = SEM (biological replicates). 
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Figure 3.1.5 Effects of IGFBP7 knock-down on metformin sensitivity relative to 
glucose concentration. A. Effective knock-down of IGFBP7 transcript was confirmed 
using qPCR with expression normalized to control, N=1 and error bars = SEM. B. A 
trend towards increased metformin sensitivity at 10 mM and 25 mM dosing was seen 
under high-glucose media conditions. C. Under glucose-deprived conditions, IGFBP7 
knock-down resulted in a trend of increased sensitivity at 1 mM dose of metformin. 
MDA-MB-231 cells were transduced with lentivirus delivering a pGIPZ-based IGFBP7-
targeting shRNA or a non-targeting control (shControl). Cells were treated with indicated 
doses of metformin for 72 hr and cell viability was measured using an alamarBlue assay. 
ShIGFBP7_1: n=1, error bars = SEM (technical replicates). ShControl: n=3, error bars = 
SEM (biological replicates). 
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Figure 3.1.6 Effects of MAPRE2 knock-down on metformin sensitivity relative to 
glucose concentration.  A. Effective depletion of MAPRE2 expression was confirmed 
using qPCR with expression normalized to control, N=1 and error bars = SEM. B. A 
trend towards increased metformin sensitivity at 10, 25, and 50 mM was seen in 
MAPRE2-knock-down cells under high-glucose media conditions. C. Under glucose-
deprived conditions, MAPRE2 knock-down appeared to have no reproducible effect on 
metformin sensitivity. MDA-MB-231 cells were transduced with lentivirus containing 
one of two MAPRE2-targeting pGIPZ-based shRNAs (shMAPRE2_1 and 
shMAPRE2_2) or a non-targeting control (shControl). Cells were treated with metformin 
for 72 hr and cell viability was measured using alamarBlue. ShMAPRE2_1/2: n=1, error 
bars = SEM (technical replicates). ShControl: n=3, error bars = SEM (biological 
replicates). 
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Figure 3.1.7 Effects of PHGDH knock-down on metformin sensitivity relative to 
glucose concentration. A. Effective knock-down of PHGDH transcript was confirmed 
using qPCR with expression normalized to control, N=1 and error bars = SEM. B. A 
trend towards increased sensitivity at 25 mM metformin was seen in PHGDH-knock-
down cells under high-glucose conditions. C. Under glucose-deprived conditions, 
PHGDH knock-down may show a weak trend of decreased metformin sensitivity at 
higher doses. MDA-MB-231 cells were transduced with lentivirus carrying one of two 
PHGDH-targeting pGIPZ-based shRNAs (shPHGDH _1 and shPHGDH _2) or a non-
targeting control (shControl). Cells were treated with metformin for 72 hr and cell 
viability was measured using alamarBlue. ShPHGDH_1/2: n=1, error bars = SEM 
(technical replicates). ShControl: n=3, error bars = SEM (biological replicates). 
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Figure 3.1.8 Effects of SH3BGRL knock-down on metformin sensitivity relative to 
glucose concentration. A. Effective depletion of SH3BGRL transcript was confirmed 
using qPCR with expression normalized to control, N=1 and error bars = SEM. B. A 
trend towards increased metformin sensitivity at 25 mM was seen in SH3BGRL-knock-
down cells with high-glucose conditions. C. Under glucose-deprived conditions, 
SH3BGRL knock-down appeared to have no reproducible effect on metformin 
sensitivity. MDA-MB-231 cells were transduced with lentivirus delivering one of two 
SH3BGRL-targeting pGIPZ-based shRNAs (shSH3BGRL_1 and shSH3BGRL_2) or a 
non-targeting control (shControl). Cells were treated with of metformin for 72 hr and cell 
viability was measured using alamarBlue assay. ShSH3BGRL_1/2: n=1, error bars = 
SEM (technical replicates). ShControl: n=3, error bars = SEM (biological replicates). 
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Figure 3.1.9 Effects of SPANXB1 knock-down on metformin sensitivity relative to 
glucose concentration. A. Effective depletion of SPANXB1 transcript was confirmed 
using qPCR with expression normalized to control, N=1 and error bars = SEM. B. A 
trend towards increased sensitivity at 10, 25, and 50 mM metformin was seen in 
SPANXB1-knock-down cells under high-glucose conditions. C. Under glucose-deprived 
conditions, SPANXB1 knock-down appeared to have no reproducible effect on 
metformin sensitivity. MDA-MB-231 cells were transduced with lentivirus carrying one 
of two SPANXB1-targeting, pGIPZ-based shRNAs (shSPANXB1_1 and 
shSPANXB1_2) or a non-targeting control (shControl). Cells were treated with 
metformin for 72 hr and cell viability was measured using alamarBlue assay. 
ShSPANXB1_1/2: n=1, error bars = SEM (technical replicates). ShControl: n=3, error 
bars = SEM (biological replicates). 
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Figure 3.1.10 Effects of TTN knock-down on metformin sensitivity relative to 

glucose concentration. A. Effective knock-down of TTN transcript was confirmed using 

qPCR with expression normalized to control, N=1 and error bars = SEM. B. A trend 

towards increased sensitivity at 10 mM, 25 mM, and 50 mM metformin was seen in 

TTN-knock-down cells under high-glucose media conditions. C. Under glucose-deprived 

conditions, TTN knock-down appeared to have no impact on metformin sensitivity. 

MDA-MB-231 cells were transduced with lentivirus carrying a pGIPZ-based, TTN-

targeting shRNA or a non-targeting control (shControl). Cells were treated with 

metformin for 72 hr and cell viability was measured using an alamarBlue assay. 

ShTTN_1: n=1, error bars = SEM (technical replicates). ShControl: n=3, error bars = 

SEM (biological replicates). 
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3.1.2 Knock-down of AKR1C3  

Up-regulation of aldo-keto reductase family 1 member C3 (AKR1C3), as seen in 

the Met-231 proteomics analysis, has been implicated in resistance to numerous types of 

chemotherapy including docetaxel (Matsunaga et al., 2016), abiraterone (Liu et al., 

2017), and doxorubicin (Heibein et al., 2012). Despite its usual role in sex hormone 

metabolism (Penning et al., 2000), AKR1C3 is also a known anti-oxidant-response gene 

transcriptionally regulated by Nrf2 (Chen et al., 2017), a transcription factor known to be 

modulated by metformin (Truong Do et al., 2014). Additionally, AKR1C3 up-regulation 

in cancer cells has been shown to confer radiation resistance by decreasing cytotoxic 

levels of reactive oxygen species (ROS) (Xiong et al., 2014). This was of interest to me 

since metformin is known to modulate oxidative stress in triple-negative breast cancer 

cells as part of its cancer-targeting mechanism (Marinello et al., 2016). Finally,  it was 

found that AKR1C3 is one of the most up-regulated transcripts in metformin-refractory 

luminal A breast cancer (MCF-7) cells (Oliveras-Ferraros et al., 2014); together, these 

observations suggested that further investigation into the role of AKR1C3 in metformin 

response was warranted. Specifically, AKR1C3 may be a metformin resistance marker, in 

which case knock-down of the gene was hypothesized to induce metformin sensitivity.  

AKR1C3 was stably knocked down in MDA-MB-231 cells using 3 separate 

shRNA clones (Figure 3.1.11, panel A). Messenger RNA transcript levels of AKR1C3 

were reduced by 4-fold, 5-fold, and 9-fold in shAKR1C3_1, shAKR1C3_2, and 

shAKR1C3_3, respectively (Figure 3.1.11, panel B). Using densitometry analysis of 

Western blots, it was determined that AKR1C3 protein levels were reduced to 30-35% 

that of expression in control cells (Figure 3.1.11, panels C and D).  
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Figure 3.1.11 Characterization of AKR1C3 depletion and generation of stable 
knock-down MDA-MB-231 cells. A. Three separate pGIPZ-based shRNA constructs 

were used to knock down AKR1C3 in MDA-MB-231 cells via lentivirus delivery. All 

three shRNAs targeted the two main functional isoforms of AKR1C3. B. Messenger 

RNA transcript levels were shown to be reduced effectively in all three AKR1C3 

shRNA-bearing cell lines via quantitative RT-PCR. ΔΔCq values are shown normalized to 

control shRNA-bearing cells. N=1, error bars = SEM (4 technical replicates). C. 
AKR1C3 protein levels were shown significantly reduced by Western blot. Protein levels 

were quantified (D.) using densitometry. Individual means are indicated by black dots. 

N=3, error bars = SEM.   
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Under high-glucose (25 mM glucose) media conditions, AKR1C3 knock-down 

significantly increased metformin sensitivity of MDA-MB-231 cells at specific doses, an 

effect that was dependent on the shRNA construct used and the degree of gene knock-

down (Figure 3.1.12, panel A). One shRNA (shAKR1C3_1) resulted in a 25% loss of cell 

viability at 10 mM metformin, a significant increase in sensitivity compared with the 

non-targeting control shRNA (no loss of viability). Cells targeted with the remaining two 

shRNAs, shAKR1C3_2 and shAKR1C3_3, were significantly more sensitive to 25 mM 

metformin compared with control cells, with a near 4-fold increase in metformin 

sensitivity at that dose.       

Under low-glucose (5 mM glucose) conditions, sensitization effects with 

AKR1C3 knock-down were seen (Figure 3.1.12, panel B) like those under high-glucose 

conditions. Depending on the shRNA used, cells became significantly more sensitive to 

metformin at 10 mM, 25 mM, and/or 50 mM doses. The most pronounced effect occurred 

when using shAKR1C3_3, which resulted in an 8-fold increase in metformin sensitivity 

at 25 mM dosing, and a 2-fold increase in sensitivity at 50 mM (Figure 3.1.12, panel B).  

Under glucose-deprived conditions (trace glucose + 4.5 mM galactose), AKR1C3 

knockdown with shAKR1C3_1 had no effect on metformin sensitivity, while 

shAKR1C3_2 and shAKR1C3_3 resulted in the opposite effect as seen under high- and 

low-glucose conditions (Figure 3.1.12, panel C). Cells carrying the shAKR1C3_2 

construct were significantly more resistant to metformin at doses of 2.5 mM, 5 mM, and 

10 mM. Similarly, AKR1C3 knock-down with the shAKR1C3_3 shRNA resulted in 

increased metformin resistance at 2.5 mM, 5 mM, 10 mM, and 25 mM. These effects 
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indicate that the effects of AKR1C3 knock-down on metformin sensitivity in vitro are 

dependent upon glucose availability.  
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Figure 3.1.12 Effects of AKR1C3 depletion on metformin sensitivity under various 
energy conditions. A. Under high-glucose conditions, AKR1C3 knock-down increases 
metformin sensitivity at 10 mM and 25 mM doses, with some variability between the 
shRNA constructs used. B. Under low-glucose conditions, AKR1C3 knock-down further 
sensitizes cells to high doses of metformin (10, 25, and 50 mM), which was largely 
consistent between the three knock-down populations. C. Under no-glucose conditions, 
metformin sensitivity is decreased for multiple doses (2.5-25 mM) in AKR1C3-knock-
down cells carrying shAKR1C3_2 and shAKR1C3_3 constructs. For all experiments, 
cells were treated with indicated doses of metformin for 72 hr and cell viability was 
measured using an alamarBlue assay. Values are given normalized to 0 mM control for 
each cell line. Individual means are indicated by black dots. N=3 biological replicates, 
error bars = SEM. Significance determined using ANOVA with Bonferroni correction.    
* p<0.05, ** p<0.01, *** p<0.005.  

  

 



66 

3.2 AKR1C3 cDNA expression and metformin sensitivity 

3.2.1 Effect of AKR1C3 over-expression on metformin sensitivity in a triple-negative 

breast cancer model 

Analysis of breast cancer gene expression studies from the The Cancer Genome 

Atlas (TCGA) using the cBioPortal platform revealed that AKR1C3 is over-expressed in 

7-11% of basal-like breast cancers, which are enriched in the triple-negative breast cancer 

phenotype (Cerami et al., 2012; Gao et al., 2013). Therefore, we sought to determine if 

increased expression of AKR1C3 might confer resistance to metformin in MDA-MB-231 

triple-negative breast cancer cells. AKR1C3 was over-expressed as a green fluorescent 

protein (GFP)-AKR1C3 fusion peptide through transient transfection with pClover-

AKR1C3 expression vector (Figure 3.2.1, Panels A, B, E). Clover is a monomeric 

version of GFP that is brighter than original green fluorescent protein (Lam et al., 2012),  

allowing for easy tracking of transfected cells by fluorescence microscopy while still 

ensuring proper folding of AKR1C3 protein. Clover expression indicated a high level of 

transfection efficiency (Figure 3.2.1, Panels C and D) with AKR1C3 being expressed 

approximately 49-fold (± 20, SEM) over basal expression in MDA-MB-231 cells.  
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Figure 3.2.1 Characterization of AKR1C3 over-expression and transfection 
efficiency in MDA-MB-231 triple-negative breast cancer cells. Cells were transiently 
transfected with a pClover (EGFP)-AKR1C3 and empty pClover vector via 
electroporation. A. Western blot analysis of pooled cells 48 hours post-transfection 
showed significant AKR1C3 over-expression with Clover-AKR1C3 vector compared to 
control. B. Quantification of Western blots showed an average 49-fold (± 20) up-
regulation of AKR1C3 with Clover-AKR1C3 vector. Individual means are indicated by 
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black dots. N=3, error bars = SEM. Contrast white light (differential interference 

contrast, DIC) and green fluorescent protein (GFP) microscopy of cells transfected with 

Clover-Control (C.) and Clover-AKR1C3 (D.) shows high transfection efficiency. E. 
Immunofluorescence imaging of Clover-Control and Clover-AKR1C3 transfected MDA-

MB-231 cells (GFP-positive, green) shows concentrated expression of AKR1C3 (red) in 

Clover-AKR1C3-bearing cells, but not in Clover-Control cells.  Cells were grown on 

coverslips for 48 hr, fixed with 2% paraformaldehyde, permeabilized with 0.5% Triton-

X, and stained with DAPI (blue), rabbit-anti-AKR1C3 primary antibody, and fluorescent 

goat-anti-rabbit secondary antibody (red).  
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AKR1C3 over-expression significantly altered metformin sensitivity in triple-

negative breast cancer cells in glucose-deprived (0 mM + 4.5 mM galactose) conditions, 

but not under high glucose (25 mM) or low glucose (5 mM) conditions (Figure 3.2.2) at 

the p=0.05 significance level. Under glucose-deprived conditions (Figure 3.2.2, panel C), 

AKR1C3 over-expression made cells highly resistant to 0.5 mM, 1 mM and 2.5 mM 

metformin (normalized cell viability: 1.06 ±  0.07, 1.08 ± 0.07, and 0.93 ± 0.02, 

respectively), compared with control cells which exhibited 18% loss of viability (0.82 ± 

0.09) at 0.5 mM metformin, 24% loss of viability (0.76 ± 0.08) at 1 mM, and 43% loss of 

viability (0.57 ± 0.05) at 2.5 mM metformin. Similar trends were seen at higher 

metformin doses, although they were not found to be statistically significant. These 

results indicate that the effects of AKR1C3 over-expression on metformin sensitivity in 

vitro depend on glucose availability and media conditions.    
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Figure 3.2.2 Effects of AKR1C3 over-expression on metformin sensitivity of triple-
negative breast cancer cells under various glucose conditions. MDA-MB-231 cells 
were transiently transfected with pClover (GFP) and AKR1C3 cDNA-containing 
pClover-AKR1C3 constructs using electroporation. 24 hr post-transfection, cells were 
treated with varying doses of metformin and remaining cell viability was measured after 
72 hr using an alamarBlue assay. Cell viability is normalized to untreated control (0 mM) 
of each experimental group. Under both high glucose (25 mM) and low glucose (5.5 mM) 
conditions, shown in panel A. and B. respectively, AKR1C3 cDNA expression showed 
no significant effect on metformin sensitivity. C. Under glucose deprivation conditions 
(supplemented with 4.5 mM galactose), AKR1C3 over-expression significantly increased 
metformin resistance at 1, 10, and 25 mM, with trends towards significance at all other 
doses. Individual means are indicated by black dots. N=3 for all experiments, error bars = 
SEM. Significance tested using two-way ANOVA with repeated measures and 
Bonferroni correction. * p<0.05, ** p<0.01. 
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3.2.2 Luminal A (ER+/PR+) breast cancer model 

To assess if the effects of AKR1C3 over-expression on metformin sensitivity are 

universal to other subtypes of breast cancer, AKR1C3 protein was also over-expressed in 

luminal A (ER+/PR+) MCF-7 cells. AKR1C3 was over-expressed in these cells by an 

average of 91-fold (± 42, SEM) compared with basal expression in the form of a GFP-

AKR1C3 fusion peptide, produced from transient transfection with pClover-AKR1C3 

construct (Figure 3.2.3, Panels A, B, C).  

   

 

 

 

 

 

 

 

 

 

 



73 

 

Figure 3.2.3 Characterization of AKR1C3 over-expression in MCF-7 luminal A 
breast cancer cells. Cells were transiently transfected with a pClover (EGFP)-AKR1C3 

and empty pClover vector via electroporation. A. Western blot analysis of pooled cells 48 

hr post-transfection showed significant AKR1C3 over-expression with Clover-AKR1C3 

vector compared to control. B. Quantification of Western blots showed an average 91-

fold (± 42) up-regulation of AKR1C3 with Clover-AKR1C3 vector. Individual means are 

indicated by black dots. N=3, error bars = SEM. C. Immunofluorescence imaging of 

Clover-Control and Clover-AKR1C3 transfected MCF-7 cells (GFP-positive, green) 

shows concentrated expression of AKR1C3 (red) in Clover-AKR1C3-bearing cells, but 

not in Clover-Control cells.  Cells were grown on coverslips for 48 hr, fixed with 2% 

paraformaldehyde, permeabilized with 0.5% Triton-X, and stained with DAPI (blue), 

rabbit-anti-AKR1C3 primary antibody, and fluorescent goat-anti-rabbit secondary 

antibody (red).  
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In contrast with MDA-MB-231 models, AKR1C3 over-expression in MCF-7 

luminal A breast cancer cells did not significantly alter metformin sensitivity under either 

high glucose (25 mM) or glucose-deprived (0mM + 4.5 mM galactose) conditions 

(Figure 3.2.4). A trend was observed of a ~20% increase in metformin sensitivity at 2.5 

mM and 5 mM doses under no-glucose conditions (Figure 3.2.4, panel C), but these were 

found to not be significant at p=0.05 significance level.  These results suggest that 

AKR1C3 over-expression affects metformin sensitivity predominantly in TNBC models.  
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Figure 3.2.4 Effects of AKR1C3 over-expression on metformin sensitivity of MCF-7 
luminal A breast cancer cells under various energy conditions. ER+ MCF-7 cells 
were transiently transfected with pClover (EGFP) and AKR1C3 cDNA-containing 
pClover-AKR1C3 constructs using electroporation. 24 hr post-transfection, cells were 
treated with varying doses of metformin and remaining cell viability was measured after 
72 hr using an alamarBlue assay. Cell viability is normalized to untreated control (0 mM) 
of each experimental group. Under both high glucose (25 mM) and no glucose (+ 4.5 mM 
galactose) conditions, shown in panel A. and B. respectively, AKR1C3 cDNA expression 
did not significantly change metformin sensitivity. Individual means are indicated by 
black dots. N=4 and n=3 for high and no glucose experiments, respectively. Error bars = 
SEM. Significance tested at p<0.05 using a two-way ANOVA with repeated measures 
and Bonferroni correction. 
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3.3 AKR1C3 as a metformin response marker  

 Since AKR1C3 was found to be up-regulated with long-term metformin 

conditioning in our MDA-MB-231 cells, I chose to investigate if short-term metformin 

treatment also affected AKR1C3 expression. I observed that acute (72 hr) metformin 

exposure increased AKR1C3 protein levels in MDA-MB-231 cells in a dose-dependent 

manner (Figure 3.3). AKR1C3 was up-regulated 1.3-fold (± 0.3) at 1 mM metformin, 

1.6-fold (± 0.2) at 5 mM, and 4-fold (± 2.5) at 25 mM metformin, indicating that 

AKR1C3 is a metformin response marker in triple-negative breast cancer.  

 

 

Figure 3.3 Evaluating AKR1C3 as an acute metformin response marker in triple-
negative breast cancer cells. MDA-MB-231 cells were treated with indicated doses of 
metformin for 72 hr. A. Immunoblotting of AKR1C3 protein showed up-regulated with 
metformin treatment in a dose-dependent manner. Vinculin was used as a reference for 
total sample protein. B. Levels of AKR1C3 were quantified using densitometry (Image 
Lab), adjusted for background, and normalized to vinculin reference. N=3, error bars = 
SEM.  
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3.4 AKR1C3 as a predictive biomarker 

3.4.1 Clinical data and genomic profiling 

Survival analyses and profiling of AKR1C3 expression in a large cohort of breast 

cancer patients (METABRIC – Curtis et al. 2012, Pereira et al. 2016) with various 

tumour subtypes showed that AKR1C3 transcript levels may help predict survival 

outcome (Figure 3.4.1). The cBioPortal platform was used to create Kaplan-Meyer curves 

(Cerami et al., 2012; Gao et al., 2013). 

Down-regulation of AKR1C3 expression was defined as a mRNA z-score smaller 

than the value that is 1 standard deviation below the mean z-score of the cohort. Cancers 

with down-regulated AKR1C3 expression were associated with a significantly worse 

survival outcome for patients (p=0.0003 – Figure 3.4.1, panel A). The median survival in 

cases of down-regulated AKR1C3 expression was 124.8 months, compared with 163.1 

months for those patients whose cancers were not AKR1C3-down-regulated.   

Conversely, up-regulation of AKR1C3 expression resulted in a significantly better 

survival outcome for breast cancer patients (p=0.0081, Figure 3.4.1, panel B). Up-

regulation was defined as an AKR1C3 mRNA z-score larger than the value that is 0.75 

standard deviations above the mean for the cohort.  Patients with cancers that were up-

regulated for AKR1C3 had a median survival of 185.7 months, whereas patients with no 

up-regulation had a median survival of 148.8 months.  

Collectively, these results indicate that AKR1C3 expression in breast cancer may 

help predict survival outcomes, with high expression being associated with better 

outcomes and low expression being indicative of worse outcomes.  
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Figure 3.4.1 AKR1C3 expression and survival statistics from a breast cancer 
genomics data set. Clinical data and AKR1C3 mRNA expression values were obtained 
from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) 
dataset as published in Nature (Curtis et al., 2012) and Nature Communications (Pereira 
et al., 2016) and analyzed using the cBioPortal platform for Cancer Genomics (Cerami et 
al., 2012; Gao et al., 2013). Analyses included all profiled samples (all breast cancer 
subtypes). A. AKR1C3 down-regulation was assigned as an expression value of 1 
standard deviation (SD) or more below the mean expression of the reference population 
(mRNA z-score). AKR1C3 down-regulation was associated with significantly poorer 
median survival for the breast cancer patients profiled. B. AKR1C3 up-regulation was 
assigned as an expression value of 0.75 standard deviations (SD) or more above the mean 
expression of the reference population (mRNA z-score). AKR1C3 up-regulation was 
associated with significantly better median survival for the breast cancer patients 
assessed.   
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3.4.2 In vitro modeling 
 
 Since AKR1C3 may be a predictive survival prognostic marker in breast cancer, I 

wished to test if basal (pre-metformin) levels of AKR1C3 are also predictive of 

metformin sensitivity. To do this, I profiled a panel of 13 breast cancer cell lines for 

metformin sensitivity (Figure 3.4.2) and basal AKR1C3 protein expression (Figure 

3.4.3). The panel consisted of 11 triple-negative breast cancer cell lines as well as 2 non-

TNBCs (luminal A, ER+/PR+) to test the universality of findings with special emphasis 

on TNBCs.  

It was observed that metformin sensitivity as well as AKR1C3 expression showed 

significant diversity among cell lines tested. Using rank-order (Spearman’s) correlation 

of metformin resistance to AKR1C3 expression, it was shown that basal AKR1C3 levels 

are not strongly associated with metformin sensitivity at 1 mM, 5 mM, 10 mM, or 25 mM 

doses (Figure 3.4.4). An inverse trend (Spearman’s correlation coefficient: -0.43) was 

observed when comparing AKR1C3 levels with cell viability at 25 mM metformin, 

suggesting that high AKR1C3 expression may be associated with metformin sensitivity, 

and low expression may be associated with resistance. However, this trend was not 

statistically significant.  
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Figure 3.4.2 Evaluating metformin sensitivity across a panel of 13 breast cancer cell 
lines of various subtypes. Metformin sensitivity was screened over a panel of 11 triple-

negative breast cancer cell lines of various sub-classifications, as well as 2 non-triple-

negative breast cancer models (as indicated with *), MCF-7 and T47-D (ER+/PR+). Cells 

were treated with indicated dose of metformin under cell line-specific culturing 

conditions (see Methods Table 2.1) for 72 hr. Cell viability was assessed using 

alamarBlue and viability normalized to 0 mM treatment for each group. N=3, error bars = 

SEM.  
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Figure 3.4.3 Characterizing basal AKR1C3 expression across a panel of 13 breast 
cancer cell lines of diverse subtypes.  Basal levels of AKR1C3 protein were determined 

via Western blotting in a panel of 11 triple-negative and 2 non-triple-negative (*, 

ER+/PR+, MCF-7 and T47-D) breast cancer cell lines. Populations were grown under 

cell line-specific culturing conditions (see Methods Table 2.1). AKR1C3 protein levels 

were quantified using densitometry (Image Lab), adjusted for background, and 

normalized to ß-tubulin reference. Rough values were normalized to BT549 (1.0) for 

proportional comparison. N=3 for AKR1C3 quantification.  
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Figure 3.4.4 Rank-order correlation of basal AKR1C3 expression and metformin 
sensitivity in a panel of 13 breast cancer cell lines. The panel contained 11 triple-
negative breast cancer cell lines, as well as 2 non-triple-negative (ER+/PR+) models. Cell 
lines were rank-ordered lowest-to-highest according to their metformin resistance at each 
indicated dose, with 1 being the most sensitive and 13 being the most resistant (Figure 
3.4.2, n=3). Metformin resistance rank was then correlated with basal AKR1C3 protein 
expression, also ranked lowest-to-highest, with 1 being the lowest expression and 13 
being the highest (Figure 3.4.3, n=3). Spearman’s rank-order correlation coefficients 
were calculated and p-values were determined to be >0.05 in all cases – A. 1 mM 
metformin, B. 5 mM metformin, C. 10 mM metformin, D. 25 mM metformin.  
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3.5 Summary 
 
 In this study, 11 novel genes have been implicated in modifying metformin 

response in MDA-MB-231 triple-negative breast cancer cells in vitro: AKR1C3, AUP1, 

CTGF, ENPP4, HMGN5, IGFBP7, MAPRE2, PHGDH, SH3BGRL, SPANXB1, and 

TTN. Most of the metformin response-modifying effects of these genes depended on 

glucose availability. Under high glucose conditions, gene depletion sensitized cells to 

high dose metformin by as much as 53% compared to control, whereas depletion 

increased metformin resistance by as much as 3-fold under glucose-deprived conditions. 

Of these novel modifiers of metformin response, AKR1C3 was the most robust modifier 

of metformin sensitivity in TNBC; knock-down increased metformin sensitivity under 

high energy conditions and increased resistance under glucose-deprived conditions, 

whereas over-expression led to increased resistance exclusively in low-energy culturing 

conditions. The effects of AKR1C3 overexpression on metformin response could not be 

replicated in luminal A breast cancer cells, suggesting AKR1C3 may predominantly play 

a role in triple-negative breast cancer. AKR1C3 was also shown to be a novel metformin 

response marker in vitro and was up-regulated with metformin treatment in a dose-

dependent manner. AKR1C3 was evaluated as a predictive biomarker for metformin 

response in breast cancer - an inverse non-significant trend was found between basal 

AKR1C3 expression and metformin sensitivity at 25 mM. These results suggest that high 

basal AKR1C3 expression may predict sensitivity to metformin, whereas low expression 

may predict resistance, although further investigation is needed to elucidate this trend.    
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Chapter 4: Discussion  
 
4.1 Identifying novel modifiers of metformin response in triple-negative breast 

cancer 

 The re-purposed anti-diabetic drug metformin has been shown to have significant 

anti-cancer properties in vitro and in vivo, and has promising potential as a clinical 

therapeutic for the treatment of breast cancer. One aim of this project was to identify 

novel genes involved in modifying metformin response in breast cancer with specific 

focus on triple-negative breast cancer, an aggressive subtype currently lacking targeted 

therapies. With a better understanding of the mechanistic pathways underlying metformin 

action, we may better address the instances of metformin resistance frequently seen in 

clinical studies.  

 I have characterized 11 novel genes as potential modifiers of metformin response 

in the triple-negative breast cancer model MDA-MB-231. Ten of these genes (AUP1, 

CTGF, ENPP4, HMGN5, IGFBP7, MAPRE2, PHGDH, SH3BGRL, SPANXB1, TTN) 

were evaluated in tandem through shRNA-mediated depletion of expression and showed 

differential effects. The existing knowledge on the function of these genes in cancer is 

limited. Only a few (CTGF, ENPP4, and PHGDH) have been previously connected to 

metformin (Goding, Grobben, & Slegers, 2003; Lu et al., 2015; Wairagu et al., 2015), 

although none have been implicated in direct modification of metformin response in 

cancer models.    

Knock-down of the 10 genes listed above showed trends towards increasing 

metformin sensitivity at high doses (10 mM, 25 mM and/or 50 mM) when cultured in 

high-glucose media. The extent of sensitization under these conditions depended on 
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which gene was being depleted. In some cases, the sensitization was as much as 53% 

increased loss of cell viability at a high dose of metformin compared with control (TTN - 

Figure 3.1.10).  However, some of these sensitization effects were reversed under glucose 

deprivation conditions, and in certain cases gene depletion even appeared to increase 

metformin resistance. As I will discuss below, the phenomenon of differential metformin 

response under varying glucose concentrations is well-characterized.  

It has been previously established that glucose concentrations greatly impact 

metformin sensitivity of in vitro cancer models. Cells can be completely resistant to 

metformin in media with supra-physiological glucose but are significantly sensitized 

when glucose is decreased to plasma-equivalent concentrations (~5 mM) or below, 

especially when an alternative energy source (such as galactose) is provided (Cheng & 

Lanza-Jacoby, 2015; Menendez et al., 2012; Wahdan-Alaswad et al., 2013). This is likely 

due to metformin’s combined impact on oxidative phosphorylation and glycolysis. Since 

metformin uncouples mitochondrial respiration from ATP production (Wheaton et al., 

2014), cells must shift their reliance for energy to glycolysis. Metformin also inhibits 

glycolysis by competing with glucose for the substrate binding site of hexokinase 1 and 2 

(HK 1/2), which are normally required to ‘trap’ glucose in the glycolytic pathway as 

glucose-6-phosphate (Marini et al., 2013; Salani et al., 2013). Under high-glucose 

conditions, I speculate that the abundance of glucose out-competes metformin for the HK 

1/2 binding sites, allowing the cell to overcome metformin-imposed energy deprivation to 

continue fueling cellular functions with the products of glycolysis. This effect would be 

lessened under low-glucose conditions, where the concentrations of glucose are no longer 

sufficient to overcome the anti-glycolytic effects of metformin. Finally, I speculate that 
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metformin’s anti-neoplastic activity is dramatically amplified in no-glucose/ galactose-

supplemented media because of a double insult to glycolysis; in addition to metformin 

inhibiting HK1/2 from binding trace glucose from serum, it is known that galactose must 

be processed into glucose-6-phosphate through an alternative pathway that yields no net 

ATP production from glycolysis (Marroquin et al., 2007). The cell would therefore have 

an increased reliance on oxidative phosphorylation for energy, making it especially 

susceptible to metformin treatment. Overall, these glucose-dependent effects should not 

be disregarded, and should guide further investigation into the mechanistic action of 

metformin in breast cancer. Additional experimental and statistical limitations of this aim 

of the study will be discussed in section 4.4.1 (Limitations of experimental replicates and 

statistical significance), with additional detail on proposed future experiments outlined in 

section 4.5 (Future directions).  

 The gene AKR1C3 was investigated separately and presented the most robust 

evidence of being a genetic modifier of metformin response, indicating it may be directly 

involved in metformin’s mechanism of action in triple-negative breast cancer. It was 

shown that AKR1C3 knock-down significantly increased metformin sensitivity with 

doses as low as 10 mM and as high as 50 mM depending on the quantity of glucose 

present in the culturing media (Figure 3.1.11). The most profound effect was under low-

glucose (5 mM glucose) conditions, where AKR1C3 depletion resulted in an 8-fold 

increase in metformin sensitivity at 25 mM. As was observed with some of the other 

genes evaluated in this study, the sensitization effect of AKR1C3 knock-down was 

reversed under glucose-deprivation conditions, where AKR1C3 depletion made MDA-

MB-231 cells more resistant to metformin (Figure 3.1.11, panel C).  
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Unexpectedly, this effect was mirrored in subsequent over-expression studies, 

where ectopic expression of AKR1C3 also significantly increased metformin resistance 

under glucose-deprived conditions (Figure 3.2.2). However, there are limitations to these 

over-expression studies that beg caution in their interpretation. First, qualitative 

observations showed an initial die-back of 25-30% of Clover-AKR1C3-expressing cells 

during the 24 hr post-transfection recovery period (data not shown); this phenomenon 

was not seen in Clover-Control cells, and lowering total Clover plasmid concentrations 

with or without a non-expression vector (to augment total DNA concentration) 

significantly sacrificed transfection efficiency while still inducing death in about 20-30% 

of GFP-positive (Clover-AKR1C3-transfected) cells. Secondly, the resistance-inducing 

effect of AKR1C3 over-expression was specific to the MDA-MB-231 TNBC cell line 

and was not replicated in luminal A (ER+/PR+) MCF-7 cells (Figure 3.2.4). These 

findings indicate that the role of AKR1C3 in modifying metformin response may be 

specific to TNBC, underlining that metformin has subtype-specific anti-cancer effects. 

Although the precise pathways involved in how AKR1C3 expression modifies metformin 

sensitivity are yet to be elucidated, I speculate on the mechanistic connection between 

AKR1C3 and metformin in section 4.2.   

 
 
4.2 Characterizing AKR1C3 as a novel metformin response marker in vitro  

A secondary aim of this study was to evaluate genes identified as putative 

modifiers of metformin sensitivity for their potential applications as metformin response 

biomarkers. AKR1C3 was shown to be up-regulated with acute (72 hr) metformin 

treatment in a dose-dependent manner in MDA-MB-231 triple-negative breast cancer 
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cells (Figure 3.3), confirming it as a metformin response marker in vitro. Given that both 

AKR1C3 depletion and over-expression changed metformin sensitivity in TNBC, the 

cellular up-regulation of AKR1C3 with metformin treatment likely has a direct 

mechanistic impact on pathways that alter metformin response. Whether this up-

regulation is promoting or hindering cell survival is not yet clear.  

 One possible hypothesis for these collective observations is that AKR1C3 is being 

up-regulated by metformin-induced oxidative stress. As discussed in section 4.1, 

metformin uncouples mitochondrial respiration from ATP production through inhibition 

of complex I and increased proton leak (Birsoy et al., 2014; Salani et al., 2013). Thus, 

endogenous reactive oxygen species (ROS) continue to be produced through 

mitochondrial respiration although no ATP is being generated. Furthermore, cells are 

prompted to supplement their energy demands through glycolysis (Cantrell et al., 2010), 

causing a rapid depletion of glucose and further generation of endogenous oxidative 

radicals (Song & Lee, 2003). The accumulation of oxidative stress causes the dissociation 

of Kelch-like ECH-associated protein (KEAP1) from Nrf2 to allow its translocation to 

the nucleus to up-regulate genes involved in the anti-oxidant response element (ARE)-

directed detoxification process (Onken & Driscoll, 2010; Truong Do et al., 2014). 

AKR1C3 has been shown to be one of these Nrf2-regulated anti-oxidant enzymes (Chen 

et al., 2017). AKR1C3 is known to reduce reactive aldehyde products of lipid 

peroxidation, such as 4-hydroxynonenal (4-HNE), into less-reactive alcohols (Matsunaga 

et al., 2016) in addition to decreasing levels of reactive oxygen species in cancer cells 

through still unknown mechanisms (Chen et al., 2017; Xiong et al., 2014).  
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The up-regulation of AKR1C3 could therefore be cyto-protective to a certain 

threshold level, supporting the observations that AKR1C3 is up-regulated in a dose-

dependent manner in MDA-MB-231 cells, that knock-down under high- and low-glucose 

conditions sensitizes cells further to metformin, and that over-expression via Clover-

AKR1C3 increases metformin resistance. Additionally, pilot experiments (data not 

shown) indicated that breast cancer cell lines with low basal AKR1C3 (Figure 3.4.3) 

were able to up-regulate AKR1C3 with metformin (similar to MDA-MB-231 cells) and 

simultaneously displayed comparatively higher metformin resistance.  

Beyond a certain threshold of expression, I speculate that AKR1C3 may be 

harmful to the cell. This may be due to its other cellular functions in hormone 

metabolism, especially in synthesizing 5-α pregnanes and prostaglandins that are 

involved in proliferative and apoptotic signalling in breast cancer (Blanco Jr et al., 2017; 

Chewchuk, Guo, & Parissenti, 2017; Penning et al., 2000). This threshold-effect 

hypothesis would be consistent with observations that 20-30% of Clover-AKR1C3-

transfected cells die within 24 hr (data not shown), indicating they may already have 

exceeded a manageable level of AKR1C3 expression and leave only cells with below-

threshold/ cyto-protective quantities of AKR1C3. Additionally, I observed in pilot 

experiments that TNBC cell lines with high endogenous AKR1C3 expression (Figure 

3.4.3) were the most sensitive to metformin treatment, and failed to up-regulate AKR1C3 

beyond basal levels when exposed to metformin (data not shown). These observations 

may indicate that these cells were already near a threshold of AKR1C3 expression, and 

that further up-regulation with metformin resulted in pro-death signalling.  
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It is also important to note that cells under glucose deprivation already generate 

significant quantities of endogenous reactive oxygen species (Song & Lee, 2003). I 

speculate that this may be due to increased reliance on oxidative phosphorylation when 

cells are supplemented with galactose, which yields no net ATP production via glycolysis 

(Marroquin et al., 2007).  Since metformin also uncouples mitochondrial respiration from 

ATP production through proton leak and complex I inhibition, the cell may be increasing 

levels of respiration to make up for reduced ATP output, thus augmenting production of 

endogenous ROS. Under such energy-deprived conditions, increased oxidative stress 

would likely signal through Nrf2 to increase basal levels of cyto-protective AKR1C3. 

Metformin treatment may act as a second metabolic and oxidative insult to the stress 

already imposed by glucose starvation, which may push AKR1C3 over the threshold to 

induce the significant cell death seen (Figure 3.1.12). Cells with AKR1C3-depletion 

would thus be kept below the threshold of expression and would be expected to be more 

resistant to metformin under glucose-deprived conditions, as was seen in Figure 3.1.12, 

panel C. Future studies to investigate this hypothesis further are outlined in section 4.5.  

Importantly, one must also consider the implications of AKR1C3 up-regulation if 

metformin is to be combined with other therapies for treating cancer. For example, 

AKR1C3 is known to reduce doxorubicin into its inactive metabolite, doxorubicinol 

(Heibein et al., 2012). Metformin and doxorubicin have been proposed as a combination 

therapy for breast cancer; if metformin up-regulates AKR1C3, it may directly oppose 

doxorubicin action and render treatment ineffective.   
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4.3 Evaluation of AKR1C3 as a predictive biomarker to metformin response in 

breast cancer 

 
The final major aim of this study was to evaluate candidate genes for their use as 

predictive biomarkers for metformin sensitivity. In a panel of 13 breast cancer cell lines, 

a trend was observed of an inverse correlation between basal AKR1C3 expression and 

metformin sensitivity at high dosing (Figure 3.4.4). However, this trend was found to not 

be statistically significant when considering the entire data set. Notably, an inverse 

correlation between basal expression and metformin resistance would fit into the 

AKR1C3 expression-threshold model outlined in section 4.3. Cells that express low 

AKR1C3 would be able to upregulate it to cyto-protective levels with metformin 

treatment, making them more resistant, while cells that already have high AKR1C3 levels 

would be pushed over the up-regulation threshold to induce loss of cell viability. Pilot 

studies (data not shown) appear to support this hypothesis, indicating that further 

investigation is merited, as outlined in section 4.5.  

 
 
4.4 Limitations and pitfalls 

4.4.1 Limitations of experimental replicates and statistical significance 

In all, 11 genes were evaluated for their effect on metformin sensitivity through 

shRNA-mediated depletion in MDA-MB-231 cells. Except for AKR1C3, for which 3 

biological replicates were completed, only one replicate experiment was conducted for 

each of these genes. This represents a major statistical weakness in the interpretation of 

observed trends that suggest these genes may be modifiers of metformin response. 

Statistical testing could not be done, and the data was confirmed to not be normally 
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distributed at 25 mM metformin dosing in high-glucose conditions, or for most doses in 

glucose deprivation conditions (Shapiro-Wilk Normality test, 1965). Findings should 

therefore be interpreted with caution, and should merely be used to guide future 

experiments as outlined in section 4.5.  

 

4.4.2 Limitations of in vitro modeling  

 Since the experiments outlined in this study were completed exclusively in vitro, 

it cannot be speculated how findings might translate into in vivo and pre-clinical settings. 

As outlined in detail in Chapter 1: section 1.2.5, in vitro models of breast cancer fail to 

account for various factors affecting tumour growth and metformin response. These 

elements include: in vivo homeostasis of glucose, cytokines, and growth factors, the 

biological impacts of a 2-dimensional versus 3-dimensional growth matrices (Kenny et 

al., 2007; Lee et al., 2007), accessory cells in the tumour microenvironment (Vargo-

Gogola & Rosen, 2007), and a vast array of immunological considerations (Fantozzi & 

Christofori, 2006). The studies described here thus only represent a first step in the bigger 

scope of validating candidate genes as clinical metformin biomarkers or putative genetic 

modifiers of metformin sensitivity.  

  
4.4.3 Limitations of physiological relevance of metformin and glucose concentrations 

 In vitro studies of metformin in cancer have been repeatedly scrutinized for their 

use of supra-physiological metformin doses that could never be attainable in a patient 

(Cantrell et al., 2010; Quinn et al., 2013; Whitburn et al., 2017). The exact definition of 

what is ‘supra’-physiological depends on the hypothesized method of clinical 

administration. Daily oral dosing in diabetics results in very low plasma concentrations, 
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approximately 10-20 µM (Dowling et al., 2016, 2012; Erices et al., 2013; Owen, Doran, 

& Halestrap, 2000). However, intraperitoneal injections of metformin in mice have been 

shown to increase plasma concentrations to 145 µM without major toxicity (Dowling et 

al., 2016), and metformin has been predicted to accumulate up to 1000-fold in the 

mitochondrial matrix (Owen et al., 2000). Interestingly, only about 10-15% of the in vitro 

dose of metformin actually enters cancer cells (Dowling et al., 2016). An in vitro 

concentration of up to 1.4 mM may thus be considered physiologically-relevant with 

regards to an intra-peritoneal injection model. Even though intra-tumoural injections may 

bring the physiological concentration even higher, the elevated doses of metformin used 

in this study still present a significant limitation. It should be noted that foundational 

studies on the mechanism of action of metformin conducted under supra-physiological 

conditions still have value; many of the pertinent signalling pathways appear to be 

amplified with higher metformin dosing, thus making them easier to detect and study for 

clinical relevance (Oliveras-Ferraros et al., 2014).  

The effects of metformin on cancer in vitro are also strongly dependent on 

glucose concentrations (Menendez et al., 2012; Song & Lee, 2003; Wahdan-Alaswad et 

al., 2013), indicating that in vitro experiments should be performed in the most 

physiologically-relevant energy conditions possible to stand the best chance at in vivo 

translation.  It is worth noting that even though many in vitro studies define physiological 

glucose to be ~5 mM, in-depth metabolomics analyses in colon and stomach cancers have 

shown that intra-tumoural glucose concentrations may in fact be as low as 130-430 µM  

(Hirayama et al., 2009).  The no-glucose media in my experiments contained 10% normal 

(rather than dialyzed) fetal bovine serum (FBS), which contains an average of 0.85-1.5 
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mg/mL glucose (Thermo Fisher). Therefore, the final glucose concentration of my 

‘glucose-deprived’ media (476-840 µM) may actually be close to the real intra-tumoural, 

physiological range. Nonetheless, FBS-supplemented media is also very high in growth-

factors and other supra-physiological components, indicating that the conditions of my in 

vitro experiments may not mimic in vivo environments for metformin action. It should 

also be noted that the timespan in which experiments were conducted may have caused 

depletion of glucose in low-glucose (5 mM) media to the point of glucose deprivation, 

and may have reduced the trace glucose in galactose-supplemented media down to zero. 

Most experiments in this study were conducted over a 72 hr period. Using data from 

numerous sources outlining glucose consumption rates, I have estimated that the volume 

of low-glucose media added to cultures was exactly sufficient to sustain cellular glucose 

consumption for 72 hr, while high-glucose media provided 5x excess glucose. It would 

be advisable to carefully monitor glucose concentrations over the experimental time-

course moving forward to control for the confounding variable of fluctuating energy 

availability, especially when attempting to make judgements on what is the most relevant 

condition to mimic in vivo glucose homeostasis.   

 
4.5 Future directions 

4.5.1 Further evaluation of putative modifiers of metformin response 

 Further studies should be performed to confirm the roles of the candidate genes 

outlined in 4.1 in modifying metformin sensitivity. First, more experimental replicates 

must be completed to confirm the statistical significance of the glucose-related effects 

seen with depletion of AUP1, CTGF, ENPP4, HMGN5, IGFBP7, MAPRE2, PHGDH, 

SH3BGRL, SPANXB1, and TTN in MDA-MB-231 cells. Given that depletion of these 
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genes may sensitize cells to metformin under certain conditions, it would be 

advantageous to evaluate if they can be targeted as resistance markers clinically through 

chemical inhibition. It would also be advisable to test for the effects of over-expression of 

these candidate genes in MDA-MB-231 cells, as was done for AKR1C3, since it may 

help further elucidate their functional significance in conferring metformin resistance or 

sensitivity in target cells.  

Secondly, it would be beneficial to test the universality of putative modifiers of 

metformin response by replicating all depletion and over-expression experiments in other 

triple-negative breast cancer cell lines, as well as breast cancers of other subtypes, such as 

luminal A, luminal B, and HER2-enriched. Additionally, it would be advisable to 

evaluate the effects of gene depletion and over-expression on non-cancerous mammary 

epithelial models, such as MCF10A cells, to determine if these pathways are unique to 

cancer.   

Thirdly, an important step in validating the mechanistic roles of these genes in 

modulating metformin sensitivity is to test the effects of depletion or over-expression in 

vivo, most likely through xenotransplantation studies in mice and/or zebrafish. This 

would possibly be the most beneficial study to evaluate whether these genes are directly 

involved in the mechanism of action of metformin in cancer. In vivo models would 

account for physiologically-relevant glucose and growth-factor concentrations that were 

not represented in our in vitro studies, and would provide a 3-dimensional framework for 

tumour growth and microenvironmental interactions.  

Lastly, it would be favourable to also evaluate the genes encoding the most down-

regulated proteins in the Met-231 proteomics analysis (data not shown), as these may 
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additionally be expected to modulate metformin sensitivity in triple-negative breast 

cancer models. It is important to note that no investigation was done to determine if the 

up- and down-regulated proteins in the proteomics data set were functionally linked 

through common pathways. This may be a valuable avenue for further investigation, as is 

elucidated with speculation in section 4.5.3 on a common signalling axis dependent on 

Nrf2.   

 
4.5.2 Validation of AKR1C3 as a metformin response marker 

 Given that AKR1C3 was confirmed as a metformin response marker in MDA-

MB-231 cells, it should be assessed for a similar response in other triple-negative breast 

cancer cells, as well as in other breast cancer subtypes such as luminal A, luminal B, or 

HER2-enriched.  Such studies would determine whether AKR1C3 upregulation in 

response to metformin treatment is a universal phenomenon or unique to the MDA-MB-

231 cell model.  One could also use excised patient-derived tumours and treat these with 

metformin ex vivo to assess effects on AKR1C3 expression.  

Regardless of the model, it is also important to assess how long AKR1C3 remains 

up-regulated after metformin exposure. Time-course experiments at both the transcript 

and protein level would also help elucidate any cycles in expressional regulation of 

AKR1C3, which would be an essential consideration if AKR1C3 is to be used clinically 

as a biomarker to monitor metformin response. Given AKR1C3’s role in reducing 

doxorubicin into its inactive metabolite, it should also be investigated if AKR1C3 

remains up-regulated in a cancer upon cessation of metformin treatment. If this is the 

case, metformin-induced up-regulation of AKR1C3 may interfere with the anti-neoplastic 

activity of doxorubicin in future anti-cancer therapy. 
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Most importantly, AKR1C3’s role as a metformin response marker must be 

confirmed in vivo. An important consideration is the contrast between physiologically-

attainable concentrations of metformin versus the supra-physiological dose used in my in 

vitro studies. Considering that a modest increase in AKR1C3 expression was seen in 

doses as low as 1 mM, there is nonetheless a realistic expectation that AKR1C3 may 

respond to metformin therapy in vivo. One excellent method for confirming in vivo 

relevance would be to use paired core tumour biopsies from breast cancer patients, before 

and during neoadjuvant metformin therapy (Niraula et al., 2012), to monitor changes in 

AKR1C3 expression.  

  

4.5.3 Mechanistic studies of AKR1C3 and metformin response 

Focused studies should be conducted to determine the exact mechanism(s) 

underlying metformin’s modulation of AKR1C3 expression. If metformin-induced 

AKR1C3 upregulation is hypothesized to be due to increased levels of oxidative stress, 

future experiments must include the addition of oxidative radicals (hydroxides, peroxides, 

or superoxides) or reactive aldehydes (4-HNE) to cell culture to monitor AKR1C3 

expression levels. Conversely, the addition of anti-oxidants (such as N-acetyl cysteine 

[NAC] or glutathione) to cells undergoing metformin treatment may be expected to 

attenuate metformin cytotoxicity as well as AKR1C3 up-regulation. To complement 

these studies, a reliable oxidative stress-detection assay (such as CellROX from Thermo 

Fisher) should be adapted to these experiments to monitor changing levels of ROS and 

reactive aldehydes. 
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An accurate time-coursing may also be able to tease apart the sequence of 

important events regarding metformin mechanism, especially to elucidate if AKR1C3 

responds to oxidative stress, and if oxidative stress is changed by AKR1C3. This 

approach may also assist in evaluating the threshold hypothesis of AKR1C3 expression. 

If the hypothesis is true, one would expect to see AKR1C3 expression increase to a 

certain level, upon which the cell begins to display characteristics of cell cycle arrest or 

early apoptosis. Inducible models of AKR1C3 expression (such as a Tet-inducible vector) 

may be beneficial to help titrate AKR1C3 levels, whereas fluorescence microscopy, 

fluorescence-activated cell sorting (FACS) for early apoptosis markers (annexin V), or 

the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay would 

help elucidate impacts on cell viability as AKR1C3 levels fluctuate.  

Additionally, since AKR1C3 up-regulation in response to metformin was 

hypothesized to occur in a Nrf2-dependent manner, it would be highly beneficial to 

evaluate the potential mechanistic connection between metformin, oxidative stress, Nrf2, 

and Nrf2-regulated genes. Notably, AKR1C3 was not the only Nrf2-regulated gene to be 

identified in our MDA-MB-231 proteomics study. L-serine is implicated in regulating 

redox status in the cell, and it is thought that PHGDH is regulated by Nrf2 as part of this 

process (DeNicola et al., 2015).  CTGF, IGFBP7, and TTN expression have also been 

previously associated with changes in Nrf2 activity, although their mechanistic 

connections have not yet been elucidated (Hasselbalch et al., 2014; Kalash et al., 2014). 

Notably, sequestosome 1 (SQSTM1/ p62), which was one of the most down-regulated 

markers in our proteomics study, is involved in a mechanistic feedback loop with Nrf2 to 

regulate its dissociation from KEAP1 to promote transcription of anti-oxidant response 



100 

pathway genes (Jain et al., 2010). Given these potential connections between Nrf2 and 

metformin response genes, I speculate that more investigation is merited into a common 

Nrf2-dependent signalling axis to control metformin-induced oxidative stress in MDA-

MB-231 cells. It would be beneficial to investigate the impact of Nrf2 knock-down on the 

expression of candidate metformin response genes identified in our study, with special 

focus on changes in metformin sensitivity or intracellular concentrations of ROS. 

Additionally, fluorescently-tagged endogenous Nrf2 would allow for visualization of 

Nrf2 nuclear translocation in response to metformin to help confirm the hypothesis of a 

mechanistic link. 

4.5.4 Further evaluation of AKR1C3 as a predictive biomarker in breast cancer 

Given this study’s findings that AKR1C3 expression modulates metformin 

sensitivity, it may be worth re-examining AKR1C3 as a predictive biomarker under more 

controlled experimental conditions. Specifically, all cell lines should be evaluated for 

both metformin sensitivity and basal AKR1C3 expression while cultured in identical 

media conditions – these should preferably be low-glucose and low-serum, such as 

minimal essential media (MEM), to maintain physiological relevance. It would also be 

highly beneficial to expand the number of cell lines profiled to increase statistical power, 

as well as to control for known confounding variables that may affect metformin activity 

in cells. These could include the expression levels of genes like organic cation 

transporters (OCTs), which are responsible for transporting metformin across the cellular 

membrane and may impact how much metformin is entering the cell (Dowling et al., 

2016; Wang et al., 2002). An alternative method to control for differences in metformin 

transport is to measure intracellular metformin concentrations with a cell number-
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controlled mass spectrometry approach, as outlined in Dowling et al. (2016). This would 

be a highly favourable study as it is not yet clear exactly which OCTs are involved in 

shuttling metformin into breast cancer cells, representing an unknown that may confound 

results.  

The same logic would also apply if using patient-derived tumour samples to test 

the clinical relevance of AKR1C3 as a predictive biomarker. Either of two approaches 

could be utilized: 1) using samples initially collected from metformin non-users for ex 

vivo culturing or xenotransplantation studies evaluating metformin neoadjuvant therapy 

without patient participation, or 2) collecting tumour biopsies from patients before 

undergoing direct metformin neoadjuvant therapy to determine if clinical outcome 

correlates with basal AKR1C3 expression. The latter allows for more robust findings, as 

treatment conditions can be better controlled and randomized.  

 

4.6 Conclusions 

Metformin exerts broad anti-neoplastic activity on in vitro models of triple-

negative breast cancer in a glucose-dependent manner. The mechanism of action behind 

these observations is highly complex. This study has identified 11 novel putative 

modifiers of metformin response in MDA-MB-231 TNBC cells: AKR1C3, AUP1, 

CTGF, ENPP4, HMGN5, IGFBP7, MAPRE2, PHGDH, SH3BGRL, SPANXB1, and 

TTN. AKR1C3 has also been identified as a novel metformin response marker in triple-

negative breast cancer. AKR1C3 is up-regulated in a dose-dependent manner, which may 

be due to increased levels of metformin-induced oxidative stress. A trend was also 

observed that suggests AKR1C3 may have value as a predictive biomarker for metformin 
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response in breast cancer. Overall, much further investigation is needed to validate these 

findings in vivo, and to help further elucidate the molecular pathways connecting the 

genes profiled in this study. The findings presented in this thesis contribute to the 

foundational knowledge of metformin mechanism of action in triple-negative breast 

cancer, and will hopefully be a first step to help optimize metformin anti-cancer therapy 

for clinical use.   
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Appendix A: AlamarBlue cell viability assay 

 AlamarBlue (resazurin) is a cell-permeable compound that functions as a 

fluorogenic redox indicator for growing cells, thus making it ideal to measure cellular 

metabolic activity as a proxy for cell viability (Nakayama et al., 1997; Nociari et al., 

1998). Resazurin is non-fluorescent blue dye that is converted into the highly fluorogenic 

pink compound resorufin by metabolic enzymes in viable cells (Figure Appendix A). The 

assay is optimized for use in high-throughput drug screening in 96-well plates, and can be 

easily read using a plate reader set to 560 nm excitation and 590 nm emission 

wavelengths.   

 

Figure Appendix A. The conversion of alamarBlue (resazurin) into the highly 

fluorogenic pink compound resorufin can be used as a reliable measure of cell 

viability.  

 

AlamarBlue is considered a favourable alternative to the 3-[4-5-Dimethylthiazol-

2-yl]-2-5-diphenyl bromide tetrazolium bromide (MTT) cytotoxicity assay since it is both 

simpler to use and demonstrates increased sensitivity due to fluorogenic, rather than 

colorimetric, detection (Hamid et al., 2004; Nociari et al., 1998).  Despite metformin’s 

activity on mitochondrial function (possibly impacting metabolic enzymes responsible 

for converted resazurin to resorufin), alamarBlue assays have been validated for use in 
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metformin sensitivity screening in previous studies (Klubo-Gwiezdzinska et al., 2012; 

Zakikhani et al., 2006). The removal of metformin-containing media before addition of 

alamarBlue reagent further decreases the chance of metabolic interference causing false 

positive or false negative results.   

  


