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Abstract

Recent progress in laser science has led to the development of ultrashort pulses, which

have a broad spectral bandwidth and high peak intensities. When these pulses interact with

nonlinear plasmonic materials, the combination of high peak powers and large bandwidth

opens up new possibilities of novel nonlinear spectral effects and potential applications.

In this dissertation, we study the nonlinear optical effects of generating second-order

electromagnetic fields in reflection from a conducting thin film close to surface plasmon

resonance using an ultrashort polychromatic light source. Suitable and realistic femtosec-

ond polychromatic incident sources were formulated for these studies, and the nonlinear

fields generated from these sources are explored. The potential of using such a system as a

nonlinear refractive index sensor was also investigated leading to the following results.

1- It was demonstrated for the first time, to the best of our knowledge, the generation

of plasmon enhanced sum- and difference-frequency waves from the surface of a metal

thin film using a single polychromatic source. We used ultrashort femtosecond Gaussian

and dual-wavelength Gaussian pulses to generate sum- and difference-frequency waves,

respectively. Nonlinear waves in the visible and mid infra-red range were generated with a

very strong enhancement of the nonlinear waves close to surface plasmon resonance of the

incident light source.

2- Spectral shifts and switches in the nonlinear spectra reflected from a metal film, were

observed close to surface plasmon resonance. We also demonstrated a strong correlation

between these spectral effects and properties of the incident wave such as the pulse dura-

tion, with stronger effects observed for shorter pulses. Finally, we demonstrated a strong

dependence of the reflected nonlinear spectral peak position on the material properties of

the dielectric material surrounding the metal film.

3- A simple, robust and high sensitivity refractive index sensor was proposed and inves-

tigated, based on the second-order nonlinear processes of sum- and difference-frequency

generation. The calculated sensor performance parameters showed very high sensitivity

and figure of merit values with the ability to operate over a wide wavelength range. We

demonstrated a spectral sensitivity at mid-infrared wavelengths, that was two orders of

magnitude higher than current values available in the literature.

4- Successful estimation of the relative strengths of second-harmonic generation, re-

flected from a large variety of conducting thin films using an infrared femtosecond laser

source. The films were sputtered on a glass substrate with thickness of 50nm and 100

nm. We also showed that the second-harmonic generation intensities from tungsten and

antimony were comparable to that of silver and gold.
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Chapter 1

Introduction

1.1 Preface

In this thesis, we focus on the nonlinear interaction of polychromatic light within a thin

metal film deposited on a glass prism in the Kretschmann geometry and its application as a

refractive index sensor. This chapter starts with an introduction to the general theme of our

thesis. Then, thesis objectives, contributions, and organization are presented.

1.2 Thesis Theme

The invention of the first laser in 1960 by Maiman [4] opened up new areas of research

and applications. One such area was the field of nonlinear optics, which was the first and

largest field to benefit from the invention of the laser [5]. The first experimental observation

of second-harmonic generation (SHG) and sum-frequency generation (SFG) by Franken et

al [6] in quartz heralded a period of rapid development in the field of nonlinear optics.

Early experiments in nonlinear optics were based on the bulk nonlinearity of dielectric

crystals [7–10]. The theory of the generation of harmonic light at the boundary of a non-

linear dielectric medium was subsequently developed [11] and experimentally observed

in reflection from non-centrosymmetric semiconductor interfaces [12]. Further studies in

surface nonlinearities led to the first observation of SHG from the surface of a conducting

centrosymmetric material [13], with the lack of symmetry at the surface creating a non-

linear surface susceptibility. This surface nonlinearity accounts for the generated second

harmonic field, since most centrosymmetric materials have a negligible bulk nonlinearity.

Over the years since the first observation of SHG from metal surfaces, very little was

done in the field of surface nonlinearities in metals and the experiments during this time

were geared towards proving theoretical predictions of SHG rather than exploring the po-

tential applications of this surface nonlinearity [5]. This all changed with new develop-

ments in the field of surface plasma waves, which were first theoretically analyzed by

1
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Ritchie in 1957 [14] and latter experimentally excited by Otto [15] and Kretschmann [16].

The propagation of electromagnetic waves at the surface of conducting media had been

studied before as early as the beginning of the 20th century by Zeneck [17] and Sommer-

feld [18] in the framework of the interaction of radio waves with the Earth. The benefits of

combining the fields of surface harmonic generation and surface plasmons (SP) was first

demonstrated by Simon et al [19], where they observed an enhancement of the optical SHG

field reflected from a silver surface due to the excitation of surface plasmons. Another effect

that also helped attract renewed interest to this field was the discovery of surface-enhanced

Raman scattering (SERS) in 1974 by Fleishman et al. [20], who demonstrated a six order-

of-magnitude increase in the Raman output from molecular adsorbates on a roughened

silver surface. This ushered in the field of nonlinear plasmonics. Since then, there has

been a lot of fundamental research in this field directed towards generation, modification

and enhancement of harmonic frequencies [21–26]. The field of nonlinear plasmonics has

dedicated the bulk of its research to the study of second-order nonlinear effects such as

SHG, SFG and difference-frequency generation (DFG). This is primarily due to the fact

that it is easier to measure them experimentally compared to higher order nonlinear effects

such as third harmonic generation (THG), whereby increasing the incident source inten-

sity to compensate for the small THG susceptibilities can lead to material damage. The

ability to discriminate the bulk from the surface contribution to the second-order nonlin-

ear field generated from most metals [24, 27] also makes these effects desirable. These

second-order reflected fields have found a wide range of applications such as nonlinear

spectroscopy [28–32], microscopy [33–36], sensing [37–41], nonlinear optical frequency

conversion processes [42–44] development of coherent light sources [45–49] and surface

studies [50–52]. A great portion of these applications are based on nano-plasmonic struc-

tures, which have become increasingly easy to fabricate, synthesize and manipulate, thanks

to rapid developments in the field of nano-fabrication [53].

Most of the applications mentioned above are based on quasi-monochromatic incident

light sources with very narrow bandwidths, where there is negligible interaction between

different frequency components within the bandwidth of the incident fundamental wave

(FW). Applications such as sum- and difference-frequency spectroscopy [54, 55] and gen-

eration of mid-infrared ultra short pulses [56, 57] involves frequency mixing of two dis-

tinct monochromatic laser sources. However, with recent developments of ultrashort laser
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pulses [58, 59], we have input pulses with bandwidths spanning over a wide frequency

range making them polychromatic. There is a possibility of frequency components within

the bandwidth of the polychromatic source to interact nonlinearly in very interesting ways

close to plasmon resonance. To the best of our knowledge, there is very little research done

on plasmon assisted nonlinear effects in metal thin films using polychromatic light sources,

making it an important area to explore.

1.3 Thesis Objectives

The main goal of this body of research is to explore the optical effects of generating second-

order optical signals in reflection from a metal thin film close to SP resonance using a

polychromatic light source and the potential applications of these effects. We attain this

objective by exploring in detail the topics below.

1. We plan to study the generation of sum-frequency and difference-frequency waves

using the Kretschmann configuration and a single polychromatic incident light source.

Both nonlinear waves are usually generated using two distinct quasi-monochromatic sources.

We aim to use a single polychromatic source to achieve this through the surface nonlinear-

ity of the metal film.

2. We aim to explore the spectral effects in the generated nonlinear fields and the

dependence of these effects on the incident pulse properties and material parameters. We

use femtosecond pulses as our incident light source, with the pulse duration determining

the bandwidth of the pulse as well as the range of frequencies within the bandwidth. Thus,

we expect the incident pulse duration to be an important variable in our nonlinear studies.

3. We intend to investigate the potential use of these reflected nonlinear fields to design

a robust and high sensitivity refractive index sensor. Using the Kretschmann geometry for

illumination, we expect the nonlinear signal to be affected by the refractive index of the

material surrounding the thin film. We hope to exploit this for refractive index sensing

applications.

4. We explore the SHG of a variety of conducting thin films, to determine their suitabil-

ity in sensor applications. Since experimental data for nonlinear parameters of metal thin

films are difficult to come by, we expect to gain insight into the relative intensity of non-

linear signals reflected from different thin films, by investigating the SHG signal reflected

from these films at normal incidence.
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1.4 Thesis Contribution

The set objectives in this study were all met with the results published as journal papers.

The journal papers have been included in the thesis as chapters. My contributions are

summarized below,

1. We assisted in developing the theory of reflected SFG from a gold thin film on a glass

prism in the Kretschmann configuration using a polychromatic source after investigating

reflected SHG from the same geometry [60].

2. Developed the theory and simulated the generation of difference-frequency light

through reflection from a gold film in the Kretschmann configuration. Specifically, we

demonstrated the generation of MIR wave using an incident ultrashort dual-wavelength

gaussian pulse at optical frequencies. There was a very strong enhancement of the difference-

frequency wave close to the surface plasmon resonance (SPR) of the incident light source

[61].

3. Demonstrated spectral shifts and switches in the reflected difference-frequency wave

close to plasmon resonance and was able to correlate this effects to the properties of the

incident FW such as the pulse duration, with stronger effects for shorter pulses. We also

demonstrated a strong dependence of the reflected nonlinear spectral peak position to the

material properties of the dielectric material surrounding the metal film [61].

4. Proposed a simple yet robust refractive index sensor, based on the second-order

processes of sum- and difference-frequency generation. The calculated sensor performance

parameters showed very high sensitivity and figure of merit (FOM) values, coupled with

its ability to operate over a wide wavelength range [62].

5. Finally we successfully estimated the relative strengths of SHG waves, reflected

from a large variety of conducting thin films using an infrared femtosecond laser source.

Information gathered from this study can be used to determine suitable conducting thin

films for our proposed nonlinear plasmonic sensor [63].

1.5 Thesis Organization

This thesis is in a paper-based format. We start with a brief introduction of the scope of

the thesis, followed by a presentation of the key theoretical concepts used in our study. We

then include the published journal articles and present concluding remarks at the end.
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Chapter 1 presents the general theme, objectives and contribution of the thesis. The

remainder of the thesis is organized as follows.

Chapter 2 covers the fundamental electromagnetic theory of SPPs, their dispersion rela-

tion and SPP coupling techniques. A general overview of linear refractive index plasmonic

sensors is presented. We discuss different sensor configurations, performance parameters

and limitations.

Chapter 3 introduces the concept of optical nonlinearity, focusing on the second order

nonlinear effects of SHG, SFG and DFG. We also discuss the theoretical formulation of the

nonlinear surface susceptibility of metals and conclude with a theoretical description of the

polychromatic sources used in our studies.

Chapter 4 focuses on the generation of MIR light using the nonlinear process of DFG.

Spectral effects in the reflected nonlinear wave close to plasmon resonance are presented

with its potential for use as a refractive index sensor also demonstrated.

Chapter 5 proposes a Kretschmann-based nonlinear refractive index sensor. Both the

SFG- and DFG-based sensors are presented, with their wavelength sensitivities and FOM

calculated. An estimation of the signal strength and limitation of the sensor is also pre-

sented.

Chapter 6 covers the relative SHG generation characterization of a variety of conducting

thin films in reflection. We discuss the deposition of the films and measurement technique

used to characterize the thin films. The strength of the reflected nonlinear signals from the

thin films is also estimated.

Chapter 7 summarizes the main results from this study and provides suggestions for

future work.



Chapter 2

Surface Plasmon Polaritons (SPPs)

The aim of this chapter is to briefly describe the general concept of surface plasmon po-

laritons at the interface between a conductor and a dielectric medium. We lay out the the-

oretical formulations of surface plasmon waves on thick and thin metal films and discuss

different surface plasmon coupling geometries.

We conclude the chapter by reviewing at SPP based refractive index sensing, with a

presentation of the sensing performance parameters and their limitations.

2.1 SPP Theory

SPPs are propagating electromagnetic waves at an interface separating a dielectric from a

conductor, which are evanescently confined in the direction normal to the interface. SPPs

arise via electromagnetic field coupling to free electrons inside the conductor [64]. This

confinement leads to electromagnetic field enhancement at the interface, resulting in SPPs

being very sensitive to surface conditions.

2.1.1 Two Semi-Infinite Media

Let us consider two semi-infinite nonmagnetic media shown in Fig. 2.1, where ε1(ω) and

ε2 represent the relative permittivities of metal and dielectric, respectively. To examine SPP

properties, we apply Maxwell’s equations to electromagnetic fields on both sides of the flat

interface separating metal and dielectric.

Both electric and magnetic fields are assumed to have a harmonic time dependence,

with complex amplitudes E(r,ω) and H(r,ω) respectively. We can represent these fields

as,

E j(r, t) = E j(r,ω)e−iωt , H j(r, t) =H j(r,ω)e−iωt . (2.1)

6
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Z

X

Dielectric (ε2)

Metal (ε1)

Figure 2.1: Schematic showing interface between two semi-infinite media.

With Maxwell’s equations being transformed such that

∇×E j =−μo
∂H j

∂ t
⇒ ∇×E j = iμoωH j, (2.2)

∇×H j = ε jε0
∂E j

∂ t
⇒ ∇×H j =−iε jε0ωH j, (2.3)

∇ ·E j = 0 ⇒ ∇ ·E j = 0, (2.4)

∇ ·H j = 0 ⇒ ∇ ·H j = 0. (2.5)

Taking the curl of Eq. (2.2), eliminating H using Eq. (2.3) and applying the divergence

equation, Eq. (2.4), for the electric field yields the wave equation in the form

∇2E j +
ε jω2

c2
E j = 0. (2.6)

We assume plane wave solutions on either side of the interface in the form,

E j ∝ ei(kx jx+kz jz). (2.7)

Boundary solutions require that the lateral components of the wave vectors match on

either side of the interface. That is,

kx1 = kx2 = kx. (2.8)

Solving Eq. (2.6) using the proposed wave solution and the boundary conditions gives

the dispersion relation

k2
x j + k2

z j =
ε jω2

c2
. (2.9)
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Assuming the wave is TM-polarized, the transversality condition (∇ ·E j = 0) implies

that

kxEx j + kz jEz j = 0. (2.10)

It follows that

E j = Ex j(ex − kx

kz j
ez)ei(kxx+kz jz). (2.11)

For Maxwell’s equations to be satisfied on both sides of the interface, the tangential

component of the electric field and the normal component of the flux density on both sides

should be matched. This simply means that,

Ex1 = Ex2, (2.12)

and

ε1Ez1 = ε2Ez2. (2.13)

Eq. (2.10), (2.12) and (2.13) form a homogeneous system of four equations for the four

unknown field components. This system is solvable when the determinant vanishes. This

happens when kx = 0, which is not a desirable solution since there is no travelling surface

wave, and also when

ε1kz2 = ε2kz1. (2.14)

The above equation and the dispersion relation Eq. (2.9) imply that,

k2
x =

ω2ε1ε2

(ε1+ε2)c2 . (2.15)

and

k2
z j =

ω2ε2
j

(ε1+ε2)c2 . (2.16)

We can only obtain a surface wave between media 1 and 2 (Fig. 2.1) if kx is real and

if kz j are purely imaginary. This means, the wave must propagate along the boundary and

decay exponentially in the normal direction. This is possible only when
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ε1ε2 < 0, and ε1 + ε2 < 0. (2.17)

This is satisfied when one of the permittivities say, ε1 is negative with an absolute value

greater than that of ε2 , i.e ε1 < −ε2. This condition is fulfilled for metals (ε1(ω) < 0) at

frequencies below the bulk plasmon frequency (ωp). If we introduce the notation kz j = iκz j,

we can concluded that

κ jz =
ω
c

√
ε2

j
|ε1+ε2| , (2.18)

and

kx =
ω
c

√
ε1ε2

ε1+ε2
. (2.19)

The electric field in each medium behaves as

E j ∝ eikxx

⎧⎨
⎩e−κ1z , z ≥ 0;

eκ2z , z ≤ 0.
(2.20)

The surface wave described by Eq. (2.20) is referred to as a surface plasmon polari-

ton. In Eq. (2.19), ε1 is complex for conductors, thus we can rewrite the complex SPP

propagation constant (βspp) as

βspp = β ′+ iβ ′′ = ω
c

√
ε1ε2

ε1+ε2
. (2.21)

where β ′ and β ′′ denote the real and imaginary parts of the complex propagation constant.

β ′ represents the wave number of the SPP and β ′′ determines SPP attenuation. Thus a

decaying SPP is characterized by the propagation length (Lspp), which is defined as the

distance in the direction of propagation at which the SPP energy decreases by a factor of

1/e,

Lspp =
1

2β ′′ . (2.22)

This damping is caused by ohmic losses of the electrons participating in the SPP propaga-

tion. The decay length (Lz) of the SPP electric fields in the direction normal to the interface

can be obtained from Eq. (2.18) and is defined as

Lz =
1

kz j
. (2.23)

with the 1/e decay lengths typically longer in the dielectric compared to the metal.
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2.1.2 Surface Plasmon Polariton Dispersion Curves

We now take a closer look at the dispersion relation at a planar metal-dielectric interface,

defined in Eq. (2.19). The dispersion relation is plotted for a metal with negligible damping

described by the Drude dielectric function in Eq. (2.24) [64] and a dielectric with dielectric

constant ε2.

ε(ω) = 1− ω2
p

ω2
, (2.24)

where ωp is the plasma frequency of the metal, given by

ωp =

√
ne2

me f f ε0
. (2.25)

Here n is the carrier density, e is the electronic charge, me f f is the carrier effective mass and

ε0 is the permittivity of free space. The dispersion curve is shown in Fig 2.2, from which

we can identify the surface plasmon and bulk plasmon curves which lie on either side of the

light line in the dielectric. Bulk plasmons arise from fluctuations of the free charge density

inside a metal which propagate as a longitudinally-polarized charge density wave [65]. The

region between the bulk and propagating SPP modes is known as the plasmon bandgap.

From Fig 2.2, we observe that the frequency of SPPs approach a characteristic value of

ωsp for large wave vectors, where

ωsp =
ωp√
1+ ε2

. (2.26)

This frequency is known as the surface plasmon frequency, at which the electric field be-

haves like a static field. In the opposite regime of small wave vectors, the dispersion con-

verges to the light line and the SPPs are also known as Sommerfeld-Zenneck waves [66].

We also observe propagation of bound surface modes for ω < ωsp and radiation into the

metal occurs for frequencies above the plasma frequency.

However, real metals such as gold or silver suffer from inter-band transitions, which

leads to increasing damping requiring a Drude dielectric function that accounts for damp-

ing,

ε(ω) = ε∞ − ω2
p

ω2 + iΓω
, (2.27)

where Γ is the collision frequency, and ε∞ is the static dielectric constant. The Drude model

with damping included was used in our studies, with small adjustments made by fitting the
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Radiative modes

Bound modes

Plasmon band gap

Figure 2.2: Representation of the dispersion curves for bulk plasmon (red line), light in

dielectric (black line) and SPP (blue line). The frequencies of the bulk plasmon ωp and the

SPP ωsp are also marked with dashed black lines.
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Figure 2.3: Dispersion curve at a gold-air interface using experimental data for εAu [1].
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model to measured permittivity of gold [1, 67]. Fig 2.3 shows the dispersion curve at a

gold-air interface, where experimental values of the permittivity of gold are used. Since the

metal is no longer modelled as lossless, the wave number of the dispersion curve no longer

diverges, but bends backwards filling the region previously called the plasmon bandgap.

This region of anomalous dispersion is called a quasi-bound mode [68, 69].

2.1.3 Excitation of SPPs at Planar Interfaces

The dispersion relation defined in Eq. (2.19) is plotted independently for two different

dielectrics (ε2), air and glass(prism). The metal is assumed to be a simple Drude metal

with negligible damping.

Wave vector

Fr
eq

ue
nc

y

light line prismlight line air

metal/air interface

metal/prism interface

 = kx,prism
kair

Figure 2.4: Dispersion relation of SPPs at the interface between a Drude metal with negli-

gible damping and air/prism.

Fig 2.4 shows both the SPP dispersion and light line curves for both independent bound-

aries. For the metal-air boundary, the SPP mode lies on the right side of the light line in air.

This means that for a given frequency the wave number in air is always less than the prop-

agation constant of the corresponding SPP mode. Thus SPPs on a flat metal-air interface

cannot be directly excited by light in air, due to the wave number mismatch. Special phase-

matching techniques are therefore needed to excite SPP modes. Phase-matching can be
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achieved by using a three-layer system consisting of a thin metal film sandwiched between

two dielectrics of different dielectric constants. This system shown in Fig 2.5 was proposed

by Kretschmann [16], and is commonly known as the Kretschmann configuration.

θ
Prism (ε1)
Metal (ε2)
Air (ε3)

Source

SPP

Z

X

Figure 2.5: Prism coupling using the Kretschmann configuration.

We therefore use the configuration in Fig 2.5 to excite SPPs at the metal-air interface.

The incident light with wave vector magnitude k in air, will have a wave vector component

β = kx = k
√

ε1sinθ0 at the interface between the metal and the prism having propagated

through the prism. This new wave vector is sufficient to excite SPPs at the interface between

the metal and air, due to the higher refractive index of the prism compared to air. Thus we

can excite SPP modes with propagation constants β between the light line of air and that of

the prism. In this configuration, the incident excitation field has to tunnel through the metal

thin film in order to excite SPPs at the metal-air interface. The Kretschmann configuration

is used in most SPR applications and is the coupling geometry used for SPP excitation in

this research.

Another configuration which is sometimes used is the Otto configuration, where the

metal and the prism are separated by a thin layer of air, as illustrated in Fig 2.6. This

is preferable for thicker films where the Kretschmann configuration cannot be used and

also when contact with the metal surface is undesirable for a specific application . In this

configuration, total internal reflection takes place at the prism-air interface, so that photon

tunneling occurs through the air gap between the prism and the surface.

Other techniques used for exciting SPPs are; grating coupling, near field excitation,

coupling through defects such as nano holes and the focused beam technique. All these
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θ
Prism (ε1)

Metal (ε2)

Air (ε3)

Source

SPP

Z

X

Figure 2.6: Prism coupling using the Otto configuration.

techniques seek to increase the wave vector of the incident light in air to match that of the

SP wave.

2.1.4 SPPs at Interface of Thin Metal Films

Our theoretical analysis of SPPs so far has been limited to semi-infinite metal-dielectric in-

terfaces. However, films of finite thicknesses are used in practical SPP-based applications.

We expect the multiple reflections within the thin film to affect the SP wave. We use the

Kretschmann configuration (Fig 2.5) to analyze the coupling of SPPs in metal films. The

conducting film is assumed to have thickness d and the source plane is assumed to be at

the origin O. The light source is assumed to be a plane wave such that the incident electric

field can be represented as

E0(x,z,ω,θ0) =
(k1z

k1
ex − kx

k1
ez

)
ei(kxx+k1zz), (2.28)

where k1 = (kx,0,k1z) and k1 = (ω/c)
√

ε1, with the components k1 expressed in terms of

the incident angle θ0 as kx = k1 sinθ0, and k1z = k1 cosθ0.

Whenever the FW is incident on the metal, it undergoes multiple reflections inside the

film and the total reflected FW from the film can be calculated using the Airy summation

[70] and is given by



15

Er(x,z,ω,θ0) =A(ω)
(
−k1z

k1
ex − kx

k1
ez

)
× r̃12(ω,θ0)ei(kxx−k1zz),

(2.29)

where r̃12(ω,θ0) is the Fresnel reflection coefficient for TM-polarization given by [71]

r̃12(ω,θ0) =
r12 + r23ei2k2zd

1+ r12r23ei2k2zd
, (2.30)

with k2z =
√

k2
2 − k2

x , k2 = (ω/c)
√

ε2. Here rαβ represents a reflection coefficient of the

interface between media α and β , (α,β = 1,2,3). The total FW field in the glass (E1) is a

superposition of the incident and reflected waves in Eq. (2.28) and Eq. (2.29) respectively

and is given by

E1(x,z,ω,θ0) = E0(x,z,ω,θ0)+Er(x,z,ω,θ0). (2.31)

The normal component of Eq. (2.31) can be written as

E1z(x,z,ω,θ0) =−kx

k1
eikxx

[
eikzz + r̃12(ω,θ0)e−ik1zz

]
ez, (2.32)

while the tangential component is written as,

E1x(x,z,ω,θ0) =
k1z

k1
eikxx

[
eikzz − r̃12(ω,θ0)e−ik1zz

]
ex. (2.33)

By applying the electromagnetic boundary conditions to both the normal and tangential

components of the electric field on both sides of the prism-metal boundary at z = 0, we can

write down the components of electric field, E<
2 on the lower interface of the metal. The

normal component of the field is given by

E<
2z(x,z,ω,θ0) =−kx

k1

ε1

ε2
eikxx

[
1+ r̃12(ω,θ0)

]
ez, (2.34)

while the tangential component is given by

E<
2x(x,z,ω,θ0) =

k1z

k1
eikxx

[
1− r̃12(ω,θ0)

]
ex. (2.35)

The normal and tangential components of the field in the gold thin film are superpositions

of the fields transmitted into the film and that reflected from the upper interface of the thin

film. They are given respectively by
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E2z(x,z,ω,θ0) =− kx

k2
eikxx t12

1+ r12r23ei2k2zd

×
[
eik2zz + r23ei2k2zde−ik2zz

]
ez,

(2.36)

and

E2x(x,z,ω,θ0) =
k2z

k2
eikxx t12

1+ r12r23ei2k2zd

×
[
eik2zz − r23ei2k2zde−ik2zz

]
ex.

(2.37)

The components of the electric field at the upper interface of the gold film, E>
2 at z = d are

calculated similarly to yield

E>
2z(x,z,ω,θ0) =−kx

k2
eikxxRz(ω,θ0)ez, (2.38)

and

E>
2x(x,z,ω,θ0) =−k2z

k2
eikxxRx(ω,θ0)ex, (2.39)

where

Rz(ω,θ0) =
t12(1+ r23)ei2kzd

1+ r12r23ei2k2zd
,

Rx(ω,θ0) =
t12(1− r23)ei2kzd

1+ r12r23ei2k2zd
.

(2.40)

As mentioned in section 2.1.3, the coupling of light into an SPP wave is characterized

by a minimum in the intensity of the light reflected from the metal-dielectric interface.

To obtain the dispersion relation for a Kretschmann-based structure, we set the reflectivity

given by Eq. (2.30) to zero,

r12 + r23ei2k2zd = 0. (2.41)

where reflection coefficients r12 and r23 are given by,

ri j =
ε jkiz − εik jz

ε jkiz + εik jz
, (2.42)

and the transmission coefficient t12 is also given by,

ti j =
2ε jkiz

ε jkiz + εik jz

√
εi

ε j
, (2.43)
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where i, j = 1,2,3. When the incident light is coupled into an SPP, the normal components

of all the wave vectors must be purely imaginary. We can define these wave vectors in

media 1 and 3 as

k1z =−iq1 =−i
√

k2
x − k2

1, (2.44)

and

k3z = iq3 = i
√

k2
x − k2

3, (2.45)

with q1,3 > 0 to ensure the exponential decay of the waves away from the interfaces of the

thin film. There exist exponentially growing and decaying waves in the thin film, with its

wave vector given by

k2z = iq2 =±i
√

k2
x − k2

2. (2.46)

Combining Eqs. (2.41)-(2.46), gives us the desired dispersion equation

e−2q2d =
(ε1q2 + ε2q1

ε1q2 − ε2q1

)(ε3q2 + ε2q3

ε3q2 − ε2q3

)
. (2.47)

From Eq. (2.34), Eq. (2.35), Eq. (2.38) and Eq. (2.39), we clearly see that the fields at

the metal-dielectric interface in thin films are dependent on the reflection coefficients r̃12,

Rz and Rx, which are all functions of the metal film thickness d. The dispersion relation

given by Eq. (2.47) is also dependent on the thickness of the conducting film. Thus we

can control the SPP field intensity, dispersion, propagation length and energy density by

changing the thickness of the film [68].

2.2 SPP Based Sensors

In this section, a general overview of a planar SPR refractive index sensor is presented

along with the main performance characteristics of the sensor. A general schematic of such

a sensor is shown in Fig 2.7, where ε3 is the permittivity of the dielectric medium we are

interested in sensing.

In an SPR sensor, an SP wave is excited at the interface between a metal film and a

dielectric medium (superstrate). Changes in the refractive index of the superstrate affect

the coupling condition of the SP waves, which leads to observable changes in one of the

characteristics of the optical wave interacting with the SP [72]. By accurately measuring

the changes in the given characteristic of the optical wave, we can determine the changes

of the refractive index of the dielectric medium. Coupling angle, coupling wavelength,
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θ0
Prism (ε1)
Metal (ε2)

Superstrate (ε3)

Source Detector

Figure 2.7: Schematics of a planar SPR based sensor.

phase, intensity and polarization are some of the characteristics of the reflected optical

wave that change due to changes in the refractive index of the superstrate. Each of these

characteristics can used as a sensor output in an SPR sensor. We are going to focus on SPR

sensors based on angular and wavelength modulation, since they are the most common

modulation approaches used in high performance sensors [73, 74].

In SPR sensors with angular modulation, a monochromatic light wave is used to excite

a surface plasmon polariton at the plasmon coupling angle. This is accompanied by a

minimum in the intensity of the light wave reflected from the metal-dielectric boundary as

illustrated in Fig 2.8 (a). A slight change in the refractive index (Δn) of the superstrate (ns)

would lead to a change in the angle of incidence (Δθ0) at which we observe the reflected

light intensity dip from the sensor.

On the other hand, an SPR sensor based on wavelength modulation requires a colli-

mated polychromatic light source. Here, the angle of incidence is kept fixed and the inten-

sity of the light wave reflected from the SPR sensor is dependent on each wavelength com-

ponent within the polychromatic light source. There is a minimum in the reflected spectrum

for a specific wavelength component within the spectrum, where plasmon coupling is max-

imized as shown in Fig 2.8 (b). Changes in the refractive index of the superstrate would

lead to a change in the position of the minimum (Δλc) in the reflected spectrum from the

SPR sensor.

Our proposed SPR sensor is based on the wavelength modulation of the light wave
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(a) (b)

Figure 2.8: Intensity of light wave interacting with a surface plasmon as a function (a)

Angle of incidence (b) Wavelength for two different refractive indices of the superstrate [2].

reflected from the sensor. Instead of using the position of the reflected minimum in the

spectrum as described above, we use the peak position of the reflected second-order non-

linear wave generated at the metal-superstrate interface near plasmon resonance.

The performance characteristics of SPR sensors included in this study are sensitivity

and accuracy. The sensitivity is defined as the ratio of the change in the sensor output to

the change in the value of the measurand [75]. In the case of the refractive index SPR

sensor, the measurand is the change in refractive index of the superstrate, while the sensor

output depends on the method of modulation used. Thus we can define the sensitivity of a

wavelength modulated refractive index SPR sensor as

S(λ ) =
Δλ
Δn

, (2.48)

where Δn is the change in refractive index of the superstrate (ε3), and Δλ is the wave-

length shift of SPR peak position of the reflected wave spectrum. The analytical expression

for sensitivity with wavelength modulation of a Kretschmann-based refractive index linear

SPR sensor is well defined and is given by [76]

S(λ ) =
ε2

2 (ω)
1
2 |dε2(ω)

dλ |n3
3 +

ε2(ω)n3

n1

dn1
dλ (ε2

2 (ω)+n2
3)
. (2.49)

It is manifest From Eq. (2.49) that the sensitivity for a given physical Kretschmann SPR

sensor is not constant, but it strongly depends on the wavelength of operation.
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When designing SPR sensors, we always aim to optimize the sensitivity. However, the

sensitivity enhancement can sometimes be accompanied by spectral broadening. This is

not desirable since it limits our detection accuracy. The figure of merit (FOM) offers a

convenient parameter to characterize measurement accuracy of the sensor by taking into

account both the spectral width and sensitivity of the reflected signal. It is defined as

FOM =
S(λ )

FWHM
, (2.50)

where FWHM is the full width at half maximum of the reflected spectrum from the SPR

sensor. Other important performance indicators for SPR sensors include the limit of detec-

tion, dynamic range, reproducibility and linearity.



Chapter 3

Second-Order Surface Nonlinear Optics

In this chapter, we introduce the general concepts of nonlinear optics. We specifically dis-

cuss the nonlinear optical effects of SHG, SFG and DFG arising from the second-order

nonlinear polarization. We also discuss the second-order susceptibility tensor and, specif-

ically the surface susceptibility tensor in conductors. We then conclude the chapter by

presenting a theoretical description of polychromatic sources and the induced nonlinear

polarization.

3.1 Introduction to Nonlinear Optics

In the classical electromagnetic theory, the laws of electricity and magnetism are described

by Maxwell’s equations. In free space, just the electric (E) and magnetic (H) field vectors

are sufficient to describe electromagnetic fields, while the electric displacement (D) and

magnetic induction (B) are all required for a full description of the propagation of electro-

magnetic radiation in any medium. The complete Maxwell’s equations are given by

∇×E+
∂B
∂ t

= 0,

∇×H− ∂D
∂ t

= J, (3.1)

∇ ·D = ρ,

∇ ·B = 0,

where J is the electric current density and ρ is the electric charge density. Whenever an

external electric field is applied to matter, it induces dipole moments in atoms or molecules

of the matter, resulting in a nonzero average dipole moment per unit volume known as the

polarization (P). The electric displacement field D is related to the electric field E through

the polarization field P in a medium by

D = ε0E+P, (3.2)

21
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where ε0 is the permittivity of free space.

When the applied electric field strength is sufficiently low, the polarization vector is

linearly related to the incident electric field and given by

P = ε0χ(1)E, (3.3)

where χ(1), which is a second rank tensor, is a linear electric susceptibility and it charac-

terizes linear media. However, if the incident electric field is sufficiently large, this approx-

imation of the polarization breaks down and the induced polarization can be expressed as a

power series,

P = PL +PNL (3.4)

P = ε0(χ(1)E+χ(2)E2 +χ(3)E3 + ...),

where PL = ε0χ(1)E and PNL = ε0(χ(2)E2 + χ(3)E3 + ...). Here PL and PNL represent

the linear and nonlinear contributions to the total polarization, respectively. χ(2) and χ(3)

represent the second- and third-order nonlinear susceptibility tensors, respectively and they

characterize a material response to the incident electromagnetic field.

To study propagation of electromagnetic waves through a nonlinear medium, let us

consider a non-magnetic and source free medium (J = 0 and ρ = 0). Maxwell’s equations

(Eq. (3.1)) can be reduced by eliminating H to obtain the nonlinear wave equation

∇× (∇×E) =−εε0μ0
∂ 2E
∂ t2

−μ0
∂ 2PNL

∂ t2
, (3.5)

where ε is a relative permittivity of material medium. Further examination of Eq. (3.5)

shows that the nonlinear polarization PNL behaves like a source term in the inhomogeneous

wave equation.

3.2 Second-Order Nonlinear Processes

In this section, we briefly discuss the fundamental nonlinear optical processes that result

from the second-order nonlinear polarization. Assuming an isotropic medium for simplic-

ity, and without loss of generality, we have ignored the electric field polarization throughout

this section.
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3.2.1 Second-Harmonic Generation

Let us consider an optical field of amplitude E at a frequency ω such that

E(t) = Ee−iωt + c.c. (3.6)

When such a field propagates in a medium with a non-vanishing second-order suscep-

tibility, the second-order polarization can be expressed as

P(2)(t) = ε0χ(2)E2(t). (3.7)

Substituting from Eq. (3.6) into Eq. (3.7), we obtain

P(2)(t) = 2ε0χ(2)EE∗+(ε0χ(2)E2e−2iωt + c.c). (3.8)

Eq. (3.8) shows that the nonlinear polarization contains a component that radiates light

at double (2ω) the frequency of the incident light. This component, which is represented

in the second term of Eq. (3.8), describes the optical process of SHG. The nonlinear polar-

ization also has a component at zero frequency as illustrated by the first term in Eq. (3.8).

This component is known as optical rectification and it represents the generation of a static

electric field.

SHG can be described as a coherent absorption of two photons of the same frequency

to generate a photon with double the frequency or half the wavelength of the incident wave.

This is schematically illustrated in Fig. 3.1.

(2)

Figure 3.1: (a) Geometry of SHG (b) Energy-level diagram describing SHG [3].

The theoretical formulation of SHG can be broken down into two steps. In the first

step, the incident electric field at frequency ω excites a nonlinear polarization at double
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the frequency as shown in Eq. (3.8). In the second step, this induced nonlinear polariza-

tion propagates in accord with the nonlinear wave equation and emits an optical field at

frequency 2ω .

3.2.2 Sum- and Difference-Frequency Generation

Next, we consider an optical field with two distinct frequency components ω1 and ω2 prop-

agating in a medium characterized by a second-order nonlinear susceptibility. Such an

optical field can be represented as

E(t) = E1e−iω1t +E2e−iω2t + c.c. (3.9)

Substituting this field in Eq. (3.7) yields

P(2)(t) = ε0χ(2)[E2
1e−2iω1t +E2

2e−2iω2t +2E1E2e(−i(ω1+ω2)t)

+2E1E
∗

2e(−i(ω1−ω2)t) + c.c]+2ε0χ(2)[E1E
∗
1 +E2E

∗
2].

(3.10)

The nonlinear polarization given in Eq. (3.10) contains new frequency components re-

sulting from different second-order nonlinear optical processes. 2ω1,2ω2 represents the

process of second-harmonic generation from the medium, ω1 +ω2 represents the process

of sum-frequency generation and ω1 −ω2 represents the process of difference-frequency

generation. The last term in the nonlinear polarization expression is the optical rectification

term. From Eq. (3.10), we can also extract the complex amplitudes of the SFG and DFG

nonlinear polarizations.

The complex amplitude of SFG is given by

PSFG(ω1 +ω2) = 2ε0χ(2)E1E2. (3.11)

In the SFG process, the incident photons ω1 and ω2 are coherently absorbed to create a

new photon at frequency ω3 = ω1 +ω2. This is represented schematically in Fig 3.2.

Finally, the process of DFG is described by a complex nonlinear polarization amplitude

in the form

PDFG(ω1 −ω2) = 2ε0χ(2)E1E
∗
2. (3.12)

A very important difference between the DFG process compared to the SHG and SFG

process is illustrated in Fig 3.3. In the DFG process, for every photon that is created at the
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(2)

Figure 3.2: (a) Geometry of SFG (b) Energy-level diagram describing SFG [3].

difference frequency ω3 = ω1−ω2, a photon at the higher frequency ω1 must be destroyed

and a photon at the lower frequency ω2 must be created. Thus we have a situation where the

lower frequency input field is being amplified and this is referred to as optical parametric

amplification.

(2)

Figure 3.3: (a) Geometry of DFG (b) Energy-level diagram describing DFG [3].

3.3 Nonlinear Second-Order Surface Susceptibility

In this section we briefly discuss some of the properties of the general second-order suscep-

tibility, a microscopic model of the surface second-order susceptibility and conclude with

a brief discussion of the nonlinear polarization arising from a polychromatic incident light

source.

Let us consider the interaction of three waves of frequencies ω1, ω2 and ω3 = ω1 +

ω2 in a general second-order process. The nonlinear polarization from these interactions,
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which can be expressed via the third-rank susceptibility tensor [3],

Pi(ωn +ωm) = ε0 ∑
jk

∑
(nm)

χ(2)
i jk E j(ωn)Ek(ωm), (3.13)

where n,m = 1,2,3 and i, j and k can independently take on the values of the Cartesian

directions x,y and z, with both positive and negative frequencies allowed. We therefore re-

quire as much as 324 different numbers to fully define the complex second-order nonlinear

susceptibility. However, because the reality of the physical fields and intrinsic permutation

symmetry of χ(2), we end up with 81 independent parameters. The number of independent

parameters can be further reduced in a lossless medium, where all elements of χ(2) are

real and also where Kleinman’s symmetry is valid. Any spatial symmetry in a nonlinear

material can lead to a further reduction of this number.

One type of spatial symmetry of interest found in some crystals is centrosymmetry.

Centrosymmetric crystals have a centre of symmetry, which is a point relative to which

the crystal structure displays inversion symmetry. It has been demonstrated using symme-

try arguments that the second-order nonlinear susceptibility vanishes under electric dipole

approximation in bulk centrosymmetric crystals [77, 78]. Most face-centered cubic (FCC)

metals have a centrosymmetric bulk crystal structure including gold [79], which is used in

the studies in this dissertation. Thus bulk second-order nonlinear optical processes such as

SHG, SFG and DFG are forbidden in such materials.

However, the inversion symmetry is broken at the surface of centrosymmetric crystals

due to excitement of surface dipoles. These surface dipoles are responsible for second-

order effects, characterized by a surface susceptibility χ(2)
S,i jk which is also a third rank ten-

sor. The bulk second-order effects from centrosymmetric crystals are not strictly zero, as

χ(2) can arise from electric-quadrupole and magnetic-dipole contributions [80, 81]. How-

ever, it has been shown experimentally that for most free-electron metals the surface con-

tribution to the second-order nonlinearity completely dominates the bulk contribution [82].

Since gold, whose properties can be described by the free electron model, is the metal of

choice in our studies, we have neglected all bulk contributions to the second-order pro-

cesses investigated.

The ith component (i = x,y or x) of the second-order surface polarization field is given

by

PS
i (ω3) = ε0 ∑

jk
χ(2)

S,i jkE j(ω1)Ek(ω2), (3.14)
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where ω3 = ω1 ±ω2.

In Cartesian coordinates, χ(2)
S,i jk has 27 tensor elements, many of which may vanish or

depend on others due to the structural symmetry of the surface. For an isotropic surface,

with the z-direction normal to the surface, χ(2)
S,i jk has only four independent nonvanishing

elements: χ(2)
S,xxz = χ(2)

S,yyz,χ
(2)
S,xzx = χ(2)

S,yzy,χ
(2)
S,zxx = χ(2)

S,zyy and χ(2)
S,zzz [81]. These nonvanishing

components are usually deduced by carrying out second-order measurements (SHG, SFG

and DFG) on the sample using different combinations of input and output beam polariza-

tions.

Despite the best efforts of researchers to estimate the different components of χ(2)
S,i jk,

there is still a significant lack of experimental data available for the surface susceptibility

of metals for different frequencies. Over the years, impressive catalogues of experimental

data on the linear optical properties of most metals over wide frequency ranges have been

put together [83,84]. Very robust models such as the Drude-Lorentz model describing these

optical properties have also been developed. To take advantage of this data, researchers

have been working on simple models to calculate χ(2)
S,i jk components of conductors in terms

of their linear optical properties such as permittivity.

The first theoretical model for nonlinear optics in metals analyzed the second-order re-

sponse of conduction electrons using a Boltzmann-equation approach [85], but this model

could not explain the experimental results obtained for metals such as Ag, Cu, Au and

Au-Ag alloys [86, 87]. The first estimation of the surface second-order susceptibility was

phenomenologically presented in 1971 by Rudnick and Stern [88]. They introduced two

phenomenological parameters a and b which characterized the second-harmonic response

from a metal surface. This phenomenological analysis was extended by Sipe et al. [89]

where they studied the possibility of separating surface and bulk contributions using sym-

metry arguments, but they did not attempt the actual calculations of the susceptibility.

The hydrodynamic (HD) model has been used to estimate different components of the

second-order susceptibility. In this model, a conductor is assumed to consist of a semi-

infinite isotropic electron gas with an equilibrium density profile that interpolates smoothly

between its vacuum and bulk asymptotic values. Initial calculations of the surface nonlin-

ear response using this model was done by Corvi and Schaich [90, 91] and subsequently

extended to microscopic calculations and estimation of χ(2)
S components for simple and no-

ble metals [92–96]. We present a simple one-dimensional model for calculating the χ(2)
S,zzz
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component of the SFG surface susceptibility of a metal in section 3.3.1. This can be easily

extended to calculate the other non-vanishing components of χ(2)
S .

3.3.1 Hydrodynamic Model

The treatment of the hydrodynamic model presented in this section is based on the model

developed by Maytorena et al. [95–97]. For simplicity, we present a simple 1-D derivation

by assuming a linearly polarized propagating electric field, and this can be easily expanded

to a 3-D treatment. Let us consider a metal modeled as a semi-infinite electron gas of

charge −e, mass m, relaxation time τ , density n(z, t) and velocity field u(z, t)ez in the

presence of an electric field E(z, t)ez where the z−direction is normal to the metal surface.

The continuity and Euler’s hydrodynamic equation for such a system are given by [96]

∂n
∂ t

+
∂ (nu)

∂ z
= 0, (3.15)

and

mn
∂u
∂ t

+
mnu

τ
+mnu

∂u
∂ z

=−enE − ∂ p(n)
∂ z

, (3.16)

respectively. The consecutive terms in Eq. (3.16) correspond to the inertia forces, dissi-

pation through friction, convective momentum flow, electric force and a pressure gradient.

The pressure p is calculated from the density dependence of the average energy of a fermion

within a noninteracting homogeneous Fermi gas,

U/N = (9/10)γn2/3, (3.17)

where γ = (3π2)2/3h̄2/(3m). Assuming local equilibrium, the pressure is given by

p(n) = n2 ∂ (U/N)

∂n
=

3

5
γn5/3(z, t), (3.18)

as in the Thomas-Fermi theory [90, 98].

The system is perturbed with a homogeneous external electric flux density,

D = (D1e−iω1t +D2e−iω2t)ez + c.c, (3.19)

that oscillates at the two frequencies ω1 and ω2, with electric displacement amplitudes D1

and D2, respectively. All time-dependent quantities f are expressed as a superposition of
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monochromatic fields with frequencies ω1, ω2, 2ω1, 2ω2, and ω1 ±ω2 to obtain

f (z, t) = f0(z)+ f (z,ω1)e−iω1t + f (z,ω2)e−iω2t + f (z,2ω1)e−i2ω1t + f (z,2ω2)e−i2ω2t

+ f (z,ω1 +ω2)e−i(ω1+ω2)t + f (z,ω1 −ω2)e−i(ω1−ω2)t + ...+ c.c.,
(3.20)

where f stands for either n, u or E, and c.c denotes the complex conjugate of the previous

terms.

Substituting from Eq. (3.20) into Eq. (3.16), we generate a series of equations for the f

variables that oscillate at the same frequency.

To the zeroth-order, Eq. (3.16) yields,

−en0(z)E0(z) =
∂ p0(z)

∂ z
= mβ 2

0 (z)
∂n0(z)

∂ z
, (3.21)

where β 2
0 (z) =

γ
mn2/3

0 (z). E0(z) plays the role of the effective field which confines the

electron gas to a semispace, acting against the pressure term 3
5γn5/3(z) leading to the equi-

librium density profile n0(z).

Expanding Eqs. (3.15) and (3.16) to the first-order, and substituting Eq. (3.21), we

obtain a differential equation for the first-order polarizations Pi (i = 1,2),

γ
m

n0(z)
∂ [n−1/3

0
∂Pi
∂ z ]

∂ z
+β 2

0 (z)q
2
i (z)Pi = Si(z), (3.22)

with the source term

Si(z) =−ω2
p(z)D, (3.23)

where ω2
p(z) = ω2

b n0(z)/nb is the local plasma frequency, ω2
b = nbe2/(ε0me f f ) is the bulk

plasmon frequency, Ω2
i = ωi(ωi + i/τ) and

q2
i (z) =

Ω2
i −ω2

p(z)

β 2
0 (z)

(3.24)

is a local plasmon wave number at the fundamental frequency. In the derivation of Eq. (3.22),

we employed the relation between the electric current density J and polarization P, namely

J = ε0
∂P
∂ t

, (3.25)

and the self-consistent field E in term of the polarization field P,

ε0Ei(z) = Di −Pi(z). (3.26)
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Using the similar procedure, the equations for the SFG polarization P3 are derived at

the frequency ω3 = ω1 +ω2,

γ
m

n0(z)
∂ [n−1/3

0
∂P3(z)

z ]

∂ z
+[Ω2

3 −ω2
p(z)]P3(z) = S3(z), (3.27)

with the source term expressed as

S3(z) =
γ

3me
n0

∂ [n−4/3
0 (∂P1

∂ z )(
∂P2
∂ z )]

∂ z
+

ω1ω2

en0

∂ (P1P2)

∂ z

+
(ω1 +ω2 + i/τ)

en0

(
ω2P2

∂P1

∂ z
+ω1P1

∂P2

∂ z

)
− 2ω1ω2

en2
0

P1P2
∂n0

∂ z
.

(3.28)

The source S3(z) arises from the spatial derivatives of the equilibrium density n0 and

from the product of the linear polarization at the fundamental frequencies. The differential

equations (3.22) and (3.27) are solved analytically in the bulk region where n0 is indepen-

dent of z. The linear polarization solution is expressed as,

Pi(z) = Pib +Aieiqiz, i = 1,2, (3.29)

and the second-order solution expressed as,

P3(z) =
A3eiq3z
√

4πε0
+

i
enbβ 2

b
√

4πε0

[
μ1q1 +μ2q2

q2
3 − (q1 +q2)2

A1A2ei(q1+q2)z

−
(

ν1q1P2b

4π(q2
3 −q2

1)
A1eiq1z +

ν2q2P1b

4π(q2
3 −q2

2)
A2eiq2z

)]
,

(3.30)

and it can be integrated numerically near the surface, where n0(z) varies from zero

in vacuum to its bulk value nb. Here, β 2
b = (γ/m)n2/3

b , νi = −(ω3 −ωi)(ωi +ω3 + i/τ),

μi =
1
3 [2(ω3 −ωi)(ω3 −ωi + i/τ) + 6ω1ω2 +ω2

b ], Pib = (εi − 1)Di/εi is the bulk polar-

ization linearly induced by Di in a local medium with a Drude dielectric response εi ≡
ε(ωi) = 1−ω2

b/Ω2
i , and q2

i = (Ω2
i −ω2

b )/β 2
b . The coefficients A1,A2 and A3 are deter-

mined by matching the bulk and surface solutions at the boundary using additional bound-

ary conditions derived from the polarization differential equations. The linear boundary

conditions are the continuity of both Pi and n−1/3
0

∂Pi
∂ z . The second-order additional bound-

ary conditions for the sum-frequency field are the continuity of P3 and F is determined by

the equation

F = (n−1/3
0

∂P3

∂ z
)− 1

3en2/3
0

(n−1/3
0

∂P1

∂ z
)(n−1/3

0

∂P2

∂ z
)− mω1ω2

eγn2
0

P1P2. (3.31)
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After solving Eq. (3.27) to obtain P3(z) for a given profile n0(z), the surface nonlinear

sum-frequency polarization can be characterized as

PS
3z =

∫
dzP3(z), (3.32)

from which the surface susceptibility component can be deduced as,

χ2
S,zzz(ω1,ω2) = ε0ε1ε2P3(z)/(D1D2). (3.33)

The latter can be rewritten in terms of a dimensionless parameter a(ω1,ω2) as,

χ2
S,zzz(ω1,ω2) =

a(ω1,ω2)
√

4πε0

32π2nbe
(ε1 −1)

ε1

(ε2 −1)

ε2
. (3.34)

It has been shown that the dimensionless parameter a(ω1,ω2) is essentially frequency-

independent whenever the two pump frequencies ω1 and ω2 lie well below the bulk plasma

frequency ωb for both the SFG and DFG processes [95, 99]. The incident frequencies

used in our studies lie well below their bulk frequency of the metal used. We can conve-

niently extend this derivation to cover DFG susceptibility components by noting that the

DFG (ω3 = ω1 −ω2) process results can be obtained from the SFG process by the simple

replacement ω2 →−ω2. The only other non-vanishing components of the SFG and DFG

surface nonlinear polarization of metals are χs
xxz(ω1,ω2) and χs

xzx(ω1,ω2), expressed as

χ2
S,xxz(ω1,ω2) =

−ω1b(ω1,ω2)
√

4πε0(ε1 −1)(ε2 −1)

16π2nbeε2ω3
, (3.35)

and

χ2
S,xzx(ω1,ω2) =

−ω2b(ω2,ω1)
√

4πε0(ε1 −1)(ε2 −1)

16π2nbeε1ω3
, (3.36)

in terms of the dimensionless parameters b(ω1,ω2) and b(ω2,ω1), which are given by [95]

b(ω1,ω2) = b(ω2,ω1) =−1. (3.37)

The other components of the surface susceptibility are null due to the rotational and

in-plane symmetry of the flat surface [99].

3.3.2 Nonlinear Polarization of Polychromatic Sources

Lasers generate light coherently and the high temporal coherence of the process allows

them to emit light in a very narrow wavelength spectrum. It is therefore a good approxi-

mation to model the spectrum as monochromatic. We use a plane wave approximation to
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model such a source, which is a good approximation to the light waves generated by most

conventional lasers. A monochromatic plane wave, linearly polarized in the z-direction and

propagating in the x-direction with the amplitude A0 can be represented mathematically as

E(x, t) = ezA0ei(kx−ωt). (3.38)

Recent developments in ultrashort laser pulses and ultrafast optics [59] have led to

sources with finite bandwidths. Therefore a more realistic representation of such a source

will be a polychromatic plane wave model [58, 100, 101]. The electric field of a fully spa-

tially coherent, polychromatic source, linearly polarized in the z-direction and propagating

in the x-direction with the spectral amplitude A(ω) is given by

E(x,ω) = ezA(ω)ei(kx−ωt), (3.39)

with the energy spectrum of the polychromatic source defined as

S(ω) ∝ |E(x,ω)|2 = |A(ω)|2. (3.40)

In our treatment of the surface nonlinear polarization so far, we have assumed two inde-

pendent incident frequencies ω1 and ω2, which is the case when we have monochromatic

sources. However, we are using a single polychromatic incident source, whose bandwidth

consists of frequencies ωi with a spectral amplitude A(ωi) interacting nonlinearly with

each other. Thus the general ith component of the sum-frequency polarization field is given

by [3]

Pi(r,ω3) = ε0 ∑
jk

∫ ∞

−∞

dω1

2π
χ(2)

S,i jk(−ω3;ω1,ω2)E j(r,ω1)Ek(r,ω2), (3.41)

and the difference-frequency polarization given by

Pi(r,ω3) = ε0 ∑
jk

∫ ∞

−∞

dω1

2π
χ(2)

S,i jk(−ω3;ω1,−ω2)E j(r,ω1)E∗
k (r,ω2). (3.42)

Here (i, j,k = x,y,z), ω1 and ω2 are the pump frequencies within the incident funda-

mental pulse bandwidth; ω3 = ω1 ±ω2 represents the generated sum (+) and difference

(−) frequencies and the asterisk (∗) denotes a complex conjugate. χ(2)
S,i jk(−ω3;ω1,±ω2) is

the nonlinear surface susceptibility tensor of the SFG and DFG processes respectively.
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4.1 Abstract

We theoretically study the generation of mid-infrared light through difference-frequency

excitation using a single dual-wavelength coherent femtosecond laser source. The difference-

frequency wave is generated from the surface of a thin gold film in the Kretschmann cou-

pling geometry due to the surface nonlinearity of the film. We show a clear enhancement

of the difference-frequency wave around the surface plasmon polariton coupling angle of

the incident fundamental wave. We also show an enormous shift and modification of the

difference-frequency spectrum near surface plasmon resonance. We discuss the discovered

spectral change dependence on the source pulse duration and incidence angle of the fun-

damental wave. Our findings have an enormous potential for use in difference-frequency

surface sensing and spectroscopy applications.

4.2 Introduction

Although the study of nonlinear frequency conversion in metals goes back to the beginning

of nonlinear optics [80, 85, 86, 88, 102–104], there has been renewed interest in this field

recently. This new interest is due to the recent growth in the field of plasmonics, which

studies the localization and enhancement of electromagnetic fields through the collective

1Chosen as Journal of Optics “Paper of the Week”, November 2016.
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oscillation of conduction electrons in metals. The combination of nonlinearity and plas-

monic effects has opened up a whole new area of fundamental research where the genera-

tion, modification and enhancement of harmonic frequencies can be studied under a variety

of conditions and circumstances [19, 21–24, 105].

Nonlinear studies of surface plasmon excitations in metals are focused primarily on

quadratic nonlinearities such as second-harmonic generation (SHG), sum-frequency gen-

eration (SFG) and difference-frequency generation (DFG). This is due to the simplicity of

these processes and the ability to discriminate the bulk response from the surface response

using the inversion symmetry of most metals [24,27,106]. These quadratic plasmonic non-

linear processes have led to applications in sensing, spectroscopy and the development of

new coherent light sources [28, 37–39, 45, 107]. Most nonlinear plasmonic applications

such as infrared-visible nonlinear spectroscopy [108] are based on quasi-monochromatic

light sources, where two distinct monochromatic sources are needed for both SFG [54] and

DFG [55] spectroscopy. DFG, in particular has also been shown to be the most widely

used method to generate mid-infrared (MIR) ultra short pulses [56, 57, 109–111], which is

a very useful source for sensing many important organic and inorganic molecules. This is

because these molecules have strong absorption peaks within this spectral range [112] and

the fact that the DFG process is very sensitive to changes in the surfaces being studied at

the molecular level [53, 113].

We propose using a highly collimated polychromatic source to generate a difference-

frequency wave (DFW), in the mid-infrared through reflection from a thin metal film ar-

ranged in the Kretschmann configuration close to the surface plasmon coupling angle. The

generation of MIR sources using DFG usually involves frequency mixing of two monochro-

matic laser sources [56,57,109–111]. We are however using a single polychromatic source

which eliminates the need for multiple sources and also has the added advantage of gen-

erating spectral signatures and enhancing the DFW close to the plasmon resonance angle.

The spectral signatures of a surface sum-frequency wave reflected from a thin gold film us-

ing polychromatic light have been previously reported [60], with significant spectral shifts

in the spectrum shown close to plasmon resonance. We report more pronounced shifts and

enhancement in the difference-frequency spectrum close to plasmon resonance.
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4.3 Theory

We use the Kretschmann configuration to illuminate the gold thin film as shown in Fig. 4.1.

The gold film is deposited on a glass substrate (ε1 = 2.25) and has a thickness d and a

relative permittivity ε2(ω). The permittivity of the dielectric above the thin film is ε3 and

the source plane is assumed to be at the origin.

θ0

X

Z

Glass(ε1)
Gold (ε2)
Air (ε3)

O

Figure 4.1: Illustration of the Kretschmann configuration.

The light source is assumed to generate a highly collimated and fully spatially coherent

plane wave [58, 100, 101]. The incident fundamental wave (FW) with a spectral amplitude

A(ω) is represented by

E0(x,z,ω,θ0) = A(ω)
(k1z

k1
ex − kx

k1
ez

)
ei(kxx+k1zz), (4.1)

where k1 = (kx,0,k1z) and k1 = (ω/c)
√

ε1, with k1 expressed in terms of the incident angle

θ0 as kx = k1 sinθ0 and k1z = k1 cosθ0. The energy spectrum of the incident pulse can be

written as [114]

S0(ω) ∝
∣∣∣E0(x,z,ω,θ0)

∣∣∣2. (4.2)

Whenever the FW is incident on the metal, it undergoes multiple reflections in the thin

film and the total reflected FW from the film can be calculated using the Airy summation

[70] and is given by
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Er(x,z,ω,θ0) =A(ω)
(
−k1z

k1
ex − kx

k1
ez

)
× r̃12(ω,θ0)ei(kxx−k1zz),

(4.3)

where r̃12(ω,θ0) is the Fresnel reflection coefficient for p-polarization given by [71]

r̃12(ω,θ0) =
r12 + r23ei2k2zd

1+ r12r23ei2k2zd
, (4.4)

with k2z =
√

k2
2 − k2

x , k2 = (ω/c)
√

ε2 and rαβ represents the reflection coefficient of the

interface between media α and β , (α,β = 1,2,3). From Eq. (4.3), the reflected energy

spectrum can be written as

Sr(ω,θ0) ∝
∣∣∣Er(x,z,ω,θ0)

∣∣∣2. (4.5)

The incident wave excites surface polarizations at both the lower and upper interfaces

of the gold film. The general ithcomponent of the difference-frequency polarization field is

given by [3]

Pi(r,ω3) =ε0 ∑
jk

∫ ∞

−∞

dω1

2π
χ(2)

S,i jk(ω3;ω1,ω2)

×E j(r,ω1)E∗
k (r,ω2),

(4.6)

where (i, j,k = x,y,z), ω1 and ω2 are the pump frequencies within the incident funda-

mental pulse bandwidth; ω3 = ω1 −ω2 represents the generated difference frequency and

the asterisk (∗) denotes the complex conjugate. χ(2)
S,i jk(ω3;ω1,ω2) is the nonlinear surface

susceptibility tensor of the DFG process. For p-polarized light, the relevant nontrivial con-

tributions to the surface DFG susceptibility are χ(2)
S,zzz(ω3;ω1,ω2), χ(2)

S,xxz(ω3;ω1,ω2) and

χ(2)
S,xzx(ω3;ω1,ω2) [115].

We use Eq. (4.6) to evaluate the polarization at the lower (P<
x,z) and upper (P>

x,z) inter-

faces of the thin film as we show in A. These lower and upper interface polarizations act as

source currents at the difference frequency, and the resulting DFW is given by

Ei(r,ω) =
(ω/c)2

ε0
∑
jk

∫
dr′Gi j(r,r′,ω)Pj(r′,ω). (4.7)

Gi j(r,r′) is the dyadic Green’s function given by [27]
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Gi j(r,r′) =
[
δi j +

1

k2
∇i∇ j

]
G0(r,r′,ω), (4.8)

where G0 is the scalar Green’s function and can be expanded using Weyl’s identity [58] to

obtain

G0(r,r′,ω) =
eik|r−r′|

4π|r− r′|
=

i
8π2

∫ ∞

−∞

dkx

kz
eikx(x−x′)+ikz|z−z′|,

(4.9)

where kx and kz represent the longitudinal and transverse components of the propagation

vector.

The contribution to the DFW radiated into the lower half-space from the nonlinear po-

larization at the lower metal interface is obtained by substituting P<
x,z into Eq. (4.7), yielding

E<
x,bottom(x,z,ω3,θ0) =

iω3

4π
√

ε0ε1
(P<

0x cosθ0 −P<
0z sinθ0)

× ei(kx(ω3)x−k1z(ω3)z)ex,

(4.10)

where all quantities are evaluated at the difference frequency ω3, with

k1(ω3) = (kx(ω3),0,k1z(ω3)) and k2(ω3) = (kx(ω3),0,k2z(ω3)).

P<
x,z contributes further to the DFW when the field above(Eq. (4.10)) is partially trans-

mitted through the metal film and reflected from the top metal boundary back into the lower

half-space as

E<
x,top(x,z,ω3,θ0) =

iω3

4π
√

ε0ε1
(P<

0x cosθ0 −P<
0z sinθ0)

×ei(kx(ω3)x−k1z(ω3)z) r23t12ei2k2z(ω3)d

1+ r12r23ei2k2z,(ω3)d
ex.

(4.11)

tαβ is the transmission coefficient of the interface between media α and β , (α,β = 1,2,3).

The corresponding z-component of the radiated DFW due to the polarization at the bottom

interface of the film is given by

E<
z,bottom(x,z,ω3,θ0) =

iω3

4π
√

ε0ε1
(P<

0z sinθ0 tanθ0 −P<
0x sinθ0)

× ei(kx(ω3)x−k1z(ω3)z)ez,

(4.12)

and after undergoing reflection from the upper interface, it becomes
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E<
z,top(x,z,ω3,θ0) =

iω3

4π
√

ε0ε1
(P<

0z sinθ0 tanθ0 −P<
0x sinθ0)

×ei(kx(ω3)x−k1z(ω3)z) r23t12ei2k2z(ω3)d

1+ r12r23ei2k2z,(ω3)d
ez.

(4.13)

The contribution to the difference-frequency field from the polarization P>
x,z at the upper

metal interface which is radiated into the lower half-space is given by

E>
x,top(x,z,ω3,θ0) =

iω3

4π
√

ε0ε2(ω3)
(P>

0x cosθ0 −P>
0z sinθ0)

×ei(kx(ω3)x−k1z(ω3)z) t12ei2k2z(ω3)d

1+ r12r23ei2k2z,(ω3)d
ex,

(4.14)

and

E>
z,top(x,z,ω3,θ0) =

iω3

4π
√

ε0ε2(ω3)

×(P>
0z sinθ0 tanθ0 −P>

0x sinθ0)

×ei(kx(ω3)x−k1z(ω3)z) t12ei2k2z(ω3)d

1+ r12r23ei2k2z(ω3)d
ez,

(4.15)

where all quantities are evaluated at the difference frequency ω3.

From Eq. (4.10)-Eq. (4.15), the components of the DFW can be written as

Ex(x,z,ω3,θ0) = E<
x,bottom(x,z,ω3,θ0)+E<

x,top(x,z,ω3,θ0)

+E>
x,top(x,z,ω3,θ0),

(4.16)

and

Ez(x,z,ω3,θ0) = E<
z,bottom(x,z,ω3,θ0)+E<

z,top(x,z,ω3,θ0)

+E>
z,top(x,z,ω3,θ0).

(4.17)

The energy spectrum of the DFW can then be conveniently written as

S(ω3,θ0) ∝
∣∣∣Ex(x,z,ω3,θ0)ex +Ez(x,z,ω3,θ0)ez

∣∣∣2. (4.18)

4.4 Results

We model a dual-wavelength self-mode-locked Ti:sapphire laser [116], with a pulse du-

ration (tp) of 50 fs and peaks at λ = 853 nm (ω = 2.208× 1015 rads/s) and λ = 767
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nm (ω = 2.456 × 1015 rads/s) with the normalized spectral amplitude A(ω) shown in

Fig. 4.2(a). The pulse duration defines the bandwidth of the input Gaussian pulse (Δω ≈
0.44
tp

). When this FW is incident on the 50 nm gold thin film, the reflected fundamental

wave is evaluated using Eq. (4.5), with the dielectric permittivity of the gold film evaluated

by interpolating the experimental values of Johnson and Christy [1]. This reflected field is

shown in Fig. 4.2(b).
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Figure 4.2: Far-field spectra of (a) incident fundamental wave and (b) the reflected funda-

mental spectrum from metal film. Incident pulse duration is tp = 50 f s.

The holes in the reflected FW spectrum are due to the coupling of the incident wave

to surface plasmon polaritons (SPP). The SPP coupling angle for ε3 = 1(air) is given by

[27, 60]

θc(ω) = arcsin
[√ ε2(ω)

ε1(ε2(ω)+1)

]
. (4.19)

For λ = 767 nm and λ = 853 nm, the corresponding SPP coupling angles, calculated

from Eq. (4.19), are 43.3o and 42.8o respectively, which coincides well with the plasmon

resonance angles in Fig. 4.2(b).

To evaluate the DFW, we use the hydrodynamic model of the difference-frequency

surface susceptibility developed in [95]. The nonvanishing susceptibility components are

given by
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χ(2)
S,zzz(ω3;ω1,ω2) =−a(ω1,ω2)[ε2(ω1)−1][ε∗2 (ω2)−1]

64π2ε2(ω1)ε∗2 (ω2)nBe
,

χ(2)
S,xzx(ω3;ω1,ω2) =−2b(ω1,ω2)[ε2(ω1)−1][ε∗2 (ω2)−1]ω2

64π2ω3ε2(ω1)nBe
,

χ(2)
S,xxz(ω3;ω1,ω2) =−2b(ω1,ω2)[ε2(ω1)−1][ε∗2 (ω2)−1]ω1

64π2ω3ε∗2 (ω2)nBe
,

(4.20)

where nB is the equilibrium free-electron density in the bulk. The dimensionless parameters

a(ω1,ω2) and b(ω1,ω2) are frequency independent when ω1 and ω2 are well below the

plasma frequency ωp, which is true in our case (
ω1,2

ωp
≈ 0.15). We use b(ω1,ω2) =−1 and

a(ω1,ω2) =−12.9 [115]. To evaluate the DFW we use Eq.(4.18).

(a) (b)

Figure 4.3: Reflected far-field spectra of (a) DFW (b) Normalized DFW. Incident pulse

duration is tp = 50 f s.

Fig. 4.3(a) shows the reflected DFW energy spectrum for a 50 fs FW. The DFW peak

is centered around 7.70 μm, which corresponds to the frequency difference (ω3) of the

peaks in our fundamental wave, with ω3 = ω1 −ω2, where ω1 = 2.456×1015 rads/s, and

ω2 = 2.208×1015 rads/s. Fig. 4.3(a) also shows an enhancement of the DFW around the

plasmon resonance angles of both peaks in the FW, which is between 42.6o and 43.5o, with

a maximum enhancement of 14 times the off-resonance spectral amplitude. The enhance-

ment of the DFW is clearly due to the coupling of the FW to surface plasmon polaritons,

which has also been reported before in the Kretschmann configuration for SHG [24] and

SFG [60].

We can better highlight the spectral effects of DFG in our system by normalizing the

DFW spectrum to the corresponding maximum for each angle of incidence [60] as shown in
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Figure 4.4: (a) Dependence of relative spectral shifts on pulse duration and angle of inci-

dence (b) Maximum spectral shift as a function of pulse duration.

Fig. 4.3(b). We observe significant shifts in our spectrum between the plasmon resonance

angles of 42.6o and 43.5o. This shift is more pronounced at the lower edge of the plasmon

resonance angular range around 42.6o. To explore the dependence of these spectral shifts

on the pulse duration or angle of incidence, we determine the so-called relative spectral shift

(Δλ
λ0

) [60], where λ0 = 7.70 μm. This dependence is shown in Fig. 4.4(a), where we notice

a clear increase in the spectral shift with decreasing pulse duration. Fig. 4.4(b)illustrates

this dependency better, showing the maximum spectral shift for pulse durations ranging

from 25 fs to 90 fs. A fundamental wave with a short pulse duration has a large bandwidth.

This means a wider range of frequencies are coupled into surface plasmons and with each

frequency having a slightly different plasmonic and nonlinear response, the total effect on

the DFW spectrum is more pronounced.
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Figure 4.5: (a) Normalized far-field spectra of DFW with a source pulse duration of

tp = 25 f s (b) Normalized DFW spectral shift close to plasmon resonance at θ0 = 42.6o

for Δn3 = 5× 10−4 (c) DFW peak dependence on refractive index n3 at θ0 = 42.8o (d)
DFW peak dependence on refractive index n3 at θ0 = 42.5o.

To further examine the spectrum of the DFW, we display the normalized DFW spectra

for a 25 f s FW as shown in Fig. 4.5(a), with the maximum spectral shift seen around θ0 =

42.6o. Fig. 4.5(b) shows a colossal spectral shift for a small change in the refractive index

of the dielectric material (n3) with Δn3 = 5×10−4, at the angle of incidence corresponding

to the maximum shift in Fig. 4.5(a). We also observe significant spectral shifts varying n3

above and below the maximum angle as shown in Fig. 4.5(c) and Fig. 4.5(d), respectively.

Linear and nonlinear spectral shifts close to resonance are both based on the frequency

dependence of the plasmonic response of metal thin films, which have frequency-dependent

permittivities and nonlinear susceptibilities. The DFW spectral shifts are more pronounced
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compared to those engendered by a linear 7.70 μm femtosecond pulse coupled into surface

plasmon polaritons in the Kretschmann configuration because of the nonlinear interaction

of the plasmon-enhanced FW which generates the DFW. Such sensitivity to small changes

in refractive index could be very useful for surface sensing applications.
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Figure 4.6: Normalized far-field DFW energy spectrum close to resonance showing

changes in the spectral shape, n3 = 1 and tp = 25 f s.

Besides the spectral shifts, we also observe changes in the shape of the DFW spectrum

close to resonance. We can clearly observe the evolution of the shape of the DFW when we

vary the angle of incidence slightly from θ0 = 42.60o to θ0 = 42.62o in Fig. 4.6. Such sen-

sitivity of the spectral shape on small angular variations can also be leveraged for sensing

applications.
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4.5 Conclusions

We have theoretically investigated the generation of a mid-infrared DFW from a thin gold

film in the Kretschmann configuration. We used a single dual wavelength femtosecond

laser as our source and gaps were observed in the spectrum of the reflected fundamen-

tal wave, which corresponded to the plasmon resonance angles of the individual peaks.

The DFW peak amplitude frequency corresponded to the difference between the peak fre-

quencies in our FW, and was clearly enhanced around the plasmon resonance angle of the

fundamental wave. We have also shown very large spectral shifts in the DFW close to the

surface plasmon resonance angles and also highlighted their dependence on both the pulse

duration of the fundamental wave, the angle of incidence and changes in the refractive in-

dex of dielectric above the metal film. Lastly, changes in the DFW spectral shape close to

resonance were also demonstrated. All these features make our system attractive for use as

a MIR source and a sensitive surface sensor.
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5.1 Abstract

We propose a Kretschmann-based nonlinear plasmonic sensor with a gold thin film de-

posited on a glass prism. Visible and mid-infrared signals are generated in this configura-

tion through the nonlinear processes of sum- and difference-frequency generation respec-

tively. The calculated maximum sensitivity and figure of merit of our sum-frequency based

sensor are an order of magnitude higher than that of a traditional Kretschmann-based sen-

sor in the visible range. Our difference-frequency based sensor has a maximum sensitivity

of 1.0×106 nm/RIU in air at 4.29 μm which is three orders of magnitude higher than that

of existing devices in the mid-infrared range, with its maximum figure of merit almost two

orders of magnitude higher than the alternatives. By comparison, the calculated sensitivity

for operation in water for both sum- and difference frequency is about half that in air. We

thus demonstrate significant gains in the sensitivity of the well known Kretschmann-based

plasmonic sensor over a wide wavelength range, without modifying the physical sensor,

but by exploiting and simply taping the nonlinear optical properties of the system.

5.2 Introduction

In the past decade or so we have witnessed rapid development in the field of plasmonics

which exploits collective oscillations of conduction electrons in metals [64, 117]. These

oscillations are also known as surface plasmon resonance (SPR), with the position and

intensity of the SPR strongly affected by the type of conductor and dielectric properties

45
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of the surrounding environment [64, 118]. This has led to the development of a variety of

sensors with applications to biochemical and environmental sensing [119–123].

The most common SPR sensor configuration is based on the Kretschmann coupling

geometry, whereby a metal thin film is deposited on a glass prism [16] . Changes in the

refractive index of the dielectric on the metal film can be matched to either angular or

spectral changes in the reflected linear fundamental wave (FW) from the sensor. Despite

its simplicity, the Kretschmann-based sensor has limited sensitivity [124], which has led

to a move towards other plasmonic sensors such as local surface plasmon (LSP) [125],

grating-coupled [126], optical fibre [127] and composite [128] sensors that offer greater

sensitivity.

Most of the plasmonic sensors mentioned above work within the framework of linear

plasmonics, where there is no frequency mixing within the incident light source spectrum

bandwidth. On the other hand, most of the research carried out in the field of nonlinear

plasmonics, is geared towards the fundamental understanding of generation, modification

and enhancement of harmonic frequencies [26, 129–133]. However, there has been some

progress made in the development of nonlinear plasmonic sensors based on the processes of

second (SHG) [134, 135] and third harmonic generation [136], with most of these sensors

based on LSP resonance of nanoparticles.

We have recently demonstrated [61, 137] plasmon-enhanced spectral changes in re-

flected sum-frequency generation (SFG) and difference-frequency generation (DFG) using

the simple Kretschmann configuration. In the current study, we propose a robust, simple

and highly sensitive nonlinear surface plasmon sensor operating at visible and mid-infrared

(MIR) wavelengths based on the Kretschmann geometry. We demonstrate ultra high wave-

length sensitivities for the proposed sensor compared to that of traditional Kretschmann

plasmonic sensors [124, 138], especially at mid-infrared wavelengths, where many metals

experience huge losses [139]. We also estimate the signal strength and figure of merit of

the proposed sensor.

5.3 Kretschmann Coupling Geometry and Theoretical background

We use the so-called Kretschmann configuration shown in Fig. 5.1 for our proposed sen-

sor. Our sensor is dynamic in the sense that we use the same physical sensor over a wide

wavelength range as opposed to the traditional Kretschmann sensor which operates only
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at optical frequencies. The conducting film is deposited on a glass prism with permittivity

ε1 = 2.25 and thickness d. We are using gold as the thin film of choice in this investiga-

tion due to its inertness and compatibility with biological samples. Other metals can be

used for our sensor as well, depending on the sample of interest. Silver in particular has

been shown to have a strong plasmonic response at visible frequencies, with very sharp

resonance peaks and could be used if inertness and stability are not important for a sample

under examination [124].

θ0

X

Z

Glass(ε1)
Metal (ε2)
Air/H2O (ε3)

O

Figure 5.1: Irradiation configuration.

With the physical structure of the sensor fully defined, we then proceed to briefly outline

the theory of the linear and nonlinear interaction of light incident on a metal film in this

geometry. The light source is assumed to generate a highly collimated and fully spatially

coherent plane wave [58, 100, 140]. The incident FW with a spectral amplitude A(ω) is

represented by

E0(x,z,ω,θ0) = A(ω)
(k1z

k1
ex − kx

k1
ez

)
ei(kxx+k1zz), (5.1)

where k1 = (kx,0,k1z) and k1 = (ω/c)
√

ε1, with k1 expressed in terms of the incident angle

θ0 as kx = k1 sinθ0 and k1z = k1 cosθ0.

Whenever the FW is incident on the metal, it undergoes multiple reflections within the

thin film. The cumulative reflected FW from the film can be calculated using the Airy

summation technique [70] and is given by
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Er(x,z,ω,θ0) =A(ω)
(
−k1z

k1
ex − kx

k1
ez

)
× r̃12(ω,θ0)ei(kxx−k1zz),

(5.2)

where r̃12(ω,θ0) is the Fresnel reflection coefficient for p-polarization given by [71]

r̃12(ω,θ0) =
r12 + r23ei2k2zd

1+ r12r23ei2k2zd
, (5.3)

with k2z =
√

k2
2 − k2

x , k2 = (ω/c)
√

ε2; rαβ represents the reflection coefficient of the

interface between media α and β , (α,β = 1,2,3).

The energy spectrum of the incident S0(ω,θ0) and reflected Sr(ω,θ0) waves can be

written as [114]

S0,r(ω,θ0) ∝
∣∣∣E0,r(ω,θ0)

∣∣∣2. (5.4)

The incident wave excites surface polarizations at both the lower and upper interfaces

of the gold film. We use the undepleted pump approximation implying that the power of

the incident FW is assumed to be constant. Thus the general ithcomponent of the sum-

frequency polarization field is given by [3]

Pi(r,ω3) =ε0 ∑
jk

∫ ∞

−∞

dω1

2π
χ(2)

S,i jk(−ω3;ω1,ω2)

×E j(r,ω1)Ek(r,ω2),

(5.5)

and the difference-frequency polarization given by

Pi(r,ω3) =ε0 ∑
jk

∫ ∞

−∞

dω1

2π
χ(2)

S,i jk(ω3;ω1,ω2)

×E j(r,ω1)E∗
k (r,ω2).

(5.6)

Here (i, j,k = x,y,z), ω1 and ω2 are the pump frequencies within the incident funda-

mental pulse bandwidth; ω3 = ω1 ±ω2 represents the generated sum (+) and difference

(−) frequencies and the asterisk (∗) denotes a complex conjugate. χ(2)
S,i jk(∓ω3;ω1,ω2) is

the nonlinear surface susceptibility tensor of the SFG and DFG processes respectively.

We use Eq. (5.1),(5.5) and (5.6) to evaluate the nonlinear polarization at the lower and

upper interfaces of the film. These lower and upper interface polarizations act as source
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currents at the nonlinear frequency, and the resulting sum- or difference-frequency field is

given by

Ei(r,ω) =
(ω/c)2

ε0
∑
jk

∫
dr′Gi j(r,r′,ω)Pj(r′,ω). (5.7)

Here Gi j(r,r′) is a dyadic Green’s function [27]. The reflected sum-and difference-frequency

signal spectra can then be determined from their definitions, Eq. (5.4). We have presented

just a general outline of the theoretical formulation with the complete treatment and techni-

cal details found in [61,137]. It should be noted that all quantities in Eq. (5.7) are evaluated

at either the sum or difference frequency ω3.

The proposed plasmonic sensor performance is evaluated by its sensitivity, S(λ ) and

figure of merit (FOM). For our sensor, S(λ ) measures the dependence of the reflected

nonlinear resonance peak position on changes in the refractive index of the dielectric envi-

ronment (ε3), while the FOM determines the measurement accuracy of the sensor by taking

into account the spectral width of the reflected signal. Ideally, we want a sensor with high

values of both sensitivity and FOM. The wavelength sensitivity of a plasmonic sensor is

defined as [141]

S(λ ) =
Δλ
Δn

, (5.8)

where n is the refractive index of the dielectric sample (ε3), and λ is the peak wavelength

of the reflected wave. By changing the dielectric constant of medium 3, we calculate the

resultant shifts in the peak position of the nonlinear reflected spectrum and use this to

determine the spectral sensitivity. The FOM is defined as [142]

FOM =
S(λ )

FWHM
, (5.9)

where FWHM is the full width at half maximum of the reflectance dip (linear sensor) or

peak (nonlinear sensor) spectrum. The signal to noise ratio (SNR) is sometimes used to

evaluate the performance of a SPR sensor and is defined by [143]

SNR =
Δλ

FWHM
. (5.10)

The FOM provides the same qualitative information as the SNR and thus we will limit

our discussions to just the FOM in this paper. We aim to achieve high SNR or FOM

values by optimizing the sensitivity of our system. Besides the sensitivity and FOM, other
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possible factors that affect the performance of a SPR biosensor include; noise from the

optical system and readout electronics, mechanical stability of the sensor, resolution and

the limit of detection [144] of the sensor which can be evaluated when the physical sensor

is tested.

5.4 SFG-Based Sensor

For operation at visible wavelengths, we use the nonlinear process of SFG, where the in-

cident FW is a femtosecond Gaussian laser pulse in the near infrared range. Most metals

have a strong plasmonic response at frequencies in this range [145]. Spectral modulations

in the reflected linear field for ultrashort pulses in the Kretschmann configuration have been

reported at these frequencies [146,147]. The plasmon-enhanced spectral modulation of the

incident light when it couples into surface plasmon polaritons subsequently generates more

spectral signatures in the reflected nonlinear light through nonlinear polarization.

As a demonstration, we use a 10 f s laser pulse with a peak wavelength of 1178 nm

shown in Fig. 5.2(a) which is incident on a 50 nm thick gold film chosen for optimum

resonance [148], to generate a sum-frequency field at 588.6 nm. Fig. 5.2(b), shows the

reflected FW, with the hole in the spectrum representing the coupling of light into surface

plasmon polaritons. The angle of incidence for which light couples into surface plasmon

polaritons is given by [27]

θc(ω) = arcsin
[√ ε2(ω)ε3(ω)

ε1(ε2(ω)+ ε3(ω))

]
. (5.11)

The calculated plasmon coupling angle at the centre wavelength using Eq. (5.11) is

θ = 42.30o, which corresponds well to the hole location in Fig. 5.2(b). The reflected sum-

frequency field is shown in Fig. 5.2(c), with the maximum intensity corresponding to the

surface plasmon coupling angle of the FW. Finally Fig. 5.2(d) shows the SFG spectrum nor-

malized for each angle of incidence, to clearly show the position of SFG spectral peak close

to SPR. The normalization is done by dividing the spectrum for each angle of incidence by

the peak spectral value for that given angle.

A close look at Fig. 5.2(d) shows shifts in the normalized SFG spectral peak position

between incidence angles of 42.2o and 42.4o, which corresponds to plasmon coupling range

of the FW, confirmed by the minimum in the reflected FW in Fig. 5.2(b). We calculate
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(a) (b)

(c) (d)

Figure 5.2: Far-field spectra of (a) incident FW (b) reflected fundamental spectrum from

gold film (c) reflected SFG (d) normalized SFG spectrum. Incident pulse duration is tp =
10 f s.
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the sensitivity for two incident angles within this range for ε3 = 1 (air). We chose θ =

42.35o, where there is a linear blue shift in the spectrum and θ = 42.66o, where we have a

switch in the SFG spectrum which is qualitatively similar to that observed in the Fraunhofer

diffraction of light from a circular aperture [149].

Fig. 5.3(a) and Fig. 5.3(b) show the shifts in the SFG spectrum with changes in the

refractive index n3(air) at θ = 42.35o and θ = 42.66o respectively. We use Eq. (5.8) and

Eq. (5.9) together with the plots to calculate the sensitivity and the FOM. The proposed

sensor can also be used for biological and chemical sensing in solution and therefore the

knowledge of its sensitivity in water is desired. We use the wavelength dependent permit-

tivity of water from [83] in our calculations.

The shifts in the SFG spectrum as a result of changing the refractive index of the sam-

ple n3(water) at θ = 63.60o (linear shift) and θ = 64.04o (spectral switch) are shown in

Fig. 5.3(c) and Fig. 5.3(d) respectively. These spectral plots are used to calculate the sen-

sitivity and FOM of the sensor for water solution samples. A comparison of the sensitivity

and FOM of both linear and SFG Kretschmann-based sensor modalities in both air and

water is presented in Table 5.1. It should be noted that the measurement range in the linear

shift region is not limited to Δn = 0.003n3 and can be extended to Δn = 0.01n3, which is

comparable to the sensing range of most linear plasmonic sensors [150]. The narrow mea-

surement range in the region where we have a spectral switch in our sensor could be very

useful in sensing samples that undergo very small refractive index changes.

Table 5.1: Comparison of sensitivity and FOM values of linear and SFG Kretschmann

based sensor modalities in air and water.

Linear (588 nm) SFG (588 nm)

Sair(λ )(nm/RIU) 2600 14000-35000

Swater(λ )(nm/RIU) 1000 6400-28000

FOMair((RIU−1) 22 467-583

FOMwater(RIU−1) 16 107-222

We can infer from Table 5.1 that both the sensitivity and FOM increase by an order

of magnitude in either air or water when we employ an SFG-based versus linear sensor

modality. Finally, we observe a decrease in both the sensitivity and FOM of both linear and



53

(a) (b)

(c) (d)

Figure 5.3: Reflected far-field SFG spectrum at (a) θ = 42.35o in air (S(λ ) = 14000

nm/RIU , FOM = 222 RIU−1) (b) θ = 42.66o in air (S(λ ) = 35000 nm/RIU , FOM =
583 RIU−1) (c) θ = 63.60o in water (S(λ ) = 6400 nm/RIU , FOM = 107 RIU−1) (d)
θ = 64.04o in water (S(λ ) = 28000 nm/RIU , FOM = 467 RIU−1). The incident pulse

duration is tp = 10 f s.
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nonlinear sensors in water compared to their operation in air. The analytical expression for

sensitivity with wavelength modulation of a Kretschmann-based plasmonic sensor is given

by [76]

S(λ ) =
ε2

2 (ω)
1
2 · |dε2(ω)

dλ | ·n3
3 +

ε2(ω)n3

np
· dn1

dλ · (ε2
2 (ω)+n2

3)
. (5.12)

Eq. (5.12) shows that the sensitivity of a linear Kretschmann-based plasmonic sen-

sor decreases with increase refractive index of the sensing medium. Since the operation

of our nonlinear plasmonic sensor is fundamentally based on the principle of the linear

Kretschmann sensor through the nonlinear interaction of plasmon-enhanced fundamental

waves, we also expect the sensitivity of our nonlinear sensor to decrease with increasing

refractive index of the sensing medium. The FOM is defined in terms of the sensitivity and

we expect a decrease in sensitivity to be matched with a decrease in the FOM.

5.5 DFG-Based Sensor

The mid-infrared range is very useful for sensing organic and inorganic molecules [112].

To generate nonlinear signal at this range, we use a dual-wavelength Gaussian pulse and the

nonlinear process of DFG. Laser sources with dual wavelengths have been used experimen-

tally to generate sum-frequency waves (SFW) and difference-frequency waves (DFW) in

bulk crystals [151–155], which demonstrates the potential use of such sources to generate

new frequencies in plasmonic materials.

We use a dual-wavelength pulse with peaks at 660 nm (ω = 2.854× 1015 rads/s) and

780 nm (ω = 2.415 × 1015 rads/s), each with a pulse duration of 20 f s. The FW and

reflected linear spectrum from the sensor are depicted in Fig. 5.4(a) and Fig. 5.4(b), re-

spectively. The reflected linear spectrum has holes corresponding to the surface plasmon

coupling angle for each peak wavelength. Using Eq. (5.1), we obtain θspp = 43.86o and

θspp = 42.97o for the peaks at 660 nm and 780 nm, respectively, which agrees well with

the minimum angle positions in Fig. 5.4(b). The difference-frequency spectrum is shown

in Fig. 5.4(c), with the peak frequency ω = 4.39×1014 rads/s(4.29 μm) corresponding to

the difference between the frequency peaks in the FW. The normalized reflected difference-

frequency spectrum is shown in Fig. 5.4(d).

Similarly to the SFG sensor, we use the normalized difference-frequency spectra

(Fig. 5.4(d)) to estimate the angular region where the sensor is spectrally sensitive. For
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(a) (b)

(c) (d)

Figure 5.4: Far-field spectra of (a) incident FW (b) the reflected fundamental spectrum

from gold film (c) reflected DFW (d) normalized DFW. The incident pulse duration is

tp = 20 f s.
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angles in the range θ0 = 42.7o − 42.9o, we have a giant spectral switch in the spectrum.

For θ0 = 42.9o − 43.39o, we observe a red shift in the spectrum and finally a blue shift in

the spectrum for θ0 = 43.40o − 43.59o. We proceed to calculate the sensitivity and FOM

of our sensor in each of these regions using a representative angle of incidence for both air

and water.

(a) (b) (c)

(d) (e) (f)

Figure 5.5: DFG spectral peak dependence on refractive index n3 at (a) θ0 = 42.8o in air

(S(λ ) = 1× 106 nm/RIU , FOM = 765 RIU−1) (b) θ0 = 43.20o in air (S(λ ) = 5× 104

nm/RIU , FOM = 40 RIU−1) (c) θ0 = 44.00o in air (S(λ ) = 3.2×104 nm/RIU , FOM =
27 RIU−1) (d) θ0 = 65.81o in water (S(λ ) = 3.6× 105 nm/RIU , FOM = 300 RIU−1)

(e) θ0 = 66.90o in water (S(λ ) = 3× 104 nm/RIU , FOM = 23 RIU−1) ( f ) θ0 = 71.00o

in water(S(λ ) = 2 × 104 nm/RIU , FOM = 16 RIU−1). The incident pulse duration is

tp = 20 f s.

Fig. 5.5 shows the dependence of spectral shifts at the peak DFG wavelength on re-

fractive index change (n3) in both air and water for different representative angles in the

plasmon resonance range of the FW. We use these spectral shift plots to calculate the sensi-

tivity and FOM based on Eq. (5.8) and Eq. (5.9). The Kretschmann-based sensor cannot be

used in the MIR as a linear sensor due to the large metal losses at these frequencies. Since
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we cannot compare the performance of our DFG sensor to a linear Kretschmann-based

sensor in this range, we have used the sensitivity and FOM values of a recently proposed

high sensitivity linear MIR sensor based on metallic nanostructures [156] for comparison.

A comparison of the sensitivity and FOM of both linear and nonlinear sensor modalities is

presented in Table 5.2.

Table 5.2: Comparison of sensitivity and FOM values of a linear MIR sensor and a DFG

Kretschmann based sensor in air and water.

Linear MIR sensor [156] DFG (4.29 μm)

Sair(λ )(nm/RIU) 8000 3.2×104 −1.0×106

Swater(λ )(nm/RIU) 950 2.0×104 −3.6×105

FOMair((RIU−1) 10.26 27-765

FOMwater(RIU−1) 1.76 16-300

The sensitivity of our DFG Kretschmann-based sensor in both air and water is three

orders of magnitude higher than that presented in Nguyen-Huu et al [156]. As a result of

the high sensitivity values of the DFG sensor, the FOM is almost two orders of magnitude

higher than those of the linear sensor. As was the case with the SFG nonlinear sensor, the

values of the sensitivity and FOM in water are about half those measured in air.

Nonlinear signals are very difficult to detect due to very small magnitudes of metal

nonlinear susceptibilities. It is therefore imperative that we estimate the optical power

of the reflected SFG/DFG field to make sure they can be easily detected in order to take

advantage of the very high sensitivity values of our sensor. To do this, we assume an

incident pulse in both cases has an input power of 100 mW , which is quite reasonable for

most femtosecond laser sources. The attenuation from optical elements such as collimators,

dichroic mirrors, polarizers, microscope objectives etc., which, incidentally, were all used

in a recent study of reflected SHG from conducting thin films [63], was estimated to be

40%. Therefore the power of the source just before incidence on the sample is around 60

mW . From Fig. 5.2(c) and Fig. 5.4(c), we observe the power of the reflected nonlinear

field to be approximately 10−6 times the incident power, thereby leaving us with 60 nW of

power immediately after reflection from the sample. Since the reflected fields have to go

through optical elements before detection, and assuming a combined attenuation of 40%,
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this results in a detectable signal of 36 nW . This estimate gives us a reasonable signal

power level, which commercial spectrometers such as the Ocean optics USB4000, can

easily detect. Finally, nonlinear optical measurements from [63] for an incident optical

power of 38 mW generated reflected nonlinear signals with a high SNR, which bodes well

for our proposed sensor.

Our results also indicate that both the sensitivity and FOM strongly depend on the angle

of incidence of the FW. Thus accurate control of the incidence angle is very important for

the realization of this sensor. Such control can be achieved by using a goniometer, such as

the WT-120 High Precision Motorized goniometer from PI GmbH, which has a resolution

of 0.0001o. With such precision, we can accurately control our incident angle.

5.6 Conclusion

We have proposed the geometry and calculated the sensitivity and FOM of a Kretschmann-

based nonlinear plasmonic sensor, operating at both visible and MIR wavelengths through

the SFG and DFG nonlinear processes. We demonstrated at specific angles of incidence

close to surface plasmon resonance of the FW very high sensitivity values of 1 × 106

nm/RIU and 3.5× 104 nm/RIU for the DFG and SFG processes respectively in air. Our

maximum sensitivity value is three orders of magnitude higher than the wavelength sen-

sitivity of a traditional linear Kretschmann-based sensor. The maximum FOM values of

583 RIU−1 and 765 RIU−1 for reflected SFG and DFG are an order of magnitude higher

than the values typical of a traditional Kretschmann sensor. The maximum sensitivity value

for measurements in water, which is highly relevant for biosensing applications, was also

three orders of magnitude higher than that of a traditional Kretschmann sensor, making the

proposed sensor especially suitable for biological or chemical sensing. Besides the large

values of the calculated sensitivity, the proposed sensor gives us the unique ability to oper-

ate a Kretschmann-based plasmonic sensor in the MIR, which is otherwise impossible to do

in the linear regime. An estimation of the nonlinear signal power from the sensor showed

that the nonlinear signal could be easily detected with commercially available spectrome-

ters. We have used a well known geometry, which is very easy to fabricate, and effectively

transformed it into an extremely sensitive, versatile surface plasmon sensor using its non-

linear optical properties alone.
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6.1 Abstract

We have experimentally measured the surface second-harmonic generation (SHG) of sput-

tered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium,

germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-

harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561

nm. We present a clear comparison of the SHG intensity of these films relative to each

other. Our measured relative intensities compare favorably with the relative intensities of

metals with published data. We also report for the first time to our knowledge the surface

SHG intensity of tungsten and antimony relative to that of well known metallic thin films

such as gold and silver.

6.2 Introduction

Surface SHG is a very useful technique for generating second order nonlinearities in sys-

tems with inversion symmetry [157, 158]. From the early experimental observation of

surface SHG in metals in the 60’s and 70’s [80, 85, 86, 88, 102, 103] to the present day

[159–163], a lot of experimental data has been generated for the surface SHG and suscep-

tibility components of many metals. There is a lot of published experimental data on the

surface SHG of metallic films such as Au, Ag and Al [164–166]. However, most of these

studies typically cover narrow frequency ranges, illumination angles and film thicknesses.

59



60

Published experimental data on SHG in other metallic thin films is even more scarce. Un-

like the ready availability of experimental data on the linear optical properties of metal thin

films [83, 84], SHG data for these same materials is hard to come by and therefore very

much cherished. Thus any new addition to the experimental data of SHG for different thin

films, using different sources and illumination configurations is very useful especially for

researchers who need some kind of starting reference for studying a given thin film.

In our study, we set out to investigate the reflected SHG from a variety of metal and

semiconductor thin films and to develop a simple yet useful relative calibration system for

these films. We examined the SHG intensity of Au, Ag, Al, Co, Cr, Ge, Ni, Sb, Ti, TiN,

W, Zn, Si and ITO. For an incidence angle of 23.6o and a wavelength of 1561 nm, we were

able to calibrate the surface SHG response of these thin films relative to each other and to

well studied films such as Au and Ag.

6.3 Experimental Setup

We irradiate the thin films used in our study using the configuration shown in Fig. 6.1,

where θ0 is the incident angle. The conducting films are deposited on a glass substrate.

All the thin films were grown through magnetron sputtering, with the thickness of the films

monitored during growth. The films were grown to thicknesses of either 50 nm or 100 nm.

We used a linearly polarized fiber laser source, with a central wavelength of 1561 nm, a

pulse width of 150 fs. The average incident power range at the sample plane, after propagat-

ing through the system optics was 8 mW - 70 mW. The incident laser beam was collimated

using a broadband collimator, passed through a linear polarizer and rotated to generate p-

polarized light. This p-polarized light was focused on the thin film sample using a 0.4 N.A

reflective microscope objective at an angle of incidence of 23.6o. The angle of incidence

is not very critical in these studies, since surface plasmon coupling is not involved. The

reflected linear and second-harmonic beams were collected and collimated by the same mi-

croscope objective. They were separated by a dichroic mirror, with the second-harmonic

wave aligned for p-polarization and detected with a spectrometer. The incident light inten-

sity at the source plane was measured regularly and the variation was less than 4 %.
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Figure 6.1: Irradiation configuration.

6.4 Results

Fig. 6.2 shows both the incident wave spectrum and the SHG spectrum for a 50 nm thick

Au film when irradiated with a 38 mW, 150 fs laser centered at 1561 nm. We use the same

source for the rest of our measurements and vary the intensity from 8 mW to 70 mW.

Fig. 6.3 shows both the measured second-harmonic intensity of p-polarized light for

100 nm thick conducting thin films. We observe that the second-harmonic intensity profiles

split roughly into four groups. Group A consists of Au, Ag, Al and W and this group has

the highest second-harmonic nonlinear response of our system. This group of metals has

also being well studied. We can see from [165] that they all have comparable SHG signals

for p-polarized light. Group B consists of Cu, Ti, Co and Ni with the signals 30% weaker

than those of group A. Group C consists of Cr, Ge, Zn, Sb and TiN, which have 15%

weaker SHG intensity compared to group B. Finally, group D films consisting of Si and

ITO which are both semiconductors have the weakest measured intensity with their SHG

intensity being an order of magnitude lower than that of group A.

Some of the materials in Fig. 6.3 were grown to just 50 nm in order to examine any

dependence of thickness on the second-harmonic response of the films. The results are

shown in Fig. 6.4. We do not observe any significant difference between the second order

response of the 100 nm films compared to the 50 nm films. This is consistent with the
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(a)
(b)

Figure 6.2: (a) Incident fundamental spectrum at 1561 nm (b) SHG spectra of a 50 nm

thick Au film.
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Figure 6.3: Measured SHG intensity for 100 nm thick films.
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Figure 6.4: Measured SHG intensity for 50 nm thick films.

results in [167], where little variation in SHG intensity is observed in films with thickness

ranging between 50 nm - 100 nm.

A power dependence test of the reflected second harmonic wave is shown in Fig. 6.5 for

sample thin films from the different groups identified. Linear regression is then applied to

the log-log plots revealing a second-order dependence of the SHG intensity to the incident

power.

6.5 Conclusions

We have characterized the relative SHG intensity of various metal and semiconductor thin

films using a 1561 nm p-polarized incident source. In cases where published experimental

data for SHG was available, we found that our relative SHG intensities matched the relative

intensities from the published data. In the case of W and Sb thin films where little or no

experimental data is available for surface SHG, we can draw useful conclusions on the

strength of their surface second-harmonic nonlinearities. We can see clearly from Fig. 6.3

that W has a comparable second-harmonic response to Au and Ag and the response of
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Figure 6.5: Log-log plot of the SHG intensity of Au, Cr, Cu and ITO. The lines represent

the linear regression data fit.

antimony is closer to that of Cr, Zn and Ge. This experimental data serves as a first point of

reference for the surface SHG response of thin films whose experimental data is not readily

available.



Chapter 7

Conclusion

This chapter summarizes the results from this study and discusses possible directions for

future research on this subject.

7.1 Conclusion

In this thesis, the main goal was to explore the nonlinear optical effects of generating

second-order electromagnetic fields from a conducting thin film close to surface plasmon

resonance using a single polychromatic incident light source. Classical electromagnetic

field theory was used to study the coupling of light into surface plasmons and the nonlinear

interaction of light in a conducting film.

Suitable and realistic polychromatic incident sources were formulated for these studies.

We also used well-known models to describe the linear and nonlinear optical properties

of the conductors such as the permittivity and second-order surface susceptibility compo-

nents. Both analytical and numerical methods were used to calculate fields resulting from

plasmon-enhanced nonlinear interactions.

The main findings of our studies on nonlinear interaction of polychromatic light sources

in conducting films is broken down into four sections. In each section, we provide a general

description of the main results.

Generation of SFG and DFG Waves using a single polychromatic source.

We theoretically demonstrated for the first time, to the best of our knowledge, the gen-

eration of plasmon enhanced sum- and difference-frequency waves from the surface of a

metal using a polychromatic source in the Kretschmann illumination configuration. We

used ultra-short femtosecond Gaussian and dual-wavelength Gaussian pulses to generate

sum- and difference-frequency waves, respectively. Nonlinear waves in the visible and

MIR range were generated with a very strong enhancement of the nonlinear waves close to

SPR of the incident light source.
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Spectral Changes in the reflected nonlinear spectrum generated using a polychro-

matic source.

Besides the generation of sum-and difference-frequency waves in reflection from a metal

surface, we also demonstrated changes in the nonlinear wave spectrum close to surface

plasmon resonance of the fundamental wave. We showed spectral shifts and switches in

both the sum- and difference-frequency spectra. We also demonstrated a strong correlation

between these spectral effects and properties of the incident FW such as the pulse dura-

tion, with stronger effects observed for shorter pulses. Finally, we demonstrated a strong

dependence of the reflected nonlinear spectral peak position on the material properties of

the dielectric material surrounding the metal film.

High sensitivity refractive index sensor based on the Kretschmann configuration.

In this study, we proposed and investigated a simple, robust and high sensitivity refrac-

tive index sensor, based on the second-order nonlinear processes of sum- and difference-

frequency generation. The calculated sensor performance parameters showed very high

sensitivity and FOM values with the ability to operate over a wide wavelength range. We

demonstrated a spectral sensitivity at mid-infrared wavelengths, that was two orders of

magnitude higher than current values available in the literature.

Relative strengths of SHG waves reflected from conducting thin films.

Finally, we successfully estimated relative strengths of SHG waves, reflected from a large

variety of conducting thin films using an infrared femto-second laser source. The films

were sputtered on a glass substrate and illuminated directly from the top, with the SHG

light measured in reflection. Conducting films of thickness 50nm and 100 nm were used

in this study, with SHG fields from tungsten and antimony shown to be comparable to that

of silver and gold. The information gathered from this study can be used to determine the

suitability of conducting thin film material for our proposed nonlinear plasmonic sensor.

7.2 Future Work

In our studies, we demonstrated the immense potential of our proposed nonlinear plasmonic

sensor. Its simplicity and very high sensitivity stands out and makes it a excellent candidate

for a possible commercial plasmonic biosensor. However, there is still some work to be

done before its viability can be fully demonstrated. A first step would be an experiment to

measure the wavelength sensitivity, something we could not do due to time constraints and
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other limitations in our laboratory.

Lastly, our current design is far from optimum and we can improve on the sensitivity

through a number of independent investigations such as the use of different metals, vary-

ing metal thickness, using a multilayered structure with different materials and utilizing

metallic nanostructures.
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Appendix A

Polarization Calculations

The total FW in the glass is a superposition of the incident and reflected waves in Eq. (4.1)

and Eq. (4.3). This is given by

E1(x,z,ω,θ0) = E0(x,z,ω,θ0)+Er(x,z,ω,θ0). (A.1)

The normal component of Eq. (A.1) can be written as

E1z(x,z,ω,θ0) =−kx

k1
A(ω)eikxx

[
eikzz + r̃12(ω,θ0)e−ik1zz

]
ez, (A.2)

while the tangential component is written as,

E1x(x,z,ω,θ0) =
k1z

k1
A(ω)eikxx

[
eikzz − r̃12(ω,θ0)e−ik1zz

]
ex. (A.3)

By applying the electromagnetic boundary conditions to both the normal and tangential

components of the electric field on both sides of the boundary at z = 0, we can write down

the components of electric field, E<
2 on the lower interface of the metal. The normal com-

ponent of the field is given by

E<
2z(x,z,ω,θ0) =−kx

k1

ε1

ε2
A(ω)eikxx

[
1+ r̃12(ω,θ0)

]
ez, (A.4)

while the tangential component is given by

E<
2x(x,z,ω,θ0) =

k1z

k1
A(ω)eikxx

[
1− r̃12(ω,θ0)

]
ex. (A.5)

The normal and tangential components of the field in the gold thin film are superpositions

of the fields transmitted into the film and that reflected from the upper interface of the thin

film. They are given respectively by

E2z(x,z,ω,θ0) =− kx

k2
A(ω)eikxx t12

1+ r12r23ei2k2zd

×
[
eik2zz + r23ei2k2zde−ik2zz

]
ez,

(A.6)

80



81

and

E2x(x,z,ω,θ0) =
k2z

k2
A(ω)eikxx t12

1+ r12r23ei2k2zd

×
[
eik2zz − r23ei2k2zde−ik2zz

]
ex.

(A.7)

The components of the electric field at the upper interface of the gold film, E>
2 at z = d are

calculated similarly to yield

E>
2z(x,z,ω,θ0) =−kx

k2
A(ω)eikxxRz(ω,θ0)ez, (A.8)

and

E>
2x(x,z,ω,θ0) =−k2z

k2
A(ω)eikxxRx(ω,θ0)ex, (A.9)

where

Rz(ω,θ0) =
t12(1+ r23)ei2kzd

1+ r12r23ei2k2zd
,

Rx(ω,θ0) =
t12(1− r23)ei2kzd

1+ r12r23ei2k2zd
.

(A.10)

The polarization at the lower interface of the thin film, P<
x,z can then be determined using

the electric field components at the lower interface and Eq. (4.6), yielding

P<
z (x,ω3,θ0) = ε0

∫ ∞

−∞

dω1

2π
χ(2)

S,zzz(ω3;ω1,ω2)E<
2z(x,ω1,θ0)E∗<

2z (x,ω2,θ0),

= ezP<
0z(ω3,θ0)eikx(ω3)x,

(A.11)

P<
x (x,ω3,θ0) = ε0

∫ ∞

−∞

dω1

2π
χ(2)

S,xzx(ω3;ω1,ω2)E<
2z(x,ω1,θ0)E∗<

2x (x,ω2,θ0)

+ ε0

∫ ∞

−∞

dω1

2π
χ(2)

S,xxz(ω3;ω1,ω2)E<
2x(x,ω1,θ0)E∗<

2z (x,ω2,θ0),

= exP<
0x(ω3,θ0)eikx(ω3)x.

(A.12)

Here P<
0z and P<

0x are defined respectively as

P<
0z(ω3,θ0) = ε0 sin2 θε2

1

∫ ∞

−∞

dω1

2π
χ(2)

S,zzz(ω3;ω1,ω2)
A(ω1)A∗(ω2)

ε2(ω1)ε∗2 (ω2)

× (1+ ˜r12(ω1,θ0))(1+ r̃∗12(ω2,θ0)),

(A.13)
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P<
0x(ω3,θ0) = ε0 sinθ0 cosθ0ε1

∫ ∞

−∞

dω1

2π
χ(2)

S,xzx(ω3;ω1,ω2)
A(ω1)A∗(ω2)

ε2(ω1)

× (1+ r̃12(ω1,θ0))(1− r̃∗12(ω2,θ0))

+ ε0 sinθ0 cosθ0ε1

∫ ∞

−∞

dω1

2π
χ(2)

S,xxz(ω3;ω1,ω2)
A(ω1)A∗(ω2)

ε∗2 (ω2)

× (1− r̃12(ω1,θ0))(1+ r̃∗12(ω2,θ0)).

(A.14)

Similarly, the polarization of the upper interface on the metal thin film, P>
x,z is given by

P>
z (x,ω3,θ0) = ε0

∫ ∞

−∞

dω1

2π
χ(2)

S,xzx(ω3;ω1,ω2)E>
2z(x,ω1,θ0)E∗>

2z (x,ω2,θ0),

= ezP>
0z(ω3,θ0)eikx(ω3)x,

(A.15)

P>
x (x,ω3,θ0) = ε0

∫ ∞

−∞

dω1

2π
χ(2)

S,xzx(ω3;ω1,ω2)E>
2z(x,ω1,θ0)E∗>

2x (x,ω2,θ0)

+ ε0

∫ ∞

−∞

dω1

2π
χ(2)

S,xxz(ω3;ω1,ω2)E>
2x(x,ω1,θ0)E∗>

2z (x,ω2,θ0),

= exP>
0x(ω3,θ0)eikx(ω3)x.

(A.16)

Here P>
0z and P>

0x are

P>
0z(ω3,θ0) = ε0 sin2 θε1

∫ ∞

−∞

dω1

2π
χ(2)

S,zzz(ω3;ω1,ω2)
A(ω1)A∗(ω2)√
ε2(ω1)

√
ε∗2 (ω2)

×Rz(ω1,θ0)R∗
z (ω2,θ0)

(A.17)

P>
0x(ω3,θ0) = ε0 sinθ0

√
ε1

∫ ∞

−∞

dω1

2π
χ(2)

S,xzx(ω3;ω1,ω2)
A(ω1)A∗(ω2)√

ε2(ω1)

×
[√ε2(ω2)− ε1 sin2 θ√

ε2(ω2)

]∗
Rz(ω1,θ0)R∗

x(ω2,θ0)

+ ε0 sinθ0

√
ε1

∫ ∞

−∞

dω1

2π
χ(2)

S,xxz(ω3;ω1,ω2)
A(ω1)A∗(ω2)√

ε∗2 (ω2)

×
[√ε2(ω1)− ε1 sin2 θ√

ε2(ω1)

]
Rx(ω1,θ0)R∗

z (ω2,θ0).

(A.18)



Appendix B

Matlab Codes for Simulating Nonlinear Wave Generation

%***********************************************************************

% Nonlinear spectrum caculations using a polychromatic plane wave

%***********************************************************************

clear

clc

%***********************************************************************

% Parameters

%***********************************************************************

cc=2.99792458e8; %speed of light in free space

mu0=4.0*pi*1.0e-7; %permeability of free space

eps0=1.0/(cc*cc*mu0); %permittivity of free space

epsr1=2.25; %permittivity of glass

epsr3=1.0; %permittivity of air

d=50.0e-9; %thickness of the gold film

omega0 = 2.325495762109696e+15; % 810 nm, centre frequency of FW

omega30=2.446300736764744e+14; % 7.70 um, centre frequency, DFW

omegaL=omega0-1.1e15;

omegaU=omega0+1.1e15;

omega3l=omega30-1.4e14;

omega3u=omega30+1.5e14;
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thetail=40.0; %Minimum angle of incidence

thetaiu=46.0; %Maximum angle of incidence

d omega1=omega0*0.01; %Integration step size

d omega3=omega30*0.01;

d thetai=0.01/180.0*pi;

%***********************************************************************

% loop 1: DF angular frequency

%***********************************************************************

ii=1;

for omega3=omega3l:d omega3:omega3u

lambda3=2.0*pi*cc/omega3; %wavelength

epsr2 w3=IB 7700(lambda3); %frequency dependent permittivity

k1 w3=sqrt(epsr1)*omega3/cc; %wave number in glass

k2 w3=sqrt(epsr2 w3)*omega3/cc; %wave number in gold film

k3 w3=sqrt(epsr3)*omega3/cc; %wave number in air

%***********************************************************************

% loop 1.1: incident angle

%***********************************************************************

jj=1;

for thetai=thetail/180.0*pi:d thetai:thetaiu/180.0*pi

kx w3=k1 w3*sin(thetai); %wave number components of SH

k1z w3=sqrt(k1 w3ˆ2-kx w3ˆ2);

k2z w3=sqrt(k2 w3ˆ2-kx w3ˆ2);

k3z w3=sqrt(k3 w3ˆ2-kx w3ˆ2);

%***********************************************************************

% loop 1.2: Fundamental angular frequency

%***********************************************************************
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sum1z=0.0; %for integral caculation

sum2z=0.0;

sum1x=0.0; %for integral caculation

sum2x=0.0;

kkk=1;

for omega1=omegaL:d omega1:omegaU % linear frequency scan

%'Fresnel' calculates \epsilon, wavevectors and spectral amplitudes

[F1 w1,F2 w1,F11 w1,A1,epsr2 w1,kxk2 w1,kzk2 w1,F22 w1]...

=Fresnel(omega1,thetai);

omega2=omega3-omega1;

%'Fresnel' calculates \epsilon, wavevectors and spectral amplitudes

[F1 w2,F2 w2,F11 w2,A2,epsr2 w2,kxk2 w2,kzk2 w2,F22 w2]...

=Fresnel(omega2,thetai);

%Second-order surface susceptibilities

kaizzz=kai zzz new(epsr2 w1,epsr2 w2,omega1,omega2);

kaixzx=kai xzx new(epsr2 w1,omega1,omega2,omega3);

kaixxz=kai xxz new(epsr2 w2,omega1,omega2,omega3);

%Intergral caculation

I1z=kaizzz*F1 w1*A1*conj(F1 w2)*A2*d omega1/(epsr2 w1...

*conj(epsr2 w2));

I2z=kaizzz*F2 w1*A1*conj(F2 w2)*A2*d omega1/(sqrt(epsr2 w1)...

*conj(sqrt(epsr2 w2)));

I1x=kaixzx*F1 w1*A1*conj(F11 w2)*A2*d omega1/epsr2 w1 +...

kaixxz*conj(F1 w2)*A1*(F11 w1)*A2*d omega1/conj(epsr2 w2);

I2x=kaixzx*F2 w1*A1*conj(F22 w2)*A2*kxk2 w1*conj(kzk2 w2)...

*d omega1 + kaixxz*conj(F2 w2)*A1*(F22 w1)*A2*conj(kxk2 w2)...

*(kzk2 w1)*d omega1;
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%

sum1z=sum1z+I1z;

sum2z=sum2z+I2z;

sum1x=sum1x+I1x;

sum2x=sum2x+I2x;

kkk=kkk+1;

end

Ilz=sum1z;

Ilx=sum1x;

Iuz=sum2z;

Iux=sum2x;

p0lz=eps0*epsr1ˆ2*sin(thetai)ˆ2*Ilz/2.0/pi; %lower interface

p0lx=eps0*epsr1*sin(thetai)*cos(thetai)*Ilx/2.0/pi;%lower interface

p0uz=1*eps0*epsr1*sin(thetai)ˆ2*Iuz/2.0/pi; %upper interface

p0ux=1*eps0*Iux/2.0/pi; %upper interface

%Fresnel coefficient at SH frequencies

r122=(epsr2 w3*k1z w3-epsr1*k2z w3)/(epsr2 w3*k1z w3+epsr1*k2z w3);

r232=(epsr3*k2z w3-epsr2 w3*k3z w3)/(epsr3*k2z w3+epsr2 w3*k3z w3);

t212=2.0*sqrt(epsr1*epsr2 w3)*k2z w3/(epsr1*k2z w3+epsr2 w3*k1z w3);

frsl=r232*t212*exp(2.0*1i*k2z w3*d)/(1.0+r122*r232...

*exp(2.0*1i*k2z w3*d));

frsu=t212*exp(1i*k2z w3*d)/(1.0+r122*r232*exp(2.0*1i*k2z w3*d));

%DFW calculations based on Eqn (16) and (17) of "Giant spectral

%transformations in plasmon-enhanced difference-frequency

%generation with polychromatic light"

Ex1 = 1i*omega3*(-sin(thetai)*p0lz + cos(thetai)*p0lx)...

/(4*pi*cc*sqrt(epsr1*eps0));

Ex2 = 1i*omega3*(-sin(thetai)*p0lz + cos(thetai)*p0lx)...
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*frsl/(4*pi*cc*sqrt(epsr2 w3*eps0));

Ex3 = 1i*omega3*(-sin(thetai)*p0uz + cos(thetai)*p0ux)...

*frsu/(4*pi*cc*sqrt(epsr2 w3*eps0));

Ez1 = 1i*omega3*sin(thetai)*(-1*p0lx + tan(thetai)*p0lz)...

/(4*pi*cc*sqrt(epsr1*eps0));

Ez2 = 1i*omega3*sin(thetai)*(-1*p0lx + tan(thetai)*p0lz)...

*frsl/(4*pi*cc*sqrt(epsr2 w3*eps0));

Ez3 = 1i*omega3*sin(thetai)*(-1*p0ux + tan(thetai)*p0uz)...

*frsu/(4*pi*cc*sqrt(epsr2 w3*eps0));

Ex = Ex1 + Ex2 + Ex3;

Ez = Ez1 + Ez2 + Ez3;

S2(jj,ii)=abs(Ex.ˆ2) + abs(Ez.ˆ2);

jj=jj+1;

end

%***********************************************************************

% End varible loop

%***********************************************************************

ii=ii+1;

end

%Normalized Intensity
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