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Abstract

We will show that the perfect fluid Einstein field equations in the case of spherical.
plane and hyperbolic symmetry reduce to an autonomous system of ordinary differ-
ential equations when a spacetime is assumed to admit a kinematic self-similarity
(of either the second or zeroth kind). The qualitative properties of solutions of this
syvstem of equations. and in particular their asvmptotic behaviour. will be investi-
gated. Some details of the nature of kinematic self-similarity will be discussed to
demonstrate the importance of various subcases of the full model. In particular. the
geodesic subcase and a subcase containing the static models will be examined in de-
tail. Exact solutions in these important subcases will be given and their asvmptotic
behaviour fully discussed. Exact solutions admitting a homothetic vector (i.e.. a self
similarity of the first kind) will be shown to play an important role in describing the
asvmptotic behaviour of the kinematic self-similar models. The mathematical tech-
niques developed in the examination of perfect fluid solutions will then be applied to
the case of an anisotropic fluid. The special case of kinematic self-similarity of infinite

type will also be discussed.
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Chapter 1
Introduction and Background

The primary goal of cosmology is to describe the large-scale structure of our Uni-
verse. In 1915 Einstein developed the Theory of General Relativity which provides
the necessary mathematical framework to begin an investigation of possible models
of the Universe. The theory provides a link between the geometry of the Universe
(imposed by the gravitational field) and the matter (or the fluid) which makes up the
Universe. In natural units, ¢ = 87G = 1, this theory results in a system of governing
equations, referred to as Einstein’s Field Equations (EFEs), which read:

Gap = Tos, (1.1)

where G denotes the Einstein tensor and T' the matter tensor.

The EFEs represented by equation (1.1) are in general a system of ten highly
non-linear partial differential equations (PDEs) in four independent variables. The
complexity of these equations presents a great deal of computational challenges, which
has left the theory lacking any "general solutions”. At the same time, however,
equations (1.1) provide the study of cosmology with a vast and diverse set of solutions
which model the possible evolution of the Universe. The various cosmological models
which have been studied over the years have typically resulted from an initial set of
assumptions on the content of the fluid and/ or the geometry which are consistent with
the astronomical observations of the present state of our Universe. These assumptions

1



result in a simplification of the system (1.1), and in each case may give rise to special
solutions, or classes of solutions.

Once classes of solutions to the EFEs are found a variety of mathematical methods
have been used to investigate their nature. These methods include, though are not
limited to (Wainwright and Ellis, 1997):

1. Topological Methods
2. Numerical Methods
3. Perturbation Methods
4. Qualitative Methods

In particular, qualitative methods focuses on the examination of the evolution of
classes of solutions with emphasis on their asymptotic states (past, future, and in-
termediate) which is of special importance in cosmology theory. The mathematical
theory of dvnamical systems has provided support to these investigations. Dynamical
systems theory originated with the work of Poincare (see, for example, Guckenheimer
and Holmes, 1983), with special focus on the study of autonomous ordinary differ-
ential equations (ODEs). A summary of dynamical systems theory will be given in
section 1.2.

The work of this thesis involves the study of a class of solutions of the EFEs using
a dynamical systerns approach. An initial assumption of generalised self-similarity is
made, which allows the EFEs to reduce to a self consistent system of autonomous
ODEs. The details of the assumption of self-similarity and its role in cosmology will
now be discussed.

1.1 Self-Similarity

Similarity solutions of DEs are those solutions which are found by assuming that the
DEs are invariant under particular continuous transformations. While these solutions



are not general solutions of the DEs, they are, however, important because they often
represent intermediate asymptotics of the system (for more details see section 1.2).
In general, similarity solutions which are self-similar are those which are invariant
under scaling transformations of the independent variables. The scaling transforma-
tions form a Lie group. The infinitesimal transformation of this group then defines
the infinitesimal generator, from which the invariants of the group action can be
determined. The use of these properties of Lie groups to the simplification of differ-
ential equations has been outlined in various texts (see Ovsianikov {1982] for a formal
treatment, and Hui [1985] for an outline of the method). The invariants of the Lie
group then represent invariants of the differential equation. When the solutions of the
differential equations are restricted to be in the form of the invariants, the equations
simplify. Solutions to these simplified equations are then called similarity solutions

Geometrically, given a differentiable manifold the existence of self-similarity can
be intrinsically defined in terms of the metric components which define the manifold.
In particular, the infinitesimal generator (now referred to as the self-similar generator)
and the invariants (now referred to as the similarity variable) can be defined through
the metric. These definitions will be discussed in the next section.

1.1.1 Self-Similarity in Cosmology

Geometrically, self-similarity refers to the situation in which the spatial distribution
of the characteristics of motion remains similar to itself at all times. Solutions pos-
sessing this symmetry in classical (Newtonian) theory were investigated by Barenblatt
and Zel’dovich (1972) where they showed that self-similar solutions represent solu-
tions of degenerate problems in which all dimensional constant parameters from the
initial or boundary conditions vanish or become infinite. Cases in which the form of
the self-similar asymptotics can be obtained from dimensional considerations alone
were termed “self-similar solutions of the first kind.” In Newtonian hydrodynamics
self-similar solutions occur when the functions used in the definitions of all physical
quantities depend on the similarity variable z/l(t) where z and ¢ are the independent



variables of the system and {(t) is a time dependent scale. In the case in which the
asymptotics are obtained from dimensional considerations only, the function [(t) is
simply the identity function I(t) = ¢. In all cases, this functional dependence then
results in a reduction of the number of independent variables for the governing equa-
tions.

The reduction of the number of independent variables implies a reduction in the
complexity of the governing equations. It is this reduction in complexity that pro-
vided the initial motivation for the study of self-similar solutions. More physical
motivation came as a result of the realization that self-similar solutions describe the
”intermediate-asymptotic” behaviour of solutions when they are in the region which
no longer depends on the initial and/ or boundary values, even though the system
may be far from its state of equilibrium (Barenblatt and Zel'dovich, 1972).

Since the pioneering work of Sedov in 1946, the study of self-similar solutions
has played an important role for many physical phenomenon, including the study
of strong (nuclear) explosions (Sedov, 1946 and 1967; Taylor, 1950) and a thermal
wave (Zel'dovich and Kompaneets, 1950; Barenblatt, 1952; Zel'dovich and Raizer,
1963). Similarity solutions are also of interest within general relativity. For exam-
ple, an explosion in a homogeneous background produces fluctuations that may be
complicated initially, but they may tend to be described more closely by a simpler
spherically symmetric similarity model as time evolves (Sedov, 1967), and this applies
even if the explosion takes place in an expanding cosmological background (Schwartz
et al., 1975; Ikeuchi et al., 1983).

In cosmology, the expansion of the Universe from the big bang (and the collapse
of a star to a singularity) might (both) exhibit self-similarity in some form since it
might be expected that the initial conditions "are forgotten” in some sense. Indeed,
the possibility that (at least in some circumstances) fluctuations naturally evolve
(via the EFEs) to a self-similar solution in the non-linear regime from initially more
complicated initial conditions have been studied by several authors previously (see
Coley, 1996 and Coley and Carr, 1998).



Cahill and Taub (1971) were the first to study similarity solutions within the
framework of general relativity. They did so in the cosmological context and under
the assumption of a spherically symmetric distribution of a self-gravitating perfect

fluid, in which the energy-momentum tensor is given by

Top = (1 + P)Uats + PYas, (1.2)

where u® is the normalised fluid 4-velocity and u and p are, respectively, the den-
sity and pressure. They assumed that the solution was such that the dependent
variables are essentially functions of a single independent variable constructed as a
dimensionless combination of the independent variables (r and ¢, and the solution
is invariant under the transformation ¢ = at, ¥ = ar; a constant) and that the
model contains no other dimensional constants; in other words, the assumption of
"self-similarity of the first kind".

Cahill and Taub (1971) showed that the existence of a similarity (of the first kind)

in this situation could be invariantly formulated in terms of the existence of a homo-

thetic vector. A proper homothetic vector (HV) in a given spacetime is a vector field

€ which satisfies (after a constant rescaling)

where g is the spacetime metric and £ denotes Lie differentiation along £&. From

(1.3) we have that
LeGap =0. (1.4)

From dimensional considerations, in the case of self-similarity of the first kind and if
the source of the gravitational field is a perfect fluid, the physical quantities transform
according to (Cahill and Taub, 1971)

£€u° = —u°, (1.5)

and
£€y = -2u, £€p = -2p. (1.6)



From these equations it follows that
ﬁer, =0, (1.7)

which is consistent with the EFEs (1.1). Indeed, in the case of a perfect fluid it
follows that (Cahill and Taub, 1971; Eardley, 1974) equations (1.5) and (1.6) result
from equations (1.3) [through eqns. (1.1), (1.4) and (1.7)] so that the physical quan-
tities transform appropriately. The term "geometric” self-similarity will be used to
indicate that the geometry terms (or terms of the metric tensor) remain self-similar
to themselves through the evolution (and equation (1.3) holds), and the term " phys-
ical” self-similarity will be used to indicate that the physical (or matter) variable (in
the case of a perfect fluid, the energy density and pressure) remain self-similar (and
equations (1.6) hold). Hence in this case of a perfect fluid ” geometric” self-similarity
and " physical” self-similarity coincide. However, this need not be the case (cf. Coley,
1997).

The existence of self-similar solutions of the first kind is related to the conservation
laws and to the invariance of the problem with respect to the group of similarity
transformations of quantities with independent dimensions. In this case a certain
regularity of the limiting process in passing from the original non-self-similar regime
to the self-similar regime is implicitly assumed. However, in general such a passage to
this limit need not be regular, whence the expressions for the self-similar variables are
not determined from dimensional analysis of the problem alone. Solutions are then
called self-similar solutions of the second kind. Characteristic of these solutions is that
they contain dimensional constants that are not determined from the conservation
laws (but can be found by matching the self-similar solutions with the non-self-similar
solutions whose asymptotes they represent) (Barenblatt and Zel’dovich, 1972).

1.1.2 Kinematic Self-Similarity

Self-similarity in the broadest sense refers to the general situation in which a system
is not restricted to be strictly invariant under the relevant group action, but merely



to be appropriately rescaled. The basic condition characterising a manifold vector
field € as a self-similar generator (Carter and Henriksen, 1991) is that there exist
constants d; such that for each independent physical field &?,

Lo = ¥, (18)

where the fields ®4 can be scalar (e.g., u), vectorial (e.g., u,) or tensorial (e.g., gas)-
In general relativity the gravitational field is represented by the metric tensor g,;, and
an appropriate definition of ”geometrical” self-similarity is necessary. In the seminal
work by Cahill and Taub (1971) the simplest generalisation was effected whereby the
metric itself satisfies an equation of the form (1.8), namely £ is a HV, this evidently
corresponding to Zel’dovich’s similarity of the first kind.

However, in general relativity it is not the energy-momentum tensor itself that
must satisfy (1.8), but each of the physical fields making up the energy-momentum
tensor must separately satisfy an equation of the form (1.8). In the case of a fluid
characterised by the timelike congruence u, the energy-momentum tensor can be
uniquely decomposed with respect to u, (Ellis, 1971), and each of these uniquely
defined components (each of which has a physical interpretation in terms of the energy,
pressure, heat flow and anisotropic stress as measured by an observer comoving with
the fluid) must separately satisfy an equation of the form (1.8). In the same way, if the
metric can be uniquely, physically, and covariantly decomposed then the homothetic
condition can be replaced by the conditions that each uniquely defined component
must satisfy (1.8), maintaining self-similarity. For example, in the case of a fluid, the

metric can be decomposed uniquely in terms of u,, through the projection tensor
hap = Gap + UaUs, (1.9)

into parts h,, and (minus) u,u;. The projection tensor represents the projection
of the metric into the 3-spaces orthogonal to u® (i.e., into the rest frame of the
comoving observers), and if u, is irrotational these 3-spaces are surface forming, the
decomposition is global, and h,; represents the intrinsic metric of these 3-spaces.



It is arguments similar to these, and, more importantly, a detailed comparison with
self-similarity in a continuous Newtonian medium, that has led Carter and Henriksen
(1989) to the covariant notion of kinematic self-similarity in the context of relativistic
fluid mechanics. A kinematic self-similarity vector £ satisfies the condition

£€u° = au,, (1.10)

where a is a constant (i.e., £ is a continuous kinematic self-similar generator with

respect to the flow u,). Furthermore,
[’Eh“" = 28hg (1.11)

where § is a constant. It should be noted that various different cases of self-similarity
are included in the definitions {1.10)-(1.11), depending on the relative values of the

constants a and 6. The different classes can be summarised as follows:

1. £ is a Killing Vector: If the two constants a and & are identically zero then
equations (1.10)/(1.11) are equivalent to Lgga = 0; the Killing equations. The

vector € is then simply a Killing Vector.

2. € is a Homothetic Vector: If the two constants are not zero such that a = ¢ the
equations (1.10)/(1.11) are equivalent to ﬁegab = 2g,4s (after a normalisation of

the vector §), and the vector is simply a homothetic vector.

3. ¢ is a Kinematic Self-Similarity of Infinite type: If § = 0 and « is non-zero,
equations (1.10)/(1.11) become

£€u¢ = U, (1.12)
Leh,b =0 (1.13)

In this case the transformation is that of a generalised rigid rotation. Equations
(1.12)/(1.13) will now form the definition for a vector £ to be a kinematic self-
similar vector of infinite type. These symmetries will be investigated in Chapter
5.



4. £ is a proper Kinematic Self-Similarity: When a and 4 are not zero (and a # §)
a normalisation of the vector £ results in equations (1.10)/ (1.11) simplifying to

Leus = au, (1.14)
£€h¢b = 2h¢b (1.15)

Equations (1.14)/(1.15) now form the definition for a vector § to be a proper
KSS. Note that the case of a = 0, which will be referred to as KSS of zeroth

type, is a special case whose properties will differ from other cases (see below).

Note that the full group of kinematic self-similar vectors defined by (1.10)/(1.11) have
as proper subgroups the group of homothetic vectors and the group of killing vectors.
Using definitions (1.14)/(1.15), however, the vector has been normalised and the
group of Killing vectors are no longer a subgroup. The homothetic vectors, however,
remain as a subgroup - characterised by the parameter a having value identically
equal to 1.

Carter and Henriksen (1989) then argue that the case & # 1 (a = 0) in equations
(1.14)/(1.15) is the natural relativistic counterpart of self-similarity of the more gen-
eral second kind (zeroth kind). An extensive study of perfect fluid spacetimes that
admit a kinematic self-similarity, and the mathematical properties of kinematic self-
similarity vectors (including, for example, their Lie algebra structure) was presented
in Coley (1997).

The self-similar index a represents the constant relative proportionality factor
governing the rates of dilation of spatial length scale and amplification of time scale.
Evidently, when a # 1 (i.e., £ is not a HV), the relative rescaling of space and time
(under £) are not the same (and in the zeroth case there is a space dilation without
any time amplification).

In the case of spherical symmetry all dimensionless quantities are functions of a
single independent variable £, which is a dimensionless combination of space coordi-
nates and time. In the absence of any physical dimensional scale this reduces (through
the use of c) to £ = r/t (similarity of the “first” kind). However, in the more general



10

case £ can be a more complicated expression (see, for example, equations (1.18) and
(1.19) below). Indeed, in the spherically symmetric case Carter and Henriksen (1989)
have shown that there exist comoving coordinates in which the kinematic self-similar

generator is given by

o ad 0
eaaI“ = (at + ﬂ)& -+ TE, (116)
and the metric is given by
ds? = —e*®dt? + e?Vdr? + r25%dQ2, (1.17)

where dQ? = d6? + sin®6d¢® and &, ¥ and S depend only on the self-similarity
coordinate £. In (1.17) the usual metric function R(t,r) is given as R = rS. The
metric (1.17) is consequently manifestly of the same form as in Cahill and Taub
(1971), and the resulting governing differential equations do indeed reduce to a system
of ODEs, see Chapter 2.

In the case of self-similarity of the first kind, i.e., the homothetic case, @ = 1 (and
B can be rescaled to zero) and £ = r/t, as usual (Cahill and Taub, 1971).

In the lesser-studied zeroth case, @ = 0 (and £ can be rescaled to unity) and

£=ret. (1.18)

An example of this case is provided by the solution of Henriksen, Emslie and Wesson
(1983) in which a dimensional constant (and hence a fundamental scale) is introduced
via the cosmological constant (see also Carter and Henriksen, 1989).

In the general case a # 0, 1 (8 rescaled to zero), corresponding to self-similarity
of the second kind, the self-similarity coordinate is given by

£ = r(at)"Ve. (1.19)

An important example of the second-kind self-similarities is provided by a class of
zero-pressure perfect fluid models (i.e., dust models in which u® is geodesic; i.e., ' =0
in equation (1.17)) first studied by Lynden-Bell and Lemos (1988) and described in
detail by Henriksen (1989) and Carter and Henriksen (1989).
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Finally, when considering a perfect fluid, as we are in the present study, equations
(1.8) will be satisfied for the energy and pressure if the following conditions are

satisfied:

Len = op, (1.20)
bp, (1.21)

Esp

where a and b are constants.

1.2 Brief Survey of Techniques in Dynamical Sys-
tems

The asymptotic states of various solutions of the EFEs (1.1) are of special impor-
tance in the study of cosmology, as these represent possible states of the Universe at
important times - i.e. at early and late times. Dynamical systems theory is especially
suited to determining the possible asymptotic states, especially when the governing
equations are a finite system of autonomous ODEs. This section will review some of
the results of dynamical systems theory which will be used throughout the thesis in
the analysis of the solutions of the EFEs (1.1). The material is primarily taken from
two sources: (1) Stephen Wiggin's book Introduction to Applied Non-linear Systems
and Chaos, and (2) chapter 4 from the text Dynamical Systems in Cosmology as
written by Reza Tavakol, 1996.

The following are definitions of terms in dynamical systems theory which will be
used throughout the thesis:
Definition 1 A singular point of a system of autonomous, ordinary differential equa-
tions

& = f(z) (1.22)

is a point T € R™ such that f(Z) = 0.
Definition 2 Let Z be a singular point of the DE (1.22). The point Z is called a
hyperbolic singular point if Re();) # 0 for all eigenvalues, );, of the Jacobian of the
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vector field f(z) evaluated at Z. Otherwise the point is called non-hyperbolic.
Definition 3 Let z(t) = ¢4(t) be a solution of the DE (1.22) with initial condition
z(0) = a. The flow {g*} is defined in terms of the solution function ¢,(t) of the DE
by

g‘a = ¢a(t).
Definition 4 The orbit through a, denoted by v(a) is defined by
v(a) = {z eR"|z = g‘a, for all t €R}.

Definition 5 Given a DE (1.22) in R"®, a set S CR" is called an invariant set for the
DE if for any point a € S the orbit through a lies entirely in S, that is y(a) C S.
Definition 6 Given a DE (1.22) in R", with flow {g°}, a subset S CR" is said to be
a trapping set of the DE if it satisfies:

1. S is a closed and bounded set,
2. a € S implies that g*a € S for all ¢t > 0.

Qualitative analysis of a system begins with the location of singular points. Once
the singular points of a system of ODEs are obtained, it is of interest to consider the
dynamics in a local neighbourhood of each of the points. Assuming that the vector
field f(z) is of class C! the process of determining the local behaviour is based on
the linear approximation of the vector field in the local neighbourhood of the singular
point Z. In this neighbourhood we have that:

f(z) = Df(z)(z — 7) (1.23)

where D f(Z) is the Jacobian of the vector field at the singular point Z. The system
(1.23) is referred to as the linearisation of the DE at the singular point. Each of the
singular points can then be classified according to the eigenvalues of the Jacobian of
the linearised vector field at the point.

The classification then follows from the fact that if the singular point is hyper-

bolic in nature the flows of the non-linear system and it’s linear approximation are
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topologically equivalent in a neighbourhood of the singular point. This result is given
in the form of the following theorem:

Theorem 1: Hartman-Grobman Theorem Consider a DE: £ = f(z), where
the vector field f is of class C!. If £ is a hyperbolic singular point of the DE then
there exists a neighbourhood of Z on which the flow is topologically equivalent to the
flow of the linearisation of the DE at Z.

Given a linear system of ODEs:

i = Az, (1.24)

where A is a matrix with constant coefficients, it is a straightforward matter to
show that if the eigenvalues of the matrix A are all positive the solutions in the
neighbourhood of Z = 0 all diverge from that point. This point is then referred to as
a source. Similarly, if the eigenvalues all have negative real parts all solutions converge
to the singular point £ = 0, and the point is referred to as a sink. Therefore, it follows
from topological equivalence that if all eigenvalues of the Jacobian of the vector field
for a non-linear system of ODEs have positive real parts the point is classified as a
source (and all orbits diverge from the singular point), and if the eigenvalues all have
negative real parts the point is classified as a sink.

In most cases the eigenvalues of the linearised system (1.23) will have eigenvalues
with both positive, negative and/or zero real parts. In these cases it is important to
identify which orbits are attracted to the singular point, and which are repelled away
as the independent variable (usually ¢) tends to infinity.

For a linear system of ODEs, (1.24), the phase space R" is spanned by the eigen-
vectors of A. These eigenvectors divide the phase space into three distinct subspaces;

namely:

The stable subspace E* = span(s,, 82, ---Sns)
The unstable subspace E“ = span(u,, uz, -..Uny)

and

The centre subspace E° = span(c,, ¢y, ---Cnc)
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where s; are the eigenvectors who’s associated eigenvalues have negative real part, u;
those who's eigenvalues have positive real part, and ¢; those who's eigenvalues have
zero eigenvalues. Flows (or orbits) in the stable subspace asymptote in the future to
the singular point, and those in the unstable subspace asymptote in the past to the
singular point.

In the non-linear case, the topological equivalence of flows allows for a similar
classification of the singular points. The equivalence only applies in directions where
the eigenvalue has non-zero real parts. In these directions, since the flows are topo-
logically equivalent, there is a flow tangent to the eigenvectors. The phase space is
again divided into stable and unstable subspaces (as well as centre subspaces). The
stable manifold W* of a singular point is a differential manifold which is tangent to
the stable subspace of the linearised system (E*). Similarly, the unstable manifold
is a differential manifold which is tangent to the unstable subspace (E*) at the sin-
gular point. The centre manifold, W<, is a differential manifold which is tangent to
the centre subspace E€. It is important to note, however, that unlike the case of a
linear system, this centre manifold, W< will contain all those dynamics not classified
by linearisation (i.e., the non-hyperbolic directions). In particular, this manifold may
contain regions which are stable, unstable or neutral. The classification of the dynam-
ics in this manifold can only be determined by utilising more sophisticated methods,
such as centre manifold theorems or the theory of normal forms (see Wiggins, 1990).

Unlike a linear system of ODEs, a non-linear system allows for equilibrium struc-
tures which are more complicated than that of the singular points fixed lines or
periodic orbits. These structures include, though are not limited to, such things as
heteroclinic and/ or homo-clinic orbits, non-linear invariant sub-manifolds, etc (for
definitions see Wiggins, 1987). The set of non-isolated singular points will figure into
the analysis of solutions in this thesis, and therefore we shall examine it’s stability
more rigorously.

Definition 7: A set of non-isolated singular points is said to be normally hy-

perbolic if the only eigenvalues with zero real parts are those whose corresponding



eigenvectors are tangent to the set.

Since by definition any point on a set of non-isolated singular points will have at
least one eigenvalue which is zero, all points in the set are non-hyperbolic. A set which
is normally hyperbolic can, however, be completely classified as per it’s stability by
considering the signs of the eigenvalues in the remaining directions (i.e. for a curve,
in the remaining n — 1 directions) (Aulbach, 1984).

The local dynamics of a singular point may depend on one or more arbitrary
parameters. When small continuous changes in the parameter result in dramatic
changes in the dynamics, the singular point is said to undergo a bifurcation. The
values of the parameter(s) which result in a bifurcation at the singular point can
often be located by examining the linearised system. Singular point bifurcations will
only occur if one (or more) of the eigenvalues of the linearised systems are a function
of the parameter. The bifurcations are located at the parameter values for which the
real part of an eigenvalue is zero.

There are several different types of singular point bifurcations, which are classified
according to the particular nature of the change in the dynamics. Some of the more

common bifurcations are:

e Saddle-node bifurcation: A saddle-node bifurcation is characterised by the
non-existence of a singular point on one side of the bifurcation value and the
existence of two singular points on the other side of the bifurcation value. At
the bifurcation value, a singular point in two (or higher) dimensions has a

saddle-node structure.

e Transcritical bifurcation: A transcritical bifurcation is characterised by the
“exchange” of stability. By passing through the bifurcation value the stability
of two singular points interchange. Once again, in two-dimensional phase space,

the singular point has a saddle-node structure.

e Poincare-Andronov-Hopf (PAH) bifurcation: In the preceding examples,
the bifurcation occurs when a single eigenvalue is identically zero. In contrast,
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a PAH bifurcation occurs when there is a pair of eigenvalues whose real part
becomes zero. In this case, the singular point on either side of the bifurcation

value is a spiral (either attracting or repelling).

A complete classification of singular point bifurcations can be found in Wiggins
(1990).

The future and past asymptotic states of a non-linear system may be represented
by any singular or periodic structure. In the case of a plane system (i.e. in two-
dimension phase space), the possible asymptotic states can be given explicitly. This
result is due to the limited degrees of freedom in the space, and the fact that the flows
(or orbits) in any dimensional space cannot cross. The result is given in the form of
the following theorem:

Theorem 2: Poincare-Bendixon Theorem: Consider the system of ODEs
z = f(z) on R?, with f € C?, and suppose that there are at most a finite number of
singular points (i.e. no non-isolated singular points). Then any compact asymptotic

set is one of the following:
1. a singular point
2. a periodic orbit
3. the union of singular points and heteroclinic or homo-clinic orbits.

This theorem has a very important consequence in that if the existence of a closed
(i.e. periodic, heteroclinic or homo-clinic) orbit can be ruled out it follows that all
asymptotic behaviour is located at a singular point.

The existence of a closed orbit can be ruled out by many methods, the most
common is to use a consequence of Green’s Theorem, as follows:

Theorem 3: Dulac’s Criterion: If D C R? is a simply connected open set
and V(Bf) = ,%(Bf;) + o—:—z(Bfg) > 0, or (< 0) for all z € D where B is a C'
function, then the DE & = f(z) where f € C! has no periodic (or closed) orbit which

is contained in D.
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A fundamental criteria of the Poincare-Bendixon theorem is that the phase space
is two-dimensional. When the phase space is of a higher dimension the requirement
that orbits cannot cross does not result in such a decisive conclusion. The behaviour in
such higher-dimensional spaces is known to be highly complicated, with the possibility
of including such phenomena as recurrence and strange attractors (see, for example,
Guckenheimer and Holmes, 1983). For that reason, the analysis of non-linear systems
in spaces of three or more dimensions cannot in general progress much further than
the local analysis of the singular points (or non-isolated singular sets). The one tool
which does allow for some progress in the analysis of higher dimensional systems is the
possible existence of monotonic functions. Since in this thesis there will be the need
to analyse three-dimensional phase spaces the tools for higher dimensional spaces will
now be outlined.

Theorem 4: LaSalle Invariance Principle: Consider a DE z = f(z) on R".
Let S be a closed, bounded and positively invariant set of the flow, and let Z be a
C' monotonic function. Then for all zg € S,

w(zo) C {z € S|Z =0}

where w(zg) is the forward asymptotic states for the orbit with initial value zo; i.e.
a w-limit set (Tavakol, 1997).
This principle has been generalised to the following result:

Theorem 5: Monotonicity Principle (see LeBlanc et. al., 1995). Let ¢, be a
flow on R™ with S an invariant set. Let Z : S — R be a C! function whose range is
the interval (a,b), where a ERU{—oc}, b €ERU{oc} and a < b. If Z is decreasing on
orbits in S, then for all X € S,

w(z) € {s € 5\ S|limy~, Z(y) # b},
a(z) € {s € S\ S|limy.,,Z(y) # a},

where w(z) and a(z) are the forward and backward limit set of z, respectively(i.e.,
the w and a limit sets.)
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As a result of the lack of analytical tools available for the investigation of higher di-
mensional systems, many results concerning the global dynamics must be determined
through numerical investigations.

The final important feature of the analysis of non-linear systems of ODEs is the
consideration of the dynamics on the infinite boundary if the phase space is not
compact.

In order to consider the dynamics at infinity, it is necessary to compactify the
phase space so that the infinite dynamics are now located at finite values. While
there are many different transformations which will transform R" to a compact set,
the method primarily used throughout this work is that of a Poincare transformation.
The Poincare transformation compactifies a R™ space to the closed sphere S"~!. The
dynamics which was located at infinity is now located on the surface of this sphere.

The Poincare transformation is defined as follows:

Given an n-dimensional space with coordinates z,,...,z, we define the transfor-

mation
T

\/1+2'1‘z?'

If we define © = (1 + £P'z?)~1/2 the derivatives of the transformed variables, X; are
defined by:

X,‘ = (125)

X; = ;0 — £24,8°. (1.26)

At this point a transformation of the time variable is required for all non-linear
systems. If the vector field governing the dynamics is of order m then a new time
variable 7 is defined by

dt = 0™ ldr (1.27)

In the case of a quadratic vector field (which will be the case for the systems to be

considered here) the transformation of the independent variable results in:
X: = :13,-62 - z?:é.-e‘ (128)

The system of equations (1.28) then defines the dynamics of the transformed system.
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The dynamics on the infinite boundary of the original (non-transformed) system
is now located on the boundary of the compactified set; i.e., on the surface of the
Poincare sphere. This surface is defined by © = 0. Two consequences are important

to note:

1. The surface of this sphere, © = 0, is an invariant set of the system. Therefore
the dynamics of the system at infinity can be determined by considering the

system restricted to this set.

2. Locally every point on the surface of a n— 1-dimensional sphere is diffeomorphic
to n—1 Euclidean space. In the work of this thesis we will be primarily concerned
with the compactification of a three dimensional Euclidean phase space. The
infinite boundary, after the application of the Poincare transformation will,
therefore, be located on the surface of a 2-sphere. In particular, the analysis of
the local dynamics at a singular point on this surface is exactly the same as that
of singular points in a plane. Further, if the a two-dimensional sphere can be
divided into two-invariant hemispheres then the dynamics in each hemisphere
can be determined using all the results for planar dynamical systems (e.g.,

Poincare Bendixson Theorem, Dulac’s Criteria, etc.).

1.3 Outline of Work

The thesis will now proceed as follows:

1. In chapter 2 the EFEs are simplified using the assumption of a KSS solution.
A closed system of ODEs results. The conditions under which solutions in this

class admit a Homothetic vector are considered.

2. In chapter 3 all solutions of spherical symmetry found in chapter 2 are examined
in the case that the KSS is in fact a "physical” KSS. The results in this chapter
have appeared in the journal Classical and Quantum Gravity, 15, 2397.
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In chapter 4 the complete dynamics of the governing system of equations is
investigated. The exact solutions for the asymptotic states are determined, and

the energy conditions are discussed.

In chapter 5 the case of "infinite” KSS (excluded from the systems studied in
chapter 4) are examined in a similar manner to that of the finite case. The work
of this chapter is based on collaborative work between the author and Alicia

Sintes.

In chapter 6 the work, which in the previous chapters was restricted to a perfect
fluid source, is extended to a preliminary examination of KSS in anisotropic
fluids exhibiting spherical symmetry. The work in this chapter will appear in a
future issue of the Journal of Mathematical Physics.

Finally, Chapter 7 contains a discussion of the results determined in the pre-

ceding chapters, with an indication of pessible areas for future work.



Chapter 2

Einstein’s Field Equations with

Kinematic Self-Similarity

As described in the Introduction and in Carter and Henriksen (1989) self-similarity

implies that the metric functions in (1.13) can be written as
S=5(), =20, ¥=1¥()), (2.1)

where £ is the independent variable found by Carter and Henriksen (1989), given by
equation (1.19) when a # 0 and (1.18) when a = 0. From this point forward we shall
consider the change of coordinates z = In(€), such that all functions now depend
on the independent variable z and ordinary differentiation will be defined as f = %
where f = f(z). To simplify the expressions a change of variables y = S/S is also
made.

In the simplification of the EFEs we shall assume (i) without loss of generality a
can be taken to be positive (or zero) quantity, and (ii) the vector £ is not homothetic,
i.e. a is not equal to one.

Consider the spherically symmetric metric given by equation (1.17). The EFEs
given in equation (1.1) will be evaluated where T, is the energy momentum tensor
for the perfect fluid given by equation (1.2) with the metric (1.17). We further
assume that the fluid is comoving with the inertial observers. This final condition

21
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will guarantee that the Einstein tensor is diagonal in nature. With these assumptions
the EFEs give:

= r2Wi(z) + tT2Wo(2), (2.2)

= r72P(z) + t72P(2)), (2.3)

= 172P(2) + t72P(2). (2.4)

where

Wi(z) e~2¥[e?¥S% — (1 +y)? — 2y®], (2.5)
Wa(z) = e 2®a~2[y® + 2V, (2.6)
P(z) = e 2Y[—€e*¥S™2 + (1+y)? + 2yd + 29, (2.7)
P(z) = —e®a?[y® +2y¥ +2¥ — 2y + 20y, (2.8)
Pi(z) = e 2¥[® + 0 +2yd — VY], (2.9)
B(z) = —e a0 U+ U2+ 20 — ¥ + b + ¥ —y). (2.10)

By equating the two expressions for the pressure (equations (2.3)-(2.4)) we see
that:
t2(Pi(z) — Pi(2)) = r*(Pa(z) — P2(2)). (2.11)

If P,(z) — Py(z) # 0 it immediately follows from equation (2.11) that
(at)?@—1/a = 5 function of z. (2.12)

Differentiating equation (2.12) with respect to 7 it follows that the only consistent
solution is found when a = 1, which contradicts the original assumption that £ is not

homothetic. It follows, therefore, that
Py(z) = P(2), (2.13)
and as an immediate consequence

Pi(z) = Pi(z). (2.14)
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Substituting the definitions (2.7)-(2.10) into the two equations (2.13)-(2.14) results
in the differential equations:

b = (a-1)y+y?-(a—1)¥ - ¥+ 0¥, (2.15)
e N - - . .
b = -G+ +ET 20 -8 (2.16)

The third and final equation results from the assumption that the fluid is comov-
ing. From this assumption we can set all off-diagonal terms of the Einstein tensor

identically to zero. This assignment results in the equation:
g=yb+(1+y) (¥ -y) (2.17)

Equations (2.15)-(2.17) then form a closed system of three ordinary differential equa-
tions which govern the metric functions.

Through an exactly analogous analysis, a system of ordinary diiferential equations
for the metric functions can be determined in the case of zeroth order kinematic self
similarity. In this case the metric functions depend on the independent variable
£ =re7t, or z = In(€§). The EFEs then result in a set of definitions for the matter
density and pressure which are defined as:

p = Wi(z) + rW5(2), (2.18)

p = Pi(z)+172P(2)), (2.19)

p = Pi(z) +1r72P(2)). (2.20)

where

Wi(z) = §12- — e ¥ [(1 + y)* + 2&y], (2.21)
Wa(2) = ye2(y+2¥), (2.22)
P(z) = % +e (1 +y)[1 +y +28), (2.23)
Py(z) = —e 2(3y® + 2y — 2yd), (2.24)
Pi(2) = e 2¥[® + & + 2y — &7, (2.25)
Py(z) = —e [ + 9%+ 290 - ¥d + ¥ —y]. (2.26)
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Once again it is an straightforward calculation to show that equations (2.19) and
(2.20) along with (2.23)-(2.26) imply two differential equations, with a third resulting
from the condition of a comoving fluid. The form of the equations which result from
the the condition (2.19)=(2.20) are identical to those in the non-zero case when a is
set identically to zero. The third equation calculated from the non-diagonal terms of
the Einstein tensor is also the same as the a # 0 case.

While the differential equations governing the metric functions are identical in
each of these cases, it is important to note that the zeroth order case results in

matter functions of a different form that that of the second order KSS.

2.1 Comparison to Cahill and Taub’s Derivations

In their detailed analysis of perfect fluid, spherically symmetric solutions which admit
a homothetic vector Cahill and Taub (1971) simplified the EFEs to the following
system of partial differential equations:!:

m, = wuR?R,, (2.27)
me = —pR2Ry, (2.28)
m = R(1+e ?*R?—¢e%YR?), (2.29)
o, = ——B, (2.30)
uw+p
it 2R,
U, = ———— ——, 2.31
¢ ntp R (2.31)
0 - R,-g—Rg‘Dg—Rr‘I’g, (232)

where the mass function m is defined through the “first integral” of the EFEs and the
function R is equivalent the metric function rS in equation (1.17). Each of the metric
functions R, ®, and ¥ as well as the matter functions u, p and m are functions of both
t and r. By assuming the existence of self-similarity (kinematic self-similarity of the

first kind) the metric functions are then assumed to be functions of the similarity

l1see equations (3.4)-(3.6), (1.6), (1.8)-(1.9) in Cahill and Taub (1971).



variable £ = r/t. In this case two ordinary differential equations result. In order to

close the system a further assumption regarding the functional relationship between

the density and pressure must be assumed.

Using the equations (2.27)-(2.32) we can follow Cahill and Taub’s derivation by

substituting the similarity variable of equation (1.19) where they used £ = r/t. In

this case the result is the following set of equations:

M, + M = W, S*S+259),
3My + My, = WoS*S +8),

A.Jl = —Plst',
2aM; + Mz —stzs,

M, = S(1-e?%(S+85)?),
a’M, = S§5%7%,

(P, +Wy)®d = 2P — P,

(P +W3)® = -—-P,
WS = —(P+ Wi)(¥S +25),
(2aWs + Wa)S = —(Py+ Wa)(¥S + 25),
and
S+S5=5®+(S+ 9.
where

m =M (z) + 372 M,(2),

(2.33)
(2.34)

(2.35)
(2.36)

(2.37)
(2.38)

(2.39)
(2.40)

(2.41)
(2.42)

(2.43)

(2.44)

is the mass function defined by the first integral of the EFEs and P;, W; are defined

by the density and pressure as given in equations (2.2) and (2.3). The system of
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equations (2.33)-(2.43) then reduces to equations (2.15)-(2.17) with definitions (2.5)-
(2.8).

We note that strictly speaking the subcaste S + S = 0 has been factored out of
this derivation. However, it can be shown that this restriction will not generate any
perfect fluid solutions for the spherically symmetric metric, and hence no solutions
to the system of equations (2.33)-(2.43). The restriction does not, therefore, require
any further consideration. The analysis in the & = 0 case is analogous, and results in
the system considered previously.

It is important to note that while we consider the idea of Kinematic self-similarity
(i.e. self-similarity of the second kind) more general than that of self-similarity (i.e.
homothety), the number of governing DEs has increased (over that in the homothetic
case). Therefore, although we shall use the terminology that the general case refers
to a # 1, this is not meant to imply that the resulting solution set is necessarily
iarger (than that of the homothetic case). In fact the subset of solutions to equations
(2.15)-(2.17) which admit a homothetic vector are only those which satisfy equations
(2.13) and (2.14). This is not necessarily the case for all self similar solutions since the
form of the similarity variable (of the first kind) £ = r/t is consistent with equation
(2.11) without demanding (2.13) and (2.14) be satisfied.

2.2 Plane and Hyperbolic Symmetry

In all of the previous analysis it was first assumed that the metric possessed spherical
symmetry. We can, however, also consider the results of the kinematic self similarity
assumption when the metrics have either plane or hyperbolic symmetry. In these

cases the metric given by equation (1.17) is replaced by:

ds? = —e®*GNd? + ¥ dr? 4+ S%(t,r)(d6? + (0, k)*de?) (2.45)
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where
sinf k=+1
T0,k)=4 6 k=0 (2.46)
sinh@ k= —1.

The parameter k indicates the type of symmetry, i.e. kK = 1: spherical symmetry,
k = 0: plane symmetry, and k£ = —1: hyperbolic symmetry.

The EFEs then yield the matter functions of density and pressure. In the case of
plane symmetry the functions are once again of the form (2.2)-(2.3), with

Wi(z) = e[-(1+y)” - 243, (2.47)
Wa(z) = e Ra?y® + 24V, (2.48)
Pi(z) = e [(1+y)*+2yd +29), (2.49)
Py(z) = —e a2y + 2y + 2¥ — 2y + 2ay], (2.50)
Pi(z) = e ¥[® + &2+ 2yd — &), (2.51)
P(z) = —ePa W+ P2+ 290 — U + ¥ + ¥ — y]. (2.52)

In the case of hyperbolic symmetry the functions are once again of the form (2.2)-
(2.3), with

Wi(z) = e ¥[-e?¥S 2~ (1 +9)? - 299), (2.33)
Wa(z) = e ®a?[y? +2y¥), (2.54)
Pi(z) = e[S 2+ (1+y)+2yd + 29, (2.55)
Py(z) = —e2a~?[y? + 2y¥ + 2V — 2y + 2ay], (2.56)
Pi(z) = e *¥[® + 3%+ 2yd — V], (2.57)
Py(z) = —e®a ¥ + 92 +2y¥ — ¥ + a¥ + ¥ — y]. (2.58)
If we define
w= —ke*’¥ 52 (2.59)

the systems (2.47)-(2.52), (2.53)-(2.58) and (2.5)-(2.10) are identical when k is defined
as for the metric (2.45). Therefore we can write the system (2.15)-(2.17) in a form
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which is valid for all three types of symmetry, namely:

U = (a—-ly+y>—(a— 1)U — U2 + ¥, (2.60)
® = w+ (1+y)°*+ ¥ +28 — 2 (2.61)
w = 2w(¥ —y) (2.62)
y = y®+1+y)(¥-y), (2.63)

with the physical properties of density and pressure now given by:

p = e a2y + 2Vt 2 + e ¥ [—w — (1 + y)? — 2yd|r2 (2.64)
p = —e®a72[y? +2y¥ + 2¥ — 2y + 2ay]t?
+ e[S + (1 +y)* 4+ 2¢d + 20]r72 (2.63)

2.3 Algebraic Structure

We can investigate the algebraic structure of the space of kinematic self-similar vectors
and their relationship to the spaces of Killing vectors (KV) and Homothetic vectors
(HV). This will become important as we study the nature of various solutions which
arise in subsequent chapters.

The group of kinematic self-similarities can be subdivided into those which are
(1) Killing vectors, (2) Homothetic vectors and (3) (purely) Kinematic self similar
vectors. The covariant definitions for each of these cases is as follows:

(1) Killing vector Lehay =0 Leut =0
(2) homothetic vector Lchay = 2hap Leu® = —u®

(3) kinematic vector Le¢hgy = 2hay Leu® = —ou®

As a result it is straightforward to see that a basis for this group of kinematic
self similarities will be composed of those vectors which are killing vectors and those
which are purely kinematic self similar vectors. We will use that fact to determine
the conditions required for the a kinematic self similar solutions to the EFEs to also

admit a homothetic vector.
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If we assume the existence of a proper KSS vector field, &, (i.e, not a Homothetic or
Killing vector) then from the Jacobi identities and the property that the Lie bracket
of a proper KSS and a KV is a KSS, it is straightforward to show that:

&= (°(t,m),€'(¢,7),0,0) (2.66)

The condition £€u“ = u® then immediately results in £°(¢t,r) = £€°(¢t). Further, the
condition Lggas = gas yields £}(t,r) = £(r). In other words:

= (£°(1),€'(r),0,0) (2.67)

Solving, then, the homothetic equations (1.3) for the metric which is defined as solu-

tions to the system (2.60)-(2.63) yields the conditions:

1 = & +d¢' +&% (2.68)

1 = U +we! + £, (2.69)

1 = §§°+§§1+§’/'r (2.70)
s* 'S '

We shall refer to these conditions in the investigation of various exact solutions found

throughout chapters 3 and 4.



Chapter 3

Physical Self-Similarity for
Spherically Symmetric Metrics

In general equations of the form (1.8) for 4 and p are not automatically satisfied.
We can, however, determine the criteria which guarantees that equations (1.8) are
satisfied for the matter functions of density and pressure. In each case the solutions
would then be, in addition to geometrically self-similar, physically self-similar. There
are three special sub cases in which equations of the form (1.8) are satisfied for the
pressure and density. In each case the forms of equations (2.15)-(2.17) simplify, the

number of governing ODEs reduce, and exact solutions are easier to find.

1. @ = 1 (homothetic case). In this sub case £ = r/t and equations (2.4)-(2.6)
reduce to p = W(€)r=2,p = P(€)r~2, and m = M(€)r (Cahill and Taub, 1971).

2. M, =0, and hence W; = P, = 0. This sub case contains the exact solutions
of Lynden-Bell and Lemos (1988) and Carter and Henriksen (1989) and will be
analysed completely in subsection 3.1.

3. M, =0, and hence S is constant. This subcase, which also includes the static
subcase, will also be dealt with separately in subsection 3.2.
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These cases are in fact the only cases in which the physical quantities x4 and p satisfy
equations of the form (1.8). In the general case a # 1, u and p do not “individually”
and “totally” satisfy equations of the form (1.8). However, if we write 4 and p in
(2.64) and (2.65) in the form

= + p2, (3-1)
P+ p2; (3.2)

p

that is, the source of the gravitational field is interpreted as the sum of two separate
comoving perfect fluids with densities and pressures u;,p, and u,,ps, respectively

(i.e., the model is a two fluid model - Coley and Tupper, 1986), where

m = Wir?, p=Pr7 (3-3)
o = Wat™2, po= Bt 2, (3.4)

then
Cem = —-2u,, ACePl = -2p,, (3.3)

and
Ceﬂz = —2au,, [,Epg = —2ap,. (3.6)

Therefore, the two fluids each separately satisfy equations of the form (1.8).
We will now consider each of the non-homothetic (i.e. a # 1), cases which exhibit

physical self-similarity for the energy pressure and density.

3.1 Special Subcase: M; =0

We first consider the subcase M, = 0. From this condition it automatically follows
from equation (2.37) that e?¥ = S?(1 + y)2. The system given by equations (2.60)-
(2.63) and the definitions for the matter functions then yield the following:

ds? = —df? + S*(1 + y)2dr? + r2S%dQ?, (3.7)
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and
383y _
m = _Z;—t 2, (3.8)
p = pot>, (3.9)
_ ylB—2a)y —a®p], _,
where the evolution of the arbitrary function y = $/S is given by
2y + 3y? + 2ay + o®py = 0. (3.11)

Since & = 0, we note that this solution corresponds to the geodesic case studied in
Coley (1997). We note that in the solution above there is a dimensional constant, p,
appearing (in the pressure), a property that is characteristic of self-similarity of the
second kind (Barenblatt and Zel’dovich, 1972).

We can consider the cases in which the solution (3.7) admits a homothetic vector
(HV) by recalling the conditions derived in Chapter 2 (see equations (2.81)-(2.83)).
In the case of (3.7) the conditions simplify to

=1 —&=t+c (3.12)

and
U(1-¢g'/r)=y(1—-¢), if y¥#0 (3.13)
El=r if gy¥=0. (3.14)

Differentiating equation (3.13) with respect to ¢ and substituting into the governing
equation for y (equation (3.11)) it is straightforward to show that the only consistent
solutions occur when ¥ is a constant or ¥ is a constant, each of which corresponds

to a singular point of the governing differential equation (3.11). The solution in this

case is then given by

ds?® = —dt? + si(dr? + r2dQ?) (3.15)
p=pot %, p=pt? (3.16)
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the flat FRW model, which is known to admit a HV, & = (¢, 7,0,0). In all other cases
there is no model in this class of solutions which admits a HV.

In the case pg = 0 we can integrate equation (3.11) completely to obtain
S = so(1 + 5:67)%/3, (3.17)

where so and s, are constants. This is the dust solution of the Tolman family described
in Carter and Henriksen (1989) in which M, ox £72*,m o r(r/t)*[rt~/]"2a = 32

In the case po # 0, we can employ qualitative techniques to consider the asymp-
totic properties of the solution. Equation (3.11) is an autonomous ODE for y. The

singular points are given by

(04
Y= Y= Y= 3-(1 /1~ 3po).- (3.18)

Therefore, asymptotically we obtain the solutions
S =877, (3.19)

where S are constants. That is, solutions of equation (3.11) are asymptotic to the

exact power law solutions given by

§=8:87" (£, (3-20)
S=5.€7% (£>1). (3.21)

These exact solutions represent flat, power-law FRW models, which are known to
admit a homothetic vector (Carr and Coley, 1997).
Indeed, assuming that py < %, so that y® + %y + ‘%’-’9 has two real roots, we can

integrate equation (3.11) to obtain

y+y-, _ 20
in (S = = V/1-3poln€ +c, (3.22)
or —ox
L+c€™™ _ /3= F(e), (3.23)

Y=



where k = §v/1 — 3pg. S is then obtained from
S = Soeap [ F(€)E™1dg. (3.24)

From these equations the asymptotic solutions (3.20) and (3.21) are apparent. In
terms of y, M, and W, are given by

S3y2 3-2a

M,=2Y% w,=
2 pe 2 [a2

y—poly(L +y)~ . (3.25)

Thus, asymptotically M o« S3, and W, = constant.

In the more interesting range 0 < po < 1/3, there are certainly values of the
arbitrary constants appearing in the solutions for which the asymptotic solutions (for
both £ <« 1 and £ > 1) are physically well behaved (e.g., the weak and dominant
energy conditions are satisfied). Equation (3.11) can also be solved in the cases
po =1/3 (e¥ o £?/3) and py > 1/3 (y = const. + tan{ln(c£~3/2)]).

In the special case of dust (p = 0) we obtain from either (3.18) or (3.20) and
(3.21) that

S~ 8§73 (£«1), (3.26)
S~S_ (E>1). (3.27)

For £ « 1, the properties of the non-zero pressure models (from continuity for small
Po) are qualitatively similar to those of the dust models. When pg = 0, if a =
6n/(3 + 4n) (for n a positive integer) then the solution will be analytic at the centre
[n = 1, = 6/7 corresponds to the Penstone solution (Penstone, 1969)]. A central
cusp singularity can develop, either before or after an ”apparent horizon” is reached
at 2Mr~! = 1, that may or may not be hidden by a "true horizon” (see Lynden-Bell
and Lemos, 1988, and Carter and Henriksen, 1989, for more details). However, in the
case of dust, for £ > 1 the solution is asymptotically static (Lynden-Bell and Lemos,
1988); for 1 < a < 3/2 the metric is asymptotically flat in the sense that 2Mr~! — 0

as 7 — oo (Carter and Henriksen, 1989).



3.1.1 Zeroth Order geodesic solutions

When a = 0, the equation equivalent to equation (2.37) gives e2¥ = S?(1 + y)2. The
solution in this subcase is then given by

ds? = —dt? + S2(1 + y)%dr? + r2S2%dQ?, (3.28)
and
m = riS%?, (3.29)
y(iy;ypo) ’ (3.30)
= Po, (3.31)

where the evolution of the function y(z) is governed by the differential equation
29+ 3y% +py = 0. (3.32)

Once again we notice that a dimensional constant, py, appears in this solution. The
equations are analogous to those examined in subsection 2.3 in the case a # 0.

In the case py = 0 we can integrate this equation completely to obtain
S = so(s; + 32)?/3, (3.33)

where s¢ and s; are constants. In this case we can see that m o r3, which is equivalent
to the result found in the a # 0 case (see previous discussion)

In the case pp # 0, we can again employ qualitative techniques to consider the
asymptotic properties of the solution. As in the case with a # 0, equation (3.32)
is an autonomous ODE for y. If we assume a positive pressure, then the ODE has
no singular points at finite values. The singular points at infinity are equivalent
to the solutions with zero pressure described above. (Note, these solutions are also
equivalent to the singular points at infinity for equation (2.31) in the a # 0 case).
Actually, equation (3.32) can be explicitly integrated to give

S(z) = s0(8:€3/%= — e"””)g\ﬁ?; po <0.
- sosec?(s, + \/gz); po>0.
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Allowing for the possibility of a negative pressure, we see that equation (3.32) has
singular points at the finite values

ye = =(-2)172, (3.34)

each of which represents a flat FRW model (as in the a # 0 case). We can show that
for y < y+ this model is not physically valid (i.e., the weak energy condition, WEC,
is violated since p < 0). Therefore, the only region of physical interest is y > y.,
which satisfies 4 > 0 and 4 +p > 0. For y > y, we find that all solutions asymptote
in the past to the solution represented by the singular point at infinity (the case
described above). To the future, all solutions will asymptote to y = y,. This model
is characterised by S oc £~¥+ which has been shown to represent a flat FRW model.

3.2 Special Subcase: M; =0

When M, = 0, we find from equation (2.38) that y = 0. We note that this special
subcase will include the static models as a subcase when ¢ = k, where k is a constant.
Substituting y = 0 into equations (2.60)-(2.63), we find that the metric can be written
as

ds? = —e**dt? + adr? + r?s2dQ?, (3.35)
where e¥ = a and S = sy; a, sy constants. It the follows that W, = P, = 0, W, = pq,

M, = s3uo, and consequently the matter functions are given by
0
B = lgT 2, pP= (2<I>a L. ﬂo)f‘ 2, (336)

where pg = 552 — a~2. From equation (3.36) we note that & must be bounded for
physically acceptable solutions (recall that in the static models & = k). The arbitrary
function ®(z) is governed by the differential equation

® = —a’uy + 26 - &2 (3.37)

This differential equation has three different solutions, depending on the relationship
between ug and c2. The solutions are given by:
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(2) Mo < a~%;  [c;e(tt™)F 4 cpe(l—m7)2,
e2® — (i7) Mo = a~%; 62:(C1 + 022)2,
(ii7)  po > a7%  e%(cicos(nz) + casin(nz))?,
where ¢, and c; are arbitrary constants and n = /|1 — a2ug|. Notice that the metric

function €*® can become zero at a single value of = in the first case, does become
zero at a single point in the second case and becomes zero an infinite number of
times in the third case, where the corresponding metric is therefore singular. When
e?® — 0, & — +oo and hence from (2.23) we have that p/u — *oc! Clearly case (iii)
is unphysical, while the first two exact solutions may be physical for an appropriate
range of values of z (e.g., for large z). Notice that in the first two cases as z — +oc,
$ — constant and & — 0 (see below).

It can be shown from the homothetic criteria derived in Chapter 2 (i.e. equations
(2.68)-(2.70)) that the metric (3.35) admits a homothetic vector if and only if & = 0.
In this case, the metric function €*® has a power law dependence on & = r(at)~/
and a coordinate redefinition can be applied to absorb all of the time dependence so
that the metric can be put into an explicitly static form. Therefore the static metrics
in this subclass of models necessarily admit a homothetic vector. It is also important
to note that the static solution is the only subcase in which this solution can have an
equation of state of the form p = p(u), since this condition implies (from equations
(3.36)) that ® = 0. Static spherically symmetric spacetimes admitting a homothetic
vector were studied by Ibanez and Sanz (1982) (see also Carot and Sintes, 1994).

3.2.1 Static Models

Consider the general static spherically symmetric metric in the following (comoving)

coordinates:
ds® = —e*ART? + ?BRGR? + R2dO2. (3.38)

This metric will admit a kinematic self-similarity of the form

& = (€°(T, R),£\(T, R),0,0), (3.39)
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when equations (1.10) and (1.11) are satisfied. From equation (3.38) it follows that
(in these coordinates) u = u(R) and p = p(R) and hence the models necessarily admit
an equation of state of the form p = p(u).

Equation (1.10) implies that £° = f(T") and that

Ayl EI + ano = Q. (340)

Equation (1.11) is solved as follows. The (1,0) term implies that &' = g(R), whence
the (2,2) and (3,3) terms imply that &' = R. Hence £° = a,T + a,, where a, and a,
are arbitrary constants. The (1,1) term then implies that

Balel +£1:1= . (341)

Hence equations (3.40) and (3.41) imply that

a—q

R

B:l = 01 A:l = (3.42)

Therefore, metric (3.38) admits a kinematic self-similarity when it is of the form
ds® = —a?R?*dT? + b*dR? + R%d0?, (3.43)

where a,b and k = a — a; are arbitrary constants. The kinematic self-similarity
admitted by (3.43) is of the form

7] 0
§=(aT+ az)a—T' + Rﬁ' (3.44)

Hence, any particular metric of the form (3.43) (i.e., with a particular value for k)
admits kinematic self-similarities of all types, since we can choose a, in (3.44) to give
any value of o according to a; = a — k. In particular, each metric of the form (3.43)
necessarily admits a homothetic vector (e = 1). Note that since a2;3 is a Killing
vector for the static metric (3.38), the constant a; can be set to zero in this case
without loss of generality.

We can compare these results to those obtained in terms of the conventional

coordinates in which £ is given by equation (1.16) and the metric is written as (1.17).
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By applying the coordinate transformation

a1/a
r = : (3.45)
ay

R = r (3.46)

assuming a; # 0, a # 0, the metric (3.43) becomes
ds® = —c"‘;(r(ozt)'l/")z“dt2 + b%dr? + r2dQ02?, (3.47)

where cg is a constant and £ is given by equation (1.16). Therefore, all static metrics
which admit a kinematic self-similarity can be written in the form (3.47). Note that
S =¥ = & = 0 in metric (3.47). Therefore, since in this case § = ¥ = 0, all kinematic
self-similar static metrics are contained within the M, = 0 subcase. Finally, since
® = 0, we have that all static, kinematic self-similar spacetimes necessarily admit a
homothetic vector.

We note that this analysis is independent of the field equations and hence is valid
for any matter content and not only for the perfect fluid case examined in this chapter.
However, in the perfect fluid case the exponent k in (3.47) is not arbitrary but must
satisfy

k2 —2k+b—-1=0; (3.48)

ie,k=1+/2-0.

Therefore all static solutions which admit a kinematic self-similarity are neces-
sarily contained within the M, = 0 subcase, and all such metrics necessarily admit
a homothetic vector. However, the static solutions correspond to finite equilibrium
points of the autonomous system of ODEs given by equations (2.60)-(2.62) and will
feature in the analysis of Chapter 4, and hence we shall explicitly exhibit these solu-

tions here as follows:
ds? = —(rt~V/2)*dt? 4 a?dr? + r2s2dQ?, (3.49)

and

p=por=2, p=(2ka %~ po)r2, (3.50)
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where & = k is one of the roots of equation (2.24) when ® = 0 [i.e., k = 1+/2 — a2s;7]
and c,a and sg are constants. This metric is the same as that given by (3.47). The
constants c and sg can be rescaled to unity. We note that there are no solutions in
this set when g > a=2. Metric (3.47) can be put into explicitly static form by a
simple redefinition of the time coordinate.

3.2.2 Zeroth Type static solutions

We note that in the subcase M, = 0 (in which § = 0) the resulting metrics and
matter functions are identical to those found in subsection 3.2 with a set identically

to zero, and the self-similarity coordinate appropriately changed to £ = re™t.



Chapter 4

Qualitative Behaviour of

Governing Equations

As the equations for the @ = 0 case have been shown to simply be a subcase of
those in the a # 0 case we need only consider the one set of equations to analyse the
dynamics of the models in both cases.

Applying the definitions z; = S§/S, z, = ¥ —y, z3 = &, and z, = w, we find that
the governing equations (2.60)-(2.63) become

£y = 7173+ (1 + 7))z, (4.1)
Ty = —I2(3Z,+2Z,— 13+ a), (4.2)
Z3 = z4+ (14 1,)% + 1,73 + ZToz3 + 223 — 22, (4.3)
Ty = 21475, (4.4)

a four-dimensional autonomous system of ODEs. The qualitative behaviour of the
solutions to this system can now be examined.

It is straightforward to see that the hyperplanes z, = 0 and z4 = 0 are each
invariant sets. These hyperplanes then divide the space into four invariant sets in
which the derivative of the function z, is monotonic, namely:

41
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I = {(z,,Z2,%3,Z4)|T2 > 0,24 >0}: 4 >0

I = {(z1,%2,%3,%4) |72 < 0,24 > 0}: Z4 <0

I3 = {(z,,72,%3,Z4)|T2 < 0,74 <0}: Z4 >0

Iy = {(z1,Z2,Z3,Z4)|T2 > 0,24 <0}: Z4 <0
It follows, therefore, from the monotonicity principle (see the Introduction) that there
are no periodic orbits or closed invariant surfaces in any of these invariant sets; I;,i =
1..4. As a consequence any asymptotic behaviour (past or future) must be located on
one of the invariant sets z, = 0 or z4 = 0 (or at 4 = +00). Each of these cases will
be considered separately.

In all cases we will begin by considering the singular points. There are two different
types of singular points which must be considered, finite and infinite. The finite
singular points are located at the values of (z,,z,z3,z4) where the vector field for
the system (4.1)-(4.4) vanishes. They are listed in Table 4.1. The local analysis for

each of these points will be given in the appropriate invariant set analysis.

In order to complete the analysis in each of the cases z; = 0 or 4 = 0 (or at
T4 = $00), it will be necessary to consider the singular points located at infinity.
These will be considered by compactifying the phase space using a standard Poincare
transformation as described in Chapter 1. In the case of equations (4.1)-(4.4) the

transformation takes on the form:

X = 2:19, Xz = Ize, X3 = .’539, X4 = 1249
6 = (1+2z2 + 22 + v2 + w?)"1/2,

The equations (4.1)-(4.4) become

X = Xi(X1+ X3 - K) - X1(X2 + X3X,)0 (4.5)
X; = XQ(X:; - X -3X, - K) - Xz(Xzz + X3X— Xz)e (4.6)
X; = XI+Xs(Xi+ X2 — Xs— K) — X3(X2 + X3Xq — X()O (4.7)

X4(2X; - K) - X4(X§ + X3X4)0 (4.8)

X4
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Table 4.1: Finite Singular Points for equations (4.1)-(4.4).The local analysis for
each singular point will be discussed in subsequent sections, according to their classifi-
cation. Q and R are isolated singular points and S and T are curves of non-isolated
singular points (i.e. one- dimension equilibrium sets). Note that the point Q inter-
sects T when o = 3, and the curves S and T intersect at the point (0,0, 0,0)

[ (z1, 72,23, Z4) Eigenvalues Exact Solution

Q (-1,3 -a,0,0) Al==-A2=3—-a Metric: eqn. (4.37)
Ay =6-2a, \3 =-a Geodesic (plane
symmetric) solutions

R (t&’;aﬂu, (ﬁzﬂs‘l’;zﬁg&"‘r‘)“ ) see subsection Metric: eqn. (4.39)
=(Ta®+14a—-5F(3a+1)A) 0) 4.9
16(a+1) ’ .
A=9a?-2a+25 |
S (0,0,c1,¢f +2¢; — 1) AL, A2, A3: see table 4.3 | Metric: eqn (4.41)
Ay=c —«a Static solution
T (c2,0,0,—c5 — 2c; — 1) A1, A2, A3: see table 4.3 | Metric: eqn (4.43)

M=—(3c2+a) Geodesic (spherically
symmetric) solution
Static fluid

where
K =X{X;+2X:X3 - 3X1 X2 + X\ X2 — X3 + X2 X3 + X2 X2 — X3 +2X2Xs. (4.9)

The singular points located on the invariant boundary © = 0 [which is now the
location of the infinite singular points for equations (4.1)-(4.4)] are given in table
4.2, with the associated eigenvalue/eigenvector pairs for the Jacobian of the system
(4.5)-(4.8). Each of the points will be considered in the appropriate invariant sets.
It is important to note that the only case in which the variable £, — +o00 i§ when
the remaining three variables vanish; i.e. as z, — +o00, T, necessarily tends to zero.
As a result this asymptotic behaviour will be considered as a subset of the z, = 0

invariant set.



Table 4.2: Classification of the Infinite Singular Points of the system of equa-
tions (4.5)-(4.8) [the Poincare transformation of the system (4.1)-(4.4)]. The exact
solutions for each of these points are described in subsection 4.4.2.

[ (X1, X2, X3, X4) Eigenvalue - Eigenvector Pairs | Classification
AL (0, £1,0,0) +2 (1,0,0,0)
+2 (0,1,0,0) A : Source
+2 (0,0,1,0)
+3 (0,0,0,1) A_ : Sink
B. (0,0, +1,0) +2 (1,0,0,0)
+2 (0,1,0,0) B, : Source
+2 (0,0,1,0)
+1 (0,0,0,1) B_ : Sink
C. (0, 0,0, £1) 0 @,0,0,0)
0 (0,1,0,0) Saddle-Node
0 (0,0,1,0)
0 (0,0,0,1) see section 4.3
D,  Z(+1,0,%£1,0) FV2 (1,0,1,0)
FL2 (0,0,0,1) D, : Sink
FL2 (-1,0,1,0)
;"’4251 (0,1,0,0) D_ : Source
E:  ¥5(F2,0,%£L,0) +8/5 (0,1,0,0)
F8/5 (1,0,2,0) Saddle
FL (0,0,0,1)
5 (-2,0,1,0)
Fy:  Y2(0,%1,%1,0) FV2 (0,-1,1,0)
+V2 (2,-1,1,0) Saddle
+V2 (0,0,0,1)
0 (0,1,1,0)
G: Yi(32,+3,%1,0) | £4% (0,0,0,1)
¢-\C (2,-3,-1,0) Saddle
4=—\C (1,0,2,0)
;L (0,1,-3,0)
+ Y(+1,%3/2,£1,0) ;ﬁf&_ (134, —201, 257, 0)
£ (2,-3,2,0) Saddle
+3gl (63,118, 63,0)
FBAT (0,0,0,1)




4.1 Shear-Free Solutions: z, =0

The invariant set z, = 0 was shown to represent possible asymptotic behaviour of
the system (4.1)-(4.4). Note when the kinematic quantities are calculated for the

spherically symmetric metric given by (1.17) the non-zero shear terms are:

o = 2z4225%(3ate®)!
on = rz,5%3ate®)!

o3 = r%sin?(0)z,5%(3ate?)!. (4.10)

Therefore this invariant set corresponds to solutions which have the physical property
of zero shear.
In the case z, = 0 the governing equations (4.1)-(4.4) reduce to a one parameter

family of two-dimensional systems:

ZI = I1T3 (4.11)
Iz = we+(1+ .'L‘1)2 + 113 + 273 — .'L‘§ (4.12)
Iy = Wy (413)

Therefore, the dynamics can be represented in the (z;,z3) plane with the parameter
wg (in the direction of z4 there is no motion). All analysis will thus be considered in
the directions z, and z;.

Analysis of the system then begins by locating and characterising each of the
finite singular points. The finite singular points are those given in 4.1 which have
the condition z; = 0, namely S and T. In the three dimensions of (z,, 3, ) the
corresponding eigenvalue-eigenvector pairs which will be used to determine the local
stability are given in Table 4.3.

Each of these classes of singular points represents a (neutral) curve of non-isolated
singular points parameterised by the constants c; or c,. In the direction tangent to
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Table 4.3: Finite Singular Points for equations (4.11)-(4.12). Each of the points
S and T will intersect the (z;,z3) plane of consideration at either 2,1, or no points,
depending on the value of the parameter wp (see equations 4.15). T will exist only
in the case of spherical symmetry, and S exists iff wy > —2.

[ (z1, T3, Z4) T Eigenvalue - Eigenvector Pairs |
S (0, cy, Cf + 2¢c; — 1) C1 (301 +2,2+ Cl,O)
—-2(c1 +1) (0,1,0)
0 (0,1,2¢; +2)

T (c2,0,-cG—2c2—-1) | A(~1+c2+ ;?4 + 4c +932) (2c2, =2 + co+
V4 +4c; +93),0)
H-1+ca—\/4+4c2+93 (2¢c2, —2 + c5—
Va+4c,+93,0)

0 (1,0, —2c; — 2)

the curve the eigenvalue is zero, as expected. In all other directions the eigenval-
ues are generally non-zero, changing sign at the various bifurcation values, thus the
equilibrium set is said to be normally hyperbolic. It should be noted that in each of
the two-dimensional planes which partition the three-dimensional space these neutral
curves intersect at 2, 1 or no points, depending on the values of the parameters ¢;
and c;. The intersection of the curve with the two-dimensional plane will be label by
+. The constants c,; and c, are related to the parameter wy in the following manner:

wo=c+2,—1 and wog=-¢&—-2c;—1, (4.14)
i.e.
a=-1v2+w, =—-1+—wg (4.15)

Both the singular points and their associated eigenvalues show a dependence on
the parameter wy, indicating that the dynamics will depend on the value of wy; the
bifurcation values are wy = —2,1, and 0.

Using these bifurcation values we find that the qualitative nature of the system
(4.11)-(4.12) can be determined by considering the seven cases:
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Case I: wy < —2
Case II: wy = —2
Caselll: -2<wy<-1
Case IV: wy = —1
Case V: -l<wy<0
Case VI: wo=0
Case VII: we >0

For each of these seven cases the sign of the eigenvalues can be determined from
Table 4.3. When the parameter wg is not equal to one of the bifurcation values
(i.e. —2,—1, or 0) the singular points are hyperbolic and can be classified using the
Hartman-Grobman theorem. In cases II, IV, and VI, however, the points are non-
hyperbolic. Note that Cases I-V represent the possible behaviours resulting in the
spherically symmetric case, Case VI represents the plane symmetric case and Case
VII represents the hyperbolically symmetric case.

In case II (i.e. ¢; = —1, c; = —1++/2) we see that the points S_ and S, coincide.
There is one positive eigenvalue and one zero eigenvalue. The eigenvector associated
with the zero eigenvalue at this point is (0,1). Therefore the exact dynamics can be
determined by simply examining the dynamics on the invariant line z; = 0 (a simple
application of Centre Manifold Theory, Wiggins, 1990). On this line we then have:

Z3=-—(1-123)*<0. (4.16)

Since the derivative of z3 is always negative it follows that the point S,(=S_) is a
A/ 3

In case IV (i.e. ¢; = 0,2, cz = 0, —2) we see that the points S_ and T, coincide.

saddle-node; i.e.
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Table 4.4: Classification of Local dynamics for finite singular points of (4.11)-
(4.12), the two-dimensional system with parameter wo. Note that "DNE” indicates
that the point does not exist in that particular case.

S, S_ T, T.

we >0 saddle saddle DNE DNE
wo =0 saddle saddle saddle-node | (= T,)
-1<wy<0 saddle saddle source saddle
wo = —1 saddle saddle-node (=S.) saddle
2 <wy < -1 saddle source saddle saddle
wo = —2 saddle-node (=8Sy4) saddle saddle
wy < —2 DNE DNE saddle saddle

There is one positive eigenvalue and one zero eigenvalue. The eigenvector associated
with the zero eigenvalue at this point is (1,-1). In the direction of the eigenvector and
near the singular point we have:

:fl =ZT1ZI3 (4.17)

where the right-hand side is always negative. Therefore it follows that the point
T4(= S-) is a saddle-node.

In case VI (i.e. ¢; = —1+V/2, ¢; = 0) we see that the points T, and T_ coincide.
There is one positive eigenvalue and one zero eigenvalue. The eigenvector associated
with the zero eigenvalue at this point is (1,0). In the direction of the eigenvector and

near the singular point we have:
T3 = (1 +1)? (4.18)

where the right hand side is always positive. Therefore it follows that the point
T,(= T.) is a saddle-node.

Having completed the classification of the non-hyperbolic singular points, a sum-
mary of the classification of each of the finite singular points restricted to the case
z2 = 0 is given in Table 4.4
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The analysis of this case is completed by considering the infinite singular points
and their local behaviour. The transformed system is given by (4.5) - (4.8). When
restricted to the case z; = X; = 0, only the points By, C4, D4 and E. come into
consideration. The points Cy corresponds to a value of 4 = wp = $o0 and will
therefore be considered separately below. The other three pairs of infinite singular
points are then classified as source-sink pairs according to the eigenvalues contained
within the two-dimensional planes.

A summary of the dynamics in each of these invariant two-dimensional planes,
with their relationship to the parameter wy, can be seen in Figures 4.1 - 4.3 (separated

according to the symmetry of the metric; i.e. spherical, plane or hyperbolic.)

4.1.1 Curvature Dominated Solutions: z4 — +oo

The solutions characterised by 4 — +o0o correspond to the points C. as listed in
table 4.2, found by compactifying the phase space using a Poincare transformation.
This point is 'non-hyperbolic’ in all four directions. To determine the exact nature
of the local behaviour of these points we consider the dynamics in the direction of
the eigenvectors by noting that the sets z, =z, =74, =0, 7, = T3 = 74 = 0 and
I, = I = z3 = 0 are invariant for the system (4.5)-(4.8).

The invariant set £, = z, = z4 = 0 corresponds exactly to the eigenvector
(0,0,1,0). In this case we have that £3 = z2(z2 — 1) which is negative near the value
z3 = 0 (i.e. near the points C;). Likewise, the invariant set z; = z3 = 74 = 0 corre-
sponds to the eigenvector (0, 1,0,0). In this direction we have that £, = z2(z2 — 1)
which is negative near the value z, = 0 (i.e. near the points Cy). Therefore in
these two directions the point acts as a saddle-node. In the third invariant set
T = zo = z3 = 0 we have that £; = 0 always, and no dynamics are present in
that direction.

The fourth and final direction to be considered is (1,0,0,0). This direction does
not correspond to the tangent of any obvious invariant sets. To complete this analysis
we will consider examining the singular points 4 = +o00 through a different change
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Figure 4.2: Phase portrait of plane symmetric solutions with zero shear: Each plot is
of the compactified space (X, X3).



Figure 4.3: Phase portrait of hyperbolically symmetric solutions with zero shear:
Each plot is of the compactified space (X, X3).



of variables, one which will move the points C4 to the origin. Consider:
A=% B="2 ¢c-T 44 p=21, (4.19)
T4 Z4 Z4 Z4
and a "time” variable that is defined by f' = Df. The system (4.1)-(4.4) then

becomes:

A = AC+AB+ BD-24B (4.20)
B' = -3AB-B?+ BC -aBD-2BD (4.21)
C' = D+D*+2AD+ A’+2CD-C?+ AC + BC (4.22)
D = -2CD. (4.23)

The singular points of interest (namely C.) are now located at (0,0,0,0). The three
invariant sets A=C=D=0,A=B=D=0and A =B =C =0 are equivalent
to those found when using the previous Poincare transformation. The dynamics in
the fourth direction can then be determined by considering the two-dimensional set
B=D=0,i.e.:

A = AC (4.24)
C' = A’-C?+ AC. (4.25)
In this case A = C and A = —2C are invariant sets. On each of these sets the

derivatives are strictly positive or strictly negative, indicating that this point is a
saddle-node.

Therefore in three of the four directions (of the full phase space) through the sin-
gular points Cy the derivative does not change sign, and in the fourth direction there
is no motion (as this direction is normal to the sheets of invariant planes described

in the previous section). This point is, therefore, a higher dimensional saddle-node.

4.1.2 Shear-free solutions in the full four-dimensional space

For each of the points S;, T4+ the dynamics in the fourth direction must then be
determined. Relative to the system (4.1) - (4.4) there is a fourth eigenvalue (see
Table 4.1).
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S: eigenvalue: ¢, —«
Ti eigenvalue: —(3c; + @)

The bifurcations for the points Sy are c; = a (i.e. wg = (a+1)2 —2). For wy <
(+1)? — 2 the vector field is attracting towards the line S in the 3-dimensional set
z; = 0 (or towards the points S, and S_ in the two-dimensional cross sections given
in Figures 4.1-4.3. Likewise, for wg > (a + 1)? — 2 the vector field is repelling.

The bifurcations for the points T, are c; = —a/3 (i.e. wo = —(3 — @)?/9). For
wp < —(3—a)?/9 the vector field is attracting towards the line T in the 3-dimensional
set 7o = 0 (or towards the points T, and T_ in the two-dimensional cross sections

given in Figures 4.1-4.3. Likewise, for wy > —(3 — @)?/9 the vector field is repelling.

4.2 Plane Symmetric Solutions: z4 =0

The invariant set 4 = 0 is shown to represent possible asymptotic behaviour of the
system (4.1)-(4.4). Note that in Chapter 2 the variable z4 was defined in terms of the
curvature of the metric (see equation (2.61)), such that the case z4 = 0 corresponds
to a plane symmetric metric. Therefore this invariant set corresponds to all possible
solutions with plane symmetry.

In the case 4 = 0 the governing system of equations (4.1)-(4.4) reduces to

T = 173+ (1 + 71)z2, (4.26)
T = —23(3z1 + 12 — 73 + a), (4.27)
3 = (1+11)? + 2123 + 2273 + 273 — 73, (4.28)

In this case the dynamics are contained in a three-dimensional space, making the
analysis more complicated. We will proceed by examining the local dynamics near
finite and infinite singular points, and then use numerics to determine the global
behaviour of the system.

The finite singular points in this invariant set are Q, R, as given in Table 4.1
and S: and Ty (the intersection of the curves S and T with the hyperplane z4 = 0).



The points S; and T, have been completely analysed in the previous section (see
special case wp = 0), therefore only the remaining two points need to be considered
to complete the local analysis. The classification will be determined from the sign
of the eigenvalues. In cases in which the real part of the eigenvalue is non-zero the
Hartman Grobman theorem is invoked. In all other cases a more detailed derivation
of the local dynamics is given.

Point Q:(-1,3 — ,0,0)

The eigenvalues for this point are

3—a, a-3, and -« (4.29)

(see Table 4.1). The different values of the parameter o determine the exact nature
of the local dynamics about this point. The bifurcation values are a = 0 and 3.
When o # 0,3 this point is a saddle, with a 2-dimensional stable manifold and a
1-dimensional unstable manifold. At the bifurcation value of @ = 0 one of the four

eigenvalues vanish. The eigenvector-eigenvalue pairs are then

0 (1,0,3)
3 (2,-3,0)
-3 (0,1,0)

Small perturbations in the direction of the eigenvector (1,0, 3) show that the function
7, is monotonic. Therefore in this direction there are both attracting and repelling
regions. In the directions of each of the remaining eigenvectors the point is a saddle
with one stable and one unstable manifold.
At the bifurcation value of @ = 3 two of the three eigenvalues vanish. The

eigenvector-eigenvalue pairs are then

0 (1,0,0) (0,1,0)

-3 (1,0,3)
This point now coincides with the point Ty as seen in the case wg = 0, z; = 0 in
the previous section. The local dynamics in the various regions of a are sketched in

Figure 4.4.
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Figure 4.4: Local Dynamics of the singular point Q: in the case of plane symmetry.
Bifurcations occur at a = 0 and 3.



. ((=5a-3+4) (7a’®+18a+23F(3a+5)A) —(7a+14a—5F(3a+1)A)
Point R;g-( 8 ? = 16(a+1) ? 1:(a+l) )

where A? = 9a? — 2a + 25. In the full four-dimensional phase space the eigenvalues
of these points are given by the solutions to the quartic characteristic equation:

a(a)A* + b(a)A? + c(@)A? + d(a)A + e(a) =0 (4.30)

where
a(e) = 256 + 768a + 7682 + 256a° (4.31)
bla) = —416 - 1152a — 1344a® — 896a° — 288a*

+ (224 + 608a + 5440? + 160a°) V25 — 2a + 9a? (4.32)
cla) = —2648a — 2736a® — 2864a® — 1944a* — 632a°

+ (168 + 368a + 640a? + 656a° + 216a*)V/25 — 2a + 9a? (4.33)
dla) = 6714+ 13380a + 24630a? + 248240 + 16326a* + 8196a° + 2186a®

+ (1422 + 2634a + 44760 + 4814a® + 7220° + 2838a*)v/25 — 2a + 9af4.34)
e(a) = —25—6823a—17113a? — 192950° — 14419a* ~ 7933a® — 3259a° — 7650”

+ (-5 + 1400a + 3491a? + 3640a® + 2401a* + 1104a® + 257a®)
V25 - 2a + 902 (4.35)

Each of the eigenvalues, J;, is a function of the parameter . We can determine the
relative signs of these eigenvalues without actually algebraically solving for the roots
of the characteristic equation. The details are given in Appendix A. Plots of the
three eigenvalues [in the z4 = 0 plane] as functions of the parameter a are given in

Figures 4.5 (for R;) and 4.7 (for R_).
Bifurcations occur when the real part of one (or more) eigenvalues vanishes. The

complete list of the bifurcation values for the points R is

R, a =v2-1, 3, and r, ~ 1.067836956;
R_ a =0

For all other values of a the points R are hyperbolic and can be characterised by the
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Figure 4.5: Eigenvalues for the singular point R, : in the case of plane symmetry; i.e.
in the set z4 = 0. Note that A\, and A, are conjugate pairs.
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Figure 4.6: Eigenvalues for the singular point R,: zoomed on in the range 0 < a <
3.5.
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Figure 4.7: Eigenvalues for the singular point R_: in the case of plane symmetry; i.e.
i the set 4 = 0.

sign of the eigenvalues (see appendix A). Therefore in the range a € [0,7;) U (3, o0)
the point Ry is a saddle. In the range a € (r, 3) it is a sink.

At the bifurcation point @ = v/2—1 two eigenvalues vanish. One of the remaining
eigenvalues is positive and one negative. The zero eigenvalues have eigenvectors (1, 1—
v2,0,2—3v/2) and (0, 0, 1,2v/2). At the bifurcation value of a = 3 this point coincides
with Q. Finally, at the bifurcation value of r; there is a conjugate pair of purely
imaginary eigenvalues plus one positive and one negative eigenvalue. A summary of
the local dynamics of the point R, is sketched in Figure 4.8.

For the point R. in the range a € (0, 00) the point R_ is a saddle. This is true
both in the full phase space and in the invariant set 4 = 0. At the bifurcation value
of a = 0 the point R_ coincides with Q. A summary of the local dynamics of the
point R_ is given in Figure 4.9.

At infinity we can consider the singular points by considering the phase space
compactified by the Poincare transformation. The singular points are then those

listed in Table 4.2 with the property X = 0, namely all points except C+. The
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Figure 4.8: Local dynamics of the singular point Ry: in the case of plane symmetry;
i.e. in the set -4 = 0. Bifurcations occur ata =0,v/2-1,r;, and 3. Ata=v2-1
R,=Si,andata=3, R, =Q
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Figure 4.9: Local dynamics of the singular point R_: in the case of plane symmetry;
t.e. in the set 4 = 0. Bifurcations occur ata=0. Ata=0, R_ =
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Figure 4.10: Dynamics on the infinite boundary for the plane symmetric solutions:
for the compactified phase space. Top hemisphere; i.e. X > 0

classification is once again determined by applying the Hartman-Grobman theorem.
We note that the infinite boundary (8 = 0) is now the surface of a unit sphere; i.e. a
two-dimensional surface. This surface possesses several invariant circles, in particular
X2 =0, X, =0, X; = X; and X, + 2X; = 0. These invariant circles then divide the
sphere into several invariant regions. If we consider the invariant circle X; = 0 we see
that the surface of the sphere is divided into two invariant parts, X; > 0 and X, < 0.
Each of these invariant surfaces is then globally homeomorphic to the plane, and the
complete dynamics on the surface can be determined using the properties of planar
dynamical systems. The dynamics of each of these invariant surfaces, X; > 0 and
X, <0, are given in Figures 4.10 and 4.11.

The final step of the determination of possible asymptotic states is to consider
the global dynamics, and in particular rule out the possibility of closed surfaces or
closed (periodic) orbits away from the finite (or infinite) singular points discussed
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Figure 4.11: Dynamics on the infinite boundary for the plane symmetric solutions:
for the compactified phase space. Bottorn hemisphere; i.e. X3 <0



previously. As was stated in the Introduction, the determination of global dynam-
ics in a three-dimensional phase space is very complicated, and can not always be
determined analytically. The major tool - the monotonicity principle - will be used
extensively in the discussion which follows. Regions for which a monotonic function
has not been found have been considered numerically. The global dynamics was then
determined by piecing together the analytical and numerical results. Throughout the
discussion of the determination of the global dynamics the reader will be referred to
Figures 4.13 through 4.16 which give a visual summary.

The numerical calculations were performed using the software dstools, version tk.
Integration was performed using fifth order Runge-Kutta techniques with a tolerance
of 10~*. Figures 4.13 and 4.16 provide samples of the numerically calculated orbits
in the regions for which the monotonicity principle cannot be applied. While only
sample orbits have been illustrated, extensive numerical experimentation has shown
no evidence for the existence of closed orbits. In fact, in the regions "away” from the
finite singular points, the dynamics are very simple.

We begin the discussion of the global dynamics by considering the behaviour at
large finite values for one (or more) of the variables. We shall consider various regions

of the space separately.

1. zo >> 1,171,753 =~ 1: In this case we have that the derivative of z, is strictly

negative.

2. , >> 1,z;,z3 =~ 1: In this case we have that the derivative of z; is strictly

positive.

3. z3 >> 1,z,,72 =~ 1: In this case we have that the derivative of the function z;

is strictly negative.

4. In all other combinations of large values the monotonicity of the coordinate
directions can be determined if the surfaces which are the isoclines do not come
into play. We can see from Figure 4.12 that the isocline surfaces are located at
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Xy

Figure 4.12: Plot of isoclire surfaces for the system (4.26)-(4.28): three surfaces
representing the surfaces of zero change for each of the dependent variables z,, z2 and
z3 are shown. Note that "away” from the coordinate planes each of these surfaces is
asymptotically a plane.

(relatively) small values of the coordinates z, z;, and z3, and do not effect the

rate of change in coordinate directions at large values

Having determined that the behaviour at large values is simple (i.e. devoid of
closed surfaces or periodic orbits), we consider the remainder of the three-dimensional

space. The full space will be divided for convenience as follows:

R = TBy;
U, ... Us represent positive shear, i.e. z, >0
Ur ... U2 represent negative shear, i.e. £, <0
Uhs is all solutions with z; = 0 as seen in Figure 4.2
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Positive shear solutions!

o U, = {(z1,Z2,23)|z1,22,73 > 0} Since all orbits which intersect z; = 0 and
z1 = 0 necessarily enter U; and the boundary z, = 0 is invariant (thus can not
be crossed) this set is a positive trapping set. In this case it is clear that for all
points in U, all orbits increase monotonically in the direction of z;. There are,
therefore, no periodic orbits or closed surfaces in this set. Therefore all orbits

must asymptote towards the set zo = 0.

e U; = {(z1,%2,73)|Z1,22 > 0,23 < 0} In this case the set is not a trapping set.
Orbits intersecting the z; = 0 plane enter the set, and those on the z; = 0
plane exit the set. It is clear, however, that if the orbits intersect the z3 = 0
plane and leave the set, they necessarily enter the set U, and are governed by
the dynamics above. For all other orbits the asymptotic behaviour is clear from
the fact that for all points in the set all orbits decrease monotonically in the
direction of z;. There are, therefore, no periodic orbits, and all asymptotic

behaviour is located on z, = 0.

o Us = {(z1,72,73)] - 1 < z; < 0,72 > 0,z3 < 0} Once again this set is not
a trapping set. Solutions which intersect the z; = 0 plane will be forced into
the set U; and their asymptotic behaviour is then governed by the above. If
the orbits intersect the plane z; = O they move into the set Ug to be described
below. In all cases, solutions will necessarily intersect one of these planes or
asymptote to the plane z; = 0 since the flow is monotonically increasing in the

direction of z,; everywhere in this set.

o Uy = {(z1,Z2,73)|71 < —1,z2 > 0,z3 < 0} We know immediately that all
solutions stay in the set in backward time. The dynamics of orbits within this
set, however, are complicated by the presence of the finite singular point R_.
This point is located in Uy in all cases except a = 0 in which case it is equal to

1The discussion in this section considers the forward trajectories of each initial point. The
backward trajectories can be deduced in an analogous fashion.
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the point Q and found on the edge of the set. There is no (obvious) direction
in which the rate of change in monotonic. Numerical investigations show no
evidence of periodic orbits or closed surfaces. A summary of the numerically
calculated orbits in this region are given in Figures 4.8a. While the presence
of the singular point complicates the study of the direction fields, the numerics
indicate that with the exception of the two isolated orbits which comprise the
stable manifold of the singular point R_, all other orbits (in forward time) leave

the region.

Us = {(z1,z2,2z3)|z1 < —1,z2 > 0,z3 > 0} Since all orbits which intersect
z3 = 0 and z, = ~1 necessarily enter Us and the boundary z, = 0 is invariant
(thus can not be crossed) this set is a trapping set. In this case it is clear that for
all points in Us all orbits decrease monotonically in the direction of z,. There
are, therefore, no periodic orbits or closed surfaces in this set, and all orbits

must asymptote to the set z, = 0.

Us = {(z1,22,23)| = 1 <z, < 0,72 > 0,z3 > 0} In this final set, the dynamics
is also (as in U;) complicated by the singular point Q lying on one edge of
the set and the singular point R, which is in this set when v2 -1 < a < 3.
In the range r; < a < 3 the point R, is in fact a sink, with an open set of
orbits attracted to it. Numerical investigations once again do not indicate any
behaviour other than orbits tending out of this set when R, is not present in
the set. When R, is in this set orbits away form the singular point R, have

the generic behaviour of leaving the set for Us or U,.

The previous discussion is shown schematically with direction fields in Figure 4.13.
For the regions in which no monotonic function was found, samples of numerically
calculated results are shown in Figure 4.14 and 4.15.

Negative shear solutions

o U; = {(z1,22,23)|71,Z3 > 0,Z2 < 0} The direction field for the boundary of

this set is easily determined. On z, = 0 all orbits exit the set, and on z3 = 0 all
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Figure 4.13: Direction fields for plane symmetric solutions with positive shear: The
three dimensional diagrams show the stratification of the positive shear phase space as
described in the text (i.e., regions Uy- Us) The monotonic function is denoted with a
bold arrow when it exists. The direction on the boundary is indicated for each region.
In those regions in which no monotonic function was located details of the orbits are
given in the summary of numerical results: Figures {.14-4.15
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Figure 4.14: Numerically generated orbits for the region U;: Each diagram represents
a different region of the parameter space a > 0
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orbits exit the set. In general, no monotonic function can be found, however,
numerical results indicate that there are no closed orbits or closed surfaces.

Us = {(z1,Z2,73)|z1 > 0,23 < 0,z < 0} All orbits which intersect with the
boundary of this set necessarily leave the set (moving into U7 or U). For all
other orbits the asymptotic behaviour is clear from the fact that for all points
in the set all orbits decrease monotonically in the direction of z;. The only
possibility of a closed surface (or orbit) would then, necessarily, exit the set.

Since no orbit enter this set in forward time, however, this is not possible.

Us = {(z1,22,Z3)| =1 < z; < 0,72 < 0,23 < 0} Once again this set is not a
trapping set. Solutions which intersect the z; = 0 and z; = —1 planes will be
forced into the set, those intersecting the plane z3 = 0 move into the set Uj; to
be described below. In general, no monotonic function can be found, however,

nurnerical results indicate that there are no closed orbits or closed surfaces.

U = {(z1, T2, z3)|71 < —1,z7 < 0,23 < 0} We know immediately that all solu-
tions stay in the set in backward time. For all orbits within the set the function
7, increases monotonically, precluding the possibility of closed structures. All
orbits necessarily tend to z; = 0 or move into the sets Uy (described above) or

Uy to be discussed below.

Un = {(z1,z2,z3)|z1 < —1,z2 < 0,z3 > 0} Since all orbits which intersect
z3 = 0 and z; = —1 necessarily enter U;; and the boundary z, = 0 is invariant
(thus can not be crossed) this set is a trapping set. In general, no monotonic
function can be determined for all values of a. In the case a < 3, however,
the function 3z, + z2 decreases monotonically and all asymptotic behaviour
is necessarily located at z; = 0. In the case @ > 3 the singular point R, in
located in this set. However the numerical results indicate that the asymptotic

behaviour is the same, as seen in Figure 4.19.

o Uiz = {(z1,Z2,23)| -1 < 7; <0,z2 < 0,z3 > 0} While this set is not a trapping
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Figure 4.16: Direction fields for plane symmetric solutions with negative shear: The
three dimensional diagrams show the stratification of the positive shear phase space as
described in the text (i.e., regions Uz- Uy2) The monotonic function is denoted with a
bold arrow when it ezists. The direction on the boundary is indicated for each region.
In those regions in which no monotonic function was located details of the orbits are
given in the summary of numerical results: Figures 4.17-4.19

set, it is clear that z; decreases in a strictly monotonic fashion. All solutions

necessarily leave this set and end up in Uy; or in z, = 0.

The previous discussion is shown schematically in Figure 4.16. For the regions in
which no monotonic function was found, numerical results are shown in Figure 4.17
- 4.19.

While the numerical results can not be demonstrated rigorously in all cases there
is one class of solutions of the EFEs for which these results can indeed be shown
analytically.

Consider the class of solutions which satisfy the weak energy conditions (WEC)
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X,<0

Figure 4.17: Numerically generated orbits for the region Uy:for all values of a

for all values of the original variables r and t. Referring to the definitions for the
energy density and pressure given in chapter 2, (2.18)-(2.19), we see that the WECs

=20
u+p20;
immediately imply:
z320 and az; +1z2 <0, (4.36)
which then implies that
z; <0 (3z;+22;) <0 and (1+41z,)%+2z,z3 <O0. (4.37)

We can consider the regions of interest as follows:
1. Ry = {(21,22,23)|71 £ 0,22 < 0,23 2 0 < 3/2} = Uy, ® Upz, a < 3/2,
2. Rz = {(21,72,73) |71 £ 0,22 = 0,73 2 0} C Uys.

For the case R, the dynamics were completely determined analytically since mono-
tonic functions were found when @ < 3. The asymptotic behaviour is completely
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X,>0 az{z=-l

-

Figure 4.18: Numerically generated orbits for the region U;:Each diagram represents
a different region of the parameter space a > 0.



Figure 4.19: Numerically generated orbits for the region U),:For the cases a < 3 the
dynamics are determined through the use of monotonic functions (see the accompa-
nying tezt).

determined, as surnmarised by the direction field plots in Figure 4.13. Generically,
the forward asymptotic solution is the solution represented by the singular point A_,
and the backward asymptotic behaviour is the solution represented by the singular
point B;. The singular point E, is an intermediate solution (i.e., a saddle). The
dynamics have been completely determined in the invariant set U, 3, as shown in figure
4.2. As can been seen, the solutions which are in R, for all time necessarily start at
the singular point B, ending at E, with an intermediate solution of S, or they start
at the point T and end at E, with no defined intermediate behaviour.

Therefore, while we must rely on numerics to make conclusions about the dynamics
in some regions of space, we have shown that at least for solutions of particular
physical interest the asymptotic behaviour is determined by singular points at either

finite or infinite singular points.
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4.3 Physical Nature of Asymptotic Solutions

Now that the asymptotic behaviour has been determined, it is necessary to examine
the nature of the exact solutions corresponding to the singular points. In each case the
singular points which represent the asymptotic behaviour will impose a relationship
between the metric functions ®, ¥ and S. These relationships were used with the
algebraic package GRTensor in the Maple environment to determine the exact form
of the metric. Throughout the discussion we shall pay particular attention to those
solutions which satisfy the weak energy conditions (WEC), namely:

=20

p+p=0.

4.3.1 Finite Singular Points

Case 1: Q=(-1,3-¢,0,0)
In this case the metric necessarily exhibits plane symmetry. The metric and the

physical properties of energy density and pressure are given by

t2/a
ds® = —ade® + (7= 2 dr® + 1253 (d6 + 6°dg?) (4.38)
p=a*a*(a—-3)t"2 and p= ala~?(2a — 3)t72. (4.39)

The WEC are then satisfied iff @ > 3. Solutions with @ < 3 necessarily violate the
WECs at the point Q, as do all solutions which asymptote to this singular point.
Case 2: Ry = (¢1,¢2,¢3,0) -

The values of the constants ¢, ¢;, and c; are given in Table 4.1. In this case the metric
Is once again necessarily plane symmetric. The metric and the physical properties of

energy density and pressure are given by

ds® = —a*(€)*2d® + B(€)*2dr? + r2s3(£)* (d6? + 6%dg?) (4.40)

= =1 +ea)’ + 21006727 + 07%c] + 20102l 2172
= [1+a)+2uc+ 2c3]€ %22
+a~2 [C§ + 2c1c2 + 2¢3 + 2(a — 1)¢|€~2c3t ™2 (4.41)
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The WEC are satisfied if one of the following cases is true:
1. a€ (V2- 1,3) (i.e. cz3 > 0) and ¢=_+(f:3_-'llc_l < %Ez(q_q).
2. a € (3,) (i.e. c3 <0) and CL*‘L%;'_I)& > f:;t;fz("’c’).

Note that neither of these conditions is satisfied for all values of the coordinates ¢
and r; however, it is possible that solutions which asymptote towards this point will
always satisfy the WECs.

Case 3: S =(0,0,c,? +2c—1)

In this case the metric may be hyperbolically, plane, or spherically symmetric. The

metric and the energy density and pressure are given by
ds? = —a%e%dt® + b2dr?® + r?s2dQ? (4.42)

p=b"2a"}(?+2c—2)r? and p=>b2a"%(2-c)r2 (4.43)

Note: This metric is static since by a redefinition of the variable t all metric functions
(as well as all physical definitions) are independent of time.

The WEC require that the parameter c be greater than (or equal to) v/3 — 1. In this
case it necessarily follows that z4 is strictly positive. Thus the only cases in which
(4.42) satisfies the WEC is in the case of hyperbolic symmetry. When the WEC is
violated for this singular point they are also violated for all solutions which asymptote
towards this point.

Case 4: T = (c,0,0, —(c + 1)?)

This case is equivalent to the singular points located in the study of the geodesic
solutions (see section 3.1). The solutions are necessarily spherically symmetric. The
metric and the physical properties of energy density and pressure are given by

ds? = —a?dt® + £%[b%dr?® + r?s2(d8? + sinfd¢?)] (4.44)
p=3%a%a"?? and p=-3fa (%2 (4.45)

These energy conditions are valid for all values of the parameters c and a. A detailed

discussion is given in section 3.1.
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4.3.2 Infinite Singular points

In addition to those singular points at finite values, it has been shown that solutions
may asymptote (to the past or future) to values on the infinite boundary of the phase
space - in fact this is the generic behaviour.

Case l: A, :z,=z3=z4=0

Solutions at this point are necessarily plane symmetric. The metric and the physical
properties of energy density and pressure are given by

ds? = —a?dt? + e*Vdr? + r’s3(d6* + 0d¢?) (4.46)
where
¥ =-9(¥+a) (4.47)
and
p=—-er2? p=e?Vr2 (4.48)

This metric is static, and the solutions belong to the geodesic class (and therefore
are physically self-similar). In this case the energy density (u) is strictly negative.
Thus the energy conditions are not satisfied for the singular point or for any solutions
which asymptote to this singular point.

Case 2: Bz, =22 =24=0

Solutions at this point are necessarily plane symmetric. The metric and the physical

properties of energy density and pressure are given by
ds? = —e*®dt? + b%dr? + r2si(d8® + 6d¢?) (4.49)
where ® ~ —$? and
p=-b"%r"2 p=>b"2(1+2&)r 2 (4.50)

The metric is static (therefore solutions are physically self-similar) and the fluid has
zero shear. In this case the energy conditions are not satisfied (as the density is
strictly negative) for the singular point or for any solutions which asymptote to this

singular point.
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Case 3: Cy: 7z, =z, =123=0
Solutions at the point C, are spherically symmetric and those at C_ exhibit hy-
perbolic symmetry. The metric and the physical properties of energy density and

pressure are given by
ds? = —dt? + dr? + r?dQ? (4.51)

where £k = +1 for C, k = -1 for C_ and
p=(z4—1)07"2r"2 p=(1-z4)b"%r2 (4.52)

The metric is static, and the solutions are in the geodesic class (therefore are physically
self-similar). In addition, the fluid has zero shear. In this case the energy conditions
are satisfied at C,. At C_, however, the energy conditions are not satisfied at the
singular point or for any solutions which asymptote to this singular point.

Cased: Dy:z, =23 z=z4=0

Solutions at this point are necessarily plane symmetric. The metric and the physical

properties of energy density and pressure are given by
ds? = e2®[—dt? + b%dr? + r?s3(d6? + 0d¢?)] (4.53)

& ~ ®2 and

p o= e b -1 +z1)% - 22)r 2+ 32207472,

p = e b %3z + 4z, + 1)r? — (322 + 2az,)a %t 7?). (4.54)
The fluid in this case has zero shear. These solutions are not physically self-similar.
In this case the energy conditions are not satisfied in general for the singular point
or for any solutions which asymptote to this singular point.
Case 5: E, : 7, =-223 z3=2,=0

Solutions at this point are necessarily plane symmetric. The metric and the physical

properties of energy density and pressure are given by

ds? = —e?®dt? + e~ **[b2dr? + r’si(d6? + 6dp?)) (4.55)
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® ~ -2 and

= e'®%(-1 - 21))r % + 3222727 2%t 72,

e*®*b2r~2 — (322 + 2az)a"2e 2%t 72 (4.56)

The fluid in this case has zero shear. These solutions are not physically self-similar.
In this case the energy conditions are satisfied at E,. At E_, however, the energy
conditions are not satisfied at the singular point or for any solutions which asymptote
towards this singular point.

Case 6: Fy:zo=1z;3 z,=z4=0

Solutions at this point are necessarily plane symmetric. The metric and the physical

properties of energy density and pressure are given by

ds? = e2®[—dt? + b*dr?] + r’s2(d6? + 0de?) (4.57)

& ~ 2% and

p=—-e22b"%r"2 p=¢e2%1+ )b 2r 2 (4.58)
The metric is static, and therefore the solutions are physically self-similar. In this
case the energy conditions are not satisfied since 4 < 0 for the singular point or for
any solutions which asymptote to this singular point.
Case 7: Gr:z2,=-223 z=3z3 z4=0
Solutions at this point are necessarily plane symmetric. The metric and the physical

properties of energy density and pressure are given by

ds® = —e2®dt? + b2e 5%dr? + risie % (d6? + 0d4?) (4.59)

$ ~ $2 and
p = (48 —1)e 2%b7%r"2 — 89%a2e %172, (4.60)
p = (1-28)e2*b%r % + (88% — 108 — 4ad)a’e~2%t~2. (4.61)

In this case the WECs are satisfied for the point G, when a > 5/2, otherwise both
points violate the WECs. General solutions which asymptote towards these points,
however, will not violate the WEC in the following cases:
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1. Solutions asymptoting to G,: If t2 + (2a — 5)b%e‘®r2 > 0
2. Solutions asymptoting to G_: If 2 + (2a — 5)%e*®*r? < 0

In all other cases solutions which asymptote to this singular point will violate the
WECs.

Case 8: Hy:z, =23 z,=-3/2z3 z,=0

Solutions at this point are necessarily plane symmetric. The metric and the physical
properties of energy density and pressure are given by

ds? = —e**dt? + bPe~3%dr? + r2s2¢2® (d6? + 0dg?) (4.62)
$ ~ —1/282 and

= —((1+®)% +20%)e %212 — 29%a2e~2%¢2, (4.63)
P = ((1+®)+28% +28)e~2®p2r2 + (282 + (2a — 5)d)a%e 2%t 2. (4.64)

In this case the WECs are violated at the singular points. In addition, all solutions
which asymptote to these singular points will also violate the WECs

4.4 Summary of the Dynamics

At this point a summary of the complete dynamics will be given. Recall that z; =0
and z; = 0 are invariant sets, and specifically z4 = 0 divides the full phase space
into three distinct (and invariant) sets. Each of these sets corresponds exactly to the
three different forms of metric to be considered, namely:

e z4 < 0 : Spherically symmetric solutions
e 74 = (0 : Plane symmetric solutions

e z4 > 0 : Hyperbolically symmetric solutions
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We have shown that all solutions asymptote in the past or to the future to the set
z; = 0 or to the set z4 = 0. For that reason special attention has been paid to
solutions in these classes. In addition, most physically interesting and important
applications lie in the spherically symmetric class of solutions, so the dynamics in
this set will be given special focus. Because of the natural split of the solutions, we
shall consider the dynamics according to the symmetry of the metric.

Case I Plane Symmetric Solutions [z4 = 0]

The dynamics of the solutions in this class occur in a three-dimensional set. There are
six finite singular points. Three of these points lie in the invariant set o, = 0. The set
z2 = 0 divides the phase space, and the complete dynamics in this case are outlined in
Figure 4.2. Through a combination of analytic methods and numerical results it was
determined that the only stable asymptotic behaviour (not in z; = 0) was located
either at finite or infinite singular points (namely A, By, Dy and G+ as well as
R, in the parameter region r;, < @ < 3). The infinite points have been classified
and are given in Table 4.2, with the dynamics on the infinite boundary (which are
independent of the parameter a) sketched in Figures 4.10 and 4.11. In this case the
global sinks are located at A_, B_, D, and G, whereas the global sources are located
at Ay, By, D_ and G_. There are various values of the parameter a for which the
stability of the finite singular points changed. We therefore summarise the dynamics
of the singular points not located on the plane z, = 0 according to the values of the

parameter « in Table 4.5.

The only sink or source located at firite values is found at the point R, in the
parameter range a € (r;,3). Schematics of the local behaviour of each of these points
was given in Figures 4.4 - 4.9. The global behaviour can be summarised through a
schematic of the path of the orbits showing initial, intermediate and final asymptotic
regions. The schematics are given in Figures 4.20 and 4.21. These figures, coupled
with Figures 4.13 and 4.16, act as a summary of the possible dynamics in this case.
As can be seen, the singular points located on the infinite boundary are of special
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Table 4.5: Summary of finite singular points for plane symmetric solutions

with non-zero shear.

«a R, R_

0 saddle-node saddle =Q
(0,v2—1) saddle saddle saddle
v2-1 saddle = S, (see Figure 4.2) | saddle
(V2-1,1) saddle saddle saddle
T saddle saddle saddle
(r1,3) saddle sink saddle
3 =T (see Figure 4.2) =Q saddle
(3,00) saddle saddle saddle

importance as they are initial or final states. Some finite singular points represent
intermediate behaviour. It is important to note that the WEC conditions are always
violated for solutions which asymptote to the point R in the case that it is a sink
(i.e., when a € (71, 3)). The sinks and sources located on the infinite boundary violate
the WEC in all cases except G4, which are valid in specific cases as illustrated in
Case 8 of section 4.3.
Case II Spherically Symmetric Solutions [z4 < 0]
Most interesting and important physical examples are located in this set of solutions.
For this reason, we focus on the dynamics in this set. The solutions which exhibit the
so-called ” physical self-similarity” for a single fluid model were examined in Chapter
3 in some detail. These solutions are contained as subsets here. In particular the
geodesic (i.e., zz3 = 0) solutions are located in the two-dimensional invariant set
z4 = —(1 + 1,)?,z3 = 0, and the solutions with M, = O (i.e., the class containing all
static solutions) are located in the invariant set z; = 0,z4 = (z3 + 1)2 — 2. In each
case the analysis given in chapter 3 is simplified to the study of a one-dimensional
system (rather than the two-dimension invariant sets as listed here) as a result of the
intrinsic relationship between the variable z,,z; and z4.

As a result of the fact that z, is a monotonic function for all solutions in this class,
we know that solutions are asymptotic to either (1) a shear-free fluid solution, i.e.,
z, = 0 (as described in 4.1), (2) a solution with zero-curvature (i.e., z, = 0 as given
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Figure 4.20: Schematic of the path of generic orbits for plane symmetric solutions with
positive shear: denotes a source points, O an intermediate region and O a terminal
region (arrows represent the passage of positive "time”).
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G5 G
Figure 4.21: Schematic of the path of generic orbits for plane symmetric solutions

with negative shear:@denotes a source points, O an intermediate region and { a
terminal region (arrows represent the passage of positive “time”).
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in 4.2 and summarised above), (3) a solution with infinite curvature as described in
section 4.3, or (4) a solution represented by the finite singular points of S or T. These
singular points S and T are necessarily ”physically self-similar” in the single fluid
model and we have shown in chapter 3 that they admit a homothetic vector. More
details of the physical nature of each of the asymptotic solutions will be given in the
next section.

Case III: Hyperbolically Symmetric Metrics [z, > 0]

The general analysis in this case is similar to that of the spherically symmetric case.
All asymptotic behaviour is either located on the invariant sets z, = 0, 74, = 0 or
infinity, or at one of the finite singular points. The only finite singular points in
this class consist of the points along the one-dimensional equilibrium set S, which
corresponds to the shear-free fluids. Their complete dynamics are given in section 4.1

and are summarised in figure 4.3.



Chapter 5
Infinite Kinematic Self Similarity

In the preceding chapters the class of solutions exhibiting a finite KSS were consid-
ered, and their qualitative behaviour determined. There is a further type of kinematic
self-similarity which we shall refer to as kinematic self-similarity of ‘infinite’ type, or
simply infinite KSS, corresponding to a generalisation of rigid transformations, which
will now be considered. Once again emphasis is placed on those models which can
be interpreted as perfect fluid solutions of Einstein’s field equations (EFE). The gov-
erning system of differential equations once again reduces to a system of autonomous
ordinary differential equations and the qualitative behaviour of the models will be

examined in a manner similar to that of Chapter 4.

5.1 Reduction of the EFEs in full

When considering infinite KSS three different cases arise, depending on the orientation
of the fluid flow u relative to the KSS vector field, i.e., fluid flow parallel to &, fluid flow
orthogonal to €, and the most general ‘tilted’ case in which the fluid flow is neither
parallel nor orthogonal to €. It can easily be shown that in the cases of parallel and
orthogonal fluid flow there are no perfect fluid solutions, therefore the general tilted
case will be the focus of this chapter.

87
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The general ‘tilted’ case occurs when the four-velocity is neither parallel nor or-
thogonal to the self-similar vector field. In this case one can choose coordinates so
that the KSS takes the form:

€ =0, +r8, (5.1)

In such coordinates, and solving the self-similar equations [see equations (1.10)-
(1.11)], it is easy to show that the metric can be given by

e2¥
ds® = —e2®dt? + ?i-dr2 + S%(d6® + £(8, k)2d¢?) (5.2)
where ®, ¥ and S are functions depending only on the self-similar coordinate
t -
=~ (5.3)
The field equations for a perfect fluid source are
0 = S"t+Sr-d'S't- V'St (5.4)
0 = t"’El(E) +22(€) , (55)

where a dash denotes derivative with respect to £ and

o= —(8)+ %s%’ - S29'¥ + 529" + ktﬁze” + S%(@')? (5.6)
T, = eV [— %ss’ - S3(¥')? + S%9'Y — S + (s')2] : (5.7)

The only possibility which will satisfy equation (5.5) is when ¥; = ¥; =0.

Note that if we assume a perfect fluid source such that g+ p # 0, we have that S’
cannot vanish. Then defining z = In(£), and f = d/dz, we have equations (5.4) and
(5.5) as

= =—=—®-Vv 5.8
0= 3 2 (5.8)
SV ae € i
0 = — 5 -<I>\Ir+k—§2—+<l> (5.9)
. .y 2
0 = -§+(§) b F 4+ (5.10)
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Applying now the definitions
y=S/S, u=V¥, v= b, w=-ke?¥S?, (5.11)

(as was done in Chapter 2) equations (5.8)-(5.10) reduce to a four-dimensional au-

tonomous system of ODEs

y = ylu+v-—y), (5.12)
2 = —y+y*—ul+u+uy, (5.13)
v = w+y?+uv—1v? (5.14)
w = 2w(u-—y). (5.13)

The matter quantities are given by

= e ®2uu+ 1yt % - e ¥ [w + 2yv + 7, (5.16)
e"2°[-2yu + 2y — yz]t’2 +e 2V [w +2yv + y2]. (5.17)

At this point we note that equations (5.12)-(5.15) are of a form similar to the governing
equations in the case of finite KSS. In fact, the quadratic terms of the vector field
for equations (5.12)-(5.15) are identical to those of (2.60)-(2.63). This result is an
immediate consequence of the choice of the metric (5.2) (and, necessarily, the choice
of the coordinate form of the KSS). The immediate difference between the governing
equations of finite and infinite KSS is that the system (5.12)-(5.15) admits many more
invariant sets which, as will be seen, greatly simplify the analysis.

Note that the density and pressure can be split as 4 = u; + u; and p = p, + p2
where p; = 2;(6)t™2, p1 = 51(€)t72 and —p; = p2 = [22(€). As was the case for finite
KSS each component of the energy and pressure then exhibit self-similarity since
Lem = —2p, Legpr = —2p1 and Lepz = Lgp2 = 0.

There are some physical consequences which are important to note here.

1. For the particular case w + 2yv + y2 = 0 (i.e., g2 = p2 = 0) the fluid is said to
be ‘physically’ self-similar (Coley, 1996).
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2. The vacuum solutions correspond to y = w = 0.

3. The perfect fluid (with x4 + p # 0) will exhibit a barotropic equation of state
(p = p(u)) if and only if

w+22yv+y> =cee*¥ and 2u+y=c¢ (5.18)
where ¢y and c; are constants.

4. If we are to demand that the solutions satisfy the weak energy conditions (i.e.
£+ p >0 and g > 0) over the entire manifold the following inequalities serve

as necessary conditions

y20,
2u+y >0,
w+2yv+y% <0. (5.19)

5.2 Qualitative Analysis

The system given by equations (5.12) - (5.15) is an autonomous system of first order
ODEs. As such, the asymptotic solutions of the system can be determined by studying
the qualitative dynamics.

The full system of equations, (5.12) - (5.15), describing all possible solutions,

exhibits a number of invariant sets, including the planes
w=0, y=u, y=0, (5.20)
as well as the surfaces
w+2yw+y =0, w—yv-y*=0. (5.21)

To allow for the simplification of the analysis we make the following change of variables
(as in Chapter 4):
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) =Y, T2=U—Y, 3=V, I4=W

In these coordinates the equations (5.12) - (5.15) become:

Z, = z(z2 + z3), (5.22)
Iy = zZ(1+z3— 12 - 32y), (5.23)
T3 = Z4+Z2+I1T3+ T2T3 — T3, (5.24)
Ty = 2z472. (5.25)

The finite singular points can then be located. They are summarised in Table 5.1
There are three distinct hyperbolic singular points and two sets of non-isolated sin-
gular points each of which have zero eigenvalues in the direction tangent to the curve
and non-zero eigenvalues in all other directions (i.e., they are normally hyperbolic).
The finite singular points can be classified by the eigenvalues of the Jacobian for the
vector field. This classifications will be given in each of the sections to follow. The
singular points for system (5.22)-(5.25) do not depend on a parameter value. The
classification will, therefore, not require the bifurcation analysis completed in Chapter
4.

We can also consider the singular points located at infinity. To do this we once
again employ the Poincare transformation as described in Section 1.3, using the vari-
ables:

X = 110, Xz = 229, X3 = v0, X4 = wh
0=(1+z22+z2+v2+w?)"12

In this case the equations (5.22)-(5.25) become

X! = Xi(X,+ X3 — K) = X1(X2 + X3X,)8, (5.26)
X; = Xz(x;; - X3 -3X, - K) - Xg(Xf + X3X4 — Xz)a, (5.27)
X:’, = X12 + X3(X1 + X — X3 - K) - X3(X§ + X3X¢ - X4)0, (5.28)

X4 X4(2X2 — K) = X4(X3 + X3X4)6, (5.29)
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Table 5.1: Finite Singular Points for equations (5.22)-(5.25). The local analysis
for each singular point will be discussed in the subsequent sections, according to their
classification. Q2,3 are isolated singular points and L; and L, are curves of non-
isolated singular points (one-dimension equilibrium sets). Note that the curves L,
and Lz intersect at the point (0,0,0,0). 3 and o are constants.

{ (21, 22,23, 2,) | Eigenvalue - Eigenvector Pairs | Classification Notes i
Q (0,1,0,0) 1 0,1,2,0) Saddle Metric: eqo. (5.52)
1 (1,0,3,0) Geodesic, vacuum solution
-1 (0,1,0,0) Plane symmetric
2 (0,1,3,3) Phys. self-sim.
Q: (1,-1,1,0) -3 (5,.-6,-9,0) Saddle Violates WECs
-2 (-‘v sv 3. 7)
1+v2 (1,v3,1,0)
1-v2 (1,-v2,1,0)
B (& T0 (1,0,3,0) Saddle Metric: eqa (5.54)
(-2l 1, -3, 2) Plane symmetric
- VTH)  (~2,-v7i,1,0) Phys. self-sim.
| FA+ VT (=2,V7,1,0)
L, (0,0,8, 8% B (3,0,1,0) 3-dim Saddle Violates WECs
1+8 (0,1 +8,8,268%) | (if 8=0then
-28 (0,0,1,0) Li=L;isa
0 (0,0,1,258) saddle-node )
L, (#,0,0,-0%) -g (-1,0,1,0 3-dim Saddle Metric: eqa. (5.56)
20 (1,0,2,0) (if o =0 then spherically symmetric
1-3¢ (e, -20,0, ~30) Li=Lisa Phys. self-sim.
0 (1,0,0,~-20) saddle-node )
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where
K = X} X, +2X71X3 - 3X1 X2 + X1 X7 — X3 + X2 X3+ X2 X2 — X3 +2X,X,. (5.30)

As was done in the finite KSS case the singular points located on the invariant
boundary 8 = 0 [which is now the location of the infinite singular points for equations
(5.22)-(5.25)] can be classified. It is important to note that the system (5.26)-(5.29)
restricted to the invariant set © = 0 is identical to that of the finite KSS case given
in equations (4.5)-(4.8). Therefore, the location of the singular points and their
classification is identical to that given in Table 4.2.

Returning now to the system (5.22)-(5.25) we see that the invariant hyperplanes

z4 = 0 and z, = 0 divide the phase space into four additional invariant sets:

I; = {(z:,72,73,74)|22 > 0,24 > 0}, (5.31)
I, = {(z1,72,73,%4)|T2 > 0,24 < 0}, (5.32)
I, = {(z1,22,73,74)|z2 < 0,24 > 0}, (5.33)
Iy = {(z1,72,23,24)|22 < 0,24 < 0}. (5.34)

As was the case in the finite KSS case, the function z4 (curvature) is monotonic in
each of these invariant sets. As a result all stable asymptotic behaviour is necessarily
located on one of the invariant sets z, = 0 or z; = 0 (or at z4 = +00). Each of these
three cases will be studied individually when the global dynamics is considered. (In
all cases we note that the classification of singular points (both finite and infinite)
can be determined by considering the points listed in Tables 5.1 and 4.2 restricted to

the invariant set being considered).

5.2.1 Subcase: 72 =0

We first consider the hyperplane z; = 0. In this case the system of equations (5.22)
- (5.25) becomes:

& = nw, (5.35)



T3 = wo+2I°+ 1,73 — 73, (5.36)

Z4 = 0; =z4=wy= const.. (5.37)

This system is now a two-dimensional dynamical system in the variables z, and z;

with parameter wy. The finite singular points are located (where they exist) at:

Ly = (0,+£y/wo), (5.38)
Ly = (£v-u,0). (5.39)

Each of these points is the intersection of the fixed curves (L, and L, respectively)
with the plane under consideration; i.e., o = 0 and z4 = wp.

We note here that the value 4 = 0 is a bifurcation. We shall first consider the
dynamics of the solutions when wy < 0 and wy > 0, and consider the dynamics at
the bifurcation point second. We can see from Table 5.1 that when wy < 0 or wy > 0,
the points L;+ and L,y have both positive and negative eigenvalues when restricted
to this case. Therefore, each is a two-dimensional saddle point. Further, from Table
4.2 we see that the infinite singular points are B+, C+, Di, and E;. Restricted to
this invariant set we find that B,, D_ and E_ are sources; whereas B_, D, and E.
are sinks.

We now turn our attention to the dynamics of equations (5.35)-(5.36) at the
bifurcation value of wy = 0. In this case we see that there is only one finite singular
point, which is located at the origin, (z;,z3) = (0,0), i.e. the intersection of the
two fixed curves L, and L,. This singular point is non-hyperbolic in nature, and
as such its local properties can not be determined by examining the eigenvalues of
the corresponding Jacobian matrix. In this case, however, there are three invariant
lines: z; = 0, z; = ~2z3 and z; = z3. The dynamics on each of these lines can be

determined as follows:

(ionl,:z,=0: £3=—z3 <0.
(ii) on I : 2, = —2z3: T3 =23 > 0.

(iii) on I3 : 7, = 13: T3 =23 > 0.



Each of these three invariant lines then divide the 2-dimensional phase space into 6

additional invariant regions:

I, = {(z1,23)|z3 > 0,0 < 7; < z3}: ;>0
Is = {(z1,z3)|z3 < 0, -2z3 < z; < 0}: £, <0
Is = {(z1,z3)|z) > 0,0 < z; < —2z3}: £, >0
I = {(z1,z3)|z, < 0,z3 < £, < 0}: £, <0

Ig = {(11,13)11'1 >0, —1/221+ <zI3 < Il}: z3 >0
Iy = {(zl,zs)lzl <0,z <z3< —1/21'1}: z3 >0

The result is that the point (0,0) is a saddle. The asymptotic analysis is then com-
pleted by considering the singular points on the infinite boundary. As the quadratic
portion of the vector field is unchanged by the differing values of the bifurcation pa-
rameter, the infinite singular points and the corresponding analysis is identical to
that when wyg # 0.

A bifurcation diagram, including all the phase portraits for each range of the
parameter wg is given in Figure 5.1. As can be seen by these phase portraits all
generic asymptotic behaviour (to the past and the future) is located on the infinite
boundary. The exact solutions for each of these singular points (which are asymptotic

states to past or future or are intermediate states) will be examined in section 5.4.

5.2.2 Subcase: z4 =0 - Plane Symmetry

The invariant set 4 = 0 contains a subset of the asymptotic solutions for the system
(5.22)-(5.25). As can be seen from equations (2.45) and (5.11), solutions which have
w identically zero comprise the set of plane symmetric solutions. In this case, the
system of ODEs (5.22)-(5.25) reduces to:

zZ, = z,(z2 + z3), (5.40)
Tq = Iz(l +Z3 -z, — .'L'z), (5.41)

Iy = zf + z3(zy + 72 — 33). (5.42)
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Figure 5.1: Phase portrait of the Poincare transformation of system (5.35)- (5.36):
The case of wg < 0 corresponds to spherically symmetric solutions, wo = 0 plane
symmetric solutions, and wo > 0 hperbolically symmetric solutions. The vertical
direction represents the parameter space wo € R, where wo = 0 is the bifurcation

value for the system.
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The co-ordinate planes £, = 0 and z, = 0 are each invariant sets for this system, as
are the sets , + 2z3 = 0 and z; = z3.

The finite singular points in this case are given by Q;, @2, Q3 and L, = L,. The
local dynamics of each is determined by considering the sign of the eigenvalues of the
Jacobian (see Table 5.1) restricted to this set z, = 0; i.e, those eigenvalues whose
associated eigenvectors have the form (¢, cz,c3,0). The points Q;-Q3 are saddles
in this three-dimensional set. The point L = L; = L, is non-hyperbolic. As was
done when considering the non-hyperbolic points in Chapter 4, the Centre Manifold
Theory will allow the point to be classified. The many invariant sets which include
this point greatly simplify the analysis, and it is a straightforward matter to show
that in the two dimensions which define the coordinate plane z, = 0 the point is a
saddle and in the third direction it is a saddle-node. The infinite singular points are
equivalent to those located and classified in Chapter 4. The dynamics on the infinite
boundary are therefore equivalent, and are represented by Figures 4.10 and 4.11.

Before considering the global dynamics in this three-dimensional system, we shall
consider the dynamics as restricted to the three invariant planes. Each of these planes
will divide the phase space further, allowing for a simplification in the analysis when
considering the entire space. Note that the zo = 0 invariant set has been completely
analysed in the previous section. The dynamics are represented by the case wy = 0
in Figure 5.1. Therefore, we need only consider the planes z; =0, z; + 2z3 = 0 and
) = Z3.

Invariant Set: z, =0
In the invariant set z; = 0, the system (5.40)-(5.42) reduces to:

T, = z(1 + z3 — T2), (543)
.'f3 = 13(1‘2 - .‘53). (544)

This system gives rise to dynamics in the z; - z; plane. The finite singular points are
given by L; = L, = (0,0) and @, = (1,0). Local analysis shows that the point (1, 0) is
a hyperbolic saddle point and the point (0, 0) is non-hyperbolic, saddle-node in nature
(determined, as in Chapter 4, through the use of centre manifold theory). Therefore,
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Figure 5.2: Phase portrait of the Poincare transformation of system (5.43)- (5.44):
i.e., plane symmetric solutions restricted to the tnvariant set z, = 0. The phase space
1S X2 vs. X3.

no stable asymptotic behaviour is located in the finite part of the phase space and all
asymptotically stable solutions in this subcase are located on the infinite boundary.
The complete phase portrait, as compactified by the Poincare transformation, is given
in Figure 5.2.

The solutions in this case can, in fact, be determined completely as the system
(5.43)-(5.44) can be integrated completely. The analytic solutions are given by:

e If 2, =0 then 3 + 22 = 0; i.e.
T3 = const and z3 = (2 + const)?.
e If z3 =0 then z; = z,(1 — z,); i.e.
z3 = const and z; = (1 + const.e™*)"L.

e If 3 # 0 then z3 + 27323 = 75 + Ig; ie.
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Figure 5.3: Phase portrait of the Poincare transformation of system (35.43)- (5.46):
i.e., plane symmetric solutions restricted to the invariant set £, +2z3 = 0. The phase
space is Xz vs. Xj.

T2Z3 = const. and z3 = ef(const. + const.£) L.

Invariant Set: 7, +2z3 =0
In the invariant set z, + 2z3 = 0, the system (5.40)-(5.42) reduces to:

fg = $2(1 + 31'3 - Ig), (545)

3 = z3(z3 + z2). (5.46)

As a result the dynamics are located in a two-dimensional plane. The finite singular
points are given by @, = (1,0), Qs = (1/8,-1/8) and L, = L, = (0,0). Local
analysis determines that the point (1,0) is a saddle, (1/8,—1/8) a spiralling sink
and (0,0) a saddle-node (determined, as in Chapter 4, through the use of centre
manifold theory). The phase portrait for this case, as compactified by the Poincare
transformation, is given in Figure 5.3.

Invariant Set: 7, = z;
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Figure 5.4: Phase portrait of the Poincare transformation of system (5.47)- (5.48):
i.e., plane symmetric solutions restricted to the invariant set z, = z3. The phase
space s X, vs. X,.

In the invariant set z, = z3, the system (5.40}-(5.42) reduces to:

1:1 = Il(Il“l'Iz), (547)

1:2 = 1'2(1 - Iy — 21‘1). (548)

As a result the dynamics are located in a two-dimensional plane. The finite singular
points are given by L, = L, = (0,0), @, = (0,1) and Q, = (1,—1). Local analysis
determines that the points (1,0) and (1, —1) are saddles whereas (0,0) is a saddle-
node (determined, as in Chapter 4, through the use of centre manifold theory). The
phase portrait for this case, as compactified by the Poincare transformation, is given
in Figure 5.4.

Global Dynamics

The global dynamics can, once again, be determined through an investigation of the
direction fields making use of the monotonicity principle. To simplify the global
analysis, consider the full three-dimensional phase space divided into 16 invariant
regions and labelled U; so that U,3 corresponds to the set z; = 0, U4 the set z, =0,
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Table 5.2: Invariant regions of the space (z,, z,, z3) for the system (5.40)-(5.42)
with corresponding monotonic functions. Note that the sets U;3—U,¢ are not included
here as they are two-dimensional invariant sets and their complete dynamics have been
summarised in the phase portraits: Figures 5.1-5.4 .

Label Definition of Region Monotonic
Function

U, {(z1,z2, z3) |21, 22, 23 > 0} I, strictly increasing

U, {(z1, z2, Z3)|Z1, 22 > 0,21 + 223 > 0} T, + 2z;3 strictly increasing
Us {(z1, 22, Z3)|Z1, 22 > 0,7y + 223 < O} | z, + 2z; strictly decreasing
Us {(z1, T2, z3)|Z1 < 0,22 > 0,2, ~ z3 < 0} | z; — z; strictly decreasing
Us {(z1,Z2,73)|71 < 0,22 > 0,z) — 23 > 0} | z; — z; strictly increasing
Us {(zy, T2, z3)|7) < 0,Z5,z3 > 0} T, strictly decreasing
U; {(zy,z2, z3)|Z1 > 0,22 < 0,2, — 3 < 0} | z, — z; strictly increasing
Us {(z1, Z2,z3)|z1 > 0,22 < 0,2, — z3 > 0} | T, — z;3 strictly decreasing
Us {(z1,z2,Z3)|Z1 > 0,22 < 0,23 < 0} T, — z3 strictly decreasing
Uio {(z1, Z2, Z3)|Z1, T2, 3 < 0} T, strictly increasing
Ui {(z1, Z2,Z3)|Z1,22 < 0,7, + 223 < 0} | z; + 2z, strictly increasing
U, {(z1, T2, T3)|Z1,72 < 0,z; + 223 > 0} | z; + 2z; strictly decreasing

U5 the set z; + 2z3 = 0 and U the set z; = z3. In each of the remaining 12
regions of space a monotonic function has been identified. These regions, and their
corresponding direction of monotonic change, are given in Table 5.2. Note that the
sum of the sets U;, 1 = 1..16 provides a decomposition of the complete phase space.
As such, since each region is invariant under the system (5.40)-(5.42) the existence
of strictly monotonic functions in the regions U, - U4 ensures that the only possible
asymptotic solutions are located on the boundaries (either finite or infinite). The
finite boundaries are the sets U;3 — U,g, or subsets thereof. As a result the global
dynamics have been completely determined by the previous investigations. The only
possible asymptotic states are, therefore, the singular points located at finite and

infinite values.
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5.3 Description of Asymptotic Solutions

In the qualitative analysis of the previous section, the asymptotic states of the gov-
erning system were described as singular points of the autonomous system of ODEs.
The existence of other types of stable structures was ruled out by the existence of
monotonic functions. Each of the physical solutions described by these singular points
will now be given, restricting attention to those solutions which satisfy the energy
conditions given by equations (5.19). Note that in Chapter 4 it was necessary to
examine all the singular points since the physical space was not bounded by invari-
ant sets, and the possibility existed that some solutions may satisfy the WECs while
approaching a point which does not. In this present case, however, the boundaries
of the regions which satisfy the WECs are, in fact, invariant sets; therefore we need
only consider the solutions which lie in the regions satisfying the WECs. While some
of the singular points being described are not structurally stable in all 4-dimensions,
there are invariant regions in which they do act as attractors (either to the past or the
future); in addition, these points act as intermediate attractors (repellors) for large
classes of solutions. For these reasons the exact solutions for each of the singular
points satisfying the WECs will now be given.

It is important to note that in this case of infinite KSS all asymptotic solutions
which satisfy the WECs are necessarily physically self similar, satisfying at least one

of the following criteria:

Casel: 3 =0, (5.49)
Casell: 1z, =0, (5.50)
CaseIlI: z4+ 21173+ 1% =0. (5.51)

Each of these cases of physical self-similarity is an invariant set of the governing
system (5.22)-(5.25), and as such will be considered separately in section 5.4

Note: The singular points Q2,L,, A-, C4, D4, E4, F_, G, and H; do not satisfy
the WECs.



103

5.3.1 Finite Singular Point Asymptotic States

Case 1: @, = (0,1,0,0)
In this case the metric is plane symmetric. By a suitable change of coordinates the

metric and the energy density and pressure are given by
ds? = —dt?® + t¥dr? + s3(d9? + 6%d¢?) (5.52)

p=p=0. (5.33)
Note: This solution is a vacuum.
Case 2: Q3 = (1/4,1/8,-1/8)
In this case the metric is plane symmetric. The metric and the energy density and

pressure are given by

2
ds? = —a2(r/t)"1de? + B(t/r)Vr—2dr? + L2 TV ;rc:) (d6? + 6°d4?) (5.54)
p=po(r)~% p = (a®/4 — po)(t3r)~A. (5.55)

Note: when the constant ug is positive the WECs are satisfied
Case 3: L, = (3,0,0,-5%)
In this case the metric is spherically symmetric, and the solutions are in the geodesic

class. The metric and the energy density and pressure are given by
ds® = —a’dt? + b*(t/r)°r~2dr? + (oln(€) + ¢)*(d6? + sin®0de?) (5.56)

p=pot~2 p=(20a7%— po)t=2 (5.57)

Note that in this case only those non-isolated singular points with o > 0 satisfy the

energy conditions.

5.3.2 Infinite Singular Point Asymptotic States

Casel: A, :z,=23=z,=0
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In this case the metric is plane symmetric. The metric and the energy density and

pressure are given by
ds? = —a?dt? + b2(In(€) + ?r2dr? + s2(d6? + 6°d¢?) (5.58)

p=p=0. (5.59)

Note: This solution is a vacuum.
Case 2: By :z, =2, =z4=0
In this case the metric is plane symmetric. The metric and the energy density and

pressure are given by
ds? = —a®(In(€) + c)?dt? + b’r~%dr? + s2(d6? + 6d¢?) (5.60)

u=p=0. (5.61)

Note: This solution is a vacuum.
Case 3: C_:z,=2,=23=0
In this case the metric is spherically symmetric. By suitable change of coordinates

the metric and the energy density and pressure are given by
ds® = —dt® + r~2dr? + (d6? + sin®0de?) - (5.62)

B=Dp= . (563)

Note: This solution is a stiff fluid.
Case4: E_:z0=724=0,z; +22z3=0
In this case the metric is plane symmetric. The metric and the energy density and

pressure are given by
ds? = —a?S~'dt? + b2 S?r~2dr? + S*(d6® + 6%dg?) (5.64)
where S = sy(In(t/r) + ¢)~2, and

_ 1233 -2 - 8 -2
H= 2(n(t/r) +c)‘t » BEPS a?(In(t/r) +c)2t ' (5.65)




Case 5: F, iz =24 =0,z =23
In this case the metric is plane symmetric. By a suitable change of coordinates the

metric and energy density and pressure are given by
ds? = —dt? + r~2dr? + (d6” + 6°d¢?) (5.66)

u=p=0. (5.67)

Note: This is a vacuum solution.
Case 6: G_: 74 =0, + 223 = 0,z = 3z3
In this final case the metric is plane symmetric. The metric and energy density and

pressure are given by
ds® = —a®S7'dt? + 6°S~'r2dr? + S?(d6? + 6°de?) (5.68)

where S = so(In(t/r) + c)'/?, and

_ 1252 -2 = 8 42
H= a?(In(t/r) +c)t ° Hrp= a?(In(t/r) +c)?

(5.69)

5.4 Physical Self-Similarity for Infinite KSS

As was noted in the previous section, there are three special cases in which the
solutions not only admit a ” geometrical” kinematic self-similarity, but a physical one

as well. Each of these three cases will now be examined separately.

54.1 Casel: z3=0

As was the case for finite KSS, these solutions represent the geodesic solutions for
the system,; i.e., the solutions have zero acceleration. Since the governing equations
impose the condition 4 = —z2 there can be no hyperbolically symmetric solutions
in this class. The plane symmetric solutions are in the special case z; = 0. All other
solutions will exhibit spherical symmetry.
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For z, # 0 it follows from equations (5.22)-(5.25) that
eV = §? (5.70)

and thus

22, + 222 — 22, +pp =0 (5.71)
Note that the governing equation for the evolution of the function S (5.71) is identical
to the governing equation for the geodesic solutions in the case of finite KSS [i.e. see
equation (3.11)] where o has been set to —1. Therefore, the analysis, and solutions
to equation (5.71) will be identical to that given in Section 3.1. The case z; = 0
corresponds to vacuum (plane symmetric) solutions (which will be given separately
below), and for z; # 0 the solutions correspond to the spherically symmetric case,

hence the metric can be written as

ds® = —a%dt? + f—.:—dr2 + S%(d#? + sin® 8d¢?) (5.72)

with
g = (25— poS)(aS)2t? (5.73)
p = pot~? (5.74)

In this class of solutions the WECs (5.19) are satisfied iff z, > 0.
The special case z; = 0 includes all plane symmetric solutions in this class. The

metric and physical properties are
ds? = —dt? + (c,& + c2)*r%dr? + s3(d6? + 8*dg?) (5.75)
u=p=0 (5.76)

where ¢; and c; are constants.

54.2 Casell: z;=0

The finite singular points and the equilibrium sets Q; and L, (as well as L, for v = 0)
are included in this class of solutions, as are the infinite singular points A, By, C.
and F.
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The system (5.22)-(5.25) reduces to the three-dimensional system of autonomous
ODEs:

.’fg = I2(1 -z + I3) (577)
T3 = Z4+ Z3(Z2 — Z3) (5.78)
Ty = 27774 (579)

Exact solutions can be found in the two invariant planes z; =0 and z, = 0.

1. z; = 0: The solution is given by:
ds® = —e?®dt? + b*r~2dr? + s3dQ? (5.80)
with
p=-web? and p=web 2. (5.81)
The function ® is defined by
(a) wg > O (spherically symmetric metric): e2® = a?(£V-%0 4 £-V-%0)2
(b) wg = 0 (plane symmetric metric): €2>® = a2(£ + c)?

(c) we < 0 (hyperbolically symmetric metric): €2® = a®cos?(\/woz)

Note that in the case wy > 0 the WECs are not satisfied and wg = 0 corresponds

to a vacuum solution.
2. z4 = 0: The solution is given by:
ds? = —e?®dt? + e2¥r2dr? + s3(d6? + 0d¢?) (5.82)
with
u=0 and p=0, (5.83)

a vacuum solution. The function ® is defined as the following:

(a) if z, = 0: €?¥ = PP, €®® = q2¢?
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(b) if z3 = 0: e2¥ = (€ + ¢)?, e?® = a?
(c) if zox3 # 0: €Y = b2e~**, €2® = (iv2rerf(iv/22/2) + k)?
Through the use of the monotonic function principle (with the function z4), it is a

straightforward matter to show that all solutions asymptote to solutions in one of the

two cases listed above (i.e. z; = 0 or z3 = 0).

5.4.3 Case III: z4+2r123+22=0

In this final class of physically self-similar solutions the system (5.22)-(5.25) reduces

to the three-dimensional system of autonomous ODEs:

5, = zi(z2 — z3) (5.84)
.'1'52 = .'1?2(1 — T2+ .'L'3) (585)
I3 = z3(T2 — T, — I3) (5.86)

Through the use of various monotonic functions it can be shown that all asymptotic
behaviour in this class of solutions is described by solutions in one (or more) of the
invariant sets £, = 0, z, = 0, z3 = 0 or z; +2z3 = 0, all of which have been previously

discussed.

5.5 Summary

Through an extensive use of monotonic functions it was shown that all asymptotic
solutions in this infinite class of KSS are necessarily located at singular points (either
at finite or infinite values of the dependent variables). Unlike the analysis in Chapter
4, there was no need for the use of numerical analysis of the solutions to determine
the dynamics.

The class of solutions which are also physically self-similar are again important in
this analysis. It has been shown that in all cases in which the energy conditions are
satisfied the asymptotic behaviour is necessarily "physically” self-similar.



Chapter 6
Anisotropic Fluids

In this chapter we shall generalise the perfect fluid solutions examined in the previous

chapters to the case of an anisotropic fluid, in which stress energy tensor is given by
Tap = puqats + P|nams + PL(gas + Uals — NaTs), (6.1)

where u® is the comoving fluid velocity vector and n® is a unit spacelike vector or-
thogonal to u® (i.e., u,n® = 0). For the metric (1.17), n is given by
0 0
n=n%*———= -'/’—. 6.2
"oze ¢ or (6:2)

Using equations (1.4) - (1.6), it therefore follows immediately that
L:fn“ =N, (6.3)

is satisfied identically, so that the form for n is consistent with the similarity assump-
tion. The scalars p; and p, are the pressures parallel to and perpendicular to n®,
respectively, and u is the energy-density. The perfect fluid case corresponds to the
case in which p; = p,.

Fluids with an anisotropic pressure have been studied for many reasons (see the
discussion in Coley and Tupper, 1994; hereafter denoted CT). For example, in several
cases in which the stress-energy tensor is more general than that of a perfect fluid
(due to, e.g., a two perfect fluid source, an imperfect fluid source or in the region of

109
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interaction of two colliding plane impulsive gravitation waves), the energy-momentum
tensor is formally of the form (6.1). In particular, a strong magnetic field in a plasma
in which the particle collision density is low can cause the pressure along and per-
pendicular to the magnetic field lines to be unequal (Maartens et al., 1986). If the
source of the gravitational field can be represented by the sum of a perfect fluid and
a local magnetic field H® = Hn® (as measured by u%), then the stress-energy tensor

can be written in the form (6.1) with

po= g+
g = P—7 (6.4)
pL = p+m

1
2
anisotropic stresses, in addition to cosmological magnetic and electric fields, include

where m = —AH? and ) is the magnetic permeability. Other possible sources of
for example populations of collisionless particles like gravitons (Lukash and Starobin-
skii, 1974), photons (Press, 1976) or relativistic neutrinos (Doroshekevich et al., 1968),
Yang-Mills fields (Darian and Kiinzle, 1995), axion fields in low-energy string theory
(Green et al., 1987), long wavelength gravitational waves (Lukash, 1976), and topo-
logical defects like global monopoles, cosmic strings and domain walls (Barriola and
Vilenkin, 1989; Vilenkin and Shellard, 1994; Stachel, 1980).

Most anisotropic models that have been studied are also spherically symmetric
(see references cited in CT), and have applications especially in relativistic astro-
physics (e.g., stellar models); in particular, static anisotropic spheres have received
much attention (CT). In addition, such models with additional symmetries, including
homothetic vectors and conformal Killing vectors, have also been studied (Maartens
et al., 1986; CT, and references within).

For the metric (1.17) the Einstein field equations (EFEs) yield the following ex-

pressions for the physical variables:

Wiz | W)

ko= r? t2
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Ri@) | R

e (6.3)
P! P?
pL = “;gz) + ‘;2(2)
where
Wlz) = % —-e¥[(1+y)+ 2y$]
-2 .
Wiz) = %y[y + 21
Plz) = —g+e (1 +y)l+y+24)
-2
Plf(z) = -ea: (29 + 2ay + 3y - 2y¢'5]
Pl(z) = e ®[2yd+ ¢*+ & — y]
-2¢ . . . . . ..
P(2) = -—ea—z[(a — 1)y +29% + ¥ + oy + 92 + ¥ — ¢, (6.6)

and where y = S/S, 2 = In€ and f = df/dz. The final EFE (that ensures that the

Einstein tensor is diagonal) becomes
I=yé+ @ -y)(1+y) (6.7)

Clearly there exist a variety of anisotropic fluid spherically symmetric kinematic self-
similar spacetimes satisfying equations (6.5)-(6.7)
If we assume that the physical quantities also obey similarity conditions of the

form

Lep = ap
Lep = bypy (6.8)
Lepr = bipy

where a, b)) and b, are constants, then it can easily be shown that:

(i) W'=0 o W2=0

@ Pi=0 a P=0
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and

(iii) PL=0 or P2=0.
The special subcases W* = 0 with either Pl'| #£0or PP #0 (i = 1,2) are not of
physical interest. The special subcase W! = P} = P} = 0 corresponds to the special
subcase “M; = 0”. Finally, the special subcase W2 = P? = P? = 0 is related to the
special subcase “M, = 0”, and the static models are included within this subclass of
models.

As was seen in Chapter 3 all static spherically symmetric kinematic self-similar
solutions belong to the subclass “M, = 0", regardless of the form of the stress-energy
tensor, and, moreover, all such static spacetimes necessarily admit a homothetic vec-
tor. Consequently, no new static anisotropic solutions can be obtained that admit
a proper kinematic self-similarity. Hence we shall concentrate here on the special
subcase “M; = 0”.

6.1 Geodesic Models

The geodesic case is characterised by ¢ = 0 and is equivalent to the special subcase
“M, = 0” considered in Chapter 3. In this model, equation (6.7) gives (for S+ S # 0)

. S+S5 g+v¥+y
%=1, = - = , 6.9
¢ v S+S 1+y (69)
whence the metric (1.17) becomes
ds® = —dt® + (S + S)%dr® + r2S%dQ2. (6.10)

Assuming the first of conditions (6.9), the second condition guarantees the resulting
Einstein tensor is diagonal and hence the remaining EFEs simply yield the following
expressions for u, p; and p,:

W(z)t2

P = Py2)t? (6.11)
pL = P (2)t72

®
I
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(where we have now omitted the index “2” for convenience), so that equations (6.8)

are automatically satisfied with a = b = by = —2a, where

— y 2 .

|24 = —— 2

(2) 211 7) (3y + 3y° + 23)

Py(z) = —(3y%+2ay+29)/a? (6.12)
. Q+ (2 +3y+2ay)+3yy+ay+ 7

P_[_(Z) = - > .

o?(l+vy)

Equations (6.10) - (6.12) represent a class of anisotropic fluid solutions depending
upon the arbitrary function S(z).

We note that the following relationships result from the definitions given in equa-
tions (6.11):

P
P, = I
t A+ 2(1 + y)
W = -y[(2a = 3)y + o2 Py]
a?(1 +y)

6.1.1 Perfect Fluid Models

In the perfect fluid case we have that P; = P,, and hence from equations (6.12) we
obtain the following differential equation for the function y(z) [and hence S(z)] in the
metric (6.10):

29 + 3y + 20y + o®po = 0. (6.13)

In equation (6.13) py is an arbitrary integration constant. In the perfect fluid case u
is obtained from equations (6.11) and (6.12) and we have that

p=pmt >, (6.14)

and hence the significance of py is that it constitutes a dimensional constant (appear-
ing in the pressure) characterising the physical problem; this property is characteristic
of self-similarity of the second kind (Barenblatt and Zel'dovich, 1972). Recall from
Chapter 3 that these perfect fluid solutions (for a # 1) cannot, in general, admit any

homothetic vectors.
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The perfect fluid solutions were studied in detail in Chapter 3; in fact, exact
solutions were obtained and the qualitative properties of the whole class of models
were studied. In particular, in the pressure-free case we obtain the exact dust solution
of the Tolman family studied by Lynden-Bell and Lemos (1988) and Carter and
Henriksen (1989), and we found that all solutions are asymptotic to exact, power-law
(Aat) FRW models (which admit a homothety).

6.1.2 Solutions with S+ S =0

In the perfect fluid case it can be easily shown that the case S + S = 0, which implies
that S§ = sge™*, could be factored out of the analysis as it could not lead to a solution.
For that reason, we consider it as a special case here. (This case is not contained in
the geodesic models studied above.)

When S = sge~* (i.e., y = —1), the EFEs yield

¢=0, (6.13)

whence we can choose coordinates so that e = 1, and

p o= s52e¥r 2+ (1-2¢)a"%t? (6.16)
p(z) = -—sie¥*r?+ (2a-3)a"t? (6.17)
pi(z) = —[(1-a)(l —%)+9*+ a2t (6.18)

The fluid described by these equations will further satisfy equation (6.8) in one of
two cases. Either (i) a = 1, and the solution admits a homothetic vector, or (ii)
Pv=1/2, a=3/2

In the first case, i.e. a = 1, the solution is given by

ds? = —dt? + e®¥dr? + syt ~2d0?, (6.19)

with
b = (sg2+1-2¢)t2 (6.20)
o= —(sg’+1)t? (6.21)

pL = —(¥P+¢)t2, (6.22)



where the function ¥(z) is arbitrary.
In the second case the solution is given by (after a coordinate redefinition)

ds? = —di? + t23dr? + t4/3402, (6.23)
with
o= pgt=i3 (6.24)
p = —u (6.25)
p, = 0, (6.26)

where 1 is a constant. It can be easily shown that the metric (6.23) does not admit
a proper homothetic vector. Curiously, cosmic strings satisfy “equations of state” of

the form u + p; = 0, p. = 0 (Vilenkin, 1981).

6.2 Special Cases

There are a variety of models which satisfy additional constraints. We consider here

two such models.

6.2.1 Case A: Dimensional Constants

If we assume that P, = pg, a constant, then equations (6.12) yield
Fy(2) = 2(1 + y)(po — F(2))- (6.27)
This equation can be integrated to yield
Py(2) = po +ce" %57, (6.28)
where c is an arbitrary constant. Using this expression for P, we obtain

W(z) = Eﬁﬁy‘ﬁ [v3 - 20) — a?py — ca?e 577, (6.29)
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and the differential equation
29 + 3y + 20y = —a’py — aPce~%S2. (6.30)

Note that when c = 0 (i.e., P; = P, = py, corresponding to a perfect fluid) equation
(6.30) is related to equation (3.11) in Chapter 3.

If we had begun the analysis of this section with the assumption that P = p,
then the equations (6.12) automatically imply that P = P, = py, the perfect fluid
case considered in Chapter 3.

The pressures p; and p, are positive if the constants py and ¢ are non-negative.
The energy conditions will constrain these constants further (for a given value of a)
through (6.29).

6.2.2 Case B: Equations of State

We can also consider the subclass of solutions which satisfy equations of state of the

form:

oy = fi(w),

pr = fi(w), (6.31)
for arbitrary functions fj; and f,. From equations (6.11), conditions (6.31) automat-

ically yield
pi=c and p, =cup, (6.32)

where ¢ and c, are constants. Substituting these conditions into the definitions

(6.12) then yields
p = pot~2 [Se] A —essa) (6.33)

and the differential equation for y:
29 + 3y + 2ay = —a’cyug [SeF] X /a0 (6.34)

Once again we note that when ¢ = c, (i.e., the perfect fluid case), we recover equation
(6.13) as expected.
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A positive value for the constant po guarantees that the energy density is positive.
If |c;| < po and |cL| < yo, the energy conditions are satisfied. The pressures are non-
negative if ¢y > 0 and ¢; > 0.

6.3 Analysis of Special Cases

The behaviour of each of the special cases derived in section 6.2 can be studied
qualitatively since each of the ordinary differential equations governing the model is
autonomous.

The special cases A(dimensional constants) and B(equations of state) can be con-

sidered simultaneously using the following change of variables:
v = b[Se*| %", (6.35)
where b is a non-negative constant. The resulting system is then

y = —%(3y2 +20y +k+v) (6.36)
v = —2nv(l+y). (6.37)

Using these definitions, case A is characterised by n = 1, k = o?py, and case B is
characterised by n =1+c¢, /¢ and k = 0.

It is important to note that the invariant set » = 0 of equations (6.36)/(6.37)
defines the perfect fluid solutions. We also note that y = 0 represents the static
solutions. Each of these cases has been examined in detail.

If we consider only the case of positive pressures and positive energy density,
we can impose the necessary (though not necessarily sufficient) condition that the
parameters in our equations must satisfy £k > 0, n > 1 and v > 0. With these
restrictions, we find that there are at most three singular points at finite values. We
note that ¥ = 0 is an invariant set of the system (6.36)/(6.37), as is the set v > 0. As
a result we need only consider the dynamics (and hence the singular points) in the
half-plane v > 0.
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Table 6.1: Classification of Finite Singular Points for equations (6.36)-(6.37)

a® > 3k o = 3k a® < 3k
2a-3<k|2a-3>k || 2a-3<k [[20-3 <k
I M| v
Q. sink sink || saddle-node N/A
Q: source saddle (=Q:) N/A
Qs saddle N/A N/A N/A

Summary of the nature of the finite singular points for the system (4.2)/(4.3). “N/A”
indicates that the given point is not located in the physical region v > 0. The two
cases (i) a® = 3k, 2a — 3 > k and (ii) o® < 3k, 2a — 3 > k are omitted since they do
not give any real solutions for k£ and «.

The finite singular points (yo, 1) are given by:
Qi = (5(~a+(®-3k)"2,0),

Q: = (-;—(—a - (a? - 3k)'/2,0),
Qs = (-1,2a-3-k).

The nature of these singular points, which can be determined using standard tech-
niques (Guckenheimer and Holmes, 1983), depends upon the relationship between the
parameters a and k. The results are summarised in Table 6.1. Note that only those
singular points which are located in the physical phase space are listed in this table.
It is important to note that each of the cases I - IV is possible when considering the
equations (6.36)/(6.37) in case A. In case B, however, we find that only the cases
labelled (I) and (II) in table 6.1 yield consistent constraints on the parameter a.

We can complete the qualitative analysis of these two cases by considering the
stability of the singular points at infinity. To perform the analysis at infinity, we
apply the following Poincare transformation to our system (6.36)/ (6.37) in order to
compactify the phase space:

= y _ v
Y= 1+ y2+2)1/2° V= (1+y2 + 22 (6.38)
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In these new variables, the phase space has been compactified to the region 62 =
1 - (Y2+ V?) > 0, and all infinite points of the original system are found on the
boundary © = 0. The restriction that » > 0 implies that V > 0, and all finite
singular points remain at finite values of Y and V' and are of the same sign in the
new coordinate system (Y, V).

The transformed equations (6.36)/(6.37) are then given by:

Y = %(41; -3)Y v+ 6[%)’ + (2n - a)V] - :‘12-(-)2[3}’2 + kV?
—O%aY + %V] - %ke“, (6.39)
Vo= -%(411 ~3)Y3V + eYV[%V — (2n - a)Y]+ %GzYV[k ~ 4n]
-2nVe?, (6.40)

where f' = ©f. There are four singular points at infinity located on the boundary
Y2 + V2 = 1, which are given by

Ry = (0,%1), S =(£1,0). (6.41)

The points Si correspond to perfect fluid solutions, and R: correspond to static
solutions. A local stability analysis shows that the points S, are both saddles. R, is
a non-hyperbolic point containing both stable and unstable manifolds for all values
of a and k. The stable manifold of R, lies in an elliptic sector of R and corresponds
to homoclinic orbits. The fixed point R_ is not in the physical phase space.

The phase portraits in the compactified phase space (V2 +Y?2 < 1,V > 0) are
given in Figures 6.1. From these portraits it is immediately evident that the only
stable singular points (both to the past and the future) either lie in the V = 0
invariant set, occur at the infinite singular point R, , or occur at Q3 (when it exists
in the phase space). Recall that the invariant set V = 0 represents the perfect fluid
solutions studied previously, where in the equivalent “M, = 0” case the solutions
were shown to asymptote towards a flat FRW model. The fixed point R, has y =0,
and hence is a static solution. Finally, the fixed point Q3 has the property y = —1
(or S+ S = 0), which was examined in section 6.2. Since all of the solutions in the
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Figure 6.1: Phase portraits for the system (6.39)/(6.40): for various ranges of values
of a and k, where the particular cases are as listed in Table 6.1.
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phase space, and in particular those asymptoting to the point Qj, have the property
that p; = Py(z)t™2, p. = P.(z)t"2, and u = W(z)t~2, by continuity so must the
solution at Q3. Therefore the solution represented by the point Q; must be given by
metric (6.23).

Consequently we see that in the analysis of the two cases considered in subsections
6.3.1 and 6.3.2 above the asymptotic behaviour is described by either a flat FRW
perfect fluid model, a static model, or by that of metric (6.23). In all cases these

exact asymptotic models admit a homothetic vector.

6.4 Discussion

We note that in the cases studied in this chapter the dynamics of the models is
governed by a system of the form:

§ = —5(% +2a) + (), (642)
b = —2nu(l+y) (6.43)

The variable v is defined by equation (6.35) and the function f(v) depends on the
specific case being studied. In the cases considered in section 6.3 we had that:

f(v) = —3(v + o®po): Case A: Dimensional Constants
fv)=—3v: Case B: Equations of State.

The system (6.42)/(6.43) results whenever we impose the condition
Py(z) = —2a7%f(v). (6.44)

In the cases examined in section 6.3 it was shown that all solutions necessarily asymp-
tote to an exact solution admitting a homothetic vector. It is of interest to consider
whether there are any possible asymptotic states for the geodesic anisotropic models
which satisfy equation (6.44) that do not admit a homothetic vector.
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As was the case in section 6.4, the perfect fluid solutions are located in the invariant
set v = 0. The definition of v requires that it be greater than or equal to zero. In
the relevant phase space there are then (at most) three finite singular points of the
system (6.42)/(6.43). These singular points, equivalent to those studied in section
6.4, are given by:

Q = (zl-a+ (@ +6£(0))7,0)

@ = (Gl-a—(®+6/(0)"2],0)
Q& = (17 (3/2-0)

The singular points @, and Q) represent perfect fluid models, and Q; (as in section
6.4) is represented by the metric (6.23). In each case the model represented by the
finite singular point admits a homothetic vector.

The only possibility for the asymptotic behaviour not to be governed by an exact
homothetic model is then if (i) the model is represented asymptotically by a periodic
orbit in the phase space, or (ii) the model is represented by a singular point at infinity
not located on one of the coordinate axes v =0 or y = 0.

In the first case we can impose necessary conditions for the existence of a periodic
orbit. Any periodic orbit in a plane must necessarily enclose a singular point. As
a result we must have that the point Q; is in the phase space in which case we
necessarily have that f~!(3/2—a) is positive. The energy conditions requiring that the
pressures and density are positive will result in the further condition that f(v) <0,
and therefore @ > 3/2 and y > 0. We consider the existence of a periodic orbit
which encloses @3 by examining the horizontal and vertical isoclines of the system
(6.42)/(6.43). The horizontal isoclines are located at (i) » = 0, an invariant line, and
(i) y = —1. The second case indicates that if there exists a periodic orbit about
the point Q3 then there must be vertical isoclines on either side of the line y = ~1.
Solving equation (6.43), we find that the vertical isoclines are given by

v = 5(—a (0 +3/())"2). (6.45)
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Imposing the energy conditions f(r) < 0 and a > 3/2, we find that the y-values of
the vertical isoclines must satisfy

-1<y<0; (6.46)

i.e., y+ cannot take on values less than —1. Therefore, there can be no periodic orbits
enclosing the point Q3 if the energy conditions are to be satisfied.

If there is an asymptotic solution at infinite values of y and/or v which is not
homothetic then the corresponding singular point at infinity must be such that y # 0
or v # 0. This will occur when lim,_5 o f(¥)v~2 # 0. In such cases the infinite
fixed point may represent a non-homothetic asymptotic solution. Therefore, geodesic
models for which equation (6.44) and the energy conditions are satisfied will not admit

a non-homothetic asymptotic solution whenever lim,_so f(v)r~2 is exactly zero.

6.5 Other Models

Additional anisotropic fluid models can be investigated. For example, we can consider
the case in which the source is a combination of a perfect fluid and a magnetic field
satisfying equations (6.4). Assuming p = (v — 1) (where v is a constant), in the
geodesic case we can immediately derive the governing system as:

1
§ = —5(3* +2a) - zon, (647)
7 = —4(1+n)yp—4(n—-1)(3 - 2a)a"%?, (6.48)

where n = —a~%(3y? + 2ay + 2y) = P; and n = 1/v. The system (6.47)/(6.48) is
of a similar form to equations (6.42) and (6.43) and can be analysed using similar
techniques. In the special cases v = 1 (n = 1) and a = 3/2, equation (6.48) can
be integrated immediately and exact solutions can be obtained. We note that at the
equilibrium points of the system (6.47)/(6.48) P = constant (B, = 0), and hence
from equations (6.4), (6.11) and (6.12) we have that
By

1
r=gL-p)= EA+y) 0; (6.49)
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hence these equilibrium points correspond to perfect fluid models.

However, in order to study the physics of this particular model we note that
7 = AH?/2 and equations (6.47) and (6.48) need to be supplemented by an additional
differential equation (for H, derived from Maxwell’s equations) and an assumption
on the form of the magnetic permeability, A.

Finally, we note that in the case in which 7 = constant = my (with an unrestricted

equation of state) it can be shown that the governing equations reduce to

y = ‘%(3142 +2ay) — a’moln(v), (6.50)
v o= —l/(l + y). (6.51)

This system is of the same form as that of (6.42)/(6.43) with f(v) = —a?meln(v) and
with the constant n = ;. Since (6.50)/(6.51) is of the same form we can immediately
conclude that the only asymptotic states of the system necessarily admit a homothetic
vector. Note that in this case f(v) is not analytic at v = 0; however the physical

phase space has v > 0.



Chapter 7

Discussion

7.1 Phase Space and Dynamics

In both the analysis of KSS of finite and infinite type the autonomous ODEs form
a four-dimensional phase space. The existence of monotonic functions and invariant
sets indicated that it was sufficient to examine the invariant sets of the shear-free
solutions and the plane symmetric solutions (for the sake of determining the asymp-
totic behaviour). Each of these cases was examined in detail. The phase portraits for
the shear-free solutions were completely determined by analytical means. The anal-
ysis of the plane symmetric solutions was made more complicated by the fact that
the phase space is three-dimensional. In the case of the "infinite” KSS, the analysis
was completed essentially using only the monotonicity principle. For the finite KSS
case, however, there were several regions of the phase space for which no monotonic
function was located. The behaviour in this case was, however, determined by a
combination of numerical and analytic means.

In all cases, the asymptotic behaviour was found to be represented by simple
singular points (either at finite or infinite values). The nature of the solutions repre-
sented by these points was determined with special attention paid to those solutions
which satisfy the energy conditions since they will have more physical significance.
We note that the saddle and saddle-node points were given equal importance as sinks
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and sources in this analysis. Recalling that self-similar solutions are thought to be
intermediate solutions of a larger class of solutions (Barenblatt and Zel’dovich, 1972)
it is possible that the saddle points (representing possible intermediate asymptotic
behaviour) may be as important physically as the sinks and sources.

7.2 Physical Self-Similarity

Throughout this thesis we have distinguished between the ideas of geometric and
physical self-similarity. These two properties, while equivalent for perfect fluid solu-
tions of the EFEs in the cases of self-similarity of the first kind (homothety), are not
necessarily equivalent in the general case of kinematic self-similarity (Coley, 1997).
The solutions for which both concepts of physical and geometrical self-similarity hold
form invariant sets of the full four-dimensional system. In the coordinates of Chapter
4, these invariant sets (defined by either z3 = 0 or z; = 0) are two-dimensional.
However, integration allows for each to be reduced to a single differential equation
which can be investigated. The results were given in Chapter 3 (see sections 3.1 and
3.2)

If we consider all the non-homothetic solutions for which the total energy and
total pressure satisfy equations (1.8) [i.e., equations (1.16) and (1.17) are satisfied], so
that the solution is both “physically” and “geometrically” self-similar, we find that
the only possibilities are: (1) M, = 0 (where a = b = —2a) and (2) M, = 0 (where
a = b = —2). The exact solutions corresponding to each of these cases represent the
most general spherically symmetric solutions that admit a kinematic self-similarity in
the sense that all of equations (1.14), (1.15) and (1.20), (1.21) are satisfied [cf. Coley,
1997]. Again we note the fundamental importance of the solutions with M, = 0. In
addition, we note that all physically acceptable solutions satisfying equations (1.20)
and (1.21)) are necessarily asymptotic to an exact solution that admits a homothetic
vector.

In Coley (1997), a set of integrability conditions (see equations (2.35)-(2.37) in
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Coley (1997)) for the existence of a proper kinematic self-similarity in an irrotational
perfect fluid spacetime was presented. For the models under consideration here,
using the governing equations (2.60)-(2.63), these integrability conditions reduce to
the following:

_26—2\!! e2W 2 . .
2 [y - (1 <+ y) - 3% - 2y¢I)] = X (71)
-~2¢ . .
0P Bay+4y’ —y+6y¥ +3¥] = X, (7.2)
where
X = (m1W1 + Tl1P1)T-2 + (m2W2 + nng)(at)"z, (73)

and n; and m; are constants. We see that these integrability conditions are clearly
satisfied in the two subcases M; = 0 and M; = 0. In the subcase M, = 0, we have
that m; = n;, = 0 and m, = 3n, = —1, and equations (7.1)/(7.2) contain all the
solutions found in subsection 3.1. Likewise, in the subcase M; = 0, we have that
m; = np, = 0 and m; = ~n; = 3, and equations (7.1)/(7.2) contain all those solutions
found in subsection 3.2. In fact, as was noted in the preceding paragraph, these two
subcases correspond to the only possible solutions compatible with these integribility
conditions.

Also in Coley (1997), a theorem was presented which states that given a “phys-
ically” kinematic self-similar solution with zero acceleration then the three spaces
orthogonal to u® are Ricci flat (i.e., 3Ry, = 0). Let us consider this theorem in the
context of this thesis.

Given the metric (1.17), the Ricci tensor for the three spaces orthogonal to u®
can be calculated. If the solution admits a (non-homothetic) kinematic self-similarity
then equations (2.60)-(2.63) allow the non-zero terms of 3R, to be simplified. These

non-zero terms are given as:
3R = 2y(z)®(z)r? (7.4)
3R = e @ 5%(z){2y(z) + y(z)®(z) + ¥*(z) + 1] - 1 (7.5)
3Ry = sin*(0)Rx. (7.6)
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Notice that the theorem summarised in the previous paragraph is verified since zero
acceleration implies that & = 0 and “physical” self similarity then requires (from
section 3.1) that (1 + y)? = e2¥(®S5-2(z).

On the other hand, from equations (7.4)-(7.6) it is easy to see that if 3R;; =
then either (a) ®(z) = 0 or (b) y(z) = 0. Each of these cases have been examined in
detail in Chapter three as they represent the only cases in which a single fluid model
admits both “physical” and “geometrical” kinematic self-similarity. The conditions
in each of these cases for which 2Rz, (and hence 3R3;) vanish is equivalent to the
conditions required from the EFEs (see sections 3.1 and 3.2 respectively).

Thus, we can state the following result which complements the theorem of Coley
(1997):

Given a perfect fluid spherically symmetric model which exhibits a non-homothetic
kinematic self-similarity, the three spaces orthogonal to the fluid velocity are Ricci
flat (i.e., *Ra = 0) if and only if the model is “physically” self-similar.

Two special cases that have not been considered in the thesis are those in which the
kinematic self-similarity £ is either parallel to or orthogonal to the fluid four-velocity u
(see equation (1.16)). However, in a recent general analysis of irrotational perfect fluid
spacetimes admitting a kinematic self-similarity (Coley, 1997) these two cases were
explicitly investigated and we can deduce the appropriate results in the special case
of spherical symmetry. In particular, it was shown that all such spacetimes admitting
a kinematic self-similarity parallel to u* are necessarily FRW spacetimes, and the
existence of kinematic self-similar vectors in FRW spacetimes (in all cases, i.e., not
just in the case in which £ is parallel to u) was studied in detail therein. In the case
in which £ is orthogonal to u a number of consequences were obtained (Coley, 1997);
however, we note that Ponce de Leon (1993) claims that in all spherically symmetric
spacetimes in which there exists a vector field that satisfies equation (1.15) which is
orthogonal to u, the resulting metric is singular.

While the entire four-dimensional space of solutions is not necessarily physically
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self-similar, it is worthwhile to note that if the fluid is considered to be a non-
interacting sum of two perfect fluids so that equations (3.3)-(3.4) are the density
and pressure definitions for each fluid, then all solutions satisfy the the condition of
physical self-similarity, in that both of these perfect fluids will necessarily be self-

similar.

7.3 Physical Considerations: Equation of State and
Energy Conditions

As the solutions studied throughout this work are of physical interest it is important
to consider which of the solutions satisfy relevant physical criteria. The first of these
criteria is that of the energy conditions. Solutions of physical interest are normally
assumed to satisfy energy conditions, the weakest of which is to demand that the
energy density be positive, and allowing for negative pressure only if the sum of the

pressure and density is always positive, i.e.
k20 p+u>0. (7.7)

These conditions are the “Weak Energy Conditions” (WECs). The functional form
for p and u given in Chapter 2 (see equations (2.64) and (2.65)) create complications
when investigating these WECs. In particular, we note that it is a straightforward
matter to determine the conditions under which the WECs are satisfied at late time
(i.e., t72 — 0) and at large 7 (i.e,, 72 — 0). For intermediate values of r and ¢,
however, the conditions become ambiguous as an interplay between the coefficients
of 72 and t=2 can occur. When the lower bound of the WECs found for large r and
or large ¢ define an invariant set of the dynamical system, however, the investigation
of these physical conditions is greatly simplified since orbits (or solutions) can not
pass through these sets. This is exactly the case that occurs when investigating the
solutions with "infinite” KSS. In the finite case, however, the lower bound of the
energy conditions is not an invariant set and solutions can cross these bounds at such
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a time as to not violate the WECs. As such it is difficult to completely classify all
solutions which satisfy the WECs for all time. We will, therefore, consider the WECs
in the three following different cases; namely (i) physical self-similarity, (ii) two fluid
model, and (iii) the single fluid model.

1. Physical Self-similarity: In the case of physical self-similarity we have seen that
the form of the density and pressure simplifies to either (a) u = W (£)r~2 and
p=P(&)r~2, or (b) u=W(£)t~2? and p = P(€)t~2 (the geodesic solutions). In
each of these cases the WECs are easily determined. The one-dimensional phase
space is then limited to the portion of the line which does not include solutions
violating the WECsS, and depending on the relationship between the dimensional
constant which appears in the solutions and the various other constants (which
determine the location of the singular points) the set of possible asymptotic

behaviours is reduced.

2. Two-Fluid Model: In the two fluid model it is necessary from a physical view-
point that both fluids individually satisfy the WECs. The WECs then become
the combination of each of the conditions for the “physical” self-similar case.
The constraints are now surfaces through which solutions of physical significance
cannot pass. Passage through these surfaces would result in one (or both) of
the fluids becoming “unphysical.”

3. One-Fluid Model: In the case of a single fluid, the functional form for x and
p complicate the investigation. It is possible to demand that each term in
the definitions for p and u (i.e. the coefficients of r~2 and t~2 respectively)
must satisfy the WECs. This condition does not, however, identify all solutions
which satisfy the WECs. It is possible that a solution crosses the boundaries
determined by these conditions in such a way that the interplay between the two
terms allows the overall result (be it the density or the sum of the density and
pressure) to maintain it’s positive sign. In the cases considered in this thesis,
however, each solution which passes through one (or more) of these boundaries
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has asymptotic behaviour represented by one of the singular points. We have
shown that for each of the singular points lying in the region of space where the
WEC:s for either of the individual terms of the density and pressure are violated
the total energy and pressure also violate the WECs (both at the exact solution
represented by the singular point and all solutions which asymptote to that
singular point). As a result, we can conclude that the solutions which satisfy
the WECs must (necessarily) be represented by orbits which do not cross these

boundaries.

In this investigation of the WECs we note that in general the boundary between
physical and unphysical solutions is not an invariant set of the system. This dif-
fers from previous qualitative investigations within GR (see for example Coley and
Wainwright,1992) where the boundary between the physical and unphysical was a
“dynamical” as well as “physical” object, i.e. it defined an invariant set. In these
cases the energy conditions provided an obvious manner in which to compactify the
phase space. Note again that in the case of “infinite” KSS the necessary conditions
for the WECs to be satisfied do indeed define invariant sets of the system.

We now turn our attention to the equation of state for the matter. We have shown
that for an equation of state to exist, i.e., p = f(u), we must necessarily have that the
fluid is either (i) physically self-similar or (ii) the fluid is “dust”, i.e. p = 0 [which
was studied by Carter and Henriksen (1989))], a subcase of the physically self-similar
models. The equation of state will necessarily be linear, i.e. p = (v —1)u. In general,
however, the solutions of the full system do not exhibit an equation of state.

In the case of physical self-similarity, the only possible solutions with an equation
of state are located at the finite singular points of the system. In the case of the
geodesic solutions examined in Section 3.1, these solutions are the flat FRW models,
and as such necessarily admit a homothetic vector and a linear equation of state. In
the second case of physical self-similarity with M, = 0 the solutions with an equation
of state once again correspond to the finite singular points. These solutions are static,
admitting a homothetic vector and a linear equation of state.
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Again, if we consider the solutions as a non-interacting sum of perfect fluids, we
see that it may be possible to have an equation of state for more general solutions
than just those that are physically self-similar. In the case of the two-fluid model
we demand that each fluid separately satisfy an equation of state. Once again, the
functional form of the density and pressure would exclude all possibilities but the

linear equation of state.

7.4 Remarks

We note that in the homothetic case, studied in detail previously (Cahill and Taub,
1971; Carr and Coley, 1998), the governing equations are not autonomous in the vari-
ables (and coordinates) utilised here. In Bogoyavlenskij (1985) a coordinate transfor-
mation was effected [see equations (3.9) in chapter IV - let us denote this by equations
B(3.9)] which changed the form of the homothetic (a = 1) spherically symmetric met-
ric (1.17) [equation B(3.1)] to the conformally static form [equation B(1.1)] in which
the resulting ODEs are in fact autonomous (in these coordinates). [See also Goliath
et. al., 1998a and 1998b)

If we apply an analogous [to B(3.9)] transformation of coordinates of the following

form in the non-homothetic case (a # 1)
t = Re®", r = f(R)RV?e", (7.8)

where f is an arbitrary function of R, then the kinematic self-similarity is indeed of
the form €=Z, and the self-similarity coordinate £ = r(at)~'/® = f(R)a~V/* is also
a function of R alone. However, for a # 1 the metric does not transform to as simple
a form as in the homothetic (@ = 1) case. In any event, the resulting autonomous
ODEs are equivalent to those studied in this paper [cf. equations (2.15)-(2.17)].

In subsection 3.1 the important subcase M), = 0 was studied. In this subcase the
governing equations can be completely integrated, and the exact solutions obtained
(containing the dimensional constant py) are a generalisation of the dust solutions of
Lynden-Bell and Lemos (1988) and Carter and Henriksen (1989). The properties of
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these solutions, including their asymptotic behaviour, were discussed in this thesis;
in particular, it was shown that these solutions are asymptotic to exact (flat) FRW
solutions (which are known to admit a proper homothety). This last property, that
solutions are asymptotic to exact homothetic solutions, is true in more generality, as
can be seen from the analysis of the equilibrium points at finite values (see below).
The subcase M; = 0 in the case a = 0 was studied in subsection 3.2.

The special subcase M; = 0 was studied and the exact solutions were exhibited
in the static subcase. Again we note that these static solutions necessarily admit
a homothetic vector. The subclass of solutions in the subcase M, = 0 necessarily
contain all static metrics which admit a kinematic self-similarity, although there are
solutions in this special subcase which are not static. The result that all static
metrics admitting a kinematic self-similarity are contained in the subcase M; = 0
and necessarily admit a homothetic vector is not dependent on any assumptions
regarding the matter.

Finally, coordinate transformations can be made in all cases (a =1, a = 0, a
finite but not 1 or 0, and "a = 00”; where « is assumed to be non-negative) in order
for the kinematic self-similarity to be put into a canonical form. In the homothetic
case, £ is given by (1.12) with @ =1 and 8 = 0, and the metric is given by (1.13).
It is informative to write out the metric in these canonical coordinates in the non-
homothetic cases. Defining £ = (at)'/® in equation (1.12) we obtain

_d o

= ta + TE. (7.9)

In these coordinates, (1.13) is given by
ds? = —e*C /DNy 4 2¥/Ddr? + 125%(r /7)d02. (7.10)
Under the transformation ¢ — af, r — ar we see that (3.14) is equivalent to

ds? = — 23 /Dp2a-Ngp2 | g2e2%(r/Dgr? 4 g2r262(r /1)dO?, (7.11)

or
ds? = _ahe%(r/f)?(a—l)dp + azezv(r/i‘)drz + t2§2(r/t)d92. (7.12)
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In the case a = 0, we can define £ = e in equation (1.12), so that § is again given by
equation (3.13). Under this redefinition we find that (1.13) is equivalent to (3.13) with
« set equal to zero. Lastly, in the “infinite” case, we find that under the definition
t = ' the similarity vector (1.12) is transformed to (3.13), and the metric (1.13) takes
on the same form as (3.15) (where 1 is “neglected” with respect to a (i.e., a >> 1)
and a can then be rescaled to 1; i.e., the first term in equation (3.135) contains the

term r?).

7.5 Brief comments on future work

Throughout this thesis attention has been paid on the asymptotic states of solutions
to the EFEs. As a result of this work several questions have been raised, each of

which identify areas for future work. Briefly, these questions and future work include:

1. It has been conjectured that self-similar models play an important role in the
asymptotic behaviour of more general models. It would be interesting to inves-
tigate whether the self-similar (homothetic or kinematic) models studied in this
thesis, and in particular the spherically symmetric models, do indeed play such
a role in a more general class of models. This would involve investigating the
local stability of the KSS and/ or homothetic class of solutions with respect to

the system of PDEs which govern the more general class of models.

2. It has also been conjectured, both by Barenblatt and Zel’dovich (1972) in the
Newtonian case and Henriksen and Carter (1989) in the relativistic case, that
KSS solutions may correspond to intermediate asymptotics. It is of interest to
determine if this is in fact the case. Each of the asymptotic states of the system
of equations studied in this thesis indicates that the long term bekaviour of
KSS solutions have higher symmetry; e.g., in the case of the physically valid
solutions, all solutions asymptote to solutions which admit a self-similarity of
the first kind. This raises the question as to whether the dynamics of the
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governing equations for which the KSS vector field exists “forces” the asymptotic

solutions to admit a higher symmetry.

. From a purely mathematical viewpoint, the task of locating the asymptotic so-
lutions in this thesis has illustrated that lack of tools available when analysing
three-dimensional phase spaces qualitatively. There are a wide range of ques-
tions which remain unanswered in this area. In particular, it may be possible

to further develop the techniques utilised throughout sections 4.2 and 5.2.2.



Appendix A

Investigation of Eigenvalue Algebra

In section 4.2 the classification of the points R; are determined by examining the
signs of the eigenvalues. Since the eigenvalues can not be determined in closed form,
properties of the roots of polynomial are exploited to determine the signs. A review
of the derivation is given below.

First, note that if A; is a real root then it can be zero iff the constant term of
the quartic equation, namely e(a) is identically zero. Therefore we have zero real

eigenvalues in the following cases:

R, a =v2-1 and 3;
R_ a =0

The imaginary roots with zero real part can be found by solving the characteristic
equation (4.30) when A is replaced by «i, i.e. solve the equation

a(a)d(a)? - b(a)c(a)d(a) + b(a)?e(a) =0 (A.1)

for a. For R the only real positive solutions to this equation occur when a is 3 and
v2 — 1 (as found when locating the real bifurcation values) and at

a =r, ~ 1.067836956 (A.2)

136
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found numerically. There are no real positive solutions in the case of R_.

For a general n** order polynomial
P(A) = TLopiX* (A.3)

the roots {A;|i = 0..n} necessarily satisfy the relations:

ok = :if—l,and (A4)
L (A.5)
n

and it immediately follows from equation (A.5) that when we only consider the real

part of the roots:

n even :  Sign(II{_(\) = Sign(IIl_jRel;)) (A.6)
n odd :  Sign(IIf A) = —Sign(lI_ Re);)) (A.7)

Applied to the point R, we then have
b(e)

4
: . >
a(a) < 0 Va>20 —-IZ_ Re(\i)<0 VYa>0 (A.8)
e(a)
e 2 0 Ya23 - MLRe()20 Va23, (A.9)

(A.10)

It then follows immediately that either two of the eigenvalues are positive or no
eigenvalues are positive Va > 3.

To determine which of these cases applies we consider the eigenvalues when « is
large (i.e. @ — oc). In this case the quartic characteristic equation is

2(4) + a)(4) + 3a)(8A% — 2)a + a?) (A.11)

so the eigenvalues (at large a) are:

Al=—-afd A=-3a/4 Myi=axVTi
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implying that Va > 3 there is exactly 2 eigenvalues with positive real part and 2 with
negative real parts. Therefore in the range a € (3, 0c) the point R, is a saddle.

To examine the nature of this point in the range a € [0,3) we consider each of
the eigenvalues separately. When the n,, term of a polynomial, (A.3), is not zero
the roots will be continuous if each of the terms of (A.3) have continuous coefficients.
In the case of R, the term a(a) has no roots in the domain a € [0, 0c), therefore,
since each of the remaining coefficients is continuous we necessarily have that the
eigenvalues will each be continuous functions of a. The values for each eigenvalue are
calculated numerically for values of the parameter a from 0 to 3. Since the real parts
of the eigenvalues can only become zero at v/2 — 1, 3 and r; we focus attention in
these regions. The plot of the functions for );, ¢ = 1..4 are given in figures 4.5, 4.6,
and 4.7. As can be seen in all regions (except at the bifurcation values) this point is
a saddle (i.e., has both positive and negative eigenvalues).

Note that the three eigenvalues labelled A;, A2 and ); are representative of the
dynamics in the invariant set z4 = 0, therefore when constrained to this invariant set
and in the region a € (r,, 3) all three are negative. For all other values of a there are
both positive and negative eigenvalues.

This analysis is then repeated for the point R_ where

5e) S 0 vaz0 o T4 Re(A\)>0 VYa>0 (A.12)

a(a)

e(a)

2@y < O Ya20, L Re(\)<0 Vo>, (A.13)
(A.14)

It then follows immediately that either only one eigenvalue is positive or exactly
one eigenvalue is negative Va > 0. Once again the exact condition is determined
by considering a very large (i.e. @ — oc). In this case the characteristic equation

becomes
2 + a)(A + a)(A\%2 — Aa + a?) (A.15)

so the eigenvalues (for large a) are:
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/\1 = /\2 = -« /\3'4 = 1/2(& + \/301)

implying that Va > 0 there is exactly 1 eigenvalue with positive real part and 3 with
negative real parts. Therefore in the range a € (0,00) the point R_ is a saddle.
The eigenvalues labelled A;, A\, and ); are again representative of the dynamics in
the invariant set r; = 0, therefore when constrained to this invariant set there are

both positive and negative eigenvalues.
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