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Abstract

In this thesis, we present interconnections among the Knaster-Kuratowski-Mazurkiewicz
theorem (in short, KKM theorem), Ky Fan minimax inequalities, fixed point theorems,
coincidence theorems, equilibria of generalized games and variational inequalities.

In Chapter 2, we obtain generalizations of the KKM theorem in topological spaces
from which a characterization of a generalized HKKM mapping is proved. As applications,
generalizations of Kv Fan minimax inequalities, coincidence and fixed point theorems for
multivalued mappings are derived in H-spaces, topological vector spaces or in locally
convex topological vector spaces.

In Chapter 3, using results from Chapter 2 and combining “approximate method” we
show existence theurems for equilibria of generalized games in H-spaces, topological vector
spaces, locally convex spaces, Frechet spaces or in finite dimensional spaces under various
continuous and non-compact hypotheses. In particular, the question raised by Yannelis
and Prabhakar in 1983 is answered under weaker hypotheses.

In Chapter 4, by applying the existence theorems from Chapter 3, we achieve several
existence theorems for non-compact variational inequalities and non-compszct general-
ized quasi-variational inequalities in locally convex spaces and in reflexive Banach spaces.
These results in turn imply some new existence theorems for generalized complementarity
problems and fixed point theorems for multivalued pseudo and nonexpansive mappings in
Hilbert spaces.

Furthermore, the stability of Ky Fan points, of coincidence points and of solutions of

generalized quasi-variational inequalities are also established.
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Table of Symbols and

Abbreviations

R the real line.
N o the set of all natural numbers.
N the set {0,1,2, -, n}.
P the family of all non-empty subsets of X .
FIX) o the family of all non-empty finite subsets of X
AN the standard n-dimensional simplex in R".
D o e the empty set.
X = Mer X e
B g e e the element of X _;.
COX o the convex hull of X.
ClxA(or A) oo the closure of A in X.
HeoD oo the H-convex hull of D in the H-space (X, {1'4}).
Gp(X) oo the algebraic boundary of X in the topological space /.
Op(X) oo the topological boundary of X in the topological space !/
() P the inward set of X at y,
Ox () e the outward set of X at y.
o AP the sth projection,
AfF(A) o the affine span of A.
H(A) the relative interior of A in Aff{A).



[0 the dual space of E.

Graph ™ o the graph of the mapping #'.
(e a lattice with a least element 0.
K(X) oo the family of all non-empty compact subsets of X
LX) oo the family of all bounded real-valued functior.s on X x X.
be(X) oo the family of all non-empty bounded and closed subsets of X.
hocoviiiiii the Hausdorff metric on bc(X) induced by the metric d or norm || - ||).
I the Hausdorff metric induced by the dual norm || - ||*.
KKM theorem .......................... Knaster-Kuratowski-Mazurkiewicz theorem.
USCO vttt et ettt ettt upper semicontinuous with compact values.
GHEKKM .. e generalized HKKM mapping.
T-DQOX v-diagonally quasi-conve,’
7-DQCV v-diagonally quasi-concave.
A DO e ~-diagonally convex.
T DOV e ~-diagonally concave.
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Chapter 1

Introduction

Let n be a positive integer, N = {0,1,---,n} and Ay denote the unit n-simplex in
(n + 1)-dimensional Euclidean space R®*1. For each S C {0,1,---,n}, we denote
by As the face of Ay spanned by the unit vectors ¢; for « ¢ 5. A closed covering
C ={Co,Cy, +,C,} of Ay is called a KKM covering if Ag C U;esCiforall # 5 C N.
In 1929, Knaster, Kuratowski and Mazurkiewicz [191] proved that if {Cy,Cy,---,C,} is
a KKM closed covering of Ay, then N C; is non-empty. In 1961, Ky Fan generalized
the classical KKM theorem to infinite dimensional Hausdorff topological vector spaces and
established an elementary but very basic “geometric lemma” for mulitvalued mappings.
In 1968, Browder gave a fixed point version of Fan's geometric lemma and this result
is now known as the Fan-Browder fixed point theorem. Since then there have been
numerous generalizations of the Fan-Browder fixed point theorem and their applications to
coincidence and fixed point theory, minimax inequalities, variational inequalities, nonlinear
analysis, convex analysis, game theory, mathematical economics and so on.

By applying his geometric iemma in 1972, Ky Fan obtained a minimax inequality which
plays a fundamental role in nonlinear analysis and mathematical economics and has been
applied to potential theory, partial differential equations, monotone operators, variatioinai
inequalities, optimization, game theory, linear and nonlinear programming, operator theory,
topological group and linear algebra. In particular, by using Ky Fan’'s minimax inequality,

a more general form of the Fan-Glicksberg fixed point theorem is derived for multivalued



mappings which are inward (or outward) as defined by Fan in 1969 (which are more general
than Halpern's definitions for inward (or outward) mappings in 1965).

Recently, Horvath obtained some generalizations of Fan's geometric lemma and his
minimax inequality in 1983 and 1987 by replacing the convexity assumption with topo-
logical properties: pseudo-convexity and contractibilty. By extending Horvath’s concepts,
Bardaro and Ceppitelli [46] in 1988 obtained generalizations of Ky Fan minimax inequal-
ities to topological spaces which have the so called H-Structure (such spaces are called
H-spaces).

Following this line, a number of generalizations cf Ky Fan’s minimax inequalities are
given by Horvath [154], Baradaro and Ceppitelli [47), Ding and Tan [85], Ding, Kim and
Tan [86]-[87], Chang and Ma [51], Park [243], Tarafdar [303], Tan, Yu and Yvan [289] in
topological spaces which need not have a linear structure but with an H-structure.

The importance of fixed point theory in mathematics is well known. An example to
illustrate and emphasize the close relationship between nonlinear analysis (in particular,
fixed point theory) and economic scierice (in particular, mathematical economics) is as
follows:

It was Leon Walras who, at the end of the last century, despite great opposition,
dared to suggest using inathematics in economics. He described certain economic agents
as automata seeking to optimize evaluation functions (utility, profit, etc) and posed the
problem of economic equilibria. However, this area did n.ot blossom until the birth of
nonlinear analysis in 1912, with Brouwer’s fixed point theorem [39], the usefulness of
which was recognized by John von Neumann [234] when he developed the foundations
of game theory in 1928. In the wake of von Neumann came the works of John Nash,
Kakutani, Aumann, Shapley and many others who provided the tools used by Arrow,
Debreu, Gale, Nikaido and many others to complete Walras’ construction, culminating in
the 1950’s in the proof of the existence of economic equilibria. Debreu’s classic book [73]
“Theory of Valuc” is a very good survey- type exposition of economic equilibria at that
time.

The natural extension of fixed point theory is the study of coincidence points. Let X



and Y be Hzusdorff topolngical spaces and S, T : X — 2Y be mappings. The coincidence
problem for (S, T) is to find (o, yo) € X x Y such that yo € S(o)N1'(wo). Geometrical
problems of this type in an appropriate context turn out to be intimately related to
some basic problems arising in convex analysis. This important fact was discovered by J.
von Neumann [234] in 1928, who established a coincidence theorem in R™ and made a
direct use of it in the proof of his well-known minimax principle. Since then, geometrical
problems of a similar kind (as well as their analytic counterparts) have attracted many
people as well as finding new applications in various fields. In particular, since Eilenberg
and Montgomery [94] studied coincidence theory in topological settings in 1946, this
topic has been comprehensively developed by contributions due to Kakutani, Nash, Ky
Fan, Kneser, Gale, Debreu, Nikaido, Sion, Gorniewicz, Granas, Liu, Chang, Song, Ben-El-
Medchaiek, Deguire, Kryszewski, Ko, Shih, Tan, Powers and others. This topic has many
applications in mathematics and other subjects, for example, see Aubin [7], Aubin and
Cellina [9] and Zeidler [336]. In 1988, lchiishi [156] successfully used Fan's coincidence
theorem to give another proof of Scarf’s existence theorem [259] for the non-emptiness

of the core of balanced n-person game without side payments.

In this thesis, we first show in Chapter 2 that the classical KKM theorem holds in
topological spaces. Then, a characterization of a generalized HKKM mapping (which is a
generalization of the KKM mapping) is given in topological spaces which in turn gives sev-
eral Ky Fan's minimax inequalities in H-spaces or in Hausdorff topological vector spaces.
Moreover, several fixed point theorems and coincidence theorems for non-self multivalued
mappings are derived under weaker continuity and boundary conditions. As applications,
several matching theorems for closed coverings of convex sets are also derived. Further-
more , the concepts of the KF point and KF essential point are first introduced and the
stability of KF points and coincidence points are established. These resuits improve or
unify many corresponding results in the literature. For instance, our Ky Fan type mini-
max inequalities show the “lower semicontinuily” condition which is assumed by many
authors (e.g., see Fan [106] etc.) is not needed for the existence of solutions for Ky Fan’s

minimax inequalities. Furthermore, our generalizations of the Fan-Glicksberg fixed point



theorem show that the condition “the domawn 1s paracomapct”’ appearing in many liter-
atures (e.g., See Fan [106], Ko and Tan [192] and the references therein) is superfluous.

These results will be needed in our further developments in Chapter 3.

A game is 2 situation in which each of several players has partial control over some
outcome but generally conflicting preferences over the outcome: each player has a fixed
range of strategies among which he selects one sc as to bring about the best outcome
according to his own preferences. An n-person game is a gam.e in which the strategies of
n players can not be made independently: each player must select a strategy in a subset
determined by the strategies chosen by the other players Formally, the situation can
be described as follows. Let N = {1,2,---,n} denote the set of players and for each
1 € N, let X, denote the set of strategies of the :th player. Each element of X = II% X,
determines an outcome. The payoff to the ith player is a real-valved function f, defined on
X Givenz_, € X_,(= ,en,#.X,, the strategies of all the others), the choice of the ith
player is restricted to a non-empty subset A,(z*) of X,; the ¢th player chooses z, in A,(z*)
so as to maximize f,([£.,2']) An equilibrium point in such an n-person game is a strategy
vector 2 € X such that forall s € N, z, € A,(2') and f,(z) = maxy,ea, () fi([91, 2']).

The existence theorems for equilibria of an n-person game with compact strategy
sets in R™ was proved in a seminal paper of Debreu [72] in 1952. The theorem of
Debreu extended the earlier work of Nash [228] which also covers the existence theorem of
equilibria of the general economic model presented by von Neumann [235] in 1937 (see also
von Neumaznn and Morgenstern [236]) in game theory. Since then there have been many
generalizations of Debreu’s theorem by Arrow and Debreu [5] in 1954, Mas-Colell [215],
Gale and Mas-Colell [126], Borglin and Keiding [37] in 1976 and others. Following Debreu
[72] and Shafer and Sonnenschein [37], a generalized game (or an abstract economy) is
a family I' = (X,; A;; U,),e1 where I is an any (countable or uncountable) set of players
(or agents) such that for each : € I, X, is the strategy set or choice set, A, : X =
[T,e; X, — 2% is the constraint correspondence and U, : X — R is the payoff or utility
function. X, will be a subset of a topological space or a topological vector space for each

1 € I. We denote the product [1,¢; ;2 X, by X_, and a generic element of X_, by z_,.



Note that a generalized game instead of being given by (X;; A;; U/,).er may be given by
[ = (X,; Ai; P,).c1 where for each 2 € I, P, : X — 2Y: is the preference correspondence.
The relationship between the utility function U, and the preference coirespondence P,
may be exhibited by defining for each » € X, P (z) = (y, € X, : Ui([ys, z-.]) > Ui(x)},
where for each ¢ € I, x_, is the projection of x onto X_, and [y,,x..,] is the point y in
X whose ith coordinate is y, and y_, = z_,. In the case of a generalized game being
given by I' = (X,; Ai;; U,)ier, a point & € X is called an equilibrium poimt or a generalized
Nash equilibrium point of I' if U,(&) = U,([2,,%_.]) = max; ea, ) U([2, E-]) for each
1 ¢ [ where  and E_, are respectively projections of & onto X, and X_,. In this case the
equilibrium point is a natural extension of the equilibrium point introduced by Nash [227]
in 1950. Now let ' == (X,; A;; U,).c1 be a generalized game and for each » € I, let P; be
obtained as above. Then it can be easily checked that a point z € X is an equilibrium
point of ' if and only for each i € I, £, € A,() and P.(2) N A,(%) = 0. This model
has been generalized into a more general setting by Tan and Yuan [294] which in turn
includes the model of a generalized game introduced by Ding, Kim and Tan [86].

Following the work of Sonnenschein [283] in 1971, Gale and Mas-Colell [124] in 1975
and Borglin and Keiding [37] in 1976 on non-ordered preference relations, many theorems
on the existence of maximal elements of preference relations which may not be transitive
or complete, have been proved by Aliprantis and Brown [2], Bergstrom [30], Kim [181],
Mehta and Tarafdar [221], Shafer and Sonnenschein [263], Sonnenschein [283], Tan and
Yuan [294], Tarafdar [304], Toussaint [315], Tulcea [317], Yannelis [325] and Yannelis
and Prabhakar [326] and others. These papers generalize Debreu’s theorem by consid-
ering preference correspondences that are not necessarily transitive or total, by allowing
externalities in consumption &nd by assuming that the commodity space is not necessarily
finite-dimensional. In these papers, the domain (and /or codomain) of the preference and
constraint correspondences are assumed to be compact or paracompact, and the pref-
erence correspondences (respectively, payoff functions) are assumed to have open lower
sections or open graphs (respectively, to be continuous).

However, most of these existence theorems for maximai elements and equilibrium



points deal with preference correspondences which have open lower sections or are ma-
jorized by correspondences with open lower sections. Note that every correspondence with
open lower sections must be lower semicontinuous but the converse is not true in gen-
eral. Moreover, in most cases, preference and constraint correspondences may be upper
semicontinuous (or majorized by upper semicuntinuous correspondences) instead of being
lower semicontinuous (or being majorized by lower semicontinuous), or the preference
and constraint mappings are condensing. Furthermore, in the study of equilibrium theory
in most economic models, the feasible sets or the budget constraints are generally not
(weakly) compact in an infinite dimensional commodities and are not convex in the case of
the indivisibility of commodities and the underlying spaces do not have a linear structure.
Thus, relaxation of convexity of choice sets and generalizations of spaces enable us to deui
with the existence of maximal elements and equilibrium points even though commodities
are indivisible.

Therefore it is necessary and important to study the existence of equilibria for gener-
alized games in which the preference and constraint correspondences need not have open
lower sections nor open upper sections and also the underlying spaces need not have any
linear structures and so on.

The objective of Chapter 3 is to systematically study the existence of maximal elements
and equilibria for generalized games under various hypotheses, such as the preference and
constrained correspondences are lower semicontinuous, upper semicontinuous or condens-
ing, and the strategy sets may not be compact and the underlying spaces may not have
a linear structure. Moreover, we also study some properties of lower semicontinuous
multivalued mappings in finite dimensional spaces which in turn give several fixed point
theorems and existence theorems for equilibria of generalized games. In particular, the
question raised by Yarnelis and Prabhakar [326] is answered in the affirmative with weaker
assumptions.

The essential idea behind these existence theorems for equilibria of generalized games is
to reduce them to qualitative games which in turn are reduced to the existence problem of

maximal elements for preference correspondences. Since existence of maximal elements
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of correspondences have equivalent formulations in fixed point theorems which can be

derived from Ky Fan's minimax inequalities, the results in Chapter 2 are applicable.

Even though the topic of variational inequalities kas a very long history, it has only
been studied systematically since 1960s (e.g., see Fichera [110] and Stampacchia [284] and
others). The variational inequality theory is related to the simple fact that the minimum
of the differentiable convex functional on a convex set D in a Hilbert space can be
characterized by an inequality of the type (1'(u), v—u) < 0forall v € D, where I'(x) is the
derivative of the functional /(u). However, it is remarkable that the variational inequality
theory has many diversified applications. During the last three decades which have elapsed
since its discovery, the important developments in vaniational theory are formulations that
variational inequalities can be used to study problems of fluid flow through porous media
(e.g., see Baiocchi and Capelo [14]), contact problems in elasticity (e.g., see Kikuchi and
Oden [178]) transportation problems (see Bertsekas and Gafni [32] and Harker [144])
and economic equilibria (see Dafermos [71]). An additional main area of applications for
variational inequalities arises in control problems with a quadratic objective functional,
where the control equations are partial differential equations. A detailed discussion of
this can be found in Lions [209]. The connection between control problems and quasi-
variational inequalities is presented in Aubin [7] and Zeidler [336]. There also exist intimate
interconnections between variaiicnal inequalities, stochastic differential equations, and
stochastic optimization. One can find these in Friedman [118]-[119], Bensoussan and
Lions [27] and Bensoussan [26].

In recent years, various extensions wnd generalizations of variational inequalities have
been considered and studied. [t is clear that in a variational inequalities formulation,
the convex set involved does not depend on solutions. If the convex set does depend on
solutions, then variational inequalities are called quasi-variational inequalities. These useful
and important generalizations are mainly due toc Bensoussan and Lions [28]. Applications
of quasi-variational inequalities can be found in Aubin [7], Aubin and Cellina [9] and
Zeidler [336).
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In 1982, for the study of operation research, mathematical programming and optimiza-
tion theory, Chan and Pang [48] first introduced the so-called generalized quasi-vanational
inequahities 1n finite dimensional Euchidean spaces. Chan and Pang's generalized quasi-
vanational inequalities can be illustrated as follows

Let N and R denote the set of all natural numbers and the set of all real numbers
respectively Let X be a non-empty subset of R", where n € N Let A : X — 2%
and B : X — 2R" The generalized quasi-variational problem associated with A and B
(briefly, denoted by GQVI (X, A, 3) here) is to find (£,4) € X x R" such that £ € A(Z),
it € B(%) and sup e (i, T ~—y) <0

The existence theorem of Chan and Pang [48] I1s stated as follows.

Theorem A. Let X be a non-empty compact convex subset of R* and A : X — 2%
and B X — 28"\ {(} are such that A(z) s compact convex and B(z) is contractible
and compact for each z € X Moreover assume that A is continuous and B is upper

semicontinuous  Then GQVI(X, A, B) has at least one solution

In 1985, Shih and Tan [267] were the first to study the GQV I(X; A; B) n nfinite

dimensional locally convex Hausdorff topological vector spaces as follows.

Theorem B. Let £ be a locally convex Hausdorff topological vect: space, E* be the
dual space of £ and X be a non-empty compact convex subset of £ Let A: X — 2%
be continuous such that for each © € X, A(z) 1s a non-empty closed convex subset of
X, and B - X — 2E" be upper semicontinuous from the relative topology of X to the
strong topology of E* such that for each v € X, B(z) 1s a non-empty strongly compact
subset of £/* Then there exists a point § € X such that

g € A(y) and
{ SUPge A7) infuen(,) Rle(w,j —z) <0
Since then, there have been a number of generalizations of the existence theorems about
GQVI(X, A, B), eg, see Cubiotti [68], Ding and Tan [81], Harker and Pang [145],
Kim [180], Shth and Tan [274] and Tian and Zhou [311] and references therein. These

results have wide applications to problems in game theory and economics, mathematical
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programming (e.g., see Aubin 7], Aubin and Ekeland [10], Chan and Pang [48], Harker and
Pang [145] and reference therein). Most existence theorems mentioned above, however,
are obtained on compact sets in finite dimensional spaces or infinite dimensional locally
convex Hausdorff topological vector spaces, and both A and B are either continuous or
upper (lower) semicontinuous.

On the other hand, in economic and game applications, it is known that the choice
space (or the space of feasible allocations) generally is not compact in any topology of
the choice space (even though it is closed and bounded), a key situation in infinite dimen-
sional topological vector spaces. Moreover, we note that there is essentially no existence
theorems of sq}!}utions of generalized quasi-vanational inequalities on non-compact sets
in infinite dimensional spaces. This motivates our work in Chapter 4 to give a series of
existence theorems on generalized quasi-variational inequalities by relaxing the compact-
ness conditions and continuity. By the existence theorems of generalized quasi-variational
inequalities, the stability of solutions for two types of generalized quasi-variational inequal-
ities are also established.

Equally important is the area of mathematical programming known as the comple-
mentarity theory, which was introduced and studied by Lemke [205] in 1965. Cottle and
Dantzing [63] defined the complementarity problem and called it the fundamental prob-
lem. For recent results and applications, see Harker and Pang [145], Nour and Rassias
[233] and references therein. However, it was Karamardian [171], who proved that if the
set involved in a variational inequality and complementarity problem is a convex cone,
then both problems are equivalent. After that, many generalizations have been given by
Shih and Tan [266], Ding [79], Isac [160]-[161], Chang and Huang [50] and references
therein. For more details on the discussion between the variational inequalities and com-
plementarity problems, we refer to Cottle, Giannessi and Lions' book [64] and references
t'erein.

In Chapter 4, as applications of our generalized quasi-variational inequalities, an exis-

tence theorem of generalized complementarity problem is given and by using the concept
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of a semi-monotone operator introduced by Bae, Kim and Tan [13], some fixed point the-
orems for set-valued pseudo-contractive mappings and set-valued nonexpansive mappings
are obtained. The stability of solutions of generalized quasi-variational inequalities is also
investigated

In recently years, a number of literatures have exposited the interconnections among
minimax inequalities, equilibria of generalized games and variaiional inequalities. For
instance, Tulcea [317] give a numbe- of minimax inequalities which are derived by the
applications of existence theorems for equilibria of generalized games. Dafermos [71]
formulated the problems of finding equilibria of generalized games (in particular equilibria
of pure exchange equilibria) to the problems of finding solutions of variational inequalities.

In this thesis, we present interconnections among the Knaster-Kuratowski-Mazurkiewicz
theorem (in short, KKM theorem), Ky Fan minimax inequalities, fixed point theorem, co-
incidence theorems, equilibria of generalized games and variational inequalities in the
following way:

We reduce the existence problems of variational inequalities to the existence problem
for equiiibria of generalized games; that means, the solutions of varational inequalities
are nothing else, but are exactly the equilibria of their equivalent model of generalized
games. This simple fact enable us to consider the existence of solutions for non-compact
vanational inequalities and generalized quasi-variational inequalities in infinite dimensional
Hausdorff topological vector spaces. As we mention above, the existence problems of
equilibria for generalized games can be reduced to the existence problems for equilibria
of qualitative games, the latter existence problems are equivalent to finding maximal
elements of their preference mappings. Note that maximal elements are equivalent forms
of their fixed point theorems which can be derived by Ky Fan type minimax inequalities.
Therefore we give the interconnections among minimax inequalities, fixed point theorems
of multivalued mappings, generalized games in mathematical economics and variational
inequalities and generalized quasi-variational inequalities.

We remark that the development of variational inequalities can be viewed as the si-

multaneous pursuit of two different lines of research: On the one side, it reveals the



fundamental facts on the qualitative behaviour of solutions (such as its existence, unique-
ness and regularity) to important classes of problems. On the other side, it also enables
us to develop highly efficient and powerful new numerical methods to solve, for example,
free and moving boundary value problems and the general equilibrium problems. A com-
prehznsive investigation of numerical methods for variational inequalities is contained in
Glowinski, Lions and Tremolieres's book [128]. For more details, see Cottle, Giannessi and
Lions [64], Crank [66], Harker and Pang [145], Aslam Noor [231]-[232], A. Noor, |. Noor
and Rassias [233], Rodrigues [?55] and Shi [265] etc. Among the most effective numerical
techniques are projection methods and its variant forms, linear approximation method, re-
laxation method, auxiliary principle and penalty function techniques. In addition to these
methods, the finite element technique is also being applied for the approximate solution of
variational inequalities have been obtained by many research workers including Falk [96],
Mosco and Strang [226] and Noor, Noor and Rassias [233] and references therein.

Further, even though we have some results on ahstract general algorithms for solutions
of variational inequalities, they are not included nere. The author wish to continue these
topics soon. Moreover, we do not cover the topics on random analysis and its ..pplications
to fixed point theory and existence for equilibria of random generalized games which we
refer to Tan and Yuan [293]-[300], Yuan [332]-[335] and the refcrences therein.



Chapter 2

KKM Theorem and Some Related
Results

2.1 Introduction

The classical theorem of Knaster-Kuratowski-Mazurkiewicz (often called the KKM theo-
rem, KKM Lemma or KKM Principle in [191]) has numerous applications in various fields
of pure and applied mathematics. These studies and applications are called the KKM
Theory today.

In 1961, Ky Fan proved the generalization of the classical KKM theorem in infinite
dimensional Hausdorff topological vector spaces and established an elementary but very
basic “geometric lemma” for mulitvalued mappings. In 1968, Browder gave a fixed point
form of Fan's geometric lemma and it is now called Fan-Browder fixed point theorem.
Since then there have been numerous generalizations of Fan-Browder fixed point theo-
rem and their applications in coincidence and fixed point theory, minimax inequalities,
variational inequalities, nonlinear analysis, convex analysis, game t}zsory, mathematical
economics and so on.

By applying his geometric lemma in 1972, Ky Fan obtained a minimax inequality which
plays a fundamental role in nonlinear analysis and mathematical economics and has been

applied to potential theory, partial differential equations, monotone operators, variational

12



inequalities, optimization, game theory, linear and nonlinear programming, operator theory,
topological group and linear algebra. In particular, by using Ky Fan's minimax inequality,
a more general form of the Fan-Glicksberg fixed point theorem is derived for multivalued
mappings which are inward (or outward) as defined by Fan in 1969 which are more general
than Halpern's definitions for inward (or outward) mappings in 1965.

Recently, Horvath obtained some generalizations of Fan's geometric lemma and his
minimax inequality in 1983 and 1987 by replacing convexity assumption with topological
properties: pseudo-convexity and contractibilty. By extending Horvath's concepts, Bar-
daro and Ceppitelli [46] in 1988 obtained generalizations of Ky Fan minimax inequalities
to topological spaces which have so called H-Structure (also called H-spaces).

Following this line, a number of generalizations of Ky Fan's minimax inequalities are
given by Horvath [154], Baradaro and Ceppitelli [47], Ding and Tan [85], Ding, Kim and
Tan [86]-[87], Chang and Ma [51], Park [243], Tarafdar [303], Tan, Yu and Yuan [289] in
topological spaces which need not have a linear structure but with an H-structure.

On the other hand, for the need of applications, various generalizations of the classical
KKM principle and Sperner’s lemma [285] have been given by Fan [101], [102], [104] and
[107], Ding and Tan [85], Gale [123], Idzik and Tan [158], Shapley [264], Shih and Tan
[269], [270], [271], Ichiishi [156], Ichiishi and Idzik [157]. Recently, Horvath [154] obtained
some intersection theorems for closed coverings of a topological space with a contractible
structure.

In this chapter, based on the classical KKM principle and its dual form given by
Shih and Tan in 1987, we first study the closed (respectively, open) covering properties
and intersection properties of topological spaces in section 2. These results generalize
the corresponding results of Alexandroff-Pasynkoff [1], Berge [29], Klee [187], Fan [98],
Horvath [154] and Spener [285]. As applications, we give a characterization of generalized
HKKM mapping which is a generalization of the classical KKM theorem in topological
spaces.

In section 3, by applying our generalized HKKM theorem, Ky Fan type minimax in-

equalities with weaker continuity conditions are given in topological spaces. Qur results
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show that “he traditional condition “lower semicontinuity” posited by many authors (e.g.,
see Fan [106] and references therein) is not essential for the existence of solutions for the
Ky Fan type minimax inequalities. By employing a new coercive concept called “escaping
sequences” which s first introduced by Border in 1985, several non-compact minimax
inequalities are derived. As consequences, several equivalent fixed point theorems and
maximal element theorems are given in H-spaces and topological spaces. In particular,
the well-known Fan-Browder fixed point theorem has been improved.

In section 4, we study the stability of solutions of Ky Fan minimax inequality in both
compact and non-coripact settings.

It is well-known that Fan's best approximation theorem [103] and its generalizations
have many applications in fixed point theory and approximation theory (for instance, see
Lin and Yen [208], Reich [250] and Sehgal, Singh and Smithson [260] and references
therein.

In section 5, we first generalize Fan's best approximation theorem to a Hausdorff
topological vector space for multiv:lued mappings. Then as applications, several co-
incidence and fixed point theorems are given for non-self multivalued mappings under
weaker boundary conditions. These results improve and generalize corresponding results
of Komiya [196], Ha [138], [139] etc.

In section 6, we investigate the stability of coincidence points. Our results improve
and cover corresponding results given by Fort [116] and Jiang [163] in several ways.

In section 7, we obtain some fixed point theorems and coincidence theorems in topo-
logical vector spaces with sufficient continuous linear functionals and in locally convex
topological spaces for inward (respectively, outward) upper hemicontinuous multivalued
non-self mappings These results unify most results of fixed point theorems and coinci-
dence theorems in the literature. For instance, see Park [240], Ko and Tan [192] etc.).
As applications, several matching theorems for closed coverings of convex sets are given

which include the well-known Shapley generalization [264] of th= classical KKM theorem.



2.2 Knaster-Kuratowski-Mazurkiewicz Theorem

In this section, based on the classical KKM theorem [191] and its “dual” form given by
Shih and Tan [271], we first discuss =~me properties of contractible subsets in topological
spaces by employing Horvath's approach [153]. As applications, a characterization of
generalized HKKM mappings is given. These results improve Fan's famous geometric
result given in his celebrated paper [98], and corresponding results due to Fan [106]-[107],
Klee [187], Alexandroff-Pasynkoff [1], Berge {29], Horvath [153], and Chang and Zhang
[54], Chang and Yan [53] and Chang and Ma [51].

First we introduce and recall some notations and definitions. Throughout this thesis
all spaces are assumed to be Hausdorffif this is not specified. Let X and Y be non-empty
sets. We shall denote by 2 the family of all non-empty subsets of ¥, F(X) the family
of all non-empty finite subsets of X. Let X be a topological space. For each non-empty
subset A of X, we denote the closure of A in X by cly A (in short, c/A) or A if there
is no confusion. A subset A of X is said to be compactly closed (respectively, open) if
ANC is closed (respectively, open) in each non-empty compact subset C of X.

Let N and R denote the set of all natural numbers and the set of all real numbers,
respectively. For each n € N, let N = {0,1,---,n} and Ay = co{cg, -, ¢,} be the
standard simplex of dimension n, where {eg,---¢,} is the canonical basis of R"*! and
for J € F(N), A; = co{e; : j € J}. A topological ‘space X is said to be contractible if
the identity mapping /x of X is homotopic to a constant function.

The classical KKM theorem [191] is stated as follows:

Theorem 2.2.A. Let Cy,---,C, be closed subsets of the standard n-dimensional
simplex Ay and let {eg, --,e,} be the set of its vertices. If for each J € F(N),
Ay C U;esC;. Then N2 ,C; # 0.

in 1987, Shih and Tan [271] (see also Kim [179] or Lassonde [200]) provided the
following “dual form” of KKM theorem in the sense that the word “closed” is replaced

by the word “open”:

Theorem 2.2.A’. Let Cy,---,(, be open subsets of the standard n-dimensional
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simplex Ay and let {e;, ,e.} be the set of its vertices If for each J € F(N),
Ay CUyesC, Then N C, # 0

The following notions which were introduced by Bardaro and Ceppttelli in [46] were
motivated by earlier work of Horvath [153]. A pair (X, {['4}) (also called an H-structure)
1s said to be an [i-space (also called c-space according to Horvath [154]) if X 1s a
topological space and {I'4}4cx(x) a given family of non-empty contractible subsets I
of X such that 'y C Fig whenever A C B Let (X,{l4}) be an H-space A non-empty
subset D of X 1s said to be (i) H-convex (also called an F-set by Horvath [154]) if
I'a C D for each A € F(D), (it) weakly H-convex if I'4 N D is contractible for each
A € F(D) (or equvalently, (D,{T'4 N D}) 1s an H-space) and (i) H-compact in X if
for each A € F(X), there exists a compact, weakly H-convex subset D4 of X such that
DUA C D, Itis clear that the product space of a family of H-spaces is also an H-space.

The following example (e g , see Horvath [154, p 345]) shows that an H-space may
be not a convex subset in a topological vector space

Let X be a convex set in a topological vector space £ and Y any topological space.
Suppose that [ : X — Y is a continuous bijection For given A € F(Y), let Dy :=
o{r € X f(r) € A} Then D, i1s convex, so that Dy 1s contractible Since Dy is
also compact, so that f Dy — f(Dj) 1s an homeomorphism Let I'y = f(D4). Then
['4 1s contractible and I'y C 'y whenever A C A’ € F(Y). Therefore (Y,{I'4}) is an
H-space Note that the space Y itself may be a torus, the Mobius band or the Klein
bottle This example shows that an H-space does not have to be contractible

The following notion is due to Tarafdar [303]: Let D be a non-empty subset of
an H-space (X,{l'4}) The H-convex hull of D, denoted by Hco(D), is defined by
Heo(D) = N{B C X . BisH-convex and D C B} Clearly, Hco(D) is the smallest
H-convex subset of X contaming D and the intersection of any family of H-convex set is
also H-con +ex

Let X be a topological space, an n-dimensional singular face structure on X (e g., see
Horvath [154]) 1s a mapping F : F(N) — 2X such that (a) for each J € F(N), F(J) is
not-empty and contractible and (b) for any J,J' € F(N), J C J' implies F(J) C F(J')
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The following result is contained in the proof of Theorem 1.1 of Horvath [153] (see
also Theorem 1 of Horvath [154]) and its proof is omitted.

Lemma 2.2.B. let X be a topological space. For each non-empty subset ./ of
{0,1,---,n}, let F, be a non-empty contractible subset of X with [I'; C I";; whenever
0#JcCJ C{0,1,---,n}. Then there exists a continuous function [ : Ay — X such
that f(A,) C F; for each non-empty subset J of {0,1, - n}.

Proposition 2.2.1. Let X be a topological space. Let [" : F(N) — 2% be a
singular face structure on X and {M, :/ =0,---,n} be a family of closed (respectively,
open) subsets of X such that for any J € F(N), F(J) C Uies M..

Then N M, # 0.

Proof. By Lemma 2.2.B, there is a continuous function [ : Ay — X such that
for each J € F(N), f(Ay) C F(J). Let C, = f~1(M,) for each o = 0,---,n. Then
{C.}1g is a family of closed (respectively, open) subsets of A such that for any J € F(N),
Ay C U,esC,. By Theorem 2.2.A (respectively, Theorem 2.2.A'), N C; # {). Take any
To € Ny C,, then f(zo) € NLyM, # 0. O

As an application of Proposition 2.2.1, we have:

Theorem 2.2.2. Let X be a contractible topological space, {M,:1=0,---,n} be
a closed (respectively, open) covering of X and {F, : 1 = 0,---,n} a family of contractible
subsets of X such that (i) for any » € {0,---,n}, F,OM, = and (ii) for any .J € F(N)
with J # N, N, F, is non-empty and contractible. Then N M; # ()

Proof. Define ' : F(N) — 2¥ by F(N) = X and F(J) = Ny, if J € F(N)
with J # N. Then F' is a singular face structure on X. Note that for any J € F(N),
F(J) C UieaM, since F(J) C UiegM, UU,gsM; and F(J) N M; = () whenever + ¢ .J.
Then Proposition 2.2.1 implies that N*_ M, # §. O

Theorem 2 2.2 is clearly a generalization of the KKM lemma. For X = Ap and
F, = co({e, : j # 1} for i € N, Theorem 2.2.2 reduces to a theorem of Alexandroff-
Pasynkoff in {1]. For X = An and F; = X \ M, which is a closed convex subset for each

i € N, Theorem 2.2.2 is a generalization of a corresponding result due to Klee [187] and
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is known as Berge's intersection theorem [29].

Theorem 2.2.3. Let X be a contractible topological space and Y be a topological
space, {M, :2=0,---,n} b= an open (respectively, closed) covering of Y and {F} : 2 =
0,---,n} be a family of contractible subsets of X. Let S : X — Y be continuous such
that

(a) for e2ch 2 € {0,1,---,n}, F, C S7'(M,) and

(b) for each J € F(N) with J # N, N, F, is non-empty and contractible.

Then Ny M, # 0.

Proof. Suppose the contrary, so that U MC = Y, where M’ = Y \ M, denotes
the complement of M, in Y for each 2 = 0,1,---,n. Thus {MC :1=10,---,n} is an
open (respectively, closed) covering of Y. So that {S~'(MF)::=10,---,n} is an open
(respectively, closed) covering of X and by the condition (a), for each : = 0,1,---,n,
F,n 51 (ME) = 0. Therefore F, and S~'(MF) for i = 0,---,n satisfy all hypotheses
of Theorem 2.2.2. By Theorem 2.2.2, N, S~1(MF) # @ which contradicts that {M, :
1 =0,---,n) is a covering of Y. Thus "™ M, #0. O

We remark that Horvath [154, p.343] proved Theorem 2.2.3 under the additional

assumptions that X = Y and X is a normal space.

Since Chung and Yang in [53] gave a generalization of the KKM theorem in which
the domain need riot be a subset of its range, there are several generalizations in this
direction. For example, Chang and Ma [51] extended this definition into H-spaces and
later Zhou [337] gave a more generalized definition and obtained a characterization of
the generalized HKKM mapping which is also a generalization of the corresponding result
given by Chang and Zhang [54].

Definition. Let X be a non-empty set and Y a topological space. A mapping
(/: X — 2" U {0} is said to be transfer closed valued (e. g., see Zhou and Tian [339]) if
for each x € X and y ¢ G(z), there exist ' € X and an open neighborhcod N(y) of y in
Y such that y' ¢ G(2') for each y’ € N(y). It is obvious that if a mapping G : X — 2Y
i1s transfer closed valued, then for each € X and y € Y with y ¢ G(z), there exists
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some 7' € X such that y ¢ cIG(2').
The following lemma was first proved by Zhou and Tian [339] for the case when the
domain X is a topological space and in the present form by Zhou [337]; for completeness,

we include its simple proof.

Lemma 2.2.4. Let X be a non-empty set, Y a topological space and (7 : X — 2!
Then NyexG(z) = NzexclG(x) if and only if the mapping G is transfer closed valued

Proof. Sufficiency. It is clear that NyexG(z) C NexclyG(x). It is sufficient
to show that NgecclG(z) C NyexG(z). Suppose that y ¢ N.exG(x) Then there
exists some = € X such that y ¢ G(z). Since G is transfer closed valued on X, there
exists some &' € X such that y ¢ clyG(2'), so that y ¢ N, cxclG(x). Therefore
NeexclG(r) = NeexG(z).

Necessity. Suppose (z,y) € X x Y such that y ¢ G(z); then y ¢ N, exC(2) =
N:exclG(z) so that there exists ' € X such that y ¢ c/G/(x'). But then there exists an
open neighborhood N(y) of y in ¥ such that N(y) N G(z') = § so that y' ¢ C/(a') for
all y' € N(y) Thus G is transfer closed valued. O.

Let D be a non-empty subset of an H-space (X, {l'4}). A map I7: D — 2% is called
HKKM if Ty C UyeaF(z) for each A € F(X). When X is a non-empty convex subset
of a topological vector space and I'y = coA, the convex hull of A for each Ac F(X),
then (X, {'4}) becomes an H-space. In this case, the notion of an HKKM mapping
F : D — 2% coincides with the notion of a KKM mapping I7, re., coA C U,eal'(z) for
each A € F(D).

Definition. Let X be a non-empty set and Y a topological space A mapping
G : X — 2Y s said to be a generalized IIKKM mapping (in short, GHKKM) if for
each finite subset A = {z1,---,z,} of X, there exist a corresponding fimte subset
B = {y1,92--,yn} (yis need not be distinct here) in ¥ and a family {I'¢}ger(n) of
non-empty contractible subsets of Y such that I'c C I'cv whenever C' C ¢’ € F(Y) such
that

F{y'J jEJ) C U;:l(}(x'])
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for 0 #J C {0,1,---,n}.

It is clear that each H K KM mapping is GHK K, the following example show that

the converse does not hold:

Example. Let £ = (~o00,+00) and X = [~2,+2]. Define G: X — 2F by
z? z?
G('I:) - [—(1 + E)v 3—]7

foreach & € X. Since U,ex H(z) = [—9/5,9/5]) and = ¢ G(z) for each = € [-2,-9/5)U
(9/5,1]. This shows that G is not a KKM mapping. Next we prove that G is a generalized
KKM mapping. In fact, for any finite subset {z,,---,z,} C X, take {y1, --,yn} C
[~1,1], then for any finite subset {y,,, -+, ¥, } C {¥1,"**,Yn}, we have

CO{.‘/I] y T ,ytk} C [-1’ 1] = m-Z‘EXG('L‘) - Uj:] G(wh)

Thus G is GHKKM. For more details, we refer to [53].

Theorem 2.2.5. Let X be a non-empty set, and let both Y and Z be topological
spaces. Let S:Y — Z be continuous and G : X — 2Z be such that:

(1) the composition mapping S™' o G : X — 2¥ defined by (S7' 0 G)(z) =
Usec){y € Y 1 2 = S(y)} for each x € X, is a generalized HKKM mapping;

(2) for each z € X, G(z) is closed (respectively, open) in Y.

Then the family {G(z) : = € X} has the finite intersection property, i.e., for each
A€ F(X), NueaG(x) # 0.

Proof. For any finite subset {zo,2,,---,2,} of X, since "' 0 G : X - 2Y isa
generalized HKKM mapping, there exist a finite subset B = {yo,y1,-+*,¥.} of Y and a
family {I'c}ger(m) of non-empty contractible subsets of ¥ such that ['c C I'cr whenever
(' C C' such that

r{"ho Wyt ,y..} C Uj:o(‘s_l 0 G)("I;H)
for each finite subset {y,,, 3., -, 4.} of {¥o,y1,¥2,- -, yn}, where (0 < s < n). Let
M; = S=Y(G(y,)) for each + = 0,1,---,n; and define a mapping F : F(N) — Y by
F(J) = Ty, xeay for each J € F(N). Since S is continuous, M, is closed (respectively,



open) in Y for ¢ = 0,1,---,n by the assumption (2). Moreover the mapping F is a
singular face structure on Y. Therefore all hypotheses of Proposition 2.2.1 are satisfied.
By Proposition 2.2.1, NI_o M, # 0. Take any yo € NIy M, then S(yy) € ML, Ga;) # 0.
0

As an application of Theorem 2.2.5, we have the following result due to Zhou [337]:

Theorem 2.2.6. Let X be a non-empty set and Y a topological space. Let (i :
X — 2Y be such that

(a) G is transfer closed valued on X;

(b) there exists a non-empty finite subset X, of X such that the set Y;, = N, e x,cl((z)
is non-empty and compact in Y.

Then the intersection N,exG(z) is non-empty and compact if and only if the mapping
clG is a generalized HKKM mapping.

Proof. Necessity: Suppose NyexG(z) is non-empty and compact. Take any y, €
NzexG(z). Note that the singleton set {yo} is contractible. Foreach A = {x,,---,z,} €
F(X), take B = {y1,-*,yn} with y; = yo forall ¢ = 1,2,--- n and let 'g: = {yo}
for all B’ € F(B). Since yo € clG(z) for all z € X, it is clear that the mapping cl( is
generalized HKKM.

Sufficiency: Since the mapping clG is a generalized HKKM by Theorem 2.2.5 with
Y = Z and S being the identity map on Y, the family {c/G(z) : & € X} has the
finite intersection property. Now define a mapping G'(z) = ¢lyG/(z) N'Y, for each = €
X. Then the family of non-empty compact subsets {('(x) : © € X} has the finite
intersection property, so that NyexclyG(z) = NyexG'(z) # 0. Since ¢ is transfer
closed, NuexG(z) = NgexclG(z) by Lemma 2.2.4. Therefore N,exG(z) # § O

An an immediate consequence of of Theorem 2.2.6, we have the following:

Theorem 2.2.7. Let X be a non-empty set and Y a compact topological space. Let
G : X — 2 be transfer closed valued on X. Then the intersect N, x G(x) is non-empty

if and only if the mapping clG is a generalized HKKM mapping.

Theorem 2.2.7 is a generalization of the corresponding results given by Chang and



Yang [53] and Chang and Ma [51].
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2.3 Ky Fan Minimax Inequalities in H-Spaces

The minimax inequality of Fan ([105]) is fundamental in proving many existence theorems
in nonlinear analysis. There have been numerous generalizations of Fan's minimax inequal-
ity by weakening the compactness assumption or the convexity assumption. In [46], using
Horvath's approach [153], Bardaro and Ceppitelli obtained some minimax inequalities in
topological spaces which have “H-space” structure. Following this line, there are many
generalizations given by Horvath [153], Tarafdar [303], Ding and Tan [81], Ding, Kim and
Tan [87], Chang and Ma [51], Park [243], Tan, Yu and Yuan [289]. These results generalize
most of the corresponding results given by Fan [98] and [106], Degundji and Granas [90],
Lassonde [199], Simons [276], Zhou and Chen [338] to topological spaces which have the
so-called H-structure. However, all results mentioned above require lower semicontinuity
to guarantee the existence of solutions. Our results shows that the lower semicontinuily
is not essential for the existence of solutions for Ky Fan's minimax inequalities.

In this section, by weakening the compactness and continuity assumption on H-spaces,
we obtain some new minimax inequalities. Then several non-compact minimax inequalities
are obtained by using the concept “escaping of sequence” introduced by Border [34]
which is different from other non-compact minimax inequalities given by Allen [4], Aubin
[7], Aubin and Ekeland [10], Lassonde [199], Fan [106], Ding and Tan [81}, Chang and
Zhang [54], Yen [327] and Tian and Zhou [311]. Finally, several fixed point theorems and
existence theorems for maximal elements are given in H-spaces (respectively, in topological
vector spaces) which are equivalent to the minimax inequalities in H-spaces (respectively,

in topological vector spaces). These results will be needed in our further developments.

Theorem 2.3.1. Let X be a non-empty set and Y a compact topological space and
$: X xY — RU{—o00,+00} be such that:

(a) the mapping z — {y € Y : ¢(z,y) < 0} is transfer closed valued;

(b) the mapping z — cly{y € Y : ¢(x,y) < 0} is generalized HKKM on X.
Then there exists y* € Y such that ¢(z,y*) < 0 forall z € X.

Proof. Define a mapping G': X — 2¥ by G(z) = {y € X : ¢(x,y) < 0} for each
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z € X. Then we have: (1) the mapping G is transfer closed valued and (2) the mapping
clG is generalized HKKM. By Theorem 2.2.7, N,exG(z) # 0. Take any y* € NyexG(z),
then sup, ey ¢(z,y*) <O0forallz € X. O

Remark: It is clear that the condition (a) of Theorem 2.3.1 is equivalent to the

following condition which first appeared in Tan, Yu and Yuan [289]:

Fact (a): for each y € Y with {z € X : ¢(x,y) > 0} # 0, there exists ' € X
such that y € inty {y' € Y : (', y") > 0}.

Thecrem 2.3.2. Let X be a non-empty subset of a compact H-space (Y,{I'4}) and
$: X xY - RU{—o00,+00} be such that

(a) the mapping z — {y € Y : ¢(z,y) < 0} is transfer closed valued on X

(b) the map z — cly{y € Y : ¢(z,y) < 0} is HKKM on X.
Then there exists y* € Y such that ¢(z,y*) < 0 forall z € X.

Proof. Since (Y,{I'4}) is an H-space, each HKKM mapping is automatically a
generalized HKKM mapping. Therefore all hypotheses of Theorem 2.3.1 are satisfied. By
Theorem 2.3.1, there exists y* € Y such that ¢(z,y*) <0 forall z € X. O.

Corollary 2.3.3. Let X be a non-empty subset of a compact H-space (Y, {T'4a})
and ¢: X x Y — RU {—v0,+00} be such that:

(a) for each z € X, y — ¢(z,y) is lower semicontinuous on Y’;

(b) the map z — cly{y € Y : é(z,y) <0} is HKKM on X.

Then there exists y* € Y such that ¢(z,y*) <0 for all z € X.

Proof. Suppose y € Y is such that {z € X : ¢(z,y) > 0} # 0. Fix any 2’ € X with
$(='yy) > 0. By (a), there exists an open neighborhood N(y) of y such that ¢(z’,y’') > 0
for each y' € N(y). Hencey € inty{y’ € X : ¢(2’,y’) > 0}. Now the conclusion rollows
from Theorem 2.3.2 and the Fact (@)’ preceding it. O

Corollary 2.3.4. Let X be a non-empty subset of a non-empty compact convex set
Y in a topological vector space and ¢: X x Y — R U {—00, +00} be such that

(a) the mapping = — {y € Y : ¢(z,y) < 0} is transfer closed valued on X;

(b) the map 2 — ¢cly{y € Y : ¢(x,y) <0} is KKM on X,
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Then there exists y* € Y such that ¢(z,y") < 0 for all z € X.

Proof. For each A € F(Y), let 'y = co(A). Then (Y,{I'4}) is an H-space and the
map z — cly{y € Y : ¢(z,y) <0} is HKKM on X. Thus the conclusion follows from
Theorem 2.3.2. O

Corollary 2.3.5. l.et X be a non-empty subset of a non-empty compact convex set
Y in a topological vector space and ¢ : X x Y — R U {~o00,+00} be such that

(a) the mapping z — {y € Y : ¢(z,y) < 0} is transfer closed valued on X;

(b) for each A € F(X) and each y € co(A), mingead(z,y) < 0.
Then there exists y* € Y such that ¢(z,y*) < 0 forall z € X.

Proof. By Coioilary 2.3.4, we only need to prove that the map © — cly{y € ¥ :
#(z,y) < 0} is KKM on X. Suppose not, then there exist A € F(X) and y € co(A)
such that y ¢ Uzecaclx{y € X : ¢(z,y) < 0}. It follows that ¢(z,y) > 0 for each u € A,

so that mingeaé(z,y) > 0 which is a contradiction. O.

As seen from the proof of Corollary 2.3.3, the condition “for each & € X, y — ¢(, )
is lower semicontinuous” implies the condition® for each y € X with {x € X : f(x,y) >
0} # 0, there exists ' € X such that y € intx{y' € X : ¢(a',y") > 0}”. Thus Corollary
2.3.4 and hence Theorems 2.3.1 and Theorem 2.3.2 generalize Theorem 1 of Yen [327]
(see also Theorem 2.2 of Simons [275]) and Theorem 2.11 of Zhou and Chen [338]. The
following is an example for which Theorem 2.3.2 is applicable while Theorem 1 of Yen
[327] and Theorem 2.11 of Zhou and Chen [338] are not:

Example. Let Y = [0,1] and X be the set of all rational numbers in [0, 1]. Define
$: X xY — Rby
os,y) = { r—y, !f Y fs 'ratlc.*"nal,
2, if y is irrational
for each (z,y) € X x Y. Suppose (z,y) € X x Y and ¢(z,y) > 0. If y is irrational,
then clearly y < 1. If y is rational, then since ¢(z,y) = z —y > 0, we also have
y < a < 1. in either case, take =’/ = 1 and note that {y' € Y : ¢(z',y') > 0} = [0, 1),
so that y € [0,1) = inty{y’ € Y : §(z',y') > 0}. Thus the condition ()’ and hence
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the condition (a) of Theorem 2.3.2 is satisfied. Moreover, for each z € X, clx{y € Y :
d(x,y) <0} =clx{y € Y : y is rational and y > x} = [z,1]. It follows that the map
x—cy{y €Y :¢(z,y) <0} is KKMon X. Thus the condition (b) of Theorem 2.3.2
is also satisfied. Therefore Theorem 2.3.2 is applicable. However, for each z € X, the
map y — ¢{z,y) is not lower semicontinuous and hence T' zorem 1 of Yen [327] and

Theorem 2.11 of Zhou and Chen [338] are not applicable.

The Example above shows that for each z € X, the lower semicontinuity of the

mapping y — ¢(z,y) is not essential for the existence of solutions for minimax inequalities.

In order to obtain our main resul's on minimax inequalities, we need the concept of
an escaping sequence introduced in Border [34, p.34]: Let X be a topological space such

that X = U®

n=

1 X, where {X,,}22, is an increasing sequence of non-empty compact sets.

n=

A sequence (y,)2, in X is said to be escaping from X (relative to {X,,}52,) if for each

n=

n =1,2,---, there exists a positive integer M such that y; ¢ X, forall k > M.

Theorem 2.3.6. Let X be a non-empty set and Y a topological space such that
X =Ux

n=

(Xo and Y = U, Y, where { X332, and {Y,}2, are increasing sequences of
non-empty sets and of compact spaces respectively. Let ¢ : X x Y — RU {—o00, 400}
be such that

(a) for each n € N, the mapping  — {y € Y, : é(z,y) < 0} is transfer closed
valued on X;;

(b) for each n € N, the map = — cly,{y € Y,, : ¢(z,y) < 0} is generalized HKKM
on X,;

(c) for each sequence (y,,)52, in Y with y, € Y, for each n € N which is escaping
from Y relative to {Y,}52, there exist no € R and w,,, € X, such that ¢(zn,, yn,) > 0.
Then there exists y* € Y such that ¢(x,y*) <0 for all z € X.

Proof. Foreach n € N, by Theorem 2.3.1, there exists y,, € Y, such that é(z,y,) <
0 forall z € X,,.

Suppose the sequence (y,)32, were escaping from Y relative to {Y,}%2,. By (c),

there exist ng € N and z,, € X, such that ¢(z,,,yn,) > 0 which is a contradiction.
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Therefore the sequence (y,)%2, is not escaping from Y relative to {¥,}°2,, so that

some subsequence of (y.)5>, must lie entirely in some Y, Since ¥, 1s compact, there

exist a subnet {z.}aer of (¥,)22, 1 Y, and a pont y* € Y, such that =, — y*

that ¢ € X,, W ¢(z,y*) > 0, then {&' € X,, ¢(1',y*) > 0} # 0, by (a) and
Fact (a)’ proceeding Theorem 2 3 2, there exists ' € X, such that y* € mty, {y' €

Denote 2, = yYn(a) for each & € I' If © € X 1s gven, there exists n, > ny such

Y, : #(a',y") > 0} Since z, — y*, there exists ag € I" such that n(ay) > n, and
Zag € Ity {y' € Y., 1 ¢lx’,y) > 0}, hence ¢(z',z4,) > 0 But 2’ € X, C Xy(4,) s0
that ¢(2', za,) = ¢(2', Yn(ao)) < 0 which is a contradiction Therefore ¢(r,4*) < 0 for
al e X O

By Theorem 2 3 6, we have the following

Theorem 2.3.7. Let X be a non-empty subset of a topological space Y such that
X =U2,X, and Y = U2,Y, where {X,}2, and {Y,}%2, are increasing sequences
of non-empty sets with X, C Y, and Y, is a compact H-space for each 1 = [,2,-  Let
¢: X xY = RU{—00,+00} be such that

(a) for each n € N, the mapping = — {y € Y,, . ¢(z,y) < 0} 1s transfer closed
valued on X,

(b) for each n € N, the map z — cly, {y € Y., : (%, y) <0} 1s HKKM on X,,,

(c) for each sequence (v,,)22, in Y with y,, € Y, for each n € N which 1s escaping
from Y relative to {Y;, }22,, there exist ng € N and z,, € X,,, such that ¢(1,,,1,,) >0
Then there exists y* € Y such that ¢(zx,y*) <0 forall 1 € X

Proof. Since each HKKM mapping 1s also generahzed HKKM, all hypotheses (a),
(b) and (c) in Theorem 2 3 6 are satished By Theorem 2 3 6, the conclusion follows O

Similar to Corollaries 233, 23 4 and 2 3 5, we have the following Corollaries 3 8, 3 9
and 310

Corollary 2.3.8. Let X be a non-empty subset of a topological space Y such that

X =U2,X,and Y = U2,Y, where X} and {Y,}32, are increasing sequences of

n=1 n= %=1

non-empty sets for which X, C Y, and Y, 1s a compact H-space for each : = 1,2,--- Let
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$: X xY — RU{—o0,+00} be such that
(a) for each n € N and for each z € X,,, y — ¢(z,y) is lower semicontizuous on X,;
(b) for each n € N, the map z — cly,{y € V.. : ¢(z,y) < 0} is HKKM on X,;;
(c) for each sequence (y,)52, in Y with y,, € Y, for each n € N which is escaping
from Y relative to {Y,,}22,, there exists ng € N and z,,, € X,,, such that ¢(z.,.yn,) > 0.

Then there exists y* € Y such that ¢(z,y*) < 0 forall z € X.

Corollary 2.3.9. Let I be a topological vector space. Let X be a non-empty subset
of a non-empty set Y such that X = UL, X, and Y = U2, Y, where {X,}52, and
{Y,.}22, are increasing s=quences of non-empty sets for which X; C Y; and Y; is compact
convex in [ foreachi=1,2,---. Let $: X xY — RU {—00,+00} be such that

(a) for each n € N, the mapping z — {y € Y, : ¢(z,y) < 0} is transfer closed
valued;

(b) for each n € N, the map z — cly, {y € V.. : ¢(z,y) < 0} is KKM on X,,;

(c) for each sequence (y,,)32, in Y with y,, € Y, for each n € N which is escaping
from Y relative to {Y;,}22,, there exist ng € N and z,,, € X,,, such that ¢(z.,,yn,) > 0.

Then there exists y* € Y such that ¢(z,y*) < 0 for all z € X.

Corollary 2.3.10. Let E be a topological vector space. Let X be a non-empty
subset of a non-empty set Y such that X = U, X,, and Y = U2, Y, where {X,}2,
and {Y,,}52, are increasing sequence of non-empty sets for which X; C Y; and Y] is
compact convex in [ for each i = 1,2,---. Let ¢: X XY = RU {~00,+00} be such
that

(a) for each n € N, the mapping z — {y € Y, : é(z,y) < 0} is transfer closed
valued on X,;

(b) for each n € N, A € F(X,.) and y € co(A), mingead(z,y) <0;

(c) for each sequence (y,,)22, in Y with y, € Y, for each n € N which is escaping

from V' relative to {V;,}52,, there exist ng € N and z,,, € X,,, such that ¢(z,,,y,,) > 0.
Then there exists y* € Y such that ¢(z,y*) <0 forall z € X.

Corollary 2.3.10 generalizes Theorem 3.1 of Tan and Yu ([288]).



Now we give equivalent formulations to our minimax inequalities. We first show that

Theorem 2.3.6 implies the following:

Theorem 2.3.11. Let X be a non-empty set and Y a topological space such that
X =0 X, and Y = UL, Y;, where { X, 132, and {Y,}52, are increasing sequences
of non-empty sets and of compact spaces respectively. Let B be a non-empty subset of
X x Y such that

(a) for each n € N, the mapping = — {y € Y;, : (z,y) ¢ B} is transfer closed valued
on X,;

(b) for each n € N, the map = — cly, {y € Y. : (z,y) ¢ B} is generalized HKKM
on X,;

(c) for each sequence (y,)32, in Y with y, € Y, for each n € N which is escaping
from Y relative to {Y;,}22,, there exist ng € N and =z, € X,,, such that (w,,,.,) € B.
Then there exists y* € Y such that {x € X : (z,y*) € B} = 0.

Proof. Let 4: X x Y — R be defined by

1, if (z,y) € B,

Hary) = { 0, if(z,y)¢B.

Then the hypotheses of Theorem 2.3.6 are all satisfied. Hence by Theorem 2.3.6, there
exists y* € Y such that ¢(x,y*) < 0 forall z € X, ie, (x,y") ¢ Bforall z € X so
that {z € X : (z,y*) € B} =0. O

It is clear that Theorem 2.3.11 implies the following:

Theorem 2.3.12. Let X be a non-empty set and Y be a topological space such that
X = U

n=

1 Xn and Y = U2, Y, where {X,}22, and {V,,}52, are increasing sequences
of non-empty sets and of compact spaces respectively. Let C' be a non-empty subset of
X x Y such that

(a) for each n € N, the mapping z — {y € Y,, : (z,y) € C} is transfer clused valued
on X,;

(b) for each n € N, the map z > cly,{y € V. : (z,y) € C} is generalized HKKM

on X,,;
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(c) for each sequence (y2)22, in Y with y, € Y, for each n € N which is escaping

7z

from Y relative to {Y,,}2,, there exist no € N and z,,, € X,,, such that (z,,,y.,) ¢ C.

n=|?

Then there exists y* € Y such that X x {y*} C C.

Definition. Let X and Y be two topological spaces and a mapping F : X —
2V U {0).

(i): F is transfer open inverse valued on X if for each y € Y and z € X with
v € F'(y) = {&# € X 1y € F(z)}, there exist some y' € Y and a non-empty
open neighborhood N () of z in X such that N(z) C F~(y'). It is clear that F' : X —
2Y U{0} is transfer open inverse valued on X if and only if the mapping G : Y — 2X¥ U {0}
defined by G(y) = X \ F~'(y) for each y € Y is transfer closed valued.

(i) a point z € X is said to be a maximal element of the mapping F' provided

(x) = 0.

The example after Theorem 2.3.18 below shows that a transfer open inverse valued

mapping may be not open inverse valued.

Now we shall show that Theorem 2.3.12 implies the following maximal element theo-

rem:;

Theorem 2.3.13. Let X be a non-empty set and Y be a topological space such that
X =U8

n=

Xy and Y = UL, Y, where { X, 132, and {Y,}32, are increasing sequences of
non-empty sets and of compact spaces respectively, Suppose the map F: Y — 2X U {0}
is such that

(a) for each n € N, the mapping F : Y,, — 2% U {(}} is transfer open inverse valued
on X,;

(b) for each n € N, the map = — cly,{y € Y, : ¢ ¢ F(y)} is generalized HKKM on
Xu;

(c) for each sequence (y,)22, in Y with y, € Y,, for each n € N which is escaping
from Y relative to {Y,,}52,, there exist ng € N and z,, € X,,, such that z,,, € F(yn,).
Then there exists y* € Y such that F(y*) = 0.

Proof. Let C = {(x,y) € X xY :x ¢ F(y)}, then all the conditions of Theorem



2.3.12 are sauisfied. Hence by Theorem 2.3.12, there exists y* € ¥ such that X x {y*} C
C.ie,z ¢ F(y*) for all z € X so that F(y*) = 0. D

We shall now prove that Theorem 2.3.13 implies Theorem 2.3 6 so that Theorems
2.3.6, 2.3.11, 2.3.12 and Theorem 2.3.13 are all equivalent.

The proof of “Theorem 2.3.13 = Theorem 2.3.6”: Define F : ¥ — 2% U {0} by
F(y) ={x € X : ¢(z,y) > 0} for each y € Y. Then the conditions of Theorem 2.3.13
are satisfied. Hence by Theorem 2.3.13, there exists y* € Y such that F'(y*) = §), i.e,,
Hz,y*) <O0forallz € X. O

As an immediate consequence of Theorem 2.3.13, we have:

Corollary 2.3.14. Let X be a non-empty subset of a convea subset Y of a topo-

Xoand V' = U2, Y, where { X}, and

n= =

logical vector space E such that X = U2
{Y,.}22, are increasing sequences of non-empty sets for which X, C Y, and Y, is compact
convex for each + = 1,2, -, Suppose the map F': ¥ — 2X U {{} is such that

(a) for each n € N, F : Y;,, — 2X» U {(} is transfer open inverse valued,

(b) for each y € Y, y ¢ coF(y);

(c) tor each sequence (y,,), in Y with y,, € Y,, for each n € N which is escaping
from Y relative to {V,}32,, there exist ng € N and z,,, € X,,, such that z,, € I'(y,,).
Then there exists y* € Y such that F(y*) = 0.

Proof. Suppose that there exist n € N, A € F(X,) and y € co(A) such that
Y & Useacly, {y' €Y, i 2 ¢ F(y)}. Then z € F(y) for all & € A so that y € co(A) C
coF(y) which contradicts (b). Therefore all conditions of Theorem 2.3 13 are satisfied

and hence there exists y* € Y such that F'(y*) = 0. O

Corollary 2.3.14 generalizes Theorem 3.2 of Tan and Yu [288] and Theorem 7.10 of
Border [34, p.35].

In what follows, we shall give two fixed point theorems and an existence theorem for

maximal elements.

Theorem 2.3.15. Let X be a non-empty subset of an H-space (Y, {I"4}) such that
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X =U22

n=

 Xnand Y = U2, Y, where { X}, and {Y,}32, are increasing sequences of
non-empty sets for which X; C Y; and Y; is a non-empty compact and weakly H-convex
subset of V for each i = 1,2,---. Suppose the map F: Y — 2% is such that

(a) for each n € N, the mapping F' : Y, — 2%n U {0} is transfer open inverse valued;

(b) for each y € Y, F(y) is H-convex;

(c) for each sequence (y,)32, in Y with y,, € Y, for each n € N which is escaping
from Y relative to {V,,}°2,, the:e exist no € N and z,,, € X,,, such that z,, € F(y,,).
Then there exists y* € Y such that y* € F(y*).

Proof. For each n € N, since (Y, {I'4}) is an H-space and Y, is weakly H-convex,
so that (Y;,, {4 NY,}) is an H-space. If the condition (b) of Theorem 2.3.13 holds, then
there is § € Y such that F'(§) = () which is a contradiction. Therefore the condition (b)
of Theorem 2.3.13 does not hold, i.e., there exist n € N, A € F(Y,,) and y* € T'4 such
that y* ¢ cly {y € Yoz ¢ F(y)} for all z € A, hence z € F(y*) for all € A. By (b),
F’(y*) is H-convex so that y* € I'y C F(y*). O

Theorem 2.3.16. Let X be a non-empty subset of an H-space (Y, {I'4}) such that
X =uU, X, and Y = U2, Y,, where {X,,}22, and {Y,}52, are increasing sequences of
non-empty sets for which X; C Y; and Y; is a non-empty compact and weakly H-convex
subset of Y for each : ::41,‘2, .++. Suppose the map F : Y — 2% is such that

(a) for eachn € N, tﬁe mapping F : Y, — 2% U {0} is transfer open inverse valued;

(b) for each sequence (y,,)32, in Y with y,, € Y, for each n € N which is escaping
from Y relative to {Y,}2,, there exist ng € N and z,, € X,,, such that z,,, € F(y,,).
Then there exists y* € Y such that y* € HeoF'(y*).

Proof. As in the preceding proof, there exist n € N, A € F(X,,) and y* € I'4 such
that y* ¢ cly, {y € Y,y 1w ¢ F(y)} forall x € A, hence v € F(y*) for all z € A and

y* € M4 C HeoF(y*). O

Theorem 2.3.17. Let X be a non-empty subset of an H-space space (Y, {I'4})
such that X = U2, X, and ¥ = U, Y, where {X,,}52, and {Y,}2, are increasing

sequences of non-empty sets for which X; C Y; and Y; is a non-empty compact and weakly

H-convex subset of Y for each ¢ = 1,2,---. Suppose the map #: Y — 2% is such that
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(a) for each n € N, the mapping F : Y;, — 2% U {{} is transfer open inverse valued;

(b) for each y € Y, F(y) is H-convex and y ¢ F'(y);

(c) for each sequence (y,, )2, in Y with y, € Y, for each n € N which is escaping
from Y relative to {Y,,}52,, there exist ng € N and z,, € X, such that &, € F(y,, ).
Then there exists y* € Y such that F(y*) = 0.

Proof. Suppose F(y) # @ for all y € Y, by Theorem 2.3.15, there exists § € Y such
that § € F(9) which is a contradiction of condition (b). O

Finally, as an immediate consequence i Theorem 2.3.15, we have the following gen-

eralization of the Fan-Browder fixed point theorem (e.g, see Fan [98] or Browder [42]):

Theorem 2.3.18. Let X be a non-empty compact convex subset of a topological
vector space £ and F : X — 2% is such that:

(a) for each z € X, F(x) is convex; and

(b) F' is transfer open inverse valued.

Then F has a fixed point.

The following example shows that Theorem 2.3.18 is really a generalization of the

Fan-Browder fixed point theorem.

Example. Let X = [0, 1] and define a mapping F' : X' — 200! by

Plz) = { [z,1], if z is rational

[0,1], if 2 is irrational

Then it is clear that £ is not open inverse valued but I is transfer open inverse valued.
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2.4 Stability of Ky Fan Points

Let (X,d) be a compact metric space with the fixed point property for continuous map-
pings. In [115}, Fort introduced the concept of essential fixed points of a continuous
mapping [ on X. He proved that (1) every continuous mapping on X can be arbitrarily
approximated by a continuous mapping on X whose fixed points are all essential; and (2)
if each fixed point of a continuous mapping f on X is essential, then the fixed point set
S(f) ={x € X : f(z) = z} of fis stable: for each € > 0, there is § > 0 such that for
each continuous mapping g on X, if p(f,g) = sup{d(f(z),9(z)) : z € X} < 4, then
h(S(f),S(g)) < € where h is the Hausdorff metric defined on all non-empty bourided
closed subsets of X induced by the metric d; i.e., the fixed point set S(g) of g is “close”
to the fixed point set S(f) of f whenever g is “close” to f.

In this section, the concepts of the KF point and essential KF point are first in-
troduced. We then study the stability of KF points (which are the solutions of Ky Fan
minimax inequalities) in both compact and non-compact settings.

We shall recall some definitions. If X is a topological space, we shall denote by K(X)
and Py( X)(= 2%) the space of all non-empty compact subsets of X and the < ace of all
non-empty subsets of X" respectively, both endowed with the Vietoris topology (see, Klein
and Thompson [189]). If Z is another topological space, then a mapping 7' : X — 2X is
said to be (i) upper (respectively, lower) semicontinuous at z € X, if for each open set
G in Z with G D T'(x) (respectively, G N T'(z) # (), there exists an open neighborhood
O(z) of  in X such that G’ D T'(2') (respectively, G N T'(a') # 0) for each 2’ € O(z);
(i) T is said to be almost lower semicontinuous at z € X, if there exists z € T'(z) such
that for each open neighborhood N(z) of z in Z, there exists an open neighborhood O(z)
of x in X with the property that N(z) N T'(z') # 0 for each 2’ € O(z) and (iii) T is an
usco if T"is upper semicontinuos with non-empty compact values.

A space X is said to be Cech-complete if it can be embedded as a G5 subset of some
compact Hausdorff space (e.g., see Engelking [95]). It is known that (i): A Cech-complete
space is a Baire space; (ii): Locally compact spaces are also Cech-complete, because a

non-compact locally compact space has a compactification with one-point remainder; (iii):
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The space of all irrational numbers with the topology of a subspace of the real line is an
example of a Cech-complete space that is not locally compact and moreover (iv): Each
completely metrizable space is Cech-complete. Thus, the Cech-complete spaces contain
within them the two important types of Baire spaces.

A space X is said to belong to the class £ (see Kenderov [174]) if for each Cech-
complete space Z, every usco mapping S : Z — K(X) is almost lower semicontinuous
on some dense (s subset of 7.

Note that there are a number of spaces under which each usco multifunction from X
to Z is almost lower semicontinuous at the points of some dense (/s subset of X. For
example,

(a) X is a Baire space and Z is metrizable (e.g., see Fort [115, Theorem 2]);

(b) X is Cech-complete and Z is a Banach space with weak topology (which is non-
metrizable if it is infinite dimensional) by Theorem 2 of Christensen [60];

(c) X is a Baire space and Z is the dual space of a Banach space with the weak*-
topology provided Z has the randon - Nikodym property (e.g., see Christensen and
Kenderov [61]).

It follow:s from (a) and (b) above that the class £ contains all metrizable spaces and all
Banach spaces equipped with the weak topology. The class £ has nice stability properties:
it is closed under taking subspaces, countable products, countable sums of closed sets,
and perfect images.

As a special case of Corollary 2.3.5, we have the following:

Theorem 2.4.A. Let X be a non-empty compact convex subset of a topological
vector space and [ : X x X — R be such that

(i) f(z,z) <0 forall z € X;

(ii) fou cach fixed z € X, y — f(z,y) is lower semicontinuous;

(iii) for each fixed y € X, &+ f(z,y) is quasi-concave (i.e., for each A € R, the set
{re X: f(z,y) > A} is convex),
Then there exists § € X such that f(z,5) <0 for all z € X.

It is clear that Theorem 2.4.A above is equivalent to the celebrated Ky Fan minimax
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inequality [105] stated as follows:

Theorem 2.4.B. Let X be a non-empty compact convex subset of a topological
vector space and f : X x X — R be such that

(a) for each fixed z € X, y — f(z,y) is lower semicontinuous;

(b) for each fixed y € X, z — f(z,y) is quasi-concave.

Then infyex supgex f(2,y) < supgey f(2, ).

We shall call such a point § in Theorem 2.4.A as Ky Fan point (in short, K F' point)
of fin X and denote by S(f) the set of all i{F' points of f in X. Thus S(f) is non-
empty by Theorem 2.4.A. Also, S(f) = Neex{y € X : f(z,y) < 0} by the condition
(1) of Theorem 2.4.A is closed in X and is thus also compact. Therefore, for each
function f : X x X — R satisfying the conditions (i), (ii) and (iii) of Theorem 2.4.A,
one can associate a non-empty compact subset S(f), the set of all solutions y € X of
the inequality sup,.y f(z,y) < 0.

In this section, we shall first discuss the stability of S(f) with f varying where f is
a bounded real-valued function on X x X satisfying the conditions (i), (ii) and (iii) in
Theorem 2.4.A and X is a non-empty compact convex subset of a topological space.
Next, if X is a Cech-complete space which belongs to the class £ (see the definition
below), we shall study the stability of the set S(A, f) = {y € A : sup ¢, f(z,y) < 0}
with both f and A varying, where f : X x X — R is bounded and lower semicontinuous
and A is a non-empty compact subset of X. When X is a closed convex subset of a
Frechet space, as an application, the stability of the set S(A, f) is investigated, where
'+ X x X — R satisfies the conditions (i) and (iii) of Theorem 2.4.A and the subset A

is, in addition, convex,

2.4.1 Stability in Compact Setting

Throughout this section, X denotes a non-empty compact convex subsets of a topological

vector space. Let L(X) be the family of all bounded real-valued functions on X x X.



For f,g € L(X), define
p(fr9) = sup |f(z,y) — g(z,y)|.
zy€X

Clearly, (L(X), p) is a complete metric space. Let

M = {J € L(X) : f satisfies the conditions (i), (i) and (iii) of Theorem 2.4.A }.
It is easy to show that M is closed in L(X). Thus we have:

Lemma 2.4.1. (M, p) is a complete metric space.

Now for each [ € M, the set S(f) = {y € X: sup,cy [(x,y) < 0} is non-empty

and compact by Theorem 2.4.A. Furthermore, we have:

Lemma 2.4.2. F': M — K(X) is upper semicontinuous.

Proof. Let {(fa,Ya)}acr be a net in GraphS with (fu,y.) — (fo,%0) € M x X,
then fo — fo, Yo — yo and fo(z,y4) <0 forall @ € ' and for all z € X. Fix z € X.
Since y — fo(x,y) is lower semicontinuous at yo, for any ¢ > 0, there exists an open
neighborhood O(yo) of yo in X such that for each y' € O(yo), fo(, y0) < So(,y')+c/A.
As fo — fo, there exists ap € I such that for any & > v, p(fo, fa) < €/4 so that for
each y' € O(yo), falz,¥0) < fo(z,y0) + €/4 < fo(z,y') + €/2 < [falm,y') + 3¢/A.
Since y, — yo, there exists ay > ag such that y,, € O(yy); it follows that fy(x, o) =
Jo(2,90) = S (2, 90) + far (2,90) = Sau (%, Ye,) + Sar (2, 90,) < p(Jo, [, + 3/4 < c.
Since € > 0 is arbitrary, fo(z,y0) < 0 for all z € X. This implies that (fo,y,) € GraphS
and hence GraphS is closed in M x X. Therefore S is upper semicontinuous since X is

compact. O

Definition. For each f € M, (i) a point y € S(f) is K ["-essential relative to M if
for each open neighborhood N(y) of y in X, there exists an open neighborhood (/) of
[ in M such that S(f")N N(y) # 0 for each [’ € O([); (i) f is weakly essential relative
to M if there exists y € S(f) which is K [-essential relative to M and (iii) [ is essential
relative to M if every y € S(f) is K F-essential relative to M.

The following result is due to Fort [115]:
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Lemma 2.4.3. If X is metrizable, Z is a Baire space and 5 : Z — K(X) is an usco

mapping, then the set of points where S is lower semicontinuous is a dense G5 set in Z.

Theorem 2.4.4. (i) S is almost lower semicontinuous at f € M if and only if f is
weakly essential relative to M.

(i) S is lower semicontinuous at f € M if and only if f is essential relative to M.

(iii) S is continuous at f € M if and only if f is essential relative to M.

Proof. (i) S is almost lower semicontinuous at f € M if and only if there exists
y € S(f) such that y is K F-essential relative to M if and only if f is weakly essential
relative to M.

(i) S is lower semicontinuous at f € M if and only if each y € S(f) is K F-essential
relative to M if and only if f is essential relative to M.

(i) This follows from (ii) and Lemma 2.4.2. O

If X is metrizable by a metric d, then the Vietoris topology on K(X) coincides with
the topology generated by the Hausdorff metric h induced by d (e.g., see Corollary 4.2.3
of [189]). Then S is continuous at f € M if and only if for each € > 0, there is § > 0
such that for each g € M, h(5(/f), S(g)) < € whenever p(f,g) < &; i.e., S(f) is stable:
S(g) is “close” to S(f) whenever g is “close” to f. Theorem 2.4.4 (iii) shows that S(f)

is stable if and only if [ is essential relative to M.
We shall give a sufficient condition that f € M is essential relative to M:

Theorem 2.4.5. If f € M is such that S(f) is a singleton set, then f is essential
relative to M.

Proof. Suppose S(f) = {z}. Let G be any open set in X such that S(f)NG # 0§,
then = € G so that S(f) C G. Since S is upper semicontinuous at f by Lemma 2.4.2,
there is an open neighborhood O(f) of f in M such that S(f’) C G for each f’ € O(f);
in particular, G N S(f’) # 0 for each f' € O(f). Thus S is lower semicontinuous at f.
By Theorem 2.4.4 (ii), [ is essential relative to M. O

Theorem 2.4.6. (i) Suppose that X belongs to class £. Then there exists a dense
(s subset () of M such that [ is weakly essential relative to M for each f € Q.



(i1) Suppose that X is metrizable. Then there exists a dense (75 subset () of M such
that f is essential relative to M for each f € Q.

Proof. (i) Since M is a complete metric space, M is Cech-complete. By Lemma
2.4.2, the mapping S : M — K(X) is upper semicontinuous. Since X belongs to class
L, S is almost lower semicontinuous on some dcnse (s subset () of M. By Theorem
2.4.4 (i), [ is weakly essential relative to M for each f € Q.

(i1) By Lemma 2.4.2 and Lemma 2.4.3, S is lower semicontinuous on some dense (/s

subset ) of M. By Theorem 2.4.4 (ii), [ is essential relative to M for each [ € (). D

We remark that if we define M = {f € L(X) : [ satisfies conditions (a) and (b)
of Theorem 2.4.B } and S(f) = {y € X : sup,ex f(2,y) < sup,ey f(z,2)} for each

f € M, then all the results in this section remain valid.

2.4.2 Stability in Non-Compact Setting

In section 2.4.1, we have studied the stability of the solution set S(/) of f in X with f
varying but X fixed. In this section we shall study the stability of the solution set S(f)NnA
of fin A with both f and A varying.

Throughout this section, X denotes a topological space and L(.X') denotes the space of
all bounded real-valued lower semicontinuous functions on X x X. Foreach fy, f, € L(X),
let p(f1, f2) = sup (g yexxx |f1(z,¥) — f2(z,y)], then clearly p is a metric on L(X).

Let Y = K(X) x L(X). Now for each u = (A, [) € Y.

Definition. A point y in A is called a Ky Fan's point (in short, K/ point) of [ in
A if sup ey f(z,y) <0.

A point y in A satisfying () is called a Ky Fan's point (in short, /I point) of [ in A.

Before we study the stability of the set S(u) of K'[" points of [ in Aforu = (A, [) €
Y, we shall give several lemmas which will be used to prove our main results later. The

proof of the following result is routine and is hence omitted.

Lemma 2.4.7. (L(X), p) is a complete metric space.
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Lemma 2.4.8. Suppose X is a non-empty subset of a topological vector space. If
{As}uer is a net of compact and convex sets in K(X) which converges to A € K(X)
in the Vietoris topology, then A is also convex.

Proof. Suppose that A were not convex. Then there exist 21,2, € Aand A\ € (0, 1)
such that M\ yz; + (1 — A\y)z2 ¢ A. Since A is compact, there exist an open set G in X
containing A and an open neighborhood O(A1z1 + (1 — Ay)zz) of Mjzy + (1 — M)z in
X such that O(Ayz) + (1 — Aj)zz) NG = 0. Note that there exist an open neighborhood
O(z;) of =, in X and an open neighborhood O(x3) of z; in X such that \,O(z) +
(1 — A)O(w2) C O(Mzy + (1 — Ap)zs). Since zy, z2 € A and A, — A, there exists
ap € I" such that for each o > ap, O(z1) N Ao # 0 and O(z2) N Ax # . Since G D A,
there exists «v; € ' such that for each o > oy, G DO A,. Now let o; € T be such
that a; > g and a; > ;. Then for each o > g, O(z1) N Aq # 0, O(z) N Ag # 0
andg A, C (. Choose any z; € O(z1) N Aa, and z € O(z;) N Ay,. Since A,, is
convex, Azy + (1 — A)zy € An, C G, But Az + (1 = A)zg € AO(z1) + (1 — A)O(z3) C
O(Axy + (1 = A)zz) which contradicts O(Azq1 4 (1 — A)z2) NG = (). Hence A must be

convex. O

The following result is Lemma 3.3 of Beer [17]; as it was stated without a proof, we

shall include its simple proof for completeness:

Lemma 2.4.9. Let {A,.er be a net in K(X) which converges to A € K(X) in
the Vietoris topology. Then every net {24 }qer with z, € A, for each « € T has a cluster
point in A.

Proof. Suppose that the net {z,}ser has no cluster point in A. Then for each
& € A, there exist an open neighborhood O(x) of z in X and an a(z) € T such that
o € O(x) for all @ > ofz). Since A C UyeaO(z) and A is compact, there exist
Ty, Ly, ey Ty € A such that A C UL,0(x;). Now let o be such that o > a(z;) for
i=1,2,---,n. Then for each a > o/, xo ¢ O(x;) for i = 1,2,---,n. Since U,0(z;)
is an open set which contains A and A, — A in the Vietoris topology, there exists o’ € T

such that for any o > o”, 2, € A, C UL 0(x;). Now let o € I" be such that o/ > o
and o > a”; then wom ¢ O(x;) for i = 1,2,---,n which contradicts the fact that



Tam € Aq C UL, 0(x;). Hence {zy}qaer has a cluster point in A. O

Now define the subspace M of Y by M = {(A, f) € Y: there exists y € A such that
supgea f(2,¥) < 0}. Then we define a mapping S : M — Po(X) by S(u) = {y € A:
supgea f(z,y) < 0} for each u = (A, f) € M.

Lemma 2.4.10. M is closed in Y.

Proof. Suppose that {(Aq,, fo)}aer is @ netin M such that (A,, [.) = (A, f) €Y.
For each o € T', let y, € A, be such that sup 4 fo(2,y.) < 0. Since A, — A in
the Vietoris topology, the net {y,}.ecr has a cluster point y, € A by Lemma 2.4.9. Now
we shall show that sup,., f(2,y0) < 0. Suppose that this were not true, then there
exist ¢o > 0 and zy € A such that f(zo,y0) > 9. Since [ is lower semicontinuous at
(zo, yo), there exist an open neighborhood (o) of ©y in X and an open neighborhood
O(yo) of point yo in X such that f(z,y) > € for any (z,y) € O(xo) X O(ya). Since
fo — [, there exists ag € I such that for any v > ag, | [o(z,y) — [(2,y)] < o/2 for
all (z,y) € X x X, so that fo(z,y) > [(z,y) — €o/2 for all (x;,y) € X x X. Therefore
Jalz,y) > f(2,y) — €0/2 > € — €0/2 = €0/2 for each (z,y) € O(xo) X O(yo). As
Asx — A, there exists oy > «p such that O(zo) N Ay # 0 for all @ > ;. Note that
Yo € A is a cluster point of {y,},er, there exists a; > o such that y,, € O(y,). Choose
any z,, € O(xo) N Aa,, we have fo,(Za,,Ya,) > €0/2 which contradicts the choice of
Yoz € Aa, that sup,ey,  fo(7,ya) < 0. Therefore we must have that sup,e [(x,y0) <
0. Hence (A,f) € M and M is closed in Y. O

Lemma 2.4.11. If X is Cech-complete, then M is Cech-complete.

Proof. The space L(X) is Cech-complete since L(X) is a complete metric space by
Lemma 2.4.7. Since X is Cech-complete, K(X) is also Cech-complete by Lemma 2.2
of Beer [17]. Therefore the product space K(X) x L(X) is Cech-complete by Theorem
3.9.8 of Engelking [95]. By Lemma 2.4.10 and Theorem 3.9.6 of Engelking [95], M is

also Cech-complete. O

Lemma 2.4.12. S(u) € K(X) for each u € M.
Proof. For each u = (A, f) € M, since S(u) C A, it is sufficient to prove that S(u)
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is closed in A. Let (y,)aer be a net in S(u) which converges to a point yo € A. By the
definition of S, we have sup_c 4 f(2,y.) < 0 for each a € T. By the lower semicontinuity
of y v sup,eca f(z,y), we have sup_c 4 f(z,50) < 0. Hence yo € S(u) so that S(u) is a

closed subset of A. O.

Lemma 2.4.13. The correspondence S : M — K(X) is upper semicontinuous.

Proof. Suppose that S were not upper semicontinuous at some point v = (A4, f) €
M, then there exist an open subset G of X with G D S(u) and a net {u,}aer in M with
1, — 1 € M such that for each o € T, there exists y, € S(u,) with y, ¢ G. Denote
ty = (Ag, fo) and u = (A, f), then f, — f and A, — A. Since y, € A, for each
a € I', by Lemma 2.4.9, the net {y,}aer has a cluster point yo € A. Since y, ¢ G for
each o € I', we have yo ¢ G. Therefore sup,c4 f(z,y0) > 0, so that there exist €g > 0
and zy € A such that f(zo,y0) > €. Since (z,y) — f(z,y) is lower semicontinuous at
(:to, yo). there exist an open neighborhood N(zo) of zo in X and an open neighborhood
N(yo) of yo in X such that for each (z,y) € N(xo) X N(yo), f(z,y) > €. Since
fo — [, there exists o € T such that for each o > a1, |fa(z,y) — f(z,y)| < €/2
for all (z,y) € X x X. Therefore f,(z,y) > f(z,y) — €/2 for all (z,y) € X x X.
Since N(zo) N A # 0 and A, — A, there exists a; > oy such that for each o > a,
N(xo) N A, # 0. Note that because y, is a cluster point of the net {y,}acr there exists
oy > oy with yo, € N(yo). Now choose any 2o, € N(zo) N Ayy, we have fo,(TayyYas) >
J(®ag, Yoy ) — €0/2. Therefore fo,(Tay, Yas) > [(Zag, Yas) — €0/2 > €0 — €0/2 = €/2 > 0
which contradicts the fact that y., € S(u,,). Therefore s must be upper semicontinuous.

O

Now let M, be a non-empty closed subset of M.

Definition. For each u € M, (i) a point y € S(u) is K F-essential relative to M,
if for each open neighborhood N(y) of y in X, there exists an open neighborhood O(u)
of w in M, such that S(u') N N(y) # 0 for each v’ € O(u); (ii) u is weakly essential
relative to M, if there exists y € S(u) which is K F-essential relative to M, and (iii) u is

essential relative to M, if every y € S(u) is K F-essential relative to M.



Theorem 2.4.14. (i) S is almost lower semicontinuous at © € M, if and only if u
is weakly essential relative to M,.

() S is lower semicontinuous at u € M, if and only if u is essential relative to M,.

(it) S is continuous at u € M, if and only if u is essential relative to M,.

Troof. (i) S is almost lower semicontinuous at u € M, if and only i{ there exists
y € S(u) such that y is K F-essential relative to M, if and only if « is weakly essential
relative to M,.

(i) S is lower semicontinuous at u € M, if and only if each y € S(u) is K [I"-essential
relative to M, if and only if u is essential relative to M,.

(iii) This follows from (ii) and Lemma 2.4.13. O

A proof analogous to that of Theorem 2.4.5 and therefore omitted gives us the fol-

lowing result:

Theorem 2.4.15. If u € M, is such that S(u) is a singleton set, then wu is essential

relative to M,.

Theorem 2.4.16. (i) Let X be Cech-complete and belong to the class £. Then
there exists a dense G5 subset () of M; such that u is weakly essential relative to M, for
each u € ).

(i) Let X be completely metrizable. Then there exists a dense (s subset () of M,
such that u is essential relative to M, for each u € ().

Proof. Note that S is an usco by Lemma 2.4.12 and Lemma 2.4.13.

(i) Since X is Cech-complete, Lemma 2.4.11 implies that M is also also Cech-
complete. Since M, is closed in M, M, is also Cech-complete by Theorem 3.9.6 of
Engelking [95]. Since X is of class L, there is a dense (s subset () of M, such that S is
almost lower semicontinuous at each u € (). By Theorem 2.4.14 (i), u is weakly essential
relative to M, for each u € Q).

(i) By Lemma 2.4.3, there exists a dense G5 subset () of M, such that S is lower
semicontinuous at each u € (). By Theorem 2.4.14 (ii), u is essential relative to M, for
eachu e (). O
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If X is a complete metric space with metric d, then K(X) is a complete metric
space when equipped viith the Hausdorff metric h induced by d. By Corollary 4.2.3 in
[189, p.41], the Vietoris topology on K (X) coincides with the topology induced by the
Hausdorff metric k. By Lemma 2.4.7, it follows that Y = K(X) x L(X) and hence M

and M, are also complete metric spaces when equipped with the metric D defined by
D(u,w') = p(f, f') + h(A, A")

for u = (A, f) and v’ = (A, f’). We note then, the mapping S : M; — K(X) is
continuous at u = (A,f) € M, if and only if for each € > 0, there is 6 > 0 such that
h(S(u),S(u')) < € whenever u’ € My and D{u,u’) < 6; i.e., the solution set S(u) of u is
stable: S(u') is close to S(u) whenever v’ is close to u for all ' € M,. Theorem 2.4.14
(iii) implies that if u € M, then u is essential relative to M, if and only if the solution

set S(u) is stable.

Now let X be a non-empty closed and convex subset of a Frechet space E equipped
with a translation invariant metric d. Denote

CK(X)={A€e K(X):Ais convex },

CL(X) = {f € L(X) : [ satisfies (i) and (iii) of Theorem 2.4.A},

M' =CK(X)x CL(X).

The following is an application of the results obtained in this section:

Theorem 2.4.17. (i) M’ is a non-empty closed subset of M.

(i) There exists a dense G5 subset () of M’ such that u is essential relative to M’ for
each u € (.

Proof. (i) Clearly M’ is non-empty. If u = (A, f) € M’, then by Ky Fan’s minimax
inequality Theorem 2.4.A, there exists § € A such that sup,., f(z,§) <0; thusu € M
so that M' C M. Now if {(A., fu)};%, is a sequence in M’ such that (A,, f,) —
(A, f) € M, then f, — f and A, — A. Since for each y € X, z — f,(z,y) is quasi-
concave, it is also easy to see that = — f(z,y) is also quasi-concave. By Lemma 2.4.8,
A'is also convex. Thus (A, f) € M’ so that M’ is closed in M.

Now (ii) follows from (i) and Theorem 2.4.16 (ii). O




Finally, we remark that if we define M = {(A, f) € Y. there exists y € A such that
Sup,ca f(2,y) < sup,ex f(2,2)}, S(u) = {5 € A : sup,eq [(31) < sup,ex [(z2))
for each u = (A, f) € M and CL(X) = {f € L(X) : [ satisfies (a) and (b) of Theorem

2.4.B }, then all the results in this section remain valid.



46

2.5 Coincidence Points for Non-self Mappings in Topological

Vector Spaces

The natural extension of fixed point theory is the study of coincidence points. Let X and
Y be topological space and S,T : X — 2Y. The coincidence problem for (S,T) is to
find (zo,y0) € X X Y such that yo € S(zo)NT(x0). Geometrical problems of this type in
an approximate context turn out to be intimately related to some basic problems arising
in convex analysis. This important fact was discovered by J. von Neumann in 1937, who
established a coincidence theorem in R™ which was then applied to prove his well-krown
minimax principle. Since then, geometrical problems of a similar kind (as well as their
analytic counterparts) have attracted broad attention. Also, new applications in various
mathematical areas have been found. In particular, since Eileiberg and Montgomery [94]
studied coincidence theory in topological settings in 1946, this topic has been compre-
hensively developed by the contributions of Kakutani [170], Nash [227], Fan[97], Kneser
[190], Gale [122], Debreu [72], Nikaido [229], Sion [279], Gorniewicz, Granas [131] and
Kryszewski [132], Granas and Liu [134], Chang and Song [52], Ben-El-Medchaiek and
Deguire [24], Ko and Tan [192], Powers [247] and other contributors. This topic has
many applications in mathematics and other subjects, for example, see Aubin [7], Aubin
and Cellina [9] and Zeidler [336].

In this section, we first consider the relations between Halpern’s inward (respectively,
outward) mappings in [141} and Fan's inward (respectively, outward) definitions [103].
Several facts involved in the study of fixed point theorems for non-self mappings are also
exhibited. Next a general multivalued version of Fan's best approximation thesrem [103] is
given in topological vector space. As applications, a number of approximation theorems,
fixed point theorems and coincidence theorems are given in topological vector spaces.
These results improve or unify most of the well known results in Browder [44], Fan [98],
[103], [105], [106], Komiya [196], Park [242], Reich [248], Halpern and Bergman [143]
and Ha [139].



2.5.1 Some Facts.

In this section, some facts concerning boundary conditions which are involved in the study
of non-self mappings are exhibited.

We introduce some notation. Let X and Y be topological spaces and A : X — 2'.
Then A is continuous if A is both upper semicontinuous and lower semicontionous. If Y
is a non-empty subset of a topological vector space, then A is convex valued (respectively,
closed convex valued) if A(x) is convex (respectively, closed and convex) for each « € X.

The following definitions are due to Halpern (e.g., see [141]). Let X be a non-empty
subset of a vector space £ and y € . Then the inward set /y(y) and the outward set
Ox (y) of X at y are defined by

Ix(y) = {x € E: there exist v € X and v > 0 such that v =y +r(u —y)},
and

Ox(y) ={z € E: there exist u € X and r > 0 such that z = y — r(u —y)}.

If E is a topological vector space, then the closure of /x(y) and Ox(y) in /v, denoted
by Tx(y) and Ox(y) respectively, are called the weakly inward set and weakly outward
set of X at y respectively.

Let X be a non-empty subset of a topological vector space [/. Then a mapping 1" :
X — 2F is called (i) inward (respectively, outward) if for each z € X, T'(z) N Ix(x) # 0
(respectively, T(x) N Ox(z) # ) and (ii) weakly inward (respectively, weakly outward) if
for each z € X, T(xz) N Tx(z) # 0 (respectively, T'(x) N Ox(z) # 0).

We note that if T is a (weakly) inward mapping, then the mapping (¢ : X — 2
defined by G(z) = 2z — T'(x) for each @ € X is (weakly) outward and vice versa. Also,
x is a fixed point of 7" if and only if it is a fixed peint of (/. Hence fixed point results for
(weakly) inward mappings are equivalent to such results for (weakly) outward mappings.
Thus we shall mainly give details of proofs for (weakly) inward mz2ppings.

Let X be a non-empty convex set in a (real or complex) vector space /7. Following
an [103], the algebraic boundary §5(X) of X in [V is the set of all 2z € X for which there
exists y € F such that z +ry ¢ X for all » > 0. if X is a subset of a topological vector

space, the topological boundary di(X) is the complement of int;; X in /. It is easy to
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see that §5(X) C 9p(X) and in general §5(X) # dg(X) as there exists a convex subset
X of a topological vector space E such that dg(X) = X while 65(X) # X, e.g., see
[313, Example 4 in Chapter 3].

Let £/ and W be two topological vector spaces and X a non-empty subset of E.
Let G, F : X — 2%. A point z € X is said to be a coincidence point of G and F if
Cz)n F(z) # 0.

Let /£ be a topological vector space and E* be its continuous dual. F is said to have
sufficiently many continuous linear functionals if for each z € F with = # 0, there exists
¢ € E* such that Reg(z) # 0, i.e., E* separates points in £. By the Hahn-Banach
theorem, if F is a locally convex topological vector space, then E has sufficiently many
continuous linear functionals. There are topological vector spaces with sufficiently many
continuous linear functionals which are not locally convex, e.g., the Hardy space H?,
0<p<l.

Since most fixed point theorems of inward (outward) mappings depend on the boundary
conditions of the domains, for example see Halpern and Bergman [143], Browder [41] and
Fan [103] and Park [240], it is our purpose in this section to discuss the relations between
various boundary conditions appearing in the literature. Following the idea of Fan [103],

we first have the following:

Propositions 2.5.1. Let X be a non-empty convex subset of a vector space F and
[ X — 2. Then the following two conditions (a) and (b) are equivalent.

(a) For each 2 € §g(X), there exist y € X, u € F(z) and r > 0 such that
w—x=r(y—z).

(b) For each & € X, there exist u € F(z) and r € (0,1) such that rz+ (1 —r)u € X.

Proof. (a) = (b). Fix an arbitrary € X. If there exists u € F(z) such that
u € X, then because X is convex, 7z + (1 — r)u € X holds for every r € (0,1). Now
assume I'(x) C £\ X. (1) f x € 8g(X), then by (a), there exist y € X and u € F(z)
and ©* > 0 such that u — x = r(y — ). It follows that ry + (1 — )z = u ¢ X. Since
Yy, ¢ € X and X is convex, we must have r > 1. let A = '—:1- then A\ € (0,1) and
Av 4+ (1= Mu =y e X. (2) fz ¢ dg(X), then by the definition of 6g(X), for the
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point u — x, where u € F(z), there exist » > 0 such that y = & + (v — x) € X. Since
z,y € X andu=1y+ 2z ¢ X, we must have r < 1. Let A = | — r, then we have
Az + (1 — A)u =y € X. Thus the condition (b) is verified.

(b) = (a). Suppose z € 6g(X). By (b), there exist u € F(x) and r € (0,1) such
that y = ra 4 (1 —r)u. fwetake A = - then A > 0and v —z = \(y —x). O

Proposition 2.5.1 improves the result given by Fan [103] to multivalued mappings.
Fan also gave the following result in [103]:

Proposition 2.5.2. Let X be a non-empty convex subset of a vector space I.
Suppose F,G : X — 2F. Then the following two conditions are equivalent:

(a) For each point & € 6g(X), there exist three points y € X, w € F(x), v € (/(x)
and a real number r > 0 such that y — z = r(u —v).

(b) For each & € X, there exist three points y € X, v € [(x), v € (/(x) and a real

number r > 0 such that y — z = r(u — v).
By Proposition 2.5.1 and Proposition 2.5.2, we have the following:

Proposition 2.5.3. Let X be a non-empty convex subset of a vector space I£.
Suppose F,G : X — 2E. Then the following are equivalent:

(a) For each x € 8g(X), thereexisty € X, u € F'(z), v € ((z) and » > 0 such that
y—ax=r(u—uv).

(h) For each z € X, there exist y € X, v € FF(z), v € G(x) and » > 0 such that
y—x=r1r(u—v).

(c) For each =z € X, there exist u € F(z), v € ((z) and r € (0,!) such that
4+ (1-r)u-—v)€X.

Proof. By Proposition 2.5.2, the condition (a) is equivalent to the condition (b).

Now define W : X — 2E by W(z) = {2} + F(z) — G(z) for each = € X. Then it is
clear that the condition (2} is equivalent to the following:

(a)' For each z € 6g(X), there exist y € X, u € W(x) and » > 0 such that
y—x=r(u—=zc).

Now by Proposition 2.5.1, the condition ()’ is equivalent to the following condition:
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(¢)': Foreachy € X, thereexist u € W(y) and r € (0,1) such that ry+(1—r)u € X.
By the definition of W, it is also obvious that the condition (c)’ is equivalent to the
condition (c). Therefore conditions (a), (b) and (c) are equivalent. O

We also have the following:

Proposition 2.5.4. Let X be a non-empty subset of a vector space E and F,G :
X — 2€. Then the following two conditions are equivalent:

(i) For each z € §g(X) and ¢ € E* such that Reg(z) < Red(y) for all y € X, there
exist u € F() and v € G(z) with Red(u) > Reg(v).

(i) For each z € X and ¢ € E* such that Red(z) < Red(y) for all y € X, there
exist u € F(z) and v € G(z) with Reg(u) > Reg(v).

Proof. We only need to show that (i) = (ii). Suppose z € X. let ¢ € E*
be such that Reg(z) < Red(y) for all y € X. If © ¢ 6g(X), then by the definition
of 6p(X), for each y € E, there exist r > 0 such that z + ry € X; it follows that
Reg(z) < Red(x +ry), so that Reg(y) > 0 for all y € E, and therefore ¢ is necessarily
the zero linear functional. Since Re¢ = 0, Reg(u) > Reg(v) is satistied for any u € F(z)
and v € G(z). Next, if z € §g(X), then for any ¢ € E* satisfying Red(z) < Red(y) for
all y € X, by (i), there exist u € F(z) and v € G(z) such that Re¢(u) > Reg(v). Thus

the condition (ii) is verified. O

Let X be a non-empty closed convex subset of a topological vector space E. We
remark that (1) Corollary 6.3.1 of Rockafellar [253, p.47] implies that Fan’s definition of
algebraic boundary ég(X) of X in E is equivalent to the definition given by Browder
[41, p.285]: ép(X) = {x € X : there exists a finite dimensional flat M such that z €
Ap(X N M) and (2) if intg(X) # 0, then 9g(X) = 65(X) (see, e.g., [313, Theorem
2.27(a)]. Therefore our Proposition 2.1.3 really generalizes Fan’s result [106].

Since Halpern gave the definitions of inward (outward) mappings in his Ph.D. thesis
[141] (e.g., see Halpern and Bergman [143]), many fixed point theorems are obtained. In

[105], Fan also gave another definition for the inward (outward) mappings as follows:

Definition. Let X be a non-empty convex subset of a topological vector space



E and F : X — 2E. The mapping F is an inward mapping (respectively, outward
mapping) if for each © € X and any continuous linear functional ¢ on [ such that
Red(x) < infyex Reg(y), there exists a point w € F(z) such that Red(u) > Reg(x)
(respectively, Re¢(u) < Red(z)).

It is easy to see that the condition (a) (respectively, (b)) of Proposition 2.5.2 im-
plies the condition (i) (respectively, (ii)) of Proposition 2.5.4. Therefore Fan's definition
of inward mappings (respectively, outward mappings) in a topological vector space in-
cludes the definitions of inward mappings (respectively, outward mappings) for a single

(or multivalued) mapping given by Halpern (also see Fan {103], Halpern and Bergman
[143]).

Let X be a non-empty convex subset of a topological vector space [5 and W, T, I :
X — 2F. Consider the following conditions:

(a) For each z € X, thereis y € W(z) and » € [0, 1) such that ra 4 (1 —r)y € X.

(b) For each z € X, thereis y € X, w € T(x). v € F'(z) and » € (0, 1] such that
y— =r(u—uv).

Then it is not difficult to see that 7' and F' satisfy the condition (b) if and only if the
mapping W = [ 4+ T — F satisfies the condition (a); and moreover, 2 € W (z) if and only
if T(z)N F(z) # 0.

2.5.2 Best Approximation Theorems.

In this section, we will give a general extension of Fan's best approximation theorem [103]
in topological vector spaces. As applications, several coincidence theorems are derived

which in turn imply some fixed point theorems.

We shall need the following result which is contained in the proof of Theorem 2 and

the remark immediately following its proof in Ha [139]:

Theorem 2.5.A. Let X be a non-empty compact subset of a topological vector

space E which has sufficiently many continuous linear functionals and F : X — 2% be
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upper semicontinuous with compact and convex values. If F' has no fixed point, then there

exist § > 0 and a continuous seminorm P on E such that inf,¢x inf,cp(s) P(z-u)>é.
We shall need also the following Lemma 2 of Ha [138]:

Theorem 2.5.B. Let Z be an n-simplex and let K be a non-empty compact convex
subset of a topological vector space. If A: Z — 2% is upper semicontinuous with closed

and convex values and p : K — Z is continuous, then there exists zp € Z such that
xo € p(A(w)).
We shall now prove the following coincidence theorem:

Theorem 2.5.5. Let X be a contractible space and Y be a compact convex subset
of a topological vector space . Let A: X — 2Y be upper semicontinuous with closed
and convex values. Suppose that B : Y — 2% is such that

(a) B~!(z) is open for each z € X; and

(b) for each open set O in Y, the set Ny,eo B(y) is empty or contractible.

Then there exist wy € X and z € Y such that wy € B(z) and zo € A(wo).

Proof. We first show that there exist an n-simplex Ay and twe functions f : Ay —
X and ¢ : Y — Ay such that f(1(y)) € B(y) forally € Y.

Since Y is compact, by (a), there exists a finite subset {zg,---,z,} of X such that

Y = UL,B7"(x,). Now for each non-empty subsat J of N := {0,---,n}, we define

P = { N{B(y) :y € Nyes B (z})}, if Myes B~ (z;) # 0,
X, otherwise.
Note that if y € N,cyB~'(x;), then {z, : j € J} C B(y). Therefore by (b), if
NjeaB™'(x,) # 0, then Fy = n{B(y) : y € NyesB~'(z,)} is non-empty and con-
tractible. It is clear that F; C F; whenever § # J C J' € {0,---,n}. Thus F
satisfies all hypotheses of Lemma 2.2.B. By Lemma 2.2.B, there is a continuous function
[ :An — X such that f(A;) C Fyforall J € F(N). Let {t, : i € N} be a continuous
partition of unity subordinated to the covering {B~'(z,) : ¢ € N}, i.e., for eachi € N,
i Y — [0, 1] is continuous, {y € Y : 4,(y) # 0} C B~"(z.) such that 3, (y) = 1
forall y € Y Define yp: Y — An by ¢(y) = (Yo(y), ¥1(y), -, ¥n(y)) for each y € Y.



Then 9)(y) € Ay forall y € Y, where J(y) = {i € {0,---,n} :9i(y) # 0}. Therefore
f((y)) € f(Auw) C Fuy C Bly).

Since A is upper semicontinuous with closed and convex values and f is continuous,
the composition Ao f: Ay — 2¥ is also upper semicontinuous with closed and convex
values, and % : Y — Ay is continuous. By Theorem 2.5.B, there exists @y € Ay such
that 29 € Y o (Ao f(wo)). Let wo := f(w0), then wo = f(wo) € fo (tho (Ao f(20)) =
[o(tho(A(wp)) so that there exists zo € A(wy) is such that wy = [01p(20) € B(z). O

As a special case of Theorem 2.5.5, we have the following result which is Theorem 1
of Komiya [196]:

Corollary 2.5.6. Let X be a non-empty convex subset of a topological vector
space I2 and Y be a non-empty compact convex subset of a topological vector space
W. Suppose A : X — 2V is upper semicontinuous with closed and convex values and
B :Y — 2% has convex values such that B~"(x) is open in Y for each « € X. Then

there exists (zo,y0) € X X Y such that zy € B(yo) and yo € A(z0).

We now prove a multivalued generalization of Fan's best approximation theorem [103,

Theorem 2] in topological vector spaces.

Theorem 2.5.7. Let £ and W be two topological vector spaces. Let X be a non-
empty compact convex subset of £ and G, F : X — 2. Suppose further there exists
continuous H : X x W — R such that:

(i) for each fixed 2 € X, theset {y € W : H(z,y) < r} is convex for each r € R;

(i) ¢ is continuous with compact values and the set (/~'(y) is convex for each
y € G(X), where G(X) is a convex set;

(iii)) F is continuous with compact values.

Then there exists a point 25 € X such that

weiludBy 10w == LR, o =)

Proof. Suppose that the conclusion were false. Define two mappings A : (/(X) — 2

X)
and B : X — 26(X) by Ay) = G7'(y) for each y € G(X) and B(z) = {y € G(X) :



infuer) H(z,y — u) < infyeq) infueps) H(z,v — u)} for each z € X. Then by
assumption, B(z) # 0 for each z € X. Since ( is upper semicontinuous with closed
values, the graph of (/ is closed in £ x W, GraphA is also closed in W x E. Since X is
compact, the mapping A : G(X) — 2% is upper semicontinuous and has closed convex
values. Since [ is continuous with compact values and H : X x W — R is continuous,
Theorem 1 of Aubin [7, p.67] and Theorem 2 of Aubin and Ekeland [10, p.69] imply
that (z,y) — infuep@) H(z,y — u) — iof,ea) infuer@) H(z,v — u) is continuous. It
follows that for each y € G(X), the set B™'(y) = {z € X : infuer@) H(z,y —u) <
infyeci(e) infuer@) H(z,v—u)} is open in X. Siice G(X) is convex, by (i) B(z) is convex
for each z € X. Therefore A and B satisfy ai' kypotheses of Corollary 2.5.6. By Corollary
2.5.6, there exist 2o € X and yo € G(X) such that 29 € A(yo) and yo € B(zo), i.e
yo € G(mg) and

1t€]fl7'l(fdo) H(:LO, o= u) < vEICIr](fJ;o)[UE]g(f% H(’EO’ u)]

which is impossible. Therefore the conclusion must hold. O
If the mapping GG in Theorem 2.5.7 is single-valued, then we have:

Theorem 2.5.8. Let £ and W be two topological vector spaces. Let X be a non-
empty compact convex subset of £, I/ : X — 2% and G : X — W. Suppose further
there exists a continuous function H : X x W — R such that:

(1) for each fixed z € X, y — H(x,y) is convex;

(ii) G is continuous and the set ("} (y) is convex for each y € G(X), where G(X) is
convex;

(i) I7 is continuous with compact and convex values.

Then there exists a point x5 € X such that

inf inf Hzx - f H(zo,G _
weTg(x)(G (o)) “€F(z0) (20, —u) = uE”l(zo) (20, G(i20) ~ w).

In particular, if inf,epy) H(o,G(20) —u) > 0 and H(z,ry) < rH(z,y) for each
€ (0,1) and each (x,y) € X x W, then G(z0) € §5(G(X)).



Proof. By Theorem 2.5.7, there exists o € X such that

. f . f [r . F F'
UEG(“) LEI (10) ( ) lE}‘(ao) ( p( ) )

inf inf H(zg,w—u)> inl H(xe, Gay) — u).
wElG(x)(G(a:o))“EF(%) ( ’ ) u€F(wp) ( ’ ( () )

Fix an arbitrary w € Iy (G(20)) \ G(X). As G(X) is convex, there exist z € (/(X)
and r > 1 such that w = G(zo) + r(z — G(xo)). Suppose that

ueilf*](fmo) H{zo,w —u) < ueil?(g:o) H(wo, G(wg) — ).
Since F(zg) is compact and H is continuous, there exist zy,zo € [7(:rg) such that
H(zo,w—21) = infuepy) H(2zo, w—u) < infuerey) H (wo, G(mo) =) = H (o, (o) —

z). Let 7= (1 — %)zz + %21, then Z € F(xo) since ["(xo) is also convex. Therefore we

have
H(zo,G(mo) — z2) = uei]g(gvo) H(xo, G(mo) — u) = 1leicl}(l')()1tei11;)(l;:0) H{(zo,v —u)
1 1 | =
< H(zo,z — %) = H(o, Jwt (7 — )G (o) ~ el (’ - \EDY
1 =1
S 7—H(m0,w - Zl) + ! , H(.’L’o, Cl’(.’ll(j) — ZQ)

< I’!(.’L’o, G((L‘o) - 22)
which is a contradiction. Thus we must have

inf inf H(zo,w—u)> ol H(zy, ((xo) —u).
wEIG(lxI)(G(a:g)) 1L€l;7(a:0) (,LO w “) - uEII!"I(a;o) (IU (IO) “)

By the continuity of w — infuer(se) H (o, w — 1), we have

inf inf Hzg,w—w)> inf H(xy, Glzy) —u).
WGIC,'(X)(G(WO)) uel«"(::,-o) ( 05 ) - 1‘6[«”‘(:1;0) ( 5] ( U) )
Hence
inf inf H(zg,w—u)= inf H(xg, U(zg)— u).
weTg(x)(Gzo)) wEF(20) (o ) u€l'(zo) (w0, Ci(0) )
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If infyer(s) H(zo,G(z0) — u) > 0 and H(z,ry) < rH(z,y) for each r € (0,1)
and for each, (z,y) € X x W, we shall show that G(zo) € 6g(G(X)). Note that
() is compact, thus there exists a point uo € F'(xo) such that H(xo,G(z0) — uo) =
infuer(zg) H (o, G(zy) — u). We first show that ug ¢ G(X). Suppose that uo € G(X).
Then for any » € (0, 1), rG(zo) + (1 — r)ug € G(X). It follows that

H (co, ((wn) — uo) inf H(zo,G(zo)—w)= inf inf H(wo,v— u)

il

u€F(zp) vEG(X) ueF(xo)
< inf H(ze,rG(zo) + (1 — 7)ug — u)
u€F(z)

< H(zo,rG(z0) + (1 — r)up — uo) < H(zo-r(G(x0) — uo))
< rH (=, G(zo) — ug) < H(zo, G(zo) — uo)
which is a contradiction. Therefore uo ¢ G(X).
Now suppose that G(z0) ¢ é5(G(X)), then by the definition of ég(G(X)), for points
uy € F(xy) and G(zg) € G(X), there exists # > 0 such that 21 = G(20) + 7(uo —
(V(0)) € G(X). Since up = tz1 + =L G(z0) ¢ G(X) and both x1, G(zo) € G(X) and

(/(X) is convex, we must have » < 1. Therefore

H (2o, G(2o) — uo) = uei;g(&()) H(zo,G(zy) — u) = ijCI}(f;\’) uei]}}(fco) H(zo,v - u)
< uEiIg(f;O) H(zo, (1 — r)G(x0) + Tup — u)
< H(mo, (1 = r)G(z0) + ruo — o)
< H(zo, (1 —7)G(20) — (1 — r)ug)
< (I =r)H(zo, G(o) — uo)
< H(wo,G(xo) — uo)

which is a contradiction. Hence G(zo) € §(G(X)). O

Theorem 2.5.8'. Let £ and W be two topological vector spaces. Let X be a
non-empty compact convex subset of £, F': X — 2% and G : X — W. Suppose further
there exists a continuous function H : X x W — R such that:

(1) for each fixed 2 € X, y — H(z,y) is convex;

(ii) (¢ is continuous and the set G~!(y) is convex for each y € G(X), where G(X) is

convex;



(i) F is continuous with compact convex values.

Then there exists a point o € X such that

inf af  H(zo,w—u) = inf ) H (o, G(wo) — u).

w€0 g x)(G(zo)) wEF (w0) u€F (2o
In particular, if inf,ep(zg) H(2o, G(xo) — u) > 0, and H(z,7y) < rH(z,y) for each
r € (0,1) and each (z,y) € X x W, then G(xo) € §5(C(X))
Proof. If we define the mappings F : X — 2% by Fy(x) = 2G(x) — F(x) for each
r€Xand H: X x W — R by Hi(z,y) = H(x,—y) for each (z,y) € X x W Then
the mappings G, Fy and H; satisfy all hypotheses of Theorem 2.5 8 and by the same

argument used in Theorem 2.5.8, the conclusion follows. O
By Theorem 2.5.8 and Theorem 2.5.8', we have the following:

Corollaryv 2.5.9. Let E be a topological vector space which has sufficiently many
continuous linear functionals. Let X be a non-empty compact convex subset of I¢ and
F : X — 2F be continuous with compact and convex values. If I satisfies the following
condition (i) or (i)', then I has a fixed point in X.

(1): For each x € §g(X)\ F(z), there exist a real number r € (0,1) and u € I'(x)
such that re + (1 — r)u € Tx(z) (respectively, rz + (1 — r)u € Ox(z)).

(2)': For each z € 6g(X)\ F(r) and u € F(z), there czists a number r (real or
complez, depending on whether the vector space 5 s real 01 complex) wuth |r| < |
such that rz + (1 — r)u € Ix(z) (respectwely rz + (1 —r)u € Ox(x)).

Proof. Suppose that F' has no fixed point, then by Theorem 2 5 A, there exist § > ()
and a continuous seminorm P on [ such that inf,¢p(,) Plz —u)>6forall v e X

Define continuous mappings H : X x £ — R and G : X — [ by ll(z,y) = P(y)
for each (z,y) € X x E and G(z) = z for each z € X By Theorem 2.5 8 (respectively,
Theorem 2.5.8'), there exists zo € §(X) such that

inf inf Plo—u)= inf Plzog—u)>86>0
vETx (o) wEF(zg) wEF(s0)
(respectively,

inf inf Plv—u)= inf Plro—u)>6>0).
v€D x (zo) ¥EF(20) ( ) uEF(zo) (£o —u) 2 )
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If I’ satisfies the condition (1), then 7o € 6g(X)\ F(zo) By (1), there exist » € (0,1) and
wy € F(10) such that rzq+ (1 —)uo € Ix(z0) (respectively, rzo+ (1 — r)ug € Ox(z0))
so that

f Plag—
O < 1L€ll!'](zo) (:LO u)

= mf inf  P(v— u)( respectively, = inf inf P(v-u
116’x(10)"€r(1‘0) ( )( P y UEOX(:L‘())UEF(“"O) ( ))

< :LEIIL](‘ ) P(rao + (1 — r)up — u))

< 1}1(( ) P(rio+ (1 —r)ug — (ru+ (1 — r)uo))( since F(zo) 1s convex)
uel(zo

=1 inf P(zo— u)( since P 1s a seminorm)
u€ MN{zg)

< 1tEllg(£g p(zo — u)
which 1s a contradiction Therefore F' must have a fixed point in X
Now suppose that F' satisfies the condition (i)', then zo € §g(X )\ F(zo). Since F(zo)
1s compact, there exists a point u; € F(xo) such that inf,¢p(z,) P(zo —u) = P(z —w)
By (1), there exists a number » with |r| < 1 such that rzo + (1 — r)uy € Tx(xo)

(respectively, Ox (o)) Thus

0 < inf F(zo—u)

ueF(a
= inf mi P(v —u)( respectively, = inf inf v—u
e (v —u)( resp Y = Do) e (m0) Plv =)
< -
< il (=1 =
< I’Qf P(rro+ (1 —r)u; —wy)
nel
< r{P(ro — wi)
< Plag—up) = uelpx)(fxo)P('vo —u)

which 1s a contradiction Therefore F must have a fixed poi t. O

We note that the condition of (1)’ is different from (1) since the number r in the
condition (1)’ may be real or complex

Since for each non-empty subset X in a topological vector space E, its algebraic
boundary é5(X) in £ 1s usually smaller than the topological boundary dg(X), by Propo-

sition 2 5.1, Corollary 2 59 generahizes Theorem 3 of Fan [103] which i turn improves
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Theorem 1 of Browder [44], Lemma 1.6 of Reich [248] a..d Theorem 4.1 of Halpern and
Bergman [143] in the following ways: (1) the underlying space is a topological vector
space instead of a locally convex space and (2) the mapping F' is set-valued instead of
single-valued and (3) the boundary condition of Corollary 2.5.9 is weaker than theirs.
Moreover, Corollary 2.5.9 also generalizes Theorem 4 of Park [242] which in turn general-
izes many fixed point theorems for single-valued or set-valued inward (outward) mappings

in the literature.

2.5.3 Coincidence Theorems

In this section, as applications of Theorem 2.5.7, several coincidence theorems for set-
valued inward and outward mappings are derived which in turn imply fixed point theorems
of inward and outward set-valued mappings in topological vector spaces. Finally, a coin-
cidence theorem in locally convex spaces is also given.

As an application of Theorem 2.5.7, we first have the following coincidence theorem

in topological vector spaces:

Theorem 2.5.10. Let F and W be two topological vector spaces. Let X be a
non-empty compact convex subset of £ and G, F : X — 2W. Suppose further there
exists a continuous function H : X x W — R such that:

(i) for each fixed 2 = X, the set {y € W : H(z,y) < r} is convex for each » € R;

(i) G is continuous with non-empty closed values and the set (~'(y) is convex for
each y € G(X), where G(X) is convex;

(iii) F'is continuous with compact values.

(iv) for each z € X, if G(z) N F(z) = 0, there exists a point y € (V/(X) such that

infuere) H(z,y —u) < infoeqo)[infuer(s) H(z,v — u)).

Then there exists a point zo € X such that G(zo) N I7(zg) # 6.
Proof. Suppose the conclusion is not true, i.e., for each = € X, (/(z) N I"(x) = 0.

Note that GG, F and H satisfy all hypotheses of Theorem 2.5.7. By Theorem 2.5.7, there
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But by (iv), there exists y € G(X) such tnat

ue‘r!'l(fxo) H(zo,y —u) < uelc,l'](fxo)[uellg(fmo)(mo’ v—u)]= ue‘cl.'l(fx)[nsllg(fxo) H(zo,v — )]

< inf H(zo,y—
_uelF[‘](mo) (a'an u)‘z

which is a contradiction. O,

Theorem 2.5.10 generalizes Theorem 4 of Sessa and Mehta [261] and Proposition 2.2
of Browder [44, p.4750] to topological vector spaces and set-valued mappings. We also
note that Theorem 2.5.10 generalizes Theorem 2 of Fan [103, p.235] to topological vector

spaces from normed linear spaces.

We now give some coincidence theorems for inward (respectively, outward) and weakly

inward (respectively, weakly outward) mappings in topological vector spaces.

Theorem 2.5.11. Let £ and W be two topological vector spaces. Let X be a
non-empty compact convex subset of £, F : X — 2% and G : X — W. Suppose further
there exists another continuous function H : X x W — R such that:

(i) for each fixed z € X, y — H(z,y) is convex;

(i) G is continuous and the set G~'(y) is convex for each y € G(X), where G(X) is
convex;

(iit) I is continuous with compact and convex values;

(iv) for each = € X with G(z) ¢ F(xz), there exists a point y € Ig(x)(G(z)) such
that inf ey H(2,y — u) <infyep) H(z,G(z) — u).

Then there exists a point g € X such that G(zo) € F(xo).

Proof. Let x € X be such that G(z) ¢ F(z). By (iv) and continuity of y —

infuer(ay H(2,y — u), there exists y in Ix)(G(z)) such that

inf H -~ i i —u).
i Moy =10 < g G



61

if y lies in G(X), then the hypothesis (iv) of Theorem 2.5.10 is valid. If y ¢ G(X),
since y € Igx)(G(z)) and G(X) is convex, there exist up € G(X) and r € (0,1),
ug = (1 — r)G(x) + ry. Now for any u € F(z), by (i) we have

H(z,uo —u) = H(z,(1 — r)G(z) +ry — u) < (L —r)H(x,G(z) —u) + rH(z,y — u).

Since F(x) is compact and convex, H(x,:) is continuous, there exist u, € F(z) and
uy € F(x) such that inf,cp) H(x, G(x) —u) = H(z,G(x)—w) and inf,epp) H(e,y—

u) = H(z,y — u,). Since F(z) is convex,

bl Bz o =) < B0 (1 = s+ raa)
H(z, (1 - r)(G(z) = ur) + r(y — ua))
< (1= H(x,G(z) = w) +rH(w,y — us)
= inf (I —r)H(z,G(z) —u)+ uél}%‘m) rH(x,y — )

uEF(z)
< inf H(z,G(z) - u),
ol H(z,Gl) v

wel(z

Hence all the hypotheses of Theorem 2.5.10 hold so that there exists a point z, € X
such that G(xzo) € F(zo). O

We shall show that in Theorem 2.5.11, I x)(G(x)) can be replaced by Oc(x,(G(x):

Theorem 2.5.11'. Let £ and W be two topological vector spaces. Let X be a
non-empty compact convex subset of E, I': X — 2% and G : X — W. Suppose further
there exists another continuous function H : X x W — R such that:

(i) for each fixed x € X, y — H(x,y) is a convex function on W;

(i) G is continuous and the set G~ (y) is convex for each y € (/(X), where G/(X) is
convex;

(i) F is continuous with compact and convex values.

(iv) for each x € X with G(z) ¢ F(z), there exists a point y € Ogx)(G/(x)) such
that infuep) H(z,y — u) < infuep) H(z,G(z) — u).
Then there exists a point zg € X such that (/(zg) € F'(0).

Proof. Define £, : X — 2% and H, : X x W — R by /\(z) = 2G(z) — I'(x) and
Hy(z,y) = H(z,—y) for each (z,y) € X x W. Then G, F, and H, satisfy all conditions
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(i), (i) and (in) of Theorem 2.5.11. Let + € X be such that G(z) ¢ Fi(z), then
G/(z) ¢ F(z) so that by (iv), there exists y € Og(x)(G(z)) such that inf,cp() H(z,y —
u) < infuep) H(z,G(z) —u). Let z =2G(z) —y, then z € Igx)(G(z)). But then

uei;?l.f(z) H(z,z —u) = ueigfz)H(w,y—u)
~inf H(z,G(z) -
< f (z,G(z) — u)
= ueigf(g}) Hy(z,Glz) — ).

This shows that G, Fy and H, also satisfy the condition (iv) of Theorem 2.5.11. Therefore
by Theorem 2.5.11, there exists a point zo € X such that G(zo) € Fi(zo) which implies
that G(.’L‘o) € F((I)O)‘ O

By letting £ = W and G = Iy, the identity map on X in Theorem 2.5.11 and
Theorem 2.5.11' respectively, we have the following result which generalize Theorem 1
and Theorem 2 of Browder [44] in the following ways: (2) the underlying spaces are
topological vector spaces instead of locally convex topological vector spaces and (2) the

mapping F' is set-valued instead of being single-valued.

Corollary 2.5.12. Let E be a topological vector space. Let X be a non-empty
compact convex subset of £ and F : X — 2E. Suppose further there exists a continuous
function /{ : X x E -» R such that:

(i) for each fixed z € X, y — H(z,y) is convex;

(ii) £ is continuous with compact and convex values.

(iii) for each & € X with & ¢ F(z), there exists a point y € Ix(z) (respectively,
y € Ox(x)) such that inf,zp() H(z,y — u) < infuep) H(z,z — ).

Then there exists a point zg € X such that zo € F(zo).

By Corollary 2.5.12, we have the following:

Corollary 2.5.13. Let E be a topological vector space which has sufficiently many
continuous linear functionals, X be a non-empty compact convex subset of F and F :

X — 2% be continuous with compact and convex values. Suppose further that for each

x € X, F(x)NTx(z) # 0 (respectively, F(z) N Ox(z) # 0). Then F has a fixed point.
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Proof. Suppose that F' has no fixed point, then by Theorem 2.5.A, there exist § > 0

Now define H : X x E — R by H(z,y) = P(y) for each (z,y) € X x E. Since
F(z) N Ix(z) # 0 (respectively, F(x) N Ox(z) # @), F and G satisfy the condition (iii)
of Corollary 2.5.12. Clearly, F" and H also satisfy the conditions (i) and (i) of Corollary

and a continuous seminorm P on E such that inf,cp(,) Plx —u) 2 §for all v € X.

2.5.12. Hence by Corollary 2.5.12, there exists z € X such that x € F(x) which is a

contradiction. Thus F' must have a fixed point in X. O

As another application of Theorem 2.5.7, we present another coincidence theorem in

locally convex spaces.

Theorem 2.5.14. Let E be a topological vector space and W be a locally convex
topological vector space. Let X be a non-empty compact convex subset of [J and (¥, I :
X — 2¥ be such that

(i) G is continuous with closed convex values and the set (="' (y) is convex for each
y € G(X), where G(X) is convex;

(1) F is continuous with compact convex values.

Then we have that:

(1) Either there exists a point zo € X such that G(zo) N (o) # 0, or there exist a

point 2o € X and a continuous seminorm P on W such that for all y € G/(X),

Pl it [ Pl >0
B PO T 2 Ry P >0

(2) f F(z)nG(X) # 0 for all z € X, then there exists a point 5 € X such that
G(xo) N F(zo) # 0.

Proof. Case (1). Suppose for each z € X, G(z) N F(z) = 0. Let = € X be
arbitrarily fixed. Since G(z) is closed and convex and [(z) is compact and convex,
by separate theorem, we have 6, > 0 and a continuous seminorm F, on W such that
infueci(z) infuer(e) Po(v — u) > &; for all z € X. By the continuity of (i and /7, the map
y — infyeqy) infuep(y) Pe(v —u) is continuous at z so that there exists an open neighbor-
hood N(z) of z in X such that for each z € N(z), we have inf,cqq) infuep(zy Po(v—u) >
5. Since the family {N(z) : z € X} is an open covering of the compact set X, there
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exists a finite subset {z,,---,z,} of X such that {N,, : 1 <7 < m} covers X. Let
P =max{P, :1 <i<m}and § = min{g—;i 1 <¢<m} >0 Then Pisa
continuous seminorm on W and inf,cc(s) infuep(z) p(v — u) > 6 for all z € X. Now we
define H : X x W — R by H(z,y) = P(y) for each (z,y) € X x W, then G, F and
H satisfy all hypotheses of Theorem 2.5.7. By Theorem 2.5.7, there exists zo € X such

that

inf [ inf Plv—u)]l= inf [ inf P(v—u)]>6>0,
vEG{X) u€F(z0) vEG(zg) uEF (z0)

which implies that the conclusion of (1) holds.

Case (2). Now assume that F(z) NG(X) # @ forall z € X. f G(z) N F(z) = 0
for all z € X, then by (1), there exist 2o € X and a continuous seminorm P on W such
that for all y € G(x), infuer) P(y — u) > infueg(o) infuer(sp) P(v — u) > 0. Take any
Yo € F(xo) N G(X), we have

0=/ inf )P(yo —u)]> inf [ inf )P(v —u)] >0

u€ F(zo v€G(zo) uEF(zo

which is a contradiction. Therefore the conclusion (2) must hold. O

Theorem 2.5.14 improves Theorems 2 and 3 of Ha [139, p.15] to multivalued mappings
which in turn improves Theorem 2 of Fan [103].

By the remark of Ha [139, p.14] and the proof of Theorem 2.5.14, it is easy to see
that Theorem 2.5.14 is still true if we assume that the space W is a topological vector
space (not necessary locally convex space) which has sufficiently many continuous linear

functionals,



2.6 Stability of Coincident Points for Multivalued Mappings

In [163], Jiang introduced the concept of essential fixed points for multivalued mappings
and proved a corresponding approximation theorem. The concept of essentiality for fixed
points is a stability property. In [116] and [163], the stability of fixed points with respect
to perturbations of mappings were studied.

In this section, the concept of essential coincident points of multivalued mappings
is given first. We then study the stability of coincident points and fixed points of mul-
tivalued mappings with perturbations of mappings and of constrained sets. Some new
approximation theorems are also established.

Let (X, d) be a metric space and K(X') be the space of all non-empty compact subsets
of X equipped with the Hausdorff metric h which is induced by the metric d. For any
€>0,z0€ Xand Ae K(X), let U(e, A) = {z € X : d(u,z) <  for some u € A} and
O(xo,€) = {x € X : d(zo,y) < €}. Let Y be a topological space. Recall that a subset
() C Y is called a residual set if it is a countable intersection of open dense subsets of V'

The following Lemma 2.6.1 is due to Fort [116, Theorem 2].

Lemma 2.6.1. Let X be a metric space, Y a topological space and I" : Y — K (X)
an usco mapping. Then the set of points where F is lower semicontinuous is a residual

setinY.

Lemma 2.6.2. Let X be a metric space, Y be a complete metric space and [ :
Y — K(X) be an usco mapping. Then the set of points where I is lower semicontinuous
is a dense residual set in Y.

Proof. Since Y is complete, a residual set in Y is dense; the result now follows from
Lemma 2.6.1. O

Throughout the remainder of this section, X denotes a complete metric space and
C={f:X — K(X): [ is upper semicontinuous on X and f(X) = U,ecx[(z) is
bounded }. For each f, [ € C, let p(/f, ') = sup,ex M(f(z), ['(z)) Clearly, pis a

metric on (.
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Lemma 2.6.3. (C, p) is a complate space
Proof. Let {/,}52, be each Cauchy sequence in C, then for any € > 0, there s a

n=

positive integer N(¢) such that

p(fmfm) = 2161}() h(fn(lll),fm(.’ll)) <€ (21)

for any n,m > N(€) It follows that for each z € X, {fu(z)}2
m K(X) Since K(X) i1s complete, by Theorem 4 3 9 in [189], thereis f X — K(X)
such that lim,, o fin(2) = f(2)

For each &z € X and each ¢ > 0 and each n > N(e), (2 1) imphes that f.(z) C
U(2¢, J(r)) and f(z) C U(2¢, fu(z)) Fix n > N(e), since f, € C, thereis § > 0 such

that [,(1') C U(e, fu(r)) whenever d(z,z') < § Thus,

, 1s a Cauchy sequence

f(=") CU(2€, fu(a")) CU(Be, fulz)) C U(5e, f{))

whenever d(1, t') < § Therefore f 1s upper semicontinuous on X |t 1s easy to show that

[(X) =U,ex f(z) 1s bounded so that f € C and that f, — f Hence C'1s complete. O

Set Y =C xC x K(X) Foreachy=(f,9,A)€Y,y =(f,¢,A)eY, let

D(?/a y’) = P(f: f,) + p(g,g') + h(A: A’)

Clearly D 1s a metncon Y By Lemma 2 6 3, C is a complete metric space By Theorem
439 n [189], K(X) 1s a complete metric space Hence Y 1s also a complete metric

space

Define M = {y = (f,9,A) € Y thereis © € A such that f(z) Ng(z) # 0}. Then

we have

Lemma 2.6.4. (M, D) 1s a complete metric space

Proof. Since M C Y and Y 1s complete, it is sufficient to prove that M s closed
n Y Let {y,}32, be a sequence m M and y,, —» y € Y Set y, = (fn,0n, An),
n=12--and y = (f,g9,A), then f, — f, g. — g and A, — A For each
n=1,2-.- since y, € M, thereis r, € A, such that f,(2) N g.(z) # 0. Since A,
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and A are compact and A, — A, by A.5.1 (ii) of Mas-Colell [216, p.10], U A, U A
Is compact. Since z, € A, C U2, A, U A, we may assume without loss of generality
that z, — 2 € U2, A, UA. If z ¢ A, since A is compact, there is @ > 0 such that
U(a, A)n O(z,a) = 0. Since A, — A and z,, — =, thereis N such that A, C U(a, A)
and z,, € O(z,a) for all n > Ny, which contradicts the assumption that ,, € A,. Hence
we must have z € A.

If f(z) Ng(z) = 0, since f(x) and g(z) are compact, there is b > 0 such that
U(b, f(z))NU(b,g(x)) = 0. Since f, — f and g, — g, there is N, such that [,(u) C
U(b/2, f(u)) and gn(u) C U(b/2,9(u)) for all n > N, and for all v € X. Since
f and g are upper semicontinuous at z and z,, — =z, there is N3 > N, such that
fzn) € U(b/2, f(z)) and g(z,) C U(b/2,¢(z)) for alt n > Ny. Thus for all n >
N3, fu(zn) C U2, f(zn)) C U, f(z)) and gu(zn) C U(b/2,9(xn)) C U(b, g(x))
which contradicts the assumption that f,(z,) N ¢, (z,) # 0. Hence we must also have

f(z)Nng(z) # 0. Therefore y = (f,9,A) € M so that M is closed in Y. D

For each y = (f,9,A) € M, let S(y) = {x € A : [(x) Ng(z) # B}, note that
S(y) # 0.

Lemma 2.6.5. S(y) € K(X) for each y € M.

Proof. Let y = (f,g9,A) € M be given. Since S(y) C A and A is compact, it is
sufficient to prove that S(y) is closed in A. Indeed, let {z,}22, be any sequence in S(y)
such that z, — z € A; then f(z,) N g(z,) # 0 for each n = 1,2,---. f & ¢ S(y),
then f(z) Ng(z) = 0. Since f(x) and g(x) are compact, there is « > 0 such that
Ul(eo, f(x)) N U(eo,9(z)) = B. Since f, g are upper semicontinuous at z and z,, — u,
there exists N such that f(z.) C U(eo, f(z)) and g(x,) C U(eo,g(x)) for all m > N.
It follows that f(z,) N g(z,) = 0 for all n > N, which is a contradiction. Therefore
z € S(y) and hence S(y) is closed in A. O.

By Lemma 2.6.5 the mapping y — S(y) defines a map 5: M — K(X).

Lemma 2.6.6. S is upper semicontinuous on M.

Proof. Suppose S is not upper semicontinuous at y € M, then there exist ¢, > ()
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and a sequence {y,,}°2, in M with y, — y such that for each n = 1,2, .-, there exists

£, € S(yn) with z, & U(eo, S(y)). Let y, = (fu, gn, An) and y = (f, g, A), then f, — f,
gn — g and A, — A. Since z,, € A, C U, A, U A and U2, A, U A is compact, we
may assume without loss of generality that z,, — z € U2, A, U A. Note that we must
have = ¢ (/(¢eo, S(y)). Now the same argument as in the proof of Lemma 2.6.4 shows
that © € A and f(x) Ng(z) # 0 so that x € S(y); this contradicts that z ¢ U(eo, S(y)).

Therefore S must be upper semicontinuous. O
Let M, be a non-empty closed subset of M. Since M is complete, M, is also complete.

Definition. if y;, € M,, then a point z in S(y) is called an essential coincident point
of ¥, with respect to M, provided that for any € > 0, there is é > 0 such that for any
y' € My with D(y,,y") < 8, there exists =’ € S(y') with d(z,z') < €. y is called essential
with respect to M, if every z € S(y) is an essential coincident point of y with respect to

M,.

Theorem 2.6.7. S is lower semicontinuous at y € M, if and only if y is essential
with respect to M,.

Proof. Suppose S is lower semicontinuous at y € M;. Then for any € > 0. there
is & > 0 such that for any y' € M, with d(y,y') < &, we have S(y) C U(e, S(y")) so
that for any @ € S(y), there is ' € S(y’) with d(z,2') < e. Thus every z € S(y) is an
essential coincident point of ¥ with respect to M; and hence y is essential with respect
to M,.

Conversely, suppose that y is essential with respect to M,. If S were not lower
semicontinuous at y € M, then there exist ¢; > 0 and a sequence {y,}22, in M with
Yu — y such that for each n = 1,2, -, thereis z,, € S(y) with z,, ¢ U(eo, S(yn)). Since
S(y) is compact, we may assume that =, — = € S(y). Since z is an essential coincident
point of y with respect to M, y,, — y and z,, — x, there is N such that d(z,,z) < €/2
and @ € U(«w/2,5(y,)) for all n > N. Hence z,, € O(z,¢0/2) C Uleo, S(yn)) for all
n 2 N which contradicts the assumption that x, ¢ U(eo, S(y,)) for all n = 1,2,---.

Hence S must be lower semicontinuous at y. O
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We shall prcve the following approximation theorem:

Theorem 2.6.8. The set of essential points with respect to A, is a dense residual
set in M. In particular, every point in M, can be arbitrarily approximated by an essential
points in M.

Proof. By Lemma 2.6.5 and Lemma 2.6.6, S : M — K (X) is an usco mapping.
Since M, is complete, by Lemma 2.6.2, the set of points where .5 is lower semicontinuous
is a dense residual set in M;. By Theorem 2.6.7, the set of essential points in M, is a

dense residual set in M,. O
By Lemma 2.6.6, Theorems 2.6.7 and 2.6.8, we have the following:

Theorem 2.6.9. S is continuous at y € M, if and only if y is essential with respect

to M,. Moreover, the set of points at which S is continuous is a dense residual set in M.

We remark that S is continuous at y € M,, if and only if for each ¢ > 0, there is
§ > 0 such that A(S(y), S(y')) < e for each y' € M with D(y,y") < 6. Theorem 2.6.9
implies that if y = (f, g, A) € M,, then y is essential with respect to M, if and only if its

set S(y) of coincident points is stable: S(y’) is close to S(y) whenever 4 is close to .
We shall now give a sufficient condition that y € M, is essential with respect to M,:

Theorem 2.6.10. If y € M, is such that S(y) is a singleton set, then y is essential
with respect to M.

Proof. Suppose S(y) = {z}. By Lemma 2.6.6, S is upper semicontinuous at y.
Thus for any ¢ > 0, there is § > 0 such that for each y' € M,, D(y,y’) < & implies
S(y") C U(e, S(y)) = O(x,¢) so that S(y) = {z} C U(e, S(y")). This shows that 5 is

also lower semicontinuous at y. By Theorem 2.6.7, y is essential with respect to M,. O

We note that if the given metric d on X is bounded, then the identity mapping
I:X — X belongs to C.

Remark 2.6.11. If (X, d) is compact and if we take M, = ({/} x U x{X})NM =
{(1,f,X) € Y: there exists z € X such that = € f(x)}, then Theorem 2.6.9 reduces
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to Theorem 1 in [4] which is a multivalued generalization of Theorem 1 in [116]. In this
case, if (/, f, X) is essential with respect to M;, then every fixed point z of fin X is
an essential fixed point of [ (see [163]); i.e., for each € > 0, there exists § > 0 such
that whenever ¢ : X — K(X) is upper semicontinuous which has a fixed point in X and
p([f,9) < 6, there is a fixed point 2’ of ¢ in X with d(z,z') < «. Hence our Theorem 3
generalizes Theorem 1 in [116] and Theorem 1 in [163] in several respects.

Recall that a function ¢ : X — X is a contraction if there is a constant k € (0,1)
such that d(g(z),¢(y)) < kd(z,y) for all z,y € X. If g is a contraction on X, then the
classical Banach contraction mapping principle implies that g has a unique fixed point.

This fact together with Theorem 2.6.10, yield:

Corollary 2.6.12. Suppose (X, d) is compact and M; = {(I,f,X) € Y : there
exists © € X such that z € f(z)}. f ¢ : X — X is a contraction, then (I,¢,X) is

essential with respect to M.

In what follows, let X be a non-empty closed convex subset of a Banach space £
and let A be a non-empty compact subset of X. Let My = {(I,f,A) € Y : f(z)is a

compact convex subset of A for each z € X}.

Theorem 2.6.13. The set of points y € M, which is essential with respect to M,
is a dense residual set in M.

Proof. For each (I,f,A) € M, f: X — K(X) is upper semicontinuous and
f(z) is a compact convex subset of A for each z € X; it follows from the Schauder-
Tychonoff fixed point theorem (e.g, see Smart [280, Theorem 9.2.3]) that there exists
x € A such that = € f(2). This shows that (1, f, A) € M. Thus by Theorem 2.6.8, we
only need to show that M, is closed in M. Indeed, let {(/, f,, A)}>2, be a sequence in
My such that (I, fu, A) = (I, f,A} € M, then p(fn, f) = sup,ex h(fu(2), f(z)) = 0
as n — oo. Since for each z € X, f,(z) C A for each n = 1,2, -, it follows that
flx) = N (Usnfi(2)) C A (e.g., s2e [189, Theorem 4.3.5, p.43]). To complete
the proof it remains to show that f(z) is convex for all z € X. If this were false,

there exist & € X, wi,uy € f(z) and A € (0, 1) such that Auy + (1 — Nup ¢ f(z).

1

ey



Since f(z) is compact, there is ¢o > 0 with O(\uy + (1 — My, co) 0 U {cq, f(2)) = 0.
Since p(fu, f) — 0 as n — oo, there is N with f(z) C U(ey, fn(x)) and fy(x) C
U(eo, f(z)). It follows that there exist zy,2, € fyn(z) with d(u;, ;) < ¢ fori = 1,2.
Thus d(Auy + (1 — A)ug, Azg 4+ (1 = A)z2) < Md(ur,z1) + (1 = A)d(uz, 22) < € so that
Azy + (1 = A)zz € O(Aug + (1 = Nua,&). On the other hand, as fy(z) is convex,
Azy 4+ (1 = Nz € fan(z) € Uleo, f(z)) which contradicts O(Auy + (1 — A)wy),e0) N
Uleo, f(z)) # 0. Hence f(z) is convex for each © € X. Therefore M, is closed in M.
0.
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2.7 Matching Theorems and Applications

By applying Theorem 1 of Park and Bae [244], (which is a generalization of Fan's existence
theorem for maximizable quasi-concave fur.ctions on convex spaces), we first prove some
coincidence theorems for upper hemicontinuous non-self mappings in topological vector
spaces with sufficiently many continuous linear functionals or in locally convex topological
vector spaces. These results improve and unify many results in the literature (e.g, see
Fan [106], Park [240], Ko and Tan [192] and references wherein). Next, as applications
of coincidence theorems, several matching theorems for closed coverings of convex sets
are derived in locally convex topological vector spaces or topological vector spaces with

sufficiently many continuous linear functionals which in turn imply Shapley’s theorem

[264].

2.7.1 Generalizations of the Fan-Glicksberg Fized Point Theorem

The basic idea in this section is to apply the existence theorem for maximizable quasi-
concave functions on topological vector space with sufficiently many continuous linear
functionals. Several fixed point theorems for non-self mappings are given under weaker
continuity and boundary hypotheses. For example, our fixed point theorems show that
the hypotheses “the domain is paracomapct” is superfluous for the existence of non-self
upper hemicontinuous multivalued mappings, in fact, this superfluous condition is posed
in much of the literature (e.g, see Fan [106], Lassonde [199], [106], Ko and Tan [192],
Browder [45]). In particular, the well-known Fan-Glicksberg fixed point theorem has been
generalized into the non-compact setting in which the underlying space is a topological
vector space with sufficiently many continuous linear functionals under weaker continuity
and boundary hypotheses.

We recall that a convex space (e.g., see Lassonde [199, p.153]) is a non-empty convex
set in a vector space with any topology that induces the Euclidean topology on the convex
hulls of its finite subsets. A non-empty subset L of a convex space X is called c-compact

if for each 5 € F(X), there exists a non-empty compact set Ls; with LU S C Lg. It
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is clear that a convex subset (respectively, compact and convex subset) of a topological
vector space is a convex space (respectively, c-compact subset). For more details about
convex spaces, we refer to Lassonde {199, p.153] and Dugundji [89, p.416].

By the Ky Fan minimax inequality, Park and Bae [244] gave a generalization of the
existence theorem for maximizable quasi-concave functions on convex spaces which in turn
answered the question raised by Bellenger [19]. In this section, we first recall the following
result which is essentially a consequence of the existence theorem for maximizable quasi-

concave functions on convex spaces (e.g, see Theorem 1 of Park and Bae [244]):

Theorem 2.7.A. Let X be a convex space and suppose that

(a) for each = € X, T'(z) is a non-empty convex set of upper semicontinuous quasi-
concave real functions on X;

(b) for each upper semicontinuous and quasi-concave real function [ on X, the set
T71(f) is compactly open in X;

(c) there exists a c-compact subset L of X and a non-empty compact subset K of X
such that for each z € X \ K and [ € T'(2), f(2) <sup{f(z) : & € co(L U {z})}
Then there exists € K and [ € T(2) such that f(2) = sup{f(z) : x € X}.

We note that Theorem 2.7.A above generalizes Theorem 8 of Fan [106] and Theorem
1 of Bellenger [19] which in turn improves Theorem 0.1 of Simons [276] for the existence
theorem for an upper semicontinuous quasi-concave real function which attains a global
maximum on a given compact subset of a convex space X. Recently, Ding [80] generalized

Theorem 2.7.A to H-spaces by following Park and Bae's idea in [244].

Let X be a convex subset of a topological vector space [7, We now state an equivalent

form of Thecrem 2.7.A as follows:

Theorem 2.7.1. Let X be a convex space and ® a non-empty convex set of lower
semicontinuous convex real functions on X. Let S be a subset of X x ® such that

(a) for each ¢ € ®, the section {z € X : (z,¢) € ®} is compactly open in X and

(b) for each z € X, the section {¢# € ® : (z,¢) € S} is non-empty and convex.
Then either



74

(1) there exists (y,¢) € S such that ¢(y) = inf,cx ¢(z); or
(I} for each compact convex set L in X and each non-empty compact set /{ in X,

there exists (y,¢) € S such that y =< X \ K and ¢(y) = inf ccorugy)) #(2)-

Before we give generalizations of the Fan-Glicksberg fixed point theorem in topological
vector spaces with sufficiently many continuous linear functionals or in locally convex
topological vector spaces under weaker continuity assumptions, we first recall some facts

about various continuity for multivalued mappings.

If £ is a topological vector space, E* is the dual space of all continuous linear func-
tionals on F, the pairing between E* and E is denoted by (w,z) for each w € E*
and x € L. Suppose X is a non-empty subset of £. A mapping f : X — 2F is
said to be upper hemicontinuous [7] if for each ¢ € E* and for each A € R, the set
{z € X :sup,ey(,) Re{¢,u) < A} is open in X. We note that each upper semicontinu-
ous mapping is upper hemicontinuous and the sum of two upper hemicontinuous mappings
is again upper hemi-continuous. According to Fan [103], a rﬁapping f:X — 2F is upper
demicontinuous on X if for each z € X and any open half-space A containing f(z), there
exists an open neighborhood N, of z in X such that f(u) C H for all v € N,. Recall
that an open half-space H in E is a set of the form H := {v € E : Re¢(v) < t} for some
non-zero ¢ € E* and some real number ¢. It is obvious that every upper semicontinuous
mapping is upper demi-continuous, each upper demicontinuous mapping is upper hemi-
continuous and the following examples from Shih and Tan [271] show that the converses

do not hold in general.

Example 2.7.B. Let E=RZand X = {t e R: ¢ € [0,1]}. Define f,g: X — 2R?
by
f(t) ={(w,v)}: (u—=1)v—1)>1 and v > 1},

o(t) = {(~2,) € R?: 0 < 2 S tV3)

for each £ € X. Then it is not hard to verify that f and g are both upper semi-continuous

but [+ ¢ is not upper demi-continuous.
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Incidently, Example 2.7.B also shows that an upper hemi-continuous mapping need
not to be upper demi-centinuous, since [ + g is necessarily upper hem-continuous.
We also observe that an upper demi-continuous may need not be upper semi-continuous

as the following example shows:

Example 2.7.C. Define f: R? —» R? by
f(z,y) = {(u,v) e R* : u >z and v > y)}
for each (z,y) € R2. Then f is upper demi-continuous, but not uper semi-continuous.

We also note that if a mapping is a compact-valued mapping, then the concepts of
upper hemi-continuity and upper demicontinuity coincide. The following fact due to Shih
and Tan [271, Proposition 2] shows that under certain conditions, the concepts of upper

semi-continuity, upper demi-continuity and upper hem-continuity are the same.

Theorem 2.7.D. Let X be a topological space, Z a non-empty compact subset of
a real locally convex topologica! space F, and let /' : X — 2% be such that each /() is
convex. Then the following statements are equivalent:

(1) F'is upper semi-continuous.

(2) F is upper demi-continuous.

(3) F' is upper hemi-continuous.
By Theorem 2.7.1, we have the following:

Theorem 1.7,2. Let E be a topological vector space which has sufficiently many
continuous linear functionals, let X be a non-empty convex subset of £, X, a non-
empty compact convex subset of X and K a non-empty compact subset of X. let
F,G: X — 2F be upper hemicontinuous and such that

(a) for each z € X, F(z) and G(xz) are closed convex at least, one of which is
compact;

(b) for each z € K Nég(X) and ¢ € £* with Reg(z) < Red(y) for all y € X, there
exist u € F(z) and v € G(z) such that Red(u) > Red(v);

and either
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(¢)) suppose €6l is compact (which is automatically satisfied if E is a complete
locally convex topological vector space) for each z € X \ K and ¢ € E* such that
Reg(z) < Red(y) for all y € co(K U {z}) (in particular, Re¢(z) < Red(y) for all
y € co(@oK U {z})), there exist u € F(z) and v € G(z) with Re¢(u) > Red(v);
or,

(cy) for each z € X \ K and ¢ € E* such that Re¢(z) < Red(y) for all y €
co( Xo U {x}), there exist u € F(z) and v € G(z) with Red(u) > Red(v).

Then there exists a point # € X such that for each ¢ € E* and each ¢t € R, the following

does not hold:
Red(u) <t < Reg(v) for all u € F(z) and v € G().

Moreover,
(1) ¥ () and G(2) are both compact, then F(z) N G(&) # 0.
() If £ is a locally convex topological vector space, then F(&) N G(z) # 0.

Proof. Note that by Proposition 2.5.4, it is clear that the condition (b) of Theorem
2 .2 is equivalent to the following condition:

(b): for any z € K and ¢ € E* such that Red(z) < Reg(y) for all y € X, there
exist u € ['(x) and v € G(z) with Reg(u) > Red(v).

Now we follow the idea of Fan [106] and Ko and Tan {192] to prove our assertion. In
order to apply Theorem 2.7.1, we take ® = E* and define the subset S of X x E* as
follows: (x,$) € S if and only if there exists a real number ¢t € R such that Reg(u) <
t < Reg(w) for all w € F(z) and all v € G(x).

(1): We first show that for each ¢ € L*, the section S(¢) = {z € X : (z,¢) € S} is
open in X.

Indeed, let 2 € S(¢), then (z,¢) € S and hence there exists a real number ¢ such
that Red(u) < t < Reg(v) for all w € F(z) and all v € G(z).

First we assume that /'(x) is compact. Then there exists an uy € F(z) such that
Red(ug) = SUP e F () Re(p,u). Let €, ¢ > 0 be such that Red(ug) + € + €, < £. By

upper hemicontinuity of F', there exists an open neighborhood N; of z in X such that



for each y € Ny,
sup Re(p,v) < sup Re(d,u) + ¢

veF(y) weF(z)

so that Red(u) < Red(uo) + € for all u € F(y). Also, since sup,ee,y He(~d,u) =
— infyeq(z) Re(d,v) < —t < 400, by upper hemicontinuity of (7, there exists an open
neighborhood N, of z in X such that for each y € N,

sup Re(—¢,v) < sup Re{—¢,v) + e,
veG(v) veG(x)

so that Reg(v) > t — e for all v € G(y). Let N = Ny N N,. Then N is an open
neighborhood of @ in X such that for each y € N, for each w € F'(y) and for each
v € G(y),

Reg(u) < ReqS(uo) + €1 <l — e < Reg(v).

Therefore N C S(¢). Similarly if G(z) is compact, we see that (by replacing ¢ by —¢
and by interchanging F and G in the above argument) there exists an open neighborhood
N’ of = in X such that N’ C S(¢). Therefore S(4) is open in X. Thus the condition
(b) of Theorem 2.7.1 is satisfied.

(2): For each z € X, it is clear that the set S(x) = {$ € & : (x,¢) € 5} is convex.

(3): Next we show that for each z € X \ K and (z,¢) € 5, Red(z) > inf{ Reg(x) :
z € co(coK U {z})} (respectively, Reg(z) > inf{Red(z) : & € co(Xo U {z})}).

Note that if there exist x € X \ i and ¢ € E* such that Red(x) < Red(y) for all
y € co(K U{z}), then it is clear. that Red(z) < Red(y) for all y € co(coK U {z}) by the
linearity of real part of the linear continuous functional ¢. Suppose the contrary that for
some z € X \ K and (z,4) € S such that Red(z) = inf{Red(x) : 2 € co(co U {z})}
(respectively, Re¢(z) = inf{Red(z) : z € co(Xo U {z})}). Then by () (respectively,
(c2)), there exist u € ['(z) and v € G(z) such that Re¢(u) > Rep(v). This contradicts
the assumption that (z,¢) € S. Thus the alternative (Il) of Theorem 2.7.1 is false.

(4): Similarly, by (b)’ (which is equivalent to (b)), for each z € K and each (z,¢) € S,
Red(z) > infyex Red(z). It follows from (3) that for each z € X and (z,4) € S,
Re¢(z) > infyex Red(x). Hence the alternative (1) of Theorem 2.7.1 is also nnt satisfied.
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By Theorem 2.7.1, there must exist £ € X such that {¢ € E*: (2,¢) € S} =0; i.e.,
for each ¢ € R and each ¢ € E*, the following does not hold:
(*) Red(u) <t < Red(v) for all u € F(&) and v € G(&).

Case (i). Suppose conclusior (I) were false, then F(2)NG(&) = 0, so that 0 ¢ F(2)—
C/(&). Since both F(3) and G(&) are compact and convex, the set D := F(Z) — G(Z) is
compact convex. Then for each a € D, a # 0, as E* separates points of £, there exists
¢« € E” such that Red,(a) < 0. Let O, and U, be disjoint open convex sets containing
Redq(a) and 0 respectively. Then Re¢'(0O,) and Reg;'(U,) are disjoint open convex
sets in £ containing a and 0 respectively. Since D is compact, there exist aq,---,a, € D
such that D C U, Red;!(O,;). Let U = N Red; ! (Us;), then U is an open convex
set containing 0 such that / N D = (). By Theorem 3.4 of Rudin [256, p.58], there exists
¢ € I and r € R such that Reg(a) <r < 0forall a € D, i.e., Red(u) <7+ Reg(v)
forall uw € F(2) and v € G(&). Let t := r/2 +inf,cq@) Red(w). Since r < 0, it follows
that

Reg(u) < r+ inf Regd(w)

weG (s
< /24 w(élfz'i(:a:) Red(w) =t < Reg(v)
which contradicts ().
Case (ii). If E is a locally convex topological vector space, since F(z) and G() can
not be strictly separated by a closed hyperplane in E and at least one of (%) and G(Z)
is compact, we must have F(2) N F(&) # 0 by Theorem 3.4 of Rudin [256]. O

From the proof (due to part (3)) of Theorem 2.7.2, the assumption “co/{ is compact”
in the assumption (¢;) is not needed if the underlying space E is a locally convex topo-

logical vector space, i.e., we have the following:

Theorem 2.7.2'. Let E be a locally convex topological vector space, let X be a
non-empty convex subset of £, X, a non-empty compact convex subset of X and K a
non-empty compact subset of X. Let F,G : X — 2F be upper hemicontinuous and such
that

(a) foreach @ € X, F(x) and G(z) are closed convex at least one of which is compact;



(b) for each z € K Nég(X) and ¢ € E* with Red(z) < Red(y) for all y € X, there
exist u € F(z) and v € G(z) such that Red(n) > Red(v);
and either

(c1) for each z € X \ K and ¢ € E* such that Red(x) < Red(y) for all y €
co(K U {z}) (in particular, Re ¢(z) < Red(y) for all y € co(coK U {x})), there exist
u € F(z) and v € G(z) with Reg(u) > Red(v);

or,

<
2

(c;) for each z € X \ K and ¢ € E* such that Red(x) < Red(y) for all y €
co(Xo U {z}), there exist u € F(z) and v € G(z) with Reg(w) > Red(v).
Then F(2)NG(2) # 0.

Proof. We first note that the assumptions of X, Xy, K, I and (i remain unchanged
in the completion F of £. Without loss of generality, we may assume that [ is a complete
_ locally convex topological vector space. Since E" = E*, it follows that the conclusions
of (1) and (2) still hold. By the completeness of I, the set Z6/( is non-empty compact
and convex since K is non-empty compact. Now, following the proof ¢f Theorem 2.7.2,

there must exist & € X such that F(z) N G(Z) # 0.

Theorem 2.7.3. Let X be a non-empty convex subset of a locally convex topological
vector space F. Let X, be a non-empty compact convex subset of X and /" be a non-
empty compact subset of X. Let /' : X — 2% be an upper hemicontinuous mapping with
closed and convex values such that:

(a) for each z € K N6g(X), F(z)N X #0;
and either

(b) for each x € X'\ K, F(z)Nco(calK U {z}) # 0
or,

(b) for each z € X \ K, F(z) N co(Xo U {z}) # 0.

Then there exists & € X such that £ € f(4.

Proof. Let G = [x be the identity mapping on X. Since [(x) N X # § for all
z € K N &§(X), the condition (b) of Theorem 2.7.2" is satisfied. Also condition (b)
(respectively, (b)) implies that condition (c,) (respectively, (¢,)) of Theorem 2.7.2" is
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satisfied. Hence the conclusion follows from Theorem 2.7.2'. O
By Theorem 2.7.2, we have:

Theorem 2.7.3'. Let F be a topological vector space which has sufficiently many
continuous linear functionals, let X be a non-empty convex subset of  and X, be a
non-empty compact convex subset of X and K a non-empty compact subset of X. Let
F: X — 2% be upper hemicontinuous with compact convex values such that

(a) for each z € K N6p(X), F(z)N X #0;

(b) for each x € X \ K, F(z)Nco(Xo U {z}) #0.

Then there exists & € X such that £ € F(%).

We note that Theorem 2.7.3 (respectively, Theorem 2.7.3') improves the well-known
Fan-Glicksberg fixed point theorem in the following ways: (a) the domain X need not be
compact; (b) the mapping F is upper hemi-continuous instead of upper semicontinuous;
(c) the mapping F' need not have compact values (respectively, the space £ need not be

locally convex) and (d) the mapping F' need not be a self-map.
By Theorem 2.7.3, we have the following:

Corollary 2.7.4. Let X be a non-empty compact convex subset of a locally convex
topological vector space E. Let F': X — 2F be upper hemi-continuous with closed and
convex values such that for each z € §g(X), F(z)N X # 0.

Then there exists & € X such that & € F().
Proof. The conclusion follows from Theorem 2.7.3 by taking X = K. O

Corresponding to Theorem 2.7.3’, we also have:

Corollary 2.7.4'. Let E be a topological vector space which has sufficiently many
continuous linear functionals and X be a non-empty compact convex subset of E. Let
[ : X — 2% be upper hemicontinuous with compact and convex values such that for
each z € §p(X), F(il,')h X #90.

Then there exists & € X such that £ € F(2).

Theoren: 2.7.5. Let X be a non-empty convex set in a locally convex topological



S1

vector space ££. Let X, be a non-empty compact convex subset of X and A be a non-
empty compact subset of X. Let F,G : X — 2F be upper hemicontinuous and such
that

(a) foreach x € X, F(z) and G(z) are closed convex at least one of which is compact;

(b) for each = € K N §g(X), (F(z) — G(2)) N UxsoA(X — ) # 0 (respectively,
(F(z) - G(2)) N DrzoX(X = 5) # 0)
and either

(c) foreach z € X\ K, (F(z)— G(z))NUxsoA(coK — ) # B (respectively, (F(x)—
G(z)) NUr<oA(CoK —z) # 0).

or,

(c) foreach z € X\ I, (F(z) — G(z)) NUxs0M Xy — 2) # 0 (respectively, (#(x) —
G(z)) N Ur<oA(Xo — ) # 0).
Then there exists & € X such that F/(z) N G(2) # 0.

Proof. Let z € KN6(X) and ¢ € E~ be such that Reg(x) < Red(y) forall y € X.
Since (F(z) — G(x)) NUysoA(X — ) # 0, let w € F'(x), v € ((x), {Aa}aer be a net
in [0,00) and {z,}aer be a net in X such that \,(z, — 2) — uw —v. It follows that

AaRed(tq — &) = Redp(Aa(To — 2)) — Red(u — v) = Reg(n) — Red(v).

Since A\, Red(z, — a) > 0 for each « € T, Red(u) > Red(v). Thus the condition (b) of
Theorem 2.7.2 is satisfied.

Next let z € X \ K and ¢ € E* be such that Reh(z) < Red(y) for all y € co(caK U
{x}) (respectively, y € co(XoU {2})). By (c), since (F(z) — G(x)) NUysoA (i — z) # 0
(respectively, (F(z) — G(z)) NUrsoA(Xg — ) # B), let u € I'(z), v € G(x), {Ag}aer
be a net in [0,00) and {2,}aer be a net in Tok (respectively, in co(Xo U {z})) such
that Ay(2o —2) — u —v. It follows from Red(z) < Red(z,) for all o € I' that
Red(u) > Reg(v). Thus the condition (c;) (respectively, (c;)) in Theorem 2.7.2' is
satisfied. Therefore by Theorem 2.7.2', there exists & € X such that f/(Z) N C/(3) £ 0.

By interchanging the roles of " and G and by replacing the union “Uys,” in both
conditions (b) and (c) by “Us<o”, the proof is complete. O

Corresporiding to Theorem 2.7.5, we also have:
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Theorem 2.7.5'. Let X be a non-empty convex set in a topological vector space
which has sufficient many continuous linear functionals. Let X, be a non-empty compact
convex subset of X and K a non-empty compact subset of X. Let F,G : X — 2F be
upper hemicontinuous and such that

(a) for each x € X, F(z) and G(x) are both compact and convex;

(b) for each z € K N 6p(X), (F(z) — G(z)) N UxsoM(X —z) # 0 (respectively,
(P(z) - C(2)) N TrzoN(X — ) # 0);

(c) foreach z € X\ K, (F(z) — G(x)) N Ux50A(Xo — ) # 0 (respectively, (F(z) —
G(x)) NUrcoA(Xo — z) # 0).

Then there exists a point & € X such that F(&) N G(&) # 0.

As an immediately corollary to Theorem 2.7.5, we have the following:

Corollary 2.7.6. Let X be a non-empty convex set in a locally convex topological
vector space [, X a non-empty compact convex subset of X and K a non-empty compact
subset of X. Let F': X — 2¥ be upper hemi-continuous and such that

(a) for each = € X, F(z) is closed and convex;

(b) for each = € K N 6g(X), F(x) N[z + UroA(X — )] # D (respectively, F(z) N
[+ Uncoh (X — )] # 0);
and either

(c) for each € X'\ K, F(2) N[z 4+ Ux>oA(co — )] # 0 (respectively, F(z)N [z +
Ur<oA(@K — )] # 0).
or,

(¢) for each @ € X\ K, F(z) N[z + UxsoA(Xo — z)] # D (respectively, F(z) N[z +
Usa<oA(Xy — )] # 0).

Then there exists a point & € X such that & € F().

Proof. Let (/(z) = {z} for each = € X. Then the conclusion follows from Theorem
2.75. 0

Corollary 2.7.6’. Let X be a non-empty convex set in a topological vector space

{2 which has sufficiently many continuous linear functionals, X, be a non-empty compact
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convex subset of X. Let F': X — 2F be upper hemi-continuous such that

(a) for each =z € X, F(z) is compact and convex;

(b) for each € K N Eg(X), F(z) N [z + UysoA(X — &)] # 0 (respectively, I'(x) N
o+ UngoN(X — @] #0);

(c) for each z € X \ K, F(z) N [2 + Uy>0A(Xo — z)] # @ (respectively, F'(x) N [x +
Ur<oMXo — )] # 0).
Then there exists a point & € X such that & € F(3).

We note that Theorem 2.7.2 and Theorem 2.7.5 generalize corresponding results of
Ko and Tan [192] and Ko and Tan [194].



2.7.2 Matching Theorems for Closed Coverings of Convex sets

In this section, as an application of Theorem 2.7.5, we shall consider matching theorems

for closed coverings of a convex set:

Theorem 2.7.7. l.et X be non-empty convex set of a real locally convex topological
vector space F. Let X, be a non-empty compact convex subset of £ and /A" a non-empty
compact subset of X. Let {A; : 7 € I} and {B; : j € J} be two locally finite families
of closed subsets of X and such that Ujc;jA; = UjeyB; = X. Let {C;: i € I} and
{D, : j € J} be two families of non-empty subsets of £ such that any finite union of
the C;’s is contained in a compact convex subset of . Let § : X — 2F be upper
hemicontinuous such that each S(z) is a nun-empty compact convex set. Suppose that
for each z € (K N§(X))U (X \ K), there exist 2 € [ and j € J such that

() z € A;NB;

(ii) for each & € X, setting M(z) = €(C; + S(z)) — co(D;),

M(z)n { UrsoA(X — =) # 0 (resp., M(z)NUycoMX —x) #0), if 2 € Kn§(X);
U,\ZO)‘(XO - 'L‘) # w (!ESP.,M(.’L‘) N U,\SO)‘(XO - .'I,') # (0), if (& X\ K.

Then there exist two non-empty finite subsets /o of | and J, of J and a point & € X
such that

(a) & € (Nies, Ai) N (Njeso By );

(b) To(U{C; : i € Ip}) + S(&)] meers the set @a(U{D; : j € Jo}).

Proof. Foreach z € X, let I(z) = {i € [ : 2z € A} and J(z) = {j € J :
z € B,}. Then I(z) and J(z) are non-empty and finite since U;e;A; = Ujes By = X
and {A; : i € I} and {B; : j € J} are locally finite, Define F,\G\,H : X — 2" by
F(z) = co(U{C; + S(z) : ¢ € I(z)}); G(z) = co(U{D; : j € J(z)}) and H(z) =
2o(U{C; : © € I(z)}). By hypothesis, for each z € X, H(z) and S(z) are compact
convex so that F(z) = H(z) + 5(z) is also compact convex. Since {A;:1 € [} is a
locally finite family of closed subsets of X, for each x € X, the set U(z) = X \ Ujg1()A;
is an open neighborhood of z in X. Note that whenever y € l/(z), y ¢ A; for each
i ¢ I(x) so that I(y) C I(z) and therefore H(y) C H(z). This shows that H is upper
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semicontinuous and hence I = H + S is also upper hemi-continuous. Similarly we can
show that G is upper semicontintous (and hence upper hemi-continuous) on X. Thus
the condition (a) of Theorem 2.7.5 is satisfied. By (i) and (ii), the conditions (b) and
(c) of Theorem 2.7.5 are also satisfied. By Theorem 2.7.5, there exists £ € X such that
F(E)NdG(E) # 0. Let Iy = I(Z) and Jy = J(&), then I and Jy are non-empty and finite

and the conclusions of the Theorem hold. O

We note the proof above was motivated by Ko and Tan [194] which is a modification
of Theorem 11 of Fan [106] and of Theorem 1 of Shih and Tan [270]. Also, Theorem
2 7.7 shows that Theorem 4 of Ko and Tan [194] is still true without assuming that X is

paracompact. The following is an easy consequence of Theorem 2.7.7.

By the same proof as in Theorem 2.7.7, but by applying Theorem 2.7.5' instead of
Theorem 2.7.5, and by assuming that the family {D,},cs also has the same property
as that of the family {C.}.¢; (i.e., “ any finite union of the D’s is also contained in a
compact convex sttbset of £7), Theorem 2.7.7 holds if the hypothesis underlying space
E is weakened to a topological vector space with sufficiently many continuous linear

functionals;

Theorem 2.7.8. Let X be a convex subset of a real lozally convex topological vector
space I, let X, be a non-empty compact convex subset of X and K be a non-empty
compact subset of X. Let {A,:: € [} and {B, :j € J} be two locally finite families of
closed subsets of X such that U,c;A, = U,esB, = X. Let {C, :2 € I} and {D; : j C J}
be two families of non-empty subsets of E such that any finite union of C,'s is contained
in a compact convex subset of . Suppose that for each point 2 € (K N§(X))U(X\ K),
there exist : € I and j € J such that

(i) z € A NB,;

(ii) setting M :=¢o(C,) — co(D,), then

Mﬂ{ T+ UnsoMX —z) #0  (resp.M Nz +UscoA(X —2) #0), ifze XNogX;

4 UnsoAM(Xo — ) # 0 (resp., M N (z + UrcoA(Xo —2)) #0), ifze X\ K.

=



Then there exist non-empty finite subsets Iy ol I and J; of J such that
(Nier Ai) N (Nyeso By) N (E0(Vicr,Co) — 0(Ujeu, D)) # 0.

Proof. Let S: X — 2% be defined by S(z) = {—=x} for each 2 € X. Then all
hypotheses of Theorem 2.7.7 are satisfied so that there exist non-empty finite subsets /;
of I and Jp of J and a point & € X such that

(a) & € (Nier, Ai) N (Njes, B;);

(b) (co(Uie1,Ci) — &) N (2o(Ujes, D;) # 0. it follows that

& € (MietyAi) N (Nyes B;) N (€0(Uie1, C:) — (Ujes, D). Q

If the space I/ in Theorem 2.7.8 is a topological vector space which has sufficiently
many continuous linear functionals, by the same proof in Theorem 2.7.8 and by apylying

Theorem 2.7.7', we have:

Theorem 2.7.8'. Let X be a convex subset of a iopological vector space E which
has sufficiently many linear functionais. Let X, be a non-empty compact convex subset
of X and K be a non-empty compact subset of X. Let {A;:i € [} and {B;:j € J}
be two locally finite families of clised subsets of X such that U;c;A; = Ujey B; = X Let
{Ci:iel} and {D;:j C J} be two families of non-empty subsets of 7 such that any
finite union of C;'s and D;’s is contained in a compact convex subset of /. Suppose that
for each point z € (K N§(X))U (X \ K), there exist ¢ € I and j € J such that

() z € A;n B;;

(1) setting M :=co(C;) — eo(D;), then
Mn{ 24+ UsoA(X —2) #0 (resp.M Nz + Dm £0), ifxeKniyX;

T+ UssoMXo —2) #0 (resp., MN(z+ UscoMXo —2)) #0), ifze X\ K.
Then there exist non-empty finite subsets I, of I and .J; of .J such that

(niélo‘ ‘1) N (OJEJO Bj) n (E(Uieloci) - E(UJ'GJO DJ)) 7é 0.

We note that Theorems 2.7.7 and 2.7.8 show that Theorems 4 and 5 of Ko and Tan
[194] hold without assuming that the set X is paracompact.



As an application of Theorem 2.7.8, we have the following result which is Theorem

13 of Fan in [106} and is ziso a generalization of Shapley’s theorem [264].

Corollary 2.7.9. Let A be an n-dimensional simplex in a Euclidean space. Let F
denote the family of all faces of A (of all dimensional 0,1,:--,7n). For each 7 € F, let
p(7) and ¢(7) be two given points in A, and let A(7), B(7) be two closed subsets of A
such that

(2) UrerA(T) = Urer B(7) = A;

(b) for each 7 € F of dimensional < n and for any point z € 7, thereisa p € F
such that z € B(p) and ¢(p) € 7.

Then there exist two non-empty subfamily G and H of F such that

(c) [NregA(T)] N [NoenB(p)] # 0,

(d) co({p(r) : 7 € G}) Nco{g(p) : p € H}) #D.

For a generalization of the above result, we refer to Theorem 6 of Ko and Tan ([194]).

28
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Chapter 3

Generalized Games

3.1 Introduction

The existence of an equilibrium in an abstract economy with compact strategy sets in
R" was proved in a seminal paper of Debreu [72]. The theorem of Debreu extended the
earlier work of Nash in game theory. Since then there have been many generalizations of
Debreu’s theorem by Arrow and Debreu [5], Borglin and Keiding [37] and others. These
papers generaiize Debreu's theorem by considering preference correspondences that are not
necessarily transitive or total, by allowing externalities in consumption and by assuming
that the commodity space is not necessarily finite-dimensional. In these papers, the
domain (and /or codomain) of the preference and constraint correspondences is assumed
to be compact or paracompact.

Following the work of Sonnenschein [283], Gale and Mas-Coleli [124] and Borglin
and Keiding [37] on non-ordered preference relations, many theorems on the existence
of maximal elements of preferetice relations which may not be transitive or complete,
have been proved by Aliprantis and Brown [2], Bergstrom [30], Kim [181], Mehta and
Tarafdar [221], Shafer and Sonnenschein [263], Sonnenschein [283] , Tan and Yuan [294],
Tarafdar [303], Toussaint [315], Tulcea [317], Yannelis [325] and Yannelis and Prabhakar
[326] ard others. However, most of these existence theorems for maximal elements and

equilibrium points deal with preference correspondences which have open lower sections

88
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or are majorized by correspondences with open lower sections. Note that every correspon-
dence with open lower sections m.ust be lower semicontinuous but the converse is not true
in general. Moreover, in most cases, preference and constraint correspondences may be
upper semicontinuous (or majorized by upper semicontinuous correspondences) instead of
being lower semicontinuous (or being majorized by lower semicontinuous), or the prefer-
ence and constraint mappings are condensing. Furthermore, in the study of equilibrium
theory in most economic models, the feasible sets or the budget constraints are generally
not (weakly) compact in infinite dimensionai commodity spaces and are not convex in the
case of the indivisibility of commodities and the underlying spaces do not have a linear
structure. Thus, relaxation of the convexity of choice sets and generalizations of spaces
enable us to deal with the existence of maximal elements and equilibrium points even
though commodities are indivisible.

Therefore it is necessary and important to study the existence of equilibria for gener-
alized games in which the preference and constraint correspondences nee.! not have open
lower sections nor open upper sections and also the underlying spaces need not have any
linear structure and so on.

The objective of this chapter is to systematically study the existence of maximal
elements and equilibria for generalized games under various hypotheses. In particular,
the question raised by Yannelis and Prabhakar [326] is answered in the affirmative with
weaker assumptions. The essential idea behind these existence theorems for equilibria of
generalized games is to reduce them first to qualitative games and then to the existence
problem of maximal elements for preference correspondences. Since existence of maximal
elements of correspondences have equivalent formulations in fixed point theorems which
can be derived from Ky Fan's minimax inequalities, so that the results in Chapter 2 are
applicable. More precisely, in Chapter 3, we have:

In section 2, we first give the existence theorems of maximal elements and equilibria
for non-compact generalized games in topological spaces which have the so-called H-
structure.

In section 3, a number of approximative equilibria of ygeneralized games in which
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preference correspondences are KF-majorized 2nd underlying spaces are wopological vector
spaces are given.

In section 4, as applications of approximative equilibria for generalized games, several
existence theorems for equilibria of generalized games in which preference correspondences
are lower semicontinuous and the domain spaces are non-compact in locally convzx topo-
logical vector spaces are given. By developing the so-called “approzimative method’
which was first motivated by Tulcea [316], we establish existence theorems for equilibria
of ger.2ralized games in which the constraint correspondences are upper semicontinuous.
In particular, the results in this section answer the question raised by Yannelis and Prab-
hakar [326] in the affirmative with weaker assumptions.

In section 5, the concept of Uf-majorized mapping is first introduced. Then the exis-
tence theorems for equilibria of generalized games in which the constraint correspondences
are U-majorized are given.

In section 6, several existence theorems for equilibria of generalized games in which
the constraint correspondences are ®-condensing are given.

In sectien 7, by Michael's selection theorein, we consider the existence theorems for
equilibria of generalized games in which the underlying spaces are Frechet spaces.

Finally in section 8, we first discuss some properties of multivalued mappings in finite
dimensional spaces. As appiications, fixed point theorems and the existence theorems of
equilibria for generalized games are given in finite dimensional spaces.

Moreover, we remark that the existence theorems for equilibria of non-compact gener-
alized games in this Chapter will be applied to give the existence theorems of non-compact

quasi-variationa: and generalized quasi-variational inequalities in Chapter 4.
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3.2 Equilibria for Ky Fan-Majorized Mappings in H-Spaces

In this section, we first introduce the notions of a Ky Fan mapping and a Ky Fan-majorized
mapping (in short, KF mapping and KF-majorized mapping) in H-spaces. Then a selection
theorem is derived which is applied tc give an existence theorem for maximal elements
for KF-majosized mappings in H-spaces (which need not have a linear structure). As an
application of a miaximal element existence theorem, we prove the existence for equilibria
of one-person games and qualitavive games. The existence theorem for qualitative games

is then applied to give existence theorems of equilibria for N-person games.

We give some notion. If A is a non-empty subset of a topological vector space F
and 5,7 : A — 25 U {p} are correspondences, then coT’, TN S : A — 2E U {P} are
correspondences defined by (coT')(z) = coT'(z) and (T'N S)(z) = T(z) N S(z) for each
x € A, respectively. If X and Y are topological spacec and 7' : X — 2¥ U {0} is a
correspondence, then (1) T is said to be upper semicontinuous at z € X if for any open
subset I/ of Y containing T'(z), the set {z € X : T(z) C U} is an open neighborhood
of x in X, (2) T is upper semicontinuous (on X) if T is upper semicontinuous at z
for each 2 € X; (3) the correspondence T : X — 2Y is defined by T(z) = {y € Y :
(x,y) € clxxyGraph(T')} ( which is also called the adherence mapping of T') and (4) the
correspondence cIT : X — 2V is defined by cIT(z) = cly(T(x)) for each z € X. It is
east to see that c/T'(z) C T(x) for each z € X.

We remark here that throughout Chapter 2, an upper (or lower) semiconiinuous cor-
respondence is not require to be non-empty valued.

Let X and Y be two topological spaces and F : X — 2¥ U {@}. Then F is said
to be compact if for each © € X, there exists a neighborhood V, of = in X such that
F(Vi) = Usev, F(2) is relatively compact in Y. If X is a subset of a topological vector
space £, X is said to have prope:ty i if for each compact subset B of X, the convex
hull of B is relatively compact in X.

Let X be a topological space and Y a subset of an H-space E, let § : X — E be
a map and i) : X — 2V U {0} be a correspondence. Then (1) # is said to be of class



K Fy (respectivety, K Fy ) or b is a K Fy (respectively, K Fy ¢) correspondence if for each
z € X, Heotp(z) C Y and 0(z) ¢ Heop(z) and foreach y € Y, 'y ={r e X 1y €
1h(z)} is open (respectively, compactly open) in X, (2) a correspondenze i, : X — 2! is
said to be a K Fy-majorant (respectively, K Fy c-majorant) of i at = € X if there exists
an open neighborhood NV, of z in X such that (a) for each z € N,, z) C 1h,(=) and
8(z) ¢ Heoyp,(z), (b) for each z € X, Heop,(2) C Y (this condition is redundant if Y 1s
an H-convex subset of E) and (c) for eachy € Y, )7 (y) is open (respectively, compactly
open) in X; (3) ¢ is K Fy-majorized (respectively, K Fy c-majorized) if for each & € X
with 1(z) # 0, there exists a K Fy-majoriant (respectively, K [y c-majorant) of i at .
If the underlying space E is a topological vector space, it is clear that that the notions of
correspondence 9 being of class K Fy or K Fy-majorized and correspondence i, being
a K Fjy-majorant of 1 at x generalize the corresponding notions of Lj-correspondence
or Ly-majorized and correspondence i, being an L}-majorant of 9) at x respectively
introduced by Ding and Tan [84] which in turn generalize corresponding notions given
by Borglin and Keiding [37], Yannelis and Prabhakar [326] and Tulcea [316]. For other
kinds of mapping, we refer to Tan and Yuan [294] (which is a generalization of Ding and
Tan [83]), Deguire, Tan and Yuan [76], Ben-El-Mechaiekh and Deguire |23] and Deguire
and Lassonde [75]. In ‘nis section, we shall deal with either (I) X = Y and 0 = Iy, the
identity map on X or (Il) X = [I,¢;X, and 0 = 7, : X — X, is the projection of X onto
X,. In these cases, we shall write K(F (respectively, K Fi5) in place of K [ (respectively,
KFyc).

The following example shows that an K F-majcrized mapping that is not of class /i /.

Example. Let X = [0,1] and ¢ : X — 2% U {(} be defined by

{ye X:yel0,2%}, dze(01),
¢(z) =
0, otherwise.

Then ¢ is not of class KF since ¢~'(y) is not open in X for each y € (0,1). For
each z € (0,1), let N; = X which is an open neighborhood of = in X and define

—
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fa 0 X — 2X U (D) by

[ [ye X :yelo,z)}, ifze(0,1),
¢o(2) = § .
A otherwise.

Then it is clear that ¢, is an /¢ ['-majorant of ¢ at z and ¢ is K F-majorized correspon-
dence (see a'so Kim [181, p.799]).

Now we have.

Lemma 3.2.1. Llet X be a topological space and Y be an H-space. Let ¢ :
X — 2Y U {0} be a correspondence with compactly open lower sections (i.e., ~1(y) is
compactly open in X for each y € Y). Define the correspondence ¢ : X — 2¥ U {#} by
¢(z) = Heop(z) for each = € X. Then ¢ alsc has compactly open lower sections.

Proof. For each y, € Y and each non-empty compact subset C of X, we need to
prove that ¢~ (yo) N C is open in C.

Let zo € ¢~ (yo) N C. Since yo € ¢(zo) = Heo(zg), there exists a finite subset
Yo = {y1, -, yn} of Y such that y, € HcoYy by Lemma 1 of Tarafdar [303], where
Y, € P(wo) for each 2 = 1,--- n. Foreach i =1,--- n, the set p7(y,) is compactly
openin X and zo € p7(y,). Let U =N 7 (y.). Then zo € UNC and UNC is open
in C. Now forany 2 € UNC, then y, € ¢(z) foralli =1,---,n. Hence Y C 9(x)
which implies that yo € HeoYy C Heoyp(z) = é(z). Therefore 2 € ¢71(yo) N C for all
z € UNC. Consequently, $~'(yo) N C is open in C. O.

By Lemma 3.2.1, we have the following selection thecrem:

Lemma 3.2.2. Let X be a regular topological space and Y a non-empty subset of
an H-space ). Let 0: X — £ and P: X — 2" U {0} be K Fy-majorized (respectively,
K Fy g-majorized). If each open subset of X containing the set B = {z € X : P(z) # 0}
is paracompact, then there exists a correspondence ¢ : X — 2 U {0} of class K Fy
(respectively, K Fiy ) such that P(z) C ¢(z) and ¢(x) is H-convex for each z € X.

Proof. Since P is K Fy-majorized (respectively, K Fj c-majorized), for each z € B,
let N, be an open neighborhood of z in X and ¢, : X — 2V U {0} be such that (1) for
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each z € N, P(z) C ¢.(z) and 8(z) ¢ Hcod,(z), (2) for each 5 € X, Heod, () C ¥
and (3) for each y € V, ¢7'(y) 1s compactly open in X

Since X is regular, for each @ € B there exists an open neighborhood (7, of v in .\
such that ¢lx G, C N,. Let G = UG, then G is an open subset of X which contains
B ={z e X:P(r)+# 0} sothat G is paracompact by assumricn. By Theorem VIIi 1.4
of Dugundj! [89] the open covering {G.} of G has an open precise n ghborhood-finite
refinement {G.} Fix an arbitrary x € B and define ¢/ : G — 2" U {0} by

Heoda(z), if z € GNelxC,

¢.(2) =
( ) Y, if z ¢ G\Cl/\’c"{n

then we have' Foreachy €Y,

(6)70) = (z€Giye i)
= (e GNAGL Y€K ULz € G\ elxC y € ()
{z€ GNelxG : y € Heog,(2)} U (G \ clxC")
= [(GNelxGL) N ((Heods) ()] U (G eby)
— (G0 (Hood) (1) U (G s G,

it follows that for each non-empty compact subset C ot X, (/)~'(y) N ¢ = ((/ n
(Heogs) M (y))NCYU LG\ clxGL)YN C) is open in C by (3) and Lemma 3 2 1 above
Now define ¢ : X — 2¥ U {0} by

{ Neesdl(2), Hz€G,

#(z) = .

b, ifze X\C.

Let z € X be given, clearly (2) implies that Heog(z) C Y. if 2 € X'\ (J, then ¢(z) =
so that 0(z) ¢ Hcog(z). If z € G, then z € G Ncly(, for some z € B so that
¢’ (z) = Heog,(z) and hence $(z) C Heod,(z). As 0(z) ¢ Heod! (z) by (1) we must
have 6(z) ¢ Hcog(z). Therefore 0(z) ¢ Hcod(z) for all z € X Now we show that for
eachy € Y, ¢7(y) is compactly open in X. Indeed, let y € Y, C' be a ncn-empty compact
subsetof X andu € 4! (y)NC={ze X:yed(z)}NC={zel:yed(z)}nC

be arbitrarily fixed. Since {G} I1s a neighborhood-finite refinement, there exists an open
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neighborhood M, of u in G such that {z € B: M, NG, # 9} = {z1,---,z.}. Note that
for each & € B with 2 ¢ {zy,-+, 2.}, § = M, NG, = My, Nclx (Y, so that §'(z) =Y
for all z € M,. Thus we have ¢(z) = (' epdl(z) = N, &) (z) for all z € M,,. It follows
that

p7(y) = {z€X:y€d(2)} ={2€G:y € Nuends(2)}
D {2€ M, :y€Nuepdy(2)} ={z€ My:y C N ¢, (2)}
= M,N{z€G:yeni,é, ()} = My [NE,(d2.) " (v)]:

But M., = M, n[Ni,(4, ) "(y)] N C is an open neighborhood of w in C such that
M. C ¢7'(y) N C since (¢, )7 (y) is compactly open in X. This shows that for each
y €Y, ¢~!(y) is compactly open in X. Therefore ¢ is of class /K F.

Now we shall show that P(z) C ¢(z) for each z € X. Indeed, let = € X with
P(z) # 0. Note that z € G. For each 2 € B, if z € G\ clxG., then §,(z) =Y D P(z)
and if z € Grizly G, we have z € clxG', C clxG, C N, so that by (1), P(z) C ¢,(2) C
¢ (). It follows that P(z) C 4. (=) for each z € B so that P(z) C Nyendl(z) = ¢(z).

Finally we replace ¢ by Hcog and, by Lemma 3.2.1, the result follows, &

We note that Lemma 3.2.2 generalize Lemma 2 of Ding and Tan [84] which in turn
improves Lemma 1 of Ding, Kim and Tan [86].

Now by Lemma 3.2.2, we have the following existence theorem for K Fy cotrespon-
dences in topological spaces which generalizes Theorem 4.1 of Tan and Yu [288] and
Corollary 1 of Borglin and Keiding [37]:

Theorem 3.2.3. Let X be an H-space such that X = U

% 1Cn, where {C,}22,
Is an increasing sequence of non-empty compact and weakly H-convex subsets. Suppose
P:X —2YU P} is K Fg-majorized. If for each sequence (y,)%2, in X with y, € C,
for each 1. = 1,2,--- which is escaping from X relative to {C,}72,, there exist ng € N
and z,, € Cy, such that w,, € P(y,,), then there exists & € X such that P(Z) = {.
Proof. Suprose the conclusion were not true, then X = {z € X : P(z) # ). First

we note that since X is regular and o-compact, X is paracompact by Corollary 33.15 of
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Cullen [70, p.341]. Hence by Lemma 3.2.2, there exists a correspondence 4 : X — 2%
of class K F¢ such that P(z) C vi(x) and 1b(z) is H-convex for all x € X. Note that
the conditions {i) and (ii) of Theorem 2.3.17 are uatisfied by th. By assumption, for each
sequence (y,)2, in X with y, & C, for each n = 1,2,--- which is escaping irom X
relative to {C,}22,, there exist 2 € N and ,,, € (', such that x,, € P(y,,) C ¥y, ).
This shows that condition /) of Theorem 2.3.17 is aisc satisfied by 9). Hence by Tiweorem
2.3.17, there exists § € X such that ¢(§) = 0. It follows that P(fi) = @ which is a

contradiction. Hence the conclusion must hold. 0

A one-person game is a quadruple (X; A, B; P) where X is a topological space,
A, B X — 2X U {0} are constraint correspondences and P : X — 2¥ U {}} is a
preference correspondence. An equilibrium point for (X; A, B; P) is a point ©* € X such

that = € B(z*) and A(x") N P(a*) = 0.

Let I be a (finite or infinite) set of players (agents). A generalized game (an abstract
economy) is a family I' = (Xi; Ay, Bi; Po)ier of quadruples (Xi;.4;, A;; P;) where for each
i € I, Xi is a topological space, A;, B; : X := [je;X; — 2% U {0} are constraint
correspondences and P; : X — 2% U {}} is a preference correspondence. An equilibrium
point for G is a point z* € X such that for each i € /, 2} = m(x*) € Bi(z*) and
Aiz*) N Py(z*) = 0 where 7; : X — X is the projection. We remark that when
B;i(z*) = clx,B:(z*) (which is the case when B; has a closed graph in X x.X;; in particular,
when clx;B; is upper semicontinuous with closed values) for each « € I, our definition
of equilibrium point for a generalized game (an abstract economy coincides with that of
Ding and Tan [84]. Also, according to Gale and Mas-Colell [125], a qualitative gariie is a
family ' = (X, P;jic; of ordered pairs (X;, P;) where for each 1 € [, X; is a topological
space, P, @ X = ;e X; — 2% U {0} is an irreflexive preference correspondence, i.e.,
z; ¢ P(z) for all £ € X. A point z* € X is said to be an equilibrium point of the
qualitative game [' if Pi(z") =0 forall i € /.

As an application of Theorem 3.2.3, we have the following existerice theorem of equi-

libria for one person-games:
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Theorem 3.2.4. Let (X; A, B; P) be a one-person game such that X is an H-
space and X = U2, C, where {C,,}%2, is an increasing sequence of compact and weakly
H-convex subsets and the following conditions are satisfied:

(1) for each z € X, A(z) is non-empty and HcoA;(z) C Bi(z);

(2) for each y € X, A7'(y) is compactly open in X

(3) AN Pis K Fg-majorized;

(4) for each sequence (y,)2%, in X with y, € C, for each n = 1,2,..- which
is escaping from X relative to {C,}2,, there exist n € N and z, € C, such that
Zu € (A(yn) N P(yn)) 0 Cn.

Then (X, A, B, P) has an equilibrium point, i.e., there exists Z € X such that £ € B;(#)
and A(Z) N P(&) = 0.

Proof. Let ' = {2 € X : z € B(z)}, then F is closed in X. Define ¥ : X —

2X U {0} by

A(z), ifz¢F.
Let & € X be such that ¥(z) # 0. if = ¢ F, then X \ F is an open neighborhood
of x such that for each z € X \ F, z ¢ B(z). Now define &, : X — 2% U {(} by
$,(z) = A(z) for each z € X and N, = X \ F, then N, is an open neighborhood of z
in X such that

¥(z) = { A(@)NP(z), ifzeF

(i) ¥(z) C ©,(2) and z ¢ Hcod,(z) for each z € N,, and
(i) ®;'(y) = A~'(y) is compactly open in X.

Theretore &, is an L¢-majorant of ¥ at z. if z € F, then ¥(z) = A(z) N P(z) # 0.
Since AN P is K F-majorized, there exist an open neighborhood N, of = in X and a
correspondence &, : X — 2% such that ¥(z) = A(z) N P(2) C ®,(z) and = ¢ Hcod,(z)
for each z € N,, and &' (y) is compactly open in X for each y € X. Define the map
¢! 0 X — 28 U {0} by

o.(z) = { AENG(2), Hzel,
A(Z)9 if z ¢ I.



Note that as (A N P)(z) C ®,(z) for each z € N,, we have ¥(z) C ¢/ (z). It is easy to
see that z ¢ Hco®! (2) for all z € X.

Moreover, for any y € X, the set (®7)"'(y) = [®;'G)U (X \ F)]Nn A~ (y) is
compactly open in X. Therefore ®/ is a K F-majorant of ¥ at . Hence, ¥ is an
K Fe-majorized correspondence.

By (4), for each sequence (y,)%2, in X with y, € C, for each n = 1,2,--. which
is escaping from X relative to {C,}%2, there exist n € N and z, € C, with z, €
Heo(A(ya) N Pyn)) N Cr, C ¥(y,) N C,.. Hence by Theorem 3.2.3, there exists & € X
such that U(£) = 0; since A(£) # 0 by (1), we must have & € B(&) and A(2)NP(&) = 0.
0

As another application of Theorem 3.2.3, we have the following existence theorem for

equilibria for qualitative games.

Theorem 3.2.5. Let (X;,P)Y, be a qualitative game such that for each i =
L,---,N, X; = UR,C; is an H-space (so that X = [l;¢/X; is also an H-spaces), where
{Ci;1%2, is an increasing sequence of non-empty compact and weakly H-convex subsets.
Suppose the following conditions are satisfied:

(1) foreachi=1,---,N, P;: X — 2% U {0} is K Fg-majorized;

(2) foreachi=1,---, N, the set }; = {x € X : P{(z) # 0} is open in X

(3) for each sequence (y,)%2, in X which is escaping from X relative to {C,}22,
where C,, = n{‘;lc,,n for each n = 1,2, -, there exist ng € N and z,, € C,, such that
Ti(Zng) € Pi(Yno) for each i € I(yn,), where I(z) = {5 € {1,---,N}: P;(z) # 0}.
Then (X;, P)X, has an equilibrium point 2 € X;i.e. P(f) =0 foralls=1,--- N.

Proof. Suppose the conclusion were false; then for each = € X, I(x) # . For each
i=1,--- N, define P! : X — 2X U {0} by P!(z) = n;'(P,(x)) for each z: € X. Define
P: X — 2X U {0} by P(z) = Nics(z)P!(z) for each z € X. Suppose x € X and fix
one ; € I(z). By (1), there exist a correspondence 1; : X — 2%+ U {#} and an open
neighborhood N, of 2 in X such that

(a) for each z € N,, P;(z) C vi(2) and 7;(z) ¢ Heoi(z),

(b) for each y € X;, ¥y !(y) is compactly open in X.
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By (2), we may assume that N, C F, so that P,(z) # 0 for all z € N, and hence: € I(z)
for all z € N,. Define b, : X — 2% by ¢.(2) = 7' (.(z)) for each z € X. Now if
z € N,, then by (a),

P(2) = Nery P, (2) C Pl(2) = 77 (P(2)) = ¥a(2)
and z ¢ Hcoip,(z). Moreover, if y € X, then

v y) ={z€ X:ye(2)}
={z€X: Wt(y) € 2/),(2)}
= 7 (m(y))

is compactly open in X by (b). This shows that 1, 1s a K Fj,-majorant of P at z. Hence
P is K Fj, -majorized.
Finally by (3), for each sequence (y,,)2%, in X with y,, € C,, for each n = 1,2,...

which is escaping from X relative to {C,,}52,, there exist ny € N and x,, € Cy, such

that m,(z,,,) € Pi(yn,) for each 1 € I(yy,), it follows that

Zny € n'el(’yno)ﬂ.l_]((])’(yno)) = mtel(yng)P:,(yno) = P(yno)'

Note that X = u®

n=

Theorem 3.2.3, there exists £ € X such that P(Z) = 0 which contradicts our assumption.

1Cn and C,, is also a compact H-space forn = 1,2,---. Hence by

Therefore the conclusion must hold. O

Theorem 3.2.6. Let (X,,A,, B,; )Y, be an N-person game such that for each
v =1, N, X, = U2,C,, is an H-space (so that X = IV, X, is also an H-space),
where {C,}52, is an increasing sequence of non-empty compact and weakly H-convex
subsets of X,. Suppose the following conditions are satisfied:

(1) for each 2 = 1,--, N and for each z € X, A,(z) is non-empty and HeoA,(z) C
B,(z);

(2) for each i = 1,---, N and for each y € X,, A;}(y) is compactly open in X;

(3) for each 2 = 1,--- N, the correspondence A, N P, : X — 2%+ U {0} is KF¢-

majorized;
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(4) foreacht=1,.-- N, the set F, = {z € X : (4, N P)(z) # 0} is open in X;

(5) for each sequence (y, )52, in X with y, € C, for each n = 1,2, -- which s
escaping from X relative to {C,}22, where C,, = ﬂfi,(}’.,n for each n = 1,2,---, there
exist ng € N and ,,, € C, such that for each i = 1,- -+, N, m,(,,) € Ai(yno) N Pi(v00)
if A(Yno) N Pi(yno) # 0 and m,(yny) € clx, Bi(yno) and m,(20g) € Ai(Yno) if mi(yno) ¢

B.(yn, )-
Then (X,; A,, B;; ), has an equilibrium point # in X; ie. for each = [,.-- N,
m(z) € B,(2) and A,(2) N P(%) = 0.

Proof. Foreachi=1,--- N, let G, = {x € X : m(z) € B,(z)}, then G, is closed
in X: define define Q, : X — 2% by

_[ AnP)a). feed;
Il { A=), if z ¢ G,.

We shall show that (X,,@,), is a qualitative game satisfying the hypotheses of Theorem
3.2.5. Fix any i € {1,---, N}. The set

{reX:Qz)#0} = {c€G:(ANP)z)£0}U{z e X\G, : A(r) # 0}
— (GR)U(X\G)
= FU(X\G)

is compactly open in X by (4). Thus the condition (2) of Theorem 3.2.5 is satistied. Now
let z € X be such that Q,(x) # 0.

Case 1. Suppose & ¢ G,.

Let 4, = A, and N, = X \ G,, then N, is an open neighborhood of 2 in X such that

(i) for each z € Ny, Q.(z) = Ai(z) = .(2) and 7,(2z) ¢ HeoA,(z) = Hcorp,(2) by
(1)

(ii) for each y € X,, ;' (y) = A7 '(y) is compactly open in X by (?).
Thus 1, is an K Fg-majorant of @), at z.

Case 2: Suppose z € G,.

Since Q.(z) = (A, N P,)(z) # 0, by (3), there exist 1, : X — 2% U {0} and an open
neighborhood N, of z in X such that
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(i) for each z € N, (A, N P)(z) C ¥(2) and m,(z) ¢ Heopp,(2),
(ii) for each y € X,, ¥ "(y) is compactly open in X.
Define . : X — 2% U {0} by

Ai(z) N (2), if z€ G,

velz) = { Af2), it ¢ a..

Then for each z € N, we have Q.(z) C ¥,(z) and m,(z) ¢ Heotp)(z) by (i) and (1).
Moreover for each y € X,, the set (¥.)7'(y) = [ '(y) U(X \ G.)]N A (y) is compactlv
open in X by (ii) and (2). Thus ¢ is a K Fe-majorant of @, at z.

This shows that @, is K F-majorized so that the condition (1) of Theorem 3.2.5 15
also satished

Finally, let (y,)2, be a sequence in X with y, € C, for each n = 1,2, - which is

n=1
escaping from X relative to {C,}52,. By (5), there exist no € N and z,, € C,, such
that 7,(2,,,) € Q.(yy,) foreach = 1,-- -, N with Q,(y,,) # 0. Hence the condition (3)
of Theorem 3.2.5 is also satisfied.
By Theorem 3 2.5, (X,,Q,)X, has an equilibrium point £ € X, i.e. Q,(£) =@ Jor all
t=1,---,N. Since A,(E) # 0§ for each 7 = 1, --, N, we must have 7,(£) € clx, B,(%)

and A(&)NP(i)=0forallz=1,---,N. O
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3.3 Approximate Equilibria in Topological Vector Spaces

In this section, by developing an “approximation” method which idea was first motivated
by Tulcea [316], we obtain an equilibrium existence theorem for a generalized game (ab-
stract economy) in which the constraint correspondences are not assumed to have open
graphs nor open lower sections (which are generally assumed in the literatures, e.g., see
Ding, Kim and Tan [86], Ding and Tan [84] and Yannelis and Prabhakar [326] and the
references wherein). Our result generalizes the corresponding results of Shafer and Son-
nenschein [263], Borglin and Keiding [37], Yannelis and Prabhakar [326], Tulcea {316] and
Chang [55] in several ways.

We shall need Theorem 1 and Theorem 3 of Ding and Tan [84] which are stated below

as Lemma 3.3.1 and Lemma 3.3.2 respectively.

Lemma 3.3.1. Let X be a non-empty paracompact convex subset of a topological
vector space and P : X — 2% U {0} be K F-majorized. Suppose that there exist a
non-empty compact convex subset X, of X and a non-empty compact subset K of X
such that for each y € X'\ K, there is an 2 € co(Xo U {y}) with = € coP(y). Then
there exists an & € K such that P(&) = .

For other results related to the existence of maximal elements, we refer to Tan and
Yuan [294], Kim [181], Lassonde and Deguire [75], Ben-El-Mechaiekh aind Deguire [23],
Degiure, Tan and Yuan [76] and Tarafdar [303].

Lemma 3.3.2. Let I' = (X,, P.).es be a qualitative game such that X = [1;¢; X, is
paracompact. Suppose the following conditions are satisfied:

(i) for each 7 € I, X, is a non-empty convex subset of a topological vector space;

(ii) for each i & [, P, : X — 2%+ U {0} is K Fg-majorized;

(i) Uier{z € X : P(z) # 0} = Uierintx{z € X : Pi(z) # 0};

(iv) there exist a non-empty compact convex subset X, of X and a non-empty compact
subset K of X such that for each y € X \ K, there is an = € co(X, U {y}) with
z, € coP,(y) forall i € 1.

Then T has an equilibrium point in K.
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The following is an existence of “approximate” equilibrium points for a one-person

game:

Theorem 3.3.3. Let X be a non-empty paracompact convex subset of a topological
vector space [5 and A, B, P : X — 2% U {0} be such that

(i) A is lower semicontinuous on X and for each z € X, A(z) is non-empty and
cod(x) C B(z);

(i) AN Pis K Fc-majorized;

(iii) there exist a non-empty compact convex subset X, of X and a non-empty compact
subset K of X such that for each y € X \ K, co{Xo U {y}) N co(A(y) N P(y)) # 0.
Then for each open convex neighborhood V of 0 in E, the one-person game (X; A, By; P)
has an equilibrium point in K, i.e., there exists a point zy € K such that zy € By(zv)
and A(zy) N P(zv) = 0 where By(z) = (B(z) 4+ V)N X for each z € X.

Proof. Let VV be an open convex neighborhood of 0 in E and define Ay, By : X —
2% by Av(z) = (A(z)+ V)N X and By(z) = (B(z)+ V)N X for each z € X. Since .}
is lower semicontinuous, Ay has an open graph in X x X by Lemma 4.1 of Chang [55] or
Tulcea [316). By (i), Av(z) C By(z) foreach z € X. Let Fy = {v € X : z ¢ By(z)},
then Fy is open in X. Define Wy : X — 2% {0} by

B { A(z)N P(z), ifz¢ Fy,
| Av(a), if z € Fy.

Suppose x € X is such that Wy (z) # 0.

Case 1. Suppose x € Fy. Let &, = Ay and N, == Fy, then N, is an open
neighborhood of = in X such that (a) for each z € N,, Uy(2) = Av(z) = &,(2),
2 ¢ By(z) sothat z ¢ Ay(z) = ®,(2); (b) for each y € X, ®;'(y) = Ay (y) is open in
X since Ay has an open graph in X x X. Thus ®, is a K Fz-majorant of ¥y at z.

Case 2. Suppose = ¢ fy. Then Uy (z) = A(z) N P(z) # 0. Since AN P is KFg-
majorized by (ii), there exist an open neighborhood N, of z in X and a correspondence
¢ 1 X — 2% such that (a) Wy(z) = A(z) N P(2) C @,(z) and z ¢ cod’ (z) for each
= € N and (b) for eachy € X, (®.)~!(y) is compactly open in X. Define &, : X — 2X
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5 { Av(2) N ®L(2), if = ¢ Fy,
Av(2), if z € ky.
Note that (i) for each z € N, clearly ¥;'(y) C ®,(z) and it is easy to see that
z ¢ co®,(z) and (i) for each y € =, ¢7'(y) = [Fv U (,)"'y)l N AG'(y) is compactly
open in X. Hence ®, is an K F-majorant of Wy at z.
Therefore Wy is a K Fi-majorized correspondence. Moreover by (i2i), for each y €
X \ K, there exists 2 € co(Xo U {y}) Nco(A(y) N P(y)) so that = € co(A(y) N P(v)) C
coVy(y). Thus by Lemma 3.3.1, there exists £ € K such that Wy (&) = (. Since
A(Z) # 0 by (i), we must have & € By (&) and A(3)N P(&) = 0. O

A proof similar to that of Theorem 3.3.3 and theerfore omitted gives the following

result:

Theorem 3.3.3". Let (X; A, B; P) be a one-person game such that X = U2, (7,,,
where {C,,}%2, is an increasing sequence of non-empty compact convex subsets in a
topological vector space E and the following conditions are satisfied:

(1) A is lower semicontinuous on X and for each & € X, A(z) is non-empty and
coA;(z) C Bi(z);

(2) AN P is K Fc-majorized;

(3) for each sequence {y,)52, in X with y, € C, for each n = 1,2,--- which
is escaping from X relative to {C,}32,, there exist n € N and x, € C, such that
Tn € co(A(yn) N P(yn)) N C,.

Then for each open convex neighborhood V of zero in [, the one-person game ( X; A, By )

has an equilibrium point in X, i.e., there exists a point 2y € X such that zy € By(uy)
and A(zv) N P(zy) = 0 where By(z) = (B(z)+ V) N X for each z € X.

The following is an existence theorem for “approximate” equilibrium points for a gen-

eralized game:

Theorem 3.3.4. Let / be any (countable or uncountable) set. For each 7 € /, let

X, be a non-empty convex subset of a topological vector space [7; and A;, 3;, F; : X =
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Ije;X; — 2% U {0} be such that

(a) A is lower semicontinuous and for each z € X, A;(x) is non-empty and coA;(z) C
Bi(z);

(b) A; N P: is K F-majorized,

(c) the set £ = {z € X : (A; N P,)(z) # 0} is open in X.

Suppose that X is paracompact and that there exisi a non-empty compact convex subset
Xo of X and a non-empty compact subset K of X such that for each y € X' \ K, there is
an z € co(XeU{y}) with z; € co(Ai(y)NP,(y)) foralli € I. Then given any V = II;¢,V;
where for each 7 € I, V; is an open convex neighborhood of zero in E;, the generalized
game I'v = (X;; A;, By,; P;)ic1 has an equilibrium point in K i.e., there exists a point
wv = (zv,)ies € K such that zy, € By,(zv) and A,(zv) N P,(zv) = 0 for each i € I,
where By, = (B;(z) + Vi) N X for each z € X and each i € I.

Proof. Llet V = Il;c;V; be given where, for each ¢ € I, V; is an open convex
neighborhood of zero in E;. Fix any ¢ € I and define Ay,, By, : X — 2% by Ay (z) =
(coA;(z)+ V)N X; and By,(z) = (Bi(z) + Vi) N X; for each x € X. By (a), A; is lower
semicontinuous so that coA; is also lower semicontinuous by Proposition 2.6 of Michael
[222, p.366], it follows from Lemma 4.1 of Chang [55] or from Yannelis [325] that Ay,
has an open graph in X x X. Now let Fy, = {z € X : z; ¢ By,(z)}, then Fy, is open
in X. Define the map Qy, : X — 2% by

[ (AnP)(=), ifxg Py,
QV‘(z) - { A,’(.”L‘), if z € Fy,.

We shall prove that the qualitative game 7 = (X;, Qv,):c; satisfies all conditions of
Lemma 3.3.2. First we note that for each 7 € I, the set

{zeX:Qux)#0} = F,U{z € X\Fy: Alz)n P(z) # 0}
=Fy,U((X\ Fy)NE)=F,UE’

is opan in X by (c). Let 2 € X be such that Qy,(z) # 0. We consider the following two

cases.

Case 1: x € Fy,.
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Let ¥, = Ay, and N, = Fy,, then N, is an open neighborhood of & in X such that
(i) Qvi(z) C ¥,(z) and by (b), 2, ¢ co¥.(z) for each z € N,; (i) coV¥,.(z) C X; for
each z € X by (b) and (iii) ¥;'(y) = Ay (y) is open in A for all y € X since Ay, has
an open graph. Therefore, ¥, is a K F-majorant of @y, at x.

Case 2: = ¢ Fy,.

Since Qv,(z) = (A, N P)(z) # 0 and A, NP, is K Fg-majorized, there exist an open
neighborhood N, of = in X and a correspondence ¢, : X — 2% U {{} such that (i)
(A, N P)(z) C ¢u(2) and 2, ¢ cod.(z) for each = € N, and (iii) ¢;'(y) is compactly
open in X for each y € X, Define ¥, : X — 2V U {0} by

( Av,(2) N da(2), ifz¢ Py,
U,(2) = .
Av,(2), if z € Fy,
Note that as (A, N P.)(z) C ¢,(2) and A,(z) C Ay,(z) for each z € N,, we have
Qv.(z) C Vu(2) and co¥,(z) C X,. It is easy to see that z; ¢ coW,(z) for all z € X.
Moreover, for any y € X,, the set

UIy) = {z€X:yeWy(2)}
={z € X\ Fy,:y e Vy(2)} U{z € Iy, 1y € W.(2)}
={z € X\ Fv,:y € Av(2) N du(2)} U {2 € Iy, 1 y € Ay,(2))
= [(X\ Fv,) n AN (y) 0 6 ()] U [Fy, 0 AT ()]
=47 (v) U Fv] 0 A7 (y)

is compactly open in X. Therefore, ¥, is a K Fg-majorant of (Jy, at «.

Hence Qv, is a K Fo-majorized correspondence. Now by assumption, there exist a non-
empty compact convex subset Xy of X and a non-empty compact subset /' of X such
that for each y € X'\ K, thereis an z € co(XoU {y}) with z; € co(A;(y) N I(y)) for all
i € I. Note that if y & Fy,, then z; € co(A.(y) N Fi(y)) C coQv,(y) and if y € Fy,, then
z, € co(A(y) N P(y)) C co(A(z)) = coQv,(y). Thus for each i € I, x; € coQv,(y).
Moreover the set {z € X : Qv,(z) # 0} = Fy,U{z € X\ Iy, : (AN 1) (z) # 0} =
Fy, U E' is open in X by condition (c). Therefore all hypotheses of Lemma 3.3.2 are
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satisfied, so that by Lemma 3.3.2, there exists a point zy = (zv;)ic; € K such that
Qv,(zv) = 0 for all : € I. Since for each i € I, A;(z) is non-empty, we must have
zy, € By,(wv) and A;(zv) N Pi(zy) = 0. O

A proof similar to that of Theorem 3.3.4 gives the following result and is thus omitted:

Theorem 3.3.4". Let (X;, A,, B;, ), be an N-person generalized game such that
foreachi = 1,--- N, X = UR,C;; where {C;;}%, is an increasing sequence of non-
empty compact convex subsets of a topological vector space E;. Suppose the following
conditions are satisfied:

(1) for each i = 1,2,---, N, A; is lower semicontinuous and for each r € X =
[;e;.X;, Ai(z) is non-empty and ceA;(z) C Bi(z);

(2) for each i = 1,2,--- N, A;N P; is is K Fc-majorized;

(3) for each i = 1,2,--- | N, the set F; = {z € X : A;(z)N Pi(z) # 0} is open in X;

(4) for each sequence (y,)2, in X which is escaping from X relative to {C,}32,
where C,, = Il;¢;C;,, for each n = 1,2,---, there exist n ¢ N and z, € C, such that

Ti(2n) € Ai(Yn) N Pi(yn) forall i =1,2,---, N.

Then given any V = [l;¢;V; where for each ¢ =1,2,---, N, V; is an open convex neigh-
borhood of zero in [;, the generalized game I'y = (Xi; Ai, By;; P;)ier has an equilibrium
point in X i.e., there exists a point 2y = (zv;)ic; € X such that zy, € By,(zy) and
Ai(wv) 0 Pi(xv) = 0 for each ¢ = 1,2,--- | N, where By, = (B;(z) + V;) N X; for each
x € X and each: = 1,2,---,N.



3.4 Equilibria in Locally Convex Topological Vector Spaces

In this section, by constructing an approximate generalized game which is associated with
a given generalized game (this procedure is called “approzimation method” in our thesis),
existence theorems for equilibria of generalized games are obtained In these theorems, the
strategy spaces may be non-corapact sets in infinite-dimensional locally convex topologi-
cal vector spaces, the number of agents may be uncountably infinite and the preference
correspondences may be non-total or non-transitive and may not have open lower (or up-
per) sections. Our results generalize many existence theorems for equilibria of generalized
games by relaxing the compactness of strategy spaces and by weakening the continuity of
constraint and preference correspondences. In particular, the question raised by Yannelis

and Prabhakar [326] in 1983 is answered in the affirmative with weaker assumptions.
We shall need the following fact:

Lemma 3.4.1. Let X be a topolegical space, Y a non-empty subset of a topological
ve.cor space F, B a base for the zero neighborhoods in 7 and B : X — 2¥. For each
V € B, Let By : X — 2 be defined by By(z) = (B(z) + V)N Y foreach z € X. If
# € X and j € Y are such that § € NyepBy(2), then j € B(%).

Proof. Suppose § ¢ B(Z), then (£,9) ¢ clxxyGraph(B). Let I/ be an open
neighborhood of Z in X and V € B be such that

(*) (U x (§+ V)N Graph(B) = 0.

Choose W € B such that W — W C V. Since # € Bw(), by assumption, (,) €
clxxyGraph(Bw) so that U x (§ + W)) N Graph(Bw) # 0. Take any © € U and
wy € W with (2, + wi) € Graph(Bw) so that §j +w, € By(z) = (B(z) + W)nY.
Let 2 € B(z) and wy € W be such that y + wy = z 4w, € Y, it follows that
z=f+w—w €Y+ W—W C§+V sothat (§+ V)N B(z) # 0 where z € U. This
contradicts (+). Thus we must have § € B(%). O

Using Theorem 3.3.4 and Lemma 3.4.1, we shall present one of our main results in

this section as follows:
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Theorem 3.4.2. Let G = (X,; A,, B,; P.):cs be a generalized game such that X =
;e X, is paracompact Suppose the following con litions are satisfied:

(a) for each 2 € I, X, is a non-empty convex subset of a locally convex topological
vector space £,

(b) foreach 1 € 1, A, : X — 2%+ is lower semicontinuous such that for each z € X,
A,(&) 1s non-empty and coA,(z) C B,(z);

(c) for each . € I, A, N P, is K F-majorized;

(d) for each 1 € [, the set £* = {x € X : (A, N P,)(z) # 0} is open n X;

(e) there exist a non-empty compact convex subset X of X and a non-empty corr .3t
subset X of X such that for each y € X \ K, there is an 2 € co(Xo U {y}) with
a, € co(A,(y) N P(y)) forall 2 € [

Then G has an equilibrium point in K, i.e. there exists a point & = (&,),e; € K such
that for each 1 € I, &, € B,(2) and A,(£) N P,(Z) = 0

Proof. For each 1 € I, let B, be the collection of all open convex neighborhoods
of zero in E, and B = Il,¢;B,. Given any V € B, let V = l,;V,, where V, € B,
for each 7 € I. By Theorem 3.3.4, there exisis &y € K such that zy, € P;_(wv) and
A (Zv)NP,(iv) = 0 for each ¢ € I, where By,(z) = (B,(z)+V,)NX, foreachz € X. It
follows that the set Qy := {z € K : z, € By,(z) and A,(z)N P.(z) = 0} is a non-empty
closed subset of K by (d).

Now we want to prove {Qy}ver has the finite intersection property. Let {V,- -,
V. } be any finite subset of B. For each z = 1,---,n, let V. = I1,¢,;V,, where V|, € B,
for each y € [; let V = Il,¢;(NL1 Vi), then Qv # 0. Clearly Qv C N, Qy, so that
N, Qv, # 0 Therefore the family {Qv : V € B} has the finite intersection property.
Since K is compact, Nye gQyv # 0. Now take any & € NyesQy, then for each . € I,
€ B—\’T( i) for each V, € B, and A,(&) N P,(7) = 0. By Lemma 3.4.1, we also have for
each i € [, &; € B,(#). O

By Theorem 3.3.4' and Lemma 3.4.1, we also have the following result which corre-

sponds to Theorem 3.4.2:

Theorem 3.4.2". Let (X,, A, B,, )Y, be an N-person generalized game such
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that for each v = 1,2,---, N, Xi = UR,C;; where {C;;}52, is an increasing sequence
of non-empty compact convex subsets of a locally convex topological vector space f4;.
Suppose the following conditions are satisfied:

(1) for each 2 = 1,2,--- | N, and for each & € X = I1;¢,X;, Ai(x) is non-empty and
coAi(x) C Bi(z);

(2) for each ¢ = 1,2,---, N, A; is lower semicontinuous;

(3) for each 7 = 1,2,---, N, the correspondence A; N P;: X — 2% U {0} is K1
majorized;

(4) foreach e = 1,2,---, N, the set F; = {z € X : A;(z) N P:(z) # 0} is open in X;

(5) for each sequence (y,,)°2, in X which is escaping from X relative to {0, )52,
where C, = Il;¢;C,,, for each n = 1,2,---, there exist n. € N and z,, € (7, such that
mi(@n) € Ai(yn) N Pi(y,) forall s =1,2,--. /N,
Then (X;, A,, B;, P)X, has an equilibrium point & € X, i.e., for each 4 = 1,2,--- N,
m:(%) € By(2) and A;(%) N Pi(2) = 0.

Corollary 3.4.3. Let G = (Xj; A;, Bi; P)ic. be a generalized game such that
X = Il;¢; X; is paracompact. Suppose the following conditions are satisfied:

(a) for each © € I, X; is a non-empty convex subset of a locally convex topological
vector space F;;

(b) for each € / and for each = € X, Ai(z) is non-empty and coA;(z) C B;(x);

(c) for each 7 € I, A; and P; have open lower sections;

(d) for each : € I, A; N P; is K F-majorized;

(e) there exist a non-empty compact convex subset X, of X and a non-empty compact
subset [ of X such that for each y € X \ K, there is an = € co(X, U {y}) with
z; € co(Ai(y) N Pi(y)) forall 7 € 1.

Then G has an equilibrium point in K, i.e., there exists point & € /K such that for each
i€ l, 1, € Bi(%) and A;(2) N P(E) = 0.

Proof. By (c), the map A; : X — 2% is lower semicontinuous and the set /5' =
{x € X : Ai(z) N Pi(z) # 0} is open in X. Therefore all the hypotheses in Theorem

3.4.2 are satisfied, so that the conclusion follows. O
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Corollary 3.4.3". Let (X,, A,, B, F,)V. be an N-person generalized game such that
foreach . =1,2,--- N, X, = UR,C,, where {C,,}32, is an increasing sequence of non-
empty compact convex subsets of a locally convex topological vector space E,. Suppose
the following conditions are satisfied:

(1) for each + = 1,2,---, N, and for each z € X =Tl,¢;X,, A.(z) is non-empty and
cofi(t) C Bi(z),

(2) for each : = 1,2,---, N, both A, and P, have open lower sections;

(3) for each: = 1,2,.-- N, A, N P, is K Fg-majorized;

(4) for each sequence (y,)32, in X which is escaping from X relative to {C,}72,

where C,, = I1,¢/C,,, for each n = 1,2,..., there exist n € N and x,, € C, such that
m(e,) € A(y) 0 P(y,) foralls =1,2,... /N,

Then (X;, A, B,, P,)"i, has an equilibrium point £ € X, i.e., for each 2 = 1,2,.--, N,
m(&) € B,(&) and A, (%) N P(3) = 0.

Corollary 3.4.3 (respectively, Corollary 3.4.3') improves Theorem 6.1 of Yannelis and
Prabhakar [326] in the following ways: (i) the index I need not be countable, (ii) for each
1 € I, the set X', need not be metrizable and (iii) for each : € I, A, N P, need not be of

class K F

Corollary 3.4.4. Let G = (X,; A, B,; P.).cs be a generalized game such that
X =Il,¢;1.X, is paracompact. Suppose the following conditions are satisfied:

(a) for each : € I X, is a non-empty convex subset of a locally convex topological
vector space,

(b) for each » € I and for each 2 € X, A,(z) is non-empty and coA,(z) C B,(z);

(c) for each « € I, A, has an open graph in X x X, (resp~ctively, is lower semicon-
tinuous) and P, is lower semicontinuous (respectively, has an open graph in X x X,);

(d) for each : € I, A, N P, 1s K Fg-majorized;

(e) there exist a non-empty compact convex subset X, of X and a non-empty compact
subset A” of X such that for each y € X \ K, there is an z € co(Xo U {y}) with
ri € co(Ai(y) N P(y)) for all 1 € 1.



Then G has an equilibrium point in K, i.e., there exists point & € X such that for each
i €1, #; € Bi(%) and A;(2) N P(&) = 0.

Proof. For each ¢ € I, since A; has an open graph in X x X; (respectively, is
lower semicontinuous) and P; is lower semicontinuous (respectively, has an open graph
in X x X;), the map A;N P, : X — 2% U {0} is also lower semicontinuous by Lemma
4.2 of Yannelis [325], so that the set £' = {z € X : A;(x) N Pi(x) # @} is open in X.

Therefore all conditions of Theorem 3.3.3 are satisfied and the conclusion follows. O

Corollary 3.4.4'. Let (X;; A;, B;; P)Y., be an N-person game such that for each
1= 1,2,--,N, X; = U2,C;; where {C;;}32, is an increasing sequence of non-empty
compact convex subsets of a locally convex topological vector space F;. Suppose the
following conditions are satisfied:

(1) for each i = 1,2,---, N and for each z € X = IT;c,X;, Ai(x) is non-empty and
coAi(z) C Bi(z);

(2) for each i = 1,2,---,N, A; has an open graph in X x X; (respectively, is
lower semicontinuou) and P; is lower semicontinuous (respectively, has an open graph in
X x X;);

(3) for each 4 = 1,2,---, N, the correspondence A; N P; : X — 2% U {B} is K ;-
majorized;

(4) for each sequence (y.)%%, in .X' which is escaping from X relative to {(/,}22,
where C,, = [i;¢/C;,, for each n = 1,2, .-, there exist n € N and =z, € (), such that
mi(®n) € Ai(yn) N Pi(yy) foralli =1,2,--- ) N.

Then (X;, A;, B;, P.)X, has an equilibrium point & € X, i.e., for each ¢ = 1,2,---, N,
mi(2) € Bi() and A;(%) N Pi(2) = 0.

Corollary 3.4.4 (respectively, 3.4.4') generalizes Corollary 3 of Borglin and Keiding [37],
Theorem 4.1 of Chang [55], Theorem of Shafer and Sonnenschein [263] and Theorem 5
of Tulcea [316].

Remark. |» above, we have proved the existence theorem for equilibria of generalized

games with non-compact and infinite dimensional strategy spaces, an infinite numbers of
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agents, and non-total and non-transitive constraint and preference correspondences which
need not have open graphs or open lower or upper sections. Since it is well known that
if a correspondence has an open graph, then it has open upper and lower sections (see
Bergstrom et al [31, p.266] and thus the correspondences having open graphs are lower
semicontinuous. However, a continuous correspondence need not have open lower or
upper sections in general (see Yannleis and Prabhakar {326, p.237]). Also, in infinite
settings. the set of feasible allocations generally is not compact in the commodity spaces.
Our result generalizes many results in literatures by relaxing the compactness of strategy
spaces and the openness of graphs or lower (upper) sections of constraint correspondences.

In 1983, Yannelis and Prabhakar [326] gave the following existence theorem for equi-

libria of generalized games:

Theorem 3.4.A. Let I' = (X,; A,; P,).cs be a generalized game satisfying for each
1 € I (where [ is countable):

(i) X, is a non-empty compact, convex and metrizable subset of a locally convex
topological vector space;

(i1): the mapping A, : X (= Il,e1X,) — 2% satisfies that clA,(z) = A,(x) for each
@ € X (so that the mapping clA, is upper semicontinuous);

(i): A; and P, have open lower sections; and

(iv): =, ¢ cop,(z) forall z € X.
Then T' has an equilibrium, i.e., there exists £ € X is such that Z, € clA,(%) and

AE) N P(3) = 0.

In addition, Yannelis and Prabhakar asked that if Theorem 3.4.A can be extended to

non-metrizable subsets without introducing additional assumptions ¢

Theorem 3.4.2 improves Theorem 3.4.A of Yannelis and Prabhakar in the following
ways: (i) the index set I/ need not be countable, (ii) for each i € I, the set X, need not be
metrizable and need not compact (iii) for each i € I, both A, and P; need not have open
lower sections. Therefore the question raised by Yannelis and Prabhakar [326, p.242] is

answered in the affirmative with weaker assumptions.
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Let X and Y be topological spaces. A correspondence T : X — 2V U {{} is said to
be quasi-regular if

(i) it has open lower sections (i.e., for each y € Y, T"'(y) is open in X);

(i) T(x) is non-empty and convex for each z € X;

(i) T(x) = clyT(z) for all z € X.

The correspondence T is said to be regular if it is quasi-regular and has an open graph.

Let X be a non-empty set, }” a non-empty subset of a topological vector space £ and
F:X —2". Afamily (f;);es of correspondences between X and Y, indexed by a non-
empty filtering set J (we denote by < the order relation in J), is an upper approximating
family for the mapping F (e.g, see [317, p.269]) if

(A1) F(z) C fi(z)forall z€ X and all j € J;

(Ay): for each j € J thereis j* € J such that for each h € J with h > j*,
fu(z) C f;(z) for each 2 € X;

(Ar1r): foreach © € X and V € B, where B is a base for the zero neighborhoods in
E, thereis j,v € J such that fy(z) C F(z)+ V ifhe Jand j,v < h.

From (A1)-(Ajrr), it is easy to deduce that:

(Arv): foreach z € X and k € J, F(x) C Njes fi(z) = Nigyhes [i(z) C ell(z) C

F(x).

If X is a subset of a topological vector space E, X is said to have the property (/)
if for every compact subset B of X, the convex hull of B is relatively compact in X.

By Theorem 3 and its Remark in Tulcea [317, p.280 and p.281-282], we have the

following:

Lemma 3.4.5. Let (X;)ic; be a family of paracompact spaces and (Y;);c; be a
family of non-empty closed convex subsets, each in a locally convex topological vector
space and each having property (K). For each : € I, let 7y : X; — 2% be such that
F; is compact and upper semicontinuous with compact convex values. Then there is a
common filtering set J (independent of 7 € /) such that for each : € /, there is a family

(fij)jes of correspondences between X; and Y; with the following properties:
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fa) for each 3 € J, f,, is regular;
(b) (f,;);es and (J;;),es are upper approximating families for F, and

(c) for each ) € J, f,, 1s continuous if Y, is compact.

By the above approximation theorem for upper semicontinuous correspondences (Tul-
cea [317, Theorem 3, p.280]), we can also prove the following existence theorem for
equilibria of generalized games in which the constraint correspondences are upper semi-

continuous.

Theorem 3.4.6. Let G = (X,; A,, B,; P,).es be a generalized game such that X =
[1,¢1 X; 1s paracompact. Suppose the following conditions are satisfied:

(a) for each + € I, X, is a non-empty closed convex subset of a locally conve:
topological vector space F, and X, has the property (K);

(b) for each ¢ € I, B, is compact and upper semicontinuous with non-empty compact
convex values and A,(z) C B,(z) for each z € X;;

(c) for each 1 € I, P, is lower semicontinuous and K F-majorized;

(d) for each e € I, E* = {z € X : (A,N P,)(x) # 0} is open in X

(e) there exist a non-empty compact convex subset X of X and a non-empty compact
subset K of X such that for each y € X \ K, there is an z € co(Xp U {y}) with
x, € co(A,(y) N P(y)) forall 2 € I.

i hen there exists Z € K such that for each i € I, z, € B,(Z) and A,(2) N P.(Z) = 0.

Proof. By Lemma 3.4.5, there is a common filtering set J such that for every : € I,
there exists a family (B,,),cs of regular correspondences between X and X, such that
both (B,,),cs and (B,,),es are upper approximating of families for B,.

Let ) € J be arbitrarily fixed. The game G, = (X,;B,,,F;; P,).c1 satisfies all hypothe-
ses of Theorem 3.4.2 Hence G, has an equilibrium &7 € K such that B,,(z/)NP,(3?) = 0,
and m,(3’) € T{;(E?) foralli e I.

Since (&’),ey is a net in the compact set K, without loss of generality we may assume
that (2’),es converges to ™ € K. Then for each i € I, m,(z*) = lim,cy 7,(7’). Note
that for every j € J and z € X, A,(z) C Bi(z) C B,,(z), we have A,(z°) N P(z°) = 0
for all » € I. By condition (d), for every i € I, A,(z*) N P,(z*) = 0. As B,, has
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closed graph, (z*,z7) € GraphB,, for every i € I. For each + € I, since (B, ;)cs is
also an upper approximation family for B,, N,esB, () C B,(x) for each x € X so that
(x*,&7) € GraphB,. Therefore for each i € I, A(z*)N P (x*) = 0 and 7 (2*) € B,(x*).
O

Corresponding to Theorem 3.4.6, we have:

Theorem 3.4.6". Let (X,; A,; P,)¥, be an N-person generalized game such that for
eachi = 1,2,---, N, X, = U2,C,, is closed and has property (K), where {C, ;}52, is an
increasig sequence of non-empty compact convex subsets of a locally convex topelogical
vector space E,. Suppose the following conditions are satisfied:

(1) for each 2 = 1,2,---,N, A, : X — 2% is compact and upper semicontinuous
with non-empty compact and convex values;

(2) for each i = 1,2,---, N, the correspondence P, : X — 2% U {0} is lower
semicontinuous and K F-majorized;

(3) for each ¢ =1,2,---, N, the set F, = {z € X : A,(2) N P,(z) # 0} is open in X;

(4) for each sequence (y,)52, in X which is escaping from X relative to {C,}>2,
where C,, = ll,¢C,, for each n = 1,2,--., there exist n € N and x, € (J, such that
T(2n) € Ai(yn) N P(yy) forall i € 1.

Then (X,;A,;P,),’i] has an equilibrium point & € X, i.e., for each i = 1,2,---
m(2) € A.(2) and A,(2) NP (2) = 0.

N,

?

If X, is non-empty compact convex in Theorem 3.4.6, we have

Corollary 3.4.7. Let G = (X,; A;; P.).c; be a generalized game and let X =
I,¢; X,. Suppose the following conditions are satisfied for each 7 € I:

(a) X, is a non-empty compact convex subset of the locally convex topological vector
space F,;

(b) A, : X — 2% is upper semicontinuous with non-empty compact and convex
values for each z € X;

(c) P.: X — 2% U {0} is lower semicontinuous and K F;-majorized;

(d) for each i € I, E* = {z € X;(A, N P,)(z) # 0} is open in X;
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Then there exists an & € X such that for each : € I, 2, € A,(2) and A,(Z) N P, (2) = 0.

Corollary 3.4.7 also generalizes Theorem 5 of Tulcea [317] and Theorem of Shafer-
Sonnenschein [263, p 374].

By Corollary 3.4.7, we obtain the well-known fixed point theorem of the Fan-Glicksberg
(see Fan [97] or Glicksberg [127]) for upper semicontinuous correspondence in locally

convex topological vector space.

Corollary 3.4.8. Let X be a compact and convex subset of a locally convex topo-
logical vector space £ and let A : X — 2% be upper semicontinuous with non-empty
closed and convex values. Then A has a fixed point.

Proof. Let I = {1} and define P: X — 2¥ U {0} by P,(z) = @ for each z € X in

Corollary 3.4.7, then conclusion is true. O

The following example shows that the condition (d) “for each: € I, ' = {z € X :
(A, N P)(z) # 0} is open in X" of Theorem 3.4.6 is essential.

Example. Let [/ = {1} and X = [0,1]. Define A, P: X — 2% U {0} by

[1/2,1], if z€0,1/2),
A(R)=4 [0,1], #z=1/2
[0,1/9], iz e (1/2,1),

and

0, ifz=0,
P) —{ [0,2), ifze (0,1].

Then A is upper semicontinuous with non-empty closed convex values and the fixed point
set of A is the singleton set {1/2}. The correspondence P has convex values with open
lower sections since for each y € [0,1], P~'(y) = (y, 1] which is open in X. Therefore
A, P and X satisfy all conditions of Corollary 3.4.7 except that £ = {z € [0,1] :
A(x) N P(x) # 0} = [1/2,1] is closed but not open in [0,1]. But A(1/2) N P(1/2) # 0,
I.e., the generalized game I' = ([0, 1]; A; P) has no equilibrium point.
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3.5 Equilibria for /-Majorized Mappings

The objective of this section is to give some existence theorems for maximal elements
and equilibria in qualitative games without the compactness (or paracompactness) as-
sumption on the domain of the preferences which are majorized by upper semicontinuous
correspondences instead of being majorized by correspondences which have lower open
sections. Qur intention is to merely illustrate a certain technique that we think will be
of use in various problems of mathematical economics. Many other results of the type
proved here may be proved under more general conditions.

Let X be a topological space, Y a non-empty subset of a vector space I, let 0 : X —
E be a map and ¢ : X — 2¥ U {0} a correspondence. Then (1) ¢ is said to be of class
Uy if (a) for each z € X, 0(z) & ¢(z) and (b) ¢ is upper semicontinuous with closed and
convex values in Y; (2) ¢, is a Up-majorant of ¢ at x if there is an open neighborhood
N(z)of zin X and ¢, : N(z) — 2" such that (a) for each z € N(z), ¢(z) C ¢.(2) and
0(z) & ¢.(z) and (b) ¢, is upper semicontinuous with closed and convex values; (3) ¢ is
said to be Us-majorized if for each z € X with @(z) # 0, there exists a Ify-majorant ¢,, of
¢ at . We remark that when X =Y and 0 = [x, the identity map on X, our notions of
a Uy-majorant of ¢ at z and a Uy-majorized correspondence are generalizations of upper
semicontinuous correspondences which are irreflexive (i.e., z ¢ ¢(z) for all z € X) and
have closed convex values. Here we shall deal mainly with either the case (I) X =Y and
is a non-empty convex subset of the topological vector space £ and § = /x, the identity
map on X, or the case (II) X = [l;c;X; and 6 = n; : X — X is the projection of X
onto X; and Y = X is a non-empty convex subset of a topological vector space. In both
cases () and (Il), we shall write I in place of Uj.

We shall need the following:

Theorem 3.5.A. Let X be a topological space and Y a normal space. If I/, :
X — 2Y U {0} have closed values and are upper semicontinuous at zz € X, then /"N (
is also upper semicontinuous at z.

Proof. If F(z)NG(z) # 0, the conclusion follows from Hildenbrand [147, Proposition
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B.I1.2, p.23-23] (also see Klein and Thompson [189, Theorem 7.3.10, p.86]). If F(z) N
G(x) = B, since Y is normal, it is easy to see that there exists an open neighborhood N of
xin X such that F(z)NG(z) =@ for all z € N; thus FNG is also upper semicontinuous

at . O

We remark here that in Theorem 3.5.A above, we do not require F'(z) N G(z) # 0
for each z € X.
We shall also need the following result which generalizes and extends Lemma 6.1 of

Yannelis and Prabhakar [326]:

Lemma 3.5.1. Let X and Y be two topological spaces and A be a closed (re-
spectively, open) subset of X. Suppose Fy : X — 2Y U {0}, F2 : A — 2Y U {0} are
lower semicontinuous (respectively, upper semicontinuous) such that Fy(z) C Fy(z) for

all z € A. Then the map F' : X — 2Y U {0} defined by

F(T)_{F](m), ife¢A;
| Fye), ifzeA

is also lower semicontinuous (respectively, upper semicontinuous).

Proof. Let U be any closed (respectively, open) subset of Y. Clearly

{reX:Flx)cU} = {z€Ad:R)clU}u{zeX\A: F, CcU}
C {z€A:F)cU}U{ece X: F(z)C U}

Conversely, if © € A and Fy(x) C U, then F(z) = Fy(z) C U and if z € A and
F\(z) C U, then F(z) = Fp(z) C Fi(z) CU. fz € X\ A, then F(z) = Fy(z) C U.
This shows that we have {z € X : F(z) CU} D {z € A: Fy(z) cUYU{z € X :
Fife) C U}. Hence {z € X : F(z) CU} ={z € A: F(z) CcU}U{z € X :
F\(x) C U}. Since A and U are closed (respectively, open) and F; and F, are lower
semicontinuous (respectively, upper semicontinuous), the set {z € X : F(z) C U} is also
closed (respectively, open). Therefore, F' is lower semicontinuous (respectively, upper

semicontinuous). O

We also need the following:
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Lemma 3.5.2. Let X be a paracompact space and Y be a non-empty normal subset
of a topological vector space E. Let 6 : X — E and P: X — 2¥ U {0} be U/-majorized.
Then there exists a correspondence ¥ : X — 2V U {0} of class &/ such that P(x) C W(x)
for each z € X.

Proof. Since P is U-majorized, for each 2 € X, let N(z) be an open neighborhood of
zin X and i, : N(z) — 2 U{0} be such that (1) for each = € N(x), P{z) C tp.(2) and
0(z) ¢ .(z) and (2) +, is upper semicontinuous with closed and convex values. Since
X is paracompact and X = U,ex N(z), by Theorem VIil.1.4 of Dugundji [89, p.162], the
open covering { N(z)} of X has an open precise neighborhood-finite refinement { N'(x)}.
For each z € X, define 9. : X — 2¥ U {0} by

1 ! z) = T/)z(z)a if z € N’('l,),
)):1:( ) { y, if 2 ¢ N/(m)’

then 1! is also upper semicontinuous on X by Theorem 3.5.A above and is such that
P(z) C 9.(z) for each z € X.

Now define W : X — 2¥ U {8} by ¥(z) = Nyextpl(z) for each z € X. Clearly, W
has closed and convex values and P(z) C W(z) for each z € X. Let z € X be given,
then z € N'(2) for some z € X so that 1)!(z) = 1),(2) and hence W(z) C 1.(=); as
0(z) ¢ 14(z), we must also have that 6(z) ¢ W(z). Thus 0(z) ¢ ¥(z) for all z € X.

Now we shall show that ¥ is upper semicontinuous. For any given « € X, there exists
an open neighborhood M, of u in X such that the set {z € X : M, N N(x) # @} is
finite, say = {z(u,1), -, z(u,n(u))}. Thus we have that

V(w) = Ngextby,(w) = ﬂ?f{)wbi.(u,i)(W) for all w € M,,.

!
ou,i)

Fori=1,--,n(u), since each ¢ is upper semicontionuous on X and hence on M,
with closed values and Y is normal, by Theorem 3.5.A above again, ¥ : M, — 2Y is also
upper semicontinuous at u. Since M, is open, ¥ : X — 2¥ is also upper semicontinuius

at u. Hence W is of class . O

We now prove the following theorem concerning the existence of a maximal element

for U-majorized correspondences:
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Theorem 3.5.3. Let X be a non-empty convex subset of a locally convex topological
vector space and D a non-empty compact subset of X. Let P : X — 20 U {0} be U-
majorized (i.e., U, -majorized). Then there exists a point z € coD such that P(z) = 0.

Proof. Suppose the contrary, i.e., for all z € coD, P(z) 3 0. Then for each
x € coD, P(z) # 0 and coD is also paracompact by Lemma 1 of Ding, Kim and Tan
[86, p.206] (see also Lassonde [201, p.49]}. Now applying Lemma 3.5.2, there exists a
correspondence W : coD — 2D of class U such that for each z € coD, P(z) C ¥{z).
Since W is upper semicontinuous with non-empty closed and convex values, by a fixed
point Theorem of Himmelberg [151, Theorem 2, p.206], there exists z € coD such that
x € V(z). This contradicts that VU is of class 2. Hence the conclusion must holds. 0

In what follows, we shall give some applications of Theorem 3.5.2 and Theorem 3.5.3.

First we have the following:

Theorem 3.5.4. Let X be a non-empty convex subset of a locally convex topological
vector space and [) be a non-empty compact subset of X. Let P : X — 2P be U-
majorized and A : X — 2° be upper semicontinuous with closed and convex values.
Then there exist a point & € coD such that either € A(£) and P(2) = 0 or £ ¢ A(%)
and A(Z)N P(&) = 0.

Proof. Let F'= {z € X : z € A(z)}. We first note that ' is closed in X since A

is upper semicontinuous with closed values. Define ¢ : X — 2P by

(x) =

{P@L ifzeF,
A(z)N P(z), fz¢F.

If 2 ¢ F and A(z) N P(z) # 0, then X \ F is an open neighborhood of = in X and
since P is U-majorized, there exist an open neighborhood N(z) of = in X and a mapping
the + N(x) — 2P such that (1) for each z € N(z), P(z) C .(2) and z ¢ 1h,(2) and
(2) .. is upper semicontinuous with closed and convex values. Without loss of generality,
we may assume that N(x) C X \ F. We now define the mapping ¥, : X — 2D by
W, (2) = A(z) N1h.(z) for each 2 € N(z). Then again by Lemma 3.5.1 (note that D is

compact so that D is normal), we have (1) ¥, is upper semicontinuous with closed and
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Now suppose that © € F and P(z) # 0; then by assumption there exist an open
neighborhood N(z) of z in X and v, : N(z) — 2P such that (a) P(z) C ¥,(z) and
z ¢ 1y(2) for each z € N(z) and (b) v, is upper semicontinuous with closed and convex
values. Define 1, : N(z) — 2P by

i) = { a(2), if z € N(z)N P,
: A(@)Napy(z), fz¢ N(z)\F,

then (i) for each z € N(z), it is easy to see that ¢(z) C 9! (z) and =z ¢ 4! (2), (i) the
mapping A N1py : N(z) \ FF — 20 defined by (A N 1p,)(2) = A(2) N4, (2) for each
z € N(z)\ F is upper semicontinuous with closed and convex values by Lemma 3.5.1. It
follows that the mapping . is also upper semicontinuous with closed and convex values
by Lemma 3.5.1 since N(z) \ F is open in N(z). This shows that ). is a {-majorant of
¢ at x.

Therefore ¢ is U-majorized. By Theorem 3.5.3, there exists a point & € col) C X such
that ¢(2) = 0. By the definition of ¢, either P(&) = () and & € A(Z) or A(E)YNP(E) =0
and £ ¢ A(%). O

The following is an equilibrium existence theorem for a qualitative game:

Theorem 3.5.5. Let I' = (X, P.):cs be a qualitative game such that for each i € /,

(a) X: is a non-empty convex subset of a locally convex topological vector space Iu;
and D; is a non-empty compact subset of X;;

(b) the set E' = {z € X : P,(z) # 0} is open in X;

(¢) Pi: B — 2Pi U {0} is U-majorized;

(d) there exists a non-empty compact and convex subset F; of D; such that /'; N
Pi(x) # 0 for each z € E'.
Then there exists a point z € X such that P;(z;) =0 forall i € /.

Proof. Since D; is a non-empty compact subset of X; for each 7 € /, the set

D = Il D; is also a non-empty compact subset of X. Now for each z € X, let
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I(x)= {1 € 1:Pz)# 0} Define a correspondence P : X — 2° U {0} by

Ple) = { NerwFi(e), if I(e) # 0,
0, if I(z)=10
where P/(z) = I1,4,,e1F, x P,(z) for each x € X
Then by condition (d) and definition of P, for each x € X with I(z) # 0, P(z) # 0.
Let = € X be such that P(z) # @ Fix an ¢ € I(x). By assumption (c), there exist
an open neighborhood N(z) of z in E* and ¢, : N(z) — 2P such that (i) for each
z € N(z), P(2) C d(z) avd m(2) ¢ ¢.(2) and (ii) ¢, is upper semicontinucus with
closed and convex values. Note that by (b), N(z) is also an open neighborhood of = in
X and for each z € N(z), P,(z) # 0 so that 2 € I(z) for each z € N(z). Now we define
®, : N(z) — 2P by &,(2) = .61 F) ® di(2) for each z € N(z). We observe that
(1) for each z € N(z), P(z) C P!(z) C ®,(2) and z ¢ ®,(z); (2) ¥, has closed and
convex values and (3) since I1,,,,¢,F, and ¢,(z) are compact for each z € N(z), it is
easy to see that @, is also upper semicontinuous. Therefore, ®, is a U{-majorant of P at
z. Thus P is U-majonized. Now by Theorem 3.5.3, there exists a point z € coD C X
such that P(z) = () which implies that P,(z) =@ foralli e /. O

Theorem 3.5.6. Let I' = (X,; A,, B;; P,).c; be a generalized game where I is any
(countable or uncountable) set of players such that for each i € I

(i) X; 1s a non-empty compact and convex subset of a locally convex topological vector
space [7;;

(ii) for each = € X, A,(z) is non-empty, A,(z) C B,(z) and B,(z) is convex;

(in) the set ' = {x € X : A,(z) N P(z) # 0} is paracompact (which is satisfied if
X is metrizable) and open in X;

(w) the mapping A, N P, : X — 2% U {0} is U-majorized on E'.
Then I' has an equilibrium point, i.e., there exists a point @ € X such that 7,(z) € B,(z)
and Ay(x) N Pi(x) =0 foralli e 1.

Proof. Let Iy = {1 € I : E' # {}. Suppose Iy = ). Then for each i € I and for
each & € X, A,(x) N P(x) = 0. Define B: X — 2¥ U {0} by B(z) = N;e;B,(z) for

each » € X. Since each B, has a closed graph, it is easy to see that B also has a closed



graph. Since X is compact, 3 is upper semicontinuous. By the Fan [97] and Glicksberg
[127] fixed point theorem, there exists & € X such that & € B(&), t.e., m;(&) € B;i(&) for

all 7 € I. Thus we may assume without loss of generality that [y # ().

Case [: For each 1 € Ig, bv (iv) and Lemma 3.5.2 (note that the set X7, being
compact Haudorff, is normal), there exists a mapping 1; : E' — 2% U {h} which is
upper semicontinuous with closed and convex values such that A;(x) N 7;(x) C oila)
and 7;(z) ¢ th;(x) for each © € E'. Since B; : X — 2% U {0} is upper semicoatinuous
with closed and convex values, the correspondence 1); N\ B; : £ — 2% \ {0} is also upper
semicontinuous with non-empty closed and convex values by (ii) and Proposition B.111.2

of Hildenbrand [147, p.23-24]. Define a correspondence ¢; : X — 2%\ {#}} by

()= | B, fog I,
He= { (BN B)(=), s e B

Then Lemma 3.5.1 implies that ¢; is upper semicontinuous with non-empty closed and

convex values.

Case 2. For each i € I\ Iy, we define a correspondence ¢; : X — 2% U {0}
by ¢:(z) = Bi(x) for each x € X. Then ¢; is upper semicontinuous with non-empty
compact and convex values.

Now define the correspondence W : X — 2% by W(x) = ll;¢;¢i(x) for each w € X
Then W is also upper semicontinuous with non-empty compact and convex values. By
the Fan [97] and Glicksberg [127] fixed point theorem again, there exists a point x: € X
such that © € W(z). If there exists : € Iy such that « € 156, then mi(x) € ¢i(x) =
Bi(x) N pi(x) C bi(z) which is a contradiction; it follows that = ¢ 15 for all 4+ € 1,
Hence we must have m;(2) € B;(z) and A;(z)N Pi(x) =B foraliie /. O

It seems natural to replace the condition (iii) of Theorem 3.5.6 by the condition ¢ lhe
sel B' = {z € X : Ai(z) "\ Pi(z) # B} is closed in X"; however the following simple

example shows that this can not be done:
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Example. Let X = [0, 1] and define A, B, P: X — 2X U {0} by

[1/2,1], if z €[0,1/2),
B(z) = A(z) = { [0,1], if 2 =1/2,
0,1/2], ifz e (1/2,1].

and

P(a) = { {e/4), fzelp)

0, if z € [0,1/2).

It i1s easy to see that A and P are both upper semicontinuous with closed and convex
values and = ¢ P(z) for each € X; thus AN P is U-majorized. Note that the subset
F={zeX:A(x)nP(x)#0} =[1/2,1] is closed in [0,1] and A, B and P satisfy
the hypotheses (i), (ii), (iv) but not (i) of Theorem 3.5.6. However, at the unique fixed
point 1/2 of the correspondence A, we have A(2)N P(3) = [0,1]N{1/8} # 0. Thus the
generalized game ([0, 1]; A, B; P) has no equilibrium point.



3.6 Equilibria for U-Condensing Mappings

In this section, we shall prove some existence theorems for maximal clements for W-
condensing correspondences which are either K Fz-majorized or ¢{-majorized and whose
domain are non-compact sets in locally convex topological vector spaces. As an applica-
tion, we obtain an existence theorem for equilibrium points for a one-person game from
which an existence theorem for N-person games is derived. Finally, we give an existence
theorem equilibria of generalized games with a countable or uncountable set of players
such that the intersection of constraint and preference correspondences are If-majorized

and constraint correspondences are W-condensing.

The object of this part is to present a method for proving the existence of maximal
elements and equilibria of generalized games which enables one to remove altogether the
compactness (or paracompactness) assumption on the domain (and /or codomain) of the
preference and constraint correspondences. This is done by strengthening the assumptions
on the preference or constraint correspondences. The basic idea underlying the method
may be explained as follows.

Let X be a non-empty subset of a locally convex topological vector space fi. We
introduce a function ¥ : 2¥ — R which assigns to each relatively compact subset [ of
X the value zero, and call it a measure of non-compactness. Intuitively, W() measures
how far a set is from being relatively compact. The larger the value ¥(D) the “more
non-compact” a set D is in X. Now a multivalued map 7 : X — 2FU {0} is said to be W-
condensing if for each subset D that is not relatively compact, we have W(7'(D)) < W(D).

It should be noted that if T : X — 28 U {#} is a compact mapping (i.e., if 7'(X)

1

is contained in a compact subset K of £), then th= mapping 7' is automatically -
condensing for any measure of non-compactness.

Let X be a non-empty set; a mapping P : X — 2% U {0} is acyclic (e.g., see
Bergstrom [30, p.403)]) if for each n € N with z;4y € P(z;) fori =1,2,--- n— | implies
that z; ¢ P(z,).

Let C denote a lattice with a least element (). We now also recall some definitions

Fa . F
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introduced by Fitzpatick and Petryshyn [172].

Let X be a locally convex topological vector space. Then a mapping ¥ : 2X — C'is
called a measure of non-compactness provided that the following conditions hold for any
A, B e 2X:

(1) W(A) = 0if and only if A is precompact (i.e., it is relative compact);

(2) W(zoA) = W(A), where cGA denotes the closed convex hull of A;

(3) ¥(AU B) = maz{¥(A), ¥(B)}.

It follows from (3) that if A C B, then ¥(A) < ¥(B). The above notion is a
generalization of the set-measure of non-compactness of Kuratowski [198] and the ball-
measure of non-compactness of Sadovskii [257] defined either in terms of a family of
seminorms when X is a locally convex topological vector space by Gohberg et al [129] or
in terms of a single norm when X is a Banach space.

Let W : 2¥ — C be a measure of non-compactness of X and D C X. A mapping
T: D — 2% is called ¥-condensing provided that if 0 C D and U(T'(Q)) > ¥(N), then
1 is relatively compact.

Note that if T': D — 2% is a compact mapping (i.e. T(D) is precompact), then T is
W-condensing for any measure of non-compactness ¥. Various W-condensing mappings
which are not compact have been considered by Borisovich et al [35], Gohberg et al [129]
and Furi and Vignoli [121]. Moreover, when the measure of non-compactness ¥ is either
the set-measure of non-compactness or ball-measure of non-compactness, W-condensing

mappings are called condensing mappings, e.g., see Nussbaum [237].

Throughout the rest of this section, £ denotes a locally convex topological vector
space, 1D denotes a non-empty closed convex subset of F, C denotes a lattice with a least

element 0 and W : 26 — (' denotes a measure of non-compactness.

Lemma 3.6.1. If T': D — 2P U {0} is W-condensing, then there exists a non-empty
compact convex subset K of D such that T'(x) C K for each z € K.

Proof. Let x¢ be an element of D and consider the family F of all closed convex
subsets (' of D such that z¢ € C and T'(z) C C for each z € C. Clearly F is non-empty.

Let (Uy = NgerC. Then Cy is a non-empty closed and convex subset of D and z, € C,.
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If z = Co, then T(z) C C for all C € F so that T'(z:) C Co.

Now we shall prove that Cj is also compact. Let C; = @o({xzo} UT(Cy)). Then
Cy C Gy, which implies that T(Cy) C T(Cy) ¢ Cy. Thus C; € F and hence G, C ().
Therefore Cy = C,. Hence,

W(Co) = W(Ch) = W@ ({0} UT(Co))) = W({xa} UT(C))
= maz{¥({zo}), ¥(T(Co))} = ¥(T'(Cy))
so W(Cp) < (T(Cop)) which implies that Cg is compact. O

Theorem 3.6.2. Suppose that T : D — 2P satisfies the following conditions:

(1) T is Y-condensing and T'(z) is non-empty convex for each z € D,

(2) for each y € D, the set T '(y) = {z € D :y € T'(x)} is compactly open in /).
Then T has a fixed point in D.

Proof. Since T is U-condensing, by Lemma 3.6.1, there exists a non-empty compact
convex subset K of D such that T': K — 2% For each y € K, 1""'(y) is also open in
K by (2). Now by the Fan-Browder fixed point theorem (Theorem 2.3.18), there exists
v € K such that z € T'(z). O

Theorem 3.6.3. Suppose that T' : D — 2P is upper semicontinuous and -
condensing such that T'(z) closed and convex for each & € D. Then 7' has a fixed
point.

Proof. Since T is a W-condensing, by Lemma 3.6.1, there exists a non-empty compact
convex subset K of D such that T : K — 2K is also upper semicontinuous with non-
empty closed and convex values. Now by the Fan-Glicksberg fixed point theorem in Fan

[97] or Glicksberg [127], there exists z € K such that z € T'(z). O

Theorem 3.6.2 and Theorem 3.6.3 generalize mant well-known fixed point theorems
in locally convex topological vector spaces, e.g., see Dugundji and Granas [91} and Reich
[248], Smart [280], Istratescu [162] and Zeidler [336].

We now prove the following theorem on the existence of a maximal element which
generalizes the corresponding result of Toussaint [315, Theorem 2.4] and of Yannelis and

Prabhakar [326, Corollary 5.1}.
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Theorem 3.6.4. Let 7 : D — 2P U {0} be W-condensing such that either (i) T
is U-majorized or (ii) T is K F-majorized. Then there exists a point £* € D such that
T(e")=0.

Proof. Suppose T'(z) # @ for all z € D. By Lemma 3.6.1, there exists a non-empty
compact convex subset K of D such that T': K — 2K if assumption (i) holds, then
by Lemma 3.5.2, there exists an upper semicontinuous mapping S : K — 2% such that
for each z € K, S{z) is non-empty closed and convex, T'(z) C S(z) and z ¢ S(z). But
then by the classical Fan-Glicksberg fixed point theorem ([97] or [127]), there exists a
point & € K such that z € S(z) which is a contradiction. Now if assumption (ii) holds,
since T' is K Fg-majorized, by Lemma 3.2.2 (see also Lemma 2 of Ding and Tan [84]),
there exists a map S : I - » 2% such that (a) T'(z) C S(z) for each & € K, (b) S™'(y)
is open in K for each y € K and (c) = ¢ coS(z) for each z € K. By Lemma 3.2.1
(see also Lemma 5.1 of Yannelis and Prabhakar [326]), (coS)~!(y) is also open in K for
each y € K. Then by the Fan-Browder fixed point theorem (e.g., see Browder [42]),
there exists a point & € K such that r € coS(z) which is a contradiction. Therefore the

conclusion must hold. O

We now also have the following extension of a theorem of Bergstrom [30] to a locally

convex topological vector space and a non-compact setting.

Theorem 3.6.5. Suppose P : D — 2P U {(} satisfies the following conditions:

(1) P is W-condensing;

(i) P~'(y) is compactly open for each y € D;

(iif) P is acyclic.

Then there exists z* € D such that P(z*) = 0.

Proof. By Lemma 3.6.1, there exists a ncn-empty compact convex subsst K of D
such that P : K — 2K U {0}. Clearly, the restriction P|x of P to K is also acyclic and
has open inverse images Therefore the conclusion follows from Bergstrom’s theorem |30,
p 403). O.

As an application of Theorem 3.6.4, we shall first prove the following existence theorem
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for equilibrium points for a one-person game.

Theorem 3.6.6. Let A, B, P: D — 2P U {0} be such that
(i) An P is K Fp-majorized,
(i) for each 2 € D, A(=z) is non-empty and coA(z) C B(x) and for each y € D,
A~(y) is compactly open in D;
(iii) B is ¥-condensing.
Then there exists z € D such that z € B(z) and A(z) N P(x) = 0; that is, the one
person game (D; A, B; P) has an equilibrium point.
Proof. Let F = {# € D : z € B(x)}, then F is closed in . Define A : D —
2D U {0} by
Az) = { A(z)N P(x), fxel,
A(z), ifz ¢l
Suppose A(z) # 0. If z ¢ F, then D\ F is an open neighborhood of z in D such that
for each z € D\ F, z ¢ B(z). Now define &, : D — 2P U {0} by &,(z) = A(z) for
each z € D and N, = D\ F, then N, is an open neighborhood of & in D such that

(i) A(2) C ®,(2) and z ¢ co®,(z) for each z € N,, and
(it) @7 (y) = A~ (y) is compactly open in D.

Therefore @, is an K ['c-majorant of A at 2. On the other hand, if x € [7, then /\(:r:) =
A(z)NP(z) # 0. Since ANP is K Fz-majorized, there exist an open neighborhood N, of
z in D and a correspondence @, : D — 2P U {0} such that A(z) = A(2)N P(z) C ¥,.(2)
and z ¢ co®,(z) for each z € N;, and ®;!(y) is compactly open in D for each y € D.
Define the map ¢’ : D — 2P U {0} by

&' (2) = A(z)Nd,(2), fze€ I’j’,

A(z), if 2 ¢ .
Note that A(z) C ®.(z) for each z € N,. It is easy to see that z ¢ cod’(z) for all
z € D. Moreover, for any y € D, the set (¢,)"'(y) = [, ' (y) U(D\ F)INn A~ (y) is
compactly open in D. It follows that ¢/ is a K F;-majorant of A at the point . Hence

A is a K Fo-majorized correspondence.
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Since A(z) C A(z) C B(z) for each z € D, and B is W-condensing by condition (ii),
A is also W-condensing .

Now By Lemma 3.6.1, there exists a non-empty compact convex subset K of X such
that A: i — 2K U {0}. Clearly, the restriction A|x of A to K satisfies all hypotheses of
Theorem 3.6.4. By Theorem 3.6.4, there exists z € I{ C D such that A(z) = 0. Since
A(z) # 0, we must have = € B(z) and A(z)N P(z) =0. O

Let / be a finite set and X; be a topological space, and X = Il;¢;X;. For a given
correspondence A; : X — 2%, define a mapping AL : X — 2% by Al(z) = {y € X :
y; € Ai(z)} = n71(Ai(z)) for each z € X, where 7; : X — X; is the projection. Then
it is easy to see that A! is of class K Fi; if and only if for each z € X, z; ¢ Ai(z) and
A7'(y) is compactly open for each y € X

From Theorem 3.6.6, we shall now derive another existence theorem for equilibrium

points for N-person games, where N > 1.

Theorem 3.6.7. Let (X;; A;, B;; P;)Y., be an N-person game. Suppose for each
i=1,2,,N.

(1) X; is a non-empty closed convex subset of a locally convex topological vector space
i

(ii) for each x € X, Ai(z) is non-empty and coA;(z) C B;(z);

(iil) for each y < X;, A7'(y) is compactly open in X;

(iv) Ain P : X — 2% U {0} is of class K F, where Al(z) = 77'(Ai(z)) and
P{(x) = =7 ' (Pi(x)); and

(v) the mapping B : X — 2% defined by B(z) = ITY,Bi(z) for each z € X is
W-condensing (where £ = 1Y E;).

Then there exisis € X such that for each : = 1,2,---,N, z € B;(z) and A;(z) N
Pi(x) = 0; that is, the N-person game (X;; A;, B;; P,~),-’\;1 has an equilibrium point.
Proof. For each & € X, let I(z) = {: € I : Ai(x) N Pi(z) # 0}. Define the



correspondences A, B, P : X — 2% U {0} by A(x) = ¥, A;(x), B(x) = T, Bi(x) and

P(z) = { N Pl(@), if 1() 0,
0, if I(z)=0

for each z € X. Since B: X — 2% U {0} is U-condensing, by Lemma 3.6.1, there exists
a non-empty compact and convex susbet I of X such that B{xz) C K for each z € K.
By (ii), it follows that the A is also a self-mapping on K.

The condition (iii) implies that A='(y) N K = N, (A7 () N K) is open in A" for
eachy € K. In order to apply Theorem 3.6.6, it remains to prove that the correspondence
ANP: K — 2N U {0} is K Fg-majorized.

Suppose x € K and (AN P)(z) # 0; then [(x) # 0. Choose any y € A(z) N P(x),
then = € Mies A7 (1) N Nica@y P () N K C Niea@y((ASN P (y) N K) := N, which
is an open neighborhood of = in K by (iv). Note that if z € N,, then /(z) C /(=)
since for each i € I(z), y € (Al N P!)(z), we have y; € Ay(z) N P,(z) so that i € I(=).
Now fix any iy € I(z). Define Py,v, : K — 28 U {0} by Pi(z) = P(z) N K and
Ps(2) = A} (2) N P, (z) N K for each z € K, then by (iv) again, 1), is of class K [ (in
fact, KF') and for each z € N,, since A(z) C B(z) C K,

A(z)NP(z) = A(z)N Pr(z) = Tt Ai(2) N Nigiw) Pl (z) N K
C 77 (An(2) N 75 (PU)) O K = Ay (2) 0 Pl 0 K
= 1,(2)

Thus v, is a K Fg-majorized of ANP at 2. Thus the mappings A, P, B : K — 2KU{0)}
satisfy all the hypotheses of Theorem 3.6.6. By Theorem 3.6.6, there exists z, € K such
that o € B(zo) and A(wo) N Py (z0) = 0. Since 2y € K and A(x,) C K, it follows that

t(20) N Px0) = A(zo) N P(zo) N K = A(zg) N P (o) = 0. Note that B = ;¢ B;
has a closed graph, we have B(z) = B(z) for each z € K and also '(zy) = {). Hence

the conclusion follows. O

The following is an existence theorem for equilibrium points of generalized games in

which the intersection of constraint and preference correspondences are U{-majorized and
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constraint correspondences are W-condensing. We emphasize that the set of players need

not be finite.

Theorem 3.6.8. Let G = (X;; A;, Bi, P,):c1 be a generalized game where [ is any
(countable cr uncountable) set of players such that

(a) for each = € I, X; is a non-empty closed convex subset of a locally convex
topological vector space E;;

(b) for each : € [ and for each z € X, A;(z) is non-empty and coA;(z) C Bi(z);

(c) for each + € I, the set £ = {z € X : (A; N P)(z) # B} is paracompact and
open in X;

(d) for each 2 € I, A; N P; is U-majorized ;

(e) the correspondence B : X — 2X defined by B(z) = Ili¢;Bi(x) for each z € X is
W-condensing (where £ = I1;¢;E;).

Then G has an equilibrium point in X, i.e., there exists a point & = (&;)ier € X such
that for each i € [, &; € B;(%) and A;{2) N Py(%&) = 0.

Proof. Without loss of generality, we may assume that B;(z) is convex for each
£ € X (otherwise replace B; by coA;). Since the correspondence B : X — 2% U {0} is
W-condensing, by Lemma 3.6.1, there exists a non-empty compact and convex subset K
of X such that B: K — 2K,

Let Bi. = KN E' foreachi € I. Let Iy = {i € I : Ei # 0}. f I = 0, then
i, =0 for all i € I so that (4;N P;)(z) = 0 for all z € K. On the other hand, since
B has a closed graph, B is upper semicontinuous on K. Also, B has closed and convex
values. Thus by the Fan-Glicksberg fixed point theorei.., there exists © € K such that
x € B(x). It follows that a; € B;(x) for all 2 € I and hence x is an equilibrium point of
G. Therefore we may assume that I, # 0.

For each i € I, let K; = m;(J); note that each K; is compact and convex and that
Bi(x) C K; for each z € K.

Case I: Suppose i € I. Note that Ej is paracompact (e.g., see Theorem VII1.2.4
of Dugundji [89, p.165]) and open in K. By (d) and Lemma 3.5.2, there exists an upper

semicontinuous mapping 1; : Ej. — 2% such that for each = € Ei., (i) 1i(z) is closed
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and convex, (i) m;(x) & ti(x) and (iit) Ai(2)NPi(x) C hi(x). Since B; : K — 2N isalso
upper semicontinuous with closed and convex values, the mapping ; O B; : Ei. — 2/
is also upper semicontirtious with closed and convex values by Theorem 7.3.10 of Klein

and Thompson [189]. Define a correspondence ¢; : [ — 2" by

L) — Bi(x), if @ ¢ Ei.,
He) = { (i N Bi)(x), if x € Ej.

Then Lemma 3.5.1 implies that ¢; is upper semicontinuous with non-empty closed and

convex values,

Case 2: Suppose i € I\ Iy. Define a correspondence ¢ : K — 25 by ¢; = Ti(x) for
each z € K. Then ¢ is upper semicontinuous with compact and convex values.

Finally we define a correspondence ® : K — 2Mer®s by @(2) = I1;c;¢;(x) for each
z € K. Then ® is also upper semicontinuous and has non-empty compact and convex
values. Since ®(z) C B(x) C K foreach z € K, & : K — 2N is in fact a self-map on
K. Now the Fan-Glicksberg fixed point theorem again implies that there exists a point
z € K such that z € ®(z). It follows that 7;(z) € B;(x) for all & € I. If there exists
i € Ip such that z € Ei., then m;(z) € ¢i(z) = Bi(x) N4hi(x) C hi(x) which contradicts
(ii). Therefore z ¢ Ej; for all « € Io. Hence we also have A;(z)N Pi(x) =) forall i € [.
O
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3.7 Equilibria in Frechet Spaces

Until now, we have given a number of existence theorems for equilibria of N-person games,
qualitative games and generalized games in H-spaces, topological vcetor space and locally
~onvex topological spaces. In this section, the underlying spaces of generalized games are
Frechet spaces and we shall obtain existence theorems for generalized games by Michael's

selection theorems in [222].

Theorem 3.7.1. Let G = (X,; A,; P,).c; be a generalized game and X = II,¢/X,
be paracompact, where / is any (countable or uncountable) set. Suppose that for each
¢ € 1, the following conditions are satisfied:

(1) X, 15 a non-empty closed and convex subset of a Frechet space E,;

(ii) A, is lower semicontinuous with non-empty closed convex values;

(ii1) the mapping A : X — 2% defined by A(z) = II,¢;A.(z) is U-condensing for each
z € X = I,¢;X,, where C is a lattice with a least element 0 and ¥ . 2herBs , O s a
measure of non-compactness;

(iv) for each z € X, m,(z) ¢ A.(z) N P(x);

(v) the set U, := {& € X : A,(z) N P,(z) # 0} is closed in X.

(w) the mapping A, N P, is lower semicontinuous on U, such that for each z € U;,
A.(z) 0 P(x) is closed and convex.

Then there exists »* € X such that for each i € I, 7,(z*) € 4,(z*) and
Al(z™) N P(z*) = 0.
Proof. Fix an ¢ € /. Define F, : X — 2% by

Az L), if 13
Fifs) = (z)NP(z), ifzel
Ai(z), if z ¢ U..

By Lemma 2.5.1, F, is lower semicontinuous with non-empty closed and convex values.
Then by Michael's selection theorem [222, Theorem 3.2”] and Remark of Aubin (7, p.551]),
there exists a continuous map f, : X — X, such that f,(z) € F,(z) for each z € X.
Now define f: X — X by f(x) = {f.(z)}.c1 for each x € X. Then f is continuous
and f(z) € F(z) = M F(x) C M,ejA(z). Since A is U-condensing, it follows that
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[ is also W-condensing. Since X = Il;;X; is a non-empty closed and convex subset of
the locaily convex topological vector space [l;¢;F;, [ satisfies all hypotheses of Theorem
2.6.3. By Theorem 2.6.3, there exists ©* € X such that f(z~) = «*. Note that for each
i € I,ifa} € Ui, then my(z*) = fi(z*) € Ai(z*)N Pi(z*) which contradicts (iv). Hence for
each 7 € I, we must have m;(z*) ¢ U; and thus 7;(2*) € A;(2*) and A;(z*)N Pi(x*) = 0.
O

We also have;

Theorem 3.7.2. Let G = (X;; A;; P,)ics be a generalized game, where [ is any set.
Suppose for each ¢ € [, the following conditions are satisfied:

(i) X; is a non-empty closed and convex subset of a Frechet space £;;

(i) A; is upper semicontinuous with non-empty closed convex values;

(iii) the mapping A : X = Il;c;X; — 2% defined by A(z) = Il;c;Ai(x) for each
x € X is W-condensing, where O is a lattice with a least element 0 and W : 2'berts — (7
is a measure of non-compactness;

(iv) the set U; = {z € X : Ai(z) N P(x) # 0} is paracompact and open in X;

(v) the mapping A; N F; is lower semicontinuous on U; such that for each u &€ [/,
Ai(z) N Pi(z) is closed and convex.
Then there exists 2* € X such that for each « € I, either m;(2*) € Ai(x*) N Pi(z*) or
mi(z*) € Ai(z*) and A;(z*) N Pi(z*) = 0.

Proof. Fix ani € I. By (v), Theorem 3.2” of Michael [222] and Remark of Aubin
[7. p.551], let f; : U; — X; be a continuous function such that f;(z) € A;(z)N P(x) for
each 2 € U;. Define F;: X — 9% by

{fi(z)}, fzeU;

he) = { Az),  #a gl

then by (ii), (iv) and Lemma 2.5.1, F; is upper semicontinuous with closed convex values.
Now we define F': X — 2% by F(z) = Il;¢;F,(z) for each z € X. Then F is upper
semicontinuous with closed convex values and F(z) C A(x) for each « € X. Since A is

W-condensing, F' is also W-condensing. Therefore by Theorem 2.6.3, there exists * € X
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such that z* € ['(z*). It follows that for each ¢ € I, either m;(z*) € Ai(z*) N P;(z*) or
mi(z*) € Ai(z) and Ai(z™) N Pi(z*) = 0. O

Note that if the set / is countable, the set U; = {z € X : A;(z) N Pi(z) # 0} is a
subset of a metrizable set X = Il;c; X; so that U; is automatically paracompact for each
i€ 1.

By Theorem 3.1" of Michael [222, p.368] instead of his Theorem 3.2” [222, p.367],
the same argument used in proving Theorem 3.7.1 and Theorem 3.7.2 can likewise be

used to prove the following:

Theorem 3.7.1'. Let G = (X;; Ai; P.)ies be a generalized game and X = Il X;
be paracompact, where [ is any (countable or uncountable) set. Suppose that for each
i € I, the following conditions are satisfied:

(i) X; is a non-empty closed and convex subset of a finite dimensional space E;;

(i) A; is lower semicontinuous with non-empty convex values (but not necessarily
closed);

(iii) the mapping A : X — 2% defined by A(z) = Tl;¢;Ai(z) is U-condensing for each
x € X = [l X;, where C is a lattice with a least element 0 and ¥ : oMerE;  (Cis a
measure of non-compactness;

(iv) for each z € X, mi(z) ¢ Ai(z) N Pi(x);

(v) the set U; := {z € X : A(z) N P(z) # 0} is closed in X.

(vi) the mapping A; N P; is lower semicontinuous on U; such that for each z € U;,
Ai(x) 0 Pi() is convex (but not necessarily closed).

Then there exists 2 € X such that for each i € I, m;(z*) € Ai(z*) and Ai(z*)NP;(z*) =
0.

Theorem 3.7.2'. Let G = (X, Ai, P.)ics be a generalized game where [ is any set.
Suppose for each 2 € I, the following conditions are satisfied:

(i) X; is a non-empty closed and convex subset of a finite dimensional space E;;

(i) A; is upper semicontinuous with non-empty closed convex values;

(i) the mapping A : X = [1;¢;X; — 2% defined by A(z) = Ilic;Ai(z) for each
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z € X is W-condensing, where C is a lattice with a least element 0 and W : 2!ber®s — (7
is @ measure of non-compactness;

(iv) the set U; := {x € X : A;(z) N Pi(x) # 0} is paracompact and open in X

(v) the mapping A; N P; is lower semicontinuous on {/; such that for each « € U/},
Ai(z) N Pi(z) is convex (but not necessarily closed).
Then there exists z* € X such that for each ¢ € I, either (™) € Ay(x") N Py(r™) or
mi(z*) € Ai(z*) and A;(2*) N Pi(z™) = 0.

As an application of Theorem 3.7.2', we have the following:

Corollary 3.7.3. Let I be any set. For each 7 € I, let X; be a non-empty compact
convex subset of a finite dimensional space [; and P; : X = [l;c; X; — 2% U {0} be
lower semicontinuous on the set U; = {x € X : Pi(z) # (1} such that for each «: € l/;,
P:(z) is convex. If for each i € I, U; is paracompact and is either open or closed in X,
then there exists 2* € X such that for each i € I, either 7;(x*) € Pi(x*) or P;(x*) = 0.

Proof. For each i € I, let A; : X — 2% be defined by A;(x) = X; for each
x € X. Then A; is continuous with closed convex values and A; is also W-condensing
since X = Il;¢;X; is compact. Therefore by Theorem 3.7.2, there exists v* € X such
that for each i € I, either 7;(2*) € Pi(z*) or Py(z*) = 0. O

Corollary 3.7.3 generalizes Theorem 1 of Barbolla [16] which in turn improves the fixed
point theorem of Gale and Mas-Colell [124] and Florenzano [114] in the following ways:
(1) the index set I need not be finite and (2) for each + € [, U; is either open or closed
instead of U; being open for all 7 € I or U; being closed for all + € /. We remark that
our argument in proving Theorem 3.7.2 is different from that of Barbolla [16]. Finally we
note that the results in this section improve or generalize the results of Mehta [219] in the
case that the set / of agents (or players) is any (countable or uncountable) set instead of

a countable set.
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3.8 Equilibria in Finite Dimensional Euclidean Spaces

The purpose of this section is two fold: (1) we first obtain some sufficient conditions for
the intersection of two lower semicontinuous mappings to be again lower semicontinuous
and (2) by applying Michael's selection theorem [222], a fixed point theorem is derived
and is applied together with earlier results on intersection of lower semicontinuous maps to
obtain existence theorems for equilibrium points of a generalized game and of a qualitative
game.

We introduce some notation. Let £ be a vector space and A C E. We shall denote
by aff(A) the affine span of A. A is said to be finite dimensional if A is contained in a
finite dimensional subspace of E. If E is a topological vector space and A C E, ri(A)
denotes the relative interior of A in aff(A).

First we observe that the proof of Proposition 1.1 of Marano [214, p.286] actually pro-
duced the following slightly strengthened version (where the original assumption that ¢ is
lower semicontinuous is replaced by the weaker assumption that ¢ is lower semicontinuous

at so):

Lemma 3.8.1. Let S be a topological space and ¢ : § — 2B" be a map with
non-empty convex values. If there exists s € S such that ¢ is lower semicontinuous at sq
and Ogn € intg(sg) where Ogn is the zero vector in R™, then there exists a neighborhood

/o of 54 in S such that Op» € intg(s) for all s € Up.

Since the translation of a map (respectively, convex set, open set) preserves its lower
semicontinuity at a point (respectively, convexity, openness), Lemma 3.8.1 is equivalent

to the following

Lemma 3.8.1". Let S be a topological space and ¢ : § — 2R" be a map with
convex values. Suppose ¢ is lower semicontinuous at some so € 5 and yo € intg(zo),

then there exists a neighborhood Uy of sq in .S such that yo € inté(s) for all s € Uy .

By slightly modifying the proof of Lemma 1 of Monteiro [223], we formulate the

following:
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Lemma 3.8.2. Let S be a topological space and ¢ : § — 2R" U {0} be a map with
convex values. Suppose ¢ is lower semicontinuous at some zo € S and B(yo, t) C ¢(x0)
where B(yq,t) is the open ball of positive radius ¢ centered at y,. Then for any number
r with 0 < r < ¢, there exists a neighborhood Uj of zo such that B(yo,r) C ¢(x) for all
x € Up. In particular, if ¢ is open-valed, then ¢ has an open graph.

Proof. By restricting ¢ to the set {x € X : ¢(z) Ninte(x,) # §i; which by the lower
semicontinuity of ¢ at 1, is an open neighborhood of o in S. We may assume without
loss of generality that ¢ is non-empty valued. Choose any »’ with r < 1’ < {, then we have
B(yo, ) C B(yo,t) C ¢(x0) where B(yo, ) is the closure of B(yo,r') in R®. Note that
B(yo, ") is compact. Choose any € with 0 < ¢ <1’ —r. Let {B(yi,¢/2) :i=1,--,m)
be a finite cover of B(yo, ') with y; € B(yo,') forall i = 1,---,m. By Lemma 3.8.1,
there exists an open neighborhood U, of 24 in S such that y, € intp(z) for all © € Uy;
in particular, inté(z) # @ for all € U;. By lower semicontinuity of ¢ at x, again, there
exists an open neighborhood U of g in .S such that for each z € Uy, ¢(x)NB(yi, ¢/2) # 0
forallz = 1,---,m. By replacing Uy by Uy N Uy, we may also assume that U/, C U/;. Now
given any non-empty subsets A and B of R™, define ¢(A, B) = sup{d(«, B);a € A},
where d is the Euclidean metric on R™ and d(a, B) = inf{d(a,b) : b € B}. It is easy to

see that for each z € U,,
e(Blyo,1"), #(2)) < e(ULL, By, ¢/2), d(a)) < .
By the Lemma of [223], for each z € U,
d(yo, R\ B(yo,")) < d(yo, R"\ ¢(x)) + e(B(yo, '), $()),
so that
d(yo, R™\ ¢(1)) > d(yo, R \ B(HOJ")) - ‘3(3(1'/0,7")a ‘/’(-”’)) > —e>r

It follows that B(yq,r) C ¢(z) for all z € Uy. O

Remark 1.1 of Marano [214, p.287] shows that Lemma 3.8.2 does not hold if ¢ takes

its values in an infinite dimensional Hilbert space.
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Now let X and Y be topological spaces and 1, ¢ : X — 27 be lower semicontinuous.
We observe that if Graph ¢ is open in X x Y, then it is shown in Yannelis [325, Lemma
4.2] that ¢ N =) is also lower semicontinuous. Clearly, if Graph ¢ is open in X x Y, then
¢ is open-valued. The following example shows that (a) Graph ¢ need not be open in
X x Y even though ¢ is open-valued and (b) even when ¢(z) N4(x) # @ for all z € X,
if the condition “Graph ¢ is open in X x Y is weakened and replaced by the condition

“¢) is open-valued”, then ¢ N ) need not be lower semicontinuous:

Example 3.8.3. Let F, F, : [0,1] — 2[%'] be defined by
071 3 If r = 0,

A = 01 !
(0»1]\{1/n:n=2’3""7}’ |f.”l:#0

and

Fg(m)={ {0}, 'if:v=0;
{1/n:n=1,2,---}, faz#0.

Then it is easy to see that (i) F; and F, are lower semicontinuous, (ii) Graph Fj is not
open in [0, 1] x [0,1] and (iii) F; is open-valued such that for each z € [0, 1],

{0}, ifz=0;

{1}, ifz#0.

It follows that F} N F, is not lower semicontinuous.

Fi(z) 0 Fa(z) =

Theorem 3.8.4. Let S be a topological space and Fy, F : S — 2R" be lower
semicontinuous at o € 5 such that /| is open and convex-valued. Then F} N F; is also
lower semicontinuous at z.

Proof. Let U be an open subset of R™ such that Fi(zo) N Fy(zo) NU # . Choose
any yo € Fi(wo) N Fy(we) NU. Since Fi(zo) N U is open, yo is an interior point of
[\(x0)NU. By Lemma 3.8.2, there is an open neighborhood V; of ¢ in S and r > 0 such
that B(yo,r) C Fy(x) for all 2 € V;, where B(yo,7) is an open ball in R* of radius r and
centered at y,. Since U is open in R™, we may assume without loss of generality that
B(yo,) C U. Since F, is lower semicontinuous at zo, there is an open neighborhood
Vy of o in S such that Fy(z) N B(yo,r) # 0 for all z € V;. Let V = V; N V4, then



V is an open neighborhood of g in S such that for each = € V, Fi(z) N MHy(x)nl D
Fa(z) 0 B(yo,r) # 0. Hence Fi N F; is lower semicontinuous. O

We note that Theorem 3.8.4 is different from Theorem B of Lechicki and Spakowski
[203, p.121] in the following ways: (a) int(F} N F3)(wo) is not required to be non-empty,

but (b) the mapping F is required to have open values.

The following example from Lechicki and Spakowski [203, Example 3] shows that even
if F, has closed (or open) convex values, the conclusion of Theorem 3.8.4 fails to hold if

R" is replaced by an infinite dimensional Banach space:

Example 3.8.5. Let Y = [, the Banach space of all bounded sequences z =
(2,)22; of real numbers with ||z||s = sup, ey |#n] < 00 and S = [0, 1]. Define GGy, G; :
S —2Y by

Gi(t)={z €Y :z >tz < k—1fork>2)

and
Gyt)={z €Y oy <1 -tz <k(l—mz — ) and @, < k+ay/h— t/k for k > 2}.

Then G and G, are both lower semicontinuous at 0 with closed convex values and
inty (G1(0)NG2(0)) # 0, but G1 NG, is not lower semicontinuous at 0 (see Example 3 in
[14, p.122]). Now we define Fy, Fy : S — 2Y by Fy(t) = inty G (L) and (1) = inty Gy(1)
(or Ga(t)) for each t € S. Since

Fi{0) A F5(0) = (inty G(0)) N (inty G2(0)) = (inty Ga (0)) N G2(0) = G4(0) N Gp(0),

Fiy N F; is also not lower semicontinuous at ¢ = 0 by Proposition 7.3.3 of Klein and
Thompson [189] (or Proposition 2.3 of Michael [222, p.366]).

Theorem 3.8.6. Let S be a topological space and Fy, £, : S — 28" be lower
semicontinuous at zo € S such that for each z € .S, Fy(z) and F,(z) are both convex
and (intgn F(x)) N Fa(z) # B or Fy(z)N (intrn F3(x)) # O whenever F7y ()N Fy(x) # 0.

Then £1 N F; is also lower semicontinuous at zy € 5.
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Proof.Without loss of generality, we may assume that {intgn Fy(o)) N F2(zo) # 0.
Since [(zo) and Fy(zo) are convex, by Theorem of Dolecki [88, p.253],

(intpn Fi(z0)) N Fy(zo) = Fi(z0) N Fa(zo) = Fi(zo) N Fa(2o).

In order to prove ;N F), is lower semicontinuous at xy, it suffices to prove that (intgn F;)N
I, is lower semicontinuous at 5. Now let U be any non-empty open subset of R" such
that (intgn Iy (20)) N Fy(zo) N U # 0. Choose any yo € (intgn Fiy(zo)) N Fa(zo) N U.
Since intgn Fy(zg) N U is open, yo is an interior point of intgn (o) N U. Since Fy

is lower semicontinuous at z¢ and intgn F(zo) # 0, we have Fi(zo) = intgn Fi(xo).
Therefore intgn Fy is also lower semicontinuous at z,. By Lemma 3.8.2, there is an
open neighborhood V; of 20 in S and r > 0 such that B(yo,r) C intgruFi(z) for all
z € W, where B(yo,7) is an open ball in R" of radius r and centered at yo. Since U
is open in R™, we may assume without loss of gererality that B(yo,7) C U. Since F,
is lower semicontinuous at xg, there is an open neighborhood V; of xp in S such that
()N B(yo,r) # Bforallz € Vo, Let V = ViNV;, then V is an open neighborhood of z¢
in S such that for each z € V, (intgn Fy(z)) N F2(2) NU D Fy(z) N B(yo,) # 0. Hence
(intrn F1)N F; is lower semicontinuous at xg, so that F1 N F; is also lower semicontinuous

at . 0

Theorem 3.8.6 generalizes a result of Obukhovskii [238] (see also Borisovich et al 35,
Corollary 1.3.10, p.725].

Theorem 3.8.7. Let 5 be a topological space, X be a non-empty subset of a finite
dimensional topological vector space and Fy, F; : S — 93%(X) pe lower semicontinuous
at ¢y € 5. If for each © € S, Fi(z) is convex and open in aff(X), then F; N Fj is also
lower semicontinuous at xg.

Proof. Choose any a; € aff(X') and let Y =aff(X) —ao, then Y is a finite dimensional
topological vector space and is therefore topologically isomorphic to some R™. Define F},
[y 0§ = 2Y by 17',(:1:) = [ (x) - ao, 17’2(.1,) = Fy(z) —ao forall z € S. Then F; and £,
are lower semicontinuous at z, such that for each & € S, Fy(z) is convex and is open in

Y. By Theorem 3.8.4, 131 N Fy is lower semicontinuous at 2. It follows that FINFis
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also lower semicontinuous at z4. O
By using the same proof as in Theorem 3 8.7, we have the following.

Theorem 3.8.8. Let S be a topological space, X be a non-empty subset of a finite
dimensional topological vector space and Fy, I}, : § — 23f(X) e lower semicontinuous
at zo € S. If for each z € S, Fi(x) and Fy(z) are convex and ri( /7 (z)) N Fy(x) # 0
or Fi(x) Nri(Faz)) # @ whenever Fi(z) N Fy(xz) # @, then [, N 7, is also lower

semicontinuous at zg.
Next we shall prove a fixed point theorem as follows:

Theorem 3.8.9. Let I be a non-empty countable set. For each : € /, let C, be a
non-empty finite dimensional compact convex subset of a topological vector space I, and
F,: C:=11,¢/C, — 25 be lower semicontinuous such that

(a) Fi(z) is convex for each z € C;

(b) Fi(z) N ri(C,) # 0 for each z € C;

(c) Fi(C) c aff(C,).

Then the map F':= [l,¢;F, has a fixed point in C.

Proof. Let i € I be arbitrarily fixed. Define F : C — 25 by F'(z) = F(x) N ri(C)
for each z € C. Let A be an open subset of £, such that ri(C,) = aff(C.) N A. f B is
any open subset of E,, then by (c),

{reC:Fl(z) N B+#0} {zeC:F(x) nr(C) N B#0p}

{zeC:F(z)yn An B+

is open in C since F, is lower semicontinuous and AN B is open in [,. This shows that
F! is lower semicontinuous on ' Note that C is metrizable, being a countable product
of finite dimensional sets; thus C 1s perfectly normal. Also for each = € C, F/(z) is a
convex subset of C, which is contained in some Euclidean space. Hence by Theorem 3.1"
of Michael [222], there exists a continuous map f, : C — C, such that fi(x) € F)(x) for
all z € C.

e
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Now define / : C — C by f := [l,¢;/f., then fis continuous. Since C is a compact
convex subset of some locally convex space (in fact, a countable product of Euclidean
spaces), by the Schauder-Tychonoff fixed point theorem, there exists z* € C' such that
f(2*) = . It follows that z* = Tl,¢;f.(z*) € It F)(z*) C MerFi(z*) = F(z*); that
1s, I = Il;¢; F; has a fixed point in C. O

Corollary 3.8.10. Let X be a non-empty subset of a topological vector space E,
(; a non-empty finite dimensional compact convex subset of X and let F : X — 2F be
lower semicontinuous such that F(C) C aff(C) and for each 2 € C, F(z) is convex and
FPe)Nn(C) # 0. Then F has a fixed point in X.

Corollary 3.8.10 improves Theorem 1 of Cubiotti [68] where F' is assumed to have
closed values.

We remark that in Theorem 3.8.9: (i) If I = {1,2,---,n} 1s finite, then (I, X,) =
[1_,ri( X;); in this case, Theorem 3.8.9 can also be obtained from Corollary 3.8.10. (ii) If
! ={1,2,---,} is infinite and the set {j € I : X, is not a singleton set } is infinite, then
fi(”?il/\,j) = {}; in this case, Theorem 3.8.9 can not be deduced from Corollary 3.8.10.
Thus Theorem 3.8.9 is a true generalization of Theorem 1 of Cubiotti [68].

We shall also need the following affine version of Corollary 6.3.2 of Rockafeller [253,
p.46]:

Lemma 3.8.11. Let (' be a non-empty convex subset of a finite dimensional topo-
logical vector space £. Then every open set in aff(C') which meets c/C also meets ri(C).

Proof. Choose any ag € aff(C) and let Y = aff(C')—ao, then Y is a finite dimensional
topological vector space and is therefore topologically isomorphic to some R”. Let U be
an open set in aff(C) such that U N clg(C) # 0. Then U — ay is open in Y and
B # (17 —ag) N (cl(C) — ag) = (U — ag) N cl(C — ag). By Corollary 6.3.2 in [253, p.46],
(I = ag) Nri(C = ag) # 0. As 1i(C — ao) = ri(C) — ao, it follows that U Nri(C) # 0. O

We shall now prove the following existence theorem for an equilibrium point of a

generalized game.
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Theorem 3.8.12. Let § = (X; A, B,; P.).e; be a generalized game where [ is
countable Suppose that for each : € I, the following properties hold

(1) X, is a non-empty subset of a topological vector space F,.

(2) A, B, : X =11,¢;X, — 2% are lower semicontinuous such that coA;(.z)
C Bi(z) for each z € X.

(3) P, : X — 2% U {0} is lower semicontinuous on [),, where I); = {r € X :
P(z)N A,(z) # 0} is closed in X

(4) There exists a non-empty finite dimensional compact convex subset C; of .X; such
that (a) for each € C := [,¢/C,, P(z) is open i aff(X,), (b) for each & € C,
coA,(z) N ri(C,) # 0, (c) for each x € C N Dy, coP.(x) N coA(x) N C; # 0 and (d)
coA,(z) C aff(C,).

(5) For each z € C, m.(z) ¢ coP.(z).
Then G has an equilibrium point z* in C.

Proof. Fix an arbitrary : € I. Define F, : C' — 25 by

F(2) coP,(z) NeoA,(x), faxeCnD;
41 .'E frovend
coA(z), fag CND;.

Since A, and P, are lower semicontinuous, coA, and col’; are lower semicontinuous
Since for each 2 € C, coP.(z) is convex and openin aff(X,) by (4)(a), the map = +—
coA,(x) N coP,(z) is also lower semicontinuous on C' by Theorem 3 8.7 Since C'N D; 1s
closed in C, F, is lower semicontinuous by Lemma 3.5.1. Moreover, we have

(1) Fi(x) 1s convex for each z € C;

(i) F,(C) C coA,(C) C aff(C,) by condition (4)(d).
Now we shall show that F,(z) Nri(C,) # § for each z € (. Indeed, if z € (/' \ 1),
then Fi(z) N n(C,) = coA,(z) Nri(C;) # ¢ by (4)(b). Suppose z € ' (1 D,, then by
(4)(c), coPi(z) N coA,(x) N C, # ; as coP,(z) N aff(C,) is open in aff(C;) by (4)(a),
coP,(z) Nri(coA,(z) N C,) # § by Lemma 3.8.11. Also, it follows from coA;(z)NC, # 0
that ri(coA.(x) N G,) = ri(coA,(z)) N ri(C,) by Theorem 6.5 in [20, p.47]. Thus

b # coP(z)Nri(coA(z)NC,)
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= coP,(z)Nri(coA.(z)) Nn(C,)
C coPi(z)NeoA(z)Nri(C) = F(z)Nri(C,).

This shows that all hypotheses of Theorem 3.8.9 are satisfied so that there exists z* € C
such that 2~ € [l,¢;Fi(z"). By (5), we must have z” ¢ D, and m,(z") € coA,(z*) fer all
v € I It follows that for each ¢ € /I, 7,(z*) € B,(z") by (2) and P,(z*) N A,(z*) = 0.

Hence .* 1s equilibrium point of G. O
As a special case of Theorem 3.8.12, we have the following result.

Theorem 3.8.13. Let G = (X,; A,, B,; P.):cr be a generalized game where [ is
countable Suppose that for each » € I, the following properties hold:

(1) X, is a non-empty compact convex subset of a finite dimensional topological vector
space.

(2) A;, B, : X = I1,¢;X, — 2% are lower semicontinuous such that coA,(z)
C B,(z) for each z € X.

(3) P, : X — 2% U {0} is lower semicontinuous on D,, where D, = {z € X :
P(a) N A(x) # 0} is closed in X.

(4) For each z € X, (a) P,(z) is open in aff(X.), (b) coA,(z) Nri(X,) # 0 and (c)
wi(@) ¢ coP,(z).

Then G has an equilibrium point z* in X.

The foilowing example shows that the assumption “D, = {z € X : A,(z)NP,(z) # 0}
is closed in X in condition (3) of Theorem 3.8.12 and Theorem 3.8.13 is necessary.

Example 3.8.14. Define A : [0,1] — 2% by A(z) := [0, 1 — =] for each z € [0,1].
Clearly, A is continuous with closed convex values. Now define 4; : [0,1] — 2[®1 by

() = 0,1 —2], if z€(0,1],
{1}, if =0,

is also lower semicontinuous by Lemma 3.5.1. We also define 4, : [0,1] — 2[%1 by

co([0,1 — 2z} U {1/2}), if & €(0,1],

Ay(z) = { ,
co({1} U {1/2}), if 2 =0,



then A, 1s also lower semicontinuous and in fact

{ 0,1 —z], fae(0,1/2],
0,1/2], ifae(1/2,1),
[1/2,1], ifa=0,
[0,1/2], ifx=1.

Ay(x) =

We now define P : [0,1] — 201 by P(2) = [0,2) for each ¢ € [0, 1] then for any
y € [0,1], we have P~'(y) = (y,1] Since {z € [0, 1], P(x) N Ay(x) # 0} = (0,1] and
the fixed point set of A, is (0, 1/2], but for each =z € (0,1/2}, Ax(x) N P(x) # B

Finally we shall derive the following existence theorem for an equilibrium point of a

qualitative game.

Theorem 3.8.15. Let G = (X,; P.),es be a qualitative game where [ 1s countable.
Suppose that for each ¢ € I, the following properties hold:

(1) X, is a non-empty subset of a topological vector space [,

(2) P : X =g X, — 2% U {#} is lower semicontinuous on 1),, where D), = {s €
X : P(z) # 0} is closed in X.

(3) There exists a non-empty finite dimensional compact convex subset ¢/, of X;
such that (a) for each © € C := ,¢,C,, P(z) C aff(C,); (b) for each & € N D,
coP,(z) Nri(C,) # 0; (c) for each x € C, 7,(z) ¢ coP,(x)

Then G has an equilibrium point z* in C

Proof. Fix an arbitrary 2 € [. Define F, : 0 — 2% by

coP(z), fxeCnD;
F(z) =
aff(C,), fe X\ (CnD).

Then by (2), (3)(a) and Lemma 3.5.1, F, is lower semicotiuous on C'. Clearly /,(C) C
aff(C,) by (3)(a) and for each z € X, F;(z) is convex. We shall now show that for each
z € C, Fi(z)Nri(C,) # 0. Suppose z € CND,, then by (3)(b), F()Nri(C}) = col,(x)N
n(C) # 0. fz € X\ (CnND,), then F,(z) Nri(C.) = aff(C.) N n(C;) = ri(Cs) # O by
Theorem 6 2 of Rockafellar {253, p.45].
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Therefore all hypotheses of Theorem 3.8.9 are satisfied so that there exists z* € C
such that z* € Il,¢;F,(z*). By (3)(c), we must have P,(z*) = { for all » € I. Thus z*

is an equihbrium point of G. O
By Theorem 3.8.15, we have the following

Corollary 3.8.16. Let G = (X,; P.),er be a qualitative game where [ is countable.
Suppose that for each / € /, the following properties hold:

(1) X, is a non-empty finite dimensional compact convex subset of a topological vector
space F,.

(2) P, : X = Tes X, — 2% U {0} is lower semicontinuous on D,, where D, = {z €
X P(z)#0} is closed in X.

(3) For each 2 € X, coP,(z) N ri(X,) # 0.

(4) For each z € X, m,(z) ¢ coP,(z).
Then G has an equilibrium point z* € X D,.



Chapter 4

Variational Inequalities

4.1 Introduction

Since Chan and Pang [48] and Shih and Tan [267] gave existence theorems for GQVI in
finite dimensional spaces and infinite dimensional locally topological vector spaces respec-
tively, there have been a number of generalizations of the existence theorems for GQVI(X;
A; B), e.g., see Cubiotti [68], Ding and Tan [81], Harker and Pang [145], Kim [180], Shih
and Tan [267]-[274] and Tian and Zhou [311] and references therein. These results enable
people to give wide applications to the problems in game theory and economics, mathe-
matical programming (e.g., see Aubin {7], Aubin and Ekeland [10], Chan and Pang (48],
Harker and Pang [145] and reference therein). Most of the existence theorems mentioned
above, however, are obtained upon compact sets, in finite dimensional spaces or infinite
dimensional locally convex topological vector spaces, and also both A and [3 are either
continuous or upper (lower) semicontinuous.

On the other hand, in economic and game theoretic applications, it is known that the
choice space (or say, the space of feasible allocations) generally is not compact in any
topology (even though it is closed and bounded), a key situation in infinite dimensional
topological vector spaces. On the other hand, we note that there are no essential exis-
tence theorems for non-compact generalized quasi-variational inequalities associated with

discontinuous functions in infinite dimensional space based on our knowledge right now.

150
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This motivates our work in Chapter 4 of this thesis to give a series of existence theorems
about generalized quasi-variational inequalities by relaxing the compactness conditions and
continuity. As applications, we obtain some existence theorems for equilibria of constrain
games in locally convex topological vector spaces. From the existence theorems for gener-
alized quasi-variational inequalities, the stability of solutions for two types of generalized
quasi-variational inequalities are also established.

Furthermore, based on a new concept called “semi-monotone” which was first intro-
duced by Bae, Kim and Tan [13], we also discuss and give some interesting variational
inequalities in Banach spaces. As st plcaiions, an existence theorem for generalized com-
plementarity problems is given and some fixed point theorems for nonexpansive operators
are given.

The basic idea in Chapter 4 is as follows: we reduce the existence problems for vari-
ational inequalities and generalized quasi-variational inequalities to the existence problem
fo equilibria of generalized games; that means, the solutions of variational inequalities are
nothing else, but are exactly equilibria of their equivalent model of generalized games. This
simple fact enables us to consider the existence of solutions for non-compact variational
inequalities and generalized quasi-variational inequalities in infinite dimensional topological
vector spaces by the existence theorems for equilibria of non-compact generalized games
established in Chapter 4.

More precisely, the contents of Chapter 4 are as follows:

In section 2, as applications of equilibria for non-compact generalized games in Chapter
3, the existence theorems for non-compact variational inequalities are given under various
non-compact conditions in locally convex topological vector spaces. As applications,
existence theorems for equilibria of constraint games are established. These results improve
and unify many corresponding results in the literature.

In section 3, as applications of variational inequalities in section 2, two types of non-
compact generalized quasi-variational inequalities are considered under various hypotheses
in locally convex topological vector spaces.

In section 4, the stability of solutions for two types of generalized quasi-variational



inequalities is established.

In section 5, based on the generalization of monotone operator called a “semi-
monotone operator” which was first introduced by Bae, Kim and Tan [13], we also
discuss and give some vanational inequalities for monotone and semi-monotone operators
in Banach spaces. As applications, an existence theorem for generalized complementarity
problem in the Banach space and some fixed point theorems for multivalued nonexpansive

mappings in the Hilbert space are given.
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4.2 Variational Inequalities in Locally Convex Topological Vec-
tor Spaces

In this section, as applications of equilibria for generalized games, existence theorems
for solutions of non-compact vanational inequalities are given under different conditions
in locally convex topological vector spaces As applications, the existence theorems of
constraint games are given These results improve and unify many corresponding results

in the literature (e g , see Aubin [7] and Aubin and Ekeland [10] and references therein).

As consequents of Theorem 3 4.2' (respectively, Theorem 3 4 2) and Theorem 3.4.6'
(respectively, Theorem 3 4 6), we have the following existence theorems for non-compact

quasi-vanational inequalities in locally convex topological vector spaces

Theorem 4.2.1. For each 2 = 1,2,---, N, let E, be a locally convex topoiogical
vector space and X = U2, C, , where {C,;}%2, is an increasing sequence of non-empty
compact convex subsets of £, Let X = I, X,. Suppose the following conditions are
satishied

(1) for each 1 = 1,2,---, N, A, : X — 2%+ is lower semicontinuous with closed graph
and convex values,

(n) for each v = 1,2,---, N, 9, : X x X, - RU{—o00,+00} 1s such that for each
y, € X, r— P(z,y,) is lower semicontinuous on X;

(m) for each + = 1,2,---, N and for each fixed z € X, z, ¢ co{y, € X, : ¥u(z,y,) >
),

(wv) for each « = 1,2,-.- N, the set {zx € X . SUPy, e 4, (x) .(z,y,) > 0} is open in

Y,
(v) for each sequence (y.)5%; n X which is escaping from X relative to {C,,},,
where C,, = ll,¢,C. .., there exist n € N and z,, € C,, such that 7,(z,) € A,(y,.) N {z €

At h(yn,5) > 0} foreach 1 = 1,2, N,
Then there exists 2™ € X such that for each 2 =1,2,---, N,

7 € Ay(z”) and supy ¢ g ooy i(2*,3:) < 0.
Proof. Foreach:=1,2,--- N, define P, : X — 2X U {0} by P{x) = {y, € X, :
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Yi(z,y:) > 0} for each z € X. First (i) implies that for each i = 1,2,---, N, P; has
open lower sections in X so that by (iii), P; is of class K F; it follows that A; N /% is
K F-majorized. The condition (iv) implies that for each ¢ = I,---, N, the set {x € X :
A(z)NP,(x) # 0} is open in X. Therefore G = (X;; A;; P;)Y,, satisfies all the hypotheses
of Theorem 3.4.2' with A; = B; foreach: =1,2,--- / N. By Theorem 3.4.2, there exists
an z* € X such that for each ¢ = 1,2,--- /N, a7 € A;(z*) and A;(x™) N Pi(z") = 0.
Since {z € X : Ai(z) N Pi(z) # 0} = {2 € X :sup, e,y i, :) > 0}, it follows that
for each i =1,2,---, N, 27 € A,(z*) and supyleAl(w.)/l/);(:l;*,y,-) <0. O

A proof similar to that of Theorem 4.2.1, with Theorem 3.4.2 being applied instead

of Theorem 3.4.2', gives the following result and is thus omitted:

Theorem 4.2.1'. Let | be any index set. For each ¢« € /, let X; be a non-empty
convex subset of a locally convex topological vector space [f;. Let X = ll;¢;X; be
paracompact. Suppose that:

(i)foreachi e I, A;: X — 2X: is = jower semicontinuous correspondence with closed
graph and convex values;

(i) for each i € I, 9; : X x X; = R U {—o00,+00} is such that for each y; € X,
x — ;(x,y;) is lower semicontinuous on X;

(iii) for each i € I and for each x € X, z; ¢ co({y: € X; : hi(,y:) > 0});

(iv) for each i € I and for each y; € X, the set {z € X : sup, ¢4, iz, 1) > 0}
is open in X;

(v) there exist a non-empty compact convex subset X;, of X and a non-empty compact
subset /' of X such that for each y € X \ K, there exists z = ()i € co(Xo U {y})
with z; € co(Ai(y) N {zi € X; 1 4hi(y,zi) > 0}) forall v € 1.

Then there exists 2* € K such that for each z € /,
af € Ai(z*) and sup, 4oy hilie”, i) <0

Now by Theorem 3.4.6' instead of Theorem 3.4.2, we also have the following results

for upper semicontinuous correspondences:

Theorem 4.2.2. For each ¢ = 1,2,---, N, let [5; be a locally convex topological
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vector space and let X, = U2, C,, be closed in E, and have property (K), where {C, ,}52,
Is an increasing sequence of non-empty compact convex subsets of E,. Let X = ITY X,.
Suppose the following conditions are satisfied:

(i) for each: = 1,2,---, N, A, : X — 2%+ is compact and upper semicontinuous with
compact and convex values;

(i) for each 2 = 1,2,---, N, 9, : X x X, = RU {—o00,+00} is such that for each
4. € X,, © — t,(z,y,) is lower semicontinuous on X;

() for each 2 = 1,2,---, N and for each z € X, z, ¢ co({y. € X, : ¥u(z,y.) > 0});

(iv) for each » = 1,2,---, N, the set {z € X : sup,, ¢4, ) ¥:(z,4) > 0} is open in
X;

(v) for each sequence (y,)2, in X which is escaping from X relative to {C,},,
where C,, = [1,¢;C, ,,, there exist n € N and z,, € C,, such that 7,(z,) € A,(y,) N {z €
X h(y,z) >0} forall e =1,2,-- -, V.

Then there exists £* € X such that for each: =1,2,---, N,
z; € Ai(2”) and sup,, ¢ 4,(z+) Y:(*, 3:) < 0.

Proof. For each i =1,2,---, N, define P, : X — 2% U {0} by P(z) = {y, € X, :
th(z,y.) > 0} for each z € X, then we shall show that G = (X,, A,, P,)Y, satisfies all
the hypoth«<es of Theorem 3.4.6'.

First, (i) impiies that for each ¢« = 1,2,--- N, P, has open lower sections in X
so that by (iii}, P, is of class K F" and that P, is lower semicontinuous. The condition
(iv) implies that for each ¢+ = 1,2,---, N, the set {z € X : A,(z) N P(z) # 0} is
open in X. Therefore all hypotheses of Theorem 3.4.6’ are satisfied with A, = B, for
each + = 1,2,---, N. By Theorem 3.4.6’, there exists an z* € K such that for each
1=1,2,--,N, A(2*) N P(z*) = 0 and z} € A,(z*). Since {z € X : A,(z) N P(z) #
0} = {x € X : sup, cq,) (2, 3) > 0}, it fo'ows that for each 2+ = 1,2,--- N,
zy € A(x*) and sup, ¢ 4., +) (2", 9,) < 0. O

Similarly, by applying Theorem 3.4.6 instead of Theorem 3.4.6, we have:

Theorem 4.2.2'. Let / be any index set. For each : € I, let X, be a non-empty



156

closed convex subset of a locally convex topologica! vector space I, and X, have property
(K). Let X = Il,¢/ X, be paracompact. Suppose that:

(1) for each 2 € I, A, : X — 2%+ 1s compact and upper semicontinuous with compact
convex values;

(i) for each : € I, 4, : X x X, = RU {~00, +00} 1s such that for each y; € X;,
& — (&, y,) is lower semicontinuous on X;

(iii) for each ¢ € I and for each z € X, z, ¢ co({y, € A, : (2, y.) > 0}),

(iv) for each 2 € I, the set {x € X :sup, ¢4, () %:(z,4.) > 0} 15 open in X for each
fixed y, € X;

(v) there exist a non-empty compact and convex subset X, of X and a non-empty
compact subset K of X such that for each y € X \ K, there exists © = (%;),es €
co( Xo U {y}) with z, € co(A,(y) N {z. € X, : 9. (y,2,) > 0}) forall s € /.

Then there exists z* € K such that for each : € [,
2y € Ai(z™) and supy g, ) Yu(27,9:) < 0.

By letting I = {1} in Theorem 4.2.1 and Theorem 4.2.2, we have the following

existence results for quasi-variational inequalities in non-compact settings:

Corollary 4.2.3. Let X = U2,C, where {C,}2, is an increasing sequence of non-
empty compact convex subsets of a locally convex topologizsi vector space 7 Suppose
the following conditions are satisfied:

(i) A: X — 2% is lower semicontinuous with closed graph and convex values;

(i) ¥ - X x X = RU{—00,+00} 1s such that for each y € X, z — (x,y) is lower
semicontinuous on X;

(iii) for each z € X, & ¢ co({y € X : (z,y) > 0}),

(iv) the set {z € X : supyeac,) ¥(2,y) > 0} is openin X,

(v) for each sequence (y,)22, in X which is escaping from X relative to {C,}22,,
there exist n € N and z,, € C,, such that z,, € (A(y,) N {z € X : (yn, ) > 0}).
Then there exists ™ € X such that z* € A(z*) and sup ¢,y $(z*,y) < 0.

Corollary 4.2.4. Let E be a locally convex topological vector space, let X = U2, C;
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be ciosed in [Z and have property (K}, where {C;}32, is an increasing sequence of non-
empty compact convex subsets of £. Suppose the following conditions are satisfied:

(i) A: X — 2% is compact and upper sewicontinuous and with compact convex
values;

(i) ¥ : X x X = RU{—o0,+00} is such that for each y € X, z — ¥(z,y) is lower
semicontinuous;

(iii) for each z € X, z ¢ co({y € X :v(z,y) > 0});

(iv) the set {z € X : sup, e ¥(z,y) > 0} is open in X;

(v) for each sequence (y,)3%, in X which is escaping from X relative to {C,}52,,

there exist n. € N and =, € C, such that z,, € (A(yn) N {z € X; : ¥(y,2) > 0}).
Then there exists ™ € X such that z* € A(z") and sup ¢ 4¢,+) ¥(z", ) < 0.

By Corollary 4.2.4, we have the following slight generalization of Theorem 3 of Tian
and Zhou [311]:

Corollary 4.2.5. Let X be a non-empty convex subset of a locally convex topological
vector space [7. Suppose that

(i) : X — 2% has closed graph and convex values;

(i) : X x X —» RU{—o00,+00} is such that for each y € X, z — 9(z,y) is lower
semicontinuous on X for each fixed y € X,

(iit) for each z € X, = ¢ co({y € X : 9(z,y) > 0};

(iv) there exist a non-empty compact convex subset Z C X and a non-empty subset
C C 7 such that

(a) F(C) C Z;

(wn) F(z)NZ # () for each 2 & Z;

(#vc) for each w € Z \ C there exists y € F(2) N Z with y(z,y) > 0;

(1va) the set {z € Z : sup e p(zynz ¥(z,y) < 0} is closed in Z.
Then there exists 2™ € F(x”) such that sup,cp(e) ¥(2*,y) < 0.

Proof. Define I\ : Z — 27 by Fi(z) = F(z) N Z for each z € Z. Then Fy(z) is
non-empty closed and convex for each =z € Z by (i) and (iv;). By (i), F has a closed

graph so that F is also closed. It follows that F) is upper semicontinuous. Now the
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Fy = Aand X = Z. By Corollary 4.2.4, there exists «* € 7 such that z* € Fy(«") and
SUPy e (ae)nz P(27,4) £ 0. By (fv), 2" must bein C. Thereforz F(x*) = F(2*)NZ =
F(z*) by (v).. Hence, sup,¢p(,e)d(z*,y) <0. O

Corollary 4.2.5 also generalizes Theorem 3.1 of Zhou and Chen [338], Theorem 15.2.1
of Aubin [7] and Theorem 4 of Fan [106].

We conclude this section with an application of Corollary 4.2.3 to give an existence
theorem for equilibria of constrained games.

Let / = {1,2,---, N}. Each agent i chooses a strategy x; in a subset X; of a locally
zrnvex topological vector space E;. Denote by X the (Cartesian) product I'Ij-V:,X..,- and
X_; the product Il;¢; ;+X;. Denote by  and :_; an element of X and X_; respectively.
Each agent ¢ has a payoff (utility) function wu; : X — R U {—o0, +-00}. Given w_; (the
strategies of others), the choice of the ith agent is restricted to a nan-empty compact and
convex set A (z_;) C X, the feasible stralegy sct ; the ith agent chooses x; € A;(w_;)
so as to minimize u;(x_;, z;) over A;(x_;), where (z_;, ;) is the point y = (y;);es such
that y = z_; and y; = z;. The family G = (X;; A u;)Y | is then called a constrained
N-person game and an equilibrium for G is an z* € X such that &7 € Aiz*;) and
ui(z*) < ui(ar,,z;) for all z; € Ay(zr)) (e.g., ui(z*) = infyea;(ar) ui(z*;, x;)) for each
= 1,2,---,N.

Note that if A;(z_;) = X; for each 2+ = 1,2,---, N, the constrained N-person game
reduces to the conventional game G = (X;;u;)ics and its equilibrium is called a Nash-

equilibrium.

Theorem 4.2.6. Let G = (X;; A;; Ui);'\;, be a constrained game and X = I'l,»’i,)(,- =
U, C; where {C;}%2, is an increasing sequence of non-empty compact convex subsets
of a locally convex topological vector space /2. Suppose the following conditions are
satisfied:

(i) the correspondence A : X — 2% defined by A(z) = 1Y, A:(z_;) for each z =

(z-;,x;) € X is lower semicontinuous with closed graph and convex values;
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(11) the function ) : X x X — R U {—o00,+00} defined by

1/)(.?:,]/) = 2:\-_,-.1 [ui(x_z,.’c,) - u,(m_,,y,)]

for each (z,y) € X x X is such that for each y € X, z — 1(z,y) is lower semicontinuous
on X, where z = (z_,,z.) and y = (y_,, ¥.);

(m) for each z € X, z ¢ co({y € X : (z,y) > 0});

(v) the set {z € X :sup,ea,) ¥(2,y) > 0} is open in X;

(v) for each sequence (y,):>, in X which is escaping from X rela.ive to {C,}22,,
there exist n € N and z,, € C, such that z,, € A,(y,) N {z € X, : ¥(y, 2) > 0}).

Then there exists z* € X such that for each: =1,2,.--, N,
£y € A(2r,) and u,(z*) <infy epqe ) w(z,, 50).

Proof. By (i)-(v), A and 1) satisfy all hypotheses of Corollary 4.2.3. By Corollary
423, there exists z* € X such that z* € A(z*) and sup (.. ¥(z",y) < 0. For
each + € [, and y, € A,(z*,), let y = (27,,5.). Then y € A(z*) so that (u,(z*) —
0 (570)) = X 1(5) — (@, 1)) = (5, 5) < 5Py pey $(5%y) < 0. Therefore
(v (z") — u(2™,,4)) <0 forall y, € A,(z*,). Hence z* is an equilibrium point of the

constrained game G = (X,; A;;u,)N,. O

Theorem 4.2.6 generalizes the corresponding results of Aubin [7, p.282-283] and Aubin
and Ekeland [10, p.350-351] in the following ways: (i) the feasible correspondence A, is
lower (or upper) semicontinuous instead of continuous and (ii) the strategy set X, need

not be compact.
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4.3 Generalized Quasi-Variational Inequalities

In this section, we shall first give some (non-compact) existence theorems of two types of
generalized quasi-variational inequalities (in short, GQVI(X; A; B)) where, the domain X
is a non-empty convex but not necessarily compact subset of a locally convex topological
vector space £ and the mapping A need not be continuous and the mapping B need not
have any continuity property. These results generalize and improve many known results
in the literatures, e.g., Aubin [7], Aubin and Ekeland [10], Chan and Pang [48], Harker
and Pang [145], Kim [180], Shih and Tan [267], [274], Tarafdar [301] and Tian ad Zhou
[311] and the references therein.

Now we introduce some notation and definitions. If £ is a topological vector space,
we shall denote by E* the dual space of . The dual pairing between [5* and I/ is
denoted by (w,z) for w € £* and x € E and Re(w, z) denotes the real part of (1w, ).
Let X be a non-empty convex subset of a locally convex topological vector Iv. Then
T : X — 2E" is monotone (see Browder [43, p.79]) if for each z,y € X and for each
we T(zx), we T(y), Re(w —u,y —z) > 0. Suppose F7: X — 2%, 7' : X — 25 and
f: XxX — RU{—o00,+00}. By applying Theorems 4.2.1 and 4.2.3, we shall prove the

existence of a solution Z € X to the following generalized quasi-variational inequalities:

& € F(2),
sup,er(z) Re(w, & —y) + f(&,y) <0 forall y € (&)

(1)

or the existence of solutions 2 € X and & € [I* to the following generalized quasi-
g8 q

variational inequalities:
) & € F(&) and @ € T(%),
Re(t,2 —y) + f(,y) <0 forall y € F(E).

Now we recall some definitions (e.g., see Zhou and Chen [338]). Let X be a non-empty
convex subset of a topological vector space. A function ) : X x X — R U {~o0, +o0}

is said to be

(1) y-diagonally quasi-convex (respectively, y-diagonally quasi-concave) in y, in short
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~-DQCX (respectively, v-DQCV) in y, if for each A € F(X) and each y € co(A),

v < max,eq tb(z,y) (respectively, v > infzeq¥(z,y));

(2) 7-diagonally convex (respectively, v-diagonally concave) in y, in short y-DCX
(respectively, v-DCV) in y, if for each A € F(X) and each y € co(A) with y = X7, Ay,
(where A, > 0 for each ¢ = 1,2,---,n and X2, ), = 1), we have v < Z72, A9 (y:, ¥)
(respectively, ¥ > £ \p(y.,y)):

Let X and Y be two non-empty convex subsets of F, we also recall that a function
h: X xY — RU {—o00,+00} is quasi-convex (respectively, quasi-concave) in y, if for
each fixed = € X, for each A € F(Y) and each y € co(A), ¥(z,y) < max,eca Y(z, 2)
(respectively, ¥(z,y) > inf.ea (2, 2)).

It is easy to see that

(i) if vp(=, y) is v-DCX (respectively, v-DCV) in y, then (z,y) is v-DQCX (respec-
tively, y-DCV) in y;

(i) if 9 (x,y) for each s = 1,2,--- N is y-DCX (respectively, v-DCV) in y, then
h(z,y) = B, a,(x)h,(x, y) is still y-DCX (respectively, v-DCV) in y, wherea, : X - R
with ,(z) > 0 and £7,a,(z) = | for each z € X; and

(iii) the function (z,y): X x X - RU {~00, 400} is 0-DQCV in y if and only if
& ¢ co({y € X :9¥(z,y) > 0}) for each z € X.

Let K be a non-empty convex subset of a topological vector space K and A : K — E*
be not monotone. We define a function f: K x K — R by f(z,y) = (A(y),z — y) for
each (z,y) € K x K. It is clear (e.g., see Zhou and Chen [338, p.216-217]) that for each
fixed 2 € K, the function f(,-) is both DQCX and DQCV in y, but not quasi-convex or

quasi-concave in y.

First we have the following existence for the problem (1) where 7' : X — 2F is

monotone,

Theorem 4.3.1. Let X = UR,C, where {C,}; is an increasing sequence of non-
empty compact convex subsets of a locally convex topological vector space E. Suppose

the following conditions are satisfied:
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(i) F: X — 2V is lower semicontinuous with closed graph and convex values;

(i) T : X — 2F" is monotone such that for each one-dimensional flat L C £, T|;,nx

is lower semicontinuous when E* 1s equipped with the weak*-topology o(£*, F),

(i) f: X x X = RU {00,400} is such that for each y € X', 2 — f(x,y) is lower
semicontinuous on X, and for each z € X, y — f(z,y) is concave and f(x,.x) = 0 for
each x € X;

(iv) the set {z € X : sup cp(,[supuer(y) Re(u, @ — y) + f(w,y)] > 0} is open in X,

o0
n=

y in X which is escapiﬁg from X relative to {C,}32,,
there exist n € N and z,, € C,, such that z,, € F(y,)N{z € X : SUP e (s) Re(uw, y, —
2) + S(onr2) > 0},
Then there exists # € X such that & € F(£) and
sup,er(z) Re[(u, & —y) + f(2,y)] < 0forall y € ()
Proof. Define a function ¢/ : X x X —» RU {—o0,+0o0} by

(v) for each sequence (y,)

bz, y) = sup Re(u,z—y)+ [(2,y)
weT(v)

for each (z,y) € X x X. Then for each y € X, x — i)(z,y) is lower semicontinuous
on X. Since T is monotone and by (iii), it is easy to see that for each fixed = € X,
y +— ¥(z,y)is 0-DCV by Proposition 3.2 of Zhou and Chen [338]. Thus all the hypotheses
of Corollary 4.2.3 (hence also of Theorem 4.2.1) are satisfied so that there exists & € I
such that & € F(2) and sup,er,[(v, & —y) + f(&,y)] < 0 for all y € F(%).

Since for each one-dimensional flat L. C E, T|.nx is lower semicontinuous when /s*
is equipped with the weak*-topology o( E*, E), by the same argument as in the step 2 of
Shih and Tan [267, p.2338], we can show that

supyer(s) (U, & —y) + f(,y)] <0 for all y € F(&). o

Now by Corollary 4.2.4 (hence also Theorem 4.2.2) and the same argument as in

Theorem 4.3.1, we have the following-

Theorem 4.3.2. Let X = U2,C, be closed and have property (K), where {(;}

=]
is an increasing sequence of non-empty compact convex subsets of a locally convex topo-

logical vector space £. Suppose the following conditions are satisfied:
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(i) F: X — 2% is compact upper semicontinuous with compact and convex values;

(m)y71:X — 2E" is monotone such that for each one-dimensional flat L C E, T|pnx
is lower semicontinuous when [£* is equipped with the weak*-topoiogy o(E*, E);

(i) J: X x X = RU {oo,+00} is such that for each y € X, z — f(z,y) is lower
semicontinuous on X and for each = € X, y — f(z,y) is concave and f(z,z) = 0 for
each z € X;

(iv) the set {z € X : sup e p(y)[supuer(y) Relu,z —y) + f(z,y)] > 0} is open in X;

(v) for each sequence (y,)32, in X which is escaping from X relative to {C,}52,,
there exist n € N and z,, € C, such that z,, € F(y,)N{z € X : SUPyer(s) Re{u,y, —
z) 4 [(yn, 2) > 0}.

Then there exists & € X such that & € F(&) and
supuers [ Re(u, 2 —y) + f(2,y)] <0 forall y € F(z).

As an immediate consequence of Theorem 4.3.2, we have the following:

Corollary 4.3.3. Let X be a non-empty compact convex subset of a locally convex
topological vector space £ and let /' : X — 2% be upper semicontinuous with closed and
convex values. If T': X — 25" is monotone such that for each one-dimensional flat L C
E, T'|Lnx is lower semicontinuous when E* is equipped with the weak*-topology o( £*, F).
Suppose [ : X x X — R U {—o00,400} is such that for each y € X, z — f(z,y) is
lower semicontinuous on X and for each @ € X, y — f(z,y) is concave and f(z,z) =0
for each v € X. Suppose further that the set {z € X : sup,cp(,)[suPuer(y) Re(u, T ~
y) + f(x,y)] > 0} is open in X. Then there exists an £ € X such that £ € F(Z) and
supuera [ Re(n, & —y) + f(&,y)] < 0 for all y € F().

Theorem 4.3.2 generalizes Theorem 1 of Shih and Tan [267] to a non-compact setting.
We note that our proofs of Theorem 4.3.1 and Theorem 4.3.2 depend on the existence
theorems for equilibria of generalized games instead of the partition of unity arguments
used by Aubin [7], Aubin and Ekeland [10], Shih and Tan [267] and Zhou and Chen [338].
When 1" = 0 in Corollary 4.2.2, Corollary 4.2.2 generalizes Joly-Mosco Theorem (see
Theorem 15.2.2 of Aubin [7]), and also gives the well-known Fan-Glicksberg fixed point
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theorem (zee [97] and [127]).

Recall that for a topological vector space F, the strong topology on its dual space
E~ is the topology on E~ generated by the family {{/(B;w) : B is a non-empty bounded
subset of E and w > 0} as a base for the neighborhood system at zero, where l/(13;w) :=
{f € B* s suppep I/, 5 < ).

We now observe that in Theorem 4.3.1 and Theorem 4.3.2, the interaction between
the correspondences T' and F' (namely, the condition (v)) can be achieved by imposing

additional continuity conditions on T" and F'.

Theorem 4.3.4. Let X = U2,C; be bounded, where {C;}32, is an increasing
sequence of non-empty compact convex subsets of a locally convex topological vector
space . Suppose that F' : X — 2% is continuous with closed and convex values and
T : X — 2F" is monotone such that T' is lower semicontinuous when £* is equipped with
the strong topology. Suppose that

(i) f: X x X - RU {00,400} is lower semicontinuous such that for each = € X,
y — f(z,y) is concave and f(z,z) =0 for each 2 € X

(i) for each sequence (y,)%, in X which is escaping from X relative to {C,}°2,,
there exist n € N and 2, € C, such that @, € F(y,) N {z € X : SUPyer(s) Re(u,y, —
z) + f(ymz) > 0}.

Then there exists & € X such that £ € F(&) and

supyer(s)[Re(u, & —y) + f(&,y)] <0 for all y € ().

Proof. By Theorem 4.3.1, we need only show that the set
NSi={ce€X: sup [sup Relu,z—vy)+ f(z,y)] >0}
yer(z) ueT(y)
is open in X.
Since X is bounded and f(-,-) is lower semicontinuous, the function (u,,y)
Re(u,z—y)+ f(z,y) is lower semicontinuous from ££*x X x X to R. Therefore (x,y) —
SUP,er(y [ Re(u, z —y) + f(z,y)] is also lower semicontinuous by the lower semicontinuity

of T'(-) and Proposition 111-19 of Aubin and Ekeland [10]. Since /' is lower semicontinuous,
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B SUPy i) SUPuer(y)[Re(t, T — y) + f(z,y)] is lower semicontinuous by Proposition
111-19 of Aubin [7] again. Thus the set ¥ := {z € X : sup ep(y) supP,er(ylRe(u, z —y) +
f(z,y)] > 0} is openin X. O

Theorem 4.3.4 also generalizes Theorem 2 of Shih and Tan [267] to a non-compact

setting.

Now we shall consider the existence of solutions of the problems (1) and (Il) where the

correspondence T': X — 2P need not be monotone.
We state Kneser's minimax theorem [190] (see also Aubin [7, p.40-41] as follows:

Theorem 4.3.A (Kneser [190]). Let X be a non-empty convex set in a vector
space and let Y be a non-empty compact convex subset of a topological vector space.
Suppose that [ is a real-valued function on X x Y such that for each fixed z € X, f(z,y)
is lower semicontinuous and convex on Y, and for each fixed y € Y, f(z,y) is concave
on X. Then

minsup f(z = supmin f(z,y).
minsup f(z,y) = supmin f(z,y)

We first have the following:

Theorem 4.3.5. Let X = U2, C, where {C,}%, is an increasing sequence of non-
empty compact convex subsets of a locally convex topological vector space E. Suppose
that

(i) 7 : X — 2% is lower semicontinuous with closed graph and compact and convex
values;

(i) T : X — 2¥ has compact convex values such that for each fixed y € X,
&+ infyepy) Re(u,x — y) is lower semicontinuous;

(iii) f: X x X — RU{—o00,+00} is such that for each y € X, z — f(z,y) is lower
semicontinuous on X and for each x € X, y — f(z,y) is 0-diagonally concave;

(iv) the set {w € X : sup ¢ pipylinfuer(z) Re(u,z — y) + f(z,y)] > 0} is open in X;

(v) for each sequence (y,,)32, in X which is escaping from X relative to {C,,}%

n= n=1’

there exist n € N and z,, € Oy, such that z,, € F(y,)N{z € X : infuer(y,) Re(u, yn —
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2) + f(yn, 2) > 0}.
Then there exists & € X such that & € F(&) and

SUPyep(a) INfuer(a) [(w, & —y) + f(3,9)] < 0.

If in addition, for each x € X, y — f(z,y) is concave, then there exists @ € T'(:t) such
that sup,ep(s) (@ & —y) + [(2,9)] < 0.

Proof. Define the functional 1 : X x X — RU {—o0, +c0} by

Y(z,y) = uei!}l(“m)[Re(u, z—y) + f(2,y)]

for each (z,y) € X x X. Then we have:

(1) for each fixed y € X, x + 1)(z,y) is lower semicontinuous on X and = ¢ co({y €
X :¢(z,y) > 0}) for each z € X by (iv);

(2) the set {z € X : sup,ep(,) p(z,y) > 0} is open in X;

(3) for each sequence (y,,)%, in X which is escaping from X relative to {C,}°2,,
there exist n € N and z,, € C, such that z, € co({l'(y.) N {z € X :4h(yn,2) > 0}).

Therefore ' and 1) satisfy all the conditions of Corollary 4.2.3. By Corollary 4.2.3,
there exists an & € K such that £ € [(£) and 4(&,y) <0 for all y € ().

If in addition, for each z € X, y — f(x,y) is concave, define the function J, :
F(3) xT(2) = RU {~00,+00} by

fi(z,y) = Rez, & —y) + [(&,y)

for each (z,y) € I'(2)xT(2). Thenforeachy € X, z — [i(x,y) is lower semicontinuous

and for each z € X, y — fi(z,y) is concave. By Kneser minimax Theorem 4.3.A,

inf sup [Re(u,z—y)+ f(2,y)] = sup il [Re(u,&—y)+ [(Z,y)] 20,
“GT(‘E)yEF{i)[ < V) + (&) yeﬁ'l(;,-)HE’l'(«”:)[ < )+ ()

so that there exists 4 € 7'(%) such that sup,ep[Re(d, 2 —y) + [(d,y)] £0. O

By the same arguments used in Theorem 4.3.5 and by applying Corollary 4.2.4 instead

of Corollary 4.2.3, we have the following result whose proof is omitted:
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Theorem 4.3.6. Let X = U2, C, be closed and have property (K), where {C,}2,
Is an increasing sequence of non-empty compact convex subsets of a locally convex topo-
logical vector space [£ Suppose that

(1) F: X — 2% is compact and upper semicontinuous with compact and convex
values,

() T : X — 2E" has compact and convex values such that for each y € X, z —
inf,ep(s) Re(u,z — y) is lower semicontinuous;

(m) / X xX — RU{—o00,+00} is such that for each y € X, z — f(z,y) 1s lower
semicontinuous on X for each y € X and for each x € X, y — f(=,y) is 0-diagonally
concave,

() the set {w € X : sup ep(,)linfuer(z) Re(u,z —y) + f(z,y)] > 0} is open in X;

(v1) for each sequence (y,,)22, in X which is escaping from X relative to {C,}%

n= n=1r
there exist n € N and w,, € C, such that z, € F(y,) N {z € X : infuer(y,) Reu, y, —
z) + [(yn,z) > 0}.
Then there exists & € X such that

& € F(%) and sup e infuer(s)[(u, & —y) + f(2,4)] <0,

If in addition, for each x € X, y — f(x,y) is concave, then there exists & € T(Z) such
that sup, e p(s) Rel(&, & —y) + f(&,y)] <0.

If X is a bounded subset of a locaily convex topological vector space E and T': X —
25" has compact and convex values and is upper semicontinuous when E* is equipped
with the strong topoiogy, then the function ¢ : X x X — R U {—co,+00} defined by
g(x,y) = infuer)(u, @ — y) has the property that for each y € X, z — g(z,y) is
lower semicontinuous on X by Lemma 2 of Kim and Tan [184]. Thus, Theorem 4.3.6

generalizes Theorem 3 of Shih and Tan [267] and we have the following:

Corollary 4.3.7. Let X = U, C, be bounded, where {C,}2, is an increasing
sequence of non-empty compact convex subsets of a locally convex topological vector
space [/, Suppose that

(i) F: X — 2% is lower semicontinuous with closed graph and compact and convex
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values;

(i) T : X — 2 has (strongly) compact convex values and is upper semicontinuous
when E* is equipped with the strong topology;

(i) f: X x X - RU{—00,+00} is such that for each y € X, « — f(x,y) is lower
semicontinuous and for each z € X, y — f(z,y) is 0-diagonally concave;

(iv) the set {z € X : sup cplinfuer) Re{u, @ —y) + f(z,y)] > 0} is open in X;

(v) for each sequence (y,)52, in X which is escaping from X relative to {C,}%2,,
there exist n € N and z,, € C,, such that 2, € F(y,) N {z € X : inluer(y,) Re(u,y, —
)+ (s ) > 0.
Then there exists & € X such that & € F(&) and

SUPy e r(z) INfuer(e)[(w, & — y) + f(&,9)] < 0.

If in addition, for each = € X, y — f(x,y) is concave, then there exists @ € T'(%) such

that sup,eps) (4, &~ y) + f(2,9)] < 0.
Proof. Definet: X x X - RU {—o00,+00} by

$la) = jnf [Relu, =) + f(a,1))

for each (z,y) € X x X. Since X is bounded, by Lemma 2 of Kim and Tan [184], for
cachy € X, z — infuer(m)(u, z —y) is lower semicontinuous. Therefore 4) and I satisfy

all the hypotheses of Theorem 4.3.5. Thus the conclusion follows from Theorem 4.3.5. O
In the above proof, if we apply Theorem 4.3.6 instead of Theorem 4.3.5, we have:

Corollary 4.3.8. Let X = U2, C; be bounded, closed and have property (K), where
{C;}%2, is an increasing sequence of non-empty compact convex subsets of a locally convex
topological vector space F;. Suppose that

(i) F : X — 2% is compact and upper semicontinuous with compact and convex
values;

(i) T : X — 2P° has (strongly) compact convex values and is upper semicontinuous
when E” is equipped with the strong topology;

(i) f: X x X — RU{—o00,+00} is such that for each y € X, © — [(,y) is lower

semicontinuous and for each z € X, y + f(z,y) is O-diagonally concave;
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(v) the set {x € X : sup, ¢ plinfuer(z) Re(u,@ — y) + f(z,y)] > 0} is open in X
(v) for each sequence (y,,)52, in X which is escaping from X relative to {C,};2,,
there exist n € N and z,, € C,, such that z, € F(y,) N {z € X : infyer(y,) Re(u,yn —
z) + [(yn, 2) > 0}
Then there exists & € X such that & € F(Z) and
SUP,ep(z) infuer(a)[(u, & — y) + f(2,9)] <0.

if in addition, for each z € X, y — f(z,y) is concave, then there exists & € T'(£) such
that sup,epgs)[Re(d, & — y) + f(£,y)] < 0.
Proof. Define 1) : X x X - RU {—o00,+00} by

Ph(z,y) = ueig{z)[ﬁfi(u, z—y)+ f(z,y)]

for each (z,y) € X x X. Since X is bounded, by Lemma 2 of Kim and Tan [184], for
each y € X, 2 — inf,ep(,)(u, z —y) is lower semicontinuous. Therefore 1) and F' satisfy

all hypotheses of Theorem 4.3.6. Thus the conclusion follows from Theorem 4.3.6. O

Now if we impose a continuity condition on the correspondence F', then we have the

following:

Theorem 4.3.9. let X = UX,C, be bounded, where {C,}2, is an increasing
sequence of non-empty compact convex subsets of a locally convex topological vector
space 7. Suppose that

(i) F: X — 2% is continuous with non-empty compact and convex values;

(i) T': X — 2F" has (strongly) compact convex values and is upper semicontinuous
when [£* i1s equipped with the strong topology;

(i) f: X x X - RU {—~o00,+00} is lower semicontinuous and for each z € X,
y — [(x,y) 1s 0-diagonally concave;

(iv) for each sequence (y,);2, in X which is escaping from X relative to {C,}2,,
there exist n € N and z,, € C, such that z, € F(y,)N{z € X : infuep(y,) Re(u, yu —
) + [y, 2) > 0},

Then there exists & € X such that & € F(&) and
supye p(plinfuer) Re(u, & —y) + f(2,y)] < 0.
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if in addition, for each x € X, y — f(z,y) is concave, then there exists @ € 1'(:f) such
that sup,¢ gz [ Re(i, & —y) + f(£,y)] < 0.

Proof. Define the function 4, : X x X X E* — R U {—o0,+00} by 4 (x,y,u) =
Re{u,z — y) for each (z,y,u) € X x X x E*. Since X is a bounded subset of the
locally convex topological vector space £ and £* is equipped with the strong topology,
¥, is continuous. Since T : X — 2E° is upper semicontinuous with (strong) compact
and convex values, by Theorem 1 of Aubin [7, p.67], the function ¢, : X X X —
R U {—o00,+00} defined by 1,(z,y) = infuer(){u,z — y) is also lower semicontinuous
on X x X so that (z,y) — inf,ep () Re(u, — y) + f(x,y) is lower semicontinuous by
(iil). As F': X — 2% is lower semicontinuous, by Theorem 2 of Aubin [7, p.69], the
furction z = sup,ep(,) Reinfuer)[(w, © —y) + f(x,y)] is lower semicontinuous from X
to R U {~00, +00}. It follows that the set & = {& € X : sup ¢ pq, infuer(m) Ref{u,n —
y) + f(z,y)] > 0} is open in X. Thus ', T and [ satisfy all hypotheses of Corollary
4.3.7. Thus the conclusion follows from Corollary 4.3.7. O

Remark: In Theorems 4.3.1, 4.3.2, 4.3.4, 4.3.5, 4.3.6 and 4.3.9, we assume that
the correspondence T : X — 27" satisfies some kind of continuity. In fact, under
appropriate conditions, the existence theorems for solutions of the problems (1) and (I1)
still hold without assuming any continuity of T', for more details, see Ricceri [251] and
the references therein. We also note that Corollary 4.3.8 (and hence also Theorem 4.3.6)
generalizes the Theorem of Kim [180] which in turn improves Theorem 4 of Shih and
Tan [267]. For the applications of quasi-variational inequalities and generalized quasi-

variational inequalities to game theory and economics theory, we refer to Aubin [7], Aubin
and Ekeland [10], Border [34] and references therein.
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4.4 Stability of Quasi-Variational Inequalities

In this section, we shall study the stability of the set S4(D,S,T) = {y € D: y € S(y)
and sup, ¢ o(,) SUPuer(y) Re(w,y — ) < 0} (respectively, the set Sp(D,S,T) = {y € D.
y € S(y) and sup, ¢ g, infuer(y) Re(w,y — ) < 0}), where D is a non-empty compact
convex subset of a complete convex subset X of the normed space E, 5 : X — 2%
ts a continuous set-valued mapping with non-empty compact convex values and T :
X — 25" 1s monotone and lower semicontinuous with non-empty bounded closed values
(respectively, T : X — 2F" is upper semicontinuous with non-empty compact values).

Throughout this section, (i) £ denotes a normed space with norm ||-||; (ir) £* denotes
the dua! space of £ with the norm || - ||*, (iii) X denotes a non-empty complete convex
subset of £, (iv) K(X) denotes the family of all non-empty compact subsets of X and (v)
h (respectively, h™) denotes the Hausdorff metric defined on the family be( E) (respectively,
be( E*)) of all bounded closed subsets of E (respectively, £*} which is induced by the norm
|| - || (respectively, || - ||*) Note that K(X) is a complete metric space when equipped
with the Hausdorff metric h (e.g , see [6]). If A C E is non-empty, z € E and § > 0, let
Ulbe)={yeE:|le—yll<bé}and U(§,A)={y € E: |ly—a] < é for some a € A}.

We shall study the stability of the solution set S4(D,S,T) of CQVI(A) and of the
solution set Sg(D, S, T) of GQVI(B) with D, S and T varying.

Let C(X) = {S : X — K(X) : S s continuous on X}, L(X) = {T : X —
2%" . T 1s lower semicontinuous with bounded closed values }, and U(X) = {T : X —
K(LE*) : T 1s upper semicontinuous }. For each 51,5, € O(X), define ;(51,S,) =
sup, ey h(S1(x), S2(z)) For each T, T, € L(X) (respectively, Ty, T, € U(X)), define
do(Ty,T2) = sup,ex B*(Th(z),Ta(z)). It can be routinely checked that (C(X),d;),
(L(X),d;) and (U(X),d,) are complete metric spaces. For each uy = (Dy, 5, Th), u; =
(D25, Ta)inY, = K(X)xC(X)x L(X) (respectively, Y, = K(X)x C(X) xU(X)),
define p(uy, uy) = h(Dy, Ds) + di (51, 52) + dz(T1, T2). Then (Y, p) is a complete metric
spacefor Y =Y, or Y =Yy

As a special case of Theorem 4.3 4, we have the followirg generalized quasi-variational
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inequalities (GQVI) which is Theorem 2 of Shih and Tan [267] (see also Theorem 2 of
Shih and Tan [274] with f = 0):

Theorem 4.4.A. Let £ be a locally convex topological vector space, I* be the
dual space of E and X be a non-empty compact convex subset of 5. Let §: X — 2%
be continuous such that for each 2 € X, S(z) is a closed convex subset of X and let
T : X — 2" be monotone such that T' is lower semicontinuous from the relative topology

of X to the strong topology of £*. Then there exists a point §j € X such that

SUP,es(j) SUPwer(s) fle(w, § — ) 0.

By Theorem 4.3.9, we also have the following generalized quasi-variational inequalities

which is Theorem 4 of Shih and Tan [267]:

Theorem 4.4.B. Let E be a locally convex topological vector space, [2* the dual
space of E and let X be a non-empty compact convex subset of 5. Let 5 : X — 2%
be continuous such that for each z € X, S(z) is a closed convex subset of X, and
T : X — 2F° be upper semicontinuous from the relative topology of X to the strong
topology of £~ such that for each z € X, T'(z) is a strongly compact subset of /7*. Then
there exists a point § € X such that

GOV I(B) { y € S(y) and

sUpPes(y) infwer) Re(w, i —x) <O0.

We call such a point ¢ in Theorem 4.4.A (respectively, Theorem 4.4.B) a solution of the
generalized quasi-variational inequaiity (A) (respectively, (B)), in short, GQVI(A) (respec-
tively, GQVI(B)) for (S,T) in X and denote by S4(X,S,T') (respectively, Su(X, S,7"))
the set of all solutions of the generalized quasi-variational inequalit); (A) (respectively, (B))

for (S,T) in X. Thus under the stated conditions above, the associated set Sa(X,s,T)

(respectively, Sg(X, S5,T)) is non-empty.
Lemma 4.4.1. Let {A,}52, be a sequence in K(X) which converges to A € K(X).

Then every sequence (z,,)%2, in X with z, € A, for each n € N, has a subsequence

n=

which converges to a point in A.
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Proof. Since A, and A are compact and A, — A, by A.5.1 (ii) of Mas-Colell [216,
p.10], U=, A, U A is compact. Since z, € A, C U2, A, U A, the sequence {z,} has
a subsequence {z,,} which converges to z € U2 A, U A. Now by Lemma 1(2) of Yu
[329, p.231], z € A. O

Let M), = {(D,S,T) € Yy,: there exists y € D such that y € S(y) and

Su])”e‘g(y) SupweT(y) Re<w) y— 3’) < 0 }
and

My = {(D,S5,T) € Yy : there exists y € D such that y € S(y) and
SUPes(y) infuer(y) Re(w,y — z) < 0}

Define S, : My, — 2X (respectively, Sg : My — 2%) by
Sa(u)={ye D:yeS(y) and sup sup Re{w,y—z) <0}
z€S(y) weT (y)
for each w = (D, S,T) € My, (respectively,

Sp(u)={ye D:ye S(y)and sup inf Re(w,y—z)<0}
s€S(y) €T ()

for each w = (D, 5,T) € My).

" Lemma 4.4.2.
(i) The space My, is closed in Y.
(i1) The space My is closed in Y.
Proof. Llet ((D,,5,,7,))52, be a sequence in M|, (respectively, M) such that

(D, Su, 13) — (D, 5,T) € Y}, (respectively, Yi). For each n € N, let y,, € D,, be such
that

(1) yu € Su(y.) and

(2) 1P 5, ) SUP e o) R0, — ) < 0

(respectively, SUP 5, () 10 weT (4m) Re{w,y, — x) <0).

Since D, — D, by Lemma 4.4.1, without loss of generality, we may assume that y,, —

asn — oo and yo € D.
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Now we shall show that
() 3o € 5(s0) and

(1) SUP,es(y) SUPweT(y) RE({W, %0 — 2) < O

(respectively, sup,cs(y,) infuer(y) Re(w,yo — ) <0}

(1) Suppose that yo ¢ S(yo), then there exists @ > 0 such that U(a, S(yo))NU(a, y0) = 0
Since S, — 5 as n — oo there exists ny € N such that for each n € N with n > n,,
Su(w) € Ulaf2,S(u)) for all u € X. Since y,, — yo, by the upper semicontinuity of 5,
there exists a positive integer n, > n, such that y,, € U(a, yo) and S(y..) C U(a/2, S(w))
for all n € N with n > n,. Now for any integer n > n,, S,(y.) C U(a,S(yo)) and
yn € U(a,yo). Note that y,, € S, (y,) which contradicts that U{a, S(yo))NU(a, y) = 0
Therefore we must have y € S(yo)

() Suppose that

sup sup Re(w,yo—x) >0
2€8(vo) weT (vo)

(respectively,

sup inf Re(w,yo—x) >0
zES(yg)’”ET(’IO) ( ) ) )7

then there exist zo € S(yo) and ¢ > 0 such that sup,epq,) Re(w, g0 — o) > ¢ > 0
(respectively, infuer(y) Re(w, yo — zo) > € > 0) As T'1s lower semicontinuous (respec-
tively, upper semicontinuous) and the mapping (w, y, %) — Re(w,y — 1) 1s continuous
from E* x X x X to R, the mapping (y,2) + sup,eq(,) Re(w,y — o) (respectively,
(y,z) = infuerq) Re(w,y — z)) is lower semicontinuous by Proposition 19 (respec-
tively, Proposition 21) of Aubin and Ekeland [10, p 118] (respectively, [10, p 119]) Since
Yn — Yo as n — 0o, there exist § > 0 and ny € N such that for each integer n > ng,
yn € U(6,y0) and for each (y', z') € U(8,y0) X U(8, z0), sup,,er wn He{w,y'=a') > >0
(respectively, infyer(,) Re(w,y’ — 2') > ¢ > 0) In particular, for each integer n > ny
and &’ € U(8, zy),

sup Re{w,y, —z') > ¢ >0 (respectively, inf Re(w,y, —1')>c>0). (4.1)
U/ET(‘!I") “IGT("IN)
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Because 5, — S as n — oo, there exists an integer n; > ng such that S(u) C
U(6/4,Su(u)) for all w € X. Since S(y,) — S(yo) and zo € S(yo), there exists an
integer my > ny such that S(y,) N U(6/4,z0) # O for all integers n > ny. Therefore for
alln € N withn>ny, S(y.)NU(6/4,20) # 0 and S(u) C U(8/4, Su(w)) forall u € X

which imply that
Sn(yn) N U(6/2,.'l?0) # 0 (42)
Now by (4.1) and (4.2), for each integer n > n,, we have
sup  Re(w,y, — ') > ¢ >0 (respectively, inf Re(w,y,—2z')>e>0) (4.3)
weT (yn) w€T (yn)
for all 2’ € S, (y.) N U(6/2, z0).

Since T,, — T as n — 00, there exists an integer ny > n, such that for each n > nj,
dy(T, T') < 55, where p = [[@o|| + 6+ sup{|lya : n 2 1}. Fixan n 2 ns. Let w € T'(ya)
(respectively, w € T,,(y,.)) be arbitrarily fixed. Since h*(T(y.), T (y.)) < 55 there exists
w' € Tu(yn) (respectively, w' € T(y,)) with ||w — o/||* < 35+ BY (7?), choose any
@' € Snl(yn) O U(8/2,30). Then

| Re(w' —w,yn — &) < [lw’ —w|*(gnll + | = zol| + [lzol) <

b

[N,

so that

sup Re(z,yn —2') > Re(w',y, — 2') > Re{w,y, —z') — €/2
€T (yn)

(respectively,

Re(w,y, —2') 2 Re(w',y, — 2’y —€/2> inf )Re(w,'cn — ') —¢/2).

wET(yn

Since w € T'(y,) (respectively, w € T,(y,)) is arbitrary, we have by (4.3),

sup  Re(z,y, —a') > sup Re(w,yn —2') —€/2>e—€/2=¢/2>0
s€Tn(yn) weT (yn)

(respectively,

inf  Re(w,y, —a') > | —a)>e—¢f2=
we;}:w") e(w,y z)_wel}l(fyn)Re(w,y ') >e—€/2=¢/2>0).
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This contradicts (2) as 2’ € 5,,(y,). Hence {ii) must hold.
Therefore yo € S(u). Thus (D, S,T) € My, (respectively, (D, S,7) € My;) so that
My, (respectively, My) is closed in Yy, (respectively, Yy;). O

For convenience, we recall and state Theorem 2 of Fort [115, p.101] again as Lemma
4.4.3 (see also Lemma 1.7.1.) below:

Lemma 4.4.3. Suppose W is a metric space, Z is a topological space and & : 7 —

K (W) is upper semicontinuous. Then S is continuous at points of a residual set in 7.

Lemma 4.4.4.

(1) Sa(u) € K(X) for each u € M.

(i) Sg(u) € K{X) for each u € My.

Proof. Suppose u = (D,S,T) € M (respectively, v = (D, S5,1) € My). Since
Sa(u) C D (respectively, Sg(u) C D), it is sufficient to prove that 5,(u) (respec-
tively, Sg(u)) is closed in D. Let ()32, be a sequence in S4(u) (respectively, Sp(w))
which converges to a point yo € D. By the definition of S4 (respectively, Sy), we
have (i) yn € S(ya) and (i) sup,es(y,) SUPwer(y) (W, yn — ) < 0 (respectively,
SUPzes(yn) 1M wer(yn) Re(w,yn — ) < 0). Since S is upper semicontinuous on /) with
compact values and /) is compact, yo € S(yo). Note that 7' is lower semicontinuous (re-
spectively, upper semicontintinuous) and the mapping (w,y, ) — Re{w,y—x) is contin-
uous from E*x X x X to R, it follows that the mapping (y, ) — sup,er(, Helw,y—)
(respectively, (y,z) — inf,er) Re(w,y — x)) is lower semicontinuous from X x X to
R by Proposition 19 (respectively, Proposition 21) of Aubin and Ekeland [10, p.118]
(respectively [10, p.119]). Since S is also lower semicontinuous, the mapping y
SUP,es(y) SUPuerT(y) Re(w,y — @) (respectively, y = sup,eg,) inluerq) Re(w,y — =)
is also lower semicontinuous by Proposition 19 of Aubin and Ekeland [10, p.118] again.
Thus

sup  sup Re{w,yo—z) <liminf sup  sup Re(w,y, —z) <0
z€S5(yo) weT(yo) 0 €S (yn) wET (yn)



177

(respectively,

sup  inf  Relw,yo—z) <liminf sup  inf Re(w,y, —z) <0).
'JiEb(yo)”’E'p(Zlo) ! > n—00 a;ES(y,.)“’ET(y") yJn

Hence yg € Sa(n) (respectively, yo € Sp(u)). Therefore Sa(u) (respectively, Sp(u)) is

closed in D. O

Lemma 4.4.5. The correspondences Sy : My — K(X) (respectively, Sg : My —
K (X)) is upper semicontinuous.

Proof. Suppose that S, (respectively, Sg) were not upper semicontinuous at some
point u = (D,5,T) € M, (respectively, My ), then there exists an open subset G of X
with G D 5a(u) (respectively, G O Sp(u)) and a sequence {u,},eN in My, (respectively,
My) with w, — uw € M, (respectively, My) such that for each n € N, there exists
Yo € Sa(uy) (respectively, y, € Sp(u,)) with y, ¢ G. Let u, = (D,,S,,T,), then
D, —D; S, — SandT, - T. Since y,, € D,, for each n € N, by Lemma 4.4.1,
we may assume without loss of generality that y, — yo € D. Note that y, ¢ G
for all n € N so that yog ¢ G D Sa(u) (respectively, yo ¢ G D Sp(u)). Now the
same argument as in the proof of Lemma 4.4.2 shows that (1) yo € S(y0) and (2)
SUD, e5(0) SPweT (o) E{W, Yo — @) < 0 (respectively, sup,eg(y,) infuer(ye) Re(w, yo —
£) < 0). Therefore yo € Sa(u) (respectively, yo € Sp(u)). This contradicts tht fact that
yo & G D Sa(u) (respectively, yo ¢ G D Sp(u)). Therefore S (respectively, Sg) is

upper semicontinuous. O

fn what follows, let M = M/, or My and S = 54 or Sp, respectively. Now let M; be

an arbitrarily fixed non-empty closed subset of M.

Definition. If u € M,, then (i) a point y € S(u) is essential relative to M, if for
each open neighborhood N(y) of y in X, there exists an open neighborhood O(u) of u
n M, such that S(u') N N(y) # B for each u' € O(u) and (ii) u is essential relative to

M, if every y € S(u) is essential relative to M;.

Theorem 4.4.6.

(i' S is lower semicontinuous at w € M if and only if u is essential relative to Mj.



(ii) S is continuous at u € M, if and only if w is essential relative to M.
Proof. (i) S is lower semicontinuous at «w € M, if and only if each y € S(u) is
essential relative to M if and only if u is essential relative to M,.

(i) This follows from (i) and Lemma 4.4.5. O

Theorem 4.4.7. If w € M, is such that S(u) is a singleton set, then w is essential
relative to M.

Proof. Suppose S(u) = {x}. Let G be any open set in X such that S(u) N (7 30,
then z € G so that S(u) C (. Since S is upper semicontinuous at u by Lemma 4.4.5,
there is an open neighborhood O(u) of win M such that S(u') C G for each u' € O(n);
in particular, G N S(u') # O for each v’ € O(u). Thus S is lower semicontinuous at w.
By Theorem 4.4.6 (ii), u is essential relative to M. O

Theorem 4.4.8. There exists a dense (s subset Q) of M, such that u is essential
relative to M.

Proof. Note that S is an usco by Lemma 4.4.4 and Lemma 4.4.5. By Lemma 4.4.3,
there exists a dense (5 subset (); of M, such that S is lower semicontinuous at each

u € (1. By Theorem 4.4.6 (ii), u is essential relative to M, for each w € (),. O

Remark: Note that the mapping S : M; — K(X) is continuous at v = (D, S, T') €
M if and only if for each ¢ > 0, there is § > 0 such that A(.S(u), 5(n')) < ¢ whenever
u' € My and p(u,u’) < §; i.e., the solution set S(u) of u is stable in M,: S(u') is close
to S(u) whenever u’ € M, is close to u. Theorem 4.4.6 (ii) implies that if v € M|,
then u is essential relative to M, if and only if the solution set S(u) is stable in M.
Theorem 4.4.8 implies that there exists a dense (/5 subset (), of M, such that for each
uw=(D,S,T) € @4, the solution set S(u) of the GQV [ is stable in M;. In particular,

most (in the sense of Baire category) u in M; have stable solution set S(u).

Now let

CK(X) {Ae K(X): Ais convex },
CC(X) = {SeC(X):S(z) e CK(X) for each z € X},



179

ML(X) = {T €L(X):T is monotone },
M, = {X} xCC(X)x ML(X),
M, = {X} xC0C(X)xU(X).

It is easy to see that CC'(X) is closed in /{(.X) so that M, is closed in My. Also M L(X)
is closed in L(X) so that M}, is also closed in My,. The following is an application of the

results obtained in this section:

Theorem 4.4.9. Let X be a non-empty compact and convex subset of the normed
space [2. Then there exists a dense G5 subset Q' of M|, (respectively, M/;) such that u
is essential relative to M| (respective, M{;) for each u € Q’. Thus most (in the sense of
Baire category) of the solutions of the GQV I(A) (respectively, GQV I(B)) for (S,T) in
X are stable in M|, (respectively, M{,).

Let M} = {X} x {Ox} x ML(X) (respectively, M{; = {X} x {Ox} x U(X)),
where Ox(x) = X for all x € X. Clearly, M} (respectively, M) is a closed subset
of M| (respectively, M/;) if X is compact. The following deals with the stability of

Hartman-Stampacchia variational inequalities [146]:

Theorem 4.4.10. Let X be a non-empty compact and convex subset of the normed
space I5. Then there exists a dense G5 subset Q" of M| (respectively, M{}) such that u

is essential relative to M (respectively, M}}) for each u € Q”.
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4.5 \Variational Inequalities on Reflexive Banach Spaces and

Applications

It 1s well-known that variational inequalities have a close connection with fixed point
theory, for example, the famous Fan-Browder fixed point theorem [42] can be denived
from variational inequalities for monotone operators (e g , see Browder [45]) We note that
there is also an interconnection between variational inequalities and monotone operators
In fact, most existence theorems for variational inequalities could be obtained from direct
apphcations of the main theorems on maximal monotone operators Monotone operators
have been comprehensively studied in the last three decades The theory of monotone
operator is related to the simple fact that the derivative |’ of a convex real function [ is
a monotone function Moreover, it 1s a very powerful tool to handle nonlinear differential
equations (e g , see Zeidler [336] and references therein)

A generalization of monotone operators which they called a “scii-monotone operator”
was first introduced by Bae, Kim and Tan [13] In this section, we give some variational in-
equalities for monotone and semi-monotone operators in Banach spaces As applications,
an existence theorem for a generalized complementarity problem in the Banach space and
some fixed point theorems for multivalued nonexpansive mappings in the Hilbert space

are given

Definition. Let £ be a topological vector space and X a non-empty subset of /4
Then amap I° X — 25" is semi-monotone on X (see Bae, Kim and Tan [13]) if for
each 1,y € A, ueT(1)and w e T(y), mlyer ) Re(u,y— 1) <nlyerqy) He(w,y—1)

It 1s clear from the definitions that if 7" 1s monotone, then 7' is semi-monotone

If £ 1s a normed space with norm || |
d(v,A) = nt{

metric h on the family bc(£) of all non-empty bounded and closed subsets of /5 induced

, A 1s a non-empty subset of /¥ and 1 € [,

[v —y|l y € A} 1s the distance from 7 to A Recall that the Hausdorff

by the norm s defined by
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h(41,A2) = inf{r>0: A C B,(A;) and Ay C B,(A))}

= max{sup d(x, A3), sup d(y, A\)}
ZEA, y€A2

where B.(A) = {z € E : d(z,A) >r} forany A€ 2 and » > 0. Amap §: X — 2
is said to be pseudo-contractive [13] on X if for each z,y € X and w € S(y), there
exists u € S(x) such that ||z — y|| < J|(1 +r)(z —y) — r{w — w)|| for all » > 0. (This
is a set-valued generalization of pseudo-contractive (single-valued) maps as defined by
Browder in [41]). A map S : X — be(E) is said to be nunexpansive on X if for each
5,y € X, 5(S(2),5()) < o — o],

The following example shows that (i) there is a nonexpansive map 7' such that [ — 7'

is not monotone and (ii) a semi-monotone map need not be monotone:

Example. Let R be the real linear, d be the usual metric on R and /i be the
Hausdorff metric on be(R) induced by d. Define 7" : R — be(R) by T'(x) = |||, |=|]

for each z € R. Then we have:

(1) For each z,y € R,

h(T (=), T(y)) = llz] = |yl < |z —y| = d{z,y);
it follows that T is nonexpansive.
(2) Suppose y > x> 0; then
(I =T)(z) =z — [~|o], |z[] = [0,22] and (I - T)(y) = [0,2y].
Choose u = 2z and w = z, then u € (/ — T')(s) and w € (/ = 7')(y). But
(w—u,y—z)=(z—2z,y—2z)=—z(y—2) <0
which shows that / — T is not monotone.

Further more, tha map / — T is necessarily semi-monotone by Lemma 4.5.16 below
(see also Proposition of Bae et al [13]). Thus, in general, a semi-monctone map need not

be monotone.
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We need the following result which can be desived from Corollary 1.3.5 and is equivalent
to the minimax inequality of Yen [327, Theoram 1] which in turn improves Ky Fan’s

minimax inequality {105, Theorem 1j; we omit its. proof.

Lemma 4.5.1. Let X be a non-empty compact convex subset of a topological vector
space [J. Suppose &, ¥ : X x X — R U {—o00, +00} satisfy the following conditions:

(1) ¥(z,y) < Y(z,y) forall z,y € X;

(2) ¥(z,z) <0 forall z € X;

(3) for each z € X, y — ®(z,y) is lower semicontinuous;

(4) for each y € X, z +— ¥(z,y) is quasi-concave.

Then there exists § € X such that ®(x, ) < 0 for all z € X.

We also need the following result which is a special case of Leinma 3 of Ding and Tan
[81]:

Lemma 4.5.2. Let (E,||-]|) be a Banach space, X a non-empty convex subset of
B;let f: X — R bea convex function and T : X — 22" be lower semicontinuous from
the line segments in X to the weak*- topology on E*. If j € X, then the inequality

sup Re(u,j —x) < f(z)— f(y) forall z € X
ueT(z)
implies the inequality
sup Re{w,y —z) < f(z) — f(g) for all z € X.
weT ()
The same proofs of Lemmas 4.5.1 and 6.2 in Shih and Tan [272] can be modified .0

obtain the following slight improvement of Lemma 2 in [272] and is thus omitted.

Lemma 4.5.3. Let (£, || - ||) be a Banach space, X a non-empty convex subset of
[, let f: X — R be a convex and lower semicontinuous function and 7' : X — 2&°
be such that each T'(x) is a weak*-compact subset of E* and T' is upper semicontinuous
from the line segments in X to the weak*-topology on E*. If §j € X, then the inequality

sup Re(u,§ —x) < f(x) - f(g) forall z € X
weT(z)



implies the inequality

wél’}fg) Re(w,y —z) < f(z) — f{g) for all © € X.

Lemma 4.5.4. Let (£, || - ||) be a reflexive Banach space, X a non-empty ciosed
convex subset of F; let f: X — R be a convex and lower semicontinuous function and

T : X — 25" be monotone. Assume that the following condition is satisfied:

(E) For each sequence (y,)o%, in X with |ly,]] — oo as n — oo, there exists a

sequence (z,)2, in X with ||z, || < |lyn| for all n = 1,2, such that
limsup{ sup Re(u,y, — =)+ f(yn) — f(2.)} > 0.
n—oo uGT(z")
Then tnere exists § € X such that
sup Re(u,§ —z) < f(zx) - f(g) forall z € X.
ueT(z)
Prooi. Define d,¥: X x X — Rby

®(z,y) = sup,er(r) Re(w,y — z) + j(y) - [(=),
U(w,y) = infuerq) Refw,y — 2) + /() = [ (),

Then we have:

(a) since T is monotone,

uzg}()w) Re(u,y — z) < wél’}'f(y) Re{w,y — ) for all z,y € X

so that ®(z,y) < ¥(z,y) for all z,y € X;

(b) clearly ¥(z,z) =0 for all z € X;

(c) since f is convex and lower semicortinuous with respect .o the norm topology on
X, [ is also lower semicontinuous with respect to the weak topolcgy on X; it follows that
for each z € X, the function y — ®(z,y) is weakly lower semicontinuvous;

(d) fix y € X; suppose 1,2, € X and ¢t € R are such that W(z;,y) > tfori=1,2;
let & € (0,1), then for i=1,2,

wg’}}:y) Re(w,y — ;) + [(y) — f(z:) > 1
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flomy + (1= a)zs) = [(y) S af(z) + (1 - a)f(z2) = [(y)
o(f(er) = S (1) + (1 = a)(J(w2) = [(y))

i

< - (miel’}‘t;u) Re{w,y — z1) —t) + (1 — a) - (wé[%f(y) Re{w,y — z,) — t)
< inl Re(w,v(y — i)+ (1 —a)(y —22)) - ¢

weT(y)
= inf Re(w,y—(azi + (1 — a)z,)) -t

weT(y)

it follows that W(czq + (1 — @)ra,y) > ¢ and hence the fuiiction & — ¥(z,y) is quasi-
concave

Foreach N € N, let Xy = {z € X : ||z|| < N}. We may assume that X, # 0 for
all N > N, Note that for each N > N;, Xy is weakly compact znd convex since E is
reflexive, equip X with the weak topology, then by Lemma 4.5.1, there exists jy € Xn
such that

(1) $(z, jn) <0 forall z € Xy.

Suppose ||§y]l — o0 as N — oo, then by the assumptior; (E), there exists a sequence
| for all N > Ny such that

(en)nsng in X with flen] < |lgn
(2)  limSUPN_eo SUPuer(a ) Relu, 9n = an) + f(In) = f(x17) > 0.

But, foreach N > Ny, llzn]|| < |[gnll £ N implies zy € Xy so that by (1), ®(zn,9n) <

0forall N> Ny ie,

sup  Re{u,iinv —zn) + f{in) — f(zn) < 0forall N > Ny
w€T(a )

which contradicts (2). Therefore we must have ||jn|| — 0o as N — oo. It follows
that there exists a positive integer M > Nj and a subsequence {§in())52; of (In)N>N,
such that |[jnll < M foral's = 1,2,---. Thus (§n())2, is a sequence in the weakly
compact set Xy so that by tne Eberlein-Smulian Theorem (e.g. see Dunford and Schwart
[92, p.43C], there exist another subsequence (§in((;)))52; of (iin))2y and § € X such

that (jn(.(,)))52, converges weakly to §.



Now let & € X be given. Choose any positive integer M’ > M with @ € Xy Take
any jo € N with N(2(jo)) 2 M”; then for all j > jo, w € Xapr C Xp(.(j)) 50 that by {1),
Oz, gnggy) < 0. Since (Jn())ie, converges weakly to  and y — d(x,y) is weakly

lower semicontinuous by (c), we must have
O, ) < liminf@(x, fnggy) < 0.
7—00

Hence

sup Re(u,y —z) < f(z) — f(g) for all z € X. O
weT(z)

Theorem 4.5.5. Let (E,|| - ||) be a reflexive Banach space, X a non-empty closed
convex subszt of F; let f: X — R be a convex and lower semicontinuous function and

T : X — 2E" monotone . Assume that the following condition is satisfied:

o0
n=

(E) For each sequence (y,)o%, in X with ||y,]| — oo as n — 00, there exists a

sequence ()5, in X with ||z, || < ||ly.|| for all n.= 1,2, - such that

limsup{ sup Re{u,yn — =) + [(yn) — f(x)} > 0.

n—o00  uel(z,)

(1) If T' is lower semicontinuous from the line segments in X to the weak topology of /2%,

then there exists 77 € X such that

sup Re(w,§ — ) < f(z) — f(§) for all z € X.
weT(j)

(I') If T is upper semicontiruous from the line segments in X to the weak topology of

E* and each T'(z) is weakly compact, then there exists j € X such tha*

inf Re{w,§—z) < f(z)— [(y) for all 2 € X.
weT(3)

If, in addition, T'() is alsc convex, then there exists w € T'(3) such that
Re(ib, g — z) < f(z) — f(§) for all z € X.

Proof. By Lemma 4.5.4, there exists jj € X such that
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3 sup VRe(u, 9 —z) < f(z) — f(4) for al! z € X.
ued (z)

(1) f T 1s lower semucontinuous from the line segments in X to the weak topology of

7+, then by {3} and Lemma 4.5.2,

sup Re(w,y —z) < f(z) — [(j) for all z € X.
weT(q)

(1) If 7" 1s uoper semicy ntinuous from the line segments in X to the weak topology of

[ and each T'{x) 1s weakly compact, by (3) and Lemma 4 5.3, we have
(4) inferg) Re(w,g — ) < f(z) = f(§) for all z € X,

If, in addition, T'(5) is also convex, define g : X x T'(j) — R by
f](III,'U)) = R6<w7?) - (L‘> + f(:‘)) - f('l")

Note that for each fixed € X, w — g(z,w) is weakly lower semicontinuous and affine
and for each fixed w € T'(9), z — g(z,w) is concave. Thus by Kneser's minimax Theorem

4 3 A, we have
) iner(s {supsex Re(w,d — ) + £(7) - f(z)).
= sup, ey infuer(y) Re(w, § — z) + f(9) — f(z)}

Since T'(§) 1s weakly compact, there exists w € T'(g) such that by (4) and (5),

sup,cx  {Re(d,§ — =) + f(§) — f()}
= min sup{Re(w,j —z) + f(9) — f(z)} L0,

weT(9) neX
that is, Re(w,§ — ) < f(z) — f(g) for all z € X. ]
Theorem 4.5.5 generalizes Theorem 2 of Yen [327, p.479-480]

Theorem 4.5.6. Let (E,| - ||) be a reflexive Banach space, X a non-empty closed
convex subset of £; let f: X — R he a convex and lower semicontinuous function and

T': X — 25" monotone. Assume that the following condition is satisfied:
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(E)e For each sequence (y,)2, in X with |jy,|| - + co as n — oo, there exists a

sequence (z,)o%, in X with [[2,]| < |lyn|| for all n = 1,2,-. - such that

Limsup{ sup Re(u,yn — ) + f(ya) — [(22)}/ ||yl = 0.

n—=00  we&T(2n)
() If T is iower semicontinuous from line segments in X to the weak topology of !7*,
then for each given wy € £~ there exists § € X such that

sup Re{w —wg,y — ) < f(z) — f(y) for all z € X.
weT(g)

(1) If T is upper semicontinucus from line segments in X to the weak topology of [*

and each T'(z) is weakly compact and convex, then for each given wy € 5%, there exists

7 € X and & € T(9) such that
Re{t —wo,§ — z) < f(2) — f(g) for ali 2 € X.

Proof. Let wy € E* be given. Define T* : X -+ 25" by T™(y) = T(y) — wy for all
y € X. By (F)e, for each sequence (y,)°2, in X with ||y,|| — oo as n — oo, there

n=

exists a sequence (.,)%2, in X with ||z,,|| < |ly.| for all n = 1,2, -- such that

limsup {  sup Re{u,yn — xu) + [(ya) = [(z2)}/ ||yl

n—oo uET‘(wn)

= limsup{ sup Re(u — wo,yn — Tn) + f(yn) = f(x)]/|lynl|

n—00  ueT(zn)

2 lim Sllp{ sup RC(U, Yn — "L'n) + f(%z) - Ir("'n)}/”'/n” - 2”“)()”

n—00 uET(zn)

=

since |Re(wo, Y — zu)/llynll < Nwoll + llwollllzol/ gl < 2[00
It follows that

limsup{ sup Re(wo,yn — za) + f(yn) = f(22)} =00 >0

n—00 ueT’(z"J
and hence the conclusion follows from Theorem 4.5.5. O

We note that the condition (E) in Lemma 4.5.4 and Theorem 4.5.5 and ([}, in
Theorem 4.5.6 «re automatically satisfied if the set X is bounded. Also Theorem 4.1 of
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Chang and Zhang 1n [54] 1s a special case of Theorem 1 (Ilj We remark *hat Theorems
455 and 4 5 6 are very closely related to but not comparable with Theorems 1 and 2 in
[272] and Theorems 3 and 4 of Shih and Tan [273]

Recali that a subset X of a vector space £ s called a cone if X 1s a non-empty convex
set such that o« X C X forall @ > 0 If X 1s a cone in a topological vector space E, X™*

will denote the dual cone of X in E*, te,
X*={yeFE Re(y,z) >0forall e X}

The same proof of Lemma 2 of Shih and Tan [268] can be modified to obtain the following

results and 15 thus omitted

Lemma 4.5.7. Let X be a cone in a topological vector space E, T : X — 2F" and
) € X Then the following statements are equivalent

(2) supyeq(y) Re{w,j —2) <0 forall z € X,

(b) Re(w,§) =0 for all w € T'(y) and T'(g) C X*.

Lemma 4.5.8. Let X be a cone in a topological vector space K, T : X — 287,
j € X and w € T(§) Then the following statements are equivaient

(a) Re(w,j—x) <0forall 2 € X,

(b) Re(w,y) =0 and v € X*

When £ 1s rea!, Lemma 4 5 6 was also obtained by SC Fang (eg see Chan and
Pang [48, p 213])

In view of Lemma 4 57 and Lemma 4 5 8 by taking f = 0 in Theorem 455, we have

the following theorem on the generalized complementarity problem

Theorem 4.5.9. Let (£,] ||) be a reflexive Banach space, X a closed cone in E

and let 7' X" — 28" be monotone Assume that the following condition s satisfied

(17)o For each sequence (y,)32, m X with |ly,|| — oo as n — oo, there exists a

sequence (1,)o2, 10 X with |jan|| < ||yal| for all n =1,2,--- such that

n=
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limsup sup Re(u,y, — ) > 0.
n—00  »eT(x,)

(1) If T is lower semicontinuous from the line segments in X' to the weak topology of

E*, then there exists § € X such that Re(w, ) =0 for all w € T'(3) and T'(y) C X*.

(M) i T is upper semicontinuous from the line segments in X to the weak topology
of E* znd each T'(z) is weakly compact convex, then there exists j € X and b € 1'(5))

such that Re(w,y) = 0 and w € X™.

For more discussion about complementarity problems and their applizations, we refe:

to Isac’s new book [161].
The following result is Lemma 1 of Bae, Kim and Tan [13]:

Lemma 4.5.10. Let F be a topological vector sp: = and [J* the dual of £ equipped
with the strong topology. Let A be a non-empty bounded subset of /7 and C a non-
empty(strongly) compact subset of £*. Define f: A — R by

f(z) = mEiCQ Re(u, z) for all z € A.

Then f is weakly continuous on A.
We shall need the following result:

Lemma 4.5.11. Let £ be a topological vector space, X be a non-empty convex
subset of £, f: X — R be a convex function and 7 : X — 2°* be upper semicontinuous
from the line segments in X to the weak* topology on [* such that each T'(x) is weak*

compact. If § € X, then the inequality

6117]‘{ )Re(u,y} — ) < f(z)— f(g) forall z € X

implies the inequality

inlRe(w, ~ ) < [(z) - [(3) for al # € X.
weT(F)
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Proot !st 2 € X be arbitrarily fixed. For eacht ¢ [0,1], st 2y = te+ (1 — )y =
§—U(§ — ©). Since X is convex, z, € X tor all t € [0,1]. Thee forall L € (0,1},

t- inf Relu,j—z)= if R )~ 2.
bl Relug—z)= ik e{u,g ~ z)

S z) = J(@) <t S+ Q=) f(3) = F(@) =t (f (=) - £(3))
so that
(6) infuer(z) Re(w,§ —z) < f(z) — f(§) for all ¢ € (0.1].

If infuer) Re(w,j— ) > f(z)—f(3), let G = {w € E*: Re(w,y—z)+ f(§)~ f(z) >
0}, then (i 1s a weak*-open set in E* such that T(§) C G. As z; — g as t — 0T, by
upper semicontinuity of T on {2, : ¢ € [0,1]}, there exists t; € (0, 1] such that T'(z;) C G
forall ¢ € (0,10). As T'(z) 1s weak* compact, inf,cq(.,) Re(u,§ — &) + f(§) — f(z) > 0
for all 1 € (0,1p) which contradicts (). Thus we must have inf,c7() Re(w,j — z) <
f@) =4 O

Lemma 4.5.12. Let (E, || - ||) be a reflexive Banach space, X a non-empty closed
convex subset of £ and let f : X — R be a convex and lower semicontinuous function and
T : X — 9 be sem-monotone such that each T(z) is compact in the norm topology

on E*. Assume that the following condition s satisfied:

(£)" for each sequence (y,)22, in X with ||y,| — o0 as n — oo, there exists a

sequence (,,)5%, in X with ||lz,.|| < |ly.|| for all n = 1,2, such that

limsup{ inf )Re(u,w,l —zy) + f(yn) — f(2a)} > 0.

1L— 00 u€T(xp

Then there exists 7 € X such that
Relu,§ — &) < f(z) — f(3) for all z € X.
Proof Define d, ¥ : X x X — R by

‘1’(:1:,3/) = i"qu'l"(fE) Re<u1 y— "1'> + f(y) - f(:II),

W(w,y) = infueryy) Re(w,y — ) + f(y) — f(z).
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Then we have:

(a) Since T is semi-monotone, $(x,y) < ¥(z,y) tor all ,y € X"

{b) Clearly ¥(z,z)=0forall z € X.

(c) Since [ is convex and lower semicontinuous with respect to the norm tapology on
X, [ is also lower semicontinuous with respect to the weak topology on X It fcllows
that for each « € X, the function v — ®(z,y) 15 weakly lower semicontinuous on A for
each non-empty (norm-) bounded subset A of X by Lemma 4.5.10.

(d) Foreach y € X, it is easy to show that the function & — W(x,y) is quasi-concave.

Then the proof of Lemma 4.5.4 with the necessary modifications (all “sup,¢q(,;” and

» »

all © SUP e )” being replaced by “inf.zr(;)” and “inl,cp(, )" respectively), we see

N

that there exists § € A" such that

ueit%&) Re(u,j~z) < f(z)—f(p)forallze X. O
Theorem 4.5.13. Let (£, || -||) be a reflexive Banach space, X a nor-empty closed
convex subset of E and f: X — R be a convex and lower semicontinuous function and
T : X -+ 25" be semi-monotone and upper semicontinuous from the line segments in X
to the weak topology on E* such that each T'(z) is compact in the norm topology on /7*.

Assume that the following conditior. is satisfied:

(E)* for each sequence (y,)3%, in X with |jy.)| — oo as u — oo, there exists a

n=

sequence ()72, in X with ||z,}| < ||ya| forall n = 1,2, such that

limsup{ inof )Re(’lL,?/n — &) + f(yn) — fz2)} > 0.

n—oo uET(in

Then there exists § € X .uch that

inf Re{w,§—z) < f(z)— f(§) for all z € X.
weT(7)

If, in addition, T'() is also convex, then there exists 1 € 7'(f}) such that

Re(, g — ) < f(z) — [(§) for all z € X.
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Proof. By Lemma 4.5.12, there exists § € X such that
n}g ) Relu,j—a) < f(z)— f(9) for all z € X.
weT(r
Bv Lemma 4.5.11, we have
ixln{(' ) Re(w,§ ~z) < f(z) — f(§) for all z € X.
weT' (4
If, in addition, 7'(7}) is also convex, by Kneser's minimax Theorem 4.3.A and by using the
same argument as in the proof of Theorem 4.5.5, we get that there exists 1 € T'(§) such
that
Re(i, g —z) < f(z) — f(9) for all z € X. ]

In the proof of Theorem 4.5.6, if we replace all “SUPUET‘(:L',,) ¥ and all “SupuET(zn) K

by “infugpe(s,)” and “infyep(s,)” respectively, ‘e have the following application of

Theorem 4.5.13:

Theorem 4.5.14. Let(F, |

closed convex subset of [/, f : X — R be a convex and lower semicontinuous function

- |l) be a reflexive Banach space, X be a non-empty

and 7': X — 2F" be semi-menotone and upper semicontintous from the line segments in
A to the weak topology on [£* such that each T'(z) is convex and compact in the norm

topology on [5*. Assume that the following condition is satistied:

([)2, For each sequence (y,)°%, in X with ||y,|| — oo as n — oo, there exists a

sequence (ur, )52, in X with ||z, || < |lyn|| for alt n = 1,2, such that

Emsup{ inf Re{u,yn —z) + f(ya) — f(z0)}/||lynll = oo.

n—oo ueT(r,)

Then for each given wy € 7, there exist jj € X and @ € T'(§j) such that

Re{th — wo,§ — &) < f(z)— f(§) forall z € X.

By Lemma 458 and by taking / = 0 in Theorem 4.5.13, we have the following

theorem on the generalized complementarity problem:
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Theorem 4.5.15. Let (£, || - ||} be a reflexive Banach space, X" be a non-empty
closed cone in £ and T : X — 2% be semi-monotone aiid upper semicontinuous from

,iL

the line segments in X to the weak topology on .Z* such that each 7'(.r') is convex ani

compact in the norm topology on f2*. Assume that the follow:ng condition is satisfied:

(E)g For each sequence (y,)%%, in X with ||ly,|| — co as » — oo, there exists a

sequence (2,)32, in X with ||z, || < ||yn]| for all = 1,2, such that

n=

i sup{ m(l ) Relw,yp —x,)} > 0.

nL—00 ueT Iy

Then there exist § € X and @ € T'(3) such that

Re(w,y) =0 and w € X™.

The following is essentially the Proposition of Bae, Kim and Tan [13]; thus we omit

its proof.

Lemma 4.5.16. Let X be a non-empty subset of a Hilbert space //.

(3) £ T : X — be(H) is nonexpansive such that for each = € X, I'(x) is weakly
compact, then T is pseudo-contractive on X.

by 17 : X — 2! is pseudo-contractive on X, then / — /' is semi-monotone on X
wh>re I(z) =« for all z € X.

As another application of Theorem 4.5.13, we have the following fixed point theorem:

Theorem 1.5.17. Let X be a non-empty closed convex subset of a Hilbert space
H and let T : X — 2/ be rseudo-contractive and upper semicontinuous from the line

segments in X to the weak topology on H such that each 7'(x;) is compact in the norm

topology on H. Assume that the following condition is satisfied:

(E)* For each sequence (y,)%°
; In X with

=l in X with ||l/,,|| ~» 00 as n — 00, there exists a

sequence (,,)%2

"n“ < H'/n | for all 1. = 1,2, - such that

n=

msup{ inl Re(zn — u,yn — x,)} > (0.
veT (zn)

nH—ou
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Then there exists y € X such that

wél'}‘f(‘ﬁ) Re(j —w,§—z) <0forall z € X.

If 7'(3) is also convex, then there exists W € T(g) such that

Re(j — w,5 — z) < 0forall z € Ix(y),

and if, in addition, either g is an interior point of X in H or p(3) € Ix(3), where p(3) is
the projection of § on T'(3}), then g is a fixed point of T', i.e § € T'(7).
Proof: By Lemma 4.5.16, 1™ = [ — T is semi-monotone on X. By Theorem 4.5.13

with h = 0, there exists § € X such that

mei']r]'f(g) Re(w,j —z) <0 for all z € X;

that is,

inl Re(y —w,j—=z) <0 forallz € X.
weT(H)

If T'(7) is also convex, then by Theorem 4.5.13 again, there exists @ € T'(3) such that
(7) Re(y — 1,y —z) <0forallz € X.

If : € Ix(3), then x = j + r(u—g) forsomeu € X and r > 0. Thus § —z = r(§ — u)
so that by (7),
Re(j —w,§ —x) =7 Re(§ — 0,9 —u) <0.

It follows that

(8) Re(j —,§ — o) <0 forall z € Ix(3).

Now, if j is an interior point of X in H, then (8) implies that § = @ € T'{3j). Next suppose
p(i1) € Ix(7) Since p(j) is the projection of § on T'(§), we must have, by Theorem 1.2.3
of Kinderlehrer and Stampacchia [185, p.9], p(§) € T'(3) and Re(p(§)—9,w—p(g)) >0

for all w € T'(y). Since & € T'(§), by (8) we have

0 < Re(p(y) — g, — p(9))

= Re(p(§) — 9,9 —§ + 3 — p(§))
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= Re(p(5) — .6 — 9) — 1§ — p(§)I*
= Re(j — 1,7 - p@)) =I5 — p(@I* < ~lIp(@) — all*
so that {|p(§) — #||* < 0 and hence § = p(§j) € T'(§). O
As an immediate consequence of Lemma 4.5.16 and Theorem 4.5.17, we have

Theorem 4.5.18. Let X be a non-empty closed convex subset of a Hilbert space
H and T : X — 24 be nonexpansive such that each T'(z) is compact convex and

p(y) € Ix(y) for each y € X where p(y) is the projection of y on T'(y) and JX is the

boundary of X in H. Assume that the following condition is satisfied:

E)* For each sequence (y,,)3%, in X with ||y,|| — oo as n — oo, there exists a
1

sequence (2,)52, in X with ||lz,|| < |ly.]| for all n = 1,2, such that

n=

limsup{ inf )Re(mn — Uy Yn — 2n)} > 0.

n—oo  uw€T(zy

Then T has a fixed point in X.

Except that the set X is required to be closed in H, the above result is a generalization

of Theorem 4.5.18 in [287, p.561] to set-valued and non-self maps.

We note that the condition (E)* in Lemma 4.5.12 and Theorem 4.5.13, (£):, in
Theorem 4.5.14 and (E)* in Theorems 4.5.17 and 4.5.18 are automatically satisfied if
the set X is bounded.

Finally we remark that given any increasing sequence (N, )o, of positive integers,
the conclusions of Lemmas 4.5.4 and 4.5.12 and Theorems 4.5.5, 456, 459, 4513,
4.5.14, 45.15, 45.17 to 4.5.18 remain valid if we replace the phrase “--. there exists
a sequence (z,)52, in X with ||2,)] < |lya]| for all n» = 1,2,---” in the conditions

(£), (E)eos (E)o, (E), (E)2,, (E); and (E)* by the phrase .- there exists a se-

quence (z,)%%, in X with ||z,,]| < N, forall n =1,2,.--".



Chapter 5

Concluding Remarks

To summerize: in Chapter 2, we give a number of existence theorems for minimax in-
equalities, fixed point theorems, ~oincidence theorems and stability of coincidence points
and of KF points; in Chapter 3, we obtain some existence theorems for equilibria for gen-
eralized games in H-spaces, topological vector spaces, locally convex topological spaces,
Frechet spaces and finite dimensional spaces; and in Chapter 4, we prove some existence
theorems for variational inequalities and generalized quasi-variational inequalities in locally
convex topological spaces and reflexive Banach spaces, the stability of quasi-variational
inequalities and applications to constrained N-person games, complementarity problems
and fixed point theorems for set-valued pseudo contractive maps and set-valued nonex-
pensive maps. Here, no applications to differential equations nor differential inclusions
are given. Further, even though we have some results on abstract general algorithms for
solutions of variational inequalities, these are not included here. The author wishes to
continue these topics in the near future. Moreover, we do not cover the topics on random
analysis and its applications to fixed point theory and existence of equilibria for random
generalized games for which we refer to Tan and Yuan [293]-[300], Yuan [332]- [335] and
the references therein,

Moreover, in this thesis, | do not touch the topic such as topological Iminimax in-

equalities which has been attentioned by many authors in recent authors, for most recent
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results on this topic, we refer to Kindler [186], Konig [195], Ricceri [[252] and the refer-
ence therein. We also do not study the existence theorems for generalized quasi-variational
inequalities wihch are associated discontinuous mappings (e.g., see Cubiotti [69], Ricceri

[251]). The author hopes to continue study in these areas soon.
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