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Abstract 

In this thesis, we present interconnections among the Knaster-Kuratowski-Mazurkiewicz 

theorem (in short, KKM theorem), Ky Fan minimax inequalities, fixed point theorems, 

coincidence theorems, equilibria of generalized games and variational inequalities. 

In Chapter 2, we obtain generalizations of the KKM theorem in topological spaces 

from which a characterization of a generalized HKKM mapping is provtd. As applications, 

generalizations of Ky Fan minimax inequalities, coincidence and fixed point theorems for 

multivalued mappings are derived in H-spacc-s, topological vector spaces or in locally 

convex topological vector spaces. 

In Chapter 3, using results from Chapter 2 and combining "approximate method" we 

show existence theorems for equilibria of generalized games in H-spaces, topological vector 

spaces, locally convex spaces, Frechet spaces or in finite dimensional spaces under various 

continuous and non-compact hypotheses. In particular, the question raised by Yannelis 

and Prabhakar in 1983 is answered under weaker hypotheses. 

In Chapter 4, by applying the existence theorems from Chapter 3, we achieve several 

existence theorems for non-compact variational inequalities and non-compact general­

ized quasi-variational inequalities in locally convex spaces and in reflexive Banach spaces. 

These results in turn imply some new existence theorems for generalized complementarity 

problems and fixed point theorems for multivalued pseudo and nonexpansive mappings in 

Hilbert spaces. 

Furthermore, the stability of Ky Fan points, of coincidence points and of solutions of 

generalized quasi-variational inequalities are also established. 
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Chapter 1 

Introduction 

Let n be a positive integer, N = {0, l , - - , n } and A # denote the unit ??.-simplex in 

(n + l)-dimensional Euclidean space R u + 1 . For each S C {0, 1, •••,?/,}, we denote 

by A s the face of AJV spanned by the unit vectors e, for i C S. A closed covering 

C = {Co, C'i, • • •, Cn) of AN is called a KKM covering if A.s C U,esC; for all 0 ^ S C W. 

In 1929, Knaster, Kuratowski and Mazurkiewicz [191] proved that if { C 0 , C | , • • • ,C „ } is 

a KKM closed covering of Ajv, then n£_0C, is non-empty. In 1961, Ky Fan generalized 

the classical KKM theorem to infinite dimensional HausdorfF topological vector spaces and 

established an elementary but very basic ugeometric lemma" for mulitvalued mappings. 

In 1968, Browder gave a fixed point version of Fan's geometric lemma and this result 

is now known as the Fan-Browder fixed point theorem. Since then there have been 

numerous generalizations of the Fan-Browder fixed point theorem and their applications to 

coincidence and fixed point theory, minimax inequalities, variational inequalities, nonlinear 

analysis, convex analysis, game theory, mathematical economics and so on. 

By applying his geometric lemma in 1972, Ky Fan obtained a minimax inequality which 

plays a fundamental role in nonlinear analysis and mathematical economics and has been 

applied to potential theory, partial differential equations, monotone operators, variational 

inequalities, optimization, game theory, linear and nonlinear programming, operator theory, 

topological group and linear algebra. In particular, by using Ky Fan's minimax inequality, 

a more general form of the Fan-Glicksberg fixed point theorem is derived for multivalued 
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2 

mappings which are inward (or outward) as defined by Fan in 1969 (which are more general 

than Halpern's definitions for inward (or outward) mappings in 1965). 

Recently, Horvath obtained some generalizations of Fan's geometric lemma and his 

minimax inequality in 1983 and 1987 by replacing the convexity assumption with topo­

logical properties: pseudo-convexity and contractibilty. By extending Horvath's concepts, 

Bardaro and Ceppitelli [46] in 1988 obtained generalizations of Ky Fan minimax inequal­

ities to topological spaces which have the so called H-Structure (such spaces are called 

H-spaces). 

Following this line, a number of generalizations of Ky Fan's minimax inequalities are 

given by Horvath [154], Baradaro and Ceppitelli [47], Ding and Tan [85], Ding, Kim and 

Tan [86]-[87], Chang and Ma [51], Park [243], Tarafdar [303], Tan, Yu and Yuan [289] in 

topological spaces which need not have a linear structure but with an H-structure. 

The importance of fixed point theory in mathematics is well known. An example to 

illustrate and emphasize the close relationship between nonlinear analysis (in particular, 

fixed point theory) and economic science (in particular, mathematical economics) is as 

follows: 

It was Leon Walras who, at the end of the last century, despite great opposition, 

dared to suggest using mathematics in economics. He described certain economic agents 

as automata seeking to optimize evaluation functions (utility, profit, etc) and posed the 

problem of economic equilibria. However, this area did not blossom until the birth of 

nonlinear analysis in 1912, with Brouwer's fixed point theorem [39], the usefulness of 

which was recognized by John von Neumann [234] when he developed the foundations 

of game theory in 1928. In the wake of von Neumann came the works of John Nash, 

Kakutani, Aumann, Shapley and many others who provided the tools used by Arrow, 

Debreu, Gale, Nikaido and many others to complete Walras' construction, culminating in 

the 1950's in the proof of the existence of economic equilibria. Debreu's classic book [73] 

"Theory of Value1' is a very good survey +ype exposition of economic equilibria at that 

time. 

The natural extension of fixed point theory is the study of coincidence points. Let X 
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and Y be HausdorfF topological spaces and S,T : X —> 2Y be mappings. The coincidence, 

problem, for (S, T) is to find (:c0, y0) e XxY such that j / 0 <E S'(x0) n2'(:t;0). Geometrical 

problems of this type in an appropriate context turn out to be intimately related to 

some basic problems arising in convex analysis. This important fact was discovered by J. 

von Neumann [234] in 1928, who established a coincidence theorem in R11 and made a 

direct use of it in the proof of his well-known minimax principle. Since then, geometrical 

problems of a similar kind (as well as their analytic counterparts) have attracted many 

people as well as finding new applications in various fields. In particular, since Eilenberg 

and Montgomery [94] studied coincidence theory in topological settings in 1946, this 

topic has been comprehensively developed by contributions due to Kakutani, Nash, Ky 

Fan, Kneser, Gale, Debreu, Nikaido, Sion, Gorniewicz, Granas, Liu, Chang, Song, Ben-EI-

Medchaiek, Deguire, Kryszewski, Ko, Shih, Tan, Powers and others. This topic has many 

applications in mathematics and other subjects, for example, see Aubin [7], Aubin and 

Cellina [9] and Zeidler [336]. In 1988, Ichiishi [156] successfully used Fan's coincidence 

theorem to give another proof of Scarf's existence theorem [259] for the non-emptiness 

of the core of balanced n-person game without side payments. 

In this thesis, we first show in Chapter 2 that the classical KKM theorem holds in 

topological spaces. Then, a characterization of a generalized HKKM mapping (which is a 

generalization of the KKM mapping) is given in topological spaces which in turn gives sev­

eral Ky Fan's minimax inequalities in H-spaces or in HausdorfF topological vector spaces. 

Moreover, several fixed point theorems and coincidence theorems for non-self multivalued 

mappings are derived under weaker continuity and boundary conditions. As applications, 

several matching theorems for closed coverings of convex sets are also derived. Further­

more , the concepts of the KF point and KF essential point are first introduced and the 

stability of KF points and coincidence points are established. These results improve or 

unify many corresponding results in the literature. For instance, our Ky Fan type mini­

max inequalities show the "lower semicontinuitif condition which is assumed by many 

authors (e.g., see Fan [106] etc.) is not needed for the existence of solutions for Ky Fan's 

minimax inequalities. Furthermore, our generalizations of the Fan-Glicksberg fixed point 
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theorem show that the condition "the domain is paracomapcf appearing in many liter­

atures (e.g., See Fan [106], Ko and Tan [192] and the references therein) is superfluous. 

These results will be needed in our further developments in Chapter 3. 

A g?<me is a situation in which each of several players has partial control over some 

outcome but generally conflicting preferences over the outcome: each player has a fixed 

range of strategies among which he selects one so as to bring about the best outcome 

according to his own preferences. An n-person game is a game in which the strategies of 

?) players can not be made independently: each player must select a strategy in a subset 

determined by the strategies chosen by the other players Formally, the situation can 

be described as follows. Let N = {1 ,2 , • • - , « } denote the set of players and for each 

/ G N, let Xt denote the set of strategies of the zth player. Each element of X = U^X, 

determines an outcome. The payoff to the ith player is a real-valued function / , defined on 

A' Given :c_, G X-r(= TijeN^^iXj, the strategies of all the others), the choice of the zth 

player is restricted to a non-empty subset At(x
x) of X,] the ?th player chooses x, in A,(x') 

so as to maximize f,([xt, x']) An equilibrium point in such an n-person game is a strategy 

vector x G X such that for all i G N, xt G At(x') and ft(x) = m a x ^ ^ ^ . ) / , ( [ j / t , a;']). 

The existence theorems for equilibria of an n-person game with compact strategy 

sets in R" was proved in a seminal paper of Debreu [72] in 1952. The theorem of 

Debreu extended the earlier work of Nash [228] which also covers the existence theorem of 

equilibria of the general economic model presented by von Neumann [235] in 1937 (see also 

von Neumann and Morgenstern [236]) in game theory. Since then there have been many 

generalizations of Debreu's theorem by Arrow and Debreu [5] in 1954, Mas-Colell [215], 

Gale and Mas-Colell [126], Borglin and Keiding [37] in 1976 and others. Following Debreu 

[72] and Shafer and Sonnenschein [37], a generalized game (or an abstract economy) is 

a family V = (A7,; A,; (/,),6/ where I is an any (countable or uncountable) set of players 

(or agents) such that for each / G / , A', is the strategy set or choice set, A, : X = 

n ie/A", —> 2 A l is the constraint correspondence and U, : X —> R is the payoff or utility 

function. A', will be a subset of a topological space or a topological vector space for each 

/ G / . We denote the product UJ&JJ^,X3 by X_, and a generic element of X-, by z_,. 
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Note that a generalized game instead of being given by (A',-; A;; (/,)'&/ may be given by 

T = (X,; A,; P,)tei where for each ? G / , Pi : X —> 2 V ' is the preference correspondence. 

The relationship between the utility function U, and the preference cotrespondence P, 

may be exhibited by defining for each x G X, P,(x) = (</, G A", : //,([»/,,.''-'-,]) > lJt(x)), 

where for each i G / , .c_, is the projection of x onto A_, and [t/,,.7;..,] is the point // in 

A whose ith coordinate is yt and ?/_, = :c_,. In the case of a generalized game being 

given by V = (X,; A,; £/,),e/, a point x G A^ is called an equilibrium point or a generalised 

Nash equilibrium point of V if U,(x) = {/,([£„:£•_,]) = max^g/i^-) (/,([?,,.£_;]) for each 

/ G / where x and .*:_, are respectively projections of x onto X, and A_,. In this case the 

equilibrium point is a natural extension of the equilibrium point introduced by Nash [227] 

in 1950. Now let T = (Xt]Ai;U,),ei be a generalized game and for each /, G / , let /J; be 

obtained as above. Then it can be easily checked that a point x G X is an equilibrium 

point of T if and only for each i G / , x, G At(x) and P,(i) (1 A,(x) = 0. This model 

has been generalized into a more general setting by Tan and Yuan [294] which in turn 

includes the model of a generalized game introduced by Ding, Kim and Tan [86]. 

Following the work of Sonnenschein [283] in 1971, Gale and Mas-Colell [124] in 1975 

and Borglin and Keiding [37] in 1976 on non-ordered preference relations, many theorems 

on the existence of maximal elements of preference relations which may not be transilive 

or complete, have been proved by Aliprantis and Brown [2], Bergstrom [30], Kim [181], 

Mehta and Tarafdar [221], Shafer and Sonnenschein [263], Sonnenschein [283], Tan and 

Yuan [294], Tarafdar [304], Toussaint [315], Tulcea [317], Yannelis [325] and Yannelis 

and Prabhakar [326] and others. These papers generalize Debreu's theorem by consid­

ering preference correspondences that are not necessarily transitive or total, by allowing 

externalities in consumption and by assuming that the commodity space is not necessarily 

finite-dimensional. In these papers, the domain (and /or codomain) of the preference and 

constraint correspondences are assumed to be compact or paracompact, and the pref­

erence correspondences (respectively, payoff functions) are assumed to have open lower 

sections or open graphs (respectively, to be continuous). 

However, most of these existence theorems for maximal elements and equilibrium 
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points deal with preference correspondences which have open lower sections or are ma­

jorized by correspondences with open lower sections. Note that every correspondence with 

open lower sections must be lower semicontinuous but the converse is not true in gen­

eral. Moreover, in most cases, preference and constraint correspondences may be upper 

semicontinuous (or majorized by upper semicontinuous correspondences) instead of being 

lower semicontinuous (or being majorized by lower semicontinuous), or the preference 

and constraint mappings are condensing. Furthermore, in the study of equilibrium theory 

in most economic models, the feasible sets or the budget constraints are generally not 

(weakly) compact in an infinite dimensional commodities and are not convex in the case of 

the indivisibility of commodities and the underlying spaces do not have a linear structure. 

Thus, relaxation of convexity of choice sets and generalizations of spaces enable us to deoi 

with the existence of maximal elements and equilibrium points even though commodities 

are indivisible. 

Therefore it is necessary and important to study the existence of equilibria for gener­

alized games in which the preference and constraint correspondences need not have open 

lower sections nor open upper sections and also the underlying spaces need not have any 

linear structures and so on. 

The objective of Chapter 3 is to systematically study the existence of maximal elements 

and equilibria for generalized games under various hypotheses, such as the preference and 

constrained correspondences are lower semicontinuous, upper semicontinuous or condens­

ing, and the strategy sets may not be compact and the underlying spaces may not have 

a linear structure. Moreover, we also study some properties of lower semicontinuous 

multivalued mappings in finite dimensional spaces which in turn give several fixed point 

theorems and existence theorems for equilibria of generalized games. In particular, the 

question raised by Yannelis and Prabhakar [326] is answered in the affirmative with weaker 

assumptions. 

The essential idea behind these existence theorems for equilibria of generalized games is 

to reduce them to qualitative games which in turn are reduced to the existence problem of 

maximal elements for preference correspondences. Since existence of maximal elements 
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of correspondences have equivalent formulations in fixed point theorems which can be 

derived from Ky Fan's minimax inequalities, the results in Chapter 2 3re applicable. 

Even though the topic of variational inequalities has a very long history, it has only 

been studied systematically since 1960s (e.g., see Fichera [110] and Stampacchia [284] and 

others). The variational inequality theory is related to the simple fact that the minimum 

of the differentiable convex functional on a convex set D in a Hilbert space can be 

characterized by an inequality of the type (I'(u),v—u) < 0 for all v G D, where / ' («) is the 

derivative of the functional I(u). However, it is remarkable that the variational inequality 

theory has many diversified applications. During the last three decades which have elapsed 

since its discovery, the important developments in variational theory are formulations that 

variational inequalities can be used to study problems of fluid flow through porous media 

(e.g., see Baiocchi and Capelo [14]), contact problems in elasticity (e.g., see Kikuchi and 

Oden [178]) transportation problems (see Bertsekas and Gafni [32] and Harker [144]) 

and economic equilibria (see Dafermos [71]). An additional main area of applications for 

variational inequalities arises in control problems with a quadratic objective functional, 

where the control equations are partial differential equations. A detailed discussion of 

this can be found in Lions [209]. The connection between control problems and quasi-

variational inequalities is presented in Aubin [7] and Zeidler [336]. There also exist intimate 

interconnections between variational inequalities, stochastic differential equations, and 

stochastic: optimization. One can find these in Friedman [118]-[119], Bensoussan and 

Lions [271 a r ,d Bensoussan [26]. 

In recent years, various extensions ind generalizations of variational inequalities have 

been considered and studied. It is clear that in a variational inequalities formulation, 

the convex set involved does not depend on solutions. If the convex set does depend on 

solutions, then variational inequalities are called quasi-varicitional inequalities. These useful 

and important generalizations are mainly due to Bensoussan and Lions [28]. Applications 

of quasi-variational inequalities can be found in Aubin [7], Aubin and Cellina [9] and 

Zeidler [336]. 
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In 1982, for the study of operation research, mathematical programming and optimiza­

tion theory, Chan and Pang [48] first introduced the so-called generalized quasi-variational 

inequalities in finite dimensional Euclidean spaces. Chan and Pang's generalized quasi-

vanational inequalities can be illustrated as follows 

Let N and R denote the set of all natural numbers and the set of all real numbers 

respectively Let A be a non-empty subset of R", where n G N Let A : X —• 2X 

and B : X —> 2 R The generalized quasi-variational problem associated with A and B 

(briefly, denoted by GQVI (X, A, 3) here) is to find (x,u) E X xRn such that x G A(x), 

a G B(x) and >>upyeA(T)(u, i - y) < 0 

The existence theorem of Chan and Pang [48] is stated as follows. 

T h e o r e m A . Let X be a non-empty compact convex subset of R n and A : X —* 2X 

and B X —> 2 R " \ {0} are such that A(x) is compact convex and B(x) is contractible 

and compact for each x- G X Moreover assume that A is continuous and B is upper 

semicontinuous Then GQVI(X, A, B) has at Last one solution 

In 1985, Shih and Tan [267] were the first to study the GQVI(X;A; B) in infinite 

dimensional locally convex Hausdorff topological vector spaces as follows. 

T h e o r e m B . Let E be a locally convex Hausdorff topological vector space, E* be the 

dual space of E and X be a non-empty compact convex subset of E Let A : X —> 2X 

be continuous such that for each x £ X, A(x) is a non-empty closed convex subset of 

V, and B • X —> 2 £ * be upper semicontinuous from the relative topology of X to the 

strong topology of E* such that for each x G X, B(x) is a non-empty strongly compact 

subset of E" Then there exists a point y G X such that 

y 6 A(y) and 

suPxe^y) Jnf^gBd) Re(w,y - x) < 0 

Since then, there have been a number of generalizations of the existence theorems about 

GQVI(X, A, B), e g , see Cubiotti [68], Ding and Tan [81], Harker and Pang [145], 

Kim [180], Shih and Tan [274] and Tian and Zhou [311] and references therein. These 

results have wide applications to problems in game theory and economics, mathematical 
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programming (e.g., see Aubin [7], Aubin and Ekeland [10], Chan and Pang [48], Harker and 

Pang [145] and reference therein). Most existence theorems mentioned above, however, 

are obtained on compact sets in finite dimensional spaces or infinite dimensional locally 

convex Hausdorff topological vector spaces, and both A and B are either continuous or 

upper (lower) semicontinuous. 

On the other hand, in economic and game applications, it is known that the choice 

space (or the space of feasible allocations) generally is not compact in any topology of 

the choice space (even though it is closed and bounded), a key situation in infinite dimen­

sional topological vector spaces. Moreover, we note that there is essentially no existence 

theorems of solutions of generalized quasi-variational inequalities on non-compact sets 

in infinite dimensional spaces. This motivates our work in Chapter 4 to give a series of 

existence theorems on generalized quasi-variational inequalities by relaxing the compact­

ness conditions and continuity. By the existence theorems of generalized quasi-variational 

inequalities, the stability of solutions for two types of generalized quasi-variational inequal­

ities are also established. 

Equally important is the area of mathematical programming known as the comple­

mentarity theory, which was introduced and studied by Lemke [205] in 1965. Cottle and 

Dantzing [63] defined the complementarity problem and called it the fundamental prob­

lem. For recent results and applications, see Harker and Pang [145], Nooi' and Rassias 

[233] and references therein. However, it was Karamardian [171], who proved that if the 

set involved in a variational inequality and complementarity problem is a convex cone, 

then both problems are equivalent. After that, many generalizations have been given by 

Shih and Tan [266], Ding [79], Isac [160]-[161], Chang and Huang [50] and references 

therein. For more details on the discussion between the variational inequalities and com­

plementarity problems, we refer to Cottle, Giannessi and Lions' book [64] and references 

t';trein. 

In Chapter 4, as applications of our generalized quasi-variational inequalities, an exis­

tence theorem of generalized complementarity problem is given and by using the concept 
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of a semi-monotone operator introduced by Bae, Kim and Tan [13], some fixed point the­

orems for set-valued pseudo-contractive mappings and set-valued nonexpansive mappings 

are obtained. The stability of solutions of generalized quasi-variational inequalities is also 

investigated 

In recently years, a number of literatures have exposited the interconnections among 

minimax inequalities, equilibria of generalized games and variational inequalities. For 

instance, Tulcea [317] give a numbe- of minimax inequalities which are derived by the 

applications of existence theorems for equilibria of generalized games. Dafermos [71] 

formulated the problems of finding equilibria of generalized games (in particular equilibria 

of pure exchange equilibria) to the problems of finding solutions of variational inequalities. 

In this thesis, we present interconnections among the Knaster-Kuratowski-Mazurkiewicz 

theorem (in short, KKM theorem), Ky Fan minimax inequalities, fixed point theorem, co­

incidence theorems, equilibria of generalized games and variational inequalities in the 

following way: 

We reduce the existence problems of variational inequalities to the existence problem 

for equilibria of generalized games; that means, the solutions of variational inequalities 

are nothing else, but are exactly the equilibria of their equivalent model of generalized 

games. This simple fact enable us to consider the existence of solutions for non-compact 

variational inequalities and generalized quasi-variational inequalities in infinite dimensional 

Hausdorff topological vector spaces. As we mention above, the existence problems of 

equilibria for generalized games can be reduced to the existence problems for equilibria 

of qualitative games, the latter existence problems are equivalent to finding maximal 

elements of their preference mappings. Note that maximal elements are equivalent forms 

of their fixed point theorems which can be derived by Ky Fan type minimax inequalities. 

Therefore we give the interconnections among minimax inequalities, fixed point theorems 

of multivalued mappings, generalized games in mathematical economics and variational 

inequalities and generalized quasi-variational inequalities. 

We remark that the development of variational inequalities can be viewed as the si­

multaneous pursuit of two different lines of research: On the one side, it reveals the 
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fundamental facts on the qualitative behaviour of solutions (such as its existence, unique­

ness and regularity) to important classes of problems. On the other side, it also enables 

us to develop highly efficient and powerful new numerical methods to solve, for example, 

free and moving boundary value problems and the general equilibrium problems. A com­

prehensive investigation of numerical methods for variational inequalities is contained in 

Glowinski, Lions and Tremolieres's book [128]. For more details, see Cottle, Giannessi and 

Lions [64], Crank [66], Harker and Pang [145], Aslam Noor [231]-[232], A. Noor, I. Noor 

and Rassias [233], Rodrigues [255] and Shi [265] etc. Among the most effective numerical 

techniques are projection methods and its variant forms, linear approximation method, re­

laxation method, auxiliary principle and penalty function techniques. In addition to these 

methods, the finite element technique is also being applied for the approximate solution of 

variational inequalities have been obtained by many research workers including Falk [96], 

Mosco and Strang [226] and Noor, Noor and Rassias [233] and references therein. 

Further, even though we have some results on abstract general algorithms for solutions 

of variational inequalities, they are not included here. The author wish to continue these 

topics soon. Moreover, we do not cover the topics on random analysis and its pplications 

to fixed point theory and existence for equilibria of random generalized games which we 

refer to Tan and Yuan [293]-[300], Yuan [332]-[335] and the references therein. 



Chapter 2 

KKM Theorem and Some Related 

Results 

2.1 Introduction 

The classical theorem of Knaster-Kuratowski-Mazurkiewicz (often called the KKM theo­

rem, KKM Lemma or KKM Principle in [191]) has numerous applications in various fields 

of pure and applied mathematics. These studies and applications are called the KKM 

Theory today. 

In 1961, Ky Fan proved the generalization of the classical KKM theorem in infinite 

dimensional Hausdorff topological vector spaces and established an elementary but very 

basic "geometric lemma" for mulitvalued mappings. In 1968, Browder gave a fixed point 

form of Fan's geometric lemma and it is now called Fan-Browder fixed point theorem. 

Since then there have been numerous generalizations of Fan-BrowHer fixed point theo­

rem and their applications in coincidence and fixed point theory, minimax inequalities, 

variational inequalities, nonlinear analysis, convex analysis, game trsory, mathematical 

economics and so on. 

By applying his geometric lemma in 1972, Ky Fan obtained a minimax inequality which 

plays a fundamental role in nonlinear analysis and mathematical economics and has been 

applied to potential theory, partial differential equations, monotone operators, variational 

12 
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inequalities, optimization, game theory, linear and nonlinear programming, operator theory, 

topological group and linear algebra. In particular, by using Ky Fan's minimax inequality, 

a more general form of the Fan-Glicksberg fixed point theorem is derived for multivalued 

mappings which are inward (or outward) as defined by Fan in 1969 which are more general 

than Halpern's definitions for inward (or outward) mappings in 1965. 

Recently, Horvath obtained some generalizations of Fan's geometric lemma and his 

minimax inequality in 1983 and 1987 by replacing convexity assumption with topological 

properties: pseudo-convexity and contractibilty. By extending Horvath's concepts, Bar-

daro and Ceppitelli [46] in 1988 obtained generalizations of Ky Fan minimax inequalities 

to topological spaces which have so called H-Structure (also called H-spaces). 

Following this line, a number of generalizations of Ky Fan's minimax inequalities are 

given by Horvath [154], Baradaro and Ceppitelli [47], Ding and Tan [85], Ding, Kim and 

Tan [86]-[87], Chang and Ma [51], Park [243], Tarafdar [303], Tan, Yu and Yuan [289] in 

topological spaces which need not have a linear structure but with an H-structure. 

On the other hand, for the need of applications, various generalizations of the classical 

KKM principle and Sperner's lemma [285] have been given by Fan [101], [102], [104] and 

[107], Ding and Tan [85], Gale [123], Idzik and Tan [158], Shapley [264], Shih and Tan 

[269], [270], [271], Ichiishi [156], Ichiishi and Idzik [157]. Recently, Horvath [154] obtained 

some intersection theorems for closed coverings of a topological space with a contractible 

structure. 

In this chapter, based on the classical KKM principle and its dual form given by 

Shih and Tan in 1987, we first study the closed (respectively, open) covering properties 

and intersection properties of topological spaces in section 2. These results generalize 

the corresponding results of Alexandroff-Pasynkoff [1], Berge [29], Klee [187], Fan [98], 

Horvath [154] and Spener [285]. As applications, we give a characterization of generalized 

HKKM mapping which is a generalization of the classical KKM theorem in topological 

spaces. 

In section 3, by applying our generalized HKKM theorem, Ky Fan type minimax in­

equalities with weaker continuity conditions are given in topological spaces. Our results 
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show that the traditional condition "lower semicontinuity11 posited by many authors (e.g., 

see Fan [106] and references therein) is not essential for the existence of solutions for the 

Ky Fan type minimax inequalities. By employing a new coercive concept called "escaping 

^rqiicnccf," which is first introduced by Border in 1985, several non-compact minimax 

inequalities are derived. As consequences, several equivalent fixed point theorems and 

maximal element theorems are given in H-spaces and topological spaces. In particular, 

the well-known Fan-Browder fixed point theorem has been improved. 

In section 4, we study the stability of solutions of Ky Fan minimax inequality in both 

compact and non-conpact settings. 

It is well-known that Fan's best approximation theorem [103] and its generalizations 

have many applications in fixed point theory and approximation theory (for instance, see 

Lin and Yen [208], Reich [250] and Sehgal, Singh and Smithson [260] and references 

therein. 

In section 5, we first generalize Fan's best approximation theorem to a Hausdorff 

topological vector space for multivalued mappings. Then as applications, several co­

incidence and fixed point theorems are given for non-self multivalued mappings under 

weaker boundary conditions. These results improve and generalize corresponding results 

of Komiya [196], Ha [138], [139] etc. 

In section 6, we investigate the stability of coincidence points. Our results improve 

and cover corresponding results given by Fort [116] and Jiang [163] in several ways. 

In section 7, we obtain some fixed point theorems and coincidence theorems in topo­

logical vector spaces with sufficient continuous linear functionals and in locally convex 

topological spaces for inward (respectively, outward) upper hemicontinuous multivalued 

non-self mappings These results unify most results of fixed point theorems and coinci­

dence theorems in the literature. For instance, see Park [240], Ko and Tan [192] etc.). 

As applications, several matching theorems for closed coverings of convex sets are given 

which include the well-known Shapley generalization [264] of trc? classical KKM theorem. 
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2.2 Knaster-Kuratowski-Mazurkiewicz Theorem 

In this section, based on the classical KKM theorem [191] and its "dual" form given by 

Shih and Tan [271], we first discuss i~me properties of contractible subsets in topological 

spaces by employing Horvath's approach [153]. As applications, a characterization of 

generalized HKKM mappings is given. These results improve Fan's famous geometric 

result given in his celebrated paper [98], and corresponding results due to Fan [106]-[107], 

Klee [187], Alexandroff-Pasynkoff [1], Berge [29], Horvath [153], and Chang and Zhang 

[54], Chang and Yan [53] and Chang and Ma [51]. 

First we introduce and recall some notations and definitions. Throughout this thesis 

all spaces are assumed to be HausdorjJ'rf this is not specified. Let X and V be non-empty 

sets. We shall denote by 2Y the family of all non-empty subsets of V, f(X) the family 

of all non-empty finite subsets of X. Let A" be a topological space. For each non-empty 

subset A of A , we denote the closure of A in X by clxA (in short, clA) or A if there 

is no confusion. A subset A of A is said to be compactly closed (respectively, open) if 

A f l C is closed (respectively, open; in each non-empty compact subset G of X. 

Let N and R denote the set of all natural numbers and the set of all real numbers, 

respectively. For each n G N , let Â  = { 0 , 1 , ••• ,».} and A/v — co{co, • • • ,c n } be the 

standard simplex of dimension n, where (eo, • • • e7l} is the canonical basis of R n + 1 and 

for J G F(N), A j = co{tj : j G . / } . A topological space X is said to be contractible. if 

the identity mapping Ix of X is homotopic to a constant function. 

The classical KKM theorem [191] is stated as follows: 

T h e o r e m 2.2. A . Let C0, • • •, Cn be closed subsets of the standard n-dimensional 

simplex A/v and let {e0 , • • • , e „ } be the set of its vertices. If for each J G F(N), 

A j C U j 6 j C i . Then n?=0C7,- ± 0. 

in 1987, Shih and Tan [271] (see also Kim [179] or Lassonde [200]) provided the 

following "dual form" of KKM theorem in the sense that the word "closed" is replaced 

by the word "open": 

T h e o r e m 2.2 .A ' . Let C0, ••• ,Cn be open subsets of the standard n-dimensional 
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simplex A/v and let {e0, ,e n } be the set of its vertices If for each J G P(N), 

A, C U J € / C ; Then n; i
=0C t ± 0 

The following notions which were introduced by Bardaro and Ceppitelli in [46] were 

motivated by earlier work of Horvath [153]. A pair (X, {VA}) (also called an //-structure) 

is said to be an //-space (also called c-space according to Horvath [154]) if X is a 

topological space and { r V } ^ ^ * ) a given family of non-empty contractible subsets VA 

of X such that VA C FB whenever A C B Let (A", { I V } ) be an //-space A non-empty 

subset D of A is said to be (i) //-convex (also called an F-set by Horvath [154]) if 

l \ C D for each A G T(D), (ii) weakly H-convex if VA H D is contractible for each 

A G F(D) (or equivalently, (D, {VA H D}) IS an H-space) and (in) H-compact in X if 

for each A G J-(X), there exists a compact, weakly H-convex subset DA of A' such that 

Dl) A C DA It is clear that the product space of a family of H-spaces is also an H-space. 

The following example (e g , see Horvath [154, p 345]) shows that an //-space may 

be not a convex subset in a topological vector space 

Let A' be a convex set in a topological vector space E and Y any topological space. 

Suppose that / : X —< Y is a continuous bijection For given A G ^(Y), let DA '•— 

u){t G A" j(h) G A) Then DA IS convex, so that DA IS contractible Since DA is 

also compact, so that / DA —> f{DA) is an homeomorphism Let VA = f(DA). Then 

VA is contractible and VA c I V whenever A C A' G F(Y). Therefore (Y, { I V } ) is an 

H-space Note that the space Y itself may be a torus, the Mobius band or the Klein 

bottle This example shows that an H-space does not have to be contractible 

The following notion is due to Tarafdar [303]: Let D be a non-empty subset of 

an H-space (X,{VA}) The H-convex hull of D, denoted by Hco(D), is defined by 

Hco(D) = D{B C X . B is H-convex and D c B} Clearly, Hco(£>) is the smallest 

H-convex subset of A containing D and the intersection of any family of H-convex set is 

also H-con 'ex 

Let X be a topological space, an /^-dimensional singular face structure on X (e g., see 

Horvath [154]) is a mapping F : F(N) -> 2X such that (a) for each J G ?(N), F(J) is 

not-empty and contractible and (b) for any J, J' G F(N), J C J' implies F(J) C F(J') 
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The following result is contained in the proof of Theorem 1.1 of Horvath [153] (see 

also Theorem 1 of Horvath [154]) and its proof is omitted. 

L e m m a 2 .2 .B. let A" be a topological space. For each non-empty subset ,/ of 

{ 0 , 1 , - • • ,n}, let Fj be a non-empty contractible subset of A with Fj C /*!/» whenever 

0 7̂  J C J' C { 0 , 1 , • • • ,n}. Then there exists a continuous function / : A/v —» A such 

that f(Aj) C Fj for each non-empty subset J of {0, 1, • • •,.»;}. 

P r o p o s i t i o n 2 .2 .1 . Let X be a topological space. Let F : Jr(N) —> 2X be a 

singular face structure on X and {M, : i — 0, • • • , n } be a family of closed (respectively, 

open) subsets of X such that for any J G ^"(A^), F(J) C U,e./M;. 

Then n;l
=0M, ± 0. 

Proo f . By Lemma 2.2.B, there is a continuous function / : A/v —> A" such that 

for each J G T(N), f(Aj) C F(J). Let Cx = f~l(Mt) for each /, = 0, ••-,,,,. Then 

{O,}\l-0 is a family of closed (respectively, open) subsets of A such that for any J G ^(N), 

A j C U t6./C t. By Theorem 2.2. A (respectively, Theorem 2.2. A'), n ^ O ; ^ 0. Take any 

x0 G n |L 0C„ then f(x0) G H ^ M , + 0. • 

As an application of Proposition 2.2.1, we have: 

T h e o r e m 2.2.2. Let X be a contractible topological space, ( M , : / = 0, • • •, it) be 

a closed (respectively, open) covering of X and {F , : / = 0, •••,»?.} a family of contractible 

subsets of A such that (i) for any i G {0,---,n}, F, (1 M, = 0 and (ii) for any ./ G F(N) 

with J ^ N, C\,ejFt is non-empty and contractible. Then n'l_0A/; ^ 0 

P roo f . Define F : ^ ( W ) -> 2X by F(M) = X and F(J) = H^jF, if ./ G ^" (N) 

with J / N. Then F is a singular face structure on X. Note that for any ./ G F(N), 

F(J) C U , e j M , since F ( J ) C U l £ j M , U U.^M,- and F(J) n M; = 0 whenever / ^ ./. 

Then Proposition 2.2.1 implies that D^M, ^ 0. • 

Theorem 2 2.2 is clearly a generalization of the KKM lemma. For X = A/v and 

F, = co({e3 : j T^ i) for i E N, Theorem 2.2.2 reduces to a theorem of Alexandroff-

Pasynkoff in [1]. For X = A/v and Fi—X\ Mx which is a closed convex subset for each 

i G N, Theorem 2.2.2 is a generalization of a corresponding result due to Klee [187] and 
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is known as Berge's intersection theorem [29]. 

T h e o r e m 2.2.3. Let X be a contractible topological space and Y be a topological 

space, { M , : i = 0, • • • , n } b<» an open (respectively, closed) covering of Y and {F , : i = 

0, • • • , n } be a family of contractible subsets of X. Let S : X —> Y be continuous such 

that 

(a) for each i G { 0 , 1 , • • • , n } , F, C ^ ( A f . ) and 

(b) for each J G ^ ( A f ) with J ^ N, n i € j F , is non-empty and contractible. 

Then n;i
=0M, ^ 0. 

Proo f . Suppose the contrary, so that U|L0M,C = Y, where M, c = K \ M , denotes 

the complement of M t in Y for each i = 0 , 1 , - •• , n . Thus { M f : i — 0, • • • , n } is an 

open (respectively, closed) covering of Y. So that {S~X(M?) : i — 0, • • • , n } is an open 

(respectively, closed) covering of X and by the condition (a), for each i — 0, l , - - - , n , 

Ft O S~l(MfJ) = 0. Therefore F, and 5 - 1 ( A f t
0 ) for i = 0, • • • , n satisfy all hypotheses 

of Theorem 2.2.2. By Theorem 2.2.2, n^S'^M^) ^ 0 which contradicts that {Mt : 

i = 0, • • •, n) is a covering of Y. Thus r)\l=0Mt ^ 0. D 

We remark that Horvath [154, p.343] proved Theorem 2.2.3 under the additional 

assumptions that X = Y and A" is a normal space. 

Since C^ung and Yang in [53] gave a generalization of the KKM theorem in which 

the domain need not be a subset of its range, there are several generalizations in this 

direction. For example, Chang and Ma [51] extended this definition into H-spaces and 

later Zhou [337] gave a more generalized definition and obtained a characterization of 

the generalized HKKM mapping which is also a generalization of the corresponding result 

given by Chang and Zhang [54]. 

D e f i n i t i o n . Let X be a non-empty set and Y a topological space. A mapping 

G : X —> 2' U {0} is said to be transfer closed valued (e. g., see Zhou and Tian [339]) if 

for each x G A and y £ G(x), there exist x' 6 X and an open neighborhood N(y) of y in 

Y such that / / ^ G(x') for each y' G N(y). It is obvious that if a mapping G : X -> 2Y 

is transfer closed valued, then for each x G X and y G Y with y £ G(x), there exists 
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some x' G X such that y £ clG(x'). 

The following lemma was first proved by Zhou and Tian [339] for the case when the 

domain X is a topological space and in the present form by Zhou [337]; for completeness, 

we include its simple proof. 

L e m m a 2.2.4. Let X be a non-empty set, Y a topological space and G : X —> 21 

Then C\XQXG(X) = C\xex
clG(x) if and only if the mapping G is transfer closed valued 

P roo f . Sufficiency. It is clear that (~)X£xG(x) C C\J&X^YG(X). It is sufficient 

to show that nxexclG(x) C f)xexG(x). Suppose that y £ C\x&xG(x) Then there 

exists some x E X such that y £ G(x). Since G is transfer closed valued on A", there 

exists some x' E X such that y £ clyG(x'), so that y £ C\,ex<'lG(x). Therefore 

f]xeXclG(x) = f)xeXG(x). 

Necessity. Suppose (x,y) G X X Y such that y £ G(x); then y $ C\,exG(z) = 

nzlzxclG(z) so that there exists x' G X such that y fi clG(x'). But then there exists an 

open neighborhood N(y) of y in Y such that N(y) f) G(x') = 0 so that ; / £ G(x') for 

all y' E N(y) Thus G is transfer closed valued. • . 

Let D be a non-empty subset of an H-space (A", { I V } ) . A map F : D —> 2A is called 

HKKM if IV C UxeAB(x) for each ,4 G F(X). When A" is a non-empty convex subset 

of a topological vector space and VA — coA, the convex hull of A for each AG T(X), 

then (A , {VA}) becomes an H-space. In this case, the notion of an HKKM mapping 

F : D —> 2X coincides with the notion of a KKM mapping F, i.e., coA C UjeAF(x) for 

each A E F(D). 

D e f i n i t i o n . Let A" be a non-empty set and Y a topological space A mapping 

G : X —• 2Y is said to be a generalized HKKM mapping (in short, GHKKM) if for 

each finite subset A = {x+, • • • ,xn) of X, there exist a corresponding finite subset 

B = {2/1,2/2 ••• ,2/n} (y[i> " e e d n ° t be distinct here) in Y and a family {Vc}ceJr(H) ° f 

non-empty contractible subsets of Y such that Vc C I V whenever C C C" E F(Y) such 

that 
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f o r 0 ^ J c { 0 , 1 , • • - , « } . 

It is clear that each HKKM mapping is GHKK, the following example show that 

the converse does not hold: 

E x a m p l e . Let E = ( - 0 0 , +00) and X = [ - 2 , +2] . Define G : X -» 2E by 

G(x) = [-(l + j),j], 

for each x E X. Since Lix&xH(x) = [ -9 /5 ,9 /5 ] and x £ G(x) for each x E [ - 2 , - 9 / 5 ) U 

(9/5,1]. This shows that G is not a KKM mapping. Next we prove that G is a generalized 

KKM mapping. In fact, for any finite subset {x-i, • • • ,xn} C A', take {yi,- • • ,yn} C 

[ -1 ,1 ] , then for any finite subset { r / „ , • • • , y u } C {2/1, • • • ,yn}, we have 

co{.V„,-- - ,2/ .J c [ -1 ,1 ] = nxeXG(x) C Uk
]=,G(xtj) 

Thus G is GHKKM. For more details, we refer to [53], 

T h e o r e m 2.2.5. Let A~ be a non-empty set, and let both Y and Z be topological 

spaces. Let S : Y —> Z be continuous and G : X —> 2Z be such that: 

(1) the composition mapping 5 - 1 0 G : X —> 2Y defined by (5 , _ 1 o G)(x) = 

U=e6(x){/y E Y : z = S(y)} for each x G X, is a generalized HKKM mapping; 

(2) for each a; G A , G(:c) is closed (respectively, open) in Y. 

Then the family {G(x) : .r G A"} has the finite intersection property, i.e., for each 

A E F(X), nx£AG(x) ± 0. 

P roo f . For any finite subset {xQ, X] , • • •, xn} of X, since S~* 0 G : X —> 2Y is a 

generalized HKKM mapping, there exist a finite subset B = {2/0,2/1; • • • i2/n} of y and a 

family {Vp}cer(B) °^ non-empty contractible subsets of Y such that Vc C I V whenever 

6' C C such that 

^ . . . ^ . j C U j ^ o G ) ^ ) 

for each finite subset { / / t 0 , y I n • • • ,y , , } of {2/0,2/1,2/2, ••• ,2/n}. where (0 < a < n). Let 

AY; = S~'(C?(i/,)) for each / = 0, l , - - - , n ; and define a mapping F : F(N) -* Y by 

F(J) = V{yk,keJ} for each J G P(N). Since 5 is continuous, M, is closed (respectively, 
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open) in Y for i = 0, l , - - - , n by the assumption (2). Moreover the mapping F is a 

singular face structure on Y. Therefore all hypotheses of Proposition 2.2.1 are satisfied. 

By Proposition 2.2.1, n ; i
= 0 M + 0. Take any y0 E n ^ A f ; , then S(yQ) E ()?=0G(xi) / 0. 

D 

As an application of Theorem 2.2.5, we have the following result due to Zhou [337]: 

T h e o r e m 2.2.6. Let X be a non-empty set and Y a topological space. Let G : 

X -* 2Y be such that 

(a) G is transfer closed valued on A"; 

(b) there exists a non-empty finite subset XQ of A" such that the set Vo = C)X£x0clG(x) 

is non-empty and compact in Y. 

Then the intersection C\xexG(x) is non-empty and compact if and only if the mapping 

clG is a generalized HKKM mapping. 

P roo f . Necessity: Suppose f]xexG(x) is non-empty and compact. Take any j / 0 G 

^x^xG(x). Note that the singleton set {y0} is contractible. For each A — {xt, • • •, xn) G 

F(X), take B = { j / i , • • • , y „ } with y, = y0 for all i = l , 2 , - - - , n and let I V = {t/0} 

for all B' E F(B). Since y0 E clG(x) for all a; G X, it is clear that the mapping clG is 

generalized HKKM. 

Sufficiency: Since the mapping clG is a generalized HKKM by Theorem 2.2.5 with 

Y = Z and .5' being the identity map on Y, the family {clG(x) : x G A"} has the 

finite intersection property. Now define a mapping G'(x) = clyG(x) D Y() for each x G 

A". Then the family of non-empty compact subsets {G'(x) : a; G X) has the finite 

intersection property, so that r\xexclyG(x) = nxt=xG'(x) ^ 0. Since G is transfer 

closed, nxexG(x) = C)xl;xclG(x) by Lemma 2.2.4. Therefore nxeXG(x) ^ 0 • 

An an immediate consequence of of Theorem 2.2.6, we have the following: 

T h e o r e m 2.2.7. Let A' be a non-empty set and Y a compact topological space. Let 

G : X —> 2Y be transfer closed valued on X. Then the intersect C\xexG(x) is non-empty 

if and only if the mapping clG is a generalized HKKM mapping. 

Theorem 2.2.7 is a generalization of the corresponding results given by Chang and 
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Yang [53] and Chang and Ma [51]. 
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2.3 Ky Fan Minimax Inequalities in H-Spaces 

The minimax inequality of Fan ([105]) is fundamental in proving many existence theorems 

in nonlinear analysis. There have been numerous generalizations of Fan's minimax inequal­

ity by weakening the compactness assumption or the convexity assumption. In [46], using 

Horvath's approach [153], Bardaro and Ceppitelli obtained some minimax inequalities in 

topological spaces which have "H-space" structure. Following this line, there are many 

generalizations given by Horvath [153], Tarafdar [303], Ding and Tan [81], Ding, Kim and 

Tan [87], Chang and Ma [51], Park [243], Tan, Yu and Yuan [289]. These results generalize 

most of the corresponding results given by Fan [98] and [106], Degundji and Granas [90], 

Lassonde [199], Simons [276], Zhou and Chen [338] to topological spaces which have the 

so-called H-structure. However, all results mentioned above require lower semicontinuity 

to guarantee the existence of solutions. Our results shows that the lower semicontinuity 

is not essential for the existence of solutions for Ky Fan's minimax inequalities. 

In this section, by weakening the compactness and continuity assumption on H-spaces, 

we obtain some new minimax inequalities. Then several non-compact minimax inequalities 

are obtained by using the concept "escaping of sequence" introduced by Border [34] 

which is different from other non-compact minimax inequalities given by Allen [4], Aubin 

[7], Aubin and Ekeland [10], Lassonde [199], Fan [106], Ding and Tan [81], Chang and 

Zhang [54], Yen [327] and Tian and Zhou [311]. Finally, several fixed point theorems and 

existence theorems for maximal elements are given in H-spaces (respectively, in topological 

vector spaces) which are equivalent to the minimax inequalities in H-spaces (respectively, 

in topological vector spaces). These results will be needed in our further developments. 

T h e o r e m 2 . 3 . 1 . Let A" be a non-empty set and Y a compact topological space and 

(j) : X x Y —> R U {—oo, +00} be such that: 

(a) the mapping x t-> {y E Y : (j>(x,y) < 0} is transfer closed valued; 

(b) the mapping x —* cly{y E Y : (f>(x,y) < 0} is generalized HKKM on A . 

Then there exists y" E Y such that <f>(x,y*) < 0 for all x E X. 

Proo f . Define a mapping G : A —• 2Y by G(x) = {y E X : (/>(x,y) < 0} for each 
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x G A . Then we have: (1) the mapping G is transfer closed valued and (2) the mapping 

clG is generalized HKKM. By Theorem 2.2.7, nxeXG(x) ^ 0. Take any y* E r\xeXG(x), 

ther, sup x e X <f>(x,y*) < 0 for all x E X. • 

R e m a r k : It is clear that the condition (a) of Theorem 2.3.1 is equivalent to the 

following condition which first appeared in Tan, Yu and Yuan [289]: 

Fact (a)': for each y E Y with {x E X : <j>(x,y) > 0} 7̂  0, there exists x' E X 

such that y E intY{y' E Y : <f>(x',y') > 0}. 

T h e o r e m 2.3.2. Let X be a non-empty subset of a compact H-space (Y, {VA}) and 

</;: X x Y -» R U { - 0 0 , +00} be such that 

(a) the mapping x i-> {y G Y : (j>(x,y) < 0} is transfer closed valued on X; 

(b) the map x •-» clY{y E Y : <j>(x,y) < 0} is HKKM on X. 

Then there exists y* EY such that (j>(x,y*) < 0 for all x E X. 

Proo f . Since (Y, {VA}) is an H-space, each HKKM mapping is automatically a 

generalized HKKM mapping. Therefore all hypotheses of Theorem 2.3.1 are satisfied. By 

Theorem 2.3.1, there exists y* G Y such that <f>(x,y*) < 0 for all x EX. • . 

C o r o l l a r y 2.3.3. Let A" be a non-empty subset of a compact H-space (V, { I V } ) 

and <j): X x Y —» R U {—00, +00} be such that: 

(a) for each x E X, y *->• (j>(x,y) is lower semicontinuous on Y; 

(b) the map x \-+clY{y EY : <p(x,y) < 0} is HKKM on X. 

Then there exists y* E Y such that (J)(x,y*) < 0 for all x E X. 

Proo f . Suppose y E Y is such that {x E X : <j>(x, y) > 0} ^ 0. Fix any x' E X with 

<"/>(.(;', y) > 0. By (a), there exists an open neighborhood N(y) of y such that (f>(x', y') > 0 

for each y' G A^(j/). Hence y G intY{y' E X : <j>(x',y') > 0}. Now the conclusion /ollows 

from Theorem 2.3.2 and the Fact (a)' preceding it. • 

C o r o l l a r y 2.3.4. Let AT be a non-empty subset of a non-empty compact convex set 

Y in a topological vector space and <j>: X x Y —• R U {—00, +00} be such that 

(a) the mapping x 1-+ {y E Y : <j>(x,y) < 0} is transfer closed valued on X; 

(b) the map x t-4 clY{y E Y : <f>(x,y) < 0} is KKM on X. 
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Then there exists y* E Y such that (j>(x,y*) < 0 for all x E X. 

Proo f . For each A E F(Y), let VA = co(A). Then (Y, { I V } ) is an H-space and the 

map x t-> clY{y E Y : <j>(x,y) < 0} is HKKM on A'. Thus the conclusion follows from 

Theorem 2.3.2. D 

C o r o l l a r y 2.3.5. Let A" be a non-empty subset of a non-empty compact convex set 

Y in a topological vector space and </> : X x Y —> R U {—oo, +00} be such that 

(a) the mapping x t-> {y E Y : <j>(x,y) < 0} is transfer closed valued on X; 

(b) for each A E ^F(X) and each y E co(A), minxeA(j>(x,y) < 0. 

Then there exists y* G Y such that (j)(x,y*) < 0 for all x E X. 

Proo f . By Coiolla.y 2.3.4, we only need to prove that the map a; —> dY{y E Y : 

<l>(x,y) < 0} is KKM on X. Suppose not, then there exist A G T(X) and y E co(A) 

such that y <£ (JxeAclx{y G X : <j>(x,y) < 0}. It follows that <f>(x,y) > 0 for each a; G A, 

so that minxeA<i>{x,y) > 0 which is a contradiction. • . 

As seen from the proof of Corollary 2.3.3, the condition "for each x E X, y —> <l>(x,y) 

is lower semicontinuous" implies the condition" for each y G A with [x G A": (j>(x,y) > 

0} ^ 0, there exists x' E X such that y E \r\tx{y' E X : <j>(x',y') > 0 } " . Thus Corollary 

2.3.4 and hence Theorems 2.3.1 and Theorem 2.3.2 generalize Theorem 1 of Yen [327] 

(see also Theorem 2.2 of Simons [275]) and Theorem 2.11 of Zhou and Chen [338]. The 

following is an example for which Theorem 2.3.2 is applicable while Theorem 1 of Yen 

[327] and Theorem 2.11 of Zhou and Chen [338] are not: 

E x a m p l e . Let Y = [0,1] and X be the set of all rational numbers in [0,1]. Define 

<t>: X x Y -> R by 
] x — y, if y is rational, 

</w) = \ 0 ' ' . . . , 
[ 2, IT y is irrational 

for each (x,y) E X x Y. Suppose (x:y) E X x Y and <l>(x,y) > 0. If y is irrational, 

then clearly y < 1. If y is rational, then since (j>(x,y) = x — y > 0, we also have 

y < x < 1. in either case, take x' = 1 and note that {?/ G Y : </>(x',y') > 0} = [0,1), 

so that y E [0,1) = \r\tY{y' E Y : <j)(x',y') > 0} . Thus the condition (a)' and hence 
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the condition (a) of Theorem 2.3.2 is satisfied. Moreover, for each x E X, clx{y G Y : 

</>(x,y) < 0} = clx{y E Y : y is rational and y > x) = [ x , l ] . It follows that the map 

x -> clY{y E Y : tf>(x,y) < 0} is KKM on A . Thus the condition (b) of Theorem 2.3.2 

is also satisfied. Therefore Theorem 2.3.2 is applicable. However, for each x G X, the 

map y —> <j>(x,y) is not lower semicontinuous and hence T' uorem 1 of Yen [327] and 

Theorem 2.11 of Zhou and Chen [338] are not applicable. 

The Example above shows that for each x E X, the lower semicontinuity of the 

mapping y »-* <f)(x,y) is not essential for the existence of solutions for minimax inequalities. 

In order to obtain our main resul s on minimax inequalities, we need the concept of 

an escaping sequence introduced in Border [34, p.34]: Let A" be a topological space such 

that X — U,^L, Xn where {Xn}%L-> is an increasing sequence of non-empty compact sets. 

A sequence (yn)™=\ in A* is said to be escaping from X (relative to {Xn}'^L^) if for each 

n = 1,2, • • •, there exists a positive integer M such that yk $ Xn for all k > M. 

T h e o r e m 2.3.6. Let A" be a non-empty set and Y a topological space such that 

X = U~ ,Xn and Y = U~ , V„ where {A " n }~ , and { V „ } ~ , are increasing sequences of 

non-empty sets and of compact spaces respectively. Let <j> : X x Y —» R U {—oo,+oo} 

be such that 

(a) for each n E N , the mapping x —> {y E Yn : <j>(x,y) < 0} is transfer closed 

valued on Xn; 

(b) for each n G N , the map x 1-4 clYn{y G Yn : <f>(x,y) < 0} is generalized HKKM 

on Xn; 

(c) for each sequence (yn)^--[ in Y with yn E Yn for each n G N which is escaping 

from Y relative to { K J ^ , , there exist n 0 G R and xtlQ E Xv, such that <j>(xno,yno) > 0. 

Then there exists y" E Y such that (/>(x,y*) < 0 for all x E X. 

Proo f . For each n G N , by Theorem 2.3.1, there exists yn G Yn such that <j>(x,yn) < 

0 for all a; G A"n. 

Suppose the sequence (2/11)^1 were escaping from Y relative to { K } £ L i - By (c), 

there exist nQ E N and xno E Xno such that <j>(xno,yno) > 0 which is a contradiction. 
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Therefore the sequence ( I A O ^ I IS n o t escaping from Y relative to { V n } ^ , , so that 

some subsequence of (yn)£Li must he entirely in some V„, Since Kn| is compact, there 

exist a subnet { - a } a e r of (j/n)£Li | n K , and a point y* E Yni such that z„ -> i;* 

Denote za — yn(a) for each a E V If x E X is given, there exists n2 > n\ such 

that J: G Xn2 If <t>(x,y") > 0, then { / G XU2 <j>(i\if) > 0} ^ 0, by (a) and 

Fact (a)' proceeding Theorem 2 3 2, there exists %' E XU2 such that if G i n t » M i { / g 

Yn2 : (j>(x',y') > 0} Since za —> y*, there exists Q0 G P such that n(rv0) > n2 and 

2«0 e 'ntn l2{2/' e K„2 : <^.c',y) > 0}, hence </K<~«o) > 0 But .r' G A"„, C A\ ( „ o ) so 

that <f)(x',zaQ) = (j>(x'',y7l(a0)) < 0 which is a contradiction Therefore <-/>(r,i/) < () for 

all u G A" • 

By Theorem 2 3 6, we have the following 

T h e o r e m 2.3.7. Let A" be a non-empty subset of a topological space V such that 

A = U~1A'n and Y = U~ j K where {A"n }~= l and { K „ } ~ , are increasing sequences 

of non-empty sets with X, C Y, and V, is a compact H-space for each / = 1,2,- Let 

(j): A x Y -> R U { - o o , -f-oo} be such that 

(a) for each n G N , the mapping .T *-* {y E Yn . </>(c,y) < 0} is transfer closed 

valued on Xn, 

(b) for each n G N , the map x i-> clYn{y E Yn : (j)(x, ij) < 0} is HKKM on Xn, 

(c) for each sequence (y„)£Li m ^ W l t n !h G Yn for each v G N which is escaping 

from V relative to (KnJJJL,, there exist n0 G N and xno G Ano such that </>(/„„, //„„) > 0 

Then there exists y* G Y such that </>(.T, ty*) < 0 for all ; G A 

Proo f . Since each HKKM mapping is also generalized HKKM, all hypotheses (a), 

(b) and (c) in Theorem 2 3 6 are satisfied By Theorem 2 3 6, the conclusion follows • 

Similar to Corollaries 2 3 3, 2 3 4 and 2 3 5, we have the following Corollaries 3 8, 3 9 

and 3 10 

C o r o l l a r y 2.3.8. Let X be a non-empty subset of a topological space Y such that 

A = U~ t A\, and Y = U~=1Kt where [ A n } ~ , and { / „ } , * , are increasing sequences of 

non-empty sets for which A, C Yx and Y, is a compact H-space for each / = 1,2,• • • Let 
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<j> : A x Y —> R U { - o o , +00} be such that 

(a) for each n E N and for each x E Xn, y H-> <j>(x,y) is lower semiconthuous on Xn; 

(b) for each n E N , the map x t-> c/yn{y G Yn : 0 (x ,y ) < 0} is HKKM on Xn; 

(c) for each sequence (yn)^ 'n ^ w ' t n 2/n G Yn for each n G N which is escaping 

from Y relative to {Yn}™= l , there exists n0 E N and xno E Xno such that <j>(xno,yno) > 0. 

Then there exists y* G Y such that <j>(x,y") < 0 for all ;c G X. 

C o r o l l a r y 2.3.9. Let E be a topological vector space. Let X be a non-empty subset 

of a non-empty set Y such that X = U%L-,Xn and Y = U,~ ^ where {Xn}™=1 and 

{Ki}$n=i a r e increasing sequences of non-empty sets for which Xi C Yi and YJ is compact 

convex in E for each i = 1,2, •• •. Let <j>: X x Y —> R U { - 0 0 , + 0 0 } be such that 

(a) for each n E N , the mapping x \-+ {y E Yn : (j)(x,y) < 0} is transfer closed 

valued; 

(b) for each n E N , the map x i-> clYn{y E Yn : </>(x,y) < 0} is KKM on Xn; 

(c) for each sequence ( y n ) ^ i in Y with yn G Vn for each n E N which is escaping 

from V relative to { K J ^ L , , there exist n 0 G N and a;no G Xno such that <j)(xno,y,lQ) > 0. 

Then there exists y* G V such that <f>(x,tf) < 0 for all .T G A". 

C o r o l l a r y 2.3.10. Let E be a topological vector space. Let A" be a non-empty 

subset of a non-empty set Y such that X = U~ 1A r
n and Y = U~=1 V„ where {Afn}£°=1 

and {Ki},^=i are increasing sequence of non-empty sets for which Ar, C Yi and Yi is 

compact convex in E for each z = 1,2,---. Let <j> : X x Y —> R U {—00,+00} be such 

that 

(a) for each n E N , the mapping a; t-+ {y G Kn : (j>(x,y) < 0} is transfer closed 

valued on Xn; 

(b) for each n E N , /4 G ^ ( A ^ ) and y G co(y4), minxeA(j)(x,y) < 0; 

(c) for each sequence (j/n)£i;i in V with yn G V'„ for each n E N which is escaping 

from V relative to { K j ^ i , there exist ».0 G N and .rno G A"„0 such that <f>(xno,yno) > 0. 

Then there exists if E Y such that <(>(x,y*) < 0 for all a; G AT. 

Corollary 2.3.10 generalizes Theorem 3.1 of Tan and Yu ([288]). 
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Now we give equivalent formulations to our minimax inequalities. We first show that 

Theorem 2.3.6 implies the following: 

T h e o r e m 2 .3 .11 . Let A' be a non-empty set and Y a topological space such that 

X = U^Xn and Y = U^Yn, where {Xn}™=-, and { K „ } ^ = 1 are increasing sequences 

of non-empty sets and of compact spaces respectively. Let B be a non-empty subset of 

X xY such that 

(a) for each n E N , the mapping x *-* [y E Yn : (x,y) $. B} is transfer closed valued 

on Xn\ 

(b) for each n E N , the map x i-> clYn{y E K„ : (x,y) £ B} is generalized HKKM 

on A"7l; 

(c) for each sequence (yn)£Li in Y with yn G Yn for each n E N which is escaping 

from Y relative to {Yn}™=1, there exist n 0 G N and a;7l0 G Xno such that (a;uo,yno) G B. 

Then there exists y* E Y such that {x G X : (x,y*) G B} - 0. 

P roo f . Let ^ : A" x Y -> R be defined by 

f 1, iff>,y)€fl, 
<p(x,y) = < 

\ 0, if (*,»)*£?. 

Then the hypotheses of Theorem 2.3.6 are all satisfied. Hence by Theorem 2.3.6, there 

exists y* E Y such that (j>(x,y*) < 0 for all x E X, i.e., (a;,y*) <£ B for all x E X so 

that {a;G X : (x,ym) E B} = 0. D 

It is clear that Theorem 2.3.11 implies the following: 

T h e o r e m 2.3.12. Let A" be a non-empty set and V be a topological space such that 

A = U™=lXn and Y = U^=1V7l, where {Xn}^ and { V „ } ~ , are increasing sequences 

of non-empty sets and of compact spaces respectively. Let C be a non-empty subset of 

X x Y such that 

(a) for each n G N , the mapping x i-> {y G Yn : (x,y) E 0} is transfer closed valued 

on A „ ; 

(b) for each n E N , the map x t-> clYn{y E Yn : (x,y) E C} is generalized HKKM 

on A „ ; 
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(c) for each sequence (yn)^Li in Y with yn E Yn for each n G N which is escaping 

from Y relative to {Yn}%L,, there exist n 0 G N and xno E Xno such that (x „ 0 , y „ 0 ) $ G. 

Then there exists y" E Y such that X x {y * } C G. 

D e f i n i t i o n . Let A" and Y be two topological spaces and a mapping F : X —* 

2 K U { 0 } . 

(i): F is transfer open inverse valued on X if for each y E Y and a; G A" with 

x E F~x(y) — {x E X : y G F ( z ) } , there exist some y' G V and a non-empty 

open neighborhood N(x) of .r in X such that N(a:) C F~'l(y'). It is clear that F : X -» 

2 ) / U{0} is transfer open inverse valued on X if and only if the mapping G : Y —> 2 * U { 0 } 

defined by G(y) = X \ F - 1 ( y ) for each y G K is transfer closed valued. 

(ii) a point x E X is said to be a maximal element of the mapping F provided 

F(x) = 0. 

The example after Theorem 2.3.18 below shows that a transfer open inverse valued 

mapping may be not open inverse valued. 

Now we shall show that Theorem 2.3.12 implies the following maximal element theo­

rem: 

T h e o r e m 2.3.13. Let X be a non-empty set and Y be a topological space such that 

A = U~ ,A7 l and V" = U~ ,Vn , where {A"n}£°=1 and {Yn}™=l are increasing sequences of 

non-empty sets and of compact spaces respectively, Suppose the map F : Y —• 2X U {0} 

is such that 

(a) for each n E N , the mapping F : Yn —> 2Xn U {0} is transfer open inverse valued 

on A"„; 

(b) for each n G N , the map x t-> clYn{y E Yn : x £ F(y)} is generalized HKKM on 

A„; 

(c) for each sequence (y7l)£L, in Y with yn E Yn for each n G N which is escaping 

from V relative to {K , } , ^ ! , , there exist n0 E N and x-n„ G A"7l0 such that xno E F(yno). 

Then there exists y* G V' such that F(y*) = 0. 

P roo f . Let G = {(x,y) G A" x Y : x <fc F(y)}, then all the conditions of Theorem 
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2.3.12 are satisfied. Hence by Theorem 2.3.12, there exists y* G V such that A' X {y*} C 

G, i.e., x $ F(y*) for all a; G A" so that F(y') = 0. D 

We shall now prove that Theorem 2.3.13 implies Theorem 2.3 6 so that Theorems 

2.3.6, 2.3.11, 2.3.12 and Theorem 2.3.13 are all equivalent. 

The proof of "Theorem 2.3.13 =• Theorem 2.3.6": Define F : Y -» 2A' U {0} by 

F(y) = {x E X : (j)(x,y) > 0} for each y G Y. Then the conditions of Theorem 2.3.13 

are satisfied. Hence by Theorem 2.3.13, there exists y* G Y such that F(if) = 0, i.e., 

<l>(x,y*) < 0 for all x E X. • 

As an immediate consequence of Theorem 2.3.13, we have: 

C o r o l l a r y 2.3.14. Let X be a non-empty subset of a conveA subset Y of a topo­

logical vector space E such that X = U ^ A ^ and Y = U„=lYn, where {Xn}™=] and 

{Kn},c^.1 are increasing sequences of non-empty sets for which X, C V, and Y, is compact 

convex for each / = 1,2, • • -. Suppose the map F : Y —• 2Xr U {0} is such that 

(a) for each n E N , F : Yn —> 2 X " U {0} is transfer open inverse valued, 

(b) for each y EY, y £ coF(y); 

(c) tor each sequence (ijn)^ in Y with yn E Yn for each n G N which is escaping 

from Y relative to {V „ }£L i . there exist n 0 G N and a;7,0 G XUo such that xno E B(ynu)-

Then there exists y* E Y such that F(y*) = 0. 

P roo f . Suppose that there exist n E N , A E F(Xn) and y G co(A) such that 

y g U x 6^c/y„ {y ' G K„ : x ^ F(y')}. Then x G F(y ) for all x E A so that y G co(/t) C 

coF(y) which contradicts (b). Therefore all conditions of Theorem 2.3 13 are satisfied 

and hence there exists y* E Y such that F(y*) = 0. • 

Corollary 2.3.14 generalizes Theorem 3.2 of Tan and Yu [288] and Theorem 7.10 of 

Border [34, p.35]. 

In what follows, we shall give two fixed point theorems and an existence theorem for 

maximal elements. 

T h e o r e m 2.3.15. Let A be a non-empty subset of an H-space (K, {VA}) such that 
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A = U£L, A"„ and Y = U~ , V„, where {Xn}™=l and { K } ^ , are increasing sequences of 

non-empty sets for which AT, C K and Yi is a non-empty compact and weakly H-convex 

subset of Y for each i — 1,2, • • -. Suppose the map F : K —• 2 * is such that 

(a) for each n E N , the mapping F : Yn —* 2 * " U {0 } is transfer open inverse valued; 

(b) for each y G V, F (y ) is H-convex; 

(c) for each sequence (?y„)£Li in Y with yn G Yn for each n G N which is escaping 

from Y relative to {V n }£L i ' t n e , ? e x i s t "o G N and xno G Xno such that xno G F(yno). 

Then there exists y* G V such that y* E F(y*). 

Proo f . For each n E N , since (Y, {VA}) is an H-space and Yn is weakly H-convex, 

so that (Yn, {VA n Vn } ) is an H-space. If the condition (b) of Theorem 2.3.13 holds, then 

there is y G Y such that F(y) = 0 which is a contradiction. Therefore the condition (b) 

of Theorem 2.3.13 does not hold, i.e., there exist n EN, A E F(Yn) and y* G TA such 

that y* g c/yn{j/ G V„ : x <£ F(y)} for all x G A, hence x G F(y* ) for all x G A By (b), 

F(y') is H-convex so that y* G IV C F(y*). • 

T h e o r e m 2.3.16. Let A~ be a non-empty subset of an H-space (V, {TA}) such that 

X = U£L, A'„ and Y - U^Yn, where {Xn}^ and { K } ^ 1 1 are increasing sequences of 

non-empty sets for which A", C Vj and Yi is a non-empty compact and weakly H-convex 

subset of Y for each i = 1,2,---. Suppose the map F : Y —* 2X is such that 

(a) for each n E N , the mapping F : Yn —> 2 * " U {0 } is transfer open inverse valued; 

(b) for each sequence (yn)^=\ in Y with yn E Yn for each n E N which is escaping 

from V relative to {Vn},^Li. there exist n0 E N and xno G X, l 0 such that x7l0 G F(yno). 

Then there exists y* G Y such that y* G HcoF(y*). 

P roo f . As in the preceding proof, there exist n G N , v4 G ^ " (X n ) and y* G T^ such 

that if $ clYn{y E Yn : x $ F(y)} for all x G A, hence x G ^ ( j / * ) for all x E A and 

?/* G T.., C HcoF(y ' ) . D 

T h e o r e m 2.3.17. Let X be a non-empty subset of an H-space space ( ^ { T ^ } ) 

such that X = U~ ,Xn and Y = U~ ^ where { X n } ~ t and { r n } ~ = 1 are increasing 

sequences of non-empty sets for which A", C Yi and Yi is a non-empty compact and weakly 

H-convex subset of Y for each i = 1,2, • • -. Suppose the map F : Y -+ 2A is such that 
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(a) for each n G N , the mapping F : Yn —> 2A " U {0} is transfer open inverse valued; 

(b) for each y E Y, F(y) is H-convex and y ^ F(y); 

(c) for each sequence (yn)£Li in Y with yn E Yn for each n E N which is escaping 

from Y relative to {V7 l }~= ] , there exist n0 E N and :c„0 G A"no such that a:„0 G B(yna)-

Then there exists y* G K such that F(y*) = 0. 

Proof . Suppose F(y) 7̂  0 for all y G K, by Theorem 2.3.15, there exists y G V such 

that y G F(y) which is a contradiction of condition (b). D 

Finally, as an immediate consequence of Theorem 2.3.15, we have the following gen­

eralization of the Fan-Browder fixed point theorem (e.g, see Fan [98] or Browder [42]): 

T h e o r e m 2.3.18. Let A* be a non-empty compact convex subset of a topological 

vector space E and F : X —> 2X is such that: 

(a) for each x E X, F(x) is convex; and 

(b) F is transfer open inverse valued. 

Then F has a fixed point. 

The following example shows that Theorem 2.3.18 is really a generalization of the 

Fan-Browder fixed point theorem. 

E x a m p l e . Let X - [0,1] and define a mapping F : X -> 2f° , l ! by 

j [ x , l ] , if x is rational 
F(x) = < 

[ [0,1], if x is irrational 

Then it is clear that F is not open inverse valued but F is transfer open inverse valued. 
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2.4 Stability of Ky Fan Points 

Let (X,d) be a compact metric space with the fixed point property for continuous map­

pings. In [115], Fort introduced the concept of essential fixed points of a continuous 

mapping / on X. He proved that (1) every continuous mapping on X can be arbitrarily 

approximated by a continuous mapping on X whose fixed points are all essential; and (2) 

if each fixed point of a continuous mapping / on X is essential, then the fixed point set 

,$'(/) = {x E X : f(x) — x } of / is stable: for each e > 0, there is 8 > 0 such that for 

each continuous mapping g on X, if p(f,g) = sup{d(f(x),g(x)) : x E X} < S, then 

h(S(f),S(g)) < e where h is the Hausdorff metric defined on all non-empty bounded 

closed subsets of X induced by the metric d; i.e., the fixed point set S(g) of g is "close" 

to the fixed point set .S'(/) of / whenever g is "close" to / . 

In this section, the concepts of the KF point and essential KF point are first in­

troduced. We then study the stability of KF points (which are the solutions of Ky Fan 

minimax inequalities) in both compact and non-compact settings. 

We shall recall some definitions. If X is a topological space, we shall denote by K(X) 

and V»(X)(= 2X) the space of all non-empty compact subsets of X and the c; ace of all 

non-empty subsets of A respectively, both endowed with the Vietoris topology (see, Klein 

and Thompson [189]). If Z is another topological space, then a mapping T : X —> 2X is 

said to be (i) upper (respectively, lower) semicontinuous at x G X, if for each open set 

G in Z with G D T(x) (respectively, G D T(x) ^ 0), there exists an open neighborhood 

O(x) of a: in A such that G D T(x') (respectively, G D T(x') / 0) for each x' E 0(x)\ 

(ii) T is said to be almost lower semicontinuous at x E X, if there exists z E T(x) such 

that for each open neighborhood N(z) of z in Z, there exists an open neighborhood 0(x) 

of x in X with the property that N(z) n T(x') ^ 0 for each x ' G O(x) and (iii) T is an 

usco if T is upper semicontinuos with non-empty compact values. 

A space A' is said to be Cech-complete if it can be embedded as a Gs subset of some 

compact Hausdorff space (e.g., see Engelking [95]). It is known that (i): A Cech-complete 

space is a Baire space; (ii): Locally compact spaces are also Cech-complete, because a 

non-compact locally compact space has a compactification with one-point remainder; (ii i): 
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The space of all irrational numbers with the topology of a subspace of the real line is an 

example of a Cech-complete space that is not locally compact and moreover (iv): Each 

completely metrizable space is Cech-complete. Thus, the Cech-complete spaces contain 

within them the two important types of Baire spaces. 

A space X is said to belong to the class C (see Kenderov [174]) if for each Cech-

complete space Z, every usco mapping S : Z —• K(X) is almost lower semicontinuous 

on some dense Gs subset of Z. 

Note that there are a number of spaces under which each usco multifunction from A"" 

to Z is almost lower semicontinuous at the points of some dense Gs subset of X. For 

example, 

(a) X is a Baire space and Z is metrizable (e.g., see Fort [115, Theorem 2]); 

(b) X is Cech-complete and Z is a Banach space with weak topology (which is non-

metrizable if it is infinite dimensional) by Theorem 2 of Christensen [60]; 

(c) A is a Baire space and Z is the dual space of a Banach space with the weak*-

topology provided Z has the randon - Nikodym property (e.g., see Christensen and 

Kenderov [61]). 

It follows from (a) and (b) above that the class C contains all metrizable spaces and all 

Banach spaces equipped with the weak topology. The class C has nice stability properties: 

it is closed under taking subspaces, countable products, countable sums of closed sets, 

and perfect images. 

As a special case of Corollary 2.3.5, we have the following: 

T h e o r e m 2.4 .A. Let X be a non-empty compact convex subset of a topological 

vector space and / : A x X —> R be such that 

(i) / ( x , x ) < 0 for all x E X; 

(ii) foi each fixed x E X, y <-* / ( x , y ) is lower semicontinuous; 

(iii) for each fixed y E X, x t-> / ( x , y ) is quasi-concave (i.e., for each A G ft, the set 

{x G X : f(x,y) > A} is convex). 

Then there exists y E X such that f(x,y) < 0 for all x G X. 

It is clear that Theorem 2.4.A above is equivalent to the celebrated Ky Fan minimax 
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inequality [105] stated as follows: 

T h e o r e m 2 .4 .B . Let X be a non-empty compact convex subset of a topological 

vector space and / : X x X —> R be such that 

(a) for each fixed x G X , y i-> f(x, y) is lower semicontinuous; 

(b) for each fixed y G X , x t-> f(x, y) is quasi-concave. 

Then mfyeX supxeX f(x,y) < sup x g X / ( x , x ) . 

We shall call such a point y in Theorem 2.4.A as Ky Fan point (in short, KF point) 

of / in X and denote by S(f) the set of all KF points of / in X . Thus S(f) is non­

empty by Theorem 2.4.A. Also, ,S'(/) = f\x^x{y E X : f(x,y) < 0} by the condition 

(ii) of Theorem 2.4.A is closed in X and is thus also compact. Therefore, for each 

function / : X x X —> R satisfying the conditions (i), (ii) and (iii) of Theorem 2.4.A, 

one can associate a non-empty compact subset S(f), the set of all solutions y G X of 

the inequality supxeA- f(x,y) < 0. 

In this section, we shall first discuss the stability of S(f) with / varying where / is 

a bounded real-valued function on X x X satisfying the conditions ( i), (ii) and (iii) in 

Theorem 2.4.A and X is a non-empty compact convex subset of a topological space. 

Next, if X is a Cech-complete space which belongs to the class C (see the definition 

below), we shall study the stability of the set S(A,f) — {y E A : supxeAf(x,y) < 0} 

with both / and A varying, where / : X x X —> R is bounded and lower semicontinuous 

and A is a non-empty compact subset of A". When X is a closed convex subset of a 

Frechet space, as an application, the stability of the set S(A,f) is investigated, where 

/ : X x X —> R satisfies the conditions (i) and (iii) of Theorem 2.4.A and the subset A 

is, in addition, convex. 

2.4.1 Stability in Compact Setting 

Throughout this section, X denotes a non-empty compact convex subsets of a topological 

vector space. Let L(X) be the family of all bounded real-valued functions on X x X . 
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For f,g E L(X), define 

P{f,g)^ sup \f(x,y)-g(xiy)\. 

Clearly, (L(X),p) is a complete metric space. Let 

M = {f E L(X) : f satisfies the conditions (i), (ii) and (iii) of Theorem 2.4.A } . 

It is easy to show that M is closed in L(X). Thus we have: 

L e m m a 2 . 4 . 1 . (M,p) is a complete metric space. 

Now for each / G M, the set S(f) = {y E X: sup x 6 Y f(x,y) < 0} is non-empty 

and compact by Theorem 2.4.A. Furthermore, we have: 

L e m m a 2.4.2. F : M —» K(X) is upper semicontinuous. 

P roo f . Let { ( / „ , y f t ) } a 6 r be a net in Graph,5' with (fa,y«) -> (fo,Vu) E M X A", 

then fa —> f0, ya —• yo and fa(x,ya) < 0 for all a E V and for all x G A'. Fix x E X. 

Since y i-» / 0 ( x , y ) is lower semicontinuous at y0, for any e. > 0, there exists an open 

neighborhood O(y0) of y0 in X such that for each y' E G(y0), /o(x, y()) < / 0 ( x , y') + (//\. 

As / a —> /o, there exists a o G f such that for any a > cv0, />(/o,/«) < G/^ s o that for 

each y' E O(y0), / „ ( x , y 0 ) < /o(z,2/o) + e/4 < f0(x,y') + e/2 < / f»(x,y') + 3e/4. 

Since ya —* yo, there exists a-\ > a0 such that yCVl G G(?y0); it follows that /o(x,.'yo) = 

/ o K 2/o) - / « , (x, y0) + / „ , (x, y0) - / « , (.T, y „ , ) + / „ , (x, yat) < p(J\h fni) + \U.j\ < c 

Since e > 0 is arbitrary, /o(x ,y 0 ) < 0 for all x E X. This implies that (/o,yo) G Graph,9 

and hence Graph,? is closed in M x X . Therefore ,9 is upper semicontinuous since A' is 

compact. • 

D e f i n i t i o n . For each / G M , (i) a point y G »$'(/) is A'F-essential relative to M if 

for each open neighborhood N(y) of y in A , there exists an open neighborhood 0(f) of 

/ in M such that S(f') n N (y ) ^ 0 for each / ' G 0(f); (ii) / is weakly essential relative 

to M if there exists y G 5 ( / ) which is A'F-essential relative to M and (iii) / is essential 

relative to M if every y G .S'(/) is /{"F-essential relative to M. 

The following result is due to Fort [115]: 
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L e m m a 2.4.3. If X is metrizable, Z is a Baire space and S : Z —• K(X) is an usco 

mapping, then the set of points where ,5' is lower semicontinuous is a dense Gs set in Z. 

T h e o r e m 2.4.4. (i) ,S' is almost lower semicontinuous at / G M if and only if / is 

weakly essential relative to M. 

(ii) S is lower semicontinuous at / G M if and only if / is essential relative to M. 

(iii) S is continuous at / G M if and only if / is essential relative to M. 

Proo f , (i) ,$' is almost lower semicontinuous at / G M if and only if there exists 

y G S(f) such that y is A'F-essential relative to M if and only if / is weakly essential 

relative to M. 

(ii) S is lower semicontinuous at / G M if and only if each y G S(f) is JCF-essential 

relative to M if and only if / is essential relative to M. 

(iii) This follows from (ii) and Lemma 2.4.2. • 

If X is metrizable by a metric d, then the Vietoris topology on K(X) coincides with 

the topology generated by the Hausdorff metric h induced by d (e.g., see Corollary 4.2.3 

of [189]). Then S is continuous at / G M if and only if for each e > 0, there is 8 > 0 

such that for each g E M, h(S(f),S(g)) < e whenever p(f,g) < 8; i.e., S(f) is stable: 

S(g) is "close" to S(f) whenever g is "close" to / . Theorem 2.4.4 (iii) shows that S(f) 

is stable if and only if / is essential relative to M. 

We shall give a sufficient condition that / G M is essential relative to M: 

T h e o r e m 2.4.5. If / G M is such that ,5'(/) is a singleton set, then / is essential 

relative to M . 

P roo f . Suppose S(f) = { x } . Let G be any open set in X such that S(f) D G ^ 0, 

then x G G so that S(f) C G. Since S is upper semicontinuous at / by Lemma 2.4.2, 

there is an open neighborhood 0(f) of / in M such that S(f') C G for each / ' G 0(f); 

in particular, G n S(f') ^ 0 for each / ' G G ( / ) . Thus ,9 is lower semicontinuous at / . 

By Theorem 2.4.4 (ii), / is essential relative to M. • 

T h e o r e m 2.4.6. (i) Suppose that X belongs to class C. Then there exists a dense 

Gs subset Q of M such that / is weakly essential relative to M for each f E Q. 
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(ii) Suppose that X is metrizable. Then there exists a dense Gs subset Q of M such 

that / is essential relative to M for each f E Q. 

Proo f , (i) Since M is a complete metric space, M is Cech-complete. By Lemma 

2.4.2, the mapping S : M —> A ' (X ) is upper semicontinuous. Since A' belongs to class 

C, S is almost lower semicontinuous on some dense Gs subset Q of M. By Theorem 

2.4.4 (i), / is weakly essential relative to M for each f EQ. 

(ii) By Lemma 2.4.2 and Lemma 2.4.3, S is lower semicontinuous on some dense Gg 

subset Q of M. By Theorem 2.4.4 (ii), / is essential relative to M for each / G Q. O 

We remark that if we define M = { / G L(X) : f satisfies conditions (a) and (b) 

of Theorem 2.4.B } and S(f) = {y e X : s u p , ^ f(x,y) < supx€A- f(x,x)} for each 

/ G M, then all the results in this section remain valid. 

2.4.2 Stability in Non-Compact Setting 

In section 2.4.1, we have studied the stability of the solution set S(f') of / in A" with / 

varying but X fixed. In this section we shall study the stability of the solution set S(f)C\A 

of / in A with both / and A varying. 

Throughout this section, X denotes a topological space and L(X) denotes the space of 

all bounded real-valued lower semicontinuous functions on X x X . For each / i , / 2 G f(X), 

let p ( / i , / 2 ) = sup{XtV)eXxX \fi(x,y) - f2(x,y)\, then clearly p is a metric on L(X). 

Let Y = K(X) x L(X). Now for each u = (A J) E Y. 

D e f i n i t i o n . A point y in A is called a Ky Fan's point (in short, KF point) of / in 

A tis\ipxeAf(x,y) < 0. 

A point y in A satisfying (*) is called a Ky Fan's point (in short, KF point) of / in A. 

Before we study the stability of the set S(u) of KF points of / in A for u = ( / ! , / ) G 

Y, we shall give several lemmas which will be used to prove our main results later. The 

proof of the following result is routine and is hence omitted. 

L e m m a 2.4.7. (L(X),p) is a complete metric space. 
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L e m m a 2.4.8. Suppose X is a non-empty subset of a topological vector space. If 

{ / l»}»er is a net of compact and convex sets in K(X) which converges to A E K(X) 

in the Vietoris topology, then A is also convex. 

P roo f . Suppose that A were not convex. Then there exist x-\, x2 G A and \i E (0,1) 

such that A|X| + (1 — Ai).x-2 £ A. Since A is compact, there exist an open set G in X 

containing A and an open neighborhood 0(\iXi -f- (1 — Ai)x2 ) of X-[X-[ + (1 — AT)X 2 in 

X such that 0(A|Xi + ( 1 — A 1 ) x 2 ) n G = 0. Note that there exist an open neighborhood 

0(x\) of X] in X and an open neighborhood 0 ( x 2 ) of x2 in X such that A iO(x i ) + 

(1 - Ai)0(;c2) C 0 (A iX i + (1 — A,)x2 ) . Since x , , x2 G A and Aa —> A, there exists 

«o G V such that for each a > a0, O ( x i ) n Aa / 0 and 0(x2) n Aa ^ 0. Since G D A, 

there exists cvi G V such that for each a > a l f G D ,4a . Now let cv2 G T be such 

that « 2 > «o and a2 > a^. Then for each a > a2, O(x^) C\ Aa ^ $, 0(x2) f) Aa ^ 0 

and ACl C G. Choose any ^ G 0 ( x i ) D y4a2 and 22 G G(x2 ) D y4a?. Since Aa2 is 

convex, Az, + (1 - \)z2 E Aa2 C G. But A ^ + (1 - A)^2 G XO(x-,) + (I - \)0(x2) C 

0(Xxi + (i - X)x2) which contradicts G ( A ! X T + (1 - A)x2) D G = 0. Hence A must be 

convex. D 

The following result is Lemma 3.3 of Beer [17]; as it was stated without a proof, we 

shall include its simple proof for completeness: 

L e m m a 2.4.9. Let {Au]a€r be a net in K(X) which converges to A E K(X) in 

the Vietoris topology. Then every net {xo,}n 6 r with xa E Aa for each a E T has a cluster 

point in A. 

Proo f . Suppose that the net { x „ } a g r has no cluster point in A. Then for each 

x E A, there exist an open neighborhood O(x) of x in X and an a(x) E T such that 

xn £ 0(x) for all a > a(x). Since A C UxeA0(x) and A is compact, there exist 

X | ,x 2 , • • •,.'<;„ G A such that A C U"=1G(x,). Now let a' be such that a' > a(x,) for 

i — 1,2, • • •, n. Then for each a > a', xa £ 0 ( x , ) for i = 1,2, • • •, n. Since U"= 10(x,) 

is an open set which contains A and Aa —» A in the Vietoris topology, there exists a" E T 

such that for any a > a", xa E AQ C U} l
=10(x,-). Now let a'" E V be such that a'" > a' 

and at'" > a"; then x„-» ^ 0 ( x , ) for i = 1 ,2 , - - - ,n which contradicts the fact that 
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xa>n E Aa C U- l
=10(xi). Hence {a^cver has a cluster point in A. • 

Now define the subspace M of Y by M — {(A,f) E Y: there exists y G A such that 

suPxe/i f(xi'y) — 0}- Then we define a mapping S : M -» 'Po(A') by S(u) — {y E A : 

sup i e„ /(x,y) < 0} for each u = (AJ)EM. 

Lemma 2.4.10. M is closed in Y. 

Proo f . Suppose that {(Aa,fa)}arzr is a net in M such that (Aa,fu) —> ( / ! , / ) G V*'. 

For each a E T, let ya E Aa be such that sup x e 4 > fa(x,y0/) < 0. Since /t ( t —> A in 

the Vietoris topology, the net {ya}aer has a cluster point y0 G A by Lemma 2.4.9. Now 

we shall show that snpx&A f(x,y0) < 0. Suppose that this were not true, then there 

exist e0 > 0 and x0 E A such that / ( x 0 , yo ) > £o- Since / is lower semicontinuous at 

(xo,yo), there exist an open neighborhood 0 ( x o ) of :;;0 in X and an open neighborhood 

0(2/o) of point y0 in A such that / ( x , y ) > e0 for any (x,y) E 0 ( x o ) X 0(;i/o). Since 

fa -•• / . there exists cv0 G T such that for any a > cv0, |/cv(a;,y) — /(a; ,y) | < <„/2 for 

all ( x , y ) G X x X , so that fa(x,y) > f(x,y) - e0/2 for all (x,;(/) G A" X A". Therefore 

fa(x,y) > f(x,y) - e0/2 > e0 - e0/2 = e0/2 for each (x ,y ) G 0(x{)) x 0(y f ) ) . As 

/ ! „ —> y4, there exists a^ > aQ such that 0(xo) f l Aa ^ 0 for all rv > fY|. Note that 

y0 G /4 is a cluster point of {ya}aer, there exists a 2 > « i s u c h that y(V2 G 0(?yo). Choose 

any x „ 2 G 0 ( x o ) CI Aa.z, we have fa2(xa2,ya2) > So/2 which contradicts the choice of 

ya2 E Aa2 that supxeAat fa(x,ya) < 0. Therefore we must have that sup^,, / ( x , y „ ) < 

0. Hence (A J) E M and M is closed in K. • 

Lemma 2.4.11. If A is Cech-complete, then M is Cech-complete. 

Proo f . The space L(X) is Cech-complete since L(X) is a complete metric space by 

Lemma 2.4.7. Since A" is Cech-complete, K(X) is also Cech-complete by Lemma 2.2 

of Beer [17]. Therefore the product space K(X) x L(X) is Cech-complete by Theorem 

3.9.8 of Engelking [95]. By Lemma 2.4.10 and Theorem 3.9.6 of Engelking [95], M is 

also Cech-complete. • 

L e m m a 2.4.12. S(u) E K(X) for each u E M. 

Proof. For each u = (A,f) G M, since S(u) C A, it is sufficient to prove that S(u) 
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is closed in A. Let (y „ ) „g r be a net in S(u) which converges to a point y0 G A. By the 

definition of S, we have sup x e / t f(x,ya) < 0 for each a G T. By the lower semicontinuity 

of y i-4 sup x 6 „ f(x,y), we have sup i e > , f(x,y0) < 0. Hence y0 G S'(u) so that S(u) is a 

closed subset of A. • . 

L e m m a 2.4.13. The correspondence S : M —• K(X) is upper semicontinuous. 

P roo f . Suppose that 6' were not upper semicontinuous at some point u = ( A , / ) G 

M , then there exist an open subset G of A with G D S'(u) and a net { u „ } „ e r in M with 

« f t —> u G M such that for each a G f\ there exists ya E S(ua) with ya £ G. Denote 

ua = (Aaifa) and u - (A,f), then fa —> / and A „ —• A. Since ya G Aa for each 

cv G P, by Lemma 2.4.9, the net {ya}aer has a cluster point y0 G A. Since ya £ G for 

each cv G T, we have y0 <£ G. Therefore sup r€>1 f(x,y0) > 0, so that there exist e0 > 0 

and a;o G A such that /(xo,2/o) > eo- Since (x ,y ) i-» / ( x , y ) is lower semicontinuous at 

(x0 ,yo), there exist an open neighborhood N(x0) of x0 in X and an open neighborhood 

IV(yQ) of y0 in X such that for each (x ,y ) G AA(x0) x N(y0), f(x,y) > e0. Since 

/» —* / . there exists cvj G F such that for each a > a l t | / a ( x , y ) — / ( x , y ) | < e0/2 

for all (x,y) E X x X. Therefore fa(x,y) > f(x,y) - e0/2 for all ( x , y ) G X x X . 

Since A^(x0) D A / 0 and A a —> A, there exists cv2 > « ! such that for each cv > cv2, 

A^xo) D /4„ ^ 0. Note that because y0 is a cluster point of the net {ya}aer there exists 

rv;j > Q'2 with yQ3 G ^(yo)- Now choose any xa3 E N(x0)(~)Aa3l we have fa3(xa3,ya3) > 

f(xa-31 !/»3) - «o/2. Therefore / „ 3 ( x „ 3 , ya3) > / ( x „ 3 , y„3 ) - e0/2 > e0 - e0/2 = e0/2 > 0 

which contradicts the fact that ya3 E S(uai). Therefore s must be upper semicontinuous. 

• 

Now let M\ be a non-empty closed subset of M. 

D e f i n i t i o n . For each u E M\, (i) a point y G S(u) is A'F-essential relative to M i 

if for each open neighborhood N(y) of y in A", there exists an open neighborhood 0(u) 

of K in A'/, such that S(u') f) N(y) ^ 0 for each u' E 0(u); (ii) u is weakly essential 

relative to M\ if there exists y E S(u) which is /CF-essential relative to M\ and (iii) u is 

essential relative to M^ if every y G S(u) is /i'F-essential relative to M t . 
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T h e o r e m 2.4.14. (i) S is almost lower semicontinuous at u E M\ if and only if u 

is weakly essential relative to M\. 

(ii) S is lower semicontinuous at u E Mi if and only if u is essential relative to A7|. 

(iii) 5' is continuous at u E Mi if and only if u is essential relative to Mi. 

p r o o f , (i) S is almost lower semicontinuous at u E M\ if and only iT there exists 

y G S(u) such that y is /iTF-essential relative to M\ if and only if u is weakly essential 

relative to M i . 

(ii) ,5' is lower semicontinuous at u E Mi if and only if each y G S(u) is K F-essential 

relative to M\ if and only if u is essential relative to Mx. 

(iii) This follows from (ii) and Lemma 2.4.13. Q 

A proof analogous to that of Theorem 2.4.5 and therefore omitted gives us the fol­

lowing result: 

T h e o r e m 2.4.15. If u E M i is such that S(u) is a singleton set, then u is essential 

relative to Mi. 

T h e o r e m 2.4.16. (i) Let X be Cech-complete and belong to the class £ . Then 

there exists a dense Gs subset Q of M i such that u is weakly essential relative to M t for 

each u E Q-

(ii) Let X be completely metrizable. Then there exists a dense Gs subset Q of Mi 

such that u is essential relative to M i for each u E Q. 

Proo f . Note that S is an usco by Lemma 2.4.12 and Lemma 2.4.13. 

(i) Since X is Cech-complete, Lemma 2.4.11 implies that M is also also Cech-

complete. Since M i is closed in M , M t is also Cech-complete by Theorem 3.9,6 of 

Engelking [95]. Since X is of class C, there is a dense Gs subset Q of M\ such that S is 

almost lower semicontinuous at each u E Q. By Theorem 2.4.14 (i), u is weakly essential 

relative to Mi for each u E Q. 

(ii) By Lemma 2.4.3, there exists a dense Gs subset Q of Mx such that S is lower 

semicontinuous at each u E Q. By Theorem 2.4.14 (ii), u is essential relative to M| for 

each u E Q. Q 
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If A is a complete metric space with metric d, then K(X) is a complete metric 

space when equipped with the Hausdorff metric h induced by d. By Corollary 4.2.3 in 

[189, p.41], the Vietoris topology on A ' (X) coincides with the topology induced by the 

Hausdorff metric h. By Lemma 2.4.7, it follows that Y = K(X) x L(X) and hence M 

and Mi are also complete metric spaces when equipped with the metric D defined by 

D(u,u') = p(fJ') + h(A,A') 

for u = (A J) and v! - (A'J'). We note then, the mapping 5 : M i -> K(X) is 

continuous at u = ( A , / ) G M i if and only if for each e > 0, there is 8 > 0 such that 

h(S(u),S(u')) < e whenever u' E Mi and D(u, u') < 8; i.e., the solution set S(u) of u is 

stable: S(u') is close to S(u) whenever u' is close to u for all u' E Mi. Theorem 2.4.14 

(iii) implies that if u E Mi, then u is essential relative to M i if and only if the solution 

set S(u) is stable. 

Now let X be a non-empty closed and convex subset of a Frechet space E equipped 

with a translation invariant metric d. Denote 

CK(X) = {AE K(X) : A is convex }. 

CL(X) = { / <= L(X) : / satisfies (i) and (iii) of Theorem 2.4.A}, 

M' = CK(X) x CL(X). 

The following is an application of the results obtained in this section: 

T h e o r e m 2.4.17. (i) M' is a non-empty closed subset of M . 

(ii) There exists a dense Gs subset Q of M' such that u is essential relative to M' for 

each u G Q. 

Proof , (i) Clearly M ' is non-empty. If u = (A,f) E M', then by Ky Fan's minimax 

inequality Theorem 2.4.A, there exists y E A such that s u p ^ / ( x , y ) < 0; thus u E M 

so that M' C M. Now if { (A 7 l , / n ) }~ = 1 is a sequence in M ' such that (An,fn) -» 

(AJ) E M, then / „ -> / and An -» A. Since for each y E X, x (-• fn(x,y) is quasi-

concave, it is also easy to see that x i-> / ( x , y ) is also quasi-concave. By Lemma 2.4.8, 

A is also convex. Thus (A,f) E M' so that M ' is closed in M . 

Now (ii) follows from (i) and Theorem 2.4.16 (ii). • 
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Finally, we remark that if we define M = {(A, f) G V: there exists y E A such that 

SXiVxeA f(x,y) < su\>xexf(x'x))' S(u) = iv G A : suW:eA f(x>y) < sl'PJ:eA f(x,x)} 

for each u = (A J) E M and CL(X) = { / G L(X) : f satisfies (a) and (b) of Theorem 

2.4.B }, then all the results in this section remain valid. 
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2.5 Coincidence Points for Non-self Mappings in Topological 

Vector Spaces 

The natural extension of fixed point theory is the study of coincidence points. Let X and 

Y be topological space and ,5', T : X —* 2Y. The coincidence problem for (S, T ) is to 

find (x0,yo) E X xY such that y0 G ,S'(xo)nT(x0). Geometrical problems of this type in 

an approximate context turn out to be intimately related to some basic problems arising 

in convex analysis. This important fact was discovered by J. von Neumann in 1937, who 

established a coincidence theorem in R n which was then applied to prove his well-known 

minimax principle. Since then, geometrical problems of a similar kind (as well as their 

analytic counterparts) have attracted broad attention. Also, new applications in various 

mathematical areas have been found. In particular, since Eile'iberg and Montgomery [94] 

studied coincidence theory in topological settings in 1946, this topic has been compre­

hensively developed by the contributions of Kakutani [170], Nash [227], Fan[97], Kneser 

[190], Gale [122], Debreu [72], Nikaido [229], Sion [279], Gorniewicz, Granas [131] and 

Kryszewski [132], Granas and Liu [134], Chang and Song [52], Ben-EI-Medchaiek and 

Deguire [24], Ko and Tan [192], Powers [247] and other contributors. This topic has 

many applications in mathematics and other subjects, for example, see Aubin [7], Aubin 

and Cellina [9] and Zeidler [336]. 

In this section, we first consider the relations between Halpern's inward (respectively, 

outward) mappings in [141] and Fan's inward (respectively, outward) definitions [103]. 

Several facts involved in the study of fixed point theorems for non-self mappings are also 

exhibited. Next a general multivalued version of Fan's best approximation theorem [103] is 

given in topological vector space. As applications, a number of approximation theorems, 

fixed point theorems and coincidence theorems are given in topological vector spaces. 

These results improve or unify most of the well known results in Browder [44], Fan [98], 

[103], [105], [106], Komiya [196], Park [242], Reich [248], Halpern and Bergman [143] 

and Ha [139], 
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2.5.1 Some Facts. 

In this section, some facts concerning boundary conditions which are involved in the study 

of non-self mappings are exhibited. 

We introduce some notation. Let X and Y be topological spaces and A : A" —t- 2* . 

Then A is continuous if A is both upper semicontinuous and lower semicontionous. If Y 

is a non-empty subset of a topological vector space, then A is convex valued (respectively, 

closed convex valued) if A(x) is convex (respectively, closed and convex) for each :r E X. 

The following definitions are due to Halpern (e.g., see [141]). Let X be a non-empty 

subset of a vector space E and y E E. Then the inward set lx(y) and the outward set 

Ox(y) of X at y are defined by 

Ix(y) = {x E E : there exist u E X and r > 0 such that a- = y + r(u — y ) } , 

and 

Ox(y) = {x E E : there exist u E X and r > 0 such that a; = y — r(u — y)}. 

If E is a topological vector space, then the closure of Ix(y) and Ox('!l) in Ii, denoted 

by fx(y) and Ox(y) respectively, are called the weakly inward set and weakly outward 

set of X at y respectively. 

Let X be a non-empty subset of a topological vector space E. Then a mapping 7' : 

X -» 2E is called (i) inward (respectively, outward) if for each x G A", T(x) f l lx(x) ^ 0 

(respectively, T(x) (1 Ox(x) ^ 0) and (ii) weakly inward (respectively, weakly outward) if 

for each a; G A , T(x) n 7 * ( x ) ^ 0 (respectively, T(x)n~Ox~(x) ^ 0). 

We note that if T is a (weakly) inward mapping, then the mapping G : X —> 2h 

defined by G(x) = 2x — T(x) for each a; G X is (weakly) outward and vice versa. Also, 

x is a fixed point of T if and only if it is a fixed point of G. Hence fixed point results for 

(weakly) inward mappings are equivalent to such results for (weakly) outward mappings. 

Thus we shall mainly give details of proofs for (weakly) inward mappings. 

Let X be a non-empty convex set in a (real or complex) vector space E. Following 

Fan [103], the algebraic boundary 8E(X) of X in E is the set of all a; G X for which there 

exists y E E such that x + ry £ X for all r > 0. If A' is a subset of a topological vector 

space, the topological boundary dpt(X) is the complement of intjyX in E. It is easy to 
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see that 8~E(X) C 8E(X) and in general 8E(X) ^ ds(X) as there exists a convex subset 

X of a topological vector space E such that 3E(X) — X while 8E(X) ^ X, e.g., see 

[313, Example 4 in Chapter 3]. 

Let E and W be two topological vector spaces and X a non-empty subset of E. 

Let G, F : X —> 2W. A point x G X is said to be a coincidence point of G and F if 

G(x) n F(x) ^ 0. 

Let E be a topological vector space and E* be its continuous dual. E is said to have 

sufficiently many continuous linear functionals if for each x G E with x ^ 0, there exists 

(j> E E* such that Re<j)(x) ^ 0, i.e., E" separates points in E. By the Hahn-Banach 

theorem, if E is a locally convex topological vector space, then E has sufficiently many 

continuous linear functionals. There are topological vector spaces with sufficiently many 

continuous linear functionals which are not locally convex, e.g., the Hardy space Hp, 

0 < p< 1. 

Since most fixed point theorems of inward (outward) mappings depend on the boundary 

conditions of the domains, for example see Halpern and Bergman [143], Browder [41] and 

Fan [103] and Park [240], it is our purpose in this section to discuss the relations between 

various boundary conditions appearing in the literature. Following the idea of Fan [103], 

we first have the following: 

P r o p o s i t i o n s 2 .5 .1 . Let X be a non-empty convex subset of a vector space E and 

F : X —> 2E. Then the following two conditions (a) and (b) are equivalent. 

(a) For each x G 8E(X), there exist y G X , u E F(x) and r > 0 such that 

•(/, — a; = r(y — x) . 

(b) For each x G X, there exist u E F(x) and r G (0,1) such that r x - f - ( l -r)u E X. 

Proo f , (a) = > (b). Fix an arbitrary x G X . If there exists u E F(x) such that 

u E X, then because X is convex, rx + (1 - r)u E X holds for every r G (0,1). Now 

assume F(x) C E \ X. (1) If x G 8E(X), then by (a), there exist y G X and u E F(x) 

and :• > 0 such that u - x = r(y - x ) . It follows that ry + (1 - r)x — u $ X . Since 

y, x E X and A" is convex, we must have r > 1. Let A = ^ , then A G (0,1) and 

Ax + (1 - A)M = y G A . (2) If x g 8E(X), then by the definition of 8E(X), for the 
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point u - x, where u G F(x), there exist 7- > 0 such that y = a; -f r(u - x) E X. Since 

x, y E X and u = \y -\- ^ x £ X, we must have r < 1. Let A = 1 — r, then we have 

Ax + (1 — X)u = y E X. Thus the condition (b) is verified. 

(b) = » (a). Suppose x G 8E(X). By (b), there exist u E F(x) and r G (0,1) such 

that y = rx + (1 - r)u. If we take A = ^ , t n e n ^ > 0 and u - x = A(y - x). • 

Proposition 2.5.1 improves the result given by Fan [103] to multivalued mappings. 

Fan also gave the following result in [103]: 

P r o p o s i t i o n 2.5.2. Let X be a non-empty convex subset of a vector space E. 

Suppose F, G : X —>• 2E. Then the following two conditions are equivalent: 

(a) For each point x E 8E(X), there exist three points y E X, u G F(x), i; G G(x) 

and a real number r > 0 such that y — x = r(u — v). 

(b) For each x E X, there exist three points y E X, u E F(x), v E G(x) and a real 

number r > 0 such that y — x = r(u — v). 

By Proposition 2.5.1 and Proposition 2.5.2, we have the following: 

P r o p o s i t i o n 2.5.3. Let X be a non-empty convex subset of a vector space E. 

Suppose F,G : X —• 2E. Then the following are equivalent: 

(a) For each x G 8E(X), there exist y E X, u E F(x), v E G(x) and r > 0 such that 

y — x = r(u — v), 

(>->) For each x G X , there exist y E X, u E F(x), v E G(x) and r > 0 such that 

y — x = r(u — v). 

(c) For each x G X , there exist u E F(x), v E G(x) and /• G (0, I) such that 

x + ( l -r)(u-v) EX. 

Proo f . By Proposition 2.5.2, the condition (a) is equivalent to the condition (b). 

Now define W : X ^ 2E by W(x) = { x } + F(x) - G(x) for each a; G X . Then it is 

clear that the condition (a) is equivalent to the following: 

(a)' For each x E 8E(X), there exist y E X, u E W(x) and r > 0 such that 

y — x — r(u — x). 

Now by Proposition 2.5.1, the condition (a)' is equivalent to the following condition: 
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(c)': For each y E X, there exist u E W(y) and 7- G (0,1) such that ry+(l-r)u G X . 

By the definition of W, it is also obvious that the condition (c)' is equivalent to the 

condition (c). Therefore conditions (a), (b) and (c) are equivalent. • 

We also have the following: 

P r o p o s i t i o n 2.5.4. Let X be a non-empty subset of a vector space E and F^G : 

X —> 2E. Then the following two conditions are equivalent: 

(i) For each x G 8E(X) and <j> E E* such that Re<j)(x) < R.e<j>(y) for all y E X, there 

exist u E F(x) and v E G(x) with Re<f>(u) > Re(/>(v). 

(ii) For each x G X and <f> E E* such that Re<j)(x) < Re<j)(y) for all y G X , there 

exist u E F(x) and v E G(x) with Re<f>(u) > Re^(v). 

Proo f . We only need to show that (i) = > (ii). Suppose x G X . Let <j> E E* 

be such that Re<j>(x) < Re<f>(y) for all y E X. If x ^ 8E(X), then by the definition 

of 8E(X), for each y G E, there exist r > 0 such that x + ry G X ; it follows that 

R,e<j>(x) < Re<j>(x + 7-y), so that Re(j)(y) > 0 for all y E E, and therefore </) is necessarily 

the zero linear functional. Since Reef) = 0, Re<j)(u) > Re<J)(v) is satisfied for any u E F(x) 

and v E G(x). Next, if x G 8E(X), then for any <j> E E* satisfying Re(f)(x) < Re(j>(y) for 

all y E X, by (i), there exist u E F(x) and v E G(x) such that Re<j>(u) > Re(j>(v). Thus 

the condition (ii) is verified. • 

Let X be a non-empty closed convex subset of a topological vector space E. We 

remark that (1) Corollary 6.3.1 of Rockafellar [253, p.47] implies that Fan's definition of 

algebraic boundary 8E(X) of X in E is equivalent to the definition given by Browder 

[41, p.285]: 8E(X) = {x E X : there exists a finite dimensional flat M such that x G 

dE(Xr\M) and (2) if i n t E ( X ) ^ 0, then 8E(X) = 8E(X) (see, e.g., [313, Theorem 

2.27(a)]. Therefore our Proposition 2.1.3 really generalizes Fan's result [106]. 

Since Halpern gave the definitions of inward (outward) mappings in his Ph.D. thesis 

[141] (e.g., see Halpern and Bergman [143]), many fixed point theorems are obtained. In 

[105], Fan also gave another definition for the inward (outward) mappings as follows: 

D e f i n i t i o n . Let A' be a non-empty convex subset of a topological vector space 
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E and F : A' —» 2 B . The mapping F is an inward mapping (respectively, outward 

mapping) if for each x G X and any continuous linear functional <f> on E such that 

Re<j>(x) < infygx Re<j)(y), there exists a point u G F(a;) such that Re</>(u) > R,e<j)(x) 

(respectively, Re<j>(n) < Re(/>(x)). 

It is easy to see that the condition (a) (respectively, (b)) of Proposition 2.5.2 im­

plies the condition (i) (respectively, (ii)) of Proposition 2.5.4. Therefore Fan's definition 

of inward mappings (respectively, outward mappings) in a topological vector space in­

cludes the definitions of inward mappings (respectively, outward mappings) for a single 

(or multivalued) mapping given by Halpern (also see Fan [103], Halpern and Bergman 

[143]). 

Let X be a non-empty convex subset of a topological vector space E and W/J\ F : 

X —• 2E. Consider the following conditions: 

(a) For each x E X, there is y G W(x) and r E [0, 1) such that rx + ( I - r)y E X. 

(b) For each x G X , there is y G X, u E T(x). v E F(x) and r E (0, I] such that 

y — x = r(u — v). 

Then it is not difficult to see that T and F satisfy the condition (b) if and only if the 

mapping W = I -\-T — F satisfies the condition (a); and moreover, a; G W(x) if and only 

if T(x) n F(x) / 0. 

2.5.2 Best Approximation Theorems. 

In this section, we will give a general extension of Fan's best approximation theorem [103] 

in topological vector spaces. As applications, several coincidence theorems are derived 

which in turn imply some fixed point theorems. 

We shall need the following result which is contained in the proof of Theorem 2 and 

the remark immediately following its proof in Ha [139]: 

T h e o r e m 2.5 .A. Let X be a non-empty compact subset of a topological vector 

space E which has sufficiently many continuous linear functionals and F : X —+ 2E be 
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upper semicontinuous with compact and convex values. If F has no fixed point, then there 

exist 8 > 0 and a continuous seminorm P on E such that infxgjf infug/?(x) P(x — u)> 8. 

We shall need also the following Lemma 2 of Ha [138]: 

T h e o r e m 2 .5 .B . Let Z be an n-simplex and let K be a non-empty compact convex 

subset of a topological vector space. If A : Z —> 2A is upper semicontinuous with closed 

and convex values and p : K —> Z is continuous, then there exists XQ E Z such that 

xo G 7J(/I(x0)). 

We shall now prove the following coincidence theorem: 

T h e o r e m 2.5.5. Let X be a contractible space and Y be a compact convex subset 

of a topological vector space E. Let A : X —> 2Y be upper semicontinuous with closed 

and convex values. Suppose that B : Y —> 2X is such that 

(a) B~l(x) is open for each x G X ; and 

(b) for each open set 0 in Y, the set f)y^oB(y) is empty or contractible. 

Then there exist «;0 G X and z0 E Y such that w0 E B(z0) and z0 E A(w0). 

Proo f . We first show that there exist an n-simplex A/v and two functions / : Aw —* 

X and ./> : Y -* AN such that f(ip(y)) E B(y) for all yEY. 

Since V' is compact, by (a), there exists a finite subset {x 0 , • • • ,x7 l } of X such that 

Y = U"= 0 /?_ 1(xi) . Now for each non-empty subset J of N := {0, • • • , n } , we define 

| n{£(y) : y G n , ^ " ^ / ) } , if ^jB~'(x3) ± 0, 

[ A , otherwise. 

Note that if y G D^JB-^XJ), then {x , : j E J} C J?(y). Therefore by (b), if 

njGJB~l(xj) ^ 0, then F./ = n{B(y) : y G n j 6 j y 3 _ 1 ( x j ) } is non-empty and con­

tractible. It is clear that Fj C Fj, whenever 0 ^ J C J ' C {0, ••-,n}. Thus F 

satisfies all hypotheses of Lemma 2.2.B. By Lemma 2.2.B, there is a continuous function 

/ : A/v -> X such that / ( A . / ) C F j for all J E f(N). Let {V>, : i E N} be a continuous 

partition of unity subordinated to the covering { j 9 - 1 ( x , ) : i E N}, i.e., for each i E N, 

i/>; : V -> [0,1] is continuous, {yEY: ipt(y) f 0} C £ - 1 ( x . ) such that SJLoV'.(y) = 1 

for all y E Y Define </> : K - » A N by i/>(y) = (^o( j / ) ,^ i ( j / ) , - • • An(y)) for each j / 6 7 , 
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Then ip(y) E A j ( y ) for all y G Y, where J(y) - {i G {0, • • • ,?'•} : •i/'i(y) ^ 0}. Therefore 

f(4>(y)) € f(\,(y)) C FJ{y) C B(y). 

Since / I is upper semicontinuous with closed and convex values and / is continuous, 

the composition A o f : A/v —• 2Y is also upper semicontinuous with closed and convex 

values, and ?/> : Y —> Ajv is continuous. By Theorem 2.5.B, there exists x0 G A/v such 

that x0 G '0 o (A o / ( xo ) ) . Let w0 := / ( x 0 ) , then w0 = / ( x 0 ) G ./' o (0 o (A o /(a;0)) = 

/ o (t/) o (/\(to0)) so that there exists 20 G A(w0) is such that wo = f o ij>(zo) E B(z()). O 

As a special case of Theorem 2.5.5, we have the following result which is Theorem 1 

of Komiya [196]: 

C o r o l l a r y 2.5.6. Let X be a non-empty convex subset of a topological vector 

space F and Y be a non-empty compact convex subset of a topological vector space 

W. Suppose A : X —> 2V is upper semicontinuous with closed and convex values and 

B : Y —> 2X has convex values such that B~^(x) is open in Y for each x E X. Then 

there exists (x0,2/o) G X x Y such that x0 G B{y0) and y0 G /l(xo)-

We now prove a multivalued generalization of Fan's best approximation theorem [103, 

Theorem 2] in topological vector spaces. 

T h e o r e m 2.5.7. Let E and W be two topological vector spaces. Let X be a non­

empty compact convex subset of E and G, F : X —> 2W. Suppose further there exists 

continuous H : X x W —> R such that: 

(i) for each fixed x G X , the set {y G W : fl(x,y) < r} is convex for each r G R; 

(ii) G is continuous with compact values and the set G~] (y) is convex for each 

y E G(X), where G(X) is a convex set; 

(iii) F is continuous with compact values. 

Then there exists a point x0 G X such that 

inf [ inf H(xn,v — u)]= inf [ inf / / (x ( ) ,v — u) l . 
vea(A')uef(x-o) v yj vecv^o) «e/'(*o) 

P roo f . Suppose that the conclusion were false. Define two mappings A : G(X) —> 2 * 

and 5 : X -> 2 ° W by y4(y) = Cf- 'd/) for each y G G ( X ) and B(x) = {y G G(X) : 
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inl„e/;'(x) H(x,y - u) < \niv€G(x)'^UeF(x) B(x,v - u)} for each x E X . Then by 

assumption, B(x) ^ 0 for each x E X . Since G is upper semicontinuous with closed 

values, the graph of G is closed in E x W, Graphs is also closed in W x E. Since X is 

compact, the mapping A : G(X) —> 2X is upper semicontinuous and has closed convex 

values. Since F is continuous with compact values and H : X x W —+ R is continuous, 

Theorem 1 of Aubin [7, p.67] and Theorem 2 of Aubin and Ekeland [10, p.69] imply 

that (x,y) •-» \n(neF(x) H(x,y - u) - miveG(x) hrfueF(x) H(x,v - u) is continuous. It 

follows that for each y E G(X), the set B~^(y) = {x E X : hxiul=F(x')H(x,y — u) < 

i"i7;ec(x) ^ueF(x) / / ( x , y — u)} h open in X . Si>ic^ G(X) is convex, by (i) B(x) is convex 

for each x G X . Therefore A and B satisfy ais hypotheses of Corollary 2.5.6. By Corollary 

2.5.6, there exist x0 G X and y0 G G(X) such that x0 G >l(j/o) and y0 G B(x0), i.e. 

yo G G(x0) and 

iuf H(xQ,y0 — u)< inf [ inf H(XQ,V — U)] 

which is impossible. Therefore the conclusion must hold. • 

If the mapping G in Theorem 2.5.7 is single-valued, then we have: 

T h e o r e m 2.5.8. Let E and W be two topological vector spaces. Let X be a non­

empty compact convex subset of E, F : X —> 2W and G : X —* W. Suppose further 

there exists a continuous function H : X x W —• R such that: 

(i) for each fixed x G A\ y —> H(x,y) is convex; 

(ii) G is continuous and the set G - 1 ( y ) is convex for each y E G(X), where G ( X ) is 

convex; 

(iii) F is continuous with compact and convex values. 

Then there exists a point x0 G X such that 

inf inf H(x0,w — u) — inf H(x0,G(x0) — u). 

In particular, if inl',/6/<•'(,..„) H(x0, G(x0) - u) > 0 and H(x,ry) < rH(x,y) for each 

/• G (0, 1) and each (x ,y ) G X x IV, then G(x0) G 6E(G(X)). 
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Proo f . By Theorem 2.5.7, there exists x0 G A' such that 

inf inf H(x0,v — u) = inf H(x0, G(x0) — u). 
v£GlX)ueF(x0)

 J neF(xo) V V ' ' 

we shall prove that 

xu 

inf inf fi(xo,w — u)> inf /7(a;0, G(.r0) — u). 
eic(x)(G(x0))ueF(xQ) ueF(x0) 

Fix an arbitrary w E IG(X)(G(X0)) \ G(X). As G(X) is convex, there exist z E G(X) 

and 7- > 1 such that w = G(x0) + r(z — G(x0)). Suppose that 

inf H(x0,w — u)< inf / /(x0 , G(xu) — u). 
ueF(xo) w6/r(xo) 

Since F(x 0 ) is compact and / / is continuous, there exist zi,z2 E F(:''o) such that 

H(x0,w-zi) = \niueF(X0) H(x0,w-u) < infue/^.o) H(x0,G(x0)-u) = / / (x 0 ,G(x 0 )~ 

z2). Let z = (1 — i ) z 2 + ~z\, then 1 G F(x 0 ) since F(xo^ 's a ' s o convex. Therefore we 

have 

H(x0,G(x0)- z2) = mi H(x0,G(x0)-u) = inf inf H(xu,v-u) 
ueF(x0) veG(X)u&F(x0) 

< / / ( x o , z - H ) = //(xo, - to + ( ^ - ) C / ( x „ ) - - 2 , - (-Z
7-)z2) 

1 r - 1 
< - / / (x 0 , w - zi) + — — H(x0, G(xo) - z2) 

< H(xo,G(x0)-z2) 

which is a contradiction. Thus we must have 

inf inf H(x0,w — v,)> inf /7(.'/;o, G(xo) — u). 
w&la(x)(G(x0)) u£F(x0) u£F(xo) 

By the continuity of w —* infue/?(Xo) N(xo,w — u), we have 

inf inf H(XQ,W — U)> inf / / ( x 0 , G(«o) —''/.). 
u/e/G(x)(f'(a;o)) "e/'^x-o) ne/;'(*0) 

Hence 

ijif inf H(x0,v) — u) = inf H(X0,G(XQ) — u). 
^e/G(x)(C''(»o)) ueF(a;0) u6F(io) 
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If infug/.-(.*„) /7(.x'o,G(x0) - u) > 0 and H(x,ry) < rfl(x,y) for each r G (0,1) 

and for each, (x,y) E X x W, we shall show that G(x0 ) G fo(GW). Note that 

F(x0 ) is compact, thus there exists a point u0 E F(x0) such that / / ( x 0 , G(x0) — u0) — 

inf„gF(Xo) H(x0,G(xu) — u). We first show that u0 £ G(X). Suppose that u0 E G(X). 

Then for any r E (0, 1), rG(x0) + (1 - r)u0 E G(X). It follows that 

H(x(),G(xo) —u0) — inf H(x0,G(x0) — ?<) = inf inf H(x0,v — u) 
weFfx-o) i>eG(.Y) ueF(xo) 

< inf //(x0 ,7'G(x0) + (1 — r)u0 — u) 
u£F(x0) 

< / / (x 0 , rG(x0) + (1 - r)u0 - u0) < H(x0. r(G(x0) - u0)) 

< rH(x0) G(x0) - u0) < H(x0, G(x0) — u0) 

which is a contradiction. Therefore u0 £ G(X). 

Now suppose that G(x0) £ 8E(G(X)), then by the definition of 8E(G(X)), for points 

'i*o G F(x ( j ) and G(x0) 6 G(X), there exists r > 0 such that xi = G(x0 ) + r(u0 — 

6'(x0)) G 6 ' (X) . Since u„ - f x i + ^ ^ ( x o ) ^ C7(X) and both x l f G(x0 ) G G ( X ) and 

G(A') is convex, we must have ?• < 1. Therefore 

/7(xo,G(x0) - u0) - inf /7(x0, G(xo) - u) = inf inf H(x0,v-u) 
ueF(x0) veG(X)u£F(x0) 

< inf / / (x 0 , (1 - r ) G ( x 0 ) - t - r u 0 - u ) 
«e/;,(x-o) 

< /7(x0, (1 - 7-)G(x0) + ru0 - 7j0) 

< fl(xo,(l-r)G(x0)-(l-r)u0) 

< (\-r)H(x0,G(xo)-u0) 

< H(x0,G(xQ) - u0) 

which is a contradiction. Hence G(x0) E 8(G(X)). • 

T h e o r e m 2.5.8' . Let E and W be two topological vector spaces. Let X be a 

non-empty compact convex subset of E, F : X —• 2 ^ and G : X —> W. Suppose further 

there exists a continuous function H : X x W —> R such that: 

(i) for each fixed x G X, y —+ / / ( x , y ) is convex; 

(ii) G is continuous and the set G _ 1 ( y ) is convex for each y G G ( X ) , where G ( X ) is 

convex; 
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(iii) F is continuous with compact convex values. 

Then there exists a point x0 G X such that 

inf Inf H(x0,w — u) = inf /7(x0, G(xo) — »)• 
™£OG{X)(G(x0))veF{x0) «6F(x0) 

In particular, if miueF(Xo) H(x0,G(x0) — u) > 0, and ]I(x,ry) < rH(x,y) for each 

r G (0,1) and each (x ,y ) G X x W, then G(x0) E 8E(G(X)) 

Proo f . If we define the mappings F, : X -* 2W by F ( x ) = 2G(x) - F(.r) for each 

x G A and Hi : X x W - • R by /7 i (x ,y ) = /7(x, - y ) for each (x,/ /) G X x W Then 

the mappings G, F i and Hi satisfy all hypotheses of Theorem 2.5 8 and by the same 

argument used in Theorem 2.5.8, the conclusion follows. • 

By Theorem 2.5.8 and Theorem 2.5.8', we have the following: 

C o r o l l a r y 2.5.9. Let E be a topological vector space which has sufficiently many 

continuous linear functionals. Let X be a non-empty compact convex subset of F and 

F : X —> 2E be continuous with compact and convex values. If F satisfies the following 

condition (i) or ( i) ' , then F has a fixed point in X . 

(i): For each x E 8E(X) \ F(x), there exist a real number r E (0, 1) and u E F(x) 

such that rx + (1 — r)u E Ix(x) (respectively, rx + (1 — r)u E Ox(x)). 

(?)': Fo7- each x G 8E(X) \ F(x) and u E F(x), there exists a vvmbcr r (real or 

complex, depending on whether the vector space E is real oi complex) with \r\ < I 

such that rx + (I — r)u E fx(x) (respectively rx + (1 — /•)« G Ox(x)). 

Proo f . Suppose that F has no fixed point, then by Theorem 2 5 A, there exist 8 > 0 

and a continuous seminorm P on E such that \niueF(i) P(x — u) > 8 for all x E X 

Define continuous mappings H : X x E —• R and G : X —> E by ll(x,y) = P(y) 

for each (x ,y ) G X x E and G(x) = x for each x E X By Theorem 2.5 8 (respectively, 

Theorem 2.5.8'), there exists xo G 8E(X) such that 

(respectively, 

jnf inf P(v - u) = inf F(x 0 - u) > 8 > 0 
veix(xo)u£F(x°) ueF(jo) 

jnf inf P(u - u) = inf F(x 0 - a) >8> 0). 
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If F satisfies the condition (i), then x0 G 8E(X) \ F(x 0 ) By (i), there exist 7- G (0,1) and 

«o G F ( ; 0 ) such that r » 0 + (l -r)uQ G /* (x 0 ) (respectively, rx0 + (l -r)u0 E Ox(xo)) 

so that 

0 < inf P(xQ — u) 
«e/-(x0) ' 

— jnf inf P(v — u)( respectively, = jnf inf P(v — u)) 
veix(*-o)uer(X(>') veox(x0)

u^F(xo) 

< ml P(rx0 + (1 - 7 > 0 - u)) 
ueF(x0) 

< inf F ( ra 0 + (1 — r)u0 — (ru + (1 — r)u0))( since F(x 0 ) is convex) 
ueF(x0) 

— 7 inf F(x 0 — u)( since P is a semmorm) 
uer(xQ) 

< j » f . p ( - eo -u ) 
uG/ (xo) 

which is a contradiction Therefore F must have a fixed point in X 

Now suppose that F satisfies the condition (i)', then x0 G 8E(X)\F(xo). Since F(xo) 

is compact, there exists a point ui E F(x0) such that hifueF(x0) F (x 0 — u) = P(x — ui) 

By (i)', there exists a number 7- with |r | < 1 such that rx 0 + (1 — r)ui E Ix(xo) 

(respectively, 0 \ ' (x o ) ) Thus 

0 < inf F(x 0 - u) 
ueF(x ' 

= jnf inl P(v — u)( respectively, — inf inf p(v — u)) 
«t/v(xo) «-&F(xo) veOx(xo)u£FM 

< «ni f(1Xo + (l-r)ui-u) 
uer(xo) 

< inf P(7 r 0 + (1 — r)ui — ui) 
ueF(jo) 

< H ^ C o - M l ) 

< F(x0 — ui) = inf P(x0 — u) 
ueF(x0) 

which is a contradiction Therefore F must have a fixed poi t. • 

We note that the condition of ( i) ' is different from (i) since the number r in the 

condition ( I I ) ' may be real or complex 

Since for each non-empty subset X in a topological vector space F, its algebraic 

boundary 8E(X) in E is usually smaller than the topological boundary dE(X), by Propo­

sition 2 5.1, Corollary 2 5 9 generalizes Theorem 3 of Fan [103] which in turn improves 
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Theorem 1 of Browder [44], Lemma 1.6 of Reich [248] a...i Theorem 4.1 of Halpern and 

Bergman [143] in the following ways: (1) the underlying space is a topological vector 

space instead of a locally convex space and (2) the mapping F is set-valued instead of 

single-valued and (3) the boundary condition of Corollary 2.5.9 is weaker than theirs. 

Moreover, Corollary 2.5.9 also generalizes Theorem 4 of Park [242] which in turn general­

izes many fixed point theorems for single-valued or set-valued inward (outward) mappings 

in the literature. 

2.5.3 Coincidence Theorems 

In this section, as applications of Theorem 2.5.7, several coincidence theorems for set-

valued inward and outward mappings are derived which in turn imply fixed point theorems 

of inward and outward set-valued mappings in topological vector spaces. Finally, a coin­

cidence theorem in locally convex spaces is also given. 

As an application of Theorem 2.5.7, we first have the following coincidence theorem 

in topological vector spaces: 

T h e o r e m 2.5.10. Let E and W be two topological vector spaces. Let X be a 

non-empty compact convex subset of E and G,F : X —> 2W. Suppose further there 

exists a continuous function 77 : X x W —-• R such that: 

(i) for each fixed x G X , the set {y E W : /7(x ,y) < ?•} is convex for each r E R; 

(ii) G is continuous with non-empty closed values and the set G~x(y) is convex for 

each y G G(A'), where G(X) is convex; 

(iii) F is continuous with compact values. 

(iv) for each x G X , if G(x) n F(x) = 0, there exists a point y E G(X) such that 

infu€F(x-) H(x,y - u) < m{veG(x)[miueF(x) H(x,v - «)]. 

Then there exists a point x0 G X such that G(x0) f] F(x0) ^ 0. 

Proo f . Suppose the conclusion is not true, i.e., for each x G X , G(x) D F(x) — 0. 

Note that G, F and H satisfy all hypotheses of Theorem 2.5.7. By Theorem 2.5.7, there 
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exists xo G X such that 

inf f inf H(x0,v—u)]= inf [ inf H(x0,v — u)]. 
veG(X)ueF(x0)

 K " veG(xa)n&F(x0) 

But by (iv), there exists y G G(AA) such that 

inf /7(x0, y-u) < inf [ inf (x0, v - u)} = inf [ inf H(x0, v - u)} 
a6f( io) u6G(x-o) ueF(x-o) t>6G(A) 't'SF(xo) 

< inf //(x0 ,y - «), 
ueF(x0) 

which is a contradiction. • . 

Theorem 2.5.10 generalizes Theorem 4 of Sessa and Mehta [261] and Proposition 2.2 

of Browder [44, p.4750] to topological vector spaces and set-valued mappings. We also 

note that Theorem 2.5.10 generalizes Theorem 2 of Fan [103, p.235] to topological vector 

spaces from normed linear spaces. 

We now give some coincidence theorems for inward (respectively, outward) and weakly 

inward (respectively, weakly outward) mappings in topological vector spaces. 

T h e o r e m 2 .5 .11 . Let E and W be two topological vector spaces. Let X be a 

non-empty compact convex subset of F, F : X —> 2W and G : A —> W. Suppose further 

there exists another continuous function H : X x W —* R such that: 

(i) for each fixed x G A', y —> H(x,y) is convex; 

(ii) G is continuous and the set G~*(y) is convex for each y G G(X), where G ( X ) is 

convex; 

(iii) F is continuous with compact and convex values; 

(iv) for each x G X with G(x) ^ F ( x ) , there exists a point y G 1G~(X)(G(X)) such 

that inf„gF(x) H(x,y - u) < infu g F ( : c) / / ( x , G ( x ) - u). 

Then there exists a point x0 G A" such that G(x0 ) G F ( x 0 ) . 

P roo f . Let x G A' be such that G(x) <£ F(x). By (iv) and continuity of y -> 

inlueF(x) /7(x,y - u), there exists y in IG(x)(G(x)) such that 

inf H(x,y — u) < inf H(x,G(x) — u). 
ueF(x-) v ' ueF(x)

 v v ' ; 
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If y lies in G(X), then the hypothesis (iv) of Theorem 2.5.10 is valid. If y £ G(X), 

since y G IG(X)(G(X)) and G(X) is convex, there exist u0 E G(X) and r G (0, 1), 

u0 = (1 — r)G(x) + ry. Now for any u E F(x), by (i) we have 

H(x, tio - u) = H(x, (1 - r)G(x) + ry - u) < (1 - r)H(x, G(x) - u) + rfl(x, y - u). 

Since F(x) is compact and convex, 77(x,-) is continuous, there exist U| G F (x ) and 

•a2 E F(x) such that h\fueF(x) H(x,G(x) — u) = / 7 ( x , G ( x ) - U | ) and inf„6/;'(.,;) / / ( x , y — 

u) = H(x,y — Uj.). Since F ( x ) is convex, 

inf H(x,Uo — u) < /7(x,Uo — ((1 — r)ui -j- ru2)) 

H(x,(\-r)(G(x)~ui) + r(y-u2)) 

< (1 - r)//(x, G(x) - m) + rH(x,y - «2) 

= inf ( l - r ) / / ( x , G ( x ) - ( 0 + inf r/7(x,y-7/,) 
u £ r ( i ) 1!£ / ' (X) 

< inf / / ( x , G ( x ) - u ) , 
uGF(x-) 

Hence all the hypotheses of Theorem 2.5.10 hold so that there exists a point x() G A 

such that G(x0) G F (x 0 ) . • 

We shall show that in Theorem 2.5.11, IG(x)(G(x)) can be replaced by OQ(X)(G(X): 

T h e o r e m 2 .5 .11 ' . Let F and W be two topological vector spaces. Let X be a 

non-empty compact convex subset of F, F : X —> 2W and G : X —> 147. Suppose further 

there exists another continuous function 77 : X x W —> R such that: 

(i) for each fixed a; 6 I , i/ -> 77(x,y) is a convex function on W; 

(ii) G is continuous and the set G~^(y) is convex for each y G G ( X ) , where G ( A ) is 

convex; 

(iii) F is continuous with compact and convex values. 

(iv) for each x G X with G(x) $. F(x), there exists a point y G 0r;(x)(0( r / ;)) s u c n 

that infugF ( x) / / ( x , y - u) < i n f , , ^ ^ ) H(x,G(x) - u). 

Then there exists a point x0 G X such that G(x0) G F(x0). 

Proo f . Define ^ : X -» 2 ^ and /7, : A x W -> R by F,(x) = 2G(x) - F(x) and 

Hi(x,y) = 77(x, —y) for each (x ,y ) G A x W. Then G, Fi and /7 t satisfy all conditions 
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(i), (ii) and (iii) of Theorem 2.5.11. Let x E X be such that G(x) £ F x (x) , then 

G(x) £ F(x) so that by (iv), there exists y G 0G^X){G(x)) such that m{ueF(x) H(x,y — 

u) < infug / (z;) / / ( x , G(x) - u). Let z = 2G(x) - y, then z E lG(X)(G(x)). But then 

inf Hi(x,z — u) = inf Hix.y — u) 
«GF,(x) V ' uSF(x) V 

< inf H(x, G(x) — u) 
u£F(x) 

= inf Hi(x,G(x)-u). 

This shows that G, F i and Hi also satisfy the condition (iv) of Theorem 2.5.11. Therefore 

by Theorem 2.5.11, there exists a point x0 G X such that G(x0) G F i (x 0 ) which implies 

that G(x0) E F(x0). a 

By letting E = W and G = fx, the identity map on X in Theorem 2.5.11 and 

Theorem 2.5.11' respectively, we have the following result which generalize Theorem 1 

and Theorem 2 of Browder [44] in the following ways: (a) the underlying spaces are 

topological vector spaces instead of locally convex topological vector spaces ind (2) the 

mapping F is set-valued instead of being single-valued. 

C o r o l l a r y 2.5.12. Let E be a topological vector space. Let X be a non-empty 

compact convex subset of F and F : X —• 2E. Suppose further there exists a continuous 

function / / : X x E —> R such that: 

(i) for each fixed x E X, y —> H(x,y) is convex; 

(ii) F is continuous with compact and convex values. 

(iii) for each x E X with x $. F(x), there exists a point y G Ix(x) (respectively, 

y G Ox(x)) such that infu5/r(x) H(x.,y - u) < \niu(z.F(x) H(x,x - u). 

Then there exists a point xo G X such that x0 G F (x 0 ) . 

By Corollary 2.5.12, we have the following: 

C o r o l l a r y 2.5.13. Let E be a topological vector space which has sufficiently many 

continuous linear functionals, X be a non-empty compact convex subset of E and F : 

X —• 2E be continuous with compact and convex values. Suppose further that for each 

x E A , F(x) nh(x) ^ 0 (respectively, F(x) C)0^(x) ^ 0). Then F has a fixed point. 
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Proo f . Suppose that F has no fixed point, then by Theorem 2.5.A, there exist 8 > 0 

and a continuous seminorm P on E such that \niu(zp(x) P(x - u) > 8 for all x G X. 

Now define H : X x E -» R by H(x,y) = P(y) for each (x ,y ) G X x E. Since 

F ( x ) n 7 7 ( x ) ^ 0 (respectively, F ( x ) n 0~v(x) ^ 0), F and G satisfy the condition (iii) 

of Corollary 2.5.12. Clearly, F and H also satisfy the conditions (i) and (ii) of Corollary 

2.5.12. Hence by Corollary 2.5.12, there exists x G X such that x G F(x) which is a 

contradiction. Thus F must have a fixed point in X. • 

As another application of Theorem 2.5.7, we present another coincidence theorem in 

locally convex spaces. 

T h e o r e m 2.5.14. Let E be a topological vector space and W be a locally convex 

topological vector space. Let X be a non-empty compact convex subset of E and G, F : 

X -» 2W be such that 

(i) G is continuous with closed convex values and the set G~l(y) is convex for each 

y G G(X), where G ( X ) is convex; 

(ii) F is continuous with compact convex values. 

Then we have that: 

(1) Either there exists a point x0 G X such that G(x0) H F(x 0 ) 7̂  0, or there exist a 

point xo G X and a continuous seminorm P on W such that for all y G G ( A ) , 

inf P(y -u)> inf [ inf P(v - u)] > 0. 
u€F{x0) veG(x0)\ieF(xQ) V 

(2) If F(x) n G ( X ) 7̂  0 for all x G X , then there exists a point a;0 G A" such that 

G'(xo) f l F(x0) ^ 0. 

P roo f . Case (1). Suppose for each x G X , G(x) D F(x) = 0. Let a; G A be 

arbitrarily fixed. Since G(x) is closed and convex and F(x) is compact and convex, 

by separate theorem, we have 8X > 0 and a continuous seminorm Px on W such that 

'"f7;eG(x) inftigF(x) Bx(v — u) > £x for all x G X . By the continuity of G and F, the map 

y i-> inf„ec?(j,) infug/r^j Px(v — u) is continuous at x so that there exists an open neighbor­

hood Af(x) of x in X such that for each z E N(x), we have iiif„6r;(s) i"l«e/"(j) Px(v — u) ~> 

8X. Since the family { N ( x ) : x G X } is an open covering of the compact set A , there 
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exists a finite subset { x i , - - - , x n } of X such that {AT
X,. : 1 < i < m} covers X . Let 

P = max{FX l : 1 < i < m} and 8 — m i n { - | i : 1 < i < m} > 0. Then P is a 

continuous seminorm on W and inf„go'(x) m^ueF(x)P(v — u) > ^ f ° r all x G X . Now we 

define / / : A x W - • R by / / ( x , y ) = P(y) for each (x ,y ) G X x W , then G, F and 

II satisfy all hypotheses of Theorem 2.5.7. By Theorem 2.5.7, there exists x0 G X such 

that 

inf [ inf P(v - u)\ = inf [ inf P(v - u)] > 8 > 0, 
veG(X) ueF(x0) v€G(x0)ueF{x0) 

which implies that the conclusion of (1) holds. 

Case (2). Now assume that F(x) D G(X) ^ 0 for all x EX. If G(x) n F ( x ) = 0 

for all x E X, then by (1), there exist x0 G X and a continuous seminorm P on W such 

that for all y G G(x), infugF(x) P(y - u) > inf„gG ( l) mfueF(Xo) P(v - u) > 0. Take any 

?/o G F(x 0 ) n G(X), we have 

0 = [ i/?/ . P(Vo ~ «)] > in/ [ in/ P(t; - u)] > 0 
ueF(x0) «eG(i0) «eF(x0) 

which is a contradiction. Therefore the conclusion (2) must hold. • 

Theorem 2.5.14 improves Theorems 2 and 3 of Ha [139, p.15] to multivalued mappings 

which in turn improves Theorem 2 of Fan [103]. 

By the remark of Ha [139, p.14] and the proof of Theorem 2.5.14, it is easy to see 

that Theorem 2.5.14 is still true if we assume that the space W is a topological vector 

space (not necessary locally convex space) which has sufficiently many continuous linear 

functionals. 
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2.6 Stability of Coincident Points for Multivalued Mappings 

In [163], Jiang introduced the concept of essential fixed points for multivalued mappings 

and proved a corresponding approximation theorem. The concept of essentiality for fixed 

points is a stability property. In [116] and [163], the stability of fixed points with respect 

to perturbations of mappings were studied. 

In this section, the concept of essential coincident points of multivalued mappings 

is given first. We then study the stability of coincident points and fixed points of mul­

tivalued mappings with perturbations of mappings and of constrained sets. Some new 

approximation theorems are also established. 

Let (X, d) be a metric space and K(X) be the space of all non-empty compact subsets 

of A' equipped with the Hausdorff metric h which is induced by the metric d. For any 

e > 0, xo G A and A E K(X), let U(e, A) - {x E X : d(u,x) < t for some u G ^1} and 

0(x o ,e) = {x E X : d(x0,y) < e}. Let K be a topological space. Recall that a subset 

Q C Y is called a residual set if it is a countable intersection of open dense subsets of Y 

The following Lemma 2.6.1 is due to Fort [116, Theorem 2]. 

L e m m a 2 .6 .1 . Let X be a metric space, Y a topological space and F : Y —> A'(X) 

an usco mapping. Then the set of points where F is lower semicontinuous is a residual 

set in Y. 

L e m m a 2.6.2. Let X be a metric space, Y be a complete metric space and F : 

Y —> K(X) be an usco mapping. Then the set of points where F is lower semicontinuous 

is a dense residual set in Y. 

Proof . Since Y is complete, a residual set in Y is dense; the result now follows from 

Lemma 2.6.1. • 

Throughout the remainder of this section, A denotes a complete metric space and 

G = { / : A —• K(X) : f is upper semicontinuous on X and / ( A ) = U J 6 X / ( X ) is 

bounded } . For each / , / ' G C, let /» ( / , / ' ) = sup x 6 A h(f(x), /'(.%•)) Clearly, p is a 

metric on C. 
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L e m m a 2.6.3. (G, p) is a complete space 

Proo f . Let {fn}n=\ be each Cauchy sequence in C, then for any e > 0, there is a 

positive integer N(c) such that 

P(fn,fm) = SUph(fn(x),fm(x)) < € (2.1) 
xex 

for any n,m > N(e) It follows that for each x G X , {fn{x)}^=i is a Cauchy sequence 

in K(X) Since K(X) is complete, by Theorem 4 3 9 in [189], there is / X -» K(X) 

such that l i m ^ o o / ^ c ) = f(x) 

For each x G X and each e > 0 and each n > N(e), (2 1) implies that / „ ( x ) C 

U(2eJ(r)) and f(x) C U(2eJn(x)) Fix 7i > 7V(e), since / n G G, there is £ > 0 such 

that fn(i') C U(e,fn(r)) whenever d(x,x') < 8 Thus, 

f(x') C U(2eJn(x')) C */(3e,/B(x)) C (/(5c,/(x)) 

whenever rf(.i, c') < <*> Therefore / is upper semicontinuous on X It is easy to show that 

f(X) = UxgA' f(x) is bounded so that f EC and that / „ —• / Hence G is complete. • 

Set Y = G x G x tf(X) For each y = (/,flf,>l) G Y, y' = (/ ' ,</ ' , / ! ' ) G Y , let 

Clearly /J is a metric on Y By Lemma 2 6 3, G is a complete metric space By Theorem 

4 3 9 in [189], K(X) is a complete metric space Hence Y is also a complete metric 

space 

Define M = {y = (J,g,A) E Y there is x E A such that f(x) C\ g(x) ^ 0} . Then 

we have 

L e m m a 2.6.4. (M,D) is a complete metric space 

Proo f . Since M C Y and Y is complete, it is sufficient to prove that M is closed 

in Y Let { y „ }~ = 1 be a sequence in M and yn ^ y £ Y Set yn = ( / „ , $ „ , 4 n ) , 

;J = 1,2, ••• and y = (f,g,A), then / „ -4 / , gn -> </ and An -* A For each 

n = 1,2, • • -, since yn E M, there is x „ G An such that / n ( x ) n gn(x) ^ 0. Since An 
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and A are compact and An -> A, by A.5.1 (ii) of Mas-Colell [216, p.10], U^= 1 / l r i U A 

is compact. Since xn E An C U^LiAn U A, we may assume without loss of generality 

that xn —> x G U ^ / 4 , ! U A If x <£ ^4, since A is compact, there is a > 0 such that 

[ / (a, 4 ) f l 0 ( x , a) = 0. Since An —> A and x n —> x, there is N{ such that An C U(a, A) 

and x n G 0 ( x , a ) for all n > Ni, which contradicts the assumption that x n G An. Hence 

we must have x G A. 

If f(x) f l g(x) = 0, since f(x) and <y(x) are compact, there is ft > 0 such that 

U(b,f(x)) f l U(b,g(x)) - 0. Since fn -> / and gn -» y, there is N2 such that fn(u) C 

U(b/2J(u)) and </7l(u) C U(b/2,g(u)) for all n > /V2 and for all u E X. Since 

/ and g are upper semicontinuous at x and x „ —> x, there is N:i > N2 such that 

f(xn) C U(b/2J(x)) and y(x7 l) C U(b/2,g(x)) for all ?J > AT3. Thus for all //, > 

N3, fn(xn) C U(b/2J(xn)) C U(b,f(x)) and gn(xn) C U(b/2,g(xn)) C //(/>, <y(x)) 

which contradicts the assumption that / „ ( x „ ) f l «/„(xn) 7̂  0. Hence we must also have 

f(x) n g(x) ^ 0. Therefore y = (/,</, / I ) G M so that M is closed in Y. • 

For each y = (f,g,A) E M, let S'(?/) = { : c € ^ : ./(;,;) n .'/(•'''') 7̂  ^ } ; note that 

5(2/) + 0. 

L e m m a 2.6.5. 5'(y) G A"(X) for each y G M. 

Proo f . Let y = (f,g,A) E M be given. Since 5'(y) C / l and A is compact, it is 

sufficient to prove that S(y) is closed in A. Indeed, let {x n }£L , be any sequence in S(y) 

such that xn —> x G / I ; then / ( x „ ) D y(x n ) 7̂  0 for each n = 1,2, • • -. If x ^ S(y), 

then / ( x ) f l y(x) = 0. Since f(x) and g(x) are compact, there is 1. > 0 such that 

U(e0,f(x)) f l U(e0,g(x)) = 0. Since / , y are upper semicontinuous at x and x „ —» a;, 

there exists N such that f(xn) C U(e0,f(x)) and g(xn) C U(e,hg(x)) for all 7/. > A .̂ 

It follows that f(xn) 0 g(xn) — 0 for all n > N, which is a contradiction. Therefore 

x G 6'(y) and hence S(y) is closed in /4. • . 

By Lemma 2.6.5 the mapping y »-> 5'(y) defines a map S : M —* K(X). 

L e m m a 2.6.6. S is upper semicontinuous on M. 

Proo f . Suppose ,5' is not upper semicontinuous at y G M, then there exist c0 > 0 
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and a sequence {v/u},^!, in M with yn—* y such that for each n = 1,2, ••-, there exists 

xn E S(yn) with x„ <£ f/(e0, S(y)). Let yn = ( / n , y „ , An) and y = (/,</, A), then / „ -> / , 

gn -» y and / l n -> A. Since x „ G An C UT^Lj/4n U A and U ^ A n U A is compact, we 

may assume without loss of generality that x n —+ x G U^L-, An U A. Note that we must 

have x ^ l/(tQ,S(y)). Now the same argument as in the proof of Lemma 2.6.4 shows 

that x G A and f(x) Hg(x) ^ 0 so that x G S(y); this contradicts that x ^ /7(e0,5'(i/)). 

Therefore ,S' must be upper semicontinuous. • 

Let M| be a non-empty closed subset of M. Since M is complete, M\ is also complete. 

D e f i n i t i o n . If y, G M i , then a point x in S(y) is called an essential coincident point 

of yi with respect to Mi provided that for any e > 0, there is 8 > 0 such that for any 

y' E Mi with D(yi,y') < 8, there exists x' E S(y') with d(x,x') < e. y is called essential 

with respect to Mi if every x G S(y) is an essential coincident point of y with respect to 

Mi. 

T h e o r e m 2.6.7. 5 is lower semicontinuous at y G Mi if and only if y is essential 

with respect to Mi. 

Proo f . Suppose ,S' is lower semicontinuous at y G Mi. Then for any e > 0. there 

is 8 > 0 such that for any y' G A/, with d(y,y') < 8, we have S(y) C U(e,S(y')) so 

that for any x G S(y), there is x ' G <S'(y') with r/(x,x') < e. Thus every x G S(y) is an 

essential coincident point of y with respect to Mi and hence y is essential with respect 

to M i . 

Conversely, suppose that y is essential with respect to M-\. If S were not lower 

semicontinuous at y G Mi, then there exist e0 > 0 and a sequence { y n } ^ in M with 

y„ —> y such that for each /?. = J, 2, • • •, there is xn E S(y) with x n ^ if(e0, S(yn)). Since 

5(y) is compact, we may assume that xn -> x G 5(y ) . Since x is an essential coincident 

point of y with respect to Mx, yn -* y and xn -+ x, there is Af such that d ( x n , x ) < e0/2 

and x G / /(co/2,5'(y„)) for all n > /V. Hence x n G O(x,e0 /2) C U(e0, S(yn)) for all 

u > A' which contradicts the assumption that xn £ U(eo,S(yn)) for all n = 1,2, ••-. 

Hence S must be lower semicontinuous at y. • 
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We shall prove the following approximation theorem: 

T h e o r e m 2.6.8. The set of essential points with respect to M{ is a dense residual 

set in Mi. In particular, every point in M i can be arbitrarily approximated by an essential 

points in Mi. 

Proo f . By Lemma 2.6.5 and Lemma 2.6.6, S : M —* K(X) is an usco mapping. 

Since Mi is complete, by Lemma 2.6.2, the set of points where ,5' is lower semicontinuous 

is a dense residual set in M\. By Theorem 2.6.7, the set of essential points in M\ is a 

dense residual set in M i . • 

By Lemma 2.6.6, Theorems 2.6.7 and 2.6.8, we have the following: 

T h e o r e m 2.6.9. S is continuous at y E Mi if and only if y is essential with respect 

to Mi. Moreover, the set of points at which S is continuous is a dense residual set in M\. 

We remark that S is continuous at y G Mi, if and only if for each < > 0, there is 

8 > 0 such that h(S(y),S(j/)) < e for each y' G M with D(y,y') < 8. Theorem 2.6.9 

implies that if y = (/,</, A) E M\, then y is essential with respect to Mi if and only if its 

set S(y) of coincident points is stable: S(y') is close to S(y) whenever y' is close to y. 

We shall now give a sufficient condition that y G Mi is essential with respect to M\\ 

T h e o r e m 2.6.10. If y G M i is such that S(y) is a singleton set, then y is essential 

with respect to M i . 

P roo f . Suppose S(y) — {x}. By Lemma 2.6.6, S is upper semicontinuous at y. 

Thus for any e > 0, there is 8 > 0 such that for each y' G M\, D(y,y') < h implies 

S(y') C U(e,S(y)) = 0 (x ,e ) so that S(y) = { x } C U(e,S(y')). This shows that ,S* is 

also lower semicontinuous at y. By Theorem 2.6.7, y is essential with respect to M\. • 

We note that if the given metric d on X is bounded, then the identity mapping 

/ : X -^ A belongs to G. 

R e m a r k 2 .6 .11 . If (X,d) is compact and if we take M, = ( { / } x G x { X } ) D M = 

{ ( / , / , A ) G Y: there exists x G X such that x G / ( • ' ' ) ) . then Theorem 2.6.9 reduces 
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to Theorem 1 in [4] which is a multivalued generalization of Theorem 1 in [116]. In this 

case, if ( / , / , A ) is essential with respect to M i , then every fixed point x of / in X is 

an essential fixed point of / (see [163]); i.e., for each e > 0, there exists 8 > 0 such 

that whenever g : X —> K(X) is upper semicontinuous which has a fixed point in X and 

p(fiO) < $< there is a fixed point x' of g in X with d(x,x') < e. Hence our Theorem 3 

generalizes Theorem 1 in [116] and Theorem 1 in [163] in several respects. 

Recall that a function g : A —> X is a contraction if there is a constant k E (0,1) 

such that d(g(x),g(y)) < kd(x,y) for all x,y E X. If g is a contraction on X , then the 

classical Banach contraction mapping principle implies that g has a unique fixed point. 

This fact together with Theorem 2.6.10, yield: 

C o r o l l a r y 2.6.12. Suppose (X,d) is compact and M i = { ( / , / , X ) G Y : there 

exists a; G A" such that x G f(x)}- If g : X —• X is a contraction, then (I,g,X) is 

essential with respect to M i . 

In what follows, let X be a non-empty closed convex subset of a Banach space E 

and let A be a non-empty compact subset of X . Let M2 = {(I,f,A) E Y : f(x) is a 

compact convex subset of A for each x G A"}. 

T h e o r e m 2.6.13. The set of points y E M2 which is essential with respect to M 2 

is a dense residual set in M2. 

Proof . For each (I,f.tA) E M2, f : X —> K(X) is upper semicontinuous and 

f(x) is a compact convex subset of A for each x G X; it follows from the Schauder-

Tychonoff fixed point theorem (e.g, see Smart [280, Theorem 9.2.3]) that there exists 

x G A such that x G f(x). This shows that ( 7 , / , A) E M. Thus by Theorem 2.6.8, we 

only need to show that M2 is closed in M . Indeed, let { ( / , / „ , A)}^ be a sequence in 

M2 such that (l,fn,A) -> (I,f,A) E M, then p(fn,f) = snpx£X h(fn(x)J(x)) - • 0 

as 7i -> oo. Since for each x G A", / „ ( x ) C A for each n = 1,2, ••-, it follows that 

f(x) = n ~ , (U^J f c ( x ) ) C / I (e.g., see [189, Theorem 4.3.5, p.43]). To complete 

the proof it remains to show that f(x) is convex for all x G X . If this were false, 

there exist a: G X , u , ,u 2 G /"(x) and A G (0, 1) such that A«i + (1 - X)u2 (£ f(x). 
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Since f(x) is compact, there is e0 > 0 with 0(Xiii + (1 — A)'ij2,r0) D U(<o, f ('•'')) = 0-

Since p(fn,f) —> 0 as 7?. —> 00, there is N with f(x) C (/(eo,//v(x)) and //v(x) C 

U(t0, f(x)). It follows that there exist zi,z2 E J'N(X) with d(u{,Z{) < (0 for i = 1,2. 

Thus d(Xui + (1 - X)u2,Xzi + (1 - A)22) < Xd(uuzi) + (I - A)r/(u2,2:2) < t0 so that 

A21 + (1 — A)z2 G 0(Aui + (1 — A)u2,eu). On the other hand, as //v(x) is convex, 

Xzi + (1 - A)z2 G /yv(x) C U(e0,f(x)) which contradicts 0(Au, + (1 - A)n-2),rn) n 

U(eoif(x)) 7̂  0. Hence f(x) is convex for each a; G X. Therefore M2 is closed in M. 

• . 
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2.7 Matching Theorems and Applications 

By applying Theorem 1 of Park and Bae [244], (which is a generalization of Fan's existence 

theorem for maximizable quasi-concave functions on convex spaces), we first prove some 

coincidence theorems for upper hemicontinuous non-self mappings in topological vector 

spaces with sufficiently many continuous linear functionals or in locally convex topological 

vector spaces. These results improve and unify many results in the literature (e.g, see 

Fan [106], Park [240], Ko and Tan [192] and references wherein). Next, as applications 

of coincidence theorems, several matching theorems for closed coverings of convex sets 

are derived in locally convex topological vector spaces or topological vector spaces with 

sufficiently many continuous linear functionals which in turn imply Shapley's theorem 

[264]. 

2.7.1 Generalizations of the Fan-Glicksberg Fixed Point Theorem 

The basic idea in this section is to apply the existence theorem for maximizable quasi-

concave functions on topological vector space with sufficiently many continuous linear 

functionals. Several fixed point theorems for non-self mappings are given under weaker 

continuity and boundary hypotheses. For example, our fixed point theorems show that 

the hypotheses "/Vie domain is paracomapcf is superfluous for the existence of non-self 

upper hemicontinuous multivalued mappings, in fact, this superfluous condition is posed 

in much of the literature (e.g, see Fan [106], Lassonde [199], [106], Ko and Tan [192], 

Browder [45]). In particular, the well-known Fan-Glicksberg fixed point theorem has been 

generalized into the non-compact setting in which the underlying space is a topological 

vector space with sufficiently many continuous linear functionals under weaker continuity 

and boundary hypotheses. 

We recall that a convex space (e.g., see Lassonde [199, p.153]) is a non-empty convex 

set in a vector space with any topology that induces the Euclidean topology on the convex 

hulls of its finite subsets. A non-empty subset L of a convex space X is called c-compact 

if for each S E T(X), there exists a non-empty compact set Lr, with L U S C Ls. It 
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is clear that a convex subset (respectively, compact and convex subset) of a topological 

vector space is a convex space (respectively, c-compact subset). For more details about 

convex spaces, we refer to Lassonde [199, p.153] and Dugundji [89, p.416]. 

By the Ky Fan minimax inequality, Park and Bae [244] gave a generalization of the 

existence theorem for maximizable quasi-concave functions on convex spaces which in turn 

answered the question raised by Bellenger [19]. In this section, we first recall the following 

result which is essentially a consequence of the existence theorem for maximizable quasi-

concave functions on convex spaces (e.g, see Theorem 1 of Park and Bae [244]): 

T h e o r e m 2.7.A. Let X be a convex space and suppose that 

(a) for each x E X, T(x) is a non-empty convex set of upper semicontinuous quasi-

concave real functions on X ; 

(b) for each upper semicontinuous and quasi-concave real function / on A*, the set 

T _ 1 ( / ) is compactly open in X ; 

(c) there exists a c-compact subset L of X and a non-empty compact subset K of X 

such that for each z E X \ K and / G T(z), f(z) < sup{ / ( x ) : a; G co(L U {z})} 

Then there exists z E K and / G T(z) such that f(z) = sup{ / (x ) : x G A'} . 

We note that Theorem 2.7.A above generalizes Theorem 8 of Fan [106] and Theorem 

1 of Bellenger [19] which in turn improves Theorem 0.1 of Simons [276] for the existence 

theorem for an upper semicontinuous quasi-concave real function which attains a global 

maximum on a given compact subset of a convex space X . Recently, Ding [80] generalized 

Theorem 2.7.A to H-spaces by following Park and Bae's idea in [244]. 

Let X be a convex subset of a topological vector space F, We now state an equivalent 

form of Theorem 2.7.A as follows: 

T h e o r e m 2 .7 .1 . Let X be a convex space and 4> a non-empty convex set of lower 

semicontinuous convex real functions on X . Let ,$' be a subset of A x 4> such that 

(a) for each (j> E $, the section {x G A : (x,</>) G 3>} is compactly open in A and 

(b) for each x G X , the section {(j) G $ : (x, <j>) G 5} is non-empty and convex. 

Then either 
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(I) there exists (y, <f>) G S such that <j>(y) = mixex <l>(x); or 

(II) for each compact convex set L in A and each non-empty compact set K in X , 

there exists (y,</>) E S such that y E X\K and <f>(y) = mlxeco(Lu{y}) 4>(x)-

Before we give generalizations of the Fan-Glicksberg fixed point theorem in topological 

vector spaces with sufficiently many continuous linear functionals or in locally convex 

topological vector spaces under weaker continuity assumptions, we first recall some facts 

about various continuity for multivalued mappings. 

If F is a topological vector space, F* is the dual space of all continuous linear func­

tionals on E, the pairing between E* and E is denoted by (to, x) for each w E E* 

and a; G E. Suppose X is a non-empty subset of E. A mapping / : X -» 2E is 

said to be upper hemicontinuous [7] if for each <f> E E* and for each A G R, the set 

{x G X : supU£jix\ Re((j>, u) < A} is open in X . We note that each upper semicontinu­

ous mapping is upper hemicontinuous and the sum of two upper hemicontinuous mappings 

is again upper hemi-continuous. According to Fan [103], a mapping / : X —*• 2E is upper 

demicontinuous on X if for each x G X and any open half-space H containing f(x), there 

exists an open neighborhood Nx of x in X such that f(u) C 77 for all u E Nx. Recall 

that an open half-space H in E is a set of the form H := {v E E : Re<j)(v) < t} for some 

non-zero <j> E E* and some real number t. It is obvious that every upper semicontinuous 

mapping is upper demi-continuous, each upper demicontinuous mapping is upper hemi­

continuous and the following examples from Shih and Tan [271] show that the converses 

do not hold in general. 

Example 2.7.B. Let E = R2 and X = {t E R : t E [0,1]}. Define / ,g : X - • 2 R 2 

by 

f(t) = {(u,v)} : (u - l)(t; - 1) > 1 and u > 1}, 

g(t) = { ( - 2 , Z) E R2 : 0 < z < ty/2} 

for each /, G X. Then it is not hard to verify that / and g are both upper semi-continuous 

but f + g is not upper demi-continuous. 
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Incidently, Example 2.7.B also shows that an upper hemi-continuous mapping need 

not to be upper demi-ccntinuous, since f + g is necessarily upper hem-continuous. 

We also observe that an upper demi-continuous may need not be upper semi-continuous 

as the following example shows: 

Example 2.7.C. Define / : R2 -> R2 by 

/(x,y) = {(u,v) E R2 : u > x and v > y} 

for each (x ,y ) G R 2 . Then / is upper demi-continuous, but not uper semi-continuous. 

We also note that if a mapping is a compact-valued mapping, then the concepts of 

upper hemi-continuity and upper demicontinuity coincide. The following fact due to Shih 

and Tan [271, Proposition 2] shows that under certain conditions, the concepts of upper 

semi-continuity, upper demi-continuity and upper hem-continuity are the same. 

T h e o r e m 2 .7 .D . Let X be a topological space, Z a non-empty compact subset of 

a real locally convex topological space E, and let F : X —* 2Z be such that each F(x) is 

convex. Then the following statements are equivalent: 

(1) F is upper semi-continuous. 

(2) F is upper demi-continuous. 

(3) F is upper hemi-continuous. 

By Theorem 2.7.1, we have the following: 

T h e o r e m 1.7.2. Let F be a topological vector space which has sufficiently many 

continuous linear functionals, let X be a non-empty convex subset of E, Xo a non­

empty compact convex subset of X and K a non-empty compact subset of X . Let 

F, G : X —> 2E be upper hemicontinuous and such that 

(a) for each x G A', F(x) and G(x) are closed convex at least, one of which is 

compact; 

(b) for each x G Kn8E(X) and <j) E E' with Re<f>(x) < Rerf>(y) for all y G X , there 

exist u E F(x) and v E G(x) such that Re<j>(u) > R.e<j>(v); 

and either 
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(ci) suppose coK is compact (which is automatically satisfied if F is a complete 

locally convex topological vector space) for each x E X \ K and <j> E E* such that 

lic<j>(x) < Re(/}(y) for all y G co(K U { x } ) (in particular, Re<j)(x) < Re<j>(y) for all 

y G co(col< U { x } ) ) , there exist u E F(x) and v E G(x) with Recf>(u) > Re<j)(v); 

or, 

(c2) for each x E X \ K and (/> G F* such that Re<j)(x) < 7?e</>(y) for ail y G 

r:o(A0 U {a;}), there exist u G F ( x ) and w G G(x) with Re<j>(u) > Re<j>(v). 

Then there exists a point x G A" such that for each <j> E E* and each t E R, the following 

does not hold: 

Re(j)(u) < t < Re<j>(v) for all u E F(x) and v E G(x). 

Moreover, 

(I) If F(x) and G(x) are both compact, then F(x) n G(x) 7̂  0. 

(II) If F is a locally convex topological vector space, then F(x) f l G(x) 7̂  0. 

P roo f . Note that by Proposition 2.5.4, it is clear that the condition (b) of Theorem 

z 1.2 is equivalent to the following condition: 

(b)': for any x G K and (j> E E* such that Re<j)(x) < Re<j)(y) for all y G X , there 

exist u E F(x) and v E G(x) with Re<j)(u) > Re<f>(v). 

Now we follow the idea of Fan [106] and Ko and Tan [192] to prove our assertion. In 

order to apply Theorem 2.7.1, we take $ = F* and define the subset S of X x F* as 

follows: (x,(j>) E S if and only if there exists a real number t E R such that Re<j>(u) < 

t < Rec/)(v) for all u E F(x) and all v E G(x). 

(1): We first show that for each <f> E E", the section .S'(^) = {x G X : (x, <f>) G 5'} is 

open in A". 

Indeed, let x G S(<f>), then (x,(j>) G S and hence there exists a real number t such 

that R.e(j)(u) < t < R.t(j)(v) for all u E F(x) and all v E G(x). 

First we assume that F ( x ) is compact. Then there exists an u0 E F(x) such that 

Re</)(v0) = snpu6/,.(x.) Re((j),u). Let ej, e2 > 0 be such that Re(j>(u0) + ei + e2 < t. By 

upper hemicontinuity of F, there exists an open neighborhood Ni of x in X such that 
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for each y G Ni, 

sup Re(<j),v) < sup Re(<j),u) + Ci 
veF(y) ueF(x) 

so that Re<j)(u) < Re<j)(iio) + e, for all u E F(y). Also, since supuef.(j;) Re.(—<j>,v) = 

— inf„gG(x) Re(<j), v) < — t < +00, by upper hemicontinuity of G, there exists an open 

neighborhood N2 of x in X such that for each y E N2, 

sup Re(—<f),v)< sup Re(—(j),v)-\-(-2} 
veG{y) veG(x) 

so that Re<f>(v) > t - e2 for all v E G(y). Let N = Ni f l N2. Then N is an open 

neighborhood of x in X such that for each y E N, for each u E F(y) and for each 

v G G(y), 

Re<f>(u) < Re<j)(iio) + et < / — e2 < Rc(/>(v). 

Therefore Af C 5'((/>). Similarly if G(x) is compact, we see that (by replacing <j> by —<j> 

and by interchanging F and G in the above argument) there exists an open neighborhood 

N' of x in X such that N' C S((j>). Therefore S(<f) is open in X. Thus the condition 

(b) of Theorem 2.7.1 is satisfied. 

(2): For each x G X , it is clear that the set S(x) — {</; G «1> : (x, </>) G S} is convex. 

(3): Next we show that for each z E X \ K and (z, <j>) E S, Re(j>(z) > iiif{/V,fi</>(x) : 

x G co(coK U { z } ) } (respectively, Re<f>(z) > mf{Re(j>(x) : x G co(X0 U { z } ) } ) . 

Note that if there exist x G X \ K and <j> E E* such that Rc(/>(x) < Rc</)(y) for all 

y G co(A' U { x } ) , then it is clear, that Rt(j)(x) < Re</)(y) for all y G co(Wl< U { x } ) by the 

linearity of real part of the linear continuous functional </>. Suppose the contrary that for 

some z E X \ K and (z,<j>) E S such that Re<j>(z) = \n\'{Rerj)(x) : x G co(col< U { z } ) } 

(respectively, Re<j>(z) = inf{ /?e^(x) : x G co(X0 U { 2 } ) } ) . Then by (c|) (respectively, 

(c2)), there exist u E F(z) and v G G(z) such that fie<j>(u) > Re(j>(v). This contradicts 

the assumption that (z,<j>) E S. Thus the alternative (II) of Theorem 2.7.1 is false. 

(4): Similarly, by (6)' (which is equivalent to (b)), for each z E K and each (z, <j>) G S, 

Re<j)(z) > \nixex Re<j>(x). It follows from (3) that for each z E X and (z,</>) E 5', 

Re<j)(z) > infegx Re<f>(x). Hence the alternative (I) of Theorem 2.7.1 is also not satisfied. 
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By Theorem 2.7.1, there must exist x G X such that {<j> E E* : (x, 4>) G S} - 0; i.e., 

for each /. G R and each <j> E E*, the following does not hold: 

(*) Re(j)(u) < t < Re<j)(v) for all u E F(x) and v E G(x). 

Case (i). Suppose conclusion (I) were false, then F ( x ) f l G ( x ) = 0, so that 0 ^ F ( x ) — 

G(x). Since both F(x) and G(x) are compact and convex, the set D : = F(x) — G(x) is 

compact convex. Then for each a E D, a 7̂  0, as E* separates points of E, there exists 

(j>a E E* such that Recf)a(a) < 0. Let Oa and Ua be disjoint open convex sets containing 

R.c(j)(l(a) and 0 respectively. Then Re(j)~x(Oa) and Rc<j)~^(Ua) are disjoint open convex 

sets in F containing a and 0 respectively. Since D is compact, there exist a i , • • •, a„ G -D 

such that Z) C U ^ , / ^ - . 1 ^ , . ) . Let /J = n ^ / Z e ^ " 1 ({/„,.), then (/ is an open convex 

set containing 0 such that U DD - $. By Theorem 3.4 of Rudin [256, p.58], there exists 

<j) E E* and r ER such that Re(f>(a) < r < 0 for all a E D, i.e., Re(j>(u) < r + Re<f>(v) 

for all u G F(x) and u G G(x) . Let ^ := r/2 + miW£G(x) Re<f>(w). Since r < 0, it follows 

that 

Re<f)(u) < r + inf Re<j>(w) 
w£G(x) 

< r-/2 + inf TZe^io) = < < Re<j>(v) 
w£G(x) 

which contradicts (*). 

Case (ii). If F is a locally convex topological vector space, since F(x) and G(x) can 

not be strictly separated by a closed hyperplane in F and at least one of F (x ) and G(x) 

is compact, we must have F(x) C\ F(x) 7̂  0 by Theorem 3.4 of Rudin [256]. • 

From the proof (due to part (3)) of Theorem 2.7.2, the assumption ucoK is compact" 

in the assumption (ci) is not needed if the underlying space E is a locally convex topo­

logical vector space, i.e., we have the following: 

T h e o r e m 2.7.2'. Let F be a locally convex topological vector space, let X be a 

non-empty convex subset of E, X0 a non-empty compact convex subset of X and K a 

non-empty compact subset of A'. Let F, G : X -> 2E be upper hemicontinuous and such 

that 

(a) for each x E X, F(x) and G(x) are closed convex at least one of which is compact; 
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(b) for each x G K n 8E(X) and <j> E E* with /t!e<£(x) < /?,e^(jy) for all y E X, there 

exist u E F(x) and v E G(x) such that Re<l>(u) > Re<j>(v); 

and either 

(ci) for each x E X \K and <j> E E* such that fie^(x) < tfe<-/>(y) for all y E 

co(K U { x } ) (in particular, Re <j>(x) < Re<j>(y) for all y E co(col\ U { x } ) ) , there exist 

u E F(x) and u E G(x) with Re<j>(u) > Re(f>(v); 

or, 

(c2) for each x G X \ K and <j) E E* such that / te^(x) < fte^(jy) for all y E 

co(Xo U { x } ) , there exist u E F(x) and u E G(x) with Re<j>(u) > Re(j)(v). 

Then F (x ) n G(x) 7̂  0. 

P roo f . We first note that the assumptions of A", A~0, K, F and G remain unchanged 

in the completion F of F. Without loss of generality, we may assume that E is a complete 

locally convex topological vector space. Since E = E*, it follows that the conclusions 

of (1) and (2) still hold. By the completeness of E, the set coK is non-empty compact 

and convex since K is non-empty compact. Now, following the proof of Theorem 2.7.2, 

there must exist x E X such that F(x) D G(x) ^ iii. 

T h e o r e m 2.7.3. Let X be a non-empty convex subset of a locally convex topological 

vector space F. Let X 0 be a non-empty compact convex subset of X and K be a non­

empty compact subset of X . Let F : X —> 2E be an upper hemicontinuous mapping with 

closed and convex values such that: 

(a) for each x G K f l 8E(X), F(x) n X ^ ill; 

and either 

(b) for each x G X \ K, F(x) n co(col< U {.'/;}) / 0 

or, 

(b)' for each xEX\K, F(x) n co(X0 U {a;}) 7̂  0. 

Then there exists x E X such that x E F(i). 

Proof . Let G = Ix be the identity mapping on X . Since F(x) f] X j-- 0 for all 

x G K f l £ (X) , the condition (b) of Theorem 2.7.2' is satisfied. Also condition (b) 

(respectively, (b)') implies that condition (c,) (respectively, (c2)) of Theorem 2.7.2' is 
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satisfied. Hence the conclusion follows from Theorem 2.7.2'. • 

By Theorem 2.7.2, we have: 

T h e o r e m 2.7.3'. Let E be a topological vector space which has sufficiently many 

continuous linear functionals, let X be a non-empty convex subset of F and X 0 be a 

non-empty compact convex subset of X and K a non-empty compact subset of X . Let 

F : X —> 2B be upper hemicontinuous with compact convex values such that 

(a) for each x G K n 8E(X), F(x) n X ^ 0; 

(b) for each x EX\K, F(x) n co(X0 U { x } ) ^ 0. 

Then there exists x E X such that x G F(x). 

We note that Theorem 2.7.3 (respectively, Theorem 2.7.3') improves the well-known 

Fan-Glicksberg fixed point theorem in the following ways: (a) the domain X need not be 

compact; (b) the mapping F is upper hemi-continuous instead of upper semicontinuous; 

(c) the mapping F need not have compact values (respectively, the space F need not be 

locally convex) and (d) the mapping F need not be a self-map. 

By Theorem 2.7.3, we have the following: 

C o r o l l a r y 2.7.4. Let X be a non-empty compact convex subset of a locally convex 

topological vector space F. Let F : X —* 2E be upper hemi-continuous with closed and 

convex values such that for each x G 8E(X), F(x) f l X 7̂  0. 

Then there exists x G A" such that x G F ( x ) . 

P roo f . The conclusion follows from Theorem 2.7.3 by taking X = K. • 

Corresponding to Theorem 2.7.3', we also have: 

C o r o l l a r y 2.7.4'. Let E be a topological vector space which has sufficiently many 

continuous linear functionals and X be a non-empty compact convex subset of E. Let 

F : A' —> 2E be upper hemicontinuous with compact and convex values such that for 

e a c h x G ^ ( A ) , F (x ) f l X ^ 0. 

Then there exists a; G A" such that x G F(x). 

T h e o r e m 2.7.5. Let A' be a non-empty convex set in a locally convex topological 
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vector space E. Let X 0 be a non-empty compact convex subset of X and A be a non­

empty compact subset of X . Let F, G : A' —» 2E be upper hemicontinuous and such 

that 

(a) for each x G X , F(x) and G(x) are closed convex at least one of which is compact; 

(b) for each x G K fl 8E(X), (F(x) - G(x)) n UA>0A(X - x) + 0 (respectively, 

(F(x) - G(x)) fl UA<oA(A - x) ± 0); 

and either 

(c) for each x G X\K, (F(x)-G(x))nUA>0A(co/Y - x) ^ 0 (respectively, ( F ( x ) -

G(x)) n l W ( c o F - x) / 0). 

or, 

(c)' for each x eX\K, (F(x) - G(x))nUA>0A(Ao - x) ^ 0 (respectively, (F(x) -

G(x)) fl UA<oA(X0 - x) ^ 0). 

Then there exists x G A" such that F(x) n G(x) ^ $• 

Proof. Let x G KilS(X) and </> G F* be such that Re</>(x) < lt,e<l>(y) for all y G A". 

Since (F(x) - G(x)) n UA>0A(A" - x) / 0, let w G F(x), v G G(x), {A„}„er be a net 

in [0, oo) and {x^^gr be a net in X such that Xa(xa — x) —> u — v. It follows that 

XaRe(f)(xa — x) = Re(j>(Xa(xa — x)) —> Re<j>(u — u) = Re(/)(u) — Ra<j>(v). 

Since XaRe<j)(xa — x) > 0 for each a G T, Re<j)(u) > Recj)(v). Thus the condition (b) of 

Theorem 2.7.2 is satisfied. 

Next let x G X \ K and </; G E* be such that 7te^(s) < fie<j>h)) f ° r a " ?/ € co(7^FU 

{ x } ) (respectively, y G co(X0 U {x } ) ) . By (c), since (F(x) - G(x)) n U A > 0 A ( F - x ) -^ 0 

(respectively, (F(x ) - G(x)) n UA>0A(X0 - x) 7̂  0), let M G / ' » , I; G G ( X ) , {Aa }w ep 

be a net in [0,oo) and {xa}a€r be a net in coK (respectively, in co(X0 U {x } ) ) such 

that A„(xa — x) —> u — v. It follows from Re<j>(x) < Refl>(xn) for all a E P that 

Re.<f>(u) > Re<j)(v). Thus the condition (cx) (respectively, (c2)) in Theorem 2.7.2' is 

satisfied. Therefore by Theorem 2.7.2', there exists x E X such that F(x) f) G(x) & 0. 

By interchanging the roles of F and G and by replacing the union " U A X J " in both 

conditions (b) and (c) by "UA<o", the proof is complete. • 

Corresponding to Theorem 2.7.5, we also have: 
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T h e o r e m 2.7.5'. Let X be a non-empty convex set in a topological vector space F 

which has sufficient many continuous linear functionals. Let X 0 be a non-empty compact 

convex subset of X and K a non-empty compact subset of X . Let F,G : X —• 2E be 

upper hemicontinuous and such that 

(a) for each x G X , F(x) and G(x) are both compact and convex; 

(b) for each x G K f l 8E(X), (F(x) - G(x)) n UA>0A(X - x) ^ 0 (respectively, 

(F (x ) - G(x)) n UA<0A(X - x) + 0); 

(c) for each a; G X \ 7\', (F(x) - G(x)) f l UA>0A(X0 - x) ^ 0 (respectively, (F(x) -

G ( x ) ) D U A < o A ( X o - x ) ^ 0 ) . 

Then there exists a point x G X such that F (x ) f l G(x) 7̂  0. 

As an immediately corollary to Theorem 2.7.5, we have the following: 

C o r o l l a r y 2.7.6. Let X be a non-empty convex set in a locally convex topological 

vector space F, A'o a non-empty compact convex subset of A" and F a non-empty compact 

subset of X . Let F : X —* 2E be upper hemi-continuous and such that 

(a) for each x G A , F(x) is closed and convex; 

(b) for each a; G K f l 8E(X), F(x) f l [x + UA>0A(X - x)] ^ 0 (respectively, F(x) f l 

[x + UA<0A(X - x)] f 0); 

and either 

(c) for each x G A' \ A', F (x ) f l [x + UA>0A(coF - x)] 7̂  0 (respectively, F ( x ) f l [x + 

UA<oA(oJA' - a;)] + 0). 

or, 

(c)' for each x G A" \ K, F(x) f l [x + UA>0A(X0 - x)] ^ 0 (respectively, F(x) f l [x + 

UA<0A(Xo - x)] 7̂  0). 

Then there exists a point a; G X such that x G F(x). 

Proo f . Let G(x) = {a:} for each x G X . Then the conclusion follows from Theorem 

2.7.5. • 

C o r o l l a r y 2.7.6'. Let A' be a non-empty convex set in a topological vector space 

E which has sufficiently many continuous linear functionals, A'o be a non-empty compact 
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convex subset of X. Let F : X —> 2E be upper hemi-continuous such that 

(a) for each x G X, F(x) is compact and convex; 

(b) for each x G K fl 8E(X), F(x) fl [x + UA>0A(X - x)] ^ 0 (respectively, F(x) fl 

[x + U A < o A ( A - x ) ] ^ 0 ) ; 

(c) for each x G A \ K, F(x) fl [x + UA>0A(X0 - x)] ^ 0 (respectively, F(x) fl [x + 

UA<oA(A0-x)] 7̂  0). 

Then there exists a point x E X such that x E F(x). 

We note that Theorem 2.7.2 and Theorem 2.7.5 generalize corresponding results of 

Ko and Tan [192] and Ko and Tan [194]. 
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2.7.2 Matching Theorems for Closed Coverings of Convex sets 

In this section, as an application of Theorem 2.7.5, we shall consider matching theorems 

for closed coverings of a convex set: 

T h e o r e m 2.7.7. Let X be non-empty convex set of a real locally convex topological 

sector space F. Let X 0 be a non-empty compact convex subset of E and K a non-empty 

compact subset of X. Let {Ai : i E 1} and {Bj : j E J} be two locally finite families 

of closed subsets of X and such that U,g/.4/ = Ujg.//?, = X. Let {d : i E 1} and 

{Dj : j E J} be two families of non-empty subsets of F such that any finite union of 

the G.'s is contained in a compact convex subset of E. Let S : X —• 2E be upper 

hemicontinuous such that each S(x) is a njn-empty compact convex set. Suppose that 

for each x G (K f l 8(X)) U ( X \ K), there exist i E I and j E J such that 

(i) x E A,; n Hi, 

(ii) for each x E X, setting M(x) = co(d + S(x)) - co(Dj), 

^Ai \ UA > 0A(X - x) ± 0 (resp., M(x) f lU A < 0 A(X - x) ± 0), if a; G \< f l 8(X); 

I UA>oA(X0 - x) 7̂  0 ( r e s p . , M ( x ) n u A < o A ( X o - x ) / 0 ) , if x G A \ K. 

Then there exist two non-empty finite subsets IQ of / and ,/0 of J and a point x G A" 

such that 

(a)xE(r}iekAi)n(nj&JoB3); 

(b) co(U{Ci : i E I0}) + S(x)} meets the set co(U{Dj : j E ./,)}). 

P roo f . For each x G X , let I(x) = {i E I : x G /I,-} and J(x) = {j E J : 

x E Bj}. Then I(x) and ,7(x) are non-empty and finite since U;e//17 = UjejBj = X 

and {/I,- : i E 1} and { # , : _/ G .7} are locally finite. Define F,G,fl : X -> 2E by 

F(x) = co(U{d + S(x) : i E I(x)}); G(x) = co(U{Dj : j E J(x)}) and fl(x) = 

co(U{G, : i G f(x)}). By hypothesis, for each x G X , / / ( x ) and .S'(x) are compact 

convex so that F(x) = H(x) + 8(x) is also compact convex. Since {Ai : i E / } is a 

locally finite family of closed subsets of X , for each x G X , the set l / (x) = X \ U^i(x)Ai 

is an open neighborhood of x in X . Note that whenever y G / / (x ) , y £ Ai for each 

i $ l(x) so that I(y) C / ( x ) and therefore /7(y) C /7(x). This shows that / / is upper 



85 

semicontinuous and hence F = H + S is also upper hemi-continuous. Similarly we can 

show that G is upper semicontintious (and hence upper hemi-continuous) on X . Thus 

the condition (a) of Theorem 2.7.5 is satisfied. By (i) and (ii), the conditions (b) and 

(c) of Theorem 2.7.5 are also satisfied. By Theorem 2.7.5, there exists x G X such that 

F ( x ) f l G ( x ) 7̂  0. Let /0 = I(x) and ,70 = J(x), then /0 and Jo are non-empty and finite 

and the conclusions of the Theorem hold. • 

We note the proof above was motivated by Ko and Tan [194] which is a modification 

of Theorem 11 of Fan [106] and of Theorem 1 of Shih and Tan [270]. Also, Theorem 

2 7.7 shows that Theorem 4 of Ko and Tan [194] is still true without assuming that X is 

paracompact. The following is an easy consequence of Theorem 2.7.7. 

By the same proof as in Theorem 2.7.7, but by applying Theorem 2.7.5' instead of 

Theorem 2.7.5, and by assuming that the family {D3}3^j also has the same property 

as that of the family {G,} , e / (i.e., " any finite union of the D^s is also contained in a 

compact convex subset of F") , Theorem 2.7.7 holds if the hypothesis underlying space 

E is weakened to a topological vector space with sufficiently many continuous linear 

functionals: 

T h e o r e m 2.7.8. Let X be a convex subset of a real locally convex topological vector 

space E, let A'o be a non-empty compact convex subset of X and K be a non-empty 

compact subset of X . Let {A, : i E 1} and {B3 : j E J} be two locally finite families of 

closed subsets of X such that Li,eIA, = UjeJBj = X. Let {G, : i E 1} and {£>,- : j C J } 

be two families of non-empty subsets of F such that any finite union of Gt's is contained 

in a compact convex subset of F. Suppose that for each point x G (KC\8(X))U(X\K), 

there exist i. G / and j E J such that 

(i) xG A,r\B3; 

(ii) setting M := co(Ct) - co(D}), then 

f x + UA>0A(X - x) 7̂  0 (resp.,M n x + UA<0A(X - x) ^ 0), i f xGXf lc^X; 

\ x + UA>0A( A0 - x) ^ 0 (resp., M fl (x + UA<0A(X0 - x)) ^ 0), if x G X \ K. 

I 
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Then there exist non-empty finite subsets / 0 of I and Jc of J such that 

(nie]BAi) n (r\,eJoB3) n (co(uiQloC) - cd(ujeJoD3)) ^ 0. 

Proof. Let .5* : X -> 2B be defined by 5(x) = { - x } for each x G X . Then all 

hypotheses of Theorem 2.7.7 are satisfied so that there exist non-empty finite subsets /0 

of / and Jo of J and a point x G X such that 

( a ) x G ( n , - g / 0 / l l ) n ( n . ; g j 0 F j ) ; 

(b) (co(U,g/oGi) - x) f l (cd(\J3eJ,D3) ^ 0. It follows that 

x G (n,e/oA,-) n (n3eJoB3) n (co(ut-e/oGt) - cd(ujeJo£>,•)). a 

If the space F in Theorem 2.7.8 is a topological vector space which has sufficiently 

many continuous linear functionals, by the same proof in Theorem 2.7.8 and by applying 

Theorem 2.7.7', we have: 

T h e o r e m 2.7.8'. Let X be a convex subset of a topological vector space E which 

has sufficiently many linear functionais. Let X 0 be a non-empty compact convex subset 

of X and K be a non-empty compact subset of X . Let {Ai : i E 1} and {B3 : j E ./} 

be two locally finite families of closed subsets of X such that U,e//t,- = iJj^jBj = X Let 

{G, : i E 1} and {D3 : j C J} be two families of non-empty subsets of E such that any 

finite union of G,'s and D3's is contained in a compact convex subset of F. Suppose that 

for each point x G (K f l 8(X)) U ( X \ K), there exist i E I and j E J such that 

(i) x E AiC) B3; 

(ii) setting M := co(Ci) - co(D3), then 

( x + UA>0A(X - x) 7̂  0 (resp.,M f l x + UA £ 0A(X - x) f 0), if a; G K f l i)EX; 

\ x + UA>oA(X0 - x) ^ 0 (resp., M f l (x + UA<0A(X0 - x)) # 0), if x G A \ K. 

Then there exist non-empty finite subsets /0 of / and ,70 of .7 such that 

( n t 6 V i t ) n (n3eJoB3) n (co(ut€/oG,) - co(ui€l/o£),•)) 7̂  0. 

We note that Theorems 2.7.7 and 2.7.8 show that Theorems 4 and 5 of Ko and Tan 

[194] hold without assuming that the set X is paracompact. 
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As an application of Theorem 2.7.8. we have the following result which is Theorem 

13 of Fan in [106] and is also a generalization of Shapley's theorem [264]. 

Coro l l a ry 2.7.9. Let A be an n-dimensional simplex in a Euclidean space. Let T 

denote the family of all faces of A (of all dimensional 0 ,1 , - • • , n). For each r E T, let 

p(r) and <I(T) be two given points in A, and let A(T), B(T) be two closed subsets of A 

such that 

(a) UT6^4(r) = UT€rB(r) = A; 

(b) for each r G T of dimensional < n and for any point x E T, there is a p E T 

such that x G B(p) and q(p) G r. 

Then there exist two non-empty subfamily Q and H of T such that 

(c)[nT e {; / i(T)]n[n,gW^)]7^0, 

(d) co({p(r) : r G G}) fl co({q(p) :pEH})^<b. 

For a generalization of the above result, we refer to Theorem 6 of Ko and Tan ([194]). 

I r 



Chapter 3 

Generalized Games 

3.1 Introduction 

The existence of an equilibrium in an abstract economy with compact strategy sets in 

R" was proved in a seminal paper of Debreu [72]. The theorem of Debreu extended the 

earlier work of Nash in game theory. Since then there have been many generalizations of 

Debreu's theorem by Arrow and Debreu [5], Borglin and Keiding [37] and others. These 

papers generalize Debreu's theorem by considering preference correspondences that are not 

necessarily transitive or total, by allowing externalities in consumption and by assuming 

that the commodity space is not necessarily finite-dimensional. In these papers, the 

domain (and /or codomain) of the preference and constraint correspondences is assumed 

to be compact or paracompact. 

Following the work of Sonnenschein [283], Gale and Mas-Colell [124] and Borglin 

and Keiding [37] on non-ordered preference relations, many theorems on the existence 

of maximal elements of preference relations which may not be transitive or complete, 

have been proved by Aliprantis and Brown [2], Bergstrom [30], Kim [181], Mehta and 

Tarafdar [221], Shafer and Sonnenschein [263], Sonnenschein [283] , Tan and Yuan [294], 

Tarafdar [303], Toussaint [315], Tulcea [317], Yannelis [325] and Yannelis and Prabhakar 

[326] and others. However, most of these existence theorems for maximal elements and 

equilibrium points deal with preference correspondences which have open lower sections 

88 
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or are majorized by correspondences with open lower sections. Note that every correspon­

dence with open lower sections rr;ust be lower semicontinuous but the converse is not true 

in genera!. Moreover, in most cases, preference and constraint correspondences may be 

upper semicontinuous (or majorized by upper semicontinuous correspondences) instead of 

being lower semicontinuous (or being majorized by lower semicontinuous), or the prefer­

ence and constraint mappings are condensing. Furthermore, in the study of equilibrium 

theory in most economic models, the feasible sets or the budget constraints are generally 

i not (weakly) compact in infinite dimensional commodity spaces and are not convex in the 

case of the indivisibility of commodities and the underlying spaces do not have a linear 

structure. Thus, relaxation of the convexity of choice sets and generalizations of spaces 

enable us to deal with the existence of maximal elements and equilibrium points even 

though commodities are indivisible. 

Therefore it is necessary and important to study the existence of equilibria for gener­

alized games in which the preference and constraint correspondences neeJ not have open 

lower sections nor open upper sections and also the underlying spaces need not have any 

linear structure and so on. 

The objective of this chapter is to systematically study the existence of maximal 

elements and equilibria for generalized games under various hypotheses. In particular, 

the question raised by Yannelis and Prabhakar [326] is answered in the affirmative with 

weaker assumptions. The essential idea behind these existence theorems for equilibria of 

generalized games is to reduce them first to qualitative games and then to the existence 

problem of maximal elements for preference correspondences. Since existence of maximal 

elements of correspondences have equivalent formulations in fixed point theorems which 

can be derived from Ky Fan's minimax inequalities, so that the results in Chapter 2 are 

applicable. More precisely, in Chapter 3, we have: 

In section 2, we first give the existence theorems of maximal elements and equilibria 

for non-compact generalized games in topological spaces which have the so-called H-

structurp. 

In section 3, a number of approximative equilibria of generalized games in which 
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preference correspondences are KF-majonzed end underlying spaces are topological vector 

spaces are given. 

In section 4, as applications of approximative equilibria for generalized games, several 

existence theorems for equilibria of generalized games in which preference correspondences 

are lower semicontinuous and the domain spaces are non-compact in locally convex topo­

logical vector spaces are given. By developing the so-called "approximative metlunP 

which was first motivated by Tulcea [316], we establish existence theorems for equilibria 

of generalized games in which the constraint correspondences are upper semicontinuous. 

In particular, the results in this section answer the question raised by Yannelis and Prab­

hakar [326] in the affirmative with weaker assumptions. 

In section 5, the concept of U-majorized mapping is first introduced. Then the exis­

tence theorems for equilibria of generalized games in which the constraint correspondences 

are W-majorized are given. 

In section 6, several existence theorems for equilibria of generalized games in which 

the constraint correspondences are ^-condensing are given. 

In section 7, by Michael's selection theorem, we consider the existence theorems for 

equilibria of generalized games in which the underlying spaces are Frechet spaces. 

Finally in section 8, we first discuss some properties of multivalued mappings in finite 

dimensional spaces. As applications, fixed point theorems and the existence theorems of 

equilibria for generalized games are given in finite dimensional spaces. 

Moreover, we remark that the existence theorems for equilibria of non-compact gener­

alized games in this Chapter will be applied to give the existence theorems of non-compact 

quasi-variationa- and generalized quasi-variational inequalities in Chapter 4. 
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3.2 Equilibria for Ky Fan-Majorized Mappings in H-Spaces 

In this section, we first introduce the notions of a Ky Fan mapping and a Ky Fan-majorized 

mapping (in short, KF mapping and KF-majorized mapping) in H-spaces. Then a selection 

theorem is derived which is applied to give an existence theorem for maximal elements 

for KF-majo.-ized mappings in H-space.> (which need not have a linear structure). As an 

application of a maximal element existence theorem, we prove the existence for equilibria 

of one-person games and qualitative games. The existence theorem for qualitative games 

is then applied to give existence theorems of equilibria for X-person games. 

We give some notion. If A is a non-empty subset of a topological vector space F 

and S,T : A -> 2E U {0} are correspondences, then coT, T f l S : A -» 2E U {0} are 

correspondences defined by (coT)(x) - coT(x) and ( F f l S)(x) = T(x) f l S(x) for each 

x G A, respectively. If A" and Y are topological spaces and T : X —* 2Y U {0} is a 

correspondence, then (1) T is said to be upper semicontinuous at x G X if for any open 

subset / / of Y containing T(x), the set {z E X : T(z) C U} is an open neighborhood 

of x in X , (2) T is upper semicontinuous (on X ) if T is upper semicontinuous at x 

for each x E X; (3) the correspondence T : X —> 2Y is defined by T(x) = {y E Y : 

(x,y) E c/A'xvGraph(F)} ( which is also called the adherence mapping of T) and (4) the 

correspondence clT : X —• 2Y is defined by clT(x) = cly(T(x)) for each x G X . It is 

east to see that clT(x) C T(x) for each x EX. 

We remark here that throughout Chapter 2, an upper (or lower) semicontinuous cor­

respondence is not require to be non-empty valued. 

Let X and Y be two topological spaces and F : X —> 2Y U {0 } . Then F is said 

to be compact if for each x G X, there exists a neighborhood Vx of x in X such that 

F(K) = Uz?vxF(z) is relatively compact in Y. If X is a subset of a topological vector 

space E, X is said to have property K if for each compact subset B of X , the convex 

hull of B is relatively compact in X. 

Let X be a topological space and Y a subset of an 77-space F, let 6 : X —• F be 

a map and ij) : A —• 2Y U {0} be a correspondence. Then (1) ip is said to be of class 

m 
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KFg (respectively, KFgtc) or t/> is a KFg (respectively, KFo,c) correspondence if for each 

x G X , Hco^(x) C V and 6(x) <£ Hco^(x) and for each y E Y, tp~y(y) = {x E X : y E 

ip(x)} is open (respectively, compactly open) in A', (2) a correspondence i/>, : A' —> 2* is 

said to be a FFu-majorant (respectively, FF^o-majorant) of i/> at z G A" if there exists 

an open neighborhood Nx of x in X such that (a) for each z E Na, I /J^) C ^(z) and 

0(z) £ r\coif>x(z), (b) for each z E X, Hcoi/;x(z) C Y (this condition is redundant if V is 

an H-convex subset of F ) and (c) for each yEY, 0a
-1(i/) is open (respectively, compactly 

open) in A ; (3) ijj is FFs-majorized (respectively, KFo,c-majorized) if for each x G A* 

with tp(x) 7̂  0, there exists a FFa-majoriant (respectively, A'F,c-majorant) of I/J at x. 

If the underlying space F is a topological vector space, it is clear that that the notions of 

correspondence ip being of class KFg or FFp-majorized and correspondence i/;, being 

a FFp-majorant of if} at x generalize the corresponding notions of LjJ-correspondence 

or /^-majorized and correspondence \\>x being an Z^-majorant of ?/> at x respectively 

introduced by Ding and Tan [84] which in turn generalize corresponding notions given 

by Borglin and Keiding [37], Yannelis and Prabhakar [326] and Tulcea [316]. For other 

kinds of mapping, we refer to Tan and Yuan [294] (which is a generalization of Ding and 

Ton [83]), Deguire, Tan and Yuan [76], Ben-EI-Mechaiekh and Deguire [23] and Deguire 

and Lassonde [75]. In liiis section, we shall deal with either (I) X - Y and 0 — Ix, the 

identity map on X or (II) X = U^iX, and 0 — -K} : X —> X3 is the projection of A onto 

X}. In these cases, we shall write KF (respectively, KFQ) in place of KFg (respectively, 

KFg,c). 

The following example shows that an KF-majorized mapping that is not of class K F. 

Example . Let A = [0,1] and <f>: A -» 2X U {0} be defined by 

,, v / { v e X : y € [ 0 , x 3 ] } , if x 6 (0 ,1 ) , 
<t>(x) = \ 

{ 0, otherwise. 

Then cj> is not of class KF since <f>~^(y) is not open in X for each y E (0,1). For 

each x G (0,1), let Nx — X which is an open neighborhood of x in X and define 
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,px : X - » 2X U {0} by 

, , , f { y G X : 7 / G [ 0 , x ) } , if ^G (0,1), 
^ ^ = S | fl L • 

( (/), otherwise. 

Then it is clear that <jh is an FF-majorant of ^ at x and <f> is FF-majorized correspon­

dence (see a'so Kim [181, p.799]). 

Now we have. 

Lemma 3.2.1. Let A be a topological space and Y be an //-space. Let ip : 

A —• 2Y U {0} be a correspondence with compactly open lower sections (i.e., i>~^(y) is 

compactly open in A for each y E Y). Define the correspondence <j>: X —> 2 y U {0} by 

</>(x) = Hcoi/)(x) for each x G X . Then </> also has compactly open lower sections. 

Proof. For each yo E Y and each non-empty compact subset C of X , we need to 

prove that </>_1(T/O) f l C is open in C. 

Let xo G <i>~x(yo) f l G. Since t/0 G ^(xo) = Hcoi/>(xo), there exists a finite subset 

Ki = {» ! , • • • , :Vn} of ^ such that T/0 G Hcolo by Lemma 1 of Tarafdar [303], where 

y, G V;(;Co) for each i = 1, • • • ,n. For each i = 1, • • • ,n, the set ip~^(y,) is compactly 

open in A and x0 G '/>_1(y,). Let £/" = n; i
=1i/i-1(y,). Then x0 G F f l G and U()C is open 

in G. Now for any x E U f l C, then y, G V"(x) f ° r a " * = 1? • • • ,n . Hence K0 C ij)(x) 

which implies that ?y0 G HcoK0 C Hcoi/>(x) = <j>(x). Therefore x G <j>~l(yo) f l G for all 

x El/C\C. Consequently, <j)~x(yo) f l G is open in C. • . 

By Lemma 3.2.1, we have the following selection theorem: 

Lemma 3.2.2. Let X be a regular topological space and Y a non-empty subset of 

an H-space E. Let 0 : X -> F and P : A -> 2y U {0} be KFg-majorized (respectively, 

KFgfi-majorized). If each open subset of X containing the set B = {x E X : P(x) 7̂  0} 

is paracompact, then there exists a correspondence <j> : X -+ 21" U {0} of class FF« 

(respectively, KFgfi) such that F(x) C <j>(x) and ^(x) is //-convex for each x G X . 

Proof. Since P is A'^-majorized (respectively, KFgfi-majorized), for each x E B, 

let Nx be an open neighborhood of x in A and <j>x : X -> 2Y U {0} be such that (1) for 
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each z E N„ P(z) C ^(z) and 0(z) $ Hco^ ( - ) , (2) for each z E X, Hco^(^) C V 

and (3) for each y Ev, <t>ZX(y) l s compactly open in A' 

Since X is regular, for each x G B there exists an open neighborhood G, of i in A' 

such that clxGx C A^. Let G — L'X&BGX then G is an open subset of X which contains 

B = {x G X : P(x) 7̂  0} so that G is paracompact by assumption. By Theorem VIII 1.4 

of Dugundji [89] the open covering {Gx} of G has an open precise n 'ghborhoocMinite 

refinement {G'x} Fix an arbitrary x E B and define <f>'3 : G —> 2 r U {0} by 

/ Hco^(z ) , i f z G G f l c / A - G ; , 

\ V, i f ^ G G \ o / ^ G - ; , 

then we have' For each y E Y, 

(<t>'xT\y) = { ^ G : i / G M } 

= {* G G f l c ^ C , : y E # ( * ) } U { * G G \ c/AC f : y E <j>\ (z)} 

= {z E G f l c / j ra ; : y G Hco^ ( * ) } U (G \ c/j^G',) 

= \(G n 4G1) n ((rwo-'te)] u (0 \ c/^rrj 
= ( G f l ( H c o ^ ) - , ( y ) ) U ( G \ c ^ G : ) . 

It follows that for each non-empty compact subset G ot X , ('/>')~'(i/) n C = (G f l 

((Hco^x)_1(y)) f l C) U ((G \ c/jfG^) f l G) is open in C by (3) and Lemma 3 2 1 above 

Now define <j>: X -» 2K U {0} by 

^ \ = { n-ee^(^), if * € G, 
I 0, if z E X \ G. 

Let z E X be given, clearly (2) implies that Hco^(z) C V. if z G A \ G, then </;(;?) = 0 

so that 9(z) <£ Hco^(^). If z E G, then z E G f l c/*G^ for some x E B so that 

<j)'x(z) = Hco<^(z) and hence 1/1(2) c Hcoi/x^z). As 0(2) <£ HOH//( .Z) by (1) we must 

have 0(z) £ Hco<^(;z). Therefore 0(z) £ Hco(f>(z) for all z E X Now we show that for 

each yEY, <^-1(y) is compactly open in X. Indeed, let y E Y, C be a non-empty compact 

subset of X and u E j~x (y) f l G = {z G X : y E <j>(z)} DC = {z E G : </ G 4>(z)} D C 

be arbitrarily fixed. Since {G^.} is a neighborhood-finite refinement, there exists an open 

! 
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neighborhood Mu of u in G such that {x E B : MunG'= ^ $} = {xi,--- ,xn}. Note that 

for each x G B with x g {x , , • • •, xn}, 0 = Mu n G^ = Mu f l c/^GJ, so that <f>'(z) = Y 

for all z G M„ . Thus we have <f>(z) - I U g a ^ f * ) = <^t=i^,(z) f o r a " 3 € ^ " " '* f ° , l o w s 

that 

<fr>(y) = {z E X : y E <j>(z)} =^ {z E G : y E nxeB^x(z)} 

D {zE Mu : y G f \ e B <^ (z ) } = {z E Mu : y C nt
B

=1 #,,(«)} 

= Af„ f l { * e G : * € ^ ^ . ( z ) } = M „ f l [ n ^ «- ) _ 1 (2 / ) ] -

But M'u = Mu n [ n - L ^ ^ J " 1 ^ ) ] f i G is an open neighborhood of u in G such that 

M'u C <!>~](y) f l C since ( C ) _ 1 ( y ) is compactly open in X . This shows that for each 

y E Y, <l>~](y) is compactly open in X. Therefore <j> is of class KFg. 

Now we shall show that P(z) C <j>(z) for each z E X. Indeed, let z E X with 

P(z) f 0. Note that z G G. For each x G B, if 2 G G \ clxG'x, then & ( z ) = Y 3 P(z) 

and if z E GndxGx, we have z E clxG'x C c / x G* C Nx so that by (1), P(z) C &.(*) C 

fc(z). It follows that P(z) C <j)'x(z) for each x G F so that P(z) C r \ g B < ^ ) = ^(z) . 

Finally we replace </> by Hcoc/> and, by Lemma 3.2.1, the result follows. G 

We note that Lemma 3.2.2 generalize Lemma 2 of Ding and Tan [84] which in turn 

improves Lemma 1 of Ding, Kim and Tan [86]. 

Now by Lemma 3.2.2, we have the following existence theorem for KFg correspon­

dences in topological spaces which generalizes Theorem 4.1 of Tan and Yu [288] and 

Corollary 1 of Borglin and Keiding [37]: 

Theorem 3.2.3. Let X be an //-space such that X = U ^ d , where {Gn}£La 

is an increasing sequence of non-empty compact and weakly H-convex subsets. Suppose 

P : X -» 2A' U [0} is FFc-majorized. If for each sequence (y„)~=1 in X with yn G C„ 

for each n = 1,2, • • • which is escaping from X relative to {Gn}^, there exist n0 E N 

and x,l0 e G„0 such that x,l0 G P(yno), then there exists x G X such that P(x) = 0. 

Proof. Suppose the conclusion were not true, then X = {x G X : F(x) 7̂  0}. First 

we note that since X is regular and cr-compact, X is paracompact by Corollary 33.15 of 

I I 
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Cullen [70, p.341]. Hence by Lemma 3.2.2, there exists a correspondence i/> : A -> 2A 

of class KFC such that F(x) C \!J(X.) and ip(x) is H-convex for all x G .V. Note that 

the conditions (i) and (ii) of Theorem 2.3.17 are satisfied by ij>. By assumption, for each 

sequence (yn)^Li in X with y„ G Gn for each n = 1,2,-•• which is escaping from A" 

relative to { G n } ~ i, there exist n0 G N and x,lD G Cna such that xn„ G P(yno) C ''/'(!/»J-

This shows that condition •''•'•) of Theorem 2.3.17 is aiso satisfied by i/>. Hence by Theorem 

2.3.17, there exists y G A" such that ^(y) - 0. It follows that P(y) ~ lli which is a 

contradiction. Hence the conclusion must hold. • 

A one-person game is a quadruple (X\A,B;P) where X is a topological space, 

A,B : X -» 2X U {0} are constraint correspondences and P : X -> 2A' U {0} is a 

preference correspondence. An equilibrium point for (X\A, B; P) is a point x* E X such 

that x' G F(x") and A(xr) f l P(x*) = 0. 

Let / be a (finite or infinite) set of players (agents). A generalized game (an abstract 

economy) is a family T = (A-,-; Ai, /3,; F,),e/ of quadruples (X,-; .4;, At; Pi) where for each 

i E I, Xi is a topological space, Ai, Bi : X := ^jziXj —» 2A'" U {0} are constraint 

correspondences and Pi : X —> 2Xi U {0} is a preference correspondence. An equilibrium 

point for G is a point x* G X such that for each i G /, x* = 7r,-(x*) G Bi(x") and 

/4,-(x*) f l Pi(x*) - 0 where 7r,- : X ->• X i is the projection. We remark that when 

Bi(x") = clx{Bi(x*) (which is the case when 6, has a closed graph in A x X ; ; in particular, 

when clx;Bi is upper semicontinuous with closed values) for each i G /, our definition 

of equilibrium point for a generalized game (an abstract economy coincides with that of 

Ding and Tan [84]. Also, according to Gale and Mas-Colell [125], a qualitative game is a 

family T = (Xi. Pi)iei of ordered pairs (A;, Pi) where for each i G /, Xi is a topological 

space, Pi : X = Hlj^iXj —» 2X< U {0} is an irreflexive preference correspondence, i.e., 

Xi $. Pi(x) for all x G X. A point x* G A is said to be an equilibrium point of the 

qualitative game V if F,(x*) = 0 for all i E I. 

As an application of Theorem 3.2.3, we have the following existence theorem of equi­

libria for one person-games: 



97 

Theorem 3.2.4. Let (X; A, B\ P) be a one-person game such that X is an H-

space and A = U%L^Cn where {Gn}£Lj is an increasing sequence of compact and weakly 

H-convex subsets and the following conditions are satisfied: 

(1) for each x G X, A(x) is non-empty and Hco/l,(x) C F,(x); 

(2) for each y E X, A~^(y) is compactly open in X; 

(3) A f l P is A'Fc-majorized; 

(4) for each sequence (yn)%Li in X with yn E Cn for each n = 1,2, ••• which 

is escaping from X relative to {Cn}%Li, there exist n E N and xn G Cn such that 

^ G ( / t ( y n ) n F ( y n ) ) n G n . 

Then (X, A, B,P) has an equilibrium point, i.e., there exists x E X such that x G F,(x) 

and A(x) f l F(x) = 0. 

Proof. Let F = {x G A" : x G B(x)}, then F is closed in X . Define # : X -+ 

2A' U {0} by 

^ ( T ) = { ^ ) H F ( X ) , if X G F , 

\ A(x), if x £ F. 

Let x G A" be such that $(x) ^ 0. If x <£ F, then X \ F is an open neighborhood 

of x such that for each z E X \ F, z £ F(z). Now define $ x : X ->• 2X U {0} by 

^ ( z ) = ^(z) for each z G X and Nx = X \ F, then /Vj, is an open neighborhood of x 

in X such that 

(i) * (2) C <bx(z) and z £ Hco$x(z) for each z G Nx, and 

(ii) ^ ' ( y ) = A~*(y) is compactly open in X . 

Therefore * x is an Lc-majorant of # at x. If x G F, then $(x) = A(x) f l P(x) ^ 0. 

Since yl f l P is A'Fc-majorized, there exist an open neighborhood Nx of x in X and a 

correspondence <bx : A -+ 2A' such that »l>(z) = / t (z) f lP(z) C $x(z) and * £ Hco$x(z) 

for each z E Nx, and $~x(y) is compactly open in X for each y G X . Define the map 

% : X -» 2A' U {0} by 

$ ' ( . ) = / ^ ( 2 ) n < M * ) , i f ^ € F , 

* " ' j A(z), if z £ F. 
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Note that as (A f l P)(z) C $ x (z) for each z E Nx, we have #(z ) C $'x(z). It is easy to 

see that z £ Hco$x(z) for all z G X . 

Moreover, for any y G X , the set ($'x)~^(y) = [ * * ' ( l ) u (A ' \ ^)1 n ^~ ' ( » ) i s 

compactly open in A . Therefore <*V is a /CFc-majorant of 4> at x. Hence, ^ is an 

A'Fc-majorized correspondence. 

By (4), for each sequence (yn)^Li in X with yn G Gn for each /> = 1,2, ••• which 

is escaping from X relative to { G J ^ l , there exist n G N and x n G G„ with x „ G 

Hco(i4(yn) f l F(y„ ) ) f l Cn C * ( y „ ) f l G„. Hence by Theorem 3.2.3, there exists x G A" 

such that * ( x ) = 0; since A(x) ^ 0 by (1), we must have x G ~B{x) and / l ( x ) f lP ( x ) = 0. 

D 

As another application of Theorem 3.2.3, we have the following existence theorem for 

equilibria for qualitative games. 

T h e o r e m 3.2.5. Let (X; , /5 , - ) ,^ be a qualitative game such that for each i = 

1, • • •, N, Xi = U^ l jG i j is an H-space (so that A = n , e /X , is also an H-spaces), where 

{Cij]JLi is an increasing sequence of non-empty compact and weakly H-convex subsets. 

Suppose the following conditions are satisfied: 

(1) for each i = 1, • • •, X , P{ : X - * 2Xi U {0} is KFC-majorized; 

(2) for each % = 1, • • •, N, the set F, = {x G X : P t(x) ^ 0} is open in X; 

(3) for each sequence (yn)^ in X which is escaping from X relative to {C n }£L | 

where G„ = U-LiChn for each n = 1,2, • • • , there exist 7?,0 G N and x„0 G G„0 such that 

7r,(xno) G P,(yUo) for each i G / (y , l 0 ) , where 7(x) = {j E { 1 , - - - , X J : Pj(x)^$}. 

Then (X, , PA^ has an equilibrium point x G X ; i.e. P,(x) = 0 for all i = I, • • •, N. 

Proo f . Suppose the conclusion were false; then for each x G X , l(x) ^ 0. For each 

i = 1, • • • N, define P( : X -+ 2 * U {0} by P/(x) = T ^ 1 (/*(*•)) for each x G A . Define 

F : X -+ 2 X U {0} by P(x) = n , e / > ) P/ ( x ) for each x G X . Suppose x G X and fix 

one i E I(x). By (1), there exist a correspondence ?/>,• : X —> 2X' U {0} and an open 

neighborhood Nx of x in X such that 

(a) for each z G Nx, Pi(z) C V'iO2) an<^ *i(z) £ Hco?/>,(z), 

(b) for each y G X, , ^^(y) is compactly open in X . 
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By (2), we may assume that Nx C F, so that P,(z) ^ 0 for all z E Nx and hence i E f(z) 

for all z G Nx. Define \px : X -+ 2X by yjx(z) = TT,-1 (ipt(z)) for each z G X . Now if 

z E Nx, then by (a), 

P(z) = n j 6 / (2 )p;(z) c P[(z) = *;\Pt(z)) = ipx(z) 

and z ^ Hcoil>x(z). Moreover, if y G X , then 

^ ( y ) = { * € * : y € ^ , ( * ) } 

= {z 6 X : 7r,(y) G 0,(z)} 

= VTV.G/)) 

is compactly open in X by (b). This shows that ipx is a FF/x-majoi-ant of P at x. Hence 

P is KF/A -majorized. 

Finally by (3), for each sequence (yn)™=i in X with y„ G G„ for each n = 1,2,••• 

which is escaping from X relative to {Gn}^Li, there exist n 0 G N and x?l0 G G„0 such 

that 7r,(xno) G P,(yno) for each « G f(yno), it follows that 

x*o G n,ei(VB0)7r,-,((/,
1(yB0)) = flie7(j/no)P1'(y„0) = Pfono). 

Note that X = U ^ G , , . and Gn is also a compact H-space for n = 1,2, • • •. Hence by 

Theorem 3.2.3, there exists x G X such that P(x) — 0 which contradicts our assumption. 

Therefore the conclusion must hold. • 

T h e o r e m 3.2.6. Let (X,,y4,,F,;P,),^.] be an X-person game such that for each 

/ = 1, • • •, N, X, = U ~ , G , j is an H-space (so that A" = I I ^ j X , is also an H-space), 

where { G , j } ~ , is an increasing sequence of non-empty compact and weakly H-convex 

subsets of A,. Suppose the following conditions are satisfied: 

(1) for each ? = 1 , • • •, X and for each x G X , A,(x) is non-empty and HcoA,(x) C 

B.(x): 

(2) for each i = 1, • • •, X and for each y E X,, A~x(y) is compactly open in X ; 

(3) for each i = 1, • • • N, the correspondence A, f l Pt : X -> 2X' U {0 } is KFC-

majorized; 
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(4) for each i = 1, • • •, N, the set F, = {x G X : (.4, f l Pt)(x) / 0} is open in A"; 

(5) for each sequence (yn)£Li in X with yn E G„ for each 7? = 1,2, ••• which is 

escaping from X relative to {Cn}^L.x where Cn = n£L,G1)n for each n — 1,2, ••-, there 

exist 7i0 G X and xno G G„ such that for each i = 1, • • • , X , 7r,(x,l0) G A,(yUo) fl Pi(yno) 

if At(yno) H Pl(yno) ± 0 and Trt(yUo) E clx,B,(yno) and 7r,(xUo) G A,(yno) if 7r,(yUo) <£ 

B\(y n0). 

Then (X , ; / l , , F,; P,)^., has an equilibrium point x in A"; i.e. for each = 1,---,X, 

TT,(X) G B~,(x) and At(x) f l P,(x) = 0. 

Proof. For each i = 1, • • •, X, let G, = {x E X : TT,(X) E 7 ^ ( X ) } , then G, is closed 

in A; define define Qt : X -* 2X' by 

f (/ l , fl />)(*), if * G G,; 

\ /tt(x), if x £ G,. 

We shall show that (X,, Q,)?=i is a qualitative game satisfying the hypotheses of Theorem 

3.2.5. Fix any i E { 1 , • • •, X } . The set 

{x G A : Qt(x) ^ 0} = { x G G , : ( / l l n P l ) ( x ) ^ 0 } U { x G X \ G I : / l 1 ( x ) ^ 0 } 

= ( G , n F , ) U ( X \ G , ) 

= F t U ( X \ G , ) 

is compactly open in X by (4). Thus the condition (2) of Theorem 3.2.5 is satisfied. Now 

let x G X be such that Qt(x) ^ 0. 

Case 1. Suppose x $ G,. 

Let ij'x = / l , and Xx = X \ G , , then Xx is an open neighborhood of x in X such that 

(i) for each z G Nx, Q,(z) - A,(z) = i/>x(z) and 7r,(z) <£ Hco/l^z) = Hcot/)T(z) by 

(i); 
(ii) for each y G A,, i^~x(y) = A~x(y) is compactly open in X by (?). 

Thus ipx is an XFc-majorant of Q, at x. 

Case 2: Suppose x G G,. 

Since G;,(x) = (/ l , f l P,)(x) ^ 0, by (3), there exist if>x : A -» 2* ' U {0} and an open 

neighborhood Nx of x in X such that 
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(i) for each z E Nx, (A, f l P,)(z) C ij>x(z) and 7r,(z) £ \\coipx(z), 

(ii) for each y E Xt, r^(y) is compactly open in X. 

Define V£ : A -» 2A ' U {0} by 

/ /* , (z)ny; x (z) , i f z G G , , 
V»r(Z) = { 

\A,(z), if *£<?,. 

Then for each z G A^, we have Qx(z) C ^ ( ^ ) and irx(z) ^ HcoV>x(z) by (i) and (1). 

Moreover for each y G X t , the set (0£) - , (y) = [il:'x
1(y)U(X\Gt)]r\A~l(y) is compactlv 

open in X by (ii) and (2). Thus if>'x is a /{"Fc-majorant of Qt at x. 

This shows that Qx is A'Fc-majorized so that the condition (1) of Theorem 3.2.5 \z 

also satisfied 

Finally, let (yn)™=i be a sequence in X with yn G Gn for each n = 1,2, •• • which is 

escaping from A relative to {Gn}^. By (5), there exist n0 E N and xno E C„p such 

that 7r,(a;no) G Q,(yno) f ° r e a c n i = 1,- • • , X with Qt(yno) 7̂  0- Hence the condition (3) 

of Theorem 3.2.5 is also satisfied. 

By Theorem 3 2.5, (X.,0;,)^-, has an equilibrium point x E X, i.e. Qt(i) = 0 for all 

/ = 1, • • • ,N. Since A,(x) ^ 0 for each i — 1, • •, X , we must have 7r,(x) G clx,Bt(x) 

and At(x) n P(x ) = 0 for alU = 1, • • •, N. a 
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3.3 Approximate Equilibria in Topological Vector Spaces 

In this section, by developing an "approximation" method which idea was first motivated 

by Tulcea [316], we obtain an equilibrium existence theorem for a generalized game (ab­

stract economy) in which the constraint correspondences are not assumed to have open 

graphs nor open lower sections (which are generally assumed in the literatures, e.g., see 

Ding, Kim and Tan [86], Ding and Tan [84] and Yannelis and Prabhakar [326] and the 

references wherein). Our result generalizes the corresponding results of Shafer and Son­

nenschein [263], Borglin and Keiding [37], Yannelis and Prabhakar [326], Tulcea [316] and 

Chang [55] in several ways. 

We shall need Theorem 1 and Theorem 3 of Ding and Tan [84] which are stated below 

as Lemma 3.3.1 and Lemma 3.3.2 respectively. 

L e m m a 3 .3 .1 . Let X be a non-empty paracompact convex subset of a topological 

vector space and P : X —> 2X U {0} be A'Fc-majorized. Suppose that there exist a 

non-empty compact convex subset Xo of X and a non-empty compact subset K of A' 

such that for each y E X \ K, there is an x E co(X0 U {y}) with x G coP(y). Then 

there exists an x E K such that P(x) — 0. 

For other results related to the existence of maximal elements, we refer to Tan and 

Yuan [294], Kim [181], Lassonde and Deguire [75], Ben-EI-Mechaiekh and Deguire [23], 

Degiure, Tan and Yuan [76] and Tarafdar [303]. 

L e m m a 3.3.2. Let T = ( X , , P , ) l 6 / be a qualitative game such that X = n.-g/X, is 

paracompact. Suppose the following conditions are satisfied: 

(i) for each i E f, A, is a non-empty convex subset of a topological vector space; 

(ii) for each i G / , P, : X -» 2X> U {0} is KFc-majorized; 

(iii) U1 g / {x G X : P,(x) 7̂  0} = UieIintx{x G X : P,(x) ± 0}; 

(iv) there exist a non-empty compact convex subset X 0 of X and a non-empty compact 

subset K of X such that for each y E X \ K, there is an x E co(X{) U {y}) with 

x, G coPt(y) for all i E I• 

Then T has an equilibrium point in K. 
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The following is an existence of "approximate" equilibrium points for a one-person 

game: 

T h e o r e m 3.3.3. Let X be a non-empty paracompact convex subset of a topological 

vector space F and A, B, P : X -> 2X U {0} be such that 

(i) A is lower semicontinuous on X and for each x G X , A(x) is non-empty and 

coA(x) C B(x); 

(ii) A f l P is A'P'c-majorized; 

(iii) there exist a non-empty compact convex subset A'o of X and a non-empty compact 

subset K of X such that for each y EX\K, co(X0 U { y } ) f l co(A(y) D P(y)) ^ 0. 

Then for each open convex neighborhood V of 0 in F , the one-person game ( X ; A, By; P) 

has an equilibrium point in K, i.e., there exists a point xy G K such that xy E By(xy) 

and A(xv) f l P(xv) = 0 where Bv(x) = (B(x) + V) f l X for each x G X . 

P roo f . Let V be an open convex neighborhood of 0 in F and define Ay, By : X —» 

2A' by /W(x) = (A(x) + V)HX and Bv(x) = (B(x) + V)nX for each x G X . Since ,1 

is lower semicontinuous, Ay has an open graph in X x X by Lemma 4.1 of Chang [55] or 

Tulcea [316]. By (i), Av(x) C By(x) for each x G X . Let Fy = {x E X : x £ By~(x)}, 

then Fv is open in X. Define * K : X - * 2 * { 0 } by 

^ ( A ( x ) f l P ( x ) , i f x ^ F y , 

\ Av(x), if x G Fv. 

Suppose x G A' is such that tyy(x) ^ 0. 

Case 1. Suppose x G Fv. Let $ x = A y and X x - Fy, then X x is an open 

neighborhood of x in X such that (a) for each z G XX 1 ®y(z) = Ay(z) — $ x ( z ) , 

z i ~By~(z) so that z g /lV/(z) = $ x ( z ) ; (b) for each y G X, $x
x(y) = A v

J ( y ) is open in 

A" since Ay has an open graph in X x X . Thus <1>X is a FFc-majorant of tyy at x. 

Case 2. Suppose x £ Fy . Then $y(x) = A(x) f l P (x ) 7̂  0. Since / I f l P is KFC-

majorized by (ii), there exist an open neighborhood Nx of x in X and a correspondence 

<*v : X -4 2* such that (a) Vv(z) = A(z) f l P(z) C $ x ( z ) and z £ co$^(z) for each 

z E Nx and (b) for each y G X , ( $ x ) - 1 ( y ) is compactly open in X . Define $ x : X -> 2 * 
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by 

$ ( Av(z)n*'x(z), HztFy, 

\ Av(z), i f z G / ' V . 

Note that (i) for each z E Nx, clearly ^~x(y) C ^x(z) and it is easy to see that 

z <£ co$x(z) and (ii) for each y G x, $ x ' ( y ) = [Fv U ( $ x ) - , y ) ] n ^v 'O / ) 's compactly 

open in X. Hence $x is an XFc-majorant of tyy at x. 

Therefore tyy is a A'Fc-majorized correspondence. Moreover by (iii), for each y G 

X \ /\ , there exists x G co(X0 U { y } ) f l co(A(y) f l P(^)) so that x G co(A(y) f l P(y)) C 

co4'v(y). Thus by Lemma 3.3.1, there exists x G A' such that v l v ( x ) = 0. Since 

A(x) ^ 0 by (i), we must have x G ~B~v(x) and A(x) f l P(x) = 0. • 

A proof similar to that of Theorem 3.3.3 and theerfore omitted gives the following 

result: 

T h e o i e m 3.3.3'. Let (X;A,B; P) be a one-person game such that X = U;f=1Gn, 

where {Cn}'^L-l is an increasing sequence of non-empty compact convex subsets in a 

topological vector space F and the following conditions are satisfied: 

(1) A is lower semicontinuous on X and for each x G X , A(x) is non-empty and 

coAi(x) C Bi(x); 

(2) A (IP is XFc-majorized; 

(3) for each sequence {yn)%Li in X with yn E Cn for each u = 1,2, ••• which 

is escaping from X relative to { G , , . } ^ , there exist n E N and x„ E Cn such that 

x n G co(A(yn) f l P(yn)) f l G„. 

Then for each open convex neighborhood V of zero in E, the one-person game ( A ; / I , / i v ; /J) 

has an equilibrium point in X , i.e., there exists a point xy E X such that xy E liy(xy) 

and A(xv) f l P(xv) = 0 where Bv(x) = (B(x) + V) f l A for each x G X . 

The following is an existence theorem for "approximate" equilibrium points for a gen­

eralized game: 

T h e o r e m 3.3.4. Let / be any (countable or uncountable) set. For each i E I, let 

A, be a non-empty convex subset of a topological vector space F, and Ai, Bi, Pi : X = 
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n i G / A i - ^ 2 A ' - U { 0 } be such that 

(a) Ai is lower semicontinuous and for each x G X , A,(x) is non-empty and coAi(x) C 

Bi(x); 

(b) Ai f l Pi is KFc-majorized; 

(c) the set FJ = {x G X : (A,- f l P t)(x) 7̂  0} is open in X . 

Suppose that X is paracompact and that there exist a non-empty compact convex subset 

Xo of X and a non-empty compact subset K of X such that for each y E X\K, there is 

an x G co(X(jU{y}) with x, G co(Ai(y)f)P,(y)) for all i E I. Then given any V = IT te/K-

where for each i E I, K is a n open convex neighborhood of zero in F,, the generalized 

game Pv = (A , ; / ! , ,Fv , ; F,-),-6/ has an equilibrium point in K; i.e., there exists a point 

xv = (xy,)i£i G K such that xv, G By;(xy) and Ax(xy) f l P,(xv) = 0 for each i G / , 

where BVl = (F , (x ) -f K) H X ; for each x G X and each i E I. 

Proo f . Let V = lT,-e/K- be given where, for each i E I, K is an open convex 

neighborhood of zero in F t . Fix any i E / and define Ayi,Byi : X —> 2A" by Ay{(x) = 

(coAi(x) + Vi)DXi and BVi(x) = (F , (x ) -f K ) nX t - for each x G A". By (a), At is lower 

semicontinuous so that coAi is also lower semicontinuous by Proposition 2.6 of Michael 

[222, p.366], it follows from Lemma 4.1 of Chang [55] or from Yannelis [325] that AVi 

has an open graph in A x X . Now let Fy{ = {x E X : x, ^ Fy , (x ) } , then Fy{ is open 

in X. Define the map QVi; : X -> 2^ ' by 

/ (^- n Pt)(x), if x i FVi, 
yv i ( s ) = < 

{ Ai(x), if x G FVi. 

We shall prove that the qualitative game T = (X,-, Qv;)iei satisfies all conditions of 

Lemma 3.3.2. First we note that for each i G / , the set 

{x G X : QVi(x) # 0} = Fv,U{xEX\Fyi:Ai(x)C)Pi(x)^iD} 

= Fv( U ((X \ Fv,.) H F') = FVi U F ' 

is op°n in X by (c). Let x E X be such that Qv{(x) ^ 0. We consider the following two 

cases: 

Case 1: x E Fv>. 
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Let $x = Ayt and Nx = Fv;, then X x is an open neighborhood of x in X such that 

(i) Qv;(z) C 9x(z) and by (b), zt $ co$x(z) for each z E X j ;; (ii) coVr(z) C A',- for 

each z G X by (b) and (iii) ^ ^ ( y ) = Av
x(y) is open in A' for all y E X; since Avt has 

an open graph. Therefore, tyx is a /("Fc-majorant of Qv, at x. 

Case 2: x ^ Fv,. 

Since Qv,(x) = M i H Pi)(x) 7̂  0 ar;d ^« CI P, is /\ Fc-majorized, there exist an open 

neighborhood Na of x in X and a co respondence </>A : A" —> 2A ' U {0} such that (i) 

(Ai f l P)(z) C ^x(z) and z, ^ co(j)x(z) for each z G A .̂ and (iii) <j>~x(y) is compactly 

open in X for each y G X, Define * x : A" -> 2V ' U {0} by 

$ M = I 4v , ( * )n^ ( * )» if z ^ F v „ 

1 Ay,(z), if zGFv,. 

Note that as (At f l P,)(z) C < ,̂(z) and Ax(z) C Av,(z) for each z E N,,, we have 

Qy,(z) C ^.(-s) and co$x(z) C X,. It is easy to see that z: £ ra*,.(2) f ° r a" * <= ^ -

Moreover, for any y E Xx, the set 

* ^ ( y ) = { * e X : y G * , ( * ) } 

= {z G X \ Fv, : y G ¥x(z)} U {z G Pv, : y E <Mz)} 

= {zEX\ FV; : y E AVi(z) f l <j>x(z)} U {z G Pv, : // G /V , ^ ) } 

- [(x \ /v.) n ^ O ; ) n C'Cf/)] u [Fv, n /iv.'C'/)] 

= [^71(.!/)UFv,]n^i
l(y) 

is compactly open in X . Therefore, $x is a XFc-majorant of Qyi at x. 

Hence Qyl is a /i'Fc-majorized correspondence. Now by assumption, there exist a non­

empty compact convex subset X 0 of A and a non-empty compact subset K of X such 

that for each y E X\K, there is an x G co(A0U {y}) with x; G co(A{(y)fl /'•(?/)) for all 

i E I. Note that if y g Fv,, then x; G co(/l,(y) fl Pi(y)) C coQy,('!l) and if y G Fv,, then 

x, G co(At(y) f l P,(y)) C co(A,(x)) = coQVi(y). Thus for each i G / , x; G coQv<(y). 

Moreover the set {x G A : Qv,(x) 7̂  0} = Fy, U {x G A \ Fv, : (/!,• n /'<)(«) 7̂  0} = 

Fv, U F' is open in X by condition (c). Therefore all hypotheses of Lemma 3.3.2 are 
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satisfied, so that by Lemma 3.3.2, there exists a point xv = (xv,) t g / G K such that 

Qyt(xy) = ill for all i E I. Since for each i E I, A,(x) is non-empty, we must have 

xv,. G ~Byt(xv) and A, (xv) f l P(xv) = 0. • 

A proof similar to that of Theorem 3.3.4 gives the following result and i-> thus omitted: 

T h e o r e m 3.3.4'. Let (X, , A,, F,, P,)-^ be an X-person generalized game such that 

for each i = 1, • • • , X , X = U ^ G . j where {Cij}^ is an increasing sequence of non­

empty compact convex subsets of a topological vector space F,. Suppose the following 

conditions are satisfied: 

(1) for each i = 1,2, • • •, X , A,- is lower semicontinuous and for each x G X = 

r i j g /X j , Ai(x) is non-empty and ccAi(x) C F,(x) ; 

(2) for each i = 1,2, • • •, X , A,; f l P, is is KFC-majorized; 

(3) for each * = 1,2, • • •, X , the set F, = {x G X : A,-(x) f l P;(x) ^ 0} is open in X ; 

(4) for each sequence (yn)£Li in X which is escaping from X relative to {Cn}^ 

where G„ = n i g /G i , n for each rc = 1,2, • • -, there exist n G N and x „ G Gn such that 

ir;(xn) G A,-(j/„) f l P,-(yn) for all t = 1,2, • • •, X . 

Then given any V = n , e /K where for each i = 1,2, • • • , X , Vi is an open convex neigh­

borhood of zero in F,-, the generalized game I V = (X,; A,, Fv ; ; F,),e/ has an equilibrium 

point in X; i.e., there exists a point xv = (xVi)i£i E X such that xv, G Fv,(xv) and 

Ai(xy) f l Pi(xy) = 0 for each i = 1,2, • • •, X , where Fv, = (73;(x) + K ) D X for each 

x G X and each i= 1,2, • • •, X . 
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3.4 Equilibria in Locally Convex Topological Vector Spaces 

In this section, by constructing an approximate generalized game which is associated with 

a given generalized game (this procedure is called "approximation method!' in our thesis), 

existence theorems for equilibria of generalized games are obtained In these theorems, the 

strategy spaces may be non-compact sets in infinite-dimensional locally convex topologi­

cal vector spaces, the number of agents may be uncountably infinite and the preference 

correspondences may be non-total or non-transitive and may not have open lower (or up­

per) sections. Our results generalize many existence theorems for equilibria of generalized 

games by relaxing the compactness of strategy spaces and by weakening the continuity of 

constraint and preference correspondences. In particular, the question raised by Yannelis 

and Prabhakar [326] in 1983 is answered in the affirmative with weaker assumptions. 

We shall need the following fact: 

L e m m a 3 .4 .1 . Let X be a topological space, Y a non-empty subset of a topological 

ve.cor space F, B a base for the zero neighborhoods in E and B : X —> 2Y. For each 

V E B, Let By :X -> 2Y be defined by By(x) = (B(x) +V)f]Y for each x G A . If 

x G A and y G V are such that y E f]y&BBy(x), then y E B(x). 

Proo f . Suppose y f. B(x), then (x ,y) ^ c/vxyGraph(F). Let // be an open 

neighborhood of x in X and V E B be such that 

(*) (U x (y + V)) fl Graph(B) = 0. 

Choose W E B such that W — W C V. Since y E Bw(x), by assumption, (x,y) G 

clxxYGraph(Bw) so that U x (?) + W)) f l Graph(Bw) ^ 0. Take any x G U and 

wi E W with (x,y + w,) G Graph(Bw) so that y + W\E Bw(x) = (B(x) + W) f l Y. 

Let z G B(x) and u>2 G W be such that y + W] = z -f- v>2 E Y, it follows that 

z = y + wi-W2 6y + W-WCy-rVso that (y + V) f l F (x ) ^ 0 where x G (/. This 

contradicts (*). Thus we must have y G F (x ) . • 

Using Theorem 3.3.4 and Lemma 3.4.1, we shall present one of our main results in 

this section as follows: 
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T h e o r e m 3.4.2. Let Q = (X,; A , ,F , ;P , ) t € / be a generalized game such that X = 

11,'e/X, is paracompact Suppose the following con Jitions are satisfied: 

(a) for each ? G / , X , is a non-empty convex subset of a locally convex topological 

vector space F,, 

(b) for each / G / , A, : X —> 2X' is lower semicontinuous such that for each x G X , 

A ( x ) is non-empty and coAx(x) C Bt(x); 

(c) for each * G / , A, f l P, is XFc-majorized; 

(d) for each / G / , the set E' = { x G X : (A t n F t ) (x) 7̂  0} is open in X ; 

(e) there exist a non-empty compact convex subset Xo of X and a non-empty corn, ^-t 

subset K of X such that for each y E X \ K, there is an x E co(X0 U {y}) with 

x, G c o ( A ( y ) n P , ( y ) ) f o r a l h G / 

Then Q has an equilibrium point in K, i.e. there exists a point x — (x , ) l 6 / G X such 

that for each / G / , x, G ~Bx(x) and A,(x) f l Pt(x) - 0 

P roo f . For each 1 E I, let B, be the collection of all open convex neighborhoods 

of zero in F, and B — T l i e /F, . Given any V E B, let V = U3eiV3, where V3 E B3 

for each 3 E I. By Theorem 3.3.4, there exists xy E K such that xv, G Fv , (xv ) and 

^ . ( x v J n P ^ x v ) = 0 for each 1 E I, where Fv,(a;) = (F, (x) + K ) n X , for each x E X. It 

follows that the set Qy := {x G 7Y : x, G Fv,(x) and A,(x) f lP , (x ) = 0} is a non-empty 

closed subset of K by (d). 

Now we want to prove {Qv}yr=e has the finite intersection property. Let { V i , - - - , 

Vv) be any finite subset of B. For each ? = I,- • • ,n, let K = n ^ / V ^ where Vl3 E B3 

for each 3 E I; let V = n j 6 / ( f i ; i
= i K j ) . t h e n <5K ^ 0. Clearly Qv C (X=iQv, so that 

niLiQv, 7̂  0 Therefore the family {Qv • V E B} has the finite intersection property. 

Since A' is compact, f ive BQV 7̂  0- Now take any x G f l v e e ^ v . then for each * G / , 

r, G 7 A 7 ( B ) for each V, G 5, and Ax(x) f l P,(.T) = 0. By Lemma 3.4.1, we also have for 

each i E I, x; E~B~,(x). • 

By Theorem 3.3.4' and Lemma 3.4.1, we also have the following result which corre­

sponds to Theorem 3.4.2: 

T h e o r e m 3.4.2'. Let ( X „ / l ^ F ^ P , ) ^ , be an X-person generalized game such 
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that for each i = 1,2, • • •, X , A',- = U^.1G,-,y where { G ; , ; } ^ , is an increasing sequence 

of non-empty compact convex subsets of a locally convex topological vector space F'. 

Suppose the following conditions are satisfied: 

(1) for each i — 1,2, • • • , X , and for each x G A' = O/g/A./, / l ; ( r ) is non-empty and 

coA,-(x) C Bi(x); 

(2) for each i = 1,2,- • • , X , ,4; is lower semicontinuous; 

(3) for each i = 1,2, • • •, N, the correspondence A{ f l P; : A' -> 2A'- U {0} is A7 ' r -

majorized; 

(4) for each i = 1,2, • • •, X , the set F = {x G X : A;(x) f l P;(x) =£ 0} is open in A ; 

(5) for each sequence (y n )£ l | in X which is escaping from X relative to { G n } £ i | 

where Cn = HxeiC,,n for each n = 1,2, ••-, there exist n E N and x „ G Gn such that 

*,-(»„) G Ai(yn) f l P,-(yn) for all i = 1,2, • • •, X . 

Then (Xi,At,Bi,Pt)^ has an equilibrium point x G A", i.e., for each i = 1,2, • • - , X , 

T.-(Z) G £^(x) and A.-(x) f l P,(x) = 0. 

C o r o l l a r y 3.4.3. Let £ = ( X , ; / l , , F,; P,),e_ be a generalized game such that 

X — r i jg/Xj is paracompact. Suppose the following conditions are satisfied: 

(a) for each i E I, Xi is a non-empty convex subset of a locally convex topological 

vector space F,; 

(b) for each i E 1 and for each x G X, Ai(x) is non-empty and coAi(x) C B;(x); 

(c) for each % E I, Ai and P,- have open lower sections; 

(d) for each i E I, Ai f l Pi is KFc-majorized; 

(e) there exist a non-empty compact convex subset X 0 of A and a non-empty compact 

subset K of X such that for each y E X \ K, there is an x E co(Xu U {y}) with 

Xi E co(Ai(y) f l Pi(y)) for all i E I. 

Then Q has an equilibrium point in K, i.e., there exists point x G K such that for each 

i E I, xx E ~Bi(x) and A,-(x) f l P;(x) = 0. 

Proof . By (c), the map A-x : A —> 2* ' is lower semicontinuous and the set K' ~ 

{x G X : A,(x) f l P,(x) T^ 0} is open in X . Therefore all the hypotheses in Theorem 

3.4.2 are satisfied, so that the conclusion follows. • 
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C o r o l l a r y 3.4.3' . Let (X, , A,, F t , P , ) ^ be an X-person generalized game such that 

for each i = 1,2, • • •, X , Xx = U ^ G . j where { G t J } ~ j is an increasing sequence of non­

empty compact convex subsets of a locally convex topological vector space Et. Suppose 

the following conditions are satisfied: 

(1) for each / = 1,2, • • •, X , and for each x G X — W3(ziX3, Ax(x) is non-empty and 

coAi(x) C B;(x), 

(2) for each / = 1,2, •• • , X , both A, and P, have open lower sections; 

(3) for each i = 1,2, • • •, X , A, f l Px is KFC-majorized; 

(4) for each sequence (yn)£Li in X which is escaping from X relative to {Cn}^=i 

where Cn — n,c/G,,„ for each n = 1,2, • • -, there exist n E N and x n G G„ such that 

* . K ) e Ax(yn) f l P,(yn) for all i = 1,2, • • •, X . 

Then (Xi,Ax,Bx,Px)^_x has an equilibrium point x G X, i.e., for each i = 1 , 2 , - - - ,X , 

7r,(x) G tyfx) and A,(x) f l P,(x) = 0. 

Corollary 3.4.3 (respectively, Corollary 3.4.3') improves Theorem 6.1 of Yannelis and 

Prabhakar [326] in the following ways: (i) the index / need not be countable, (ii) for each 

i E I, the set A', need not be metrizable and (iii) for each i E I, A, f l P, need not be of 

class KF 

C o r o l l a r y 3.4.4. Let Q = (X, ; A „ F , ;P, ) l 6 / be a generalized game such that 

A" = H,e/A
A, is paracompact. Suppose the following conditions are satisfied: 

(a) for each i. E 1 X, is a non-empty convex subset of a locally convex topological 

vector space, 

(b) for each / G / and for each x G X , A,(x) is non-empty and coA,(x) C Bx(x); 

(c) for each i. E I, A, has an open graph in X x A', (respectively, is lower semicon­

tinuous) and P, is lower semicontinuous (respectively, has an open graph in X x X , ) ; 

(d) for each / G / , A, f l P, is KFc-majorized; 

(e) there exist a non-empty compact convex subset X 0 of X and a non-empty compact 

subset A' of A' such that for each y E X \ K, there is an x G co(A"0 U {y}) with 

x: E co(A;(y) f l P,(y)) for all i E I. 
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Then Q has an equilibrium point in K, i.e., there exists point x G A" such that for each 

i E 1, ii E ~B~i(x) and A,(x) f l P,(x) = 0. 

P roo f . For each i E f, since A, has an open graph in A" x A",- (respectively, is 

lower semicontinuous) and P, is lower semicontinuous (respectively, has an open graph 

in A x Xi), the map A, f l P, : X —• 2 A ' U {0 } is also lower semicontinuous by Lemma 

4.2 of Yannelis [325], so that the set F ' = {x G X : A,(x) f l P ((x) f 0} is open in X. 

Therefore all conditions of Theorem 3.3.3 are satisfied and the conclusion follows. • 

C o r o l l a r y 3.4.4' . Let (X, ; A,-, 5 , - j P i ) ^ be an X-person game such that for each 

i = 1,2, • • •, X , X , = WfLidj where { G . j } ^ , is an increasing sequence of non-empty 

compact convex subsets of a locally convex topological vector space F,\ Suppose the 

following conditions are satisfied: 

(1) for each i — 1,2, • • •, X and for each x E X = IT je/A";, A;(x) is non-empty and 

coAi(x) C Bi(x); 

(2) for each i = 1,2, • • •, X , Ai has an open graph in X x A"; (respectively, is 

lower semicontinuou) and P, is lower semicontinuous (respectively, has an open graph in 

A x X{); 

(3) for each i = 1,2, • • • , X , the correspondence A,- f l P, : X -> 2 A ' U {0} is KF(r 

majorized; 

(4) for each sequence (yn)°?~i in X which is escaping from X relative to {G„}£L, 

where G„ = n,-e/C7,-,Ti for each n — 1,2, • • -, there exist 7/- G X and x n G G„ such that 

*i(xn) e Ai(yn) f l Pi(yn) for all i = 1,2, • • •, X . 

Then (X,-, Ai,Bi, P,-)iIi has an equilibrium point x E X, i.e., for each i— 1,2, • • - , X , 

7r,(x) G ~Bi(x) and A,-(x) f l P,(x) = 0. 

Corollary 3.4.4 (respectively, 3.4.4') generalizes Corollary 3 of Borglin and Keiding [37], 

Theorem 4.1 of Chang [55], Theorem of Shafer and Sonnenschein [263] and Theorem 5 

of Tulcea [316]. 

R e m a r k . \n above, we have proved the existence theorem for equilibria of generalized 

games with non-compact and infinite dimensional strategy spaces, an infinite numbers of 
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agents, and non-total and non-transitive constraint and preference correspondences which 

need not have open graphs or open lower or upper sections. Since it is well known that 

if a correspondence has an open graph, then it has open upper and lower sections (see 

Bergstrom et al [31, p.266] and thus the correspondences having open graphs are lower 

semicontinuous. However, a continuous correspondence need not have open lower or 

upper sections in general (see Yannleis and Prabhakar [326, p.237]). Also, in infinite 

settings the set of feasible allocations generally is not compact in the commodity spaces. 

Our result generalizes many results in literatures by relaxing the compactness of strategy 

spaces and the openness of graphs or lower (upper) sections of constraint correspondences. 

In 1983, Yannelis and Prabhakar [326] gave the following existence theorem for equi­

libria of generalized games: 

T h e o r e m 3.4 .A. Let T = (X, ; A t ; P,),e/ be a generalized game satisfying for each 

? G 7 (where 7 is countable): 

(i) A, is a non-empty compact, convex and metrizable subset of a locally convex 

topological vector space; 

(ii): the mapping A, : X ( = n , 6 /X . ) —> 2X' satisfies that clAt(x) = A , (x ) for each 

x G A (so that the mapping clA, is upper semicontinuous); 

(iii): Ai and P, have open lower sections; and 

(iv): x, £ cop,(x) for all x G X. 

Then T has an equilibrium, i.e., there exists x G A" is such that x, G clAt(x) and 

A,(x) n P,(x) = 0. 

In addition, Yannelis and Prabhakar asked that if Theorem 3.4-A can be extended to 

uoii-metrizable subsets without introducing additional assumptions ? 

Theorem 3.4.2 improves Theorem 3.4.A of Yannelis and Prabhakar in the following 

ways: (i) the index set / need not be countable, (ii) for each i E I, the set X , need not be 

metrizable and need not compact (iii) for each i G / , both A, and P, need not have open 

lower sections. Therefore the question raised by Yannelis and Prabhakar [326, p.242] is 

answered in the affirmative with weaker assumptions. 
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Let X and Y be topological spaces. A correspondence T : X —> 2V U {0} is said to 

be quasi-regular if 

(i) it has open lower sections (i.e., for each y G Y, T~l(y) is open in A'); 

(ii) T(x) is non-empty and convex for each x G A"; 

(iii) T(x) = clYT(x) for all x G X . 

The correspondence T is said to be regular if it is quasi-regular and has an open graph. 

Let X be a non-empty set, Y a non-empty subset of a topological vector space F and 

F : A —> 2Y. A family (fj)jej of correspondences between X and Y, indexed by a non­

empty filtering set ,7 (we denote by < the order relation in J), is an upper approximating 

family for the mapping F (e.g, see [317, p.269]) if 

(A,): F(x) C f3(x) for all x G A and all j E J; 

(An): for each j E J there is j* E J such that for each h E J with h > j*, 

fh(x) C 7j (x) for each x G X ; 

(Am): for each x G X and V E B, where B is a base for the zero neighborhoods in 

F, there is jXjV G J such that fh(x) C F ( x ) + V if /i G .7 and j/X|v < /'•• 

From (A / ) - (A ; / / ) , it is easy to deduce that: 

(Aiv): for each x G X and k E J, F(x) C fl3eJf3(x) = r\k<3,ke.ifj(:>') C o/P(»0 C 

F (x ) . 

If X is a subset of a topological vector space F, X is said to have the property (A') 

if for every compact subset B of X , the convex hull of B is relatively compact in A . 

By Theorem 3 and its Remark in Tulcea [317, p.280 and p.281-282], we have the 

following: 

L e m m a 3.4.5. Let (X , ) , 6 / be a family of paracompact spaces and (Vi)ie/ be a 

family of non-empty closed convex subsets, each in a locally convex topological vector 

space and each having property (K). For each i E J, let F,- : X , —• 2Y> be such that 

F, is compact and upper semicontinuous with compact convex values. Then there is a 

common filtering set .7 (independent of i E I) such that for each i E I, there is a family 

(fij)jeJ ° f correspondences between A ; and Yi with the following properties: 
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(a) for each 3 E J, f,3 is regular; 

(b) (fi3)3£j and (Jtl)jeJ a r e upper approximating families for F, and 

(c) for each j E J, fXJ is continuous if Y, is compact. 

By the above approximation theorem for upper semicontinuous correspondences (Tul­

cea [317, Theorem 3, p.280]), we can also prove the following existence theorem for 

equilibria of generalized games in which the constraint correspondences are upper semi-

continuous. 

T h e o r e m 3.4.6. Let Q = (X, ; A,, Bt; P,),ey be a generalized game such that X = 

n,e/X,- is paracompact. Suppose the following conditions are satisfied: 

(a) for each 1 E I, X , is a non-empty closed convex subset of a locally convex 

topological vector space F, and X , has the property (K); 

(b) for each i E / , Bx is compact and upper semicontinuous with non-empty compact 

<n convex values and A,(x) C F,(x) for each x G X ; 

(c) for each 1 G / , P, is lower semicontinuous and KFc-majorized; 

(d) for each * G / , El = {x G X : (A, f l P,)(x) 4 0} is open in X ; 

(e) there exist a non-empty compact convex subset X 0 of X and a non-empty compact 

subset K of X such that for each y E X \ K, there is an x G co(X0 U {y}) with 

x, G co(Ax(y) f l Pt(y)) for all 1 E / . 

Then there exists x £ K such that for each i E I, xt € Bx(x) and A,(x) f l P,(x) = 0. 

P roo f . By Lemma 3.4.5, there is a common filtering set J such that for every i E I, 

there exists a family (BX3)3ej of regular correspondences between X and X , such that 

both (Bt3)3£j and (Bt1)3ej are upper approximating of families for F,. 

Let 3 E J be arbitrarily fixed. The game Q3 = (Xx;Bl3,B~x~3; P,) te/ satisfies all hypothe­

ses of Theorem 3.4.2 Hence Q3 has an equilibrium x3 G K such that F ^ x - ^ f l P , ^ ) = 0, 

and 7r,(:F) G ̂ (x3) for all i G / . 

Since (xJ)jej is a net in the compact set K, without loss of generality we may assume 

that (x3)3€J converges to x* G K. Then for each i E I, TT,(X*) = l im j e j 7 r , (x J ) . Note 

that for every j E J and x G X , A,(x) C F,(x) C B,3(x), we have At(x
3) f l Px(x

3) = 0 

for all 1 E l. By condition (d), for every i £ I, A,(x*) f l P,(x*) = 0. As B~73 has 
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closed graph, (x* ,x* ) G GraphB,3 for every i E / . For each / G / , since (B,j)je.i is 

also an upper approximation family for Bx, n3ejBtJ(x) C F,(x) for each x G A" so that 

(x* ,x* ) G GraphB~x. Therefore for each i E I, A , ( x * ) f l P,(x*) = 0 and TT^X*) G B~,(X*). 

D 

Corresponding to Theorem 3.4.6, we have: 

T h e o r e m 3.4.6' . Let (X, ; A,; P,)£L, be an X-person generalized game such that for 

each i = 1,2, • • •, X , X , = U ^ G , ^ is closed and has property (K), where { G , , j } ~ , is an 

increasing sequence of non-empty compact convex subsets of a locally convex topological 

vector space Et. Suppose the following conditions are satisfied: 

(1) for each i = i , 2 , - - - , X , A, : X —> 2 A l is compact and upper semicontinuous 

with non-empty compact and convex values; 

(2) for each /' = 1,2, • • - , X , the correspondence P, : A" - • 2A'- U {0} is lower 

semicontinuous and KFc-majorized; 

(3) for each i = 1,2, • • •, X , the set F, = {x G A : At(x) f l P,(x) ^ 0} is open in A"; 

(4) for each sequence (yn)^Li in X which is escaping from X relative to {G„}£L, 

where G„ = n,e/G, )7 l for each n — 1,2, ••-, there exist v E N and x n G G„ such that 

T . M G At(yn) n Px(yn) for all / G / . 

Then ( X t ; A,; P,)1^:1 has an equilibrium point x G X , i.e., for each / = 1 ,2 , - - - ,X , 

7r,(x) G A,(x) and At(x) f l P,(x) = 0. 

If X , is non-empty compact convex in Theorem 3.4.6, we have 

C o r o l l a r y 3.4.7. Let Q = (X, ; A,; P t),6 / be a generalized game and let A = 

n , e /X , . Suppose the following conditions are satisfied for each i E I: 

(a) X , is a non-empty compact convex subset of the locally convex topological vector 

space F,; 

(b) A, : X —> 2* ' is upper semicontinuous with non-empty compact and convex 

values for each x G X ; 

(c) P, : X —> 2* ' U {0} is lower semicontinuous and A'Fc-majorized; 

(d) for each i £ I, F = {x G X ; (A, f l P,)(x) ^ 0} is open in X; 
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Then there exists an x G X such that for each i £ I, x, G A,(x) and A,(x) f l P,(x) = 0. 

Corollary 3.4.7 also generalizes Theorem 5 of Tulcea [317] and Theorem of Shafer-

Sonnenschein [263, p 374]. 

By Corollary 3.4.7, we obtain the well-known fixed point theorem of the Fan-Glicksberg 

(see Fan [97] or Glicksberg [127]) for upper semicontinuous correspondence in locally 

convex topological vector space. 

C o r o l l a r y 3.4.8. Let X be a compact and convex subset of a locally convex topo­

logical vector space F and let A : X —> 2 X be upper semicontinuous with non-empty 

closed and convex values. Then A has a fixed point. 

P roo f . Let / = {1} and define P : X -> 2X U {0} by P,(x) = 0 for each x G X in 

Corollary 3.4.7, then conclusion is true. • 

The following example shows that the condition (d) "for each i E f, El = { x G X : 

(A, f l Pj)(x) 7̂  0} is open in X " of Theorem 3.4.6 is essential. 

E x a m p l e . Let / = {1} and X = [0,1]. Define A,P : X - * 2X U {0 } by 

A(x) = 

[1/2,1], if xG [0,1/2), 

[0,1], i fx= l /2 , 

[0,1/2], if xG (1/2,1], 

and 

P(*)J*> if* = °' 
I [0,x), ifxG(0,l]. 

Then A is upper semicontinuous with non-empty closed convex values and the fixed point 

set of A is the singleton set {1 /2 } . The correspondence P has convex values with open 

lower sections since for each y G [0,1], P~*(y) = (y, 1] which is open in X . Therefore 

A, P and A" satisfy all conditions of Corollary 3.4.7 except that E = {x £ [0,1] : 

/ t (x) f l P(x) T^ 0} = [1/2,1] is closed but not open in [0,1]. But A ( l / 2 ) f l P ( l / 2 ) ^ 0, 

i.e., the generalized game T = ([0,1]; A\P) has no equilibrium point. 
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3.5 Equilibria for ZY-Majorized Mappings 

The objective of this section is to give some existence theorems for maximal elements 

and equilibria in qualitative games without the compactness (or (.aracompactness) as­

sumption on the domain of the preferences which are majorized by upper semicontinuous 

correspondences instead of being majorized by correspondences which have lower open 

sections. Our intention is to merely illustrate a certain technique that we think will be 

of use in various problems of mathematical economics. Many other results of the type 

proved here may be proved under more general conditions. 

Let X be a topological space, Y a non-empty subset of a vector space E, let 0 : X —» 

F be a map and <f> : X —> 2Y U {0} a correspondence. Then (1) </> is said to be of class 

Ug if (a) for each x G X , 0(x) S" (j>(x) and (b) </> is upper semicontinuous with closed and 

convex values in Y; (2) §x is a W^-majorant of <j> at x if there is an open neighborhood 

N(x) of x in X and <f>x : X ( x ) -> 2Y such that (a) for each z E N(x), <j>(z) C (/>x(z) and 

8(z) $ (j>x(z) and (b) cj>x is upper semicontinuous with closed and convex values; (3) </> is 

said to be Wp-majorized if for each x G X with <^(x) ^ ill, there exists a Wtf-majorant <j>x of 

<j> at x. We remark that when X = Y and 9 = Ix, the identity map on X , our notions of 

a £/0-majorant of ^ at x and a ^-majorized correspondence are generalizations of upper 

semicontinuous correspondences which are irreflexive (i.e., x fi <j>(x) for all x G A') and 

have closed convex values. Here we shall deal mainly with either the case (I) X = Y and 

is a non-empty convex subset of the topological vector space F and 0 — Ix, the identity 

map on X , or the case (II) X = r i ; e /X , and 0 = ir3 : X —> X3- is the projection of X 

onto X3 and Y = X3 is a non-empty convex subset of a topological vector space. In both 

cases (I) and (II), we shall write li in place of Ug. 

We shall need the following: 

T h e o r e m 3.5.A. Let X be a topological space and Y a normal space. If F, G : 

X -» 2Y U {0} have closed values and are upper semicontinuous at x £ X, then F f l G 

is also upper semicontinuous at x. 

P roo f . If F ( x ) f lG (x ) 7̂  0, the conclusion follows from Hildenbrand [147, Proposition 
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B.III.2, p.23-23] (also see Klein and Thompson [189, Theorem 7.3.10, p.86]). If F ( x ) f l 

G(x) — 0, since Y is normal, it is easy to see that there exists an open neighborhood X of 

x in X such that F ( z ) f l G ( z ) = 0 for all z £ N; thus F f l G is also upper semicontinuous 

at x. • 

We remark here that in Theorem 3.5.A above, we do not require F ( x ) f l G(x) 7̂  0 

for each x G A . 

We shall also need the following result which generalizes and extends Lemma 6.1 of 

Yannelis and Prabhakar [326]: 

L e m m a 3 .5 .1 . Let X and Y be two topological spaces and A be a closed (re­

spectively, open) subset of X . Suppose Fi : X - • 2Y U { 0 } , F2 : A -> 2Y U {0} are 

lower semicontinuous (respectively, upper semicontinuous) such that F2(x) C Fi(x) for 

all x G A. Then the map F : X -+ 2Y U {0} defined by 

| F 1 ( X ) ' i f x ^ A ; 

\ F2(x), if x G A 

is also lower semicontinuous (respectively, upper semicontinuous). 

P roo f . Let U be any closed (respectively, open) subset of Y. Clearly 

{.%• G A : F(x) C (/} = {xEA: F2(X) C U} U {X G X \ A : F, C U} 

C {xEA: F2(x) C U} U {x G X : F^x) C */} . 

Conversely, if x G A and F2(x) C U, then F ( x ) = F2(x) C / / and if x G A and 

F ( x ) C U, then F (x ) = F2 (x) C F ( x ) C £/. If x G X \ A, then F ( x ) = FT(x) C /7. 

This shows that we have {x G X : F(x) C U} D {x £ A : F2(x) C U} U {x £ X : 

Fi(x) C /./}• Hence {x £ X : F ( x ) C U} = {x £ A : F2(x) C £/} U {x £ X : 

F|(x) c ( / } . Since A and /7 are closed (respectively, open) and Fi and F2 are lower 

semicontinuous (respectively, upper semicontinuous), the set {x G X : F ( x ) C c7} is also 

closed (respectively, open). Therefore, F is lower semicontinuous (respectively, upper 

semicontinuous). D 

We also need the following: 
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L e m m a 3.5.2. Let X be a paracompact space and Y be a non-empty normal subset 

of a topological vector space F. Let 0 : X —> E and P : X —> 2V U {0} be W-majorized. 

Then there exists a correspondence * : X -> 2Y U {0} of class £/ such that P(x) C * ( x ) 

for each x G X . 

P roo f . Since P is U-majorized, for each x E X, let X ( x ) be an open neighborhood of 

x in A and i/>x : X ( x ) — 2Y U {0 } be such that (1) for each z £ X ( x ) , P(z) C ij>x(z) and 

0(z) ^ ipx(z) and (2) 7/;x is upper semicontinuous with closed and convex values. Since 

A is paracompact and X = UxexN(x), by Theorem VIII.1.4 of Dugundji [89, p.162], the 

open covering { X ( x ) } of X has an open precise neighborhood-finite refinement { X ' ( x ) } . 

For each x G X , define <// : X -» 2Y U {0} by 

\ipx(z), i f ^€X ' (x ) ; 

' ' W = U ifz^X'(x), 

then ip'x is also upper semicontinuous on X by Theorem 3.5.A above and is such that 

P(z) C H(z) for each z G X . 

Now define * : X -> 2K U {0} by #(z ) = nx€Xi/>'x(z) for each z G X. Clearly, * 

has closed and convex values and P(z) C ^(z) for each z G X. Let z G A be given, 

then z G N'(x) for some x £ X so that ?/£(.z) - ^ ( 2 ) and hence *l>(z) C V^(")- a s 

9(z) fi ijjx(z), we must also have that 9(z) fi tf(z). Thus 0(z) fi <H(z) for all z G A". 

Now we shall show that $ is upper semicontinuous. For any given u G X, there exists 

an open neighborhood Mu of u in X such that the set { x G A : Mu f l N(x) =fi 0} is 

finite, say = {x(u, 1), • • • ,x(u,n(u))}. Thus we have that 

For i = 1, • • • ,7?.(ri), since each ij)xtux\ is upper semicontionuous on X and hence on Mu 

with closed values and Y is normal, by Theorem 3.5.A above again, ^ : Mu —> 2Y is also 

upper semicontinuous at u. Since Mu is open, * : X —> 2K is also upper semicontinuius 

at u. Hence ty is of class U. • 

We now prove the following theorem concerning the existence of a maximal element 

for ZV-majorized correspondences: 
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T h e o r e m 3.5.3. Let X be a non-empty convex subset of a locally convex topological 

vector space and D a non-empty compact subset of X . Let P : X —> 2D U {0 } be U-

majorized (i.e., Uix-majorized). Then there exists a point x G coD such that P (x ) = 0. 

P roo f . Suppose the contrary, i.e., for all x G coD, P(x) fL- 0. Then for each 

x G coD, P(x) 7̂  0 and coD is also paracompact by Lemma 1 of Ding, Kim and Tan 

[86, p.206] (see also Lassonde [201, p.49]). Now applying Lemma 3.5.2, there exists a 

correspondence ^ : coD —•> 2D of class U such that for each x £ coD, P(x) C $(%). 

Since 4> is upper semicontinuous with non-empty closed and convex values, by a fixed 

point Theorem of Himmelberg [151, Theorem 2, p.206], there exists x G coD such that 

x G tjV(x). This contradicts that $ is of class U. Hence the conclusion must holds. D 

In what follows, we shall give some applications of Theorem 3.5.2 and Theorem 3.5.3. 

First we have the following: 

T h e o r e m 3.5.4. Let X be a non-empty convex subset of a locally convex topological 

vector space and D be a non-empty compact subset of X . Let P : X —> 2D be U-

majonzed and A : X —> 2D be upper semicontinuous with closed and convex values. 

Then there exist a point x G coD such that either x E A(x) and P(x) = 0 or x fi A(x) 

and A(x) f l P(x) = 0. 

P roo f . Let F = {x G A : x G A ( x ) } . We first note that F is closed in X since A 

is upper semicontinuous with closed values. Define <j>: X —> 2D by 

I A(x) fl P(x), if x g F. 

If x <£ F and A(x ) f l P (x ) 7̂  0, then X \ F is an open neighborhood of x in X and 

since P is ZV-majorized, there exist an open neighborhood X ( x ) of x in X and a mapping 

(A, : X ( x ) -+ 2 ° such that (1) for each z £ N(x), P(z) C ipx(
z) a n d z £ 1>x(z) and 

(2) i/X- is upper semicontinuous with closed and convex values. Without loss of generality, 

we may assume that N(x) C X \ F. We now define the mapping vpx : X -4 2D by 

^x(z) - A(z) f l tj)x(z) for each z G X ( x ) . Then again by Lemma 3.5.1 (note that D is 

compact so that D is normal), we have (1) $x is upper semicontinuous with closed and 



122 

convex values and (2) for each z £ N(x), z fi ^x(z). Thus tyx is a /.Y-majorant of <j) at 

x. 

Now suppose that x E F and P(x) 7̂  0; then by assumption there exist an open 

neighborhood X ( x ) of x in X and ipx : N(x) -> 2D such that (a) P(z) C i>.r(z) and 

z fi il>x(z) for each z G X (x ) and (b) ipx is upper semicontinuous with closed and convex 

values. Define i/>x : N(x) - * 2 D by 

^ (JB) = J ^ ) > i f * G X ( x ) n F , 
%xZ \ A(x)nM*)> \izfiN(x)\F, 

then (i) for each z G X ( x ) , it is easy to see that <f>(z) C ij)'x(z) and z fi ij>'x(z), (ii) the 

mapping A f l •</>* : X ( x ) \ F -»• 2D defined by (A f l $x){z) = A(z) f l ip^z) for each 

z G X ( x ) \ F is upper semicontinuous with closed and convex values by Lemma 3.5.1. It 

follows that the mapping ip'x is also upper semicontinuous with closed and convex values 

by Lemma 3.5.1 since N(x) \ F is open in X ( x ) . This shows that ij)'x is a 77-majorant of 

<f> at x. 

Therefore 0 isU-majorized. By Theorem 3.5.3, there exists a point x £ col) C A such 

that <j)(x) = 0. By the definition of <f>, either P(x ) = 0 and x G A(x) or A(x)f] P(x) - % 

and x fi A(x). • 

The following is an equilibrium existence theorem for a qualitative game: 

T h e o r e m 3.5.5. Let T = (A, , P,) lG/ be a qualitative game such that for each i £ I, 

(a) Xi is a non-empty convex subset of a locally convex topological vector space fc',-

and Di is a non-empty compact subset of X, ; 

(b) the set F1' = {x G X : P{(x) ^ 0} is open in X ; 

(c) Pi : F* - * 2Di U {0} is ^-majorized; 

(d) there exists a non-empty compact and convex subset F, of D, such that Fi f l 

P,(x) 7̂  0 for each x£ E{. 

Then there exists a point x G X such that P;(x,) — 0 for all i £ I. 

Proo f . Since Di is a non-empty compact subset of X,- for each i £ I, the set 

D = fl ig/F,- is also a non-empty compact subset of A . Now for each x G X, let 
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l(x) = { / € / : Pi(x) ^ 0} Define a correspondence P : X -» 2 D U {0 } by 

[X) " \ 0, if /(x) = 0, 

where P/(x) = f l j ^ e / F , x P,(x) for each x G X 

Then by condition (d) and definition of P, for each x £ X with / ( x ) 7̂  0, P ( x ) 7̂  0. 

Let x G A be such that P(x) 7̂  0 Fix an i £ I(x). By assumption (c), there exist 

an open neighborhood X ( x ) of x in E' and (j)x : N(x) —> 2D' such that (i) for each 

z £ N(x), P,(z) C (f)x(z) a 'd 7r,(z) fi (j)x(z) and (ii) </>, is upper semicontinuous with 

closed and convex values. Note that by (b), X ( x ) is also an open neighborhood of x in 

X and for each z £ N(x), Px(z) 7̂  0 so that 1 £ l(z) for each z £ N(x). Now we define 

<!>,. : X ( x ) -> 2D by 4>x(z) = n j ? t t ] j e / F , ® <j>x(z) for each z G X ( x ) . We observe that 

(1) for each z £ N(x), P(z) C P't(z) C $x(z) and z fi $ x ( z ) ; (2) $ x has closed and 

convex values and (3) since Y\3^X<3&]F3 and (f>x(z) are compact for each z £ N(x), it is 

easy to see that 4>x is also upper semicontinuous. Therefore, $ x is a ZFmajorant of P at 

x. Thus P is ZY-majonzed. Now by Theorem 3.5.3, there exists a point x G coD C X 

such that P(x) = 0 which implies that P,(x) = 0 for all i £ I. • 

T h e o r e m 3..J.6. Let P = (X, ; A , , F , ; P,),e/ be a generalized game where / is any 

(countable or uncountable) set of players such that for each i £ I: 

(i) A",- is a non-empty compact and convex subset of a locally convex topological vector 

space EX; 

(ii) for each x G A", At(x) is non-empty, Ax(x) C Bt(x) and Bt(x) is convex; 

(iii) the set F' = {x G X : A,(x) f l P,(x) 7̂  0} is paracompact (which is satisfied if 

A'; is metrizable) and open in X ; 

(iv) the mapping A, f l P, : A" -> 2X' U {0 } is ZFmajorized on F ' . 

Then P has an equilibrium point, i.e., there exists a point x G X such that 7r,(x) £ F,(x) 

and Ai(x) f l h(x) = 0 for all i £ I. 

Proo f . Let /0 = {/ G / : E''^ 0} . Suppose I0 = 0. Then for each i £ I and for 

each x G X , A,(x) 0 P,(x) = 0. Define B : A - • 2A' U {0} by B(x) = U^^x) for 

each x G -V. Since each B, has a closed graph, it is easy to see that B also has a closed 
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graph. Since X is compact, 8 is upper semicontinuous. By the Fan [97] and Glicksberg 

[127] fixed point theorem, there exists x £ X such that x G B(x), i.e., 7r,(x) G B;(X) for 

all i £ I. Thus we may assume without loss of generality that IQ 7̂  0. 

Case J: For each i £ l0, by (iv) and Lemma 3.5.2 (note that the set A';, being 

compact Haudorff, is normal), there exists a mapping i/»,- : E' —> 2A | U {0} which is 

upper semicontinuous with closed and convex values such that / l , (x) f l P;(.r) C i>;(x) 

and ffi(x) fi 'ijji(x) for each x £ El. Since Bx : X —* 2 A ' U {0} is upper semicontinuous 

with closed and convex values, the correspondence */>,- Pi £?,- : F' —> 2A | \ {0} is also upper 

semicontinuous with non-empty closed and convex values by (ii) and Proposition B.III.2 

of Hildenbrand [147, p.23-24]. Define a correspondence </;; : X -> 2Xl \ {0} by 

flTi(x), WxfiFJ, 
<Pi(x) = < 

\ (ipinBi)(x), i f x G F . 

Then Lemma 3.5.1 implies that </>, is upper semicontinuous with non-empty closed and 

convex values. 

Case 2: For each i £ I \ /o, we define a correspondence </;,- : X — > 2A ' U {0} 

by (j)i(x) — Bi(x) for each x £ X. Then <-/>,- is upper semicontinuous with non-empty 

compact and convex values. 

Now define the correspondence ^ : X —+ 2X by v»V(x) = II,-e/(/;,-(x) for each x £ X. 

Then ^ is also upper semicontinuous with non-empty compact and convex values. By 

the Fan [97] and Glicksberg [127] fixed point theorem again, there exists a point x G A" 

such that x £ * ( x ) . If there exists i £ /0 such that x G F , then TT;(X) £ </;,(x) = 

Bi(x) f l i/ji(x) C '/>i(x) which is a contradiction; it follows that x fi K' for all i £ / , . 

Hence we must have 7r,(x) G B~i(x) and A;(x) n P;(x) = 0 for all i £ I. D 

It seems natural to replace the condition (iii) of Theorem 3.5.6 by the condition " the. 

set E' = {x G X : Ax(x) f l Pi(x) ^ 0} is closed in A " ; however the following simple 

example shows that this can not be done: 
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Example. Let X = [0, I] and define A, F , P : X -* 2X U {0} by 

F(x) = A(x) = < 

[1/2,1], i fxG[0, l /2) , 

[0,1], if x = 1/2, 

[0,1/2], if xG (1/2,1]. 

and 

P(x) 
{ x /4 } , i f x G [ | , l ] , 

J , if xG [0,1/2). 

It is easy to see that A and P are both upper semicontinuous with closed and convex 

values and x 4 P(x) for each x £ X; thus A fl P is £7-majorized. Note that the subset 

F = {x G A : A(x) f l F(x) 7̂  0} = [1/2,1] is closed in [0,1] and A, B and P satisfy 

the hypotheses (i), (ii), (iv) but not (iii) of Theorem 3.5.6. However, at the unique fixed 

point 1/2 of the correspondence A, we have A(\) f l P(\) = [0, l ] f l { l / 8 } 7̂  0. Thus the 

generalized game ([0, 1]; A,B; P) has no equilibrium point. 
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3.6 Equilibria for ^-Condensing Mappings 

In this section, we shall prove some existence theorems for maximal elements for ty-

condensing correspondences which are either XFc-majorized or £/-majorized and whose 

domain are non-compact sets in locally convex topological vector spaces. As an applica­

tion, we obtain an existence theorem for equilibrium points for a one-person game from 

which an existence theorem for N-person games is derived. Finally, we give an existence 

theorem equilibria of generalized games with a countable or uncountable set of players 

such that the intersection of constraint and preference correspondences are ZY-majorized 

and constraint correspondences are ^-condensing. 

The object of this part is to present a method for proving the existence of maximal 

elements and equilibria of generalized games which enables one to remove altogether the 

compactness (or paracompactness) assumption on the domain (and /or codomain) of the 

preference and constraint correspondences. This is done by strengthening the assumptions 

on the preference or constraint correspondences. The basic idea underlying the method 

may be explained as follows. 

Let A be a non-empty subset of a locally convex topological vector space F. We 

introduce a function # : 2X —> R which assigns to each relatively compact subset D of 

X the value zero, and call it a measure of non-compactness. Intuitively, V»V(/)) measures 

how far a set is from being relatively compact. The larger the value $(D) the "more 

non-compact" a set D is in A . Now a multivalued map T : X —> 2 f cU{0} is said to be iiV-

condensing if for each subset D that is not relatively compact, we have l/V(7'(/3)) < W(D). 

It should be noted that if T : X -> 2 E U {0} is a compact mapping (i.e., if T(X) 

is contained in a compact subset K of E), then th * mapping T is automatically tf>-

condensing for any measure of non-compactness. 

Let X be a non-empty set; a mapping P : X —> 2X U {0} is acyclic (e.g., see 

Bergstrom [30, p.403]) if for each n £ N with x , + i G F(x,) for i = 1,2, • • • n - 1 implies 

that xi fi P(xn). 

Let G denote a lattice with a least element 0. We now also recall some definitions 
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introduced by Fitzpatick and Petryshyn [1 '2] . 

Let A be a locally convex topological vector space. Then a mapping $ : 2X —> G is 

called a measure of non-compactness provided that the following conditions hold for any 

A,B £2X: 

(1) ^(A) = 0 if and only if A is precompact (i.e., it is relative compact); 

(2) $(cdA) — ^(A), where coA denotes the closed convex hull of A; 

(3) *(A U B) = max{*(A), * ( £ ) } . 

It follows from (3) that if A C B, then * ( A ) < <5(F). The above notion is a 

generalization of the set-measure of non-compactness of Kuratowski [198] and the ball-

measure of non-compactness of Sadovskii [257] defined either in terms of a family of 

seminorms when X is a locally convex topological vector space by Gohberg et al [129] or 

in terms of a single norm when X is a Banach space. 

Let W : 2A —> G be a measure of non-compactness of X and D C X . A mapping 

T : D^ 2X is called 07-condensing provided that if f l C F and tf (T ( f t ) ) > $ ( 0 ) , then 

f j is relatively compact. 

Note that if T : D —> 2X is a compact mapping (i.e. T(D) is precompact), then T is 

^-condensing for any measure of non-compactness $ . Various ^-condensing mappings 

which are not compact have been considered by Borisovich et al [35], Gohberg et al [129] 

and Furi and Vignoli [121]. Moreover, when the measure of non-compactness ty is either 

the set-measure of non-compactness or ball-measure of non-compactness, \t-condensing 

mappings are called condensing mappings, e.g., see Nussbaum [237]. 

Throughout the rest of this section, F denotes a locally convex topological vector 

space, D denotes a non-empty closed convex subset of E, C denotes a lattice with a least 

element 0 and 4/ : 2E —> G denotes a measure of non-compactness. 

L e m m a 3 .6 .1 . If T : D -> 2D U {0 } is ^-condensing, then there exists a non-empty 

compact convex subset K of D such that T(x) C K for each x £ K. 

Proo f . Let x0 be an element of D and consider the family T of all closed convex 

subsets G of D such that x0 G G and T(x) C G for each x G G. Clearly T is non-empty. 

Let Go = PicefG. Then Go is a non-empty closed and convex subset of D and x0 G Go. 

file:///t-condensing
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If x G Go, then T(x) C G for all G G T so that T{x) C G0. 

Now we shall prove that G0 is also compact. Let Ci = cd({xQ} U T(GQ)). Then 

Ci C G0, which implies that T(CX) C T(CQ) C Gi . Thus G, G .F and hence G0 C G,. 

Therefore G0 = Gi . Hence, 

tf(Co) = *(Ci) = *(co({x0) U T(Co))) = * ({T»} U 2'(GO)) 

= max{*({x0}),*(7,(Go))} = *(7'(GU)) 

so tf(Go) < ip(T(C0)) which implies that G0 is compact. • 

T h e o r e m 3.6.2. Suppose that T : D —> 2D satisfies the following conditions: 

(1) T is ^-condensing and T(x) is non-empty convex for each x G D; 

(2) for each y £ D, the set T~A(y) = {x £ D : y £ T(x)} is compactly open in I). 

Then T has a fixed point in D. 

Proof . Since T is ^-condensing, by Lemma 3.6.1, there exists a non-empty compact 

convex subset K of D such that T : K —> 2h. For each y G A , T~x(y) is also open in 

K by (2). Now by the Fan-Browder fixed point theorem (Theorem 2.3.18), there exists 

x G K such that x G T(x). D 

T h e o r e m 3,6.3. Suppose that T : D —> 2 D is upper semicontinuous and *P-

condensing such that T(x) closed and convex for each x £ D. Then 7' has a fixed 

point. 

Proo f . Since T is a ^-condensing, by Lemma 3.6.1, there exists a non-empty compact 

convex subset K of D such that T : K —• 2A is also upper semicontinuous with non­

empty closed and convex values. Now by the Fan-Glicksberg fixed point theorem in Fan 

[97] or Glicksberg [127], there exists x£ K such that x G 7 (x ) . D 

Theorem 3.6.2 and Theorem 3.6.3 generalize mant well-known fixed point theorems 

in locally convex topological vector spaces, e.g., see Dugundji and Granas [91] and Reich 

[248], Smart [280], Istratescu [162] and Zeidler [336]. 

We now prove the following theorem on the existence of a maximal element which 

generalizes the corresponding result of Toussaint [315, Theorem 2.4] and of Yannelis and 

Prabhakar [326, Corollary 5.1]. 
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T h e o r e m 3.6.4. Let T : D -» 2D U {0} be ^-condensing such that either (i) T 

is ZY-majorized or (ii) T is KFC-majorized. Then there exists a point x* £ D such that 

T(x') = 0. 

Proof . Suppose T(x) ^ 0 for all x £ D. By Lemma 3.6.1, there exists a non-empty 

compact convex subset K of D such that T : K -*• 2 A . if assumption (i) holds, then 

by Lemma 3.5.2, there exists an upper semicontinuous mapping S : K —• 2A such that 

for each x G X , 5 (x ) is non-empty closed and convex, T(x) C S(x) and x fi S(x). But 

then by the classical Fan-Glicksberg fixed point theorem ([97] or [127]), there exists a 

point x G K such that x G S(x) which is a contradiction. Now if assumption (ii) holds, 

since T is XPc-majorized, by Lemma 3.2.2 (see also Lemma 2 of Ding and Tan [84]), 

there exists a map S :!<-•* 2K sucl. that (a) T(x) C S(x) for each x £ K, (b) S~l(y) 

is open in K for each y E K and (c) x fi coS(x) for each x G K. By Lemma 3.2.1 

(see also Lemma 5.1 of Yannelis and Prabhakar [326]), (coS)~x(y) is also open in K for 

each y G K. Then by the Fan-Browder fixed point theorem (e.g., see Browder [42]), 

there exists a point x G K such that x £ coS(x) which is a contradiction. Therefore the 

conclusion must hold. • 

We now also have the following extension of a theorem of Bergstrom [30] to a locally 

convex topological vector space and a non-compact setting. 

T h e o r e m 3.6.5. Suppose P : D —> 2D U {0} satisfies the following conditions: 

(i) P is ^-condensing; 

(ii) P~x(y) is compactly open for each y £ D; 

(iii) P is acyclic. 

Then there exists x* E D such that P(x*) = 0. 

P roo f . By Lemma 3.6.1, there exists a non-empty compact convex subs?t K of D 

such that P : K -> 2A ' U {0} . Clearly, the restriction P\K of P to K is also acyclic and 

has open inverse images Therefore the conclusion follows from Bergstrom's theorem [30, 

p403]. D. 

As an application of Theorem 3.6.4, we shall first prove the following existence theorem 
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for equilibrium points for a one-person game. 

T h e o r e m 3 .6 .6 . Let A,B,P : D -> 2 D U {0 } be such that 

( i) A f l P is KFc-majorized, 

(i i) for each x G D, A(x) is non-empty and coA(x) C B(x) and for each y E D, 

A~x(y) is compactly open in D; 

(iii) B is ^-condensing. 

Then there exists x £ D such that x G ~B(x) and A(x) f l P(x) = 0; that is, the one 

person game (D; A,B; P) has an equilibrium point. 

P r o o f . Let F = {x £ D : x G ~B(x)}, then F is closed in D. Define A : D —* 

2D U { 0 } by 

j A(x), if x fi F. 
Suppose A (x ) 7̂  0. If x ^ F, then D \ F \s an open neighborhood of x in D such that 

for each z £ D\F, z fi B(z). Now define <J>X : D -> 2 ° U {0 } by * B ( z ) = A ( s ) for 

each z £ D and Nx = D\F, then X x is an open neighborhood of x in D such that 

( i) A(z ) C $x(z) and z ^ co$ x ( z ) for each z G X x , and 

(i i) $x^(y) = A~l(y) is compactly open in D. 

Therefore $ x is an 7^Fc-majorant of A at x . On the other hand, if x £ F, then A (x ) = 

A ( x ) f l P ( x ) 7̂  0. Since A f l P is A^Fc-majorized, there exist an open neighborhood Nx of 

x in D and a correspondence $ x : D -> 2 D U {0 } such that A(z) = A(z) f l P (^ ) C * « ( « ) 

and z fi co<&x(z) for each z £ Nx, and $~x(y) is compactly open in D for each ?/ G D. 

Define the map <J>; : D -+ 2 D U { 0 } by 

\ A ( z ) , if z 0 F. 

Note that A(z) C * x ( z ) for each z G Nx. It is easy to see that z ^ <*><I^.(z) for all 

z G £>. Moreover, for any y £ D, the set (4>x)~'(y) = [*«'( : ' / ) U (D \ F)] f l A - I ( y ) is 

compactly open in D. It follows that &'x is a XFo-majorant of A at the point x. Hence 

A is a A"Fc-majorized correspondence. 
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Since A(x) C A(x) C B(x) for each x G D, and B is ^-condensing by condition (ii), 

A is also ^-condensing . 

Now By Lemma 3.6.1, there exists a non-empty compact convex subset K of X such 

that A : K ~* 2h U {0 } . Clearly, the restriction A|A- of A to K satisfies all hypotheses of 

Theorem 3.6.4. By Theorem 3.6.4, there exists x £ K C D such that A(x) = 0. Since 

A(x) ^ 0, we must have x G B(x) and A(x) f l P (x ) = 0. • 

Let / be a finite set and X, be a topological space, and X = n , 6 /X , . For a given 

correspondence A, : X —> 2X', define a mapping A- : X -> 2X by A't(x) = {y £ X : 

!Ji £ Ai(x)} = n^x(Ai(x)) for each x £ X, where 7r, : X —> X,- is the projection. Then 

it is easy to see that A\ is of class KFc if and only if for each x G X , x, fi A,(x) and 

Ajx(y) is compactly open for each y EX. 

From Theorem 3.6.6, we shall now derive another existence theorem for equilibrium 

points for X-person games, where X > 1. 

T h e o r e m 3.6.7. Let (X,-; A,-, F ^ P , ) - ^ bean X-person game. Suppose for each 

* = I , 2 , . - - , X . 

(i) Xi is a non-empty closed convex subset of a locally convex topological vector space 

•~>i, 

(ii) for each x G X , / l , (x) is non-empty and coAi(x) C Bx(x); 

(iii) for each y c A";, A~x(y) is compactly open in X ; 

(iv) A'i n P( : X -> 2A' U {0} is of class KFC, where A'{(x) = ^(A^x)) and 

f * (a ) = < • • ( / * ( * ) ) : ™d 

(v) the mapping B : X -+ 2A' defined by B(x) = U^B~i{x) for each x G X is 

^-condensing (where F = n ^ ^ , ) . 

Then there exists x E X such that for each i = 1 ,2 , • • - ,X , x £ B~(x) and A,(x) f l 

P,(x) = 0; that is, the X-person game (X, ; A,, F,; P , ) ,^ has an equilibrium point. 

P roo f . For each x G X, let I(x) = {*' £ I : A t (x ) f l P t(x) 7̂  0} . Define the 
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correspondences A,B,P: X -» 2A' U {0} by A(x) = 1 1 ^ A,(x) , B(x) = 1 1 ^ , F,(x) and 

P(x) = ! n*'M^(a)' if / ( : C ) * 0 ' 
1 0, if l(x) = 0 

for each x G X . Since F : X —» 2A' U {0} is ^-condensing, by Lemma 3.6.1, there exists 

a non-empty compact and convex susbet K of X such that F (x ) C A for each x G A'. 

By (ii), it follows that the A is also a self-mapping on K. 

The condition (iii) implies that A~x(y) f l K — f l , ^ , (A f ' ( y , ) f l A') is open in K for 

each y G K. In order to apply Theorem 3.6.6, it remains to prove that the correspondence 

A f l P : K -* 2K U {0} is XFc-majorized. 

Suppose x G X and (A f l P) (x) 7̂  0; then / ( x ) 7̂  0. Choose any y G A(-''0 n P(x) , 

then x G n.e/A-^y,) fl n,-e/(x)Pf'(ft) n K C n,-6/(x)((A;. fl F ; ) - ' ( I / ) n X) := Xx which 

is an open neighborhood of x in K by (iv). Note that if z G X x , then l(x) C l(z): 

since for each i £ I(x), y £ (A- f l P/)(z), we have yx £ A,-(z) f l P,(z) so that t G l(z). 

Now fix any i0 £ I(x). Define PA-,^« : K -» 2A' U {0 } by PK(z) = P(z) f l K and 

i/;x(z) = A'io(z) f l F/o(2;) f l X for each z £ K, then by (iv) again, i/)x is of class KFc (in 

fact, A 'F ) and for each z G X2 , since A(z) C £?(«) C X , 

A(z) n P(z) = A(z) n pK(z) = nieiAi(z) n n)G/(x)/^(z) n K 

C ^ ( / ^ ( z ) ) H n~\Pi(z)) nK= A'io(z) n /* (*) n X 

Thus \)x is a XFc-majorized of ADP at x. Thus the mappings A, P/,-, F : K -»• 2 A U { 0 } 

satisfy all the hypotheses of Theorem 3.6.6. By Theorem 3.6.6, there exists x0 G X such 

that x0 G B(x0) and A(XO)\~)PK(X0) = $• Since x0 G K and A(xu) C X , it follows that 

i(xo) f l P(x 0 ) = A(x0 ) f l P(xo) f l K = A(xQ) f l PK(x0) = 0. Note that B = I I ,e /7£ 

has a closed graph, we have B(x) = B(x) for each x G X and also '(x r t) = 0. Hence 

the conclusion follows. • 

The following is an existence theorem for equilibrium points of generalized games in 

which the intersection of constraint and preference correspondences are ^/-majorized and 
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constraint correspondences are ^-condensing. We emphasize that the set of players need 

not be finite. 

T h e o r e m 3.6.8. Let Q = (A",; A,, P,, P t),e/ be a generalized game where / is any 

(countable or uncountable) set of players such that 

(a) for each i £ I, Xi is a non-empty closed convex subset of a locally convex 

topological vector space F,; 

(b) for each i £ I and for each x G X , A,(x) is non-empty and coAi(x) C F,(x); 

(c) for each i £ I, the set F ! = {x G X : (A, f l P,)(x) 7̂  0} is paracompact and 

open in A"; 

(d) for each i £ I, Ai f l P, is //-majorized ; 

(e) the correspondence B : X —> 2X defined by B(x) — I I t € /P , ( x ) for each x G X is 

^-condensing (where E = f l .e /F, ) . 

Then Q has an equilibrium point in X , i.e., there exists a point x = (x,) t G / G X such 

that for each i £ I, .«,• G ~B~(x) and A;(x) f l P,(x) = 0. 

P roo f . Without loss of generality, we may assume that Bi(x) is convex for each 

x G X (otherwise replace F, by coAx). Since the correspondence B : X —> 2 * U {0} is 

^-condensing, by Lemma 3.6.1, there exists a non-empty compact and convex subset K 

of A such that B: X -» 2A ' . 

Let P}v- = X f l F1' for each i £ I. Let I0 = {i £ I : ££- 7̂  0} . If 70 = 0, then 

E'K = ill for all i E I so that (A, f l P,)(x) = 0 for all x G X . On the other hand, since 

IB has a closed graph, B is upper semicontinuous on X . Also, B has closed and convex 

values. Thus by the Fan-Glicksberg fixed point theorei,,, there exists x £ K such that 

x G B(x). It follows that x, G F,(x) for all i £ 7 and hence x is an equilibrium point of 

Q. Therefore we may assume that /0 7̂  0. 

For each i G / , let Kx = 7r,-(X); note that each X , is compact and convex and that 

ITi(x) C A',- for each x G X . 

G«sfi /: Suppose i G /o- Note that FA- is paracompact (e.g., see Theorem Vlll.2.4 

of Dugundji [89, p.165]) and open in K. By (d) and Lemma 3.5.2, there exists an upper 

semicontinuous mapping t/>, : E'K -> 2 A ' such that for each x G FA-, (i) ^ , ( x ) is closed 
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and convex, (ii) 7r,(x) fi ipi(x) and (iii) A , (x ) f lP , (x ) C ij)i(x). Since F, : K —> 2 A l is also 

upper semicontinuous with closed and convex values, the mapping •(/>,- f l F; : Fjv- —> 2 A | 

is also upper semicontinuous with closed and convex values by Theorem 7.3.10 of Klein 

and Thompson [189]. Define a correspondence (f>i : K —> 2 A ' by 

J F7(x), if x fi F j , , 
<Pi(x) - < 

\ (</>,• fl Bi)(x), i f x G F j , . 

Then Lemma 3.5.1 implies that <j>i is upper semicontinuous with non-empty closed and 

convex values, 

Case 2: Suppose i E I \ 70. Define a correspondence <f> : K —> 2 A l by fa = F;(x) for 

each x G K. Then <̂  is upper semicontinuous with compact and convex values. 

Finally we define a correspondence $ : X —> 2 n , e / A ' by $ (x ) = riiG/f/i,(x) for each 

x G X . Then $ is also upper semicontinuous and has non-empty compact and convex 

values. Since 4>(x) C B(x) C X for each x G X , <& : A' —• 2A is in fact a self-map on 

K. Now the Fan-Glicksberg fixed point theorem again implies that there exists a point 

x G K such that x G $ (x ) . It follows that 7rt(x) G F^ (X ) for all i E I. If there exists 

i £ I0 such that x G El
K, then 7r,(x) G ^>i(x) = F,(x) f l ijn(x) C '0t'(:i,;) which contradicts 

(ii). Therefore x fi FA- for all i £ /0. Hence we also have A,(x) f l P,(x) = 0 for all i £ I. 

a 
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3.7 Equilibria in Frechet Spaces 

Until now, we have given a number of existence theorems for equilibria of X-person games, 

qualitative games and generalized games in H-spaces, topological vcetor space and locally 

convex topological spaces. In this section, the underlying spaces of generalized games are 

Frechet spaces and we shall obtain existence theorems for generalized games by Michael's 

selection theorems in [222], 

T h e o r e m 3 .7 .1 . Let Q = (X, ; A,; P,) l g/ be a generalized game and X = n , 6 / X , 

be paracompact, where / is any (countable or uncountable) set. Suppose that for each 

* G / , the following conditions are satisfied: 

(i) A, is a non-empty closed and convex subset of a Frechet space Ex; 

(ii) Ax is lower semicontinuous with non-empty closed convex values; 

(iii) the mapping A : X —> 2X defined by A(x ) = IT,G /A t(x) is ^-condensing for each 

x £ X = n , e /X , , where G is a lattice with a least element 0 and tf . 2n^'E' - * G is a 

measure of non-compactness; 

(iv) for each x G X , 7r,(x) fi A,(x) f l P,(x); 

(v) the set U, := {x G X : A, (x) 0 P,(x) ^ 0} is closed in X . 

(vi) the mapping A, f l P, is lower semicontinuous on Ux such that for each x £ Ui, 

A,(x) f l P,(x) is closed and convex. 

Then there exists x* G X such that for each i £ I, 7r,(x*) G 4 , ( X * ) and 

/ l , ( x - ) f l P , ( x * ) = 0. 

P roo f . Fix an ? G / . Define F, : X -> 2X' by 

F,(x)=l M*)nP,(x), if xGt/,; 
I At(x), if x fi Ux. 

By Lemma 2.5.1, F, is lower semicontinuous with non-empty closed and convex values. 

Then by Michael's selection theorem [222, Theorem 3.2"] and Remark of Aubin [7, p.551]), 

there exists a continuous map / , : X -> X , such that / t ( x ) G Ft(x) for each x EX. 

Now define / : X -> X by f(x) = { / , ( x ) } , e / for each x G X . Then / is continuous 

and f(x) £ F (x ) = n, g /F , (x) C n , 6 / A, ( x ) . Since A is ^-condensing, it follows that 
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/ is also ^-condensing. Since X — n,€/A",- is a non-empty closed and convex subset of 

the locaily convex topological vector space n , 6 / F , ./ satisfies all hypotheses of Theorem 

2.6.3. By Theorem 2.6.3, there exists x* G X such that f(x*) — x*. Note that for each 

i £ I, if x* £ Ui, then 7r,(x*) = f,{x*) £ A,(x*)nP,(x*) which contradicts (iv). Hence for 

each i £ I, we must have 7T;(x*) fi Ui and thus 7r,(x*) G A ( x * ) and Ai(x*)(~)Pi(x*) = 0. 

D 

We also have: 

T h e o r e m 3.7.2. Let Q = (X, ; Ac, P,),6/ be a generalized game, where / is any set. 

Suppose for each i £ I, the following conditions are satisfied: 

(i) X , is a non-empty closed and convex subset of a Frechet space F,; 

(ii) Ai is upper semicontinuous with non-empty closed convex values; 

(iii) the mapping A : X ~ n , e /A ; -» 2X defined by A(x) = n,e / / t , (x) for each 

x £ X is ^-condensing, where G is a lattice with a least element 0 and ty : 2n^'li-> —> G 

is a measure of non-compactness; 

(iv) the set Ux = {x £ X : Ax(x) (1 P,(x) 7̂  0} is paracompact and open in X; 

(v) the mapping Ai f l F, is lower semicontinuous on Ux such that for each x G Ui, 

A,(x) f l Pi(x) is closed and convex. 

Then there exists x* £ X such that for each i £ I, either irx(x*) £ Ax(x*) f l Pi(x*) or 

7r,(z*) G A t (x* ) and A,-(x*) f l P,(x*) = 0. 

P roo f . Fix an i £ f. By (v), Theorem 3.2" of Michael [222] and Remark of Aubin 

[7, p.551], let /,• : F, —> X , be a continuous function such that / , (x ) £ Ai(x)C] P,(x) for 

each x£Ui. Define Fx• : X -» 2Xi by 

F( , f {M*)h if*6(/,-; 
I'i(x) = < 

[ Ai(x), if x fi Ui, 

then by (i i), (iv) and Lemma 2.5.1, F, is upper semicontinuous with closed convex values. 

Now we define F : X -+ 2X by F(x) = n,e /F,(x) for each x £ X. Then F is upper 

semicontinuous with closed convex values and F(x) C A(x) for each x £ X. Since A is 

^-condensing, F is also ^-condensing. Therefore by Theorem 2.6.3, there exists x* £ X 
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such that x* £ F(x*). It follows that for each i £ I, either 7ri(x*) G Ax(x*) D Px(x*) or 

7r,-(x*) G Ai(x') and A.-(x') f l P,-(x*) = 0. • 

Note that if the set / is countable, the set Ui = {x £ X : A,(x) f l P;(x) / 0} is a 

subset of a metrizable set X = n,e/X,- so that /7, is automatically paracompact for each 

i £ I. 

By Theorem 3.1 ' " of Michael [222, p.368] instead of his Theorem 3.2" [222, p.367], 

the same argument used in proving Theorem 3.7.1 and Theorem 3.7.2 can likewise be 

used to prove the following: 

T h e o r e m 3 .7 .1 ' . Let Q — (X,-; A,-; P,-),-e/ be a generalized game and X = I I , e / X , 

be paracompact, where / is any (countable or uncountable) set. Suppose that for each 

i £ I, the following conditions are satisfied: 

(i) A",- is a non-empty closed and convex subset of a finite dimensional space F,; 

(ii) Ai is lower semicontinuous with non-empty convex values (but not necessarily 

closed); 

(iii) the mapping A : X —> 2A defined by A(x ) = n , g ;A , (x ) is ^-condensing for each 

x G A = Hie/A";, where G is a lattice with a least element 0 and * : 2n^'E> -> G is a 

measure of non-compactness; 

(iv) for each x G X , 7r,(x) fi A,(x) f l P,(x); 

(v) the set (/,- : - {x £ X : A,(x) f l P,(x) ^ 0} is closed in X . 

(vi) the mapping A; f l P, is lower semicontinuous on (/,- such that for each x G Ux, 

Ai(x) D Px(x) is convex (but not necessarily closed). 

Then there exists x* G X such that for each i E I, nx(x*) G Ax(x*) and A, (x* ) f lP ; (x* ) = 

0. 

T h e o r e m 3.7.2'. Let Q = (X,-, A,-,P,),e/ be a generalized game where / is any set. 

Suppose for each i £ I, the following conditions are satisfied: 

(i) A",- is a non-empty closed and convex subset of a finite dimensional space F,; 

(ii) A; is upper semicontinuous with non-empty closed convex values; 

(iii) the mapping A : X = n , g / X , - • 2X defined by A(x ) = n , 6 / A t ( x ) for each 
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x G X is ^-condensing, where G is a lattice with a least element 0 and ^ : 2XX->*'EJ —> 0 

is a measure of non-compactness; 

(iv) the set Ux := {x £ X : A,(x) f l P,(x) ^ 0} is paracompact and open in A"; 

(v) the mapping A, f l P,- is lower semicontinuous on //,- such that for each x G U;, 

Ai(x) f l P,(x) is convex (but not necessarily closed). 

Then there exists x* G X such that for each i £ / , either 7r,-(x*) G /t ;(x") f l /'•(•''*) or 

rr,-(x") G Ai(x*) and A,-(x*) f l P(x*) = 0. 

As an application of Theorem 3.7.2', we have the following: 

C o r o l l a r y 3.7.3. Let / be any set. For each i E f, let A",- be a non-empty compact 

convex subset of a finite dimensional space F, and P; : X = \ljejX:; —> 2X' U {0} be 

lower semicontinuous on the set Ui — {x £ X : P,(x) 7̂  0} such that for each x £ //,-, 

Pi(x) is convex. If for each i £ I, U\ is paracompact and is either open or closed in X, 

then there exists x* £ X such that for each i £ I, either 7r,(x*) £ P;(x*) or P;(x*) - 0. 

P roo f . For each i £ I, let / I , : X —> 2X' be defined by A;(x) = X; for each 

x G A". Then A{ is continuous with closed convex values and /t; is also ^-condensing 

since A = 11,-g/X, is compact. Therefore by Theorem 3.7.2', there exists :/•* £ X such 

that for each i £ I, either 7ri(x*) G F ( x * ) or IJi(x*) = 0. • 

Corollary 3.7.3 generalizes Theorem 1 of Barbolla [16] which in turn improves the fixed 

point theorem of Gale and Mas-Colell [124] and Florenzano [114] in the following ways: 

(1) the index set 7 need not be finite and (2) for each » £ I, Ui is either open or closed 

instead of Ui being open for all i £ I or (/, being closed for all i £ I. We remark that 

our argument in proving Theorem 3.7.2 is different from that of Barbolla [16]. Finally we 

note that the results in this section improve or generalize the results of Mehta [219] in the 

case that the set / of agents (or players) is any (countable or uncountable) set instead of 

a countable set. 
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3.8 Equilibria in Finite Dimensional Euclidean Spaces 

The purpose of this section is two fold: (1) we first obtain some sufficient conditions for 

the intersection of two lower semicontinuous mappings to be again lower semicontinuous 

and (2) by applying Michael's selection theorem [222], a fixed point theorem is derived 

and is applied together with earlier results on intersection of lower semicontinuous maps to 

obtain existence theorems for equilibrium points of a generalized game and of a qualitative 

game. 

We introduce some notation. Let F be a vector space and A C F. We shall denote 

by aff(/t) the affine span of A. A is said to be finite dimensional if A is contained in a 

finite dimensional subspace of F. If F is a topological vector space and A C E, r i(A) 

denotes the relative interior of A in aff(A). 

First we observe that the proof of Proposition 1.1 of Marano [214, p.286] actually pro­

duced the following slightly strengthened version (where the original assumption that 6 is 

lower semicontinuous is replaced by the weaker assumption that (J> is lower semicontinuous 

at ,s0): 

L e m m a 3 .8 .1 . Let S be a topological space and (j> : S —• 2 R be a map with 

non-empty convex values. If there exists s0 £ S such that <f> is lower semicontinuous at s0 

and ORU £ int</>(.s0) where ORH is the zero vector in R", then there exists a neighborhood 

//o of ,s0 in 5 such that 0R» £ int</>(.s) for all s £ Uo-

Since the translation of a map (respectively, convex set, open set) preserves its lower 

semicontinuity at a point (respectively, convexity, openness), Lemma 3.8.1 is equivalent 

to the following 

L e m m a 3 .8 .1 ' . Let S be a topological space and <j> : S —• 2 R " be a map with 

convex values. Suppose <f> is lower semicontinuous at some s0 G S and y0 G in t^(x 0 ) , 

then there exists a neighborhood U0 of s0 in S such that y0 G int<^(s) for all s £ U0 . 

By slightly modifying the proof of Lemma 1 of Monteiro [223], we formulate the 

following: 
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L e m m a 3.8.2. Let S be a topological space and <f> : S —> 2 U {0} be a map with 

convex values. Suppose <p is lower semicontinuous at some x0 G S and B(y0,t) C <j>(xu) 

where B(y0,t) is the open ball of positive radius t centered at y0. Then for any number 

7- with 0 < r <t, there exists a neighborhood Uo of x0 such that B(yti,r) C fax) for all 

x G Uo- In particular, if cp is open-valed, then <p has an open graph. 

P roo f . By restricting <f> to the set {x G X : fax) f l int</>(x0) / Hij which by the lower 

semicontinuity of <j> at x0 , is an open neighborhood of x0 in S. We may assume without 

loss of generality that <j> is non-empty valued. Choose any ?•' with 7- < r' < /,, then we have 

B(yo,r') C B(y0,t) C fax0) where B(ijo,r') is the closure of B(y0,r') in R" . Note that 

B(y0,r') is compact. Choose any e with 0 < e < r' — r. Let {F (y , ,c /2 ) : ?! = 1,- •• ,?»} 

be a finite cover of B(y0, r') with y, G F (y 0 , r') for all i = 1, • • •, m. By Lemma 3.8.1', 

there exists an open neighborhood Ui of x0 in S such that y0 G int</>(x) for all x G /7i; 

in particular, int^(x) 7̂  0 for all x £ U\. By lower semicontinuity of </» at x0 again, there 

exists an open neighborhood U0 of x 0 in S such that for each x G Uo, fax)r\B(yi, c/2) 7̂  0 

for all 7! = 1, • • •, ?7i. By replacing Uo by £/i f l Uo, we may also assume that Uo C (/|. Now 

given any non-empty subsets A and F of R " , define e(A,B) = sup{r/(«, F ) ; « G / ! } , 

where d is the Euclidean metric on R n and d(a, B) = \ni{d(a,b) : b £ B). It is easy to 

see that for each x G Uo, 

e(B(y0,r'),<l>(x)) < e(U?=, F(yv,e/2),<l>(x)) < a. 

By the Lemma of [223], for each x £ Uo, 

% 0 , Rn \ B(y0,r')) < d(y0, Rn \ <f>(x)) + e(B(yo,r'), fax)), 

so that 

d(yo, Rn \ fax)) > d(yQ, Rn \ B(y0,r')) - e(fl(»0 ,r ')^(x)) >r'-e> r. 

It follows that B(y0,r) C fax) for all x £ U0. • 

Remark 1.1 of Marano [214, p.287] shows that Lemma 3.8.2 does not hold if <j> takes 

its values in an infinite dimensional Hilbert space. 
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Now let A and Y be topological spaces and ?/>, <f>: X —• 2Y be lower semicontinuous. 

We observe that if Graph <f> is open in X x Y, then it is shown in Yannelis [325, Lemma 

4.2] that (j) f l */> is also lower semicontinuous. Clearly, if Graph <f> is open in X x Y, then 

</; is open-valued. The following example shows that (a) Graph <f> need not be open in 

X x Y even though (f> is open-valued and (b) even when fax) f l ij)(x) 7̂  0 for all x G X , 

if the condition "Graph <p is open in X x V" is weakened and replaced by the condition 

"<•/> is open-valued", then ^Dip need not be lower semicontinuous: 

Example 3.8.3. Let F ,F 2 : [0,1] -4 2[0'1] be defined by 

F l ( , ) = ( [ ° ' 1 ] ' if* = °; 

\ ( 0 , l ] \ { l / n : n = 2 ,3 , - - - ,} , if x ^ 0 

and 

F2(x) = < 
( { l / n : n = l ,2 , - - -} , if x ^ 0 . 

Then it is easy to see that (i) Fi and F2 are lower semicontinuous, (ii) Graph Fi is not 

open in [0,1] x [0,1] and (iii) F\ is open-valued such that for each x £ [0,1], 

fl(,)nft(,)=(<0}' i f l = °; 

( {1), i f x # 0 . 

It follows that F) n Fi is not lower semicontinuous. 

Theorem 3.8.4. Let S be a topological space and F i , F2 : ,9 —> 2 R U be lower 

semicontinuous at x0 G S such that FT is open and convex-valued. Then F\ f l F2 is also 

lower semicontinuous at x0. 

Proof. Let U be an open subset of R u such that F,(x0) f l F2(x0) f l U 7̂  0. Choose 

any y() G F|(x0) f l F2(x0) f l U. Since F](xo) f l F is open, y0 is an interior point of 

f'\(xo)C\U. By Lemma 3.8.2, there is an open neighborhood Vi of x0 in S and r > 0 such 

that B(y0,r) c Fi(x) for all x G VI, where B(yQ,r) is an open ball in R n of radius r and 

centered at y0. Since /7 is open in R", we may assume without loss of generality that 

B(y0)r) c U. Since F2 is lower semicontinuous at x0, there is an open neighborhood 

V2 of x0 in S such that F2(x) f l B(y0,r) ^ 0 for all x £ V2. Let V = Vi D K2, then 
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V is an open neighborhood of x0 in S such that for each x £ V, F ( x ) f l P2(x) f l U D 

F-i(x) f l B(y0,r) 7̂  0. Hence Fi f l F2 is lower semicontinuous. • 

We note that Theorem 3.8.4 is different from Theorem B of Lechicki and Spakowski 

[203, p.121] in the following ways: (a) int(P) f l F2)(x0) is not required to be non-empty, 

but (b) the mapping F\ is required to have open values. 

The following example from Lechicki and Spakowski [203, Example 3] shows that even 

if Fi has closed (or open) convex values, the conclusion of Theorem 3.8.4 fails to hold if 

R u is replaced by an infinite dimensional Banach space: 

E x a m p l e 3.8.5. Let Y = l°°, the Banach space of all bounded sequences x = 

(xn)^L1 of real numbers with ||x||oo = supng iV |xn | < oo and S = [0, 1]. Define G | ,G 2 : 

S - * 2Y by 

G,(t) = {x G Y : xi > t,xk <k-t for k > 2} 

and 

G2(t) = {x £ Y : X! < 1 - 1 , xk < k(l - xi - i) and xk < k -f x,/fc - t,/k for k > 2}. 

Then Gi and G2 are both lower semicontinuous at 0 with closed convex values and 

in ty (Gi (0) f lG 2 (0 ) ) 7̂  0, but G\ f l G 2 is not lower semicontinuous at 0 (see Example 3 in 

[14, p.122]). Now we define F , F 2 : S -* 2Y by Fi(t) = intvG,(/.) and F2(/,) = intK6'2 ( / ) 

(or G2(t)) for each t £ S. Since 

F ^ f l F ^ O ) = ( i n t K G(0) )n ( in t K G 2 (0 ) ) = ( int^G^O)) f l G2(0) = G, (0) f l G2(0), 

Fi f l Fi is also not lower semicontinuous at t = 0 by Proposition 7.3.3 of Klein and 

Thompson [189] (or Proposition 2.3 of Michael [222, p.366]). 

T h e o r e m 3.8.6. Let ,5' be a topological space and F\, F2 : S —> 2 n be lower 

semicontinuous at x0 G S such that for each x £ S, Ft(x) and F2(x) are both convex 

and ( i n t R nF 1 ( x ) ) f lF 2 ( x ) ^ 0 or F , (x )n ( in t R «F 2 ( x ) ) ^ 0 whenever F , (x ) f l / ' 2 ( x ) ^ 0. 

Then F\ f l F2 is also lower semicontinuous at x0 G S. 
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Proof .Without loss of generality, we may assume that ( in t R nF i (x 0 ) ) d ^2(^0) 7̂  0-

Since F i (x 0 ) and F2(x0) are convex, by Theorem of Dolecki [88, p.253], 

(intR»F,(x0)) fl F2(x0) = F,(x0) fl F2(x0) = F,(x0) n F2(x0). 

In orderto prove F i f l F 2 is lower semicontinuous at x0 , it suffices to prove that ( i n t R n F i ) n 

Fi is lower semicontinuous at xo- Now let U be any non-empty open subset of Rn such 

that ( in t R nF, (x 0 ) ) H F2(x0) f l if ^ 0. Choose any y0 £ ( in t R nF, (x 0 ) ) D F2(x0) f l U. 

Since in t R uF| (x 0 ) f l U is open, yo is an interior point of i n t R nF] (x 0 ) f l U. Since F\ 

is lower semicontinuous at x0 and i n t R nF(x 0 ) 7̂  0, we have F i ( x 0 ) = i n t R nF i ( x 0 ) . 

Therefore in t R nF i is also lower semicontinuous at x0 . By Lemma 3.8.2, there is an 

open neighborhood V\ of x0 in S and r > 0 such that B(y0,r) C i n t R nF i ( x ) for all 

x £ Vi, where B(yQ,r) is an open ball in R u of radius r and centered at y0. Since U 

is open in R", we may assume without loss of generality that B(y0,r) C U. Since F2 

is lower semicontinuous at x 0 l there is an open neighborhood V2 of x0 in S such that 

Fi(x)f)B(yo, r) ^ 0 for all x G V2. Let V = v\ fW2 , then V is an open neighborhood of x0 

in S'such that for each x G V, ( i n t R n F i ( x ) ) n F 2 ( x ) n c / D F 2 ( x ) f l F ( y 0 , r ) 7̂  0. Hence 

( i n t R n F i ) f l F2 is lower semicontinuous at x0 , so that Fi f l F 2 is also lower semicontinuous 

at x0 . D 

Theorem 3.8.6 generalizes a result of Obukhovskii [238] (see also Borisovich et al [35, 

Corollary 1.3.10, p.725]. 

T h e o r e m 3.8.7. Let S be a topological space, X be a non-empty subset of a finite 

dimensional topological vector space and F| ,F 2 : S —> 2a " W be lower semicontinuous 

at x0 G 5'. If for each x G ,S, F i (x ) is convex and open in a f f (X) , then Fi 0 F2 is also 

lower semicontinuous at x0. 

P roo f . Choose any a0 £ aff(A') and let y = a f f ( X ) -aQ, then Y is a finite dimensional 

topological vector space and is therefore topological^ isomorphic to some R n . Define F\, 

F2 : S -> 2Y by F,(x) = F,(x) - a0, F2(x) = F2(x) - a0 for all x G S. Then P\ and F2 

are lower semicontinuous at x0 such that for each x G .S\ F\(x) is convex and is open in 

Y. By Theorem 3.8.4, F\ D F2 is lower semicontinuous at x0 . It follows that F j f l F2 is 
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also lower semicontinuous at x0 . a 

By using the same proof as in Theorem 3 8.7, we have the following. 

T h e o r e m 3.8.8. Let S be a topological space, A be a non-empty subset of a finite 

dimensional topological vector space and F i , F 2 : S -+ 2a (A> be lower semicontinuous 

at x0 G 5'. If for each x G S, Fx(x) and F2(x) are convex and r i(P,(x)) f l / 2 ( x ) ^ 0 

or Fi(x) f l r i (F2(x)) ^ 0 whenever F,(x) f l F2(x) ^ 0, then P, f l P2 is also lower 

semicontinuous at x0 . 

Next we shall prove a fixed point theorem as follows: 

T h e o r e m 3.8.9. Let / be a non-empty countable set. For each i £ f, let G, be a 

non-empty finite dimensional compact convex subset of a topological vector space E, and 

FX:C:= r i jg /G, —> 2E' be lower semicontinuous such that 

(a) F,(x) is convex for each x £ C; 

(b) F,(x) f l ri(G.) 7̂  0 for each x £ C; 

(c) F ; (G) C aff(G). 

Then the map F := IT,e/F, has a fixed point in G. 

P roo f . Let i £ I be arbitrarily fixed. Define F[:G -> 2Ei by F t '(x) = Fx(x) f l ri(G;) 

for each x £ C. Let A be an open subset of F, such that ri(G,) = aff(G.) H A. If B is 

any open subset of F,, then by (c), 

{x£C: F ( ' (X ) f l B / D } = {xEC: Ft(x) f l r i (G) f l B ^ 0} 

- {x G G : F,(x) f l / I n B 4- 0} 

is open in G since F, is lower semicontinuous and A f l F is open in F,. This shows that 

F[ is lower semicontinuous on G Note that G is metrizable, being a countable product 

of finite dimensional sets; thus G is perfectly normal. Also for each x G G, F[(x) is a 

convex subset of G, which is contained in some Euclidean space. Hence by Theorem 3.1 ' " 

of Michael [222], there exists a continuous map fx : C -> Ct such that /,(./;) G F't(x) for 

all x G G. 
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Now define / : G —» G by / := n , e / / , , then f is continuous. Since G is a compact 

convex subset of some locally convex space (in fact, a countable product of Euclidean 

spaces), by the Schauder-Tychonoff fixed point theorem, there exists x* £ C such that 

J(x') = x*. It follows that x* = n i € / / , ( x * ) G n,6/F,'(x*) C n,6 /F,(x*) = F(x* ) ; that 

is, F = n,*e/Ff ^as a fixed point in G. • 

Coro l la ry 3.8.10. Let X be a non-empty subset of a topological vector space F, 

G a non-empty finite dimensional compact convex subset of X and let F : X —> 2 E be 

lower semicontinuous such that F(C) C aff(G) and for each x G G, F(x) is convex and 

P(x) f l ri(G) ^ 0. Then F has a fixed point in X . 

Corollary 3.8.10 improves Theorem 1 of Cubiotti [68] where F is assumed to have 

closed values. 

We remark that in Theorem 3.8.9: (i) If / = {1,2, •• • ,n} is finite, then ri(f l ;. l
=1X) = 

n"_,ri(Ai); in this case, Theorem 3.8.9 can also be obtained from Corollary 3.8.10. (ii) If 

/ = {1,2, • • •, } is infinite and the set {j £ I : X3 is not a singleton set } is infinite, then 

ri(ri j2.,Aj) = 0; in this case, Theorem 3.8.9 can not be deduced from Corollary 3.8.10. 

Thus Theorem 3.8.9 is a true generalization of Theorem 1 of Cubiotti [68]. 

We shall also need the following affine version of Corollary 6.3.2 of Rockafeller [253, 

p.46]: 

L e m m a 3.8.11. Let G be a non-empty convex subset of a finite dimensional topo­

logical vector space E. Then every open set in aff(G) which meets ciC also meets ri(G). 

Proof . Choose any a0 £ aff(G) and let Y = aff(G)—a0, then Y is a finite dimensional 

topological vector space and is therefore topologically isomorphic to some R". Let U be 

an open set in aff(G) such that U f l CIE(C) -^ 0. Then U — a0 is open in Y and 

0 7̂  (// - oo) n (cl(G) - aQ) = (U - a0) 0 cl(C - a0). By Corollary 6.3.2 in [253, p.46], 

(// - «„) f l ri(G - a0) / 0. As ri(G - a0) = ri(G) - aQ, it follows that U f l ri(G) ^ 0. D 

We shall now prove the following existence theorem for an equilibrium point of a 

generalized game. 
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T h e o r e m 3.8.12. Let Q = (Xx\ A,, B,\ P,),g/ be a generalized game where / is 

countable Suppose that for each i £ I, the following properties hold 

(1) X , is a non-empty subset of a topological vector space E,. 

(2) A,, Bx : X — H i e/A', —> 2A ' are lower semicontinuous such that coA;(x) 

C Bt(x) for each x G X . 

(3) P, : X —> 2 A l U {0} is lower semicontinuous on Dt, where I); = {.;• £ X : 

F , ( x ) n A , ( x ) / 0 } is closed in X 

(4) There exists a non-empty finite dimensional compact convex subset G; of A',- such 

that (a) for each x £ C := U3e,C3, Px(x) is open in af f (X t) , (b) for each x £ G, 

coAx(x) n ri(G,) 7̂  0, (c) for each x G G f l Dt, coP,(x) f l coAi(x) f l G; ^ 0 and (d) 

coAx(x) C aff(G t). 

(5) For each x £ G, irx(x) fi coP,(x). 

Then Q has an equilibrium point x* in G. 

P roo f . Fix an arbitrary i £ I. Define F, : C —> 2E> by 

. N f coP,(x) f l coA,(x), if x G G f l £>,-, 
F(x) = < 

( coA,(x), if x fi G f l Di . 

Since A, and P, are lower semicontinuous, co/1, and coP,- are lower semicontinuous 

Since for each x G G, coP,(x) is convex and openin afF(X,) by (4)(a), the map x i—> 

coA,(x) f l coPx(x) is also lower semicontinuous on G by Theorem 3 8.7 Since G f l /),- is 

closed in G, F, is lower semicontinuous by Lemma 3.5.1. Moreover, we have 

(i) F ( x ) is convex for each x £ C; 

(ii) F,(C) C coAt(C) C aff(Gt) by condition (4)(d). 

Now we shall show that F,(x) D r\(Cx) / 0 for each x £ G. Indeed, if x G G \ Di, 

then F,(x) f l ri(G.) = coAt(x) f l ri(G.) ^ 0 by (4)(b). Suppose x G G f l D„ then by 

(4)(c), coPt(x) f l coA.(x) f l G, 7̂  0; as coPt(x) f l aff(G.) is open in aff(G.) by (4)(a), 

coPx(x) f l r\(coAx(x) f l G.) # 0 by Lemma 3.8.11. Also, it follows from coA.-(x) f l G, 7̂  0 

that ri(coA,(x) f l G,) = ri(coA,(x)) f l r i (C ) by Theorem 6.5 in [20, p.47]. Thus 

0 7̂  coP, (x ) f l r i ( coA 1 ( x ) f lG ! ) 
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= coP l ( x ) f l r i ( coA l ( x ) ) f l r i (G I ) 

C coP(x) f l coA,(x) n ri(G.) = Ft(x) f l ri(G t). 

This shows that all hypotheses of Theorem 3.8.9 are satisfied so that there exists x* £ C 

such that x* G n i e /F , (x * ) . By (5), we must have x" fi Dt and 7r,(x*) G coAx(x*) fcr all 

i £ I It follows that for each i £ I, TTX(X*) £ Bt(x*) by (2) and Px(x*) f l At(x*) = 0. 

Hence x* is equilibrium point of Q. • 

As a special case of Theorem 3.8.12, we have the following result. 

T h e o r e m 3.8.13. Let Q = (X t ; A , ,P , ; P,) l 6 / be a generalized game where / is 

countable Suppose that for each ? G / , the following properties hold: 

(1) Xt is a non-empty compact convex subset of a finite dimensional topological vector 

space. 

(2) Ai, B, : X = n.g/A", —> 2X< are lower semicontinuous such that coAx(x) 

C B,(x) for each x G X. 

(3) l\ : X —> 2 A | U {0} is lower semicontinuous on Dt, where Dt — {x £ X : 

/ ,
i ( x ) f l A 1 ( x ) 7 ^ 0 } is closed in X . 

(4) For each x G X , (a) Px(x) is open in af f (X t) , (b) co.4,(x) f l r i (X t ) ^ 0 and (c) 

7T,-(x) ficoPt(x). 

Then Q has an equilibrium point x* in X . 

The following example shows that the assumption " F , = {x G X : A t ( x ) f lP , ( x ) ^ iii} 

is closed in A"" in condition (3) of Theorem 3.8.12 and Theorem 3.8.13 is necessary. 

E x a m p l e 3.8.14. Define A : [0,1] - * 2^°^ by A(x) : = [0,1 - x] for each x G [0,1]. 

Clearly, A is continuous with closed convex values. Now define Ai : [0,1] —> 2^ by 

/ [ 0 , 1 -x ] , if x 6 (0,1], 
Ai(x) = < 

I { I } , i f ^ = 0, 

is also lower semicontinuous by Lemma 3.5.1. We also define A2 : [0,1] —> 2^'^ by 

A 2 ( x ) = { c ° ( [ ° > 1 - * ] U { l / 2 } ) , i f x G ( 0 , l ] , 

1 co({ 1}U {1/2}), i fx = 0, 
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then A2 is also lower semicontinuous and in fact 

' [ 0 , 1 - x ] , if x G (0,1/2] , 

I [0,1/2], if xG (1/2,1), 
A Ax) - < 

[1/2,1], ifx = 0, 

[0,1/2], i f x = l . 

We now define P : [0,1] - • 2^xX by P(x) = [0,x) for each c G [0,1] then for any 

y G [0,1], we have P~x(y) = (y, I] Since {x G [0, 1], P(x) f l A2(x) ^ 0} = (0,1] and 

the fixed point set of A2 is (0,1/2] , but for each x G (0, 1/2], A2(x) f l P(x) ^ 0 

Finally we shall derive the following existence theorem for an equilibrium point of a 

qualitative game. 

T h e o r e m 3.8.15. Let Q = (A",; Pt)tel be a qualitative game where / is countable. 

Suppose that for each i £ I, the following properties hold: 

(1) X, is a non-empty subset of a topological vector space Et 

(2) P, : A = r i j g /A j —>• 2X' U {0} is lower semicontinuous on l)t, where D, = {.;; £ 

X : Px(x) T* 0} is closed in X . 

(3) There exists a non-empty finite dimensional compact convex subset G, of A'; 

such that (a) for each x £ C : = U3&IC3, Px(x) C aff(G,); (b) for each x G G f l /J,, 

coP,(x) f l ri(G t) 7̂  0; (c) for each x £ C, T , ( X ) fi coPt(x) 

Then Q has an equilibrium point x* in G 

Proo f . Fix an arbitrary i £ I. Define F, : G —> 2E< by 

_ . ^ f coP,(x), i f x G G n O , ; 

I aff(G), if EX\(Cr\Di) . 

Then by (2), (3)(a) and Lemma 3.5.1, F, is lower semicotiuous on C. Clearly F,(C) C 

aff(G,) by (3)(a) and for each x G X , F,(x) is convex. We shall now show that for each 

xEC, F,(x)flr i(G1) ^ 0. Suppose x G GflPv,, then by (3)(b), Fx(x)nr\(Ci) = coP,(x)n 

n(G.) 7̂  0. If x G X \ (G f l F t ) , then F,(x) f l r i (G) = aff(G.) f l r\((J{) = /^(G,-) ^ 0 by 

Theorem 6 2 of Rockafellar [253, p.45]. 
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Therefore all hypotheses of Theorem 3.8.9 are satisfied so that there exists x* G G 

such that x" £ r i i e / F, (x * ) . By (3)(c), we must have Px(x*) = 0 for all i £ I. Thus x* 

is an equilibrium point of Q. • 

By Theorem 3.8.15, we have the following 

C o r o l l a r y 3.8.16. Let Q = (X,; P t),e/ be a qualitative game where / is countable. 

Suppose that for each /' £ I, the following properties hold: 

(1) X, is a non-empty finite dimensional compact convex subset of a topological vector 

space Et. 

(2) P, : X = n i 6 / X , —> 2X' U {0} is lower semicontinuous on Dt, where Dx = {x £ 

X : Px(x) ^ 0} is closed in A . 

(3) For each x G X , coPx(x) f l r\(Xx) ^ 0. 

(4) For each x G X, irx(x) fi coPt(x). 

Then Q has an equilibrium point x* G X Dx. 



Chapter 4 

Variational Inequalities 

4.1 Introduction 

Since Chan and Pang [48] and Shih and Tan [267] gave existence theorems for GQVI in 

finite dimensional spaces and infinite dimensional locally topological vector spaces respec­

tively, there have been a number of generalizations of the existence theorems for GQVI(X; 

A; B), e.g., see Cubiotti [68], Ding and Tan [81], Harker and Pang [145], Kim [180], Shih 

and Tan [267]-[274] and Tian and Zhou [311] and references therein. These results enable 

people to give wide applications to the problems in game theory and economics, mathe­

matical programming (e.g., see Aubin [7], Aubin and Ekeland [10], Chan and Pang [48], 

Harker and Pang [145] and reference therein). Most of the existence theorems mentioned 

above, however, are obtained upon compact sets, in finite dimensional spaces or infinite 

dimensional locally convex topological vector spaces, and also both A and fi are either 

continuous or upper (lower) semicontinuous. 

On the other hand, in economic and game theoretic applications, it is known that the 

choice space (or say, the space of feasible allocations) generally is not compact in any 

topology (even though it is closed and bounded), a key situation in infinite dimensional 

topological vector spaces. On the other hand, we note that there are no essential exis­

tence theorems for non-compact generalized quasi-variational inequalities associated with 

discontinuous functions in infinite dimensional space based on our knowledge right now. 

150 
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This motivates our work in Chapter 4 of this thesis to give a series of existence theorems 

about generalized quasi-variational inequalities by relaxing the compactness conditions and 

continuity. As applications, we obtain some existence theorems for equilibria of constrain 

games in locally convex topological vector spaces. From the existence theorems for gener­

alized quasi-variational inequalities, the stability of solutions for two types of generalized 

quasi-variational inequalities are also established. 

Furthermore, based on a new concept called "semi-monotone" which was first intro­

duced by Bae, Kim and Tan [13], we also discuss and give some interesting variational 

inequalities in Banach spaces. As .*rp!,c.v';Dns, an existence theorem for generalized com­

plementarity problems is given and some fixed point theorems for nonexpansive operators 

are given. 

The basic idea in Chapter 4 is as follows: we reduce the existence problems for vari­

ational inequalities and generalized quasi-variational inequalities to the existence problem 

fo equilibria of generalized games; that means, the solutions of variational inequalities are 

nothing else, but are exactly equilibria of their equivalent model of generalized games. This 

simple fact enables us to consider the existence of solutions for non-compact variational 

inequalities and generalized quasi-variational inequalities in infinite dimensional topological 

vector spaces by the existence theorems for equilibria of non-compact generalized games 

established in Chapter 4. 

More precisely, the contents of Chapter 4 are as follows: 

In section 2, as applications of equilibria for non-compact generalized games in Chapter 

3, the existence theorems for non-compact variational inequalities are given under various 

non-compact conditions in locally convex topological vector spaces. As applications, 

existence theoremsfor equilibria of constraint games are established. These results improve 

and unify many corresponding results in the literature. 

In section 3, as applications of variational inequalities in section 2, two types of non-

compact generalized quasi-variational inequalities are considered under various hypotheses 

in locally convex topological vector spaces. 

In section 4, the stability of solutions for two types of generalized quasi-variational 
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inequalities is established. 

In section 5, based on the generalization of monotone operator called a "semi-

monotone operator" which was first introduced by Bae, Kim and Tan [13], we also 

discuss and give some variational inequalities for monotone and semi-monotone operators 

in Banach spaces. As applications, an existence theorem for generalized complementarity 

problem in the Banach space and some fixed point theorems for multivalued nonexpansive 

mappings in the Hilbert space are given. 

wm 
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4.2 Variational Inequalities in Locally Convex Topological Vec­

tor Spaces 

In this section, as applications of equilibria for generalized games, existence theorems 

for solutions of non-compact variational inequalities are given under different conditions 

in locally convex topological vector spaces As applications, the existence theorems of 

constraint games are given These results improve and unify many corresponding results 

in the literature (e g , see Aubin [7] and Aubin and Ekeland [10] and references therein). 

As consequents of Theorem 3 4.2' (respectively, Theorem 3 4 2) and Theorem 3.4.6' 

(respectively, Theorem 3 4 6), we have the following existence theorems for non-compact 

quasi-variational inequalities in locally convex topological vector spaces 

T h e o r e m 4 . 2 . 1 . For each ? = 1,2, • • •, X , let F, be a locally convex topological 

vector bpace and X = U°l-lCli3 where {CXi3}?L^ is an increasing sequence of non-empty 

compact convex subsets of F, Let X = U^XX. Suppose the following conditions are 

satisfied 

(i) for each / = 1,2, • • •, X , A, : X —> 2X' is lower semicontinuous with closed graph 

and convex values, 

( I I ) for each i — 1,2, • • •, X , i/>, : X x X , —» R U { - c o , + 0 0 } is such that for each 

y 1 E X,, r 1—> ijj,(x,yt) is lower semicontinuous on X ; 

(in) for each / = 1, 2, • • •, X and for each fixed x G X , x, fi co{yt £ X , : ip,(x,yt) > 

0}), 

(iv) for each 1 - 1,2, • • • , X , the set { x £ X . sup^g^ ^ fa(x,yx) > 0} is open in 

V, 

(v) for each sequence (y„ )~= 1 in A' which is escaping from X relative to { G n } ^ 1 ( 

where G„ = H i e /G,,„, there exist n g N and x n £ Cn such that 7r,(xn) G At(yn) f l {z £ 

A, : >l\(y„, z) > 0} for each / = 1,2, • • •, X . 

Then there exists x* £ X such that for each 1 = 1,2, • • •, X , 

x* G A,(x*) and s u p ^ ^ ^ , ) 0,(x*,y,) < 0. 

P roo f . For each / = 1,2, • • •, X , define P, : X -4 2A'- U {0} by P.(.r) = {yx £ Xx : 
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•0,-(x,y,-) > 0} for each x £ X. First (ii) implies that for each i = 1,2,- • •, N, Pi has 

open lower sections in X so that by (iii), P; is of class KF; it follows that A,- f l P; is 

ArF-majorized. The condition (iv) implies that for each i = 1, • • •, X , the set {x £ X : 

A t (x ) f lP , (x ) T^ 0} is open in X. Therefore Q - (A",-; A,-; P;)^, satisfies all the hypotheses 

of Theorem 3.4.2' with A,- = F, for each i = 1,2, • • •, X . By Theorem 3.4.2', there exists 

an x* G X such that for each i - 1,2, • • •, N, x\ £ A,(x*) and A,-(x*) f l P(x* ) = 0. 

Since {x G X : A,(x) f l P,(x) ^ 0} = {x G A" : sup,/ie/Mj;)i/v(:';,:</.') > 0} , it follows that 

for each ?! = 1,2, • • • , N, x*{ £ A,(x*) and s u p ^ ^ . j ^ Y y , ) < 0. • . 

A proof similar to that of Theorem 4.2.1, with "'"heorem 3.4.2 being applied instead 

of Theorem 3.4.2', gives the following result and is thus omitted: 

T h e o r e m 4 . 2 . 1 ' . Let / be any index set. For each i £ I, let AA; be a non-empty 

convex subset of a locally convex topological vector space F,. Let X = l l i e / .Y; be 

paracompact. Suppose that: 

(i) for each i £ I, Ai : X —> 2A ' is c lower semicontinuous correspondence with closed 

graph and convex values; 

(ii) for each ?! £ I, ?/>,• : X x X,- —> R U {—oo,-foo} is such that for each ;//; £ Xi, 

x i-> ijjx(x,yi) is lower semicontinuous on X ; 

(iii) for each i £ I and for each x G A", xx fi co({tji £ Xi : i/;,(x,y;) > 0} ) ; 

(iv) for each i £ I and for each y,- G X,-, the set {x £ X : «'ipy,e/i,(a.) '/,*'(r/;? !'7») > ('} 

is open in A ; 

(v) there exist a non-empty compact convex subset Xo of X and a non-empty compact 

subset K of A such that for each y £ X \ K, there exists x — (x ; ) ;6 / G co(Xo U {//}) 

with X{ E co(Ai(y) f l {z{ £ Xi : (/^(y, zx) > 0}) for all i £ I. 

Then there exists x" £ K such that for each % £ I, 

a\T € Ai(x*) and ^nplheMx.yfa(x%yi) < 0. 

Now by Theorem 3.4.6' instead of Theorem 3.4.2', we also have the following results 

for upper semicontinuous correspondences: 

T h e o r e m 4.2.2. For each i = 1 , 2 , - - , X , let F; be a locally convex topological 
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vector space and let X, = U ^ G , , be closed in Ex and have property (K), where { G . j } ^ 

is an increasing sequence of non-empty compact convex subsets of F t . Let X = I I ^ j X , . 

Suppose the following conditions are satisfied: 

(i) for each / = 1,2, • • •, X , A, : X —> 2X' is compact and upper semicontinuous with 

compact and convex values; 

(ii) for each ? = 1,2, • • •, X , ?/>, : X x X , - * R U {—oo,+oo} is such that for each 

y, E X,, x t-> ij),(x,yx) is lower semicontinuous on X ; 

(iii) for each ? = 1,2, • • • , X and for each x £ X, x, fi co({yx £ X , : ipt(x,yt) > 0} ) ; 

(iv) for each i — 1,2, • • •, X , the set {x £ X : supyieAt^y),(x,yt) > 0} is open in 

X ; 

(v) for each sequence (yn)^ in X which is escaping from A" relative to {G n } £L i , 

where G„ = n,e /G,,n , there exist 7? G N and xn £ Cn such that 7r,(xn) £ A,(yn) H {2 G 

A, : fa(y, z) > 0} for all 1 = 1,2, • • •, N. 

Then there exists x* £ X such that for each 1 — 1,2, • • • , X , 

x\ £ A,(x*) and s u p ^ ^ . ) 7/>t(x*,y,) < 0. 

P roo f . For each / = 1,2, • • •, X , define F, : X -* 2X> U {0} by P,(x) = {y t G X , : 

fa(x,yt) > 0} for each x G X , then we shall show that Q = (X, , A „ P , ) , ^ satisfies all 

the hypoth*--f-o of Theorem 3.4.6'. 

F:<st, (ii) implies that for each 1 — 1 ,2 , - - - ,X , Pt has open lower sections in X 

so that by (i' i), P, is of class KF and that P, is lower semicontinuous. The condition 

(iv) implies that for each ? = 1,2,• • • , X , the set { x G X : A,(x) f l P,(x) 7̂  0} is 

open in X. Therefore all hypotheses of Theorem 3.4.6' are satisfied with A, = F, for 

each / = 1 ,2 , - - - ,X . By Theorem 3.4.6', there exists an x* G K such that for each 

1 = 1,2, • • •, N, A,(x*) f l Pt(x*) = 0 and x*t £ At(x*). Since {x G X : A,(x) f l Px(x) ^ 

0} = {x G X : s u p V i e / M i ) 0 , ( x , y , ) > 0} , it fo'ows that for each 1 = 1 ,2 , - - - ,X , 

.< G A,(x*) and s u p , , , ^ , . ) V>.(x*,y.) < 0. D. 

Similarly, by applying Theorem 3.4.6 instead of Theorem 3.4.6', we have: 

T h e o r e m 4.2.2' . Let / be any index set. For each 1 £ I, let X, be a non-empty 
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closed convex subset of a locally convex topological vector space F, and X, have property 

(K). Let A = n i6/A", be paracompact. Suppose Shat: 

(i) for each i £ I, A, : X —> 2X ' is compact and upper semicontinuous with compact 

convex values; 

(ii) for each i £ f, </;, : X x A', —> R U { - c o , +00} is such that for each y; £ X;, 

x •—> ipx(x,y,) is lower semicontinuous on X ; 

(iii) for each 1 £ I and for each x G X, x, fi co({yx £ X, : i/;,(x,y() > 0}) , 

(iv) for each 1 £ I, the set {x G X : s u p ^ g ^ j ^ . E , / / , ) > 0} is open in A" for each 

fixed y, G A,; 

(v) there exist a non-empty compact and convex subset A'o of X and a non-empty 

compact subset K of A such that for each y E X \ K, there exists x = (x,'),e/ G 

co(Xo U {y } ) with x, G co(Ax(y) f l {zx E Xt : ?/;,(?/, z.) > 0}) for all / G / . 

Then there exists x* G K such that for each 1 £ I, 

x* £ A,(x*) and s u p ^ ^ , ) ipt(x*,y,) < 0. 

By letting / = {1} in Theorem 4.2.1 and Theorem 4.2.2, we have the following 

existence results for quasi-variational inequalities in non-compact settings: 

C o r o l l a r y 4.2.3. Let A = U ^ G , where { G , } ^ , is an increasing sequence of non­

empty compact convex subsets of a locally convex topological vector space E Suppose 

the following conditions are satisfied: 

(i) A : X -•• 2X is lower semicontinuous with closed graph and convex values; 

(ii) t/> • X x X —> R U {—00, +00} is such that for each y G X , x 1—• »/>(.'«,//) is lower 

semicontinuous on X ; 

(iii) for each x G X , x fi co({y £ X : '/>(x,y) > 0}) , 

(iv) the set { x G X : s u p ^ ^ ijj(x, y) > 0} is open in X, 

(v) for each sequence ( y n ) ^ ! in X which is escaping from X relative to {G7 ,}£1,, 

there exist n £ X and xn £ G„ such that x n G (A(yn) f l {z £ X : ij>(yn, z) > ()}). 

Then there exists x* G X such that x* G A(x*) and supyg^ . ) i/;(x*,y) < 0. 

C o r o l l a r y 4.2.4. Let F be a locally convex topological vector space, let A = UJ^G,-
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be closed in F and have property (K) , where { G , } ^ is an increasing sequence of non­

empty compact convex subsets of F. Suppose the following conditions are satisfied: 

(i) A : X —> 2X is compact and upper semicontinuous and with compact convex 

values; 

(ii) i/; : A x A —> R U {—oo, +00} is such that for each y G X, x •—* ip(x,y) is lower 

semicontinuous; 

(iii) for each x £ X, x fi co({y £ X :. i>(x,y) > 0}) ; 

(iv) the set {x G X : sup,jeA(xyiJ>(x,y) > 0} is open in X; 

(v) for each sequence (yn)™-i in X which is escaping from X relative to {G n }£L a , 

there exist u G N and x n G GM such that x n £ (A(yn) f l {z £ X, : i>(y,z) > 0} ) . 

Then there exists x" £ X such that x* £ A(x*) and supyg4(.E.)'i/>(x'\y) < 0. 

By Corollary 4.2.4, we have the following slight generalization of Theorem 3 of Tian 

and Zhou [311]: 

C o r o l l a r y 4.2.5. Let X be a non-empty convex subset of a locally convex topological 

vector space E. Suppose that 

(i) F : X —> 2A has closed graph and convex values; 

(ii) 1/; : X x A —» R U {—00, +00} is such that for each y £ X, x i-> ?/>(x,y) is lower 

semicontinuous on A' for each fixed y G A ; 

(iii) for each x £ X, x fi co({y £ X : i/)(x,y) > 0} ; 

(iv) there exist a non-empty compact convex subset Z C X and a non-empty subset 

C C Z such that 

(iva) F(C) C Z; 

(ivb) F(z) fl Z ^ iii for each z £ Z; 

(ivc) for each x £ Z \ G there exists y G F ( x ) f l Z with </>(x, y) > 0; 

(iv(i) the set {z £ Z : ^ipyeF^nZyj(x,y) < 0} is closed in Z. 

Then there exists x* £ F(x*) such that sup^^^. . ) 0 (x * , y ) < 0. 

P roo f . Define F, : Z -» 2Z by F,(x) = F(x) D Z for each x £ Z. Then F,(x) is 

non-empty closed and convex for each x G Z by (i) and (ivb). By (i), F has a closed 

graph so that Fx is also closed. It follows that Fx is upper semicontinuous. Now the 
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conditions (ii) and (iii) imply that Fj and ij; satisfy all hypotheses of Corollary 4.2.4 with 

F, = A and X = Z. By Corollary 4.2.4, there exists x* G Z such that x* G F,(x*) and 

suPyeF,ix>)nz*Hx*iy) ^ °- B v (ivc), x* must be in G. Therefore F,(x*) = F(x*)C\Z = 

F(x*) by (v)a. Hence, supyeF{xt)ip(x*,y) < 0. • 

Corollary 4.2.5 also generalizes Theorem 3.1 of Zhou and Chen [338], Theorem 15.2.1 

of Aubin [7] and Theorem 4 of Fan [106]. 

We conclude this section with an application of Corollary 4.2.3 to give an existence 

theorem for equilibria of constrained games. 

Let / = {1 ,2, • • •, X } . Each agent i chooses a strategy x, in a subset A", of a locally 

cnvex topological vector space F,\ Denote by X the (Cartesian) product \'\jLtXj and 

X_, the product lljeij&Xj. Denote by x and x_, an element of X and A_; respectively. 

Each agent ?! has a payoff (utility) function u; : X —» R U {—oo,+oo}. Given x_; (the 

strategies of others), the choice of the ith agent is restricted to a non-empty compact and 

convex set A,-(x_,-) C A",-, the feasible strategy set ; the ith agent chooses x; £ / l ,(x_;) 

so as to minimize u, (x„ j ,x , ) over Aj(x_;) , where (x_,-,x,) is the point y = (y3)jei s u c n 

that y, = x_, and y, = x,. The family Q — (Xi; A^u,-)^., is then called a constrained 

X-person game and an equilibrium for Q is an x* G X such that x* £ A, '(xl ,) and 

iii(x*) < Ui(x*_i,Xi) for all xt- £ A,-(x*,-) (e.g., ux(x*) = i n f ^ . ^ . ^ j w ^ x ! . , - ^ , - ) ) for each 

7! = 1 ,2 , - - - ,X . 

Note that if A,(x_,) = X,- for each i = 1,2, • • •, X , the constrained X-person game 

reduces to the conventional game Q — (X,;•«,),£/ and its equilibrium is called a Nash-

equilibrium. 

T h e o r e m 4.2.6. Let Q = (X,; Ac, Ui)?=l be a constrained game and X = W^Xi = 

DJL^CJ where {Cj}1^.-, is an increasing sequence of non-empty compact convex subsets 

of a locally convex topological vector space F. Suppose the following conditions are 

satisfied: 

(i) the correspondence A : X -» 2X defined by A(x) = \'\^Ll At-(x_,-) for each x -

(x_i ,x , ) G A is lower semicontinuous with closed graph and convex values; 
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(ii) the function </> : X x X —> R U {—oo, +00} defined by 

»/>(x, y) = £ £ , [u,(x_„ x.) - us(x_„ y,)] 

for each (x, y) £ X x X is such that for each y £ X, x <-^ tp(x, y) is lower semicontinuous 

on X, where x = (x_,,x,) and y = («/_,,y,); 

(in) for each x £ X, x fi co({y £ X : ij)(x,y) > 0}) ; 

(iv) the set {x £ X : s u p ^ ^ ifr(x,y) > 0} is open in X; 

(v) for each sequence (yn)^=\ in X which is escaping from X relauve to { G n } ^ . 1 ( 

there exist 77 G N and x n G G„ such that x n G Aj (yn ) f l {z £ Xt : ip(y, z) > 0 } ) . 

Then there exists x* G X such that for each 1 = 1,2, • • •, X , 

•c* G At(xl,) and ut(x") < \niXieA{xl) u,(xl t ,^,). 

Proo f . By (i)-(v), A and i/> satisfy all hypotheses of Corollary 4.2.3. By Corollary 

4 2.3, there exists x* G X such that x* G A(x*) and s u p ^ ^ ) ip(x*,y) < 0. For 

each / G / , and y, £ Ax(x*_{), let y = (x*_t,yx). Then y G A(x*) so that (u,(x*) — 

" . ( « ! „ y.)) = E . U u . f V J - u ^ x ! . , , ^ ) ] =t/>(x*,y) < s u p ^ ^ ^ ^ ^ x ^ y ) < 0. Therefore 

(u,(x') — ux(x'_0yx)) < 0 for all y, G A ^ x ^ J . Hence x* is an equilibrium point of the 

constrained game Q = (A",; A,; w , ) ^ . • 

Theorem 4.2.6 generalizes the corresponding results of Aubin [7, p.282-283] and Aubin 

and Ekeland [10, p.350-351] in the following ways: (i) the feasible correspondence At is 

lower (or upper) semicontinuous instead of continuous and (ii) the strategy set X , need 

not be compact. 
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4.3 Generalized Quasi-Variational Inequalities 

In this section, we shall first give some (non-compact) existence theorems of two types of 

generalized quasi-variational inequalities (in short, GQVI(X; A; B)) where, the domain A 

is a non-empty convex but not necessarily compact subset of a locally convex topological 

vector space F and the mapping A need not be continuous and the mapping fi need not 

have any continuity property. These results generalize and improve many known results 

in the literatures, e.g., Aubin [7], Aubin and Ekeland [10], Chan and Pang [48], Harker 

and Pang [145], Kim [180], Shih and Tan [267], [274], Tarafdar [301] and Tian aid Zhou 

[311] and the references therein. 

Now we introduce some notation and definitions. If E is a topological vector space, 

we shall denote by F* the dual space of F. The dual pairing between E* and F, is 

denoted by (w,x) for w £ E* and x £ E and Re(iv,x) denotes the real part of (w,x). 

Let X be a non-empty convex subset of a locally convex topological vector F Then 

T : X —> 2E* is monotone (see Browder [43, p.79]) if for each x ,y £ X and for each 

u £ T(x), w £ T(y), Re(w - u,y - x) > 0. Suppose F : X -> 2 A \ T : X -> 2E' and 

/ : A x X —> R U {—oo, +oo} . By applying Theorems 4.2.1 and 4.2.3, we shall prove the 

existence of a solution x £ X to the following generalized quasi-variational inequalities: 

(i) ( * e rii)' 
I sup«gT(») Re(u>x - y) + ./(*» v) ^ ° f o r ali y e '''(tf 

or the existence of solutions x £ X and u £ E* to the following generalized quasi-

variational inequalities: 

f x G F(x) and u £ T(x), 

\ Re(u, x - y) + f(x, y) < 0 for all y G F(x). 

Now we recall some definitions (e.g., see Zhou and Chen [338]). Let X be a non-empty 

convex subset of a topological vector space. A function »/; : X X X —> R U {—oo,-foo} 

is said to be 

(1) 7-diagonally quasi-convex (respectively, 7-diagonally quasi-concave) in y, in short 
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7-DQCX (respectively, 7-DQCV) in y, if for each A G F ( X ) and each y G co(A), 

7 < maxxeA I/J(X,IJ) (respectively, 7 > mfxeAi/;(x,y)); 

(2) 7-diagonally convex (respectively, 7-diagonally concave) in y, in short 7-DCX 

(respectively, 7-DCV) in y, if for each A G F ( X ) and each y G co(A) with y = S ^ A . y , 

(where A, > 0 for each 1 = 1 ,2 , - - - ,n and E j l jA , = 1), we have 7 < S™iA,0(y, ,y) 

(respectively, 7 > £™ l A ^ ^ y ) ) ; 

Let A and K be two non-empty convex subsets of F, we also recall that a function 

I / I I A ' X K - J R U {—00,+00} is quasi-convex (respectively, quasi-concave) in y, if for 

each fixed x G X , for each A G •F(K) and each y G co(A), ip(x,y) < mayLzeAip(x,z) 

(respectively, i/>(x,y) > inf-G,i ?/>(x,2)). 

It is easy to see that 

(i) if ip(x,y) is 7-DCX (respectively, 7-DCV) in y, then ip(x,y) is 7-DQCX (respec­

tively, 7-DCV) in y; 

(ii) if ?/;,(x,y) for each /! = 1 ,2 , - - - ,X is 7-DCX (respectively, 7-DCV) in y, then 

»/>(.'£, y) = S"i,a,(:E)?/>,(.'c, y) is still 7-DCX (respectively, 7-DCV) in y, where ax : X —> R 

with rt,(x) > 0 and Sj'i.,a,(x) = 1 for each x G X ; and 

(iii) the function ip(x,y) : X x X —> R U {—00,+00} is 0-DQCV in y if and only if 

x fi co({y £ X : i/>(x, y) > 0}) for each x G X . 

Let Ay be a non-empty convex subset of a topological vector space F and A : K —» F* 

be not monotone. We define a function / : X x K —> R by f(x,y) = (A(y),x — y) for 

each (x ,y) G A' x K. It is clear (e.g., see Zhou and Chen [338, p.216-217]) that for each 

fixed x G K, the function f(r, •) is both DQCX and DQCV in y, but not quasi-convex or 

quasi-concave in y. 

First we have the following existence for the problem (I) where T : X —> 2E* is 

monotone. 

T h e o r e m 4 . 3 . 1 . Let X = U ^ G , where {G,}~-, is an increasing sequence of non­

empty compact convex subsets of a locally convex topological vector space F . Suppose 

the following conditions are satisfied: 
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(i) F : X —» 2A is lower semicontinuous with closed graph and convex values; 

(ii) T : X —* 2E* is monotone such that for each one-dimensional flat L C E, 7'|/Jr,A' 

is lower semicontinuous when F* is equipped with the weak*-topology a(E*, E), 

(iii) / : X x X —> R U {oo,+oo} is such that for each y G A', x H-» f(x,y) is lower 

semicontinuous on A", and for each x G A", y i—> f(x,y) is concave and f(x,x) = 0 for 

each x G A"; 

(iv) the set {x G A" : supy6F(j;)[sup,ier(l/) Re{v,x - y) + /(x,//)] > 0} is open in X, 

(v) for each sequence ( y , , ) ^ in X which is escaping from A" relative to {G, , . }^ , , 

there exist n £ N and x7l G G„ such that x n G F(yn) f) {z £ X : sup„e r( ,) H.c(u,ytl — 

z) + f(yn,z)>0}. 

Then there exists x £ X such that x £ F(x) and 

supugT(x) fle[(u, * - ?-/) + / ( *> •!/)] ^ ° f o r aN J/ £ F(x) 

Proof. Define a function I / I I I X X ^ R U {—oo, +00} by 

*l>(x, y) = S UP ^ e K x -y) + J(',;i //) 
ii€T(i/) 

for each (x ,y ) G A x X. Then for each y £ X, x i-> 0 (x ,y ) is lower semicontinuous 

on X . Since T is monotone and by (iii), it is easy to see that for each fixed x £ X, 

y i—• ?/>(x, y) is 0-DCV by Proposition 3.2 of Zhou and Chen [338]. Thus all the hypotheses 

of Corollary 4.2.3 (hence also of Theorem 4.2.1) are satisfied so that there exists x G K 

such that x £ F (x ) and &upugT( j /)[(u,x - y) + f(x,y)} < 0 for all y £ F(x). 

Since for each one-dimensional flat L C E, T\mx 's lower semicontinuous when E* 

is equipped with the weak*-topology cr(F*, E), by the same argument as in the step 2 of 

Shih and Tan [267, p.338], we can show that 

supyeT{£)[(u,x - y) + f(x,y)) < 0 for all y G F(x). O 

Now by Corollary 4.2.4 (hence also Theorem 4.2.2) and the same argument as in 

Theorem 4.3.1, we have the following-

T h e o r e m 4.3.2. Let X = U £ , C ( be closed and have property (K), where { & } £ , 

is an increasing sequence of non-empty compact convex subsets of a locally convex topo­

logical vector space F. Suppose the following conditions are satisfied: 
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(i) F : X —* 2X is compact upper semicontinuous with compact and convex values; 

(ii) T : X —> 2E' is monotone such that for each one-dimensional flat L C F , T\inx 

is lower semicontinuous when F* is equipped with the weak*-topoiogy a(E*,E); 

(iii) / : A" x A" -4 R U {oo, +00} is such that for each y G X , x i-» / ( x , y) is lower 

semicontinuous on X and for each x £ X, y H-> f(x,y) is concave and f(x,x) = 0 for 

each x G X ; 

(iv) the set {x G X : supye/?(j,)[supu6T(l/) Re(u,x- y) + f(x,y)] > 0} is open in X; 

(v) for each sequence (yn)£Li in X which is escaping from X relative to {G n }£L, , 

there exist n £ N and x „ G Cn such that x n G F(yn) f) {z £ X : supu € T(, j Re(u,yn — 

z) + f(yn,z)>0}. 

Then there exists x G X such that x G F (x ) and 

s u p u g T W ^ K * - y) + f(x,y)\ < 0 for all y G F ( x ) . 

As an immediate consequence of Theorem 4.3.2, we have the following: 

C o r o l l a r y 4.3.3. Let X be a non-empty compact convex subset of a locally convex 

topological vector space E and let F : X —> 2X be upper semicontinuous with closed and 

convex values. If T : X —» 2B* is monotone such that for each one-dimensional flat L C 

F, f/'|/.,nA' is lower semicontinuous when F* is equipped with the weak*-topology cr(E*, F ) . 

Suppose / : X x A" —* R U {—00,+00} is such that for each y £ X, x \—>• / ( x , y ) is 

lower semicontinuous on X and for each x G X, y •—> f(x,y) is concave and f(x,x) = 0 

for each x G A". Suppose further that the set {x G X : supyeF,x\[supueT,y\ Re(u,x — 

y) + /(•''',?/)] > 0} 's °P e n i" -AT- Then there exists an x G X such that x £ F(x) and 

s»P„gT(a)[fle(u, x - y) + / ( x , y)] < 0 for all y G F ( x ) . 

Theorem 4.3.2 generalizes Theorem 1 of Shih and Tan [267] to a non-compact setting. 

We note that our proofs of Theorem 4.3.1 and Theorem 4.3.2 depend on the existence 

theorems for equilibria of generalized games instead of the partition of unity arguments 

used by Aubin [7], Aubin and Ekeland [10], Shih and Tan [267] and Zhou and Chen [338], 

When T = 0 in Corollary 4.2.2, Corollary 4.2.2 generalizes Joly-Mosco Theorem (see 

Theorem 15.2.2 of Aubin [7]), and also gives the well-known Fan-Glicksberg fixed point 
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theorem (see [97] and [127]). 

Recall that for a topological vector space E, the strong topology on its dual space 

F* is the topology on F* generated by the family {U(B;u) : B is a non-empty bounded 

subset of E and w > 0} as a base for the neighborhood system at zero, where U(li;to) := 

{ / G F * : s u p x e B | ( / , x ) | < u ; } . 

We now observe that in Theorem 4.3.1 and Theorem 4.3.2, the interaction between 

the correspondences T and F (namely, the condition (v)) can be achieved by imposing 

additional continuity conditions on T and F. 

T h e o r e m 4.3.4. Let X = U ^ G ; be bounded, where {G, - } " , is an increasing 

sequence of non-empty compact convex subsets of a locally convex topological vector 

space F. Suppose that F : X —> 2A is continuous with closed and convex values and 

T : X —• 2E' is monotone such that T is lower semicontinuous when E* is equipped with 

the strong topology. Suppose that 

(i) / : X x A —> R U {oo,-foo} is lower semicontinuous such that for each x G X, 

y H-> f(x,y) is concave and f(x,x) = 0 for each x G A"; 

(ii) for each sequence (yn)™=i in X which is escaping from X relative to {G,,}',^.,, 

there exist n £ X and xn E Cn such that xn £ F(yn) f l {z £ X : sup1 l67-^ Rc(u,yu — 

*> + / (y„,*)>0}. 

Then there exists x G X such that x G F (x ) and 

supueT{£)[Re(u, x - y) 4- /(£, y)] < 0 for all y G F(x). 

Proo f . By Theorem 4.3.1, we need only show that the set 

E := {x G X : sup [ sup lle(u, x - y) + f(x, ?/)] > 0} 
yeF(x) uET(y) 

is open in X . 

Since X is bounded and / ( • , • ) is lower semicontinuous, the function (u,x,y) h-> 

R.e(u,x-y)-\-f(x,y) is lower semicontinuous from F * x A x A t o R . Therefore (x,y) i-» 

sup u e T ( 1 J ) [ /?e(? i ,x -y) - f / (x ,y) ] is also lower semicontinuous by the lower semicontinuity 

of T(-) and Proposition 111-19 of Aubin and Ekeland [10]. Since /'' is lower semicontinuous, 
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x H-> $upyeF/x\ sup, i6T(2/)[Fe(u,x - y) + f(x,y)] is lower semicontinuous by Proposition 

111-19 of Aubin [7] again. Thus the set E := {x £ X : supyeF^supueT^[Re(u,x — y) + 

f(x,y)} > 0} is open in X . • 

Theorem 4.3.4 also generalizes Theorem 2 of Shih and Tan [267] to a non-compact 

setting. 

Now we shall consider the existence of solutions of the problems (I) and (II) where the 

correspondence T : X —> 2E' need not be monotone. 

We state Kneser's minimax theorem [190] (see also Aubin [7, p.40-41] as follows: 

T h e o r e m 4 .3 .A (Kneser [190]) . Let X be a non-empty convex set in a vector 

space and let Y be a non-empty compact convex subset of a topological vector space. 

Suppose that / is a real-valued function o n A x V such that for each fixed x G X , / ( x , y) 

is lower semicontinuous and convex on Y, and for each fixed y £ Y, f(x,y) is concave 

on A". Then 

min sup / ( x , y) = sup min f(x, y). 
y£> xex %ex y£y 

We first have the following: 

T h e o r e m 4.3.5. Let X = U ^ G , where {G,},0^ is an increasing sequence of non­

empty compact convex subsets of a locally convex topological vector space F. Suppose 

that 

(i) F : X —t 2A is lower semicontinuous with closed graph and compact and convex 

values; 

(ii) 7' : X —» 2h' has compact convex values such that for each fixed y £ X, 

x i-> inf'u67'(.B) Re(u,x — y) is lower semicontinuous; 

(iii) / : A" x A" —> R U {—oo, +00} is such that for each y G X , x H-> f(x,y) is lower 

semicontinuous on A" and for each x £ X, y H-» f(x,y) is 0-diagonally concave; 

(iv) the set {x G X : sup y 6 / r ( x ) [ in f „e T ( ; r ) Re(u,x - y) + f(x,y)} > 0} is open in X; 

(v) for each sequence (y„)£L, in X which is escaping from X relative to {Cn}™=A, 

there exist n £ N and x n G Cn such that x n G F(yn) f l {z E X : mfurzT(yn) R^(u,yn -
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*> + /W)>o} . 
Then there exists x £ X such that x £ F(x) and 

suPj/eF(a) infueT(£)[(n,x - y) + ./'(£, y)] < 0. 

If in addition, for each x G A , y i-> f(x,y) is concave, then there exists u G 7'(x) such 

that sup„ei !. (£)[(u,x - y) + / ( x , y ) ] < 0. 

P roo f . Define the functional ?/> : X x A" —• R U {—oo, +00} by 

•t/>(x, y) = inf [fte(M, x - y) + / (x , y)] 

for each (x ,y ) G X x X . Then we have: 

(1) for each fixed y G X , x (-> i/j(x,y) is lower semicontinuous on A' and x ^ o»({y G 

X : ij)(x,y) > 0}) for each x G X by (iv); 

(2) the set { x G A" : sup^ / , - ^ ip(x,y) > 0} is open in X; 

(3) for each sequence (yn)\f=\ in A which is escaping from X relative to {GM}^L,, 

there exist n £ X and x n G Gn such that x „ G co({F(yn ) f l {2: G A" : i/)(yn,z) > ()}). 

Therefore F and 1/; satisfy all the conditions of Corollary 4.2.3. By Corollary 4.2.3, 

there exists an x £ K such that x £ F(x) and -fax,'//) < 0 for all y G F(x). 

If in addition, for each x £ X, y 1-+ f(x,y) is concave, define the function /1 : 

F(x) x r(x) -> R U {-00, +00} by 

/1 ('x'7 y) = ^e(x, x - y) + / ( x , y) 

for each (x ,y) G F(x)xT(x). Then for each y £ X, x i-> f\(x,y) is lower semicontinuous 

and for each x £ X, y i-» j\(x,y) is concave. By Kneser minimax Theorem 4.3.A, 

inf sup [/2e(u, x - y) + / (x , y)] = sup inf [«C(M, X - y) + ./'(x, y)] < 0, 
utzT(x) y € f (£) ?/g/<''(£) «e / (a;) 

so that there exists u £ T(x) such that supJ/6yw!?JJ/?e('H, x — y) -}- f(x,y)] < 0. • 

By the same arguments used in Theorem 4.3.5 and by applying Corollary 4,2.4 instead 

of Corollary 4.2.3, we have the following result whose proof is omitted: 
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T h e o r e m 4.3.6. Let X = U ^ G , be closed and have property (K), where { G , } ^ 

is an increasing sequence of non-empty compact convex subsets of a locally convex topo­

logical vector space F Suppose that 

(i) F : A —> 2X is compact and upper semicontinuous with compact and convex 

values, 

(ii) T : A —• 2E' has compact and convex values such that for each y G X , x i—> 

infueT(ji) Re(u,x — y) is lower semicontinuous; 

(in) j X x X —> R U {—oo, +00} is such that for each y G X , x 1—> f(x,y) is lower 

semicontinuous on X for each y E X and for each x £ X, y >—> f(x,y) is O-diagonally 

concave, 

(iv) the set {x G A : &uptfgJ?(J)[inftt6T(a.) Re(u,x- y) + f(x,y)] > 0} is open in X; 

(vi) for each sequence (yn)n=i
 in ^ which is escaping from X relative to {G„}£L1 ( 

there exist v £ N and x n G G„ such that x „ G F(y n ) f l {z £ X : inf«gT(;/„) Re(u,yn — 

Z) + J(jjn,z)>0}. 

Then there exists x G A such that 

x G F(x) and supy6F(£) iiifueT(£)[(u,x - y) + f(x,y)] < 0. 

If in addition, for each x £ X, y !-• f(x,y) is concave, then there exists u G T(x) such 

that sup v € F ( i ) tfe[(u,x - y) + J(x ,y) ] < 0. 

If A" is a bounded subset of a locally convex topological vector space F and T : X —> 

2E has compact and convex values and is upper semicontinuous when F* is equipped 

with the strong topology, then the function g : X x X —• R U { - c o , +00} defined by 

g(x,y) = in f u C T ( i ) (u ,x - y) has the property that for each y G X , x i-> g(x,y) is 

lower semicontinuous on A" by Lemma 2 of Kim and Tan [184]. Thus, Theorem 4.3.6 

generalizes Theorem 3 of Shih and Tan [267] and we have the following: 

Coro l l a ry 4.3.7. Let X = U ^ G , be bounded, where { G , } ~ , is an increasing 

sequence of non-empty compact convex subsets of a locally convex topological vector 

space E. Suppose that 

(i) F : X —> 2A is lower semicontinuous with closed graph and compact and convex 
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values; 

(ii) T : X —> 2E' has (strongly) compact convex values and is upper semicontinuous 

when F* is equipped with the strong topology; 

(iii) / : X x X —> R U { —oo,+oo} is such that for each y £ X, x H-> f(x,y) is lower 

semicontinuous and for each x G A , y i—> f(x,y) is O-diagonally concave; 

(iv) the set {x £ X : supyeF{x)[m{ueT(x) R.e(u, x - y) + f(x, </)] > 0} is open in X; 

(v) for each sequence (yn )£U in X which is escaping from X relative to { G n j j j i , , 

there exist 77, G N and x,, G Cn such that x n G F(yn) f l {z £ X : inf1(e7'(,/M) Re(n,yn — 

z)+f(yn,z)>0}. 

Then there exists x £ X such that x £ F(x) and 

suPj/6F(£) ntfueT(x)[(u,x- y) + f(x,y)] < 0. 

If in addition, for each x G X , y 1—> f(x,y) is concave, then there exists fi G 7'(x) such 

that supy€F(x)[(u, x - y) + / ( x , y ) ] < 0. 

P roo f . Define ?/> : X x A" -> R U { - 0 0 , +00} by 

V>(x, y) = inf jFe(u, x - y) + /(x, y)], 
i t g i (a;) 

for each (x ,y ) £ X x X. Since X is bounded, by Lemma 2 of Kim and Tan [184], for 

each y E X, x r—y inf„er(x)(^,-'c — y) is lower semicontinuous. Therefore (/; and F satisfy 

all the hypotheses of Theorem 4.3.5. Thus the conclusion follows from Theorem 4.3.5. • 

In the above proof, if we apply Theorem 4.3.6 instead of Theorem 4.3.5, we have: 

C o r o l l a r y 4.3.8. Let X = U-^G,- be bounded, closed and have property (K), where 

{Ci}fli is an increasing sequence of non-empty compact convex subsets of a locally convex 

topological vector space F,. Suppose that 

(i) F : X —» 2 is compact and upper semicontinuous with compact and convex 

values; 

(ii) T : X —> 2E' has (strongly) compact convex values and is upper semicontinuous 

when F1" is equipped with the strong topology; 

(iii) / : X x X —> R U {—00, -f 00} is such that for each y G X , x t-> / ( x , y) is lower 

semicontinuous and for each x £ X, y *-* f(x,y) is O-diagonally concave; 
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(iv) the set {x G X : supyeF{x)[mfu€T{x)Re(u,x - y) + f(x,y)} > 0} is open in X; 

(v) for each sequence (yn)%Li in X which is escaping from X relative to {G„}£L 1 ( 

there exist n £ N and x n G G„ such that xn £ F(yn) f l {2 G X : i n f ^ g x ^ ) Re(u,yn — 

z)+f(yn,z)>0} 

Then there exists x E X such that x G F (x ) and 

suPvgf(£) inf„gT(i)[(u,x - y) + /(.r,y)] < 0. 

If in addition, for each x £ X, y •-* f(x,y) is concave, then there exists u £ T(x) such 

that supv g F ( £ ) [Fe(7i,x - y) + f(x,y)} < 0. 

P roo f . Define ip : X x X - • R U { - 0 0 , +00} by 

*/>(x, y) = inf [Fe(u, x - y) + f(x, y)} 
u g i (x) 

for each (x ,y ) G A" x X . Since A" is bounded, by Lemma 2 of Kim and Tan [184], for 

each y G X , x t-> infu67 '(J,)(i i,x — y) is lower semicontinuous. Therefore ijj and F satisfy 

all hypotheses of Theorem 4.3.6. Thus the conclusion follows from Theorem 4.3.6. • 

Now if we impose a continuity condition on the correspondence F, then we have the 

following: 

T h e o r e m 4.3.9. Let X = U~,G, be bounded, where { G t } ~ T is an increasing 

sequence of non-empty compact convex subsets of a locally convex topological vector 

space F. Suppose that 

(i) F : X —> 2A is continuous with non-empty compact and convex values; 

(ii) T : X —> 2E* has (strongly) compact convex values and is upper semicontinuous 

when F* is equipped with the strong topology; 

(iii) / : X x X —> R U {—00,4-00} is lower semicontinuous and for each x G X , 

,'/ l—> f(x,y) is O-diagonally concave; 

(iv) for each sequence (y7i,),?=1 in X which is escaping from X relative to {G n }£L j , 

there exist /), G X and x n G G„ such that x n G F(yn) f l {z £ X : i n f ^ T ^ ) Re(u,yn -

s) + /W)>0} . 
Then there exists 3; £ X such that x G F ( x ) and 

suP»gF(.?)Mu€T(«) Fe(u,x - y) + f(x,y)] < 0. 
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If in addition, for each x G A", y i-» f(x,y) is concave, then there exists it £ 7'(x) such 

that supyeF(x)[Re(u,x -y) + f(x,y)} < 0. 

P roo f . Define the function V->i : X x X x F* —»• R U {—00,4-00} by 'i/>i(x,y,v) = 

Re(u,x — y) for each (x,y,u) £ X x X x F*. Since A" is a bounded subset of the 

locally convex topological vector space F and E* is equipped with the strong topology, 

ipi is continuous. Since T : X —> 2E* is upper semicontinuous with (strong) compact 

and convex values, by Theorem 1 of Aubin [7, p.67], the function 'i/'-i : A' X A" —+ 

R U {—oo,-r-co} defined by ijj2(x,y) = infue7(x.)('u,x — y) is also lower semicontinuous 

on X x X so that (x ,y ) i—• miueT{x) Re(u,x — y) + f(x,y) is lower semicontinuous by 

i (iii). As F : X —• 2A is lower semicontinuous, by Theorem 2 of Aubin [7, p.69], the 

i functio,; x \-> supyeF,<. Re inf ueT(x)[{u, x — y) + f(x, y)] is lower semicontinuous from X 

to R U {—oo, +00} . It follows that the set E = {x £ X : sup,/6/;u A infuer(a.) Ilc[(u, x — 

y) + f(x,y)} > 0} is open in X. Thus F, T and / satisfy all hypotheses of Corollary 

4.3.7. Thus the conclusion follows from Corollary 4.3.7. • 

R e m a r k : In Theorems 4.3.1, 4.3.2, 4.3.4, 4.3.5, 4.3.6 and 4.3.9, we assume that 

the correspondence T : X —* 2E' satisfies some kind of continuity. In fact, under 

appropriate conditions, the existence theorems for solutions of the problems (I) and (II) 

still hold without assuming any continuity of T, for more details, see Ricceri [251] and 

the references therein. We also note that Corollary 4.3.8 (and hence also Theorem 4.3.6) 

generalizes the Theorem of Kim [180] which in turn improves Theorem 4 of Shih and 

Tan [267]. For the applications of quasi-variational inequalities and generalized quasi-

variational inequalities to game theory and economics theory, we refer to Aubin [7], Aubin 

and Ekeland [10], Border [34] and references therein. 
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4.4 Stability of Quasi-Variational Inequalities 

In this section, we shall study the stability of the set SA(D,S,T) = {y £ D: y £ S(y) 

and M i p j e i ( v ) supw g T ( v ) Re(w, y - x) < 0} (respectively, the set SB(P>, S, T) = {y £ D. 

IJ £ S(y) and supx6S(,A inf,„e7(y) Re(w,y — x) < 0}) , where D is a non-empty compact 

convex subset of a complete convex subset X of the normed space F, S : X —• 2X 

is a continuous set-valued mapping with non-empty compact convex values and T : 

X —» 2E' is monotone and lower semicontinuous with non-empty bounded closed values 

(respectively, T : X —• 2E' is upper semicontinuous with non-empty compact values). 

Throughout this section, (i) F denotes a normed space with norm || • ||; (ii) F* denotes 

the dual space of E with the norm || • ||*, (iii) X denotes a non-empty complete convex 

subset of F, (iv) X ( X ) denotes the family of all non-empty compact subsets of X and (v) 

h (respectively, /;*) denotes the Hausdorff metric defined on the family bc(E) (respectively, 

bu(E*)) of all bounded closed subsets of F (respectively, F*) which is induced by the norm 

|| • || (respectively, || • ||*) Note that X ( X ) is a complete metric space when equipped 

with the Hausdorff metric h (e.g , see [6]). If A C F is non-empty, x £ E and 8 > 0, let 

U(S,x) = {y £E: \\x-y\\ < 8} and U(8, A) = {y £ E : | | y - a | | < 8 for some a £ A}. 

We shall study the stability of the solution set SA(D,S,T) of CQVI(A) and of the 

solution set SH(D,S,T) of GQVI(B) with D, S and T varying. 

Let C(X) = {S : X -> K(X) : S is continuous on X}, L(X) = {T : X - • 

2h' . T is lower semicontinuous with bounded closed values } , and U(X) — {T : X —» 

K(E") : T is upper semicontinuous } . For each Si,Si E G(X), define di(Si,Si) = 

»»PJ6v h(Si(v),Si(x)) For each Ti,T2 £ L(X) (respectively, T,, T2 £ U(X)), define 

<l2(7\,Ti) - sunx6A- h*(Ti(x),T2(x)). It can be routinely checked that ( G ( X ) , J 1 ) , 

(Z^A" ) , ^ ) and (U(X),d2) are complete metric spaces. For each ux = ( F ^ S ' ^ T i ) , u2 = 

(Di, Si, 7\) in VL .= A"(X) x G ( A ) x L ( X ) (respectively, ^ = X ( X ) x C(X) x t / ( X ) ) , 

define p( i / , , «2) = h(Di,D2) + di(Si,S2) + d2(Ti,T2). Then (V,/?) is a complete metric 

space for V = V'/, or V = Yy 

As a special case of Theorem -1.3 4, we have the following generalized quasi-variational 
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inequalities (GQVI) which is Theorem 2 of Shih and Tan [267] (see also Theorem 2 of 

Shih and Tan [274] with / = 0): 

T h e o r e m 4 .4 .A . Let F be a locally convex topological vector space, E* be the 

dual space of F and X be a non-empty compact convex subset of E. Let ,9 : A —> 2A 

be continuous such that for each x G X, S(x) is a closed convex subset of X and let 

T : X —» 2E' be monotone such that T is lower semicontinuous from the relative topology 

of X to the strong topology of F*. Then there exists a point y £ X such that 

i G S(y) and 
GQVI (A) I J u ; 

1 suP*gs(ji) snPwer(y) Re(wi V ~ x) ^ °-

By Theorem 4.3.9, we also have the following generalized quasi-variational inequalities 

which is Theorem 4 of Shih and Tan [267]: 

T h e o r e m 4 .4 .B . Let E be a locally convex topological vector space, E* the dual 

space of F and let X be a non-empty compact convex subset of E. Let S : X —> 2A 

be continuous such th?t for each x £ X, S(x) is a closed convex subset of A", and 

T : X —> 2E' be upper semicontinuous from the relative topology of X to the strong 

topology of E" such that for each x G X, T(x) is a strongly compact subset of IS*. Then 

there exists a point y £ X such that 

, s I V £ S(y) and 
GQVI(B) { J KJ; 

I suP^e,s(;/) >nf«,gT(») Re(w, y - x) < 0. 

We call such a point y in Theorem 4.4. A (respectively, Theorem 4.4.B) a solution of the 

generalized quasi-variational inequality (A) (respectively, (B)), in short, GQVI(A) (respec­

tively, GQVI(B)) for (S,T) in X and denote by SA(X,S,T) (respectively, ,S'«(X, ,9,7')) 

the set of all solutions of the generalized quasi-variational inequality (A) (respectively, (B)) 

for (S, T) in A'. Thus under the stated conditions above, the associated set SA(X,S,T) 

(respectively, SB(X,S,T)) is non-empty, 

L e m m a 4 . 4 . 1 . Let {A n }£L | be a sequence in K(X) which converges to A G K(X). 

Then every sequence (xn)^L1 in X with x n £ An for each n £ N , has a subsequence 

which converges to a point in A. 
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Proo f . Since An and A are compact and A n —*• A, by A.5.1 (ii) of Mas-Colell [216, 

p.10], {J%LxAn U A is compact. Since x n G A n C U ^ A n U A, the sequence { x „ } has 

a subsequence {.'«„,} which converges to x G U^LjAn U A. Now by Lemma 1(2) of Yu 

[329, p.231], x G A. D 

Let M L = {(£>, ,9,F) G V i : there exists i / e £ ) such that y G 5'(y) and 

suP*gs(y) s uPwgT(j/)R- e(w ,y-x) <0} 

and 

Mt/ = {(D, S,T) E Y,j : there exists y £ D such that y G .5(y) and 

suP*gs(y) inf^6T(v) Re(w, y - x) < 0}. 

Define SA : ML -> 2A' (respectively, .9S : M y -> 2A') by 

SA(U) = {y £ D : y £ S(y) and sup sup Re(w,y - x) < 0} 
xgS(y) wgT(y) 

for each u = (D,S,T) £ ML (respectively, 

SB(U) = {y £ D : y £ S(y) and sup inf Re(w,y — x) < 0} 
xes(y) ™zT{y) 

for each u = ( D , S , T ) e M y ) . 

L e m m a 4.4.2. 

(i) The space Mi is closed in Y^. 

(ii) The space M\j is closed in Y\j. 

Proo f . Let ((Dn,Sn,Tn))^ be a sequence in Mi (respectively, Mu) such that 

(Dn,Sn,Tn) -> (D,S,T) E YL (respectively, Yv). For each n £ N , let yn £ Dn be such 

that 

(1) yn £ Sn(yn) and 

(2) s"P*g«!„(v,1)
suPuigTn(tfn) He{w,yn - x) < 0 

(respectively, sup j ; e 5 n ( y n ) iuf,„eT?i(!/n) Re(iv,yn - x) < 0). 

Since Dn —> D, by Lemma 4.4.1, without loss of generality, we may assume that yn —> y0 

as 7i —> oo and yu G F. 



174 

Now we shall show that 

(i) yo G S(y0) and 

(») suPxes{yo)
 suPweT(yo) Re{w,y0 - x) < 0 

(respectively, supx e S ( y o ) influeT(l/0) Re(w, y0 - x) < 0} 

(i) Suppose that yo fi S(yo), then there exists a > 0 such that U(a, ,9(y0))fl(/(<7,»/()) = 0 

Since Sn —• ,5' as n —> oo there exists n-j G N such that for each n £ N with », > ?i|, 

Sn(u) C U(a/2,S(u)) f c all u G X . Since yn —» yo, by the upper semicontinuity of ,9, 

there exists a positive integer n2 > ni such that yn £ U(a, y0) and S(yn) C U(a/2, S'(yo)) 

for all n £ N with n > n2. Now for any integer 7? > ni, Sn(yn) C U(a,S(yo)) and 

yn £ U(a,y0). Note that yn £ Sn(yn) which contradicts that U(a, S(ij0))nU(a,yo) — iii 

Therefore we must have y0 G <9(yo) 

(ii) Suppose that 

sup sup Re(w,yo — x) > 0 
a.£S(i/o) ™gX(y0 ) 

(respectively, 

sup inf Re(vj,yo — x) > 0), 
a-e.?(y0)"'eT(i;o) 

then there exist x0 £ S(ijo) and c > 0 such that Mip„,g7'(Vo) Ha(w, IJQ - i,()) > ( > 0 

(respectively, iniw&r(yQ) Re{w,yo — x0) > e > 0) As 7' is lower semicontinuous (respec­

tively, upper semicontinuous) and the mapping (W,IJ,X) >-» Re(iv,ij — 7.) is continuous 

from F* x X x X to R, the mapping (y,x) t-> s>upmejiy\ lle(w,y — x) (respectively, 

(y ,x) i-> \vdweT(y) Re(w,y — x)) is lower semicontinuous by Proposition 19 (respec­

tively, Proposition 21) of Aubin and Ekeland [10, p 118] (respectively, [10, p 119]) Since 

y?i —> yo as 7i —> oo, there exist 8 > 0 and n 0 G N such that for each integer n > no, 

Vn £ U(8, y0) and for each (?/, x') £ U(8, y0) x U(8, x0), supwe7 ( y ) We(™, »/-.'/;') > r > 0 

(respectively, in f^gj fy) Re(w,y' — x') > f > 0) In particular, for each integer n > 7({) 

and x ' G U(8,x0), 

sup Re(w,yn - x') > c > 0 (respectively, inf /?e(w, ijn — x') > r > 0). (4.1) 
u;6T(i/„) '"G7'(v„) 
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Because ,$'n —> S as n —> oo, there exists an integer ni > no such that >9(u) C 

U(8/4,Sn(u}) for all u G X . Since 5(y n ) —• 5'(yo) and x0 G 5'(yo), there exists an 

integer 77,2 > nx such that S(yn) D U(8/4.,x0) ^ 0 for all integers n > n2. Therefore for 

all n E N with n > n 2 l S(yn)nU(8/4, x0) ^ 0 and 5(«) C £/(£/4, S„(u)) for all u G X 

which imply that 

5'„(yn)n/7(V2,xo)^0. (4.2) 

Now by (4.1) and (4.2), for each integer n > n2, we have 

sup Re(w, y„ — x') > t > 0 (respectively, inf Re(w,yn — x') > e > 0) (4.3) 
w£T(y„) weT(yn) 

foraWx'£Sn(yn)fMJ(8/2, xo). 

Since 7'n —> 7' as n —> 00, there exists an integer 77,3 > n2 such that for each n > n.3, 

di(Tn,T) < ^ , where ;J = ||x0|| + 6 + sup{||yn|| : ra > 1}. Fix an 7i > n3 . Let to G T (y „ ) 

(respectively, t/j» G T,i(yn)) t>e arbitrarily fixed. Since h*(Tn(yn),T(yn)) < •—< there exists 

to' £ 7'n(y„) (respectively, w' £ T(yn)) with ||u> - i / | | * < ^ . By (??), choose any 

x' £Sn(yn)nU(8/2,x0). Then 

|/te(u,' - t„,yn - x')| < | K - «»ir(l|yn|| + ||x' - xo|| + ||x0||) < | , 

so that 

sup Re(z, yn - x') > Re(w', yn - x') > Re(w, yn - x') - e/2 
s67'(j/„) 

(respectively, 

Re(io,yn - x') > Re(w',yn - x') - e/2 > inf Re(w,yn - x') - e/2). 
•w€T(yn) 

Since w E T(yn) (respectively, w £ Tn(yn)) is arbitrary, we have by (4.3), 

sup R,e(z, yn - x1) > sup Re(w, yn - x') - e/2 > e - e/2 = e/2 > 0 
=€'/',, (!/,.) w€T[y„) 

(respectively, 

inf Re(w, yn - x') > inf Re(w, y - x1) > e - e/2 = e/2 > 0). 
i«eT„(i/„) uigx(j/n) 
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This contradicts (2) as x' £ Sn(yn). Hence (ii) must hold. 

Therefore y0 G S(u). Thus (D,S,T) £ ML (respectively, (D,S,T) £ Mv) so that 

Mi (respectively, Mu) is closed in Yi (respectively, Yu). D 

For convenience, we recall and state Theorem 2 of Fort [115, p.101] again as Lemma 

4.4.3 (see also Lemma 1.7.1.) below: 

L e m m a 4.4.3. Suppose W is a metric space, Z is a topological space and .9 : Z —> 

K(W) is upper semicontinuous. Then S is continuous at points of a residual set in Z. 

Lemma 4.4.4. 

(i) SA(u) £ K(X) for each u £ ML. 

(ii) SB(u) £ K(X) for each u £ Mv. 

Proo f . Suppose u = (D,S,T) £ M (respectively, u = (D,S,T) £ Mu). Since 

SA(u) C D (respectively, SB(U) C D), it is sufficient to prove that SA(u) (respec­

tively, SB(U)) is closed in D. Let (y,i)^=i be a sequence in SA(U) (respectively, Sn(u)) 

which converges to a point y0 G D. By the definition of SA (respectively, ,9«), we 

have (i) yn £ S(yn) and (ii) supxeS{yu)supweT{vn) Re(iu,yn - x) < 0 (respectively, 

snVxes(yn)'
mi>weT(yn) Re(wiyn ~ x) ^ ®)- Since S is upper semicontinuous on /) with 

compact values and D is compact, yo G <9(yo). Note that T is lower semicontinuous (re­

spectively, upper semicontintinuous) and the mapping (w;,y,x) H-> Re(u),y — x) is contin­

uous from F* x X x X to R, it follows that the mapping (y, x) i-» sup,,,^,.^ Re(w, y — x) 

(respectively, (y ,x) H-> mi,ueT(y) Re(w,y — x)) is lower semicontinuous from X X X to 

R. by Proposition 19 (respectively, Proposition 21) of Aubin and Ekeland [10, p.118] 

(respectively [10, p.119]). Since S is also lower semicontinuous, the mapping y >-+ 

suVxes(y)
suPwzT(y)Re(w>y ~ x) (respectively, y ^ supx.eiy(;/) in f , „g r ( l / ) Re{w,y - x)) 

is also lower semicontinuous by Proposition 19 of Aubin and Ekeland [10, p.118] again. 

Thus 

sup sup Re(v>,yo — x) < lim inf sup sup lie(w,yn — x) < f) 
x'6.S(y0)^6T(vo) n _ t 0 ° *•£%,.) w67'(vn) 
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(respectively, 

sup inf ReJ.w, ?/n — x) < lim inf sup inf Re(w,yn — x) < 0). 

Hence y0 G 5/i(u) (respectively, y0 G SB(U)). Therefore 5'A(W) (respectively, SB(U)) is 

closed in D. • 

L e m m a 4.4.5. The correspondences SA '• Mi —> X ( X ) (respectively, SB : Mr/ —> 

X ( ^ 0 ) is upper semicontinuous. 

Proof . Suppose that 5.4 (respectively, ,9B) were not upper semicontinuous at some 

point a = (D,S,T) £ Mi (respectively, Mu), then there exists an open subset G of X 

with G 3 SA(U) (respectively, G 3 SB(U)) and a sequence {u n } n gN in Mi (respectively, 

Mu) with tin —> '"• G Mjr, (respectively, A7(/) such that for each n £ N , there exists 

?/u G .9,1 (un) (respectively, y„ G 5B(«n)) with yn £ G. Let un = (Dn,Sn,Tn), then 

F „ -> D; 5r t -» 5 and Tn -» T. Since yn G F n , for each n £ N , by Lemma 4.4.1, 

we may assume without loss of generality that yn —> yo G F . Note that yn ^ G 

for all ii, £ N so that y0 fi G 3 S'A(U) (respectively, y0 fi G 3 SB(U))- NOW the 

same argument as in the proof of Lemma 4.4.2 shows that (1) y0 G 5(yo) and (2) 

s,1PJ,g%o)suP.«Gr(!/o)^e(to'2/o - .T) < 0 (respectively, supx&s{yo)mfweT{yo)Re(w,y0-

x) < 0). Therefore y0 G 5U(u) (respectively, y0 £ SB(U)). This contradicts tht fact that 

yo fi G 3 SA(U) (respectively, y0 fi G D SB(U))- Therefore SA (respectively, SB) is 

upper semicontinuous. • 

In what follows, let M = Mi or Mu and S = SA or SB, respectively. Now let Mi be 

an arbitrarily fixed non-empty closed subset of M. 

D e f i n i t i o n . If u G Mi, then (i) a point y G S(u) is essential relative to M i if for 

each open neighborhood N(y) of y in A \ there exists an open neighborhood 0(u) of u 

in Mi such that S(u') f l Ar(y) ^ 0 for each u' G O(u) and (ii) u is essential relative to 

A/, if every y £ S(u) is essential relative to Mi. 

Theorem 4.4.6. 

(P 5 is lower semicontinuous at u £ M\ if and only if u is essential relative to Mi. 
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(ii) S is continuous at u £ Mx if and only if u is essential relative to .A/|. 

P roo f , (i) S is lower semicontinuous at u £ Mi if and only if each y £ S(u) is 

essential relative to Mi if and only if u is essential relative to M{. 

(ii) This follows from (i) and Lemma 4.4.5. • 

T h e o r e m 4.4.7. If u £ M\ is such that S(u) is a singleton set, then u is essential 

relative to Mi. 

Proo f . Suppose S(u) = { x } . Let G be any open set in A" such that S(u) f l G -/ 0, 

then x G G so that S(u) C G. Since 5 is upper semicontinuous at u by Lemma 4.4.5, 

there is an open neighborhood 0(u) of u in M such that S(u') C G for each •//,' £ 0(u); 

in particular, G f l S(u') ^ 0 for each u' £ 0(u). Thus 5 is lower semicontinuous at u. 

By Theorem 4.4.6 (ii), n is essential relative to M. • 

T h e o r e m 4.4.8. There exists a dense Gs subset Qi of A7| such that u is essential 

relative to Mi. 

Proo f . Note that 5 is an usco by Lemma 4.4.4 and Lemma 4.4.5. By Lemma 4.4.3, 

there exists a dense Gs subset Qi of A7, such that S is lower semicontinuous at each 

u £ Qi. By Theorem 4.4.6 (i i), u is essential relative to M\ for each u £ Q\. Q 

R e m a r k : Note that the mapping S : A/, -> K(X) is continuous at u = (D,S,T) £ 

Mi if and only if for each c > 0, there is 8 > 0 such that h,(S(v,),S(v,')) < c whenever 

u' £ Mi and p(u,u') < 8; i.e., the solution set S(u) of u is stable in Mi: S(v,') is close 

to S(u) whenever u' £ M\ is close to u. Theorem 4.4.6 (ii) implies that if u £ Mt, 

then u is essential relative to A7| if and only if the solution set S(u) is stable in M\. 

Theorem 4.4.8 implies that there exists a dense Gs subset Q\ of A7| such that for each 

u = (D,S,T) £ Qi, the solution set S(u) of the GQVI is stable in M\. In particular, 

most (in the sense of Baire category) u in Mi have stable solution set S(n). 

Now let 

CK(X) = {A £ K(X) : A is convex }, 

CC(X) = {S £ C(X) : S(x) ECK(X) for each x£ X), 
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ML(X) = {T £ L(X) : T is monotone } , 

M'L = { X } x G G ( A - ) x M / ( X ) , 

M'u = { A } x GG(X) x U(X). 

It is easy to see that GC(X) is closed in X ( X ) so that My is closed in Mu- Also ML(X) 

is closed in Z»(X) so that M'L is also closed in ML. The following is an application of the 

results obtained in this section: 

T h e o r e m 4.4.9. Let X be a non-empty compact and convex subset of the normed 

space E. Then there exists a dense Gs subset Q' of M'L (respectively, My) such that u 

is essential relative to M'L (respective, M'u) for each u £ Q'. Thus most (in the sense of 

Baire category) of the solutions of the GQVI(A) (respectively, GQVI(B)) for (S,T) in 

.V are stable in M'b (respectively, M'u). 

Let M'l = { X } x {Ox} x ML(X) (respectively, AFj = {A'} x {Ox} x U(X)), 

where Ox(x) = X for all x £ X. Clearly, M'l (respectively, My) is a closed subset 

of M'i (respectively, My) if X is compact. The following deals with the stability of 

Hartman-Stampacchia variational inequalities [146]: 

T h e o r e m 4.4.10. Let X be a non-empty compact and convex subset of the normed 

space E. Then there exists a dense Gs subset Q" of M'l (respectively, My) such that u 

is essential relative to M'l (respectively, My) for each u £ Q". 
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4.5 Variational Inequalities on Reflexive Banach Spaces and 

Applications 

It is well-known that variational inequalities have a close connection with fixed point 

theory, for example, the famous Fan-Browder fixed point theorem [42] can be derived 

from variational inequalities for monotone operators (e g , see Browder [45]) We note that 

there is also an interconnection between variational inequalities and monotone operators 

In fact, most existence theorems for variational inequalities could be obtained from direct 

applications of the main theorems on maximal monotone operators Monotone operators 

have been comprehensively studied in the last three decades The theory of monotone 

operator is related to the simple fact that the derivative / ' of a convex real function / is 

a monotone function Moreover, it is a very powerful tool to handle nonlinear differential 

equations (e g , see Zeidler [336] and references therein) 

A generalization of monotone operators which they called a "s< IIII-VIOIIOIOIK opcialoi" 

was first introduced by Bae, Kim and Tan [13] In this section, we give some variational in­

equalities for monotone and semi-monotone operators in Banach spaces As applications, 

an existence theorem for a generalized complementarity problem in the Banach space and 

some fixed point theorems for multivalued nonexpansive mappings in the Hilbert space 

are given 

De f i n i t i on . Let F be a topological vector space and X a non-empty subset of E 

Then a map T X —> 2E' is semi-monotone on X (see Bae, Kim and Tan [13]) if for 

each i,i) £ A , u £ T(i) and w £ T(\j), inlw67(.,) Rc{u,i)- /,) < nil l / ;6/(,,) / f> ( iu ,y - ' ) 

It is clear from the definitions that if T is monotone, then T is semi-monotone 

If F is a normed space with norm || ||, A is a non-empty subset of E and i, £ IS, 

d(%,A) = m l { | | i — i)\\ i) £ A) is the distance from 7 to A Recall that the Hausdorff 

metric h on the family bc(E) of all non-empty bounded and closed subsets of E induced 

by the norm is defined by 
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h(AuA2) = i n f{ r>0 :A , C Br(A2) and A, C fir(A,)} 

= max{ sup d(x, A2), sup d(y, Ai)} 
J- 'g^ l 1/g-'*2 

where F r (A) = {x E E : d(x,A) > r} for any A G 2E and r > 0. A map ,9 : X -> 2li 

is said to be pseudo-contractive [13] on A' if for each x,y £ X and w £ S(y), there 

exists u £ S(x) such that ||x - y|| < ||(1 4- r)(x - y) - r(u - w)\\ for all r > 0. (This 

is a set-valued generalization of pseudo-contractive (single-valued) maps as defined by 

Browder in [41]). A map 5 : X —> bc(E) is said to be nonexpansive on X if for each 

x , y G A , , ' 7 , (5 (x ) ,5 (y ) )< | | x -y | | . 

The following example shows that (i) there is a nonexpansive map T such that / — T 

is not monotone and (ii) a semi-monotone map need not be monotone: 

Examp le . Let R be the real linear, d be the usual metric on R and h be the 

Hausdorff metric on bc(R) induced by d. Define T : R -> bc(R) by 7(:e) = [~|x|. |.rj] 

for each x G R. Then we have: 

(1) For each x,y £ R, 

h(T(x), T(y)) = ||x| - |i,|| < |x - 2,| = d(x,y); 

it follows that T is nonexpansive. 

(2) Suppose y > x > 0; then 

(I-T)(x) = x - [-\x\, \x\] = [0,2s] and (I-T)(y) = [0,2,j]. 

Choose u = 2x and w = x, then u £ (I - T)(x) and w £ (I - T)(y). But 

(w — u,y — x) = (x — 2x, y - x) = — x(y — x) < 0 

which shows that / - T is not monotone. 

Further more, tha map / — T is necessarily semi-monotone by Lemma 4.5.16 below 

(see also Proposition of Bae et al [13]). Thus, in general, a semi-monotone map need not 

be monotone. 
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We need the following result which can be derived from Corollary 1.3.5 and is equivalent 

to the minimax inequality of /en [327, Theorem 1] which in turn improves Ky Fan's 

minimax inequality [105, Theorem 1]; we omit it*, proof. 

L e m m a 4 .5 .1 . Let X be a non-empty compact convex subset of a topological vector 

space F. Suppose <I>, W : X x X —> R U {—oo, 4-oo} satisfy the following conditions: 

(l)<t>(x,y)<$(x,y)iora\\x,y£ X; 

(2) tf(x,x)<0forallxGX; 

(3) for each x G X , y i-> $ (x ,y ) is lower semicontinuous; 

(4) for each y G X, x t-> ty(x,y) is quasi-concave. 

Then there exists y £ X such that $ (x , y) < 0 for all x £ X. 

We also need the following result which is a special case of Lemma 3 of Ding and Tan 

[81]: 

L e m m a 4.5.2. Let ( F , || • ||) be a Banach space, X a non-empty convex subset of 

F; let / : X -~> R be a convex function and T : X —> 2E' be lower semicontinuous from 

the line segments in X to the weak*- topology on F*. If y G X , then the inequality 

sup Re(u,y — x) < f(x) — f(y) for all x G X 
ueT(x) 

implies the inequality 

sup Re(w, y — x) < f(x) — f(y) for all x G X. 
,ugT(i/) 

The same proofs of Lemmas 4.5.1 and 6.2 in Shih and Tan [272] can be modified ..o 

obtain the following slight improvement of Lemma 2 in [272] and is thus omitted. 

L e m m a 4.5.3. Let (F , || • ||) be a Banach space, X a non-empty convex subset of 

E; let / : A —> R be a convex and lower semicontinuous function and T : X —* 2E* 

be such that each T(x) is a weak*-compact subset of E* and T is upper semicontinuous 

from the line segments in A" to the weak*-topology on E*. If y G X , then the inequality 

sup Re(u,y - x) < f(x) - f(y) for all x G X 
uer(x) 
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implies the inequality 

inf Re(w, y - x) < f(x) - /(y) for all x G X. 
wei (y) 

L e m m a 4.5.4. Let ( F , || • ||) be a reflexive Banach space, X a non-empty dosed 

convex subset of F; let / : X —> R be a convex and lower semicontinuous function and 

T : X —• 2E* be monotone. Assume that the following condition is satisfied: 

(F) For each sequence (yn)n-i i'1 A with ||yu|| -> oo as n —> oo, there exists a 

sequence (xn)^L1 in A with ||x?l|| < ||y„|| for all 7?. = 1,2, • • • such that 

lim sup{ sup Re(u, yra - xn) 4- f(yn) - f(xn)} > 0. 
n^oo ueT(xn) 

Then there exists y £ X such that 

sup Re(u,y - x) < / (x) - f(y) for all x G X. 
u£T(x) 

Proof. Define $, * : X x A -> R by 

*(x, y) = supu6T(3;) Fe(u, y - x) 4- f(y) - f(x), 

<J(x,y) = \niw€T{y) Re(w,y- x) 4- f(y) - f(x), 

Then we have: 

(a) since T is monotone, 

sup Re(u, y — x) < inf Re(w, y — x) for all x, y £ X 
ueT[x) ' u>eT(y) 

so that $ (x ,y ) < ^ ( x , y ) for all x,y £ X; 

(b) clearly # ( x , x ) = 0 for all x G A ; 

(c) since / is convex and lower semicontinuous with respect .0 the norm topology on 

A , / is also lower semicontinuous with respect to the weak topology on A ; it follows that 

for each x £ X, the function y —> <^(x,y) is weakly lower semicontinuous; 

(d) fix y G X ; suppose xi,x2 £ X and i £ R are such that *(x,-,y) > /, for 7! = 1,2; 

let a £ (0,1), then for i=l,2, 

inf Re(w, y - xt) 4- f(y) - /(x,-) > I 
wg/(y) 
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so that 

f(ax, + ( l-cv)x2)-/(y)<«/(x1)4-(l-«)/(x2)-/(y) 

=- o(j(xi)-f(y)) + (l-a)(f(x2)-f(y)) 

< « • ( inf Re(w,y-xi)-t) + (l-a) •( inf Re(w,y - x2) - t) 
w6T(y) ' w£T(y) 

< inf Re(w,c(y - xi) + (I - a)(y - x2)) - t 
w&T(y) 

= inf Re(w,y - (axi+(l - a)x2))—t 
w£T(y) 

it follows that q>(cvxi 4- (1 — a)x 2 ,y ) > t and hence the function x H-> $(x,y) is quasi-

concave 

For each N EN, let XN = {x E X : ||x|| < X } . We may assume that Xn ^ 0 for 

all N > No Note that for each X > X0 , XM is weakly compact end convex since F is 

reflexive, equip X/v with the weak topology, then by Lemma 4.5.1, there exists y^ E X^ 

such that 

(1) ${x,yN) < 0 for all x £ XN. 

Suppose \\yrj\\ —> oo as N —i oo, then by t r r assumption (F) , there exists a sequence 

(XN)N>N0 in X with ||x/v|| < ||yjv|| for all X > X 0 such that 

(2) lim s u p ^ ^ supu6T(aw) Re(u,yN - xN) 4- /(yjv) - f(xn) > 0. 

But, for each X > Xo, jj.-cyv|| < ||J/A.|| < X implies x ^ G X/v so that by (1), $(x/v,yAr) < 

0 for all X > N0; i e , 

sup Re(u, yN - xN) + J(yN) - f(xN) < 0 for all X > X0 
ugT(ajv) 

which contradicts (2). Therefore we must have ||y;vi| —• oo as X —> oo. 't follows 

that there exists a positive integer M > X0 and a subsequence (y7v(»))tSi of (J)N)N>NO 

such that ||«/N(,)|| < M for al' ? = 1,2,•••. Thus (j/jv(«))t~i is a sequence in the weakly 

compact set XM so that by tne Eberlein-Smulian Theorem (e.g. see Dunford and Schwart 

[92, p.430l, there exist another subsequence (yjv(,(j)))~ i of (IJN^))^ and y £ XM such 

that (///V(I(J)))^=I converges weakly to y. 
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Now let x G A" be given. Choose any positive integer M' > M with x G A~,\/'. Take 

any j0 £ N with X(?( j0 ) ) > M'; then for all j > j0, x £ XM, C Xw ( l ( ;o ) ) so that by (1), 

®(x,ilN(i(i)\) < 0- Since (iiN(i(i)))%i converges weakly to y and y i-> <l>(x,y) is weakly 

lower semicontinuous by (c), we must have 

$(.;;, y) < lini inf 4>(x,yN(l(j))) < 0. 
j—^oo " 

Hence 

sup Re(u, y - x) < f(x) - f(y) for all x G X. • 

T h e o r e m 4.5.5. Let (E, || • ||) be a reflexive Banach space, A" a non-empty closed 

convex subset of F; let / : A —> R be a convex and lower semicontinuous function and 

T : X —> 2E' monotone . Assume that the following condition is satisfied: 

(E) For each sequence (y„)£L, in X with ||yn|| —> oo as n —> oo, there exists a 

sequence (xn)^ in X with ||xn|| < ||yn|| for all 77,= 1,2,-•• such that 

lim sup{ sup Re(u, yn - xn) + f(yn) - ./'(x„)} > 0. 
?i-»oo u£T(x„) 

(I) If T is lower semicontinuous from the line segments in X to the weak topology of IS*, 

then there exists y £ X such that 

sup Re{w,y — x) < f(x) — f(y) for all x £ X. 

(I!) If T is upper semicontinuous from the line segments in X to the weak topology of 

F* and each T(x) is weakly compact, then there exists y G X such thav 

inf Re(w,y - x) < f(x) - f(y) for all x £ X. 
weT(y) 

If, in addition, T(y) is also convex, then there exists w £ T(y) such that 

Re(w,y - x) < f(x) - f(y) for all x £ X. 

Proof . By Lemma 4.5.4, there exists y £ X such that 

I 1 
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(3) s»P„67(x) He(u, V - x) < f(x) - f(v) f o r al! x£X. 

(I) If T is lower sc^«continuous from the line segments in X to the weak topology of 

IS*, then by (3) and Lemma 4.5.2, 

sup Re(w, y — x) < f(x) — f(y) for all x £ X. 

(II) If T is upper semia ntinuous from the line segments in X to the weak topology of 

E* and each T(x) is weakly compact, by (3) and Lemma 4 5.3, we have 

(4) infwer(s) /te(to, y - x) < f(x) - f(y) for all x G X. 

If, in addition, 2'(y) is also convex, define g : X x F(?y) —• R by 

y(x, to) = Re{w, y - x) + /(y) - /(x). 

Note that for each fixed x £ X, w H-» g(x,w) is weakly lower semicontinuous and affine 

and for each fixed w E T(y), x i-> y(x , w) is concave. Thus by Kneser's minimax Theorem 

4 3 A, we have 

(5) minu»eT(»){supa,gA. Re(w, y - x) + f(y) - f(x)}. 

= s»Pa€A- i»f™eT(y) Re(w, y - x) + f(y) - f(x)} 

Since T(ij) is weakly compact, there exists ii £ T(y) such that by (4) and (5), 

&uP^cA' {Re(w, y-x)+ f(y) - f(x)} 

min sup{Re(w, y - x) + f(y) - f(x)} < 0, 
wST(y) xex 

that is, Re(w, y - x) < f(x) - f(y) for all x G X. D 

Theorem 4.5.5 generalizes Theorem 2 of Yen [327, p.479-480] 

T h e o r e m 4.5.6. Let ( F , || • ||) be a reflexive Banach space, X a non-empty closed 

convex subset of E; let / : X —• R be a convex and lower semicontinuous function and 

7 ' : X —• 2 / j* monotone. Assume that the following condition is satisfied: 

m 
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(F)oo For each sequence (yn)^=i in A' with ||yn|| - + oo as ??, —> oo, there exists a 

sequence (xn)^-i in A" with ||xn|| < ||y7l|| for all 7?, = 1,2, •• • such that 

lim sup{ sup Re(u, yn - xn) + f(yn) - f(xn)}/\\yn\\ - oo. 
TI-+00 uQT(x„) 

(I) If T is lower semicontinuous from line segments in A" to the weak topology of IS*, 

then for each given w0 £ E*, there exists y G A* such that 

sup Re(w — w0, y — x) < f(x) — f(y) for all x G A. 
weT(y) 

(II) If T is upper semicontinuous from line segments in X to the weak topology of IS* 

and each T(x) is weakly compact and convex, then for each given w0 £ IS*, there exists 

y £ X and w £ T(y) such that 

Re(w -w0,y- x) < f(x) - f(y) for all x £ X. 

Proof . Let w0 £ E* be given. Define T* : X ~> 2E' by T*(y) = T(y) - w0 for all 

y £ X. By (F)oo, for each sequence (yn)%Li in X with ||yn|| - t oo as n —> oo, there 

exists a sequence (xn)£Li 'n X with ||xn|| < ||yn|| for all n = 1,2, • • • such that 

lira sup { sup Re(u, yn - xn) 4- f(yn) ~ /(*n)}/||y7i|| 
7i->oo ueT'(xn) 

= lim sup{ sup Re(u - w0, yn - xn) + f(yn) - /(x,i)}/||yn|| 
n-»oo ueT(xn) 

> lim sup{ sup Re(u, yn - xn) 4- /(?/„) - /(««)}/ll?/«|l ~ 'A\'wv\\ 
n-foo u£T(xn) 

= OO 

since \Re(w0,yn - xn)\j\yn\ < \\w0\\ + ||uJo|||KH/||y„|| < 2||»«0j|. 

It follows that 

lim sup{ sup Fe(u;o, yn - xn) -j- f(yn) - f(xn)} = oo > 0 
n-.oo ueT'(xn) 

and hence the conclusion follows from Theorem 4.5.5. • 

We note that the condition (F) in Lemma 4.5.4 and Theorem 4.5.5 and (E)M in 

Theorem 4.5.6 nre automatically satisfied if the set X is bounded. Also Theorem 4.1 of 

I 
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Chang and Zhang m [54] is a special case of Theorem 1 (II) We remark *hat Theorems 

4 5 5 and 4 5 6 are very closely related to but not comparable with Theorems 1 and 2 in 

[272] and Theorems 3 and 4 of Shih and Tan [273] 

Recaii that a subset X of a vector space F is called a cone if X is a non-empty convex 

set such that o X C X for all a > 0 If X is a cone in a topological vector space E, X * 

will denote ihe dual cone of X in E*, i e , 

X* = {y£ E* Re(y, x) > 0 for all % £ X} 

The same proof of Lemma 2 of Shih and Tan [268] can be modified to obtain the following 

results and is thus omitted 

L e m m a 4.5.7. Let X be a cone in a topological vector space F, T : X —> 2E' and 

ij £ X Then the following statements are equivalent 

(a) suplue7(v) Re(w,y- x) < 0 for all x £ X, 

(b) Re(w,y) = 0 for all to G T(y) and T(y) C X*. 

L e m m a 4.5.8. Let X be a cone in a topological vector space F, T : X —> 2E*, 

IJ £ X and w £ T(y) Then the following statements are equivalent 

(a) Re(w, y - x) < 0 for all % £ X, 

(b) Re(w,y) = 0 and w £ X* 

When E is real, Lemma 45 6 was also obtained by S C Fang (eg see Chan and 

Pang [48, p 213]) 

In view of Lemma 4 5 7 and Lemma 4 5 8 by taking f = 0 in Theorem 4 5 5, we have 

the following theorem on the generalized complementarity problem 

T h e o r e m 4.5.9. Let ( F , || ||) be a reflexive Banach space, X a closed cone in F 

and let 7' A" —> 2E* be monotone Assume that the following condition is satisfied 

(E)o For each sequence (y„)£L, in A with ||y„|| —»• oo as n -> oo, there exists a 

sequence ( i „ )£L i in A" with ||.x„|| < ||y„|| for all u = 1,2, • • - such that 
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lim sup sup Re(n, yn — xn) > 0. 
n^oo uGT(x„) 

(I) If T is lower semicontinuous from the line segments in A' to the weak topology of 

F*, then there exists y £ X such that Re(w,y) = 0 for all w £ T(y) and T(y) C A'*. 

(I!) If T is upper semicontinuous from the line segments in A' to the weak topology 

of F* and each T(x) is weakly compact convex, then there exists y £ X and w £ T(y) 

such that Re(w,y) = 0 and w £ X*. 

For more discussion about complementarity problems and their applications, we refei 

to Isac's new book [161]. 

The following result is Lemma 1 of Bae, Kim and Tan [13]: 

L e m m a 4.5.10. Let F be a topological vector sp: ~s and E* the dual of E equipped 

with the strong topology. Let A be a non-empty bounded subset of IS and G a non-

empty(strongly) compact subset of F*. Define / : A —> R by 

f(x) — min Re(n, x) for all x G A. 

Then / is weakly continuous on A. 

We shall need the following result: 

L e m m a 4.5 .11. Let F be a topological vector space, X be a non-empty convex 

subset of E, / : X —* R be a convex function and T : X —> 2 ;* be upper semicontinuous 

from the line segments in X to the weak* topology on E* such that each T(x) is weak* 

compact. If y £ X, then the inequality 

inf Re(u,y - x) < f(x) - f(y) for all x £ X 
ueT(x) 

implies the inequality 

inf Re(w, y - x) < f(x) - f(y) for all x G A. 
w£T{y) 

I 
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P r o o f >' et % £ X be arbitrarily fixed. For each t r [0,1], l i t ?, - tx -\- (1 - i)y = 

y - l(y - %). Since A is convex, zt G X tor all * G [0,1]. The* for all I £ (0,1], 

/• inf Reiu.ii — x) = inf Reiu.y - z>) 
utzT(zt) «eT( a , ) N 

<Kzi)-W)<t-J(x) + (l-t)-f(y)-f(y)=t-(f(x)-f(y)) 

so that 

(6) infugr(,t) Re(u,y- x) < f(x) - f(y) for all * G (0.1]. 

If infiuer(«) Rt(w,y- v) > f(x)-f(y), let G = {w £ E* : Re(w,y-x)+f(y)-f(x) > 

0}, then G is a weak*-open set in F* such that T(y) C G. As zt -> y as / -»• 0 + , by 

upper semicontinuity of T o n {zt : t £ [0,1]}, there exists/0 G (0,1] such that T(xt) C G 

for all /, G (0, /0)- As T(zt) is weak* compact, infu6T(,e) Re(u, y — x) 4- f(y) — f(x) > 0 

for all / G (0,/0) which contradicts (6). Thus we must have inf^gx^) Re(w,y — x) < 

L e m m a 4.5.12. Let ( F , || • ||) be a reflexive Banach space, X a non-empty closed 

convex subset of E and let / : A —> R be a convex and lower semicontinuous function and 

T : X —* 2E* be semi-monotone such that each T(x) is compact in the norm topology 

on IS*. Assume that the following condition is satisfied: 

(E)* for each sequence (y„)^= 1 in X with ||yn|| —> oo as n —> oo, there exists a 

sequence (xn)£L, in A" with ||xn|| < ||yn|| for all n = 1,2,••• such that 

lim sup{ inf Re(u, yn - xn) + f(yn) - f(xn)} > 0. 
7t—>oo uET(xn) 

Then there exists y £ X such that 

inf Re(u, y - x) < f(x) - f(y) for all x G X. 
u g / (T) 

P r o o f Define <t>, * : X x A -> R by 

<I>(x, y) = inf„er(x) Re(u, y - x) + f(y) - f(x), 

*(x,y) = inf1u6T{„) Re(w,y - x) 4- f(y) - f(x). 
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Then we have: 

(d) Since T is semi-monotone, $(x,y) < $(x,y) for all x,y G A". 

(b) Clearly * ( x , x ) = 0 for all x G X. 

(c) Since / is convex and lower semicontinuous with respect to the norm topology on 

X, j is also lower semicontinuous with respect to the weak topology on A It fellows 

that for each x £ X, the function y >->• $(x, y) is weakly lower semicontinuous on A for 

each non-empty (norm-) bounded subset A of A" by Lemma 4.5.10. 

(d) For each y £ X, it is easy to show that the function x —• ^(x,y) is quasi-concave. 

7 hen the proof of Lemma 4.5.4 with the necessary modifications (all t; supug7 .^ " and 

all "supueT(xw)" being replaced by " infuer(r)" and "inf„GT( rA,)" respectively), we see 

that there exists y £ X such that 

inf Re(u, y - x) < f(x) - f(y) for all x 6 X. D 
ueTfa;) 

Theorem 4.5.13. Let (E, |j • ||) be a reflexive Banach space, A' a non-empty closed 

convex subset of E and / : X —» R be a convex and lower semicontinuous function and 

T : A —f 2 £ ' be semi-monotone and upper semicontinuous from the line segments in A' 

to the weak topology on E* such that each T(x) is compact in the norm topology on Ii*. 

Assume that the following condition is satisfied: 

(E)* for each sequence (y,J5f=i in X with j|yn|| —v oo as u —> oo, there exists a 

sequence (x„)£L, in A with |[xn|| < ||y„|| for all n — 1,2, • • • such that 

lim sup{ inf Re(u, yn - xn) 4- /(y„) - /(s„)} > 0. 
71—KX> «g-T(j-n) 

Then there exists y G A -uch that 

inf Re(w,y - x) < f(x) - f(y) for all x £ X. 
,"67'(l/) 

If, in addition, T(y) is also convex, then there exists w £ T(y) such that 

Re(w, y-x) < f(x) - f(y) for all x £ X. 
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Proof. 3y Lemma 4.5.12, there exists y G X such that 

inf Re(u, y - x) < f(x) — f(y) for ail x G X. 
ueT(x) 

Bv Lemma 4.5.11, we have 

ini" Re(w, y - x) < f(x) - f(y) for all x G X. 
viGT(v) 

If, in addition, 7'(y) is also convex, by Kneser's minimax Theorem 4.3.A and by using the 

same argument as in the proof of Theorem 4.5.5, we get that there exists u> £ T(y) such 

that 

Re{w, y - x) < f(x) - f(y) for all x G X. D 

In the proof of Theorem 4.5.6, if we replace all " s u p ^ y . ^ " and all " s u p ^ / ^ " 

by "ini'u6T*(3;„)" a°d "iiifu67<(3;n)" respectively, we have the following application of 

Theorem 4.5.13: 

Theorem 4.5.14. lel(E, || • ||) be a reflexive Banach space, X be a non-empty 

closed convex subset of E, f : X —> R be a convex and lower semicontinuous function 

and 7': X —> 2E* be semi-monotone and upper semicontinuous from the line segments in 

X to the weak topology on F* such that each T(x) is convex and compact in the norm 

topology on F*. Assume that the following condition is satisfied: 

(E)%j For each sequenct (yn),^ii in X with ||yn|| —> oo as n —• oo, there exists a 

sequence (x , , )^ , in X with ||xn|| < ||yn|| for all n = 1,2, •• • such that 

lim sup{ inf Re(u, yn - xn) 4- f(yn) - /(xB)}/||yn | | = oo. 
71—»oo i / g / ( a ' „ ) 

Then for each given iu0 G E", there exist y £ X and to £ T(y) such that 

Ra{w - w0, y - x) < f(x) - f(y) for all x G X. 

By Lemma 4.5.8 and by taking / = 0 in Theorem 4.5.13, we have the following 

theorem on the generalized complementarity problem: 

* 1 
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T h e o r e m 4 .5 .15 . Let ( F , j | • ||) be a reflexive Banach space, .V be a non-empty 

closed cone in F and T : X —> 2B* be semi-monotone and upper semicontinuous from 

the line segments in X to the weak topology on F* such that each 7'(.r) is convex an-.i 

compact in the norm topology on F*. Assume that the following condition is satisfied: 

(F)o For each sequence (yn)^L\ in X with \\yn\\ —* oo as »> —> oo, there exists a 

sequence (xn)^=l in AA with ||xn| j < ( |yn | | for al! v, — 1,2, • • • such that 

limsup{ inf /?,e(u, yn — x„)} > 0. 
71—CO l l g T f j ! , , ) 

Then there exist y £ X and w E T(y) such that 

Re(iu,y) = 0 and w £ X*. 

The following is essentially the Proposition of Bae, Kim and Tan [13]; thus we omit 

its proof. 

L e m m a 4 .5 .16 . Let X be a non-empty subset of a Hilbert space / / . 

(a) If T : X —> bc(fl) is nonexpansive such that for each x £ X, 'l'(x) is weakly 

compact, then T is pseudo-contractive on X. 

(b) If T : X —> 21' is pseudo-contractive on A", then / — 7' is semi-monotone on A' 

wh ve I(x) — x for all x £ X. 

As another application of Theorem 4.5.13, we have the following fixed point theorem: 

T h e o r e m 1.5.17. Let X be a non-empty closed convex subset of a Hilbert space 

/ / and let T : X —> 2 / be f5eudo-contractive and upper semicontinuous from the line 

segments in X to the weak topology on / / such that each T(x) is compact in the norm 

topology on fl. Assume that the following condition is satisfied: 

( F ) + For each sequence (yn)^-i in X with ||y/„|| -> oo as n —> oo, there exists a 

sequence (.7;U)^L, in X with ||.rn|| < \\yn\\ for all v, = 1,2, • • • such that 

lim sup{ inf Re(xn — u,yn — xn)} > 0. 

P ! 
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Then there exists y £ X such that 

inf Re(y — w,y — x) < 0 for all x £ X. 
iugT(iy) 

If T(y) is also convex, then there exists w £ T(y) such that 

Re(y — w,y — x) < 0 for all x £ Ix(y)i 

and if, in addition, either y is an interior point of X in H or p(y) £ Ix(y), where p(y) is 

the projection of y on T(y), then y is a fixed point of T, i.e y £ T(y). 

Proof : By Lemma 4.5.16, T* — 1 — T is semi-monotone on X . By Theorem 4.5.13 

with //, = 0, there exists y £ X such that 

inf Re(w,y — x) < 0 for all x £ X; 
weT'(y) 

that is, 

inf Re(y — w,y — x) < 0 for allx £ X. 
w£T(y) 

If T(y) is also convex, then by Theorem 4.5.13 again, there exists w £ T(y) such that 

(7) Re(y - w, y - x) < 0 for all x £ X. 

If x G Ix(y), then x = y + r(u — y) for some u £ X and r > 0. Thus y — x •= r(y - u) 

so that by (7), 

Re(y — ib, y — x) = 7- • Re(y — w,y — u) < 0. 

It follows that 

(8) Re(y - vi, y - x) < 0 for all x G 7x~WJ-

Now, if y is an interior point of X in H, then (8) implies that y = w £ T(y). Next suppose 

/'(.'/) £ lx(fl) Since p(y) is the projection of y on T(y ) , we must have, by Theorem 1.2.3 

of Kinderlehrer and Stampacchia [185, p.9], p(y) £ T(y) and Re(p(y) - y, w-p(y)) > 0 

for all i« £ T(y). Since w £ T(y), by (8) we have 

0 < Re(p(y)-y,w-p(y)} 

= Re(v(y) -y,w-y + y- p(y)) 
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= Re(p(y) - y, w - y) - \\y - p(y)\\2 

= Re(y - w,y - p(y)) - \\y - p(y)f < ~\\p(y) - yf 

so that \\p(y) - y||2 < 0 and hence y = p(y) £ T(y). • 

As an immediate consequence of Lemma 4.5.16 and Theorem 4.5.17, we have 

T h e o r e m 4.5.18. Let X be a non-empty closed convex subset of a Hilbert space 

H and T : X —> 2H be nonexpansive such that each T(x) is compact convex and 

p(y) £ Ix(y) for each y G d X where p(y) is the projection of y on T(y) and rjA'' is the 

boundary of X in H. Assume that the following condition is satisfied: 

( F ) + For each sequence (y, , . )^! in X with ||y?l|| —> oo as n —» oo, there exists a 

sequence (a;,,)™, in X with ||xn|| < ||yn|| for all n — 1,2, •• • such that 

limsup{ inf Re(xn — u,yn - :/;„)} > 0. 
71—KX) u£T(x„) 

Then T has a fixed point in X . 

Except that the set X is required to be closed in / / , the above result is a generalization 

of Theorem 4.5.18 in [287, p.561] to set-valued and non-self maps. 

We note that the condition (F ) * in Lemma 4.5.12 and Theorem 4.5.13, ( F ) ^ in 

Theorem 4.5.14 and ( F ) + in Theorems 4.5.17 and 4.5.18 are automatically satisfied if 

the set X is bounded. 

Finally we remark that given any increasing sequence (Xn),^L| of positive integers, 

the conclusions of Lemmas 4.5.4 and 4.5.12 and Theorems 4.5.5, 4.5.6, 4.5.9, 4.5.13, 

4.5.14, 4.5.15, 4.5.17 to 4.5.18 remain valid if we replace the phrase " • • • there exists 

a sequence (xn)7^L, in X with ||x„|| < ||yn|| for all n = 1,2, • • • " in the conditions 

( F ) , (£?)«,, ( F ) 0 , (F ) * , ( F ) ^ , (F)o and (£?)+ by the phrase " • • • there exists a se­

quence ( x „ ) ~ i in X with ||x„|| < Nn for all n = 1,2,- • •" . 



Chapter 5 

Concluding Remarks 

To summerize: in Chapter 2, we give a number of existence theorems for minimax in­

equalities, fixed point theorems, coincidence theorems and stability of coincidence points 

and of KF points; in Chapter 3, we obtain some existence theorems for equilibria for gen­

eralized games in H-spaces, topological vector spaces, locally convex topological spaces, 

Frechet spaces and finite dimensional spaces; and in Chapter 4, we prove some existence 

theorems for variational inequalities and generalized quasi-variational inequalities in locally 

convex topological spaces and reflexive Banach spaces, the stability of quasi-variational 

inequalities and applications to constrained X-person games, complementarity problems 

and fixed point theorems for set-valued pseudo contractive maps and set-valued nonex-

pensive maps. Here, no applications to differential equations nor differential inclusions 

are given. Further, even though we have some results on abstract general algorithms for 

solutions of variational inequalities, these are not included here. The author wishes to 

continue these topics in the near future. Moreover, we do not cover the topics on random 

analysis and its applications to fixed point theory and existence of equilibria for random 

generalized games for which we refer to Tan and Yuan [293]-[300], Yuan [332]- [335] and 

the references therein, 

Moreover, in this thesis, I do not touch the topic such as topological Iminimax in­

equalities which has been attentioned by many authors in recent authors, for most recent 
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results on this topic, we refer to Kindler [186], Konig [195], Ricceri [[252] and the refer­

ence therein. We also do not study the existence theorems for generalized quasi-variational 

inequalities wihch are associated discontinuous mappings (e.g., see Cubiotti [69], Ricceri 

[251]). The author hopes to continue study in these areas soon. 
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