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Abstract

Background: Elongation factor-1α (EF-1α) and elongation factor-like (EFL) proteins are functionally homologous to
one another, and are core components of the eukaryotic translation machinery. The patchy distribution of the two
elongation factor types across global eukaryotic phylogeny is suggestive of a ‘differential loss’ hypothesis that
assumes that EF-1α and EFL were present in the most recent common ancestor of eukaryotes followed by
independent differential losses of one of the two factors in the descendant lineages. To date, however, just one
diatom and one fungus have been found to have both EF-1α and EFL (dual-EF-containing species).

Results: In this study, we characterized 35 new EF-1α/EFL sequences from phylogenetically diverse eukaryotes. In
so doing we identified 11 previously unreported dual-EF-containing species from diverse eukaryote groups
including the Stramenopiles, Apusomonadida, Goniomonadida, and Fungi. Phylogenetic analyses suggested vertical
inheritance of both genes in each of the dual-EF lineages. In the dual-EF-containing species we identified, the EF-1α
genes appeared to be highly divergent in sequence and suppressed at the transcriptional level compared to the
co-occurring EFL genes.

Conclusions: According to the known EF-1α/EFL distribution, the differential loss process should have occurred
independently in diverse eukaryotic lineages, and more dual-EF-containing species remain unidentified. We predict
that dual-EF-containing species retain the divergent EF-1α homologues only for a sub-set of the original functions.
As the dual-EF-containing species are distantly related to each other, we propose that independent re-modelling of
EF-1α function took place in multiple branches in the tree of eukaryotes.
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Background
Elongation factor 1α (EF-1α) proteins in eukaryotes and
archaebacteria, and their orthologues in bacteria (elong-
ation factor Tu), are GTPases required for the central
process of translation [1,2]. The primary sequence of EF-
1α is highly conserved across the tree of life, suggesting
that this protein was established in the last universal
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common ancestor, and inherited by extant organisms
[3]. However, genomic and transcriptomic data from
diverse organisms have shown that some eukaryotic line-
ages lack EF-1α, and these lineages instead were found
to possess a putative EF-1α-related GTPase [4]. These
elongation factor-like (EFL) proteins are believed to
perform the same function in translation as EF-1α, as
there is no significant functional divergence in the
regions that are critical for EF-1α function [4]. The func-
tional equivalence of EFL and EF-1α would explain the
mutually exclusive distributions of EFL and EF-1α genes
amongst eukaryotes since EF-1α would be functionally
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redundant in eukaryotes with EFL-mediated translation
elongation, and vice versa.
Intensive surveys for EFL genes in phylogenetically

diverse eukaryotes revealed a number of groups that
have both ‘EF-1α-containing’ and ‘EFL-containing’
species [5-10]. The co-existence of EF-1α-containing
and EFL-containing species in a monophyletic group
can be explained by the ancestral co-occurrence of EF-
1α and EFL, and subsequent losses of either of the two
elongation factors in the descendants. Henceforth, we
designate the above scenario simply as the ‘differential
loss’ hypothesis [8]. Many aspects of this hypothesis
are difficult to test experimentally. Nonetheless, dual
expression of EF-1α and EFL proteins in Trypanosoma
brucei cells, which corresponds to the ancestral state
assumed in the differential loss hypothesis, had no ap-
parent impact on cell viability [11].
It was previously found that examined diatom species

were either EF-1α-containing or EFL-containing, except
for a single species, Thalassiosira pseudonana, whose
genome encodes both EF-1α and EFL genes [7].
According to the differential loss hypothesis described
above, the EF-1α/EFL gene data from diatoms can be
explained as follows: (1) the ancestral diatom genome
was ‘dual-EF-containing,’ (2) the T. pseudonana genome
retains the ancestral state, and (3) the EF-1α (or EFL) gene
was lost in the extant EFL-containing (or EF-1α-
containing) descendants [7]. A similar situation has been
proposed for Fungi; although the vast majority of fungal
species are either EF-1α-containing or EFL-containing, a
single species, Basidiobolus ranarum, was found to be
dual-EF-containing [12]. Under the differential loss hy-
pothesis, T. pseudonana and B. ranarum retain the ances-
tral state of diatom and fungal genomes, respectively.
The differential loss hypothesis is an increasingly

popular explanation of the current EF-1α/EFL gene
distribution in the tree of eukaryotes. Nevertheless,
dual-EF-containing species, which are believed to re-
flect the ancestral state of their phylogenetic relatives
containing either EF-1α or EFL, have, to date, only
been described in diatoms and Fungi. In this study, by
experimental surveys and data mining in publicly
available genome and/or transcriptomic data, four in-
dependent lineages—Stramenopiles, Apusomonadida,
Goniomonadida, and Fungi—were found to contain at
least one dual EF-containing species (11 species were
newly identified in total). All EF-1α genes in the dual
EF-containing species examined here appear to be di-
vergent, and are transcribed at a much lower level than
the co-occurring EFL genes, suggesting that EF-1α has
functionally diverged in these species. We propose that
the re-modeling of the original EF-1α functions seem-
ingly occurred in several independent branches of the tree
of eukaryotes.
Results
We successfully isolated/identified 20 and 15 previ-
ously unidentified EF-1α and EFL sequences, respect-
ively, by a PCR survey or mining publicly available and
in-house genomic/transcriptomic databases (Table 1).
Five diatoms, three oomycetes, one goniomonad, one
apusomonad, and a chytridiomycete fungus were found
to be dual-EF-containing in this study, in addition to
the two previously reported dual-EF-containing species,
the diatom T. pseudonana [7] and a fungus of uncertain
taxonomic affiliation, B. ranarum [12]. We updated EF-1α
and EFL alignments by adding the new sequences listed
in Table 1, and both alignments were analyzed with
maximum-likelihood (ML) and Bayesian phylogenetic
methods (Figures 1 and 2).
Dual-EF-containing species in diatoms
The majority of diatom species, in which EF-1α/EFL se-
quences have been characterized to date, appear to possess
EFL genes, except for the genomes of Phaeodactylum
tricornutum [13], which encodes only an EF-1α gene, and
T. pseudonana, which encodes both EF-1α and EFL
genes [7]. In this study, we surveyed EF-1α/EFL genes
in diatoms further, and identified five more dual-EF-
containing species, indicating that dual-EF-containing
species are quite prevalent amongst diatoms. EF-1α tran-
scripts were detected in Detonula confervacea, Achnanthes
kuwaitensis, Fragilariopsis cylindrus, Thalassionema nitz-
schioides, and Asterionella glacialis, all of which were previ-
ously considered to be ‘EFL-containing’. In the EF-1α ML
tree, all diatom homologues grouped together with an
ML bootstrap value (MLBP) of 57% (node A in Figure 1),
and this group branches with the EF-1α homologues of
the bolidophyte Bolidomonas pacifica. Although the statis-
tical support for the diatom-Bolidomonas affiliation was
moderate (MLBP = 75%; node B in Figure 1), this particu-
lar affiliation found in the EF-1α phylogeny is consistent
with their close (organismal) relationships [14]. Thus we
concluded that there had been vertical descent of EF-1α
genes in the diatom-Bolidomonas clade. As shown in
previous studies e.g., [7], the updated EFL phylogeny also
includes a diatom clade, indicating the vertical descent of
EFL genes in this lineage (Figure 2).
Quantitative reverse transcriptase PCR (qRT-PCR) as-

says revealed that the expression level of the EFL gene is
much greater than that of the EF-1α gene in each of the
dual EF-containing diatom species identified in this study
(Table 2), except for F. cylindrus, for which these assays
were not performed. However, EF-1α transcripts are likely
much less abundant than EFL transcripts in F. cylindrus
as well, since only EFL transcripts were detected in the
F. cylindrus transcriptomic data publicly available from
the Joint Genome Institute (http://genome.jgi.doe.gov/).

http://genome.jgi.doe.gov/


Table 1 EF-1α and EFL homologues isolated/identified in this study

Gene Taxon name Classification Survey Accession nos.

EF-1α* Detonula confervcace CCMP353 Diatoms PCR AB766031

EF-1α* Achnanthes kuwaitensis NIES1349 Diatoms PCR AB775895

EF-1α* Fragilariopsis cylindrus Diatoms Genome, public See Additional file 3

EF-1α* Thalassionema nitzschioides NIES534 Diatoms PCR AB766032

EF-1α* Asterionella glacialis NIES417 Diatoms PCR AB766030

EF-1α Bolidomonas pacifica CCMP1866 Bolidophyceae PCR AB766033

EF-1α* Pythium intermedium MAFF306022 Oomycetes PCR AB766039

EF-1α* Pythium ultimum DAOM BR144 Oomycetes Genome, public See Additional file 3

EST, public

EF-1α* Pythium apleroticum MAFF425515 Oomycetes PCR AB766038

EF-1α Goniomonas sp. ATCC PRA68 Goniomonadida PCR AB766034

EF-1α* Goniomonas sp. ATCC 50180 Goniomonadida PCR AB766037

EF-1α Goniomonas truncata NIES 1373 Goniomonadida PCR AB766036

EF-1α Goniomonas sp. CCAP 980_1 Goniomonadida PCR AB766035

EF-1α* Spizellomyces punctatus DAOM BR117 Chytridiomycota Genome, public See Additional file 3

EST, public

EF-1α Subulatomonas sp. strain PCMinv5 Breviata EST, in-house AB766043

EF-1α Breviata-like biflagellate strain PCbi66 Breviata EST, in-house AB766042

EF-1α Roombia sp. NY0200 Katablepharida PCR AB766040

EF-1α Mantamonas plastica Bass1 (CCAP 1946/1) Mantamonadida EST, in-house AB766041

EF-1α* Thecamonas trahens ATCC50062 Apusomonadida EST, public See Additional file 3

Genome, public

EF-1α microaerophilic cercozoan strain DMV Filosa EST, in-house AB824019

EFL¶ Goniomonas sp. ATCC 50180 Goniomonadida PCR AB766045

EFL Goniomonas sp. NIES 1374 Goniomonadida PCR AB766044

EFL Pythium spinosum MAFF425453 Oomycetes PCR AB766051

EFL¶ Pythium intermedium MAFF306022 Oomycetes PCR AB766049

EFL Pythium uncinulatum MAFF240295 Oomycetes PCR AB766052

EFL Pythium conidiophorum MAFF245320 Oomycetes PCR AB766047

EFL Pythium porphyrae MAFF239483 Oomycetes PCR AB766050

EFL¶ Pythium apleroticum MAFF425515 Oomycetes PCR AB766046

EFL Pythium echinulatum MAFF425510 Oomycetes PCR AB766048

EFL Pythium insidiosum CBS119452 Oomycetes EST, public See Additional file 3

EFL¶ Spizellomyces punctatus DAOM BR117 Chytridiomycota Genome, public See Additional file 3

EST, public

EFL¶ Thecamonas trahens ATCC50062 Apusomonadida Genome, public See Additional file 3

EST, public

EFL Capromyxa protea CF08-5 (ATCC PRA-324) Tubulinida EST, in-house AB766053

EFL Fabomonas tropica strain NYK3C Ancyromonadida EST, in-house AB766055

EFL Ancyromonas sigmides strain B70 (CCAP 1958/3) Ancyromonadida EST, in-house AB766054

*co-occurred with EFL, ¶co-occurred with EF-1α. Accession numbers for the sequences obtained by public database search are not described, but their protein
sequences were shown in Additional file 3.
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Figure 1 EF-1α phylogeny. The unrooted maximum-likelihood tree was inferred from 79 EF-1α sequences with 400 unambiguously aligned
amino acid positions. Bootstrap values less than 70% are not shown except at nodes that are relevant to EF-1α gene evolution in Fungi, diatoms,
oomycetes, and Apusomonadida (nodes A to F). The nodes supported by Bayesian posterior probabilities ≥ 0.95 are highlighted by thick lines.
Branches leading to the taxa containing both EFL and EF-1α genes are highlighted in red. The lineages comprising both EF-1α-containing and
EFL-containing species are highlighted in magenta. The new sequences isolated/identified in this study are indicated by stars.

Kamikawa et al. BMC Evolutionary Biology 2013, 13:131 Page 4 of 12
http://www.biomedcentral.com/1471-2148/13/131
Dual-EF-containing species in oomycetes
Only EF-1α homologues were identified in well-studied
members of the Oomycetes (e.g., Phytophthora infestans,
for which a complete genome is available [15]), but some
of us have recently reported EFL genes in Pythium
oligandrum and Pythium ultimum [16]. In this study, we
resurveyed EF-1α/EFL sequences in 8 members of the
genus Pythium, and identified Pythium intermedium, Py.
ultimum, and Py. apleroticum as dual-EF-containing. The
EF-1α phylogenetic analysis successfully recovered the
monophyly of all of oomycetes, suggesting that Py. inter-
medium, Py. ultimum, and Py. apleroticum vertically
inherited their EF-1α genes from a common oomycete an-
cestor. We suspect that the ML bootstrap support for the
oomycete clade in the EF-1α analysis was lowered due to
the divergent nature of the Py. intermedium, Py. ultimum,
and Py. apleroticum homologues (MLBP = 22%; node C in
Figure 1). The EFL phylogeny also robustly unites all
oomycete EFL sequences, including those of the three
dual-EF-containing Pythium spp. (Figure 2).
The EF-1α gene of Py. ultimum is seemingly much less

transcribed than its EFL gene. In Illumina transcriptomic
data, the k-mer frequency for EFL contig was significantly
higher than that for a cytoskeletal protein, α-tubulin
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Figure 2 EFL phylogeny. The unrooted maximum-likelihood tree was inferred from 80 EFL sequences with 407 amino acid positions. Only
bootstrap values ≥ 70% are shown. The nodes supported by Bayesian posterior probabilities ≥ 0.95 are highlighted by thick lines. All other details
of the figure are as described in the legend to Figure 1.
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(Table 3). In sharp contrast, no contig for EF-1α was
obtained in the transcriptomic data (Table 3), even though
our RT-PCR successfully detected EF-1α transcripts in Py.
ultimum (data not shown).

Dual-EF-containing species in goniomonads
Prior to this study, EF-1α/EFL data were available for
only two goniomonad species: EF-1α transcripts were
detected in Goniomonas pacifica [17], while an EFL gene
was isolated from Goniomonas amphinema [18]. In this
study, we experimentally surveyed EF-1α/EFL sequences
in five Goniomonas strains (ATCC 50108, ATCC PRA68,
NIES-1373, NIES-1374, and CCAP 980_1). Of these,
strain ATCC 50108 appeared to be dual-EF-containing
(Table 1). A qRT-PCR assay revealed that EFL tran-
scripts were more abundant than EF-1α transcripts in
strain ATCC 50108 (Table 2).
The EF-1α sequences amplified from strains ATCC

50108, ATCC PRA68, NIES-1373, and CCAP 980_1,
together with that of G. pacifica, formed a clade in the
EF-1α phylogeny (MLBP = 58%; node D in Figure 1).
The new EFL homologues from strains NIES 1374 and
ATCC 50108 showed a close relationship to the G.
amphinema homologue (Figure 2). Both EF-1α and EFL
phylogenies suggest vertical inheritance of the genes
encoding the two elongation factors in this lineage.



Table 2 Relative copy numbers of EF-1α and EFL
transcripts by qRT PCR

Organism EFL (sd) EF-1α (sd)

Goniomonas sp. ATCC 50108 1.50 (0.28) 4.10 × 10-4 (7.63 × 10-5)

Asterionella glacialis 38.77 (6.29) 0.09 (0.04)

Achnanthes kuwaitensis 23.22 (1.52) 0.01 (0.002)

Detonula confervacea 0.08 (0.03) 4.88 × 10-4 (0.11 × 10-4)

Thalassionema nitzschiodes 0.33 (0.10) 6.36 × 10-4 (9.55 × 10-4)

Notes—normalized by the copy number of α-tubulin transcripts.
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Other dual-EF-containing species in Apusomonadida and
Fungi
We detected both EFL and EF-1α sequences in both
whole-genome shotgun and transcriptomic data from
the apusomonad Thecamonas trahens (http://www.
broadinstitute.org/). The EF-1α sequences of two
apusomonads, T. trahens and Apusomonas proboscidea,
grouped together in the ML tree topology (MLBP =
37%; node E in Figure 1), consistent with their organis-
mal relationship. The large discrepancy in branch length
between the two apusomonad sequences is likely re-
sponsible for the low ML bootstrap support. In the EFL
phylogeny, the T. trahens sequence branched at the base
of the diatom-oomycete clade (Figure 2). Unfortunately,
the current analysis does not allow us to determine if
EFL genes were the result of descent through vertical in-
heritance in apusomonads, because: (i) only one EFL se-
quence is known for apusomonads, and (ii) T. trahens and
opisthokonts were distant from each other in the EFL
phylogeny, in contrast to the close organismal relationship
between apusomonads and opisthokonts e.g., [19].
Our EF-1α/EFL gene survey also identified the genome

of the chytridiomycote fungus Spizellomyces punctatus
as encoding both kinds of elongation factors. The EF-1α
sequences of S. punctatus and B. ranarum bore the well-
known Opisthokonta-specific insertion (Additional file 1),
and formed a clade with other fungal sequences in the
phylogenetic analyses (MLBP = 41%; node F in Figure 1),
suggesting that the EF-1α genes of S. punctatus and B.
ranarum and those of other fungal species share an exclu-
sive ancestry. Again, the grouping of the two long-
branched sequences of S. punctatus and B. ranarum with
other fungal sequences did not receive high ML bootstrap
support. We are currently unsure whether the extant EFL
Table 3 k-mer frequencies for EF-1α, EFL, and α-tubulin in
transcriptomic data

k-mer frequency

Organisms Data sources EFL EF-1α α-tubulin

Thecamonas trahens SRR343042 1540 21 530

Spizellomyces punctatus SRR343043 4797 7 805

Pythium ultimum SRR059026 556 Not detected 31
genes in fungi are the descendents of a single gene in the
ancestral fungal species: The monophyly of fungi was not
recovered in the ML tree inferred from the EFL alignment
(Figure 2), but the approximately unbiased test [20] failed
to reject the alternative hypothesis, in which all fungal
EFL sequences were enforced to be monophyletic, at the
5% level (data not shown).
In both T. trahens and S. punctatus there is a large dif-

ference in transcriptional levels between EF-1α and EFL
genes. In the transcriptomic data of the two species, the
k-mer frequency for EFL was much greater than that for
EF-1α (Table 3), as seen in other dual-EF-containing
species (see above).

New EF-1α/EFL data from other eukaryotes
Our EF-1α/EFL survey successfully revealed that the
taxa Katablepharida, Amoebozoa (or a subgroup of
Amoebozoa), and Ancyromonadida contain both EFL-
containing and EF-1α-containing species. For amoebozoans
and ancyromonads, only EF-1α-containing species were
known prior to this study (see Figure 1), however, we
detected EFL sequences in the amoebozoan Copromyxa
protea and the ancyromonad Fabomonas tropica (Table 1).
Likewise, the first-surveyed katablepharid Leucocryptos
marina was EFL-containing [16], but a RT-PCR survey of a
secondly-surveyed katablepharid, Roombia sp., identified
EF-1α transcripts (Table 1).

Discussion
Several eukaryote lineages include multiple dual-EF-
containing species
Ancestral co-occurrence of EF-1α and EFL followed by
differential loss of one of the two elongation factors most
likely shaped the current EF-1α/EFL distribution within
eukaryotes. In this scenario, the extant dual-EF-containing
species retain the ancestral state and thus are analogous
to the inferred intermediates that led to descendant lin-
eages that contain either EF-1α or EFL (Figure 3). In this
study, we found 11 new dual-EF-containing species in
four distantly related lineages: (1) Goniomonadida, (2)
Apusomonadida, (3) Stramenopiles (including diatoms
and oomycetes), and (4) Fungi (including S. punctatus
and B. ranarum). In light of the differential loss process
proposed for EF-1α/EFL evolution, we speculate that
more dual-EF-containing species remain undetected in
other lineages that contain both EF-1α-containing and
EFL-containing species, including: Viridiplantae [6],
Euglenozoa [8], Choanoflagellata [5], Endomyxa [10],
Filosa [9], Rhodophyta [18], Katablepharida (this study),
Amoebozoa (this study), and Ancyromonadida (this study)
(highlighted in pink in Figures 1 and 2). Considering the
revised distribution of EF-1α/EFL genes, we cannot ex-
clude the possibility that the last eukaryotic common
ancestor was dual-EF-containing.

http://www.broadinstitute.org/
http://www.broadinstitute.org/
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Finally, it will be of interest to continue surveying dual-
EF-containing species, especially within Stramenopiles
and Fungi. Kamikawa et al. [16] postulated that the
dual-EF status can be traced back to the ancestral
stramenopile species, based on the monophyly of
stramenopiles in EF-1α phylogenies (Figure 1), and of
diatoms and oomycetes in EFL phylogenies (Figure 2:
Note that no EFL homologue has been identified to date
in any stramenopile subgroups except diatoms and
oomycetes). Thus, we predict that dual-EF-containing spe-
cies should be found in so-far unsampled stramenopiles.
Similarly, S. punctatus and B. ranarum are unlikely to be
the sole fungal species with a dual-EF status, given that
the most recent common ancestral fungus was proposed
to be dual-EF-containing [12].

Parallel re-modeling of EF-1α function in eukaryotic
evolution
In the dual EF-containing diatom T. pseudonana, some
of us [7] proposed that the EF-1α homolog performs
only a subset of its original functions, and does not par-
ticipate in protein synthesis as an elongation factor, for
the following reasons. Firstly, in an EF-1α phylogeny, the
T. pseudonana homologue was much more divergent
than that of a closely related EF-1α-containing species,
P. tricornutum, suggesting that the former is under fewer
functional constraints than the latter. Secondly, EF-1α
transcripts were much less abundant in T. pseudonana
than the transcripts of EFL or of an α-tubulin gene. As
observed in T. pseudonana, the five dual EF-containing
diatoms identified in this study (i.e. A. kuwaitensis, A.
glacialis, D. confervacea, F. cylindrus, and T. nitzschioides)
appeared to possess divergent EF-1α genes (Figure 1). In
each of the five diatoms, the transcriptional level of the
EF-1α gene was heavily suppressed compared to that of
the co-occurring EFL gene (Table 2). Thus, the five dual-
EF-containing diatoms most likely use EFL as the principal
elongation factor, while a sub-set of the original EF-1α
functions is assigned to the divergent EF-1α. These dual-
EF-containing diatoms have most likely re-modeled their
EF-1α functions, such that they carry out only the auxil-
iary roles that the proteins originally performed, such as
interactions with cytoskeletal proteins and ubiquitin-
dependent protein degradation [1,21,22].
It is likely that similar re-modeling of EF-1α function

has also occurred in other dual-EF-containing lineages.
In the non-diatom dual-EF-containing species, the EF-
1α sequences were also divergent (Figure 1), and were
transcribed at a low level compared to the co-occurring
EFL genes (Tables 2 and 3). These results strongly sug-
gest that dual-EF-containing species in general utilize
EF-1α for subsets of the original functions, while EFL
participates in translation as a core factor. Significantly,
the re-modeling of EF-1α function probably took place
separately in Stramenopiles (including diatoms and
oomycetes), Goniomonadida, Apusomonadida, and Fungi,
as these lineages are distantly related to one another in
the organismal phylogeny. Moreover, diatoms (photo-
synthetic heterokont algae) and oomycetes (non-photo-
synthetic stramenopiles) may have also re-modeled their
EF-1α functions in parallel as they are relatively dis-
tantly related within stramenopiles. We also suspect
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that parallel re-modeling of EF-1α function occurred
within Fungi, as S. punctatus and B. ranarum are not
particularly close relatives [12].
We are currently unsure about the precise functions

of the divergent EF-1α in the dual-EF-containing species.
Under the parallel re-modeling scenario proposed above,
the suite of retained EF-1α functions could vary between
any of two dual-EF-containing lineages. However, the
overall substitution patterns in divergent EF-1α se-
quences in distantly related dual-EF-containing species
are found to be similar to each other (Additional file 2).
This observation hints at parallel loss of the same as-
pects of EF-1α function and retention of a subset of ori-
ginal functions in multiple dual-EF-containing lineages
scattered over the tree of eukaryotes. These speculations
could be tested more directly by biochemical studies of
EF-1α function in selected representatives of these
lineages.

Conclusions
According to the differential loss hypothesis for EF-1α/
EFL evolution, a dual-EF-containing ancestor likely gave
rise to two types of descendants—one containing only
EFL and the other containing only EF-1α. Nevertheless,
EF-1α/EFL surveys, including this study, have identified
an additional type of descendent retaining the ancestral
arrangement (i.e. dual-EF-containing) in multiple branches
of the tree of eukaryotes. If EF-1α/EFL sequences are sur-
veyed in a broader spectrum of eukaryotes, it is highly
likely that the number and diversity of known dual-EF-
containing species will grow further.
Curiously, all dual-EF-containing species identified so

far appear to retain divergent, low-expressed EF-1α
genes (see above), which are analogous to the hypothet-
ical intermediate leading to EFL-containing descendants
(Figure 3). We suspect that the multiple functions of the
canonical EF-1α may have prevented the dual-EF-
containing cells from losing this protein immediately
after EFL took over from EF-1α as the core translation
factor. The presence of dual-EF-containing species indi-
cates that the adoption of EFL as the dominant core factor
in translation does not necessarily lead to the elimination
of EF-1α from the entire cellular system.
Curiously, we found little evidence for living analogues

of the hypothetical intermediate that led to EF-1α-
containing descendants, which would possess a diver-
gent, low-transcribed EFL gene. The presence or absence
of dual-EF-containing species, in which a divergent EFL
gene is transcribed at lower levels than the co-occurring
EF-1α gene, would be crucial to understanding the evo-
lutionary processes that shaped the current EF-1α/EFL
gene distribution across the tree of eukaryotes. We need
to re-examine EFL sequences in the species currently
recognized as ‘EF-1α-containing’ since low-expressed
EFL genes might be overlooked in these taxa, especially if
genomic or high-coverage transcriptomic data is lacking.

Methods
Strains
Achnanthes kuwaitensis (NIES-1349), Asterionella glacialis
(NIES-417), Thalassionema nitzschioides (NIES-534),
Goniomonas amphinema (NIES1371), Goniomonas trun-
cata (NIES-1373), and Goniomonas sp. (NIES-1374) were
purchased from the Microbial Culture Collection at the
National Institute for Environmental Study in Japan.
Detonula confervacea (CCMP353) and Bolidomonas pacif-
ica (CCMP1866) were purchased from the Provasoli-
Guillard National Center for Marine Algae and Microbiota.
Goniomonas sp. (CCAP 980/1) was purchased from the
Culture Collection of Algae and Protozoa. Goniomonas sp.
(ATCC PRA-68) and Goniomonas sp. (ATCC 50108) were
purchased from American Type Culture Collection.
Pythium apleroticum (MAFF425515), Py. conidiophorum
(MAFF245320), Py. echinulatum (MAFF425510), Py. inter-
medium (MAFF306022), Py. porphyrae (MAFF239483), Py.
spinosum (MAFF425453), Py. ultimum (MAFF425505),
and Py. uncinulatum (MAFF240295) were purchased
from the GeneBank (Microorganism Section) at the
National Institute of Agrobiological Sciences in Japan.
Roombia sp. strain NY0200 was cultivated with bacterial
prey in URO-YT medium (Moriya et al. 2000). RNA was
extracted from the harvested cells by using an RNeasy
Plant Mini kit (QIAGEN), and then subjected to oligo
(dT)-primed reverse transcriptase (RT) reactions by using
the 3’ rapid amplification of cDNA ends kit (Invitrogen).
Each of the two procedures described above was
conducted following the corresponding manufacturers’
instructions.

PCR-based survey of EF-1α and EFL transcripts
We amplified EF-1α and/or EFL sequences of Roombia
sp., diatoms, Bolidomonas pacifica, and goniomonads (see
the previous section) by a two-step procedure: For the first
RT-PCR, the combination of one of three forward primers
(5′-GGCCACGTGGAYTCNGGNAARTCNAC, 5′-GGC
CACGTGGAYAGYGGNAARTCNAC, or 5′-GGCCACG
TGGAYGCNGGNAARTCNAC) and a reverse primer
(5′-ACGAAATCTCTCTTRTGNCCNGGNGCRTC) were
used. These primer sets can amplify the 5′ portions of the
transcripts (~250 bp in length) for EF-1α and EFL, as well
as other EF-1α-related proteins in a single reaction. For
each reaction, amplicons were cloned into pGEMTEasy
vector (Promega), and sequenced ≥12 clones to survey
EF-1α/EFL sequences. Secondly, the 3′ portions of
Roombia, diatom, and goniomonad EF-1α/EFL tran-
scripts were amplified by the 3′ rapid amplification of
cDNA ends (RACE) kit (Invitrogen) with exact-match
primers based on the nucleotide sequences of the initial



Kamikawa et al. BMC Evolutionary Biology 2013, 13:131 Page 9 of 12
http://www.biomedcentral.com/1471-2148/13/131
amplicons. We amplified the 3′ portion of the EF-1α
transcript of B. pacifica by the combination of an exact-
match primer (see above) and a degenerate primer,
which can anneal to the 3′ portion of EF-1α open read-
ing frame (5′-CAGAATTGCGACAGCNACNGTYTG).
Amplicons were cloned and sequenced completely as
described above.
From all of the seven species belonging to the oomycete

genus Pythium examined in this study, we obtained the
amplicons covering most of the EFL-coding region by RT-
PCR with a set of primers 5′-AGCCGAGAAGGGTGG
TTTCG and 5′-ACAGATAATCTGACCAACACC. The
details of cloning and sequencing of the EFL amplicons
were same as described above.
We then screened the 5′ portion of EF-1α sequences

in the seven Pythium spp. in two separate trials. Firstly,
we applied the combinations of primers for EF-1α se-
quences in phylogenetically diverse eukaryotes; two
forward primers (5′-GTGGACGCCGGNAARTCNACN
ACNAC and 5′-GTGGACGCCGGNAARAGYACNAC
NAC) and two reverse primers (5′-TCGGCCTGGGAN
GTNCCNGTNATCAT and 5′-TCGGCCTGGGTNGT
NCCNGTNATCAT). The RT-PCR with these ‘universal’
primers succeeded in amplifying the partial EF-1α tran-
scripts in Py. apleroticum. For the second trial, we pre-
pared new degenerate primers, which were more specific
to oomycete EF-1α sequences than those used in the first
trial: PytEF1aFA, PytEF1aFB, and PytEF1aR (5′-TCGGC
AAGACGTCGTWCAAGTAC, 5′-GGTCACCGCGATT
TCATCAAGAAC, and 5′-GACNGGNACCGTGCCAA
TACC, respectively). EF-1α transcripts in the Pythium
spp. were surveyed by the hemi-nested RT-PCR, in which
the combination of PytEF1aFA and PytEF1aR, and that of
PytEF1aFB and PytEF1aR were used for the first and sec-
ond reactions, respectively. The partial EF-1α transcript in
Py. intermedium was amplified in the second trial with
the ‘oomycete-oriented’ primers. We could not detect
any EF-1α transcripts in the Pythium species examined in
this study, other than Py. apleroticum and Py. intermedium.
The 3′ portions of Py. apleroticum and Py. intermedium
EF-1α transcripts were amplified by the 3′ RACE,
followed by cloning and sequencing. The details of the 3′
RACE, and cloning and sequencing of the amplicons were
same as described above.

Illumina transcriptomic analyses
We obtained transcriptomic data from the following
organisms; two ancyromonads, Ancyromonas sigmides
B70 (CCAP 1958/3) and Fabomonas tropica NYK3C,
the breviates, Breviata-like biflagellate PCbi66 and
Subulatomonas sp. PCMinv5, the mantamonad Manta-
monas plastica Bass1 (CCAP 1946/1), the tubulinid
amoebozoan Capromyxa protea CF08-5 (ATCC PRA-
324), and the microaerophilic cercozoan strain DMV.
A. sigmoides and ‘F. tropica’ were cultivated with bacter-
ial prey (Enterobacter aerogenes) in a mixture of 50%
ATCC 802 medium and 50% filtered sterile seawater, and
in a mixture of 50% seawater and 50% ddH2O, respect-
ively. Strain PCbi66 was grown in ATCC 1525 medium
with bacterial prey (Klebsiella pneumoniae ATCC 23432).
Subulatomonas sp. was cultivated with bacterial prey
in ATCC 1773 medium made with 50% seawater and
50% ddH2O. M. plastica was grown with bacterial prey
(K. pneumoniae ATCC 23432) in a mixture of 50% sea-
water and 50% ddH2O. C. protea was grown on weak
malt yeast agar plates (0.02 g Yeast extract, 0.02 g Malt
extract, 0.75 g K2HPO4, 1 L ddH2O, 15 g Agar) with
streaks of Escherichia coli as food. Stain DMV was grown
in ATCC 802 medium, with bacterial prey (K. pneumoniae
ATCC 23432) killed at 65°C for 1 hour.
Total RNA was isolated using Trizol (Tri-reagent)

following the protocol supplied by the manufacturer
(Sigma). Construction of cDNA libraries and illumina
RNAseq was performed by Macrogen (South Korea) for
strain PCbi66 and A. sigmoides, by GeneWiz (USA) for
‘F. tropica’, Subulatomonas sp., and M. plastica, and by
the Institut de Recherche en Immunologie et Cancérologie
(IRIC) of Universite de Montreal (Canada) for C. protea
and strain DMV.
Raw sequence read data were filtered based on qual-

ity scores with the fastq_quality_filter program of
FASTXTOOLS (http://hannonlab.cshl.edu/fastx_toolkit/),
using a cutoff filter (a minimum 70% of bases must have
quality of 20 or greater). Filtered sequences were then
assembled into clusters using the Inchworm assembler of
the TRINITY r2001-5-13 package [23]. EF-1α/EFL se-
quences were identified using basic local alignment search
tool (tblastn).

Database search of EFL and EF-1α genes
By using T. pseudonana EFL and EF-1α amino acid se-
quences as the queries, we performed tblastn searches
with E-value cutoff < 10-100. Putative EF-1α/EFL se-
quences identified by the initial tblastn search were then
confirmed by blastp searches with E-value cutoff < 10-100.
The reciprocal similarity searches identified both EFL and
EF-1α genes in the genomes of T. trahens and S. punctatus
from the whole genome shotgun database in NCBI
(http://www.ncbi.nlm.nih.gov/). Likewise, both EF-1α
and EFL genes were detected in the genome databases
of the diatom F. cylindrus (http://genome.jgi-psf.org/
Fracy1/Fracy1.home.html) and the oomycete Py. ultimum
(http://pythium.plantbiology.msu.edu/). For the Illumina
RNAseq data of T. trahens, S. punctatus, and Py. ultimum
we collected raw sequence data from the NCBI’s Short
Reads Archive (SRA), accessions SRR343042, SRR343043,
and SRR059026, respectively. These raw data were as-
sembled into clusters using the Inchworm assembler of

http://hannonlab.cshl.edu/fastx_toolkit/
http://www.ncbi.nlm.nih.gov/
http://genome.jgi-psf.org/Fracy1/Fracy1.home.html
http://genome.jgi-psf.org/Fracy1/Fracy1.home.html
http://pythium.plantbiology.msu.edu/
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the TRINITY r2001-5-13 package, as above. We then
identified the contigs pertaining to EFL, EF-1α, and α-
tubulin through tblastn, and compared the k-mer fre-
quency of each respective contig to compare the rela-
tive transcriptional level between the co-occurring EFL
and EF-1α genes (Table 3). We provide the amino acid
sequences mentioned here as Additional file 3.
Table 4 Primers and annealing temperatures for qRT PCR

Organisms Genes (°C)* Primers

Achnenthes
kuwaitensis

EFL (57) 5'-GTCACTTGATCTTCAAGCAG

5'-TGTCGGTGAAGAACTCCTTG

EF-1α (60) 5'-GAGGAGTTGACGAGAACACG

5'-TTGGAGACTCGAACTTCCAG

α-tubulin (60) 5'-TGGAGCCCTACAACTCCATC

5'-CACCAGGTTGGTCTGGAACTC

Asterionella
glacialis

EFL (58) 5'-TATCTCTGAGCGTGAGATGAAG

5'-CTTGGTGTTGCACTGAATGG

EF-1α (54) 5'-TGAAGAACGAACTATGGAAG

5'-CCAAAGTGAAATATCGATTG

α-tubulin (58) 5'-ACATGGCATGCTGCCTCATG

5'-ATCCTCGAAAGAGCTTCTGC

Detonula
confervacea

EFL (58) 5'-AGGAATCTCTGCTCGTGAG

5'-GAACTCCTTGGTGTTACACTG

EF-1α (58) 5'-GAAACCATCGACAAGTACG

5'-GAAACTTCCACAACGTGATATCG

α-tubulin (58) 5'-CAAATGCGCAGCGACAAGAC

5'-TTCCAGAACGGACCTCGTC
Phylogenetic analysis
EFL and EF-1α amino acid sequences were sampled
from the broad spectrum of eukaryotes. Datasets of the
two elongation factor families were separately aligned,
and then ambiguously aligned positions were excluded
before phylogenetic analyses. The final EFL and EF-1α
datasets contained 80 sequences with 407 amino acid po-
sitions and 79 sequences with 400 amino acid positions,
respectively. The two datasets were analyzed using both
ML and Bayesian phylogenetic methods. ML analyses
were performed using RAxML 7.2.1 [24] under the LG
model [25] incorporating empirical amino acid frequencies
and among-site rate variation approximated by a discrete
gamma distribution with four categories (LG + Γ + F
model). The ML tree was estimated by heuristic searches
based on 300 distinct parsimony starting trees. In RAxML
bootstrap analyses (1000 replicates), the heuristic tree
search was performed from a single parsimony tree per
replicate.
The EFL and EF-1α datasets were also subjected to

Bayesian analysis using PhyloBayes v.3.3 [26] with the
LG + Γ + F model. For the EF-1α analysis, two parallel
Markov Chain Monte Carlo (MCMC) runs were run for
63,799 and 63,885 generations, sampling log-likelihoods
and every 10 trees (maxdiff = 0.16254; ‘burn-in’ was set
as 100 based on the log-likelihood plots). The EFL
dataset was analyzed as described above, except two
MCMC runs were run for 12,520 and 12,511 generations
(maxdiff = 0.113078).
Thalassionema
nitzschioides

EFL (56) 5'-AATCTCTGCTCGAGAGATGG

5'-TGTAGTGGTACTTGCCAGTG

EF-1α (56) 5'-CGTAGCCGAAAGCATAATAG

5'-CCAGACACTGATATCAATAG

α-tubulin (56) 5'-TTGTATGATGTCTGCCGTGG

5'-AAGCCTTCTCACGCGAAATA

Goniomonas sp. EFL (60) 5’-CATCAAGGGTCTCAAGAAGGACAAC

5’-CAGTTGATGGCGGTCATCTTCATG

EF-1α (60) 5’-GTTCTCTGCTGGATACACTCCAGTG

5’-ACGCTATTCATGGAAGGCCTCAAC

α-tubulin (55) 5’-CATGTACCGTGGTGATGTCG

5’-CTGGACCTTGGCAAGATCAC

*Numbers in parentheses show primer set-specific annealing temperatures
used in qRT PCR.
Quantitative reverse transcriptase (qRT) PCR
To normalize the copy numbers of EFL and EF-1α
transcripts, we amplified the α-tubulin sequence of
Goniomonas sp. ATCC 50108 by RT-PCR with the follow-
ing degenerate primers: 5′-RGTNGGNAAYGCNTGY
TGGGA and 5′-CCATNCCYTCNCCNACRTACCA. To
amplify the α-tubulin sequences of diatoms A. kuwaitensis,
A. glacialis, and T. nitzschioides, we used a second set of
degenerate primers: 5′-GARCTNTAYTGYCTNGARCA
YGG and 5′-CGCGCCATNCCYTCNCCNACRTACCA.
The α-tubulin sequence of the diatom D. confervacea was
amplified by using the following primers: 5′-CGCGCC
ATNCCYTCNCCNACRTACCA and 5′-CGTAGANAG
CCTCGTTGTC. The cloning and sequencing of the α-
tubulin amplicons were carried out as described above.
Accession nos. for the sequences are AB766056 –
AB766059.
In Table 4 we list the exact-match primers used for

qRT-PCR assays designed based on the EF-1α, EFL,
and α-tubulin sequences in the four diatoms and
Goniomonas sp. ATCC 50108. The plasmids carrying
the EFL, EF-1α, and α-tubulin amplicons (see above)
were used as the standards for qRT-PCR. A mixture for
qRT-PCR contained SYBR Green I (TaKaRa), Premix
ExTaq (TaKaRa), a set of exact-match primers (final
concentration of 0.3 μM each), and template solution:
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either cDNA, the corresponding RNA sample (the nega-
tive control), or five differently diluted plasmid solutions
including 10 to 107 copies of the target gene fragments
(the standards). The qRT-PCR thermal cycling conditions
were 95°C for 30 sec followed by 50 cycles comprised of
95°C for 5 sec, a gene-specific temperature for 10 sec
(Table 4), and 72°C for 10 sec. We confirmed that a single
target product was amplified by real-time PCR, based on
melting curves (data not shown). In each assay, the target
amplification from the RNA sample was out of the quanti-
fiable range. Smart Cycler II (Cepheid) and Thermal
Cycler Dice (TaKaRa) were used for the assays on the four
diatoms and that of Goniomonas sp., respectively.

Accession numbers
AB766030-AB766059, AB775895, and AB824019.

Additional files

Additional file 1: Partial alignment of EF-1α sequences. The
Opisthokonta-specific insertion is highlighted in grey. Numbers above the
alignment are the amino acid positions in Thalassiosira pseudonana
EF-1α. The divergent EF-1α homologues in the two dual-EF-containing
fungi are highlighted by stars.

Additional file 2: Substitution patterns in the divergent EF-1α
sequences. The amino acid sequences of the divergent EF-1α
homologues (marked by stars) were compared to those of
phylogenetically related, canonical EF-1α proteins. Amino acids are
grouped into four Dayhoff categories—(i) acidic residues (D and E), (ii)
basic residues (H, K, and R), (iii) polar-uncharged residues (C, N, Q, S, T, W,
and Y), and (iv) hydrophobic non-polar residues (A, F, G, I, L, M, P, and V).
Substitutions across two out of the four Dayhoff categories between the
divergent and canonical EF-1α sequences are highlighted in red.

Additional file 3: EF-1α/EFL sequences identified in publicly
available databases. The amino acid sequences of EF-1α/EFL
homologues identified in publicly available databases are listed here.
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