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We determine the maximum dimension of the Lie algebra of inheriting conformal
Killing vectors in perfect fluid space—times. For the case of conformally flat space—
times the maximum dimension is eight and for the case of nonconformally flat
space—times the maximum dimension is found to be five. We illustrate each case
with examples. ©2002 American Institute of Physic$DOI: 10.1063/1.1509087

[. INTRODUCTION

We are interested in space—times which admit conformal Killing vector fields and, in particu-
lar, fluid space—times which admit inheriting conformal Killing vector fields. A conformal Killing
vector field is said to be an inheriting conformal Killing vector field if fluid flow linesare
mapped conformally by the conformal Killing vector fielsee Sec. Il and Coley and Tupper
The motivation for studying inheriting conformal Killing vector fields was discussed in Ref. 1 and
inheriting conformal Killing vector fields in perfect fluid space—times were studied in Refs. 2 and
3. For general space—times, from a kinematical description of matter it has beershatvim
order for there to be zero entropy production there must exist a conformal Killing vector field
parallel to the fluid four-velocitywhich is consequently inheriting

In this article we determine the maximum dimension of the Lie algebra of inheriting confor-
mal Killing vectors in perfect fluid space—times. For the case of conformally flat space—times the
maximum dimension is eight and for the case of nonconformally flat space—times the maximum
dimension is found to be five.

In Sec. Il we define conformal Killing vector fields and state a number of theorems concerning
the maximum dimension of Lie algebras of conformal Killing vector fields. We also address the
reducibility of a Lie algebra of conformal Killing vector field& a Lie algebra of Killing vector
fields) with respect to a conformal scaling of the metric. We consider some cases where the
inheriting condition is automatically satisfied. In Sec. Ill we consider the maximum dimension of
the inheriting Lie algebra for conformally flat space—times and present the space—times which
admit this maximum number. In Sec. IV we determine the maximum dimension of the inheriting
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Lie algebra for the nonconformally flat space—times. In Sec. V we discuss the results and outline
possible future work.

II. CONFORMAL KILLING VECTORS AND INHERITANCE

Let M be a four-dimensional spacetime manifold with metric tergsof Lorentz signature.
Any vector fieldX which satisfies

L:9=2(x")g (1

is said to be aonformal Killing vector(CKV) of g. If ¢ is not constant oM, thenéis called a
proper conformal Killing vectarif ¢ is constant oM, then¢is called ahomothetic Killing vector
(HKV); and if ¢ is constant angy# 0 onM, then¢ is calledproper homotheticlf ¢.,5=0, then
¢ is called aspecial conformal Killing vectofSCKV), and if /=0, then¢ is said to be a Killing
vector (KV).

The set of all CKV(respectively, HKV and KYform a finite dimensional Lie algebra denoted
by C (respectively,H and G) whose maximum dimension is 1&espectively, 11 and 10If
dimC=15, M is conformally flat. If the dimension df is 10, thenM is of constant curvature. If
M is not of constant curvature, then this algebra has dimension at most 7. The algebra of HKV has
dimension equal to or at most one greater than that of the KV algebra so that each given space—
time admits a basis fok containing at most one HKVi.e., all other HKV can be constructed by
the addition of a KV. If the algebrak has its maximum dimension of 11, théh is flat. Any
CKYV field in a flat space—time is a SCKV and so the maximum dimension of the SCKYV algebra
is 15. If this occursM is flat, while if M is nonflat, its maximum dimension is 8. For details and
proofs, see Ref. 5 and references thefege Ref. 6 for a summaryit will be assumed throughout
this article that the space—times considered admit no lgeatglobalizablg conformal Killing
vector fields.

We would like to know the maximum dimension 6fin the nonconformally flat case. First,
we need to introduce the following terminology. A pome M is called azero (or afixed poinf
of the CKV & if &(p)=0. A zerop of ¢ is calledisometricif (p)=0 andhomotheticif (p)
#0.

The Petrov type of the Weyl tensor is a statement about the Weyl tensor at g gdiht and
may vary from point to point. If the Petrov type is the same at all pointd pthen one can speak
of the Petrov type oM.

The following theorem is knowf;° but is collected together here for convenience.

Theorem 1: Let (M,g) be a nonconformally flat spaeéme and letC be the conformal
algebra of M. Then we have the following

@ If the Petrov type is N at somegM, dimC<7.

(i)  If the Petrov type is D at some M, dimC<6.

(iii)  If the Petrov type is |1l at some g M, dimC<5.
(iv) If the Petrov type is | or Il at some @M, dimC<4.

In fact it can be showiusing theorem 2 belowthat part(iii) of theorem 1 may be strength-
ened by saying that if the Petrov type is Ill over some non-empty subskt thfen dinC(M)

4.

The following theorem is due to Hall and Steelsee also Ref. )1

Theorem 2: Let (M,g) be a spacetime that admits an-+dimensional conformal algebré
and suppose that the Petrov type and the dimension and nature of the orbits associaté@neith
the same at each M and that M admits no local (nonglobalizable) conformal vector fields.
Then for each g M there exists an open neighborhood U of p and a functiod— R such that
C (restricted to U is a Lie algebra of special conformal vector fields on U with respect to the
metric g =e?°g on U. If the Petrov type is not Qthe above local scaling functiom can always
be chosen such th&trestricts to a Lie algebra of homothetic Killing vector fields with respect to
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g’ on U, and, if(M,qg) is not locally conformally related to a generalized plane-wave sptoee
about any p= M, the above local scaling can always be chosen such ¢hegstricts to a Lie
algebra of Killing vector fields with respect td gn U.

See Ref. 8 for the definition of generalized plane wavéMinkowski space—time admits 15
(specia)l CKV fields, (admitting a ten-dimensional subalgebra of KV figldad it follows that the
Lie algebra of CKVs of a conformally flat space—time can, in principle, be locally reduced to a
corresponding set of special CKVs with a ten-dimensional subalgebra of KVs. For space—times
conformal to the(nonconformally flat pp-wave space—times, the Lie algebra of CKVs can be
locally reduced to a Lie algebra of homothettéthat is, if dinC= 7, thenC can be locally reduced
to a seven-dimensional homothety Lie algel@ay., 6 KV and 1 HKV; if dimC=6, thenC can be
locally reduced to a six-dimensional homothety Lie alget@ay., 5 KV and 1 HKV; and if
dimC< 6, thenC can be locally reduced to a Lie algebra of KVs.

The energy momentum tensor for a perfect fluid space—time is given by

Tap=(m+P)UaUp+PYap, 2

whereu? is the normalized fluid four-velocity and andp are, respectively, the energy-density
and the pressure. A CKV in a perfect fluid space—time is said to be inheriting if fluid flowudines
are mapped conformally by the CK¥ i.e.,

L= —u. 3

We shall refer to such a CKV as an ICKV. For an HKV or proper CKV which is parallel to the
fluid four-velocity vectoru, Eq. (3) is automatically trué.

We note that the set of ICKVs form a subalgetiraf the Lie algebraC and we refer to this
as the inheriting algebra. This is proved in Sec. 3.7 of Ref. 12. Thus, the conditions required for
a perfect fluid space—time to admit independent ICKVs are as follows: there must exist
independent vector field§, 1=1,... n, which satisfy Eqs(1) and (3). Therefore, in order to
determine the maximum dimension of the Lie algebra of ICKV in a space—time, we can either
consider the compatibility of these conditions generally or find the answer on a case by case basis.

. CONFORMALLY FLAT SPACE-TIMES

In the conformally flat(CF) case, in which diri= 15, it has been shown that the maximum
dimension of the inheriting algebra in a perfect fluid space—time is égge Sec. 6 in Ref. 13
Since the maximum dimension of the conformal algebra for any non-CF space—time is‘8éven,
follows that

MAX (dimZ)=8.

In particular, it is known that the Friedmann—Robertson—Walker model with flat spatial geometry
admits precisely eight ICKW?

Recently, as part of an investigation into the general CKV admitted by CF perfect fluid
space—time&? all such space—times admitting the maximum eight ICKV and also all admitting
seven ICKV have been discovered. Here we present only the results with a brief indication of the
calculation that led to the discovery of these space—times.

The CF perfect fluid space—times are all kndwand fall into two classes, namely the
nonexpanding ® =0) generalized Schwarzschild interior solution and the expanding O (t)

# 0] generalized FRW solution. The space—time metric of each of these classes can be written in
the form

ds?=V 2(—F2dt?+ dx?+dy>+d7), (4

whereF(t,x,y,2z) is of the form
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F(t)=a(t)r?+b(t)x+c(t)y+d(t)z+e(t), (5)

a, b, ¢, d, e are arbitrary functions df andr?=x?+y?+z2. For the nonexpanding model,is
given by

V=(1+r?)C/2, (6)
whereC is a constant an& is of the particular form
F=— 3(Cfy+1)r2+fyx+fy+fsz+ 3(Cf,—1), 7
with f,, f,, f5, f, arbitrary functions ot. For the expanding model¥, is given by
V=Hr2—2Hxox—2Hyoy— 2Hzoz+ Vo+Hr3, (8)

whereH, Xo, Yo, Zo, Vo are arbitrary functions of, r3=x3+y3+z3 andF is given by

dv
_a@-1
F=30 "' 9)

In all cases the fluid four-velocity is comoving, i.e3=VF~1g/4t. However, since the condition
(3) is conformally invariant, we may consider the ICKV of the underlying space—time

do?= —F2dt*+dx?+ dy?+ dZ? (10
with four-velocity u’@=F ~1g/t.

For the space-timél0) the ICKV equations foré? imply that g?a:gfgzo (¢=1,2,3) and
lead to

£=G(),
=3 A(x?—y?—7?)+Bxy+Cxz+ Dx—My+Nz+Q,
&=3B(—x*+y?—7z%)+Ayx+Cyz+Mx+Dy—Pz+R, (11
£3=3C(—x?—y?*+72%) + Azx+Bzy—Nx+Py+Dz+S,
y=Ax+By+Cz+D,

whereA, B, C, D, M, N, P, Q, R, S are constants, together with the set of equations
d G —1bA+ B+dC—-2aD
gi(Ga=5( c —2abD),
d
m(Gb)=eA+dN—cM—2aQ,
d
a(Gc)zeB—dPerM—ZaR, (12
d
a(Gd)=eC+cP—bN—2aS,

d
a(Ge)zeD—bQ—cR—dS
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A. Space—times admitting eight ICKV

To find those space—times admitting the maximum number of ICKV we must find those
functionsa, b, ¢, d, e, G which result in the maximum number of nonzero constahis
B,...,S. This is found to occur only whea=b=c=d=0, e#0 or whenb=c=d=e=0, a
+0. However, when the appropriate conformal fadtor is restored, the second case results only
in space—times which are coordinate transformee L/r) versions of those occuring in the first
case, which is thus the only one we need to consider. A transformation of the cootdémetieles
us to pute=1, so the underlying space-tini@0) is Minkowski space—time withu’2=3/t.
Using the notation of Maartens and Maha?ahe eight ICKV are then

J J J
H=x2—, M

Pa axar Mas=Xa G Xp g 13

T

wherea=0,1,2,3 andx,8=1,2,3. From expressiorn(8) and(9) the corresponding form of for
the expanding case is

V=ar?+ Bx+ yy+ 6z+f(t), (14)

wherea, B, v, é are arbitrary constants aridt) is an arbitrary function of. Thus the expanding
perfect fluid space—times admitting the maximum number of eight ICKV are all of the form

ds?=[ar?+ Bx+ yy+ 6z+f(t)] ?(—dt?+dx?+ dy*+d7?), (15

and the corresponding nonexpanding space—times Yagigen by (6). There are three cases to
consider:

1. Case (i) a®+#0

A translation of the origin of the form

[ B | ’y [
X _X+Z7 y —y+z, 4 —Z+Z

transforms the metric into
ds?=[f(t)+ar?] ?(—dt?+dx?+dy?+dz?), (16)

where we have dropped the primes and absorbed the constanfgtintdhis is the space—time
S1 of Ref. 2 withk=0 which was shown to admit five proper ICKV, naméty andH, together
with the three KV of spherical symmetry.

2. Case (ii) =0, @#0
A rotation of the spatial axes brings the metric into the form

ds?=[f(t)+kx] 2(—dt?+dx?>+dy?+dz?), 17)

wherek is an arbitrary constant. This is the plane symmetric model listed urdewith k=0 in
Table 1 of in Ref. 3. In addition to the three KV of plane symmetry, this model admits five proper
ICKV (a fact not recognized in Ref. 3—see the AppendnramelyPy, P,, H, M,;, My3. The
corresponding conformal scalagsare given by

df df
(f+kx)z//:—a, —k, f—ta, —-ky, —kz (18)

respectively. The density of the models=3[(df/dt)>—k?], so we must havedf/dt)?>k?.
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3. Case (iii) =0
For the nonexpanding model, E@) leads to the metric
d?=4C 2(1+r?) " 4(—dt?+dx®+dy*+d27), 19

i.e., Eq.(7) with f;=f,=f;=Cf,+1=0. This is a special case of the static Schwarzschild
interior solution which is knowhto admit four proper ICKV together with four KV.

The space-times with metrigd6), (17) and (19) are the only perfect fluid space—times
admitting the maximum number of eight ICKV.

B. Space—times admitting seven ICKV

Perfect fluid models admitting seven ICKV are found to occur if and only if the funcégns
b, c, d, e in Eq. (5) are constant multiples of each other so that, by a redefinition of the time
coordinate, we may write the functidn in the form

F=ar?+ Bx+ yy+ dz+e, (20
whereq, B, vy, , € are constants. For the expanding models, from Bjsand(9), V is of the form
V=K(t)F+)\1r2+)\2X+)\3y+)\4z+)\5, (21)

where 3K/dt=0 and )\, N5, A3, A4, A5 are constants of integration. For the nonexpanding
modelsV is given by(6). There are three cases to consider:

1. Case (i) a®+#0

A translation to a new origin, a rotation of the spatial axes and a rescaling of the time
coordinate results in the spacetime metric

ds?=[K(t)(1+ar?)+ wr?+xx] [ — (1+ ar?)?2dt*+dx*+ dy?+ d 7], (22

wherew, \ are constants. Whexn=0 these solutions are the spherical symme&icmodels of
Ref. 2 withk#0. If, in addition, =0, these are thk=*=1 FRW models.
The ICKV of (22) and the corresponding conformal scalars are

7 L LdK
5(1)25, py=—(1+ar9)V T

Jd Jd J
Ey=la(x®—y*=2%)+1] =< 2axyw 202X, Y= (2awr®x+rar?=\)V 1,

J 2 2 2 J J 2 -1
§(3)=2axy5+[a(—x +y—z )+1]@+2azy5, hiz)y=2awr<yVv-r,

& =2axzi+2ayzi+[a(—x2—y2+22)+1]i Yay=2awr’zv-? (23
) X ay gz’ @ ’

J -1
- YE)=AyVoe,

Jd
——y—+
§5)7 7Y o X3y

a9 i
g(e)zza_X_XE, 1/1(6):_)\ZV ’

1% d
=Ty

y Y ¥(7=0.
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No linear combination of 4 to ) will result in a vanishing or constant conformal scalar, so this
model admits six proper ICKV and one KV. Putting=0, we see that th&1 models admit four
proper ICKV and three KV, as shown in Ref. 3, and putting =0, we see that th&k=+1
FRW models admit one proper ICKV and six KV, as shown in Ref. 1.

2. Case (i) =0, O#0

A translation to a new spatial origin, a rotation of the spatial axes and a rescaling of the time
coordinate results in the space—time metric

ds?=[hr2+L(t)x+m] [ —x?dt®+ dx?+dy>+d 7], (24)

whereh,m are constants and(t) is an arbitrary function of time. This space—time admits four
proper ICKV, namely,

J Jd J J Jd Jd
S~ §(2)=W, §3)= 5 §(4)ZX5+YWJF25, (25
and three KV, namely,
Jd J
f(s)I—ZWerE,
J J Jd
£6)=2hxy_ +[m+ h(—x2+y2—22)]w+2hzy5, (26)

=2h a+2h (9+ +h 2_y2472 J
En= Xz~ yzay [m+h(=x“—y Z)]az'

Whenh=0, the space—time is plane symmetric and again admits four proper ICKV and three KV.

3. Case (iii) ®=0

For the nonexpanding model, using E¢®). and (20) together with a rotation of the spatial
axes and a rescaling of the time coordinate, we obtain

ds?=4C 2(1+r%) [ —(ar?+ Bx+1)%dt?+ dx?>+dy>+d7]. (27
This space—time admits three proper ICKV, namely,
_ 2 2 2 d d d
§py=la(x*—y°—z )+[3x+l]5+y(2ax+ﬂ)w+z(2ax+ﬁ)£,
d J J
g(z)=2axy5+[a(—x2+y2—zz)+1]W+2ayzﬁ, (28)
J J Jd
5(3)=2axza—x+2ayzw+[a(—x2—y2+22)+1]E,

and the four KV,

d a9
§@)= 5 §(5)=—Z—(9y+y—az,

—2y(1— at BX) e+ [B(L— X2y 22) 4 2(a—1)] — + 2By 7~ 29

€o=2y(1—at Bx) o +[BA—XHy =) +2(a= 1) o +2By2 5, (29

J J 2 2 2 d
by=22(1—at Bx) 5+ 2Bz HBL-XPmy* 2 2(a=D)] .
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When =0, {4y and§s) are KV, the resulting metric is that of the general spherically symmetric
Schwarzschild interior solution which is knofvto admit three proper ICKV and four KV.

The space—times with metri¢g2), (24) and (27) are the only CF perfect fluid space—times
admitting precisely seven ICKV. Some, but not all, are known admitting precisely six ICKV; none
of the known models admit six proper ICKV, thus, so far, the solu®®) is unique in this regard.

IV. NON-CONFORMALLY FLAT SPACE-TIMES

For the case of nonconformally flat space—times, Theorem 1 tells us th&sdinand so
dimZ<7. It is known that the Gdel space—time admits 5 ICKV: This is a perfect fluid homoge-
neous Petrov typP space—time with 5 KVs. Thus, we ask the question: Does there exist a perfect
fluid space—time with dith=7 or dimZ=67? From Theorem 1, we only need to consider Petrov
typesN andD.

First, we give some notation. Létbe a CKV. From(1) it follows thaté,.,,= Qap+ F4p. Now
supposet#0 but £(p) =0 for somep e M. Ther?"!” we have the following:

Theorem 3: (i) If ¢(p)=0 (isometric zero), the Petrov type at p is, ® or O. Also, if
Fau(p) =0, then the Petrov type at p is.Of the Petrov type at p is Pthen F,,(p)#0 and is a
linear combination of the bivectors,hy and x,yp; where Ln,x,y is a null tetrad(l,n%=x,x*
=y,y?=1, others zero) at p with | and n repeated principle null directions of the Weyl tensor at
p. If the Petrov type at p is Nthen F,,(p) =l X, where | is the repeated principle null direction
of the Weyl tensor at p andx,=0.

(i) If ¥(p)# 0 (homothetic zero), the Petrov type at p is,IN or O. If the Petrov type is I11
or N, F,,(p)#0 and timelike

Corollary: If ¢is a CKV with£%£0 and £(p) =0 and the Petrov type at p is not,Ghen
I:ab( p) #0.

Theorem 4:If ¢is an ICKV andé=0 and &(p) =0, then, if u is the fluid flow velocity at,p
F,pu®=0 at p (the fluid flow is assumed nowhere zero)

Proof: UseLuxu at p and puté(p)=0.

O

Theorem 5: If a perfect fluid spacetime is not conformally flat, the dimension of the ICKV
algebra is at most 5. If such a spadéme admits a maximal ICKV algebra (of dimension 5), it
must be of Petrov type D with5xX;aYp; -

Proof: Suppose this dimensionis6. Then by taking linear combinations of members of the
ICKV algebra one can arrange to hav » as two (i.e., 6-4) independent ICKV such that

ga;b:l//gab_"Fabr g(p)zov ggtor Egumu, Fabub:O'
Na;b= $Yabt Gap, 7(P)=0, 7#0, ﬂnU“U, GabUbZO

hold at any ps M. Also, by taking linear combinations gfand », we can assume that at least one
of ¢y and ¢ vanishes at p

Case (a):(p)= ¢(p)=0 and F,,u®=G,,uP=0. Then from Theorem 3 (i) the (necessarily
spacelike) blades of fg and G, at p must coincide. Hence b= uG,y, at p (0# e R). Now
construct Z= &— un which is not identically zero. Then Z is an ICKV ang..&= (¥ — u¢)0ap
+ (Fap— 1Gap) With (—ud)(p)=0, (Fap—nGap)(p)=0 which contradicts nonconformal
flatness by Theorem 3 (i)

Case (b):y=0, +#0. F,,uP=0, G,,u®=0. Theorem 3 (ii) then shows that,@p) is non-
zero and timelike (contradicting u°=0 at p), i.e., timelike bivectors cannot have a timelike
vector annihilating them

The second assertion of the theorem follows immediately from this proof and Theorem 3, and
is due to the fact that the relevant bivectors are necessarily spacelike

O

Corollary: The maximum dimension of the ICKV algebra for Petrov type N and type 11l

perfect fluid spacetimes is at most four
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These results also may be obtained by somewhat tedious direct calculations without recourse
to the fixed point theorems of Ref. 17.

A. Examples of Petrov type D space—times with five ICKV

(@) The Galel space—time
ds?=a?[ — (dt+e*dz)?+dx?+dy?+ se*d7], (30

when considered as a perfect fluid space—time with zero cosmological constant, has energy density
w and pressur@ given by u=p=a?/2. It admits five ICKV, all of which are KV.
(b) The plane symmetric Kasner type model

ds?=—dt?+dx?+t(dy?+dz?) (31
admits four KV and one HKV given by

H—t&+ r7+y(9+2(9 32
ST T2y T 20 (32)

The four-velocity is comovingu=p=t~%/4.
The space—time with metric

do?=w 2d<, (33
whereds? is the metric(31) and
w=a(x’*-2t>+b, (34)

a andb being nonzero constants, is also a perfect fluid space—time. In this case the KV

becomes a proper ICKV witlyy= —2ax/w and the HKVH given by(32) also becomes a proper
ICKV with y=—1+2b/w.
(c) The static spherically symmetric model

ds?=—r?"dt?+ (1+2m—m?)dr?+r2(d 6>+ sir? 6dp?) (35
hasu=(1+2m-m?) "m(2—m)r 2 andp=m(2—m) *x and all energy conditions hold for
0<m=1. The space—time admits four KV and one HKYV given by

H=(1 t&-i- J 36
=( —m)a o (36)

The space—time with metric
d3?=U"2ds?, (37

whereds? is the metric(35) andU=a-+br?, a andb being positive constants, is also a perfect
fluid space—time. The four KV of35) remain as KV but the HKV given by36) is now a proper
ICKV with ¢=(a—br?)/(a+br?).

(d) The static spherically symmetric space—time
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(—dt?+dr?+d6?+sir? 6d¢?) (38

dszzsecﬁ<L
V2

satisfies the energy conditions. It admits the four KV associated with static spherical symmetry
together with the proper ICKV

V. DISCUSSION

The results of Secs. Il and IV may be summarized in the following theorem:

Theorem 6: For conformally flat perfect fluid spae¢imesdimZ is at most eight and all such
space-times are known. The maximum number of independent proper ICKV is six. For noncon-
formally flat perfect fluid spacdimesdimZ is at most five, in which case the spatime is of
Petrov type D

The example given by33) and (34) is the only known nonconformally flat perfect fluid
solution admitting more than one independent proper ICKV.

It is also of interest to determine the maximum dimensiorZ dor typesN, I11, 11 and|
separately. From the analysis of Sec. IV we see that for each of those Petrov tyges4difrhe
determination of the exact maximum number in each case may require techniques other than the
geometrical approach used here.
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APPENDIX A: ERRATA TO COLEY AND CZAPOR 3

The result in Sec. Il that the plane symmetric CF model given by(EqQ.admits eight ICKV
contradicts Theorem 1 of Ref. 3 which states, in effect, Maf andM ;3 cannot be ICK\/it can
be easily checked that they are indeed IQKVhe proof of Theorem 1 in Ref. 3 is correct up to
and including Eq(2.24), but Eq.(2.25 is wrong. In fact, using Eqg2.23 and(2.24), Eq. (2.9
becomedusing the notation of Ref.)3

Wi (Wi Wy + Wy Wi — Wiy ) = 0,
and, sincew,#0, it follows thatww,;+w,wy—W,=0; i.e.,
(W Wy — Wiy )= 0.
But Eq. (2.23 states that
(WeWy— Wiy ) =0,

S0 W,W, — W, = const, which does not contradict the later correct res, =w,,. [Note Egs.
(2.333 and(2.33b are wrong since they are derived from the incorrect 25.] Thus there is
no contradiction and solutions do exist for whigh# 0. Equation(2.37) is correct and substituting
this into Eq.(2.9) leads towiwxx+wfx—wxwxxx=0, and puttinge “=p(t)+s(x) we obtain
s2, =58« If 5,,=0, we obtain the solutiofiL8), otherwise we obtais= Be** which is the first
solution in Table | of Ref. 3; i.e., thk#0 case. Thus this also admits the “exceptional” ICKV
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(using the terminology of Ref.)2ut admits only seven ICKV4 proper ICKV and 3 KV. Thus
the plane symmetric case admits models with the “exceptional” ICKV corresponding to those in
the spherically symmetric case.
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