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We determine the maximum dimension of the Lie algebra of inheriting conformal
Killing vectors in perfect fluid space–times. For the case of conformally flat space–
times the maximum dimension is eight and for the case of nonconformally flat
space–times the maximum dimension is found to be five. We illustrate each case
with examples. ©2002 American Institute of Physics.@DOI: 10.1063/1.1509087#

I. INTRODUCTION

We are interested in space–times which admit conformal Killing vector fields and, in particu-
lar, fluid space–times which admit inheriting conformal Killing vector fields. A conformal Killing
vector field is said to be an inheriting conformal Killing vector field if fluid flow linesu are
mapped conformally by the conformal Killing vector field~see Sec. II and Coley and Tupper1!.
The motivation for studying inheriting conformal Killing vector fields was discussed in Ref. 1 and
inheriting conformal Killing vector fields in perfect fluid space–times were studied in Refs. 2 and
3. For general space–times, from a kinematical description of matter it has been shown4 that in
order for there to be zero entropy production there must exist a conformal Killing vector field
parallel to the fluid four-velocity~which is consequently inheriting!.

In this article we determine the maximum dimension of the Lie algebra of inheriting confor-
mal Killing vectors in perfect fluid space–times. For the case of conformally flat space–times the
maximum dimension is eight and for the case of nonconformally flat space–times the maximum
dimension is found to be five.

In Sec. II we define conformal Killing vector fields and state a number of theorems concerning
the maximum dimension of Lie algebras of conformal Killing vector fields. We also address the
reducibility of a Lie algebra of conformal Killing vector fields~to a Lie algebra of Killing vector
fields! with respect to a conformal scaling of the metric. We consider some cases where the
inheriting condition is automatically satisfied. In Sec. III we consider the maximum dimension of
the inheriting Lie algebra for conformally flat space–times and present the space–times which
admit this maximum number. In Sec. IV we determine the maximum dimension of the inheriting
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Lie algebra for the nonconformally flat space–times. In Sec. V we discuss the results and outline
possible future work.

II. CONFORMAL KILLING VECTORS AND INHERITANCE

Let M be a four-dimensional spacetime manifold with metric tensorg of Lorentz signature.
Any vector fieldX which satisfies

Ljg52c~xa!g ~1!

is said to be aconformal Killing vector~CKV! of g. If c is not constant onM , thenj is called a
proper conformal Killing vector; if c is constant onM , thenj is called ahomothetic Killing vector
~HKV !; and if c is constant andcÞ0 on M , thenj is calledproper homothetic. If c ;ab50, then
j is called aspecial conformal Killing vector~SCKV!, and if c50, thenj is said to be a Killing
vector ~KV !.

The set of all CKV~respectively, HKV and KV! form a finite dimensional Lie algebra denoted
by C ~respectively,H and G! whose maximum dimension is 15~respectively, 11 and 10!. If
dimC515, M is conformally flat. If the dimension ofG is 10, thenM is of constant curvature. If
M is not of constant curvature, then this algebra has dimension at most 7. The algebra of HKV has
dimension equal to or at most one greater than that of the KV algebra so that each given space–
time admits a basis forH containing at most one HKV~i.e., all other HKV can be constructed by
the addition of a KV!. If the algebraH has its maximum dimension of 11, thenM is flat. Any
CKV field in a flat space–time is a SCKV and so the maximum dimension of the SCKV algebra
is 15. If this occurs,M is flat, while if M is nonflat, its maximum dimension is 8. For details and
proofs, see Ref. 5 and references therein~see Ref. 6 for a summary!. It will be assumed throughout
this article that the space–times considered admit no local~nonglobalizable! conformal Killing
vector fields.

We would like to know the maximum dimension ofC in the nonconformally flat case. First,
we need to introduce the following terminology. A pointpPM is called azero ~or a fixed point!
of the CKV j if j(p)50. A zerop of j is called isometric if c(p)50 andhomotheticif c(p)
Þ0.

The Petrov type of the Weyl tensor is a statement about the Weyl tensor at a pointpPM , and
may vary from point to point. If the Petrov type is the same at all points ofM , then one can speak
of the Petrov type ofM .

The following theorem is known,7–10 but is collected together here for convenience.
Theorem 1: Let (M ,g) be a nonconformally flat space–time and letC be the conformal

algebra of M. Then we have the following.

(i) If the Petrov type is N at some pPM , dimC<7.
(ii) If the Petrov type is D at some pPM , dimC<6.
(iii) If the Petrov type is III at some pPM , dimC<5.
(iv) If the Petrov type is I or II at some pPM , dimC<4.

In fact it can be shown~using theorem 2 below! that part~iii ! of theorem 1 may be strength-
ened by saying that if the Petrov type is III over some non-empty subset ofM then dimC(M )
<4.

The following theorem is due to Hall and Steele8 ~see also Ref. 11!.
Theorem 2: Let (M ,g) be a space–time that admits an r-dimensional conformal algebraC

and suppose that the Petrov type and the dimension and nature of the orbits associated withC are
the same at each pPM and that M admits no local (nonglobalizable) conformal vector fields.
Then for each pPM there exists an open neighborhood U of p and a functions:U°R such that
C (restricted to U) is a Lie algebra of special conformal vector fields on U with respect to the
metric g85e2sg on U. If the Petrov type is not O, the above local scaling functions can always
be chosen such thatC restricts to a Lie algebra of homothetic Killing vector fields with respect to
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g8 on U, and, if (M ,g) is not locally conformally related to a generalized plane-wave space–time
about any pPM , the above local scaling can always be chosen such thatC restricts to a Lie
algebra of Killing vector fields with respect to g8 on U.

See Ref. 8 for the definition of ageneralized plane wave. Minkowski space–time admits 15
~special! CKV fields, ~admitting a ten-dimensional subalgebra of KV fields! and it follows that the
Lie algebra of CKVs of a conformally flat space–time can, in principle, be locally reduced to a
corresponding set of special CKVs with a ten-dimensional subalgebra of KVs. For space–times
conformal to the~nonconformally flat! pp-wave space–times, the Lie algebra of CKVs can be
locally reduced to a Lie algebra of homotheties,11 that is, if dimC57, thenC can be locally reduced
to a seven-dimensional homothety Lie algebra~e.g., 6 KV and 1 HKV!; if dimC56, thenC can be
locally reduced to a six-dimensional homothety Lie algebra~e.g., 5 KV and 1 HKV!; and if
dimC,6, thenC can be locally reduced to a Lie algebra of KVs.

The energy momentum tensor for a perfect fluid space–time is given by

Tab5~m1p!uaub1pgab , ~2!

whereua is the normalized fluid four-velocity andm and p are, respectively, the energy-density
and the pressure. A CKV in a perfect fluid space–time is said to be inheriting if fluid flow linesu
are mapped conformally by the CKVj, i.e.,

Lju52cu. ~3!

We shall refer to such a CKV as an ICKV. For an HKV or proper CKV which is parallel to the
fluid four-velocity vectoru, Eq. ~3! is automatically true.1

We note that the set of ICKVs form a subalgebraI of the Lie algebraC and we refer to this
as the inheriting algebra. This is proved in Sec. 3.7 of Ref. 12. Thus, the conditions required for
a perfect fluid space–time to admitn independent ICKVs are as follows: there must existn
independent vector fieldsj I , I 51, . . . ,n, which satisfy Eqs.~1! and ~3!. Therefore, in order to
determine the maximum dimension of the Lie algebra of ICKV in a space–time, we can either
consider the compatibility of these conditions generally or find the answer on a case by case basis.

III. CONFORMALLY FLAT SPACE–TIMES

In the conformally flat~CF! case, in which dimC515, it has been shown that the maximum
dimension of the inheriting algebra in a perfect fluid space–time is eight~see Sec. 6 in Ref. 13!.
Since the maximum dimension of the conformal algebra for any non-CF space–time is seven,7,8 it
follows that

MAX ~dimI!58.

In particular, it is known that the Friedmann–Robertson–Walker model with flat spatial geometry
admits precisely eight ICKV.1,2

Recently, as part of an investigation into the general CKV admitted by CF perfect fluid
space–times,14 all such space–times admitting the maximum eight ICKV and also all admitting
seven ICKV have been discovered. Here we present only the results with a brief indication of the
calculation that led to the discovery of these space–times.

The CF perfect fluid space–times are all known15 and fall into two classes, namely the
nonexpanding (Q50) generalized Schwarzschild interior solution and the expanding@Q5Q(t)
Þ0# generalized FRW solution. The space–time metric of each of these classes can be written in
the form

ds25V22~2F2dt21dx21dy21dz2!, ~4!

whereF(t,x,y,z) is of the form
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F~ t !5a~ t !r 21b~ t !x1c~ t !y1d~ t !z1e~ t !, ~5!

a, b, c, d, e are arbitrary functions oft andr 25x21y21z2. For the nonexpanding models,V is
given by

V5~11r 2!C/2, ~6!

whereC is a constant andF is of the particular form

F52 1
2 ~C f411!r 21 f 1x1 f 2y1 f 3z1 1

2 ~C f421!, ~7!

with f 1 , f 2 , f 3 , f 4 arbitrary functions oft. For the expanding models,V is given by

V5Hr 222Hx0x22Hy0y22Hz0z1V01Hr 0
2, ~8!

whereH, x0 , y0 , z0 , V0 are arbitrary functions oft, r 0
25x0

21y0
21z0

2 andF is given by

F53Q21
dV

dt
. ~9!

In all cases the fluid four-velocity is comoving, i.e.,ua5VF21]/]t. However, since the condition
~3! is conformally invariant, we may consider the ICKV of the underlying space–time

ds252F2dt21dx21dy21dz2 ~10!

with four-velocity u8a5F21]/]t.
For the space–time~10! the ICKV equations forja imply that j ,a

0 5j ,0
a50 (a51,2,3) and

lead to

j05G~ t !,

j15 1
2 A~x22y22z2!1Bxy1Cxz1Dx2My1Nz1Q,

j25 1
2 B~2x21y22z2!1Ayx1Cyz1Mx1Dy2Pz1R, ~11!

j35 1
2 C~2x22y21z2!1Azx1Bzy2Nx1Py1Dz1S,

c5Ax1By1Cz1D,

whereA, B, C, D, M , N, P, Q, R, S are constants, together with the set of equations

d

dt
~Ga!5

1

2
~bA1cB1dC22aD!,

d

dt
~Gb!5eA1dN2cM22aQ,

d

dt
~Gc!5eB2dP1bM22aR, ~12!

d

dt
~Gd!5eC1cP2bN22aS,

d

dt
~Ge!5eD2bQ2cR2dS.
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A. Space–times admitting eight ICKV

To find those space–times admitting the maximum number of ICKV we must find those
functions a, b, c, d, e, G which result in the maximum number of nonzero constantsA,
B, . . . ,S. This is found to occur only whena5b5c5d50, eÞ0 or whenb5c5d5e50, a
Þ0. However, when the appropriate conformal factorV22 is restored, the second case results only
in space–times which are coordinate transformed (r °1/r ) versions of those occuring in the first
case, which is thus the only one we need to consider. A transformation of the coordinatet enables
us to pute51, so the underlying space–time~10! is Minkowski space–time withu8a5]/]t.
Using the notation of Maartens and Maharaj16 the eight ICKV are then

Pa5
]

]xa , H5xa
]

]xa , Mab5xa

]

]xb2xb

]

]xa , ~13!

wherea50,1,2,3 anda,b51,2,3. From expressions~8! and~9! the corresponding form ofV for
the expanding case is

V5ar 21bx1gy1dz1 f ~ t !, ~14!

wherea, b, g, d are arbitrary constants andf (t) is an arbitrary function oft. Thus the expanding
perfect fluid space–times admitting the maximum number of eight ICKV are all of the form

ds25@ar 21bx1gy1dz1 f ~ t !#22~2dt21dx21dy21dz2!, ~15!

and the corresponding nonexpanding space–times haveV given by ~6!. There are three cases to
consider:

1. Case (i) aQÅ0

A translation of the origin of the form

x85x1
b

2a
, y85y1

g

2a
, z85z1

d

2a

transforms the metric into

ds25@ f ~ t !1ar 2#22~2dt21dx21dy21dz2!, ~16!

where we have dropped the primes and absorbed the constants intof (t). This is the space–time
S1 of Ref. 2 withk50 which was shown to admit five proper ICKV, namelyPa andH, together
with the three KV of spherical symmetry.

2. Case (ii) aÄ0, QÅ0

A rotation of the spatial axes brings the metric into the form

ds25@ f ~ t !1kx#22~2dt21dx21dy21dz2!, ~17!

wherek is an arbitrary constant. This is the plane symmetric model listed under (a) with k50 in
Table 1 of in Ref. 3. In addition to the three KV of plane symmetry, this model admits five proper
ICKV ~a fact not recognized in Ref. 3—see the Appendix!, namelyP0 , P1 , H, M21, M13. The
corresponding conformal scalarsc are given by

~ f 1kx!c52
d f

dt
, 2k, f 2t

d f

dt
, 2ky, 2kz, ~18!

respectively. The density of the model ism53@(d f /dt)22k2#, so we must have (d f /dt)2.k2.
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3. Case (iii) QÄ0

For the nonexpanding model, Eq.~6! leads to the metric

ds254C22~11r 2!22~2dt21dx21dy21dz2!, ~19!

i.e., Eq. ~7! with f 15 f 25 f 35C f41150. This is a special case of the static Schwarzschild
interior solution which is known2 to admit four proper ICKV together with four KV.

The space–times with metrics~16!, ~17! and ~19! are the only perfect fluid space–times
admitting the maximum number of eight ICKV.

B. Space–times admitting seven ICKV

Perfect fluid models admitting seven ICKV are found to occur if and only if the functionsa,
b, c, d, e in Eq. ~5! are constant multiples of each other so that, by a redefinition of the time
coordinate, we may write the functionF in the form

F5ar 21bx1gy1dz1e, ~20!

wherea, b, g, d, e are constants. For the expanding models, from Eqs.~8! and~9!, V is of the form

V5K~ t !F1l1r 21l2x1l3y1l4z1l5 , ~21!

where 3dK/dt5Q and l1 , l2 , l3 , l4 , l5 are constants of integration. For the nonexpanding
modelsV is given by~6!. There are three cases to consider:

1. Case (i) aQÅ0

A translation to a new origin, a rotation of the spatial axes and a rescaling of the time
coordinate results in the spacetime metric

ds25@K~ t !~11ar 2!1vr 21lx#22@2~11ar 2!2dt21dx21dy21dz2#, ~22!

wherev, l are constants. Whenl50 these solutions are the spherical symmetricS1 models of
Ref. 2 withkÞ0. If, in addition,v50, these are thek561 FRW models.

The ICKV of ~22! and the corresponding conformal scalars are

j (1)5
]

]t
, c (1)52~11ar 2!V21

dK

dt
,

j (2)5@a~x22y22z2!11#
]

]x
12axy

]

]y
12azx

]

]z
, c (2)5~2avr 2x1lar 22l!V21,

j (3)52axy
]

]x
1@a~2x21y22z2!11#

]

]y
12azy

]

]z
, c (3)52avr 2yV21,

j (4)52axz
]

]x
12ayz

]

]y
1@a~2x22y21z2!11#

]

]z
, c (4)52avr 2zV21, ~23!

j (5)52y
]

]x
1x

]

]y
, c (5)5lyV21,

j (6)5z
]

]x
2x

]

]z
, c (6)52lzV21,

j (7)52z
]

]y
1y

]

]z
, c (7)50.
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No linear combination ofj (1) to j (6) will result in a vanishing or constant conformal scalar, so this
model admits six proper ICKV and one KV. Puttingl50, we see that theS1 models admit four
proper ICKV and three KV, as shown in Ref. 3, and puttingl5v50, we see that thek561
FRW models admit one proper ICKV and six KV, as shown in Ref. 1.

2. Case (ii) aÄ0, QÅ0

A translation to a new spatial origin, a rotation of the spatial axes and a rescaling of the time
coordinate results in the space–time metric

ds25@hr21L~ t !x1m#22@2x2dt21dx21dy21dz2#, ~24!

whereh,m are constants andL(t) is an arbitrary function of time. This space–time admits four
proper ICKV, namely,

j (1)5
]

]t
, j (2)5

]

]y
, j (3)5

]

]z
, j (4)5x

]

]x
1y

]

]y
1z

]

]z
, ~25!

and three KV, namely,

j (5)52z
]

]y
1y

]

]z
,

j (6)52hxy
]

]x
1@m1h~2x21y22z2!#

]

]y
12hzy

]

]z
, ~26!

j (7)52hxz
]

]x
12hyz

]

]y
1@m1h~2x22y21z2!#

]

]z
.

Whenh50, the space–time is plane symmetric and again admits four proper ICKV and three KV.

3. Case (iii) QÄ0

For the nonexpanding model, using Eqs.~6! and ~20! together with a rotation of the spatial
axes and a rescaling of the time coordinate, we obtain

ds254C22~11r 2!22@2~ar 21bx11!2dt21dx21dy21dz2#. ~27!

This space–time admits three proper ICKV, namely,

j (1)5@a~x22y22z2!1bx11#
]

]x
1y~2ax1b!

]

]y
1z~2ax1b!

]

]z
,

j (2)52axy
]

]x
1@a~2x21y22z2!11#

]

]y
12ayz

]

]z
, ~28!

j (3)52axz
]

]x
12ayz

]

]y
1@a~2x22y21z2!11#

]

]z
,

and the four KV,

j (4)5
]

]t
, j (5)52z

]

]y
1y

]

]z
,

j (6)52y~12a1bx!
]

]x
1@b~12x21y22z2!12~a21!#

]

]y
12byz

]

]z
, ~29!

j (7)52z~12a1bx!
]

]x
12byz

]

]y
1@b~12x22y21z2!12~a21!#

]

]z
.
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Whenb50, j (4) andj (5) are KV; the resulting metric is that of the general spherically symmetric
Schwarzschild interior solution which is known2 to admit three proper ICKV and four KV.

The space–times with metrics~22!, ~24! and ~27! are the only CF perfect fluid space–times
admitting precisely seven ICKV. Some, but not all, are known admitting precisely six ICKV; none
of the known models admit six proper ICKV, thus, so far, the solution~22! is unique in this regard.

IV. NON-CONFORMALLY FLAT SPACE–TIMES

For the case of nonconformally flat space–times, Theorem 1 tells us that dimC<7 and so
dimI<7. It is known that the Go¨del space–time admits 5 ICKV: This is a perfect fluid homoge-
neous Petrov typeD space–time with 5 KVs. Thus, we ask the question: Does there exist a perfect
fluid space–time with dimI57 or dimI56? From Theorem 1, we only need to consider Petrov
typesN andD.

First, we give some notation. Letj be a CKV. From~1! it follows thatja;b5cgab1Fab . Now
supposejÓ0 but j(p)50 for somepPM . Then9,17 we have the following:

Theorem 3: (i) If c(p)50 (isometric zero), the Petrov type at p is N, D or O. Also, if
Fab(p)50, then the Petrov type at p is O. If the Petrov type at p is D, then Fab(p)Þ0 and is a
linear combination of the bivectors l[anb] and x[ayb] where l,n,x,y is a null tetrad( l ana5xaxa

5yaya51, others zero) at p with l and n repeated principle null directions of the Weyl tensor at
p. If the Petrov type at p is N, then Fab(p)} l [axb] where l is the repeated principle null direction
of the Weyl tensor at p and laxa50.

(ii) If c(p)Þ0 (homothetic zero), the Petrov type at p is III, N or O. If the Petrov type is III
or N, Fab(p)Þ0 and timelike.

Corollary: If j is a CKV withjÓ0 and j(p)50 and the Petrov type at p is not O, then
Fab(p)Þ0.

Theorem 4: If j is an ICKV andjÓ0 and j(p)50, then, if u is the fluid flow velocity at p,
Fabu

b50 at p (the fluid flow is assumed nowhere zero).
Proof: UseLju}u at p and putj(p)50.

h

Theorem 5: If a perfect fluid space–time is not conformally flat, the dimension of the ICKV
algebra is at most 5. If such a space–time admits a maximal ICKV algebra (of dimension 5), it
must be of Petrov type D with Fab}x[ayb] .

Proof: Suppose this dimension is>6. Then by taking linear combinations of members of the
ICKV algebra one can arrange to havej, h as two (i.e., 624) independent ICKV such that

ja;b5cgab1Fab , j~p!50, jÞ0, Lju}u, Fabu
b50,

ha;b5fgab1Gab , h~p!50, hÞ0, Lhu}u, Gabu
b50

hold at any pPM . Also, by taking linear combinations ofj andh, we can assume that at least one
of c and f vanishes at p.

Case (a):c(p)5f(p)50 and Fabu
b5Gabu

b50. Then from Theorem 3 (i) the (necessarily
spacelike) blades of Fab and Gab at p must coincide. Hence Fab5mGab at p (0ÞmPR). Now
construct Z5j2mh which is not identically zero. Then Z is an ICKV and Za;b5(c2mf)gab

1(Fab2mGab) with (c2mf)(p)50, (Fab2mGab)(p)50 which contradicts nonconformal
flatness by Theorem 3 (i).

Case (b):c50, fÞ0. Fabu
b50, Gabu

b50. Theorem 3 (ii) then shows that Gab(p) is non-
zero and timelike (contradicting Gabu

b50 at p), i.e., timelike bivectors cannot have a timelike
vector annihilating them.

The second assertion of the theorem follows immediately from this proof and Theorem 3, and
is due to the fact that the relevant bivectors are necessarily spacelike.

h

Corollary: The maximum dimension of the ICKV algebra for Petrov type N and type III
perfect fluid space–times is at most four.
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These results also may be obtained by somewhat tedious direct calculations without recourse
to the fixed point theorems of Ref. 17.

A. Examples of Petrov type D space–times with five ICKV

~a! The Gödel space–time

ds25a2@2~dt1exdz!21dx21dy21 1
2 e2xdz2#, ~30!

when considered as a perfect fluid space–time with zero cosmological constant, has energy density
m and pressurep given bym5p5a22/2. It admits five ICKV, all of which are KV.

~b! The plane symmetric Kasner type model

ds252dt21dx21t~dy21dz2! ~31!

admits four KV and one HKV given by

H5t
]

]t
1x

]

]x
1

y

2

]

]y
1

z

2

]

]z
. ~32!

The four-velocity is comoving,m5p5t22/4.
The space–time with metric

ds25v22ds2, ~33!

whereds2 is the metric~31! and

v5a~x222t2!1b, ~34!

a andb being nonzero constants, is also a perfect fluid space–time. In this case the KV

X5
]

]x

becomes a proper ICKV withcX522ax/v and the HKVH given by~32! also becomes a proper
ICKV with cH52112b/v.

~c! The static spherically symmetric model

ds252r 2mdt21~112m2m2!dr21r 2~du21sin2 udf2! ~35!

hasm5(112m2m2)21m(22m)r 22 and p5m(22m)21m and all energy conditions hold for
0,m<1. The space–time admits four KV and one HKV given by

H5~12m!t
]

]t
1r

]

]r
. ~36!

The space–time with metric

dS25U22ds2, ~37!

whereds2 is the metric~35! andU5a1br2, a andb being positive constants, is also a perfect
fluid space–time. The four KV of~35! remain as KV but the HKV given by~36! is now a proper
ICKV with c5(a2br2)/(a1br2).

~d! The static spherically symmetric space–time
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ds25sech2S r

&
D ~2dt21dr21du21sin2 udf2! ~38!

satisfies the energy conditions. It admits the four KV associated with static spherical symmetry
together with the proper ICKV

I5
]

]r
.

V. DISCUSSION

The results of Secs. III and IV may be summarized in the following theorem:
Theorem 6: For conformally flat perfect fluid space–timesdimI is at most eight and all such

space–times are known. The maximum number of independent proper ICKV is six. For noncon-
formally flat perfect fluid space–timesdimI is at most five, in which case the space–time is of
Petrov type D.

The example given by~33! and ~34! is the only known nonconformally flat perfect fluid
solution admitting more than one independent proper ICKV.

It is also of interest to determine the maximum dimension ofI for typesN, III , II and I
separately. From the analysis of Sec. IV we see that for each of those Petrov types dimI<4. The
determination of the exact maximum number in each case may require techniques other than the
geometrical approach used here.
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APPENDIX A: ERRATA TO COLEY AND CZAPOR 3

The result in Sec. III that the plane symmetric CF model given by Eq.~17! admits eight ICKV
contradicts Theorem 1 of Ref. 3 which states, in effect, thatM21 andM13 cannot be ICKV~it can
be easily checked that they are indeed ICKV!. The proof of Theorem 1 in Ref. 3 is correct up to
and including Eq.~2.24!, but Eq.~2.25! is wrong. In fact, using Eqs.~2.23! and ~2.24!, Eq. ~2.9!
becomes~using the notation of Ref. 3!

wx~wtwxt1wxwtt2wttx!50,

and, sincewxÞ0, it follows thatwtwxt1wxwtt2wttx50; i.e.,

~wtwx2wtx!x50.

But Eq. ~2.23! states that

~wtwx2wtx! t50,

so wtwx2wtx5const, which does not contradict the later correct resultwtwx5wtx . @Note Eqs.
~2.33a! and~2.33b! are wrong since they are derived from the incorrect Eq.~2.25!.# Thus there is
no contradiction and solutions do exist for whichLÞ0. Equation~2.37! is correct and substituting
this into Eq. ~2.9! leads towx

2wxx1wxx
2 2wxwxxx50, and puttinge2w5p(t)1s(x) we obtain

sxx
2 5sxsxxx . If sxx50, we obtain the solution~18!, otherwise we obtains5beax which is the first

solution in Table I of Ref. 3; i.e., thekÞ0 case. Thus this also admits the ‘‘exceptional’’ ICKV
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~using the terminology of Ref. 2! but admits only seven ICKV~4 proper ICKV and 3 KV!. Thus
the plane symmetric case admits models with the ‘‘exceptional’’ ICKV corresponding to those in
the spherically symmetric case.
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