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We investigate sequential tunneling through a multilevel quantum dot confining multiple electrons
in the regime where several channels are available for transport within the bias window. By
analyzing solutions to the master equations of the reduced density matrix, we give general
conditions on when the presence of a second transport channel in the bias window quenches
transport through the quantum dot. These conditions are in terms of distinct tunneling anisotropies
which may aid in explaining the occurrence of negative differential conductance in quantum dots in
the nonlinear regime. © 2008 American Institute of Physics. �DOI: 10.1063/1.2949510�

I. INTRODUCTION

The properties of electron transport in nanoscopic semi-
conductor devices are important diagnostic tools in the basic
study of charge and spin degrees of freedom of functional
and reliable nanoelectronic devices.1 In quantum dots de-
fined electrostatically in a two-dimensional electron gas,2

both the electron number and the tunnel coupling to the leads
are tunable. When high potential barriers separate the quan-
tum dot from the source and drain reservoirs, tunneling to
and from the dot is weak and the number of electrons N on
the dot is a well-defined integer. In the Coulomb blockade
�CB� regime,3 transport proceeds primarily by sequential
resonant tunneling events and N fluctuates by 1. In the non-
equilibrium regime, where more than one transport channel
lies within the bias window, a classical transport treatment4

is no longer appropriate, and a nonequilibrium quantum ap-
proach is imperative.5,6 In this paper, we derive analytic ex-
pressions for the current in the sequential regime through the
formalism of the reduced density matrix and generalized
master equations for the evolution of the occupation
probabilities.7 One of the main motivations is the recent ob-
servation of negative differential conductance in theory and
experiment8–12 in several specific systems. Our goal in this
present work is to derive rather general but well-defined con-
ditions for the suppression or even the quenching of current
whenever a second channel enters the bias window.

II. MODEL

We define our model as a two-dimensional lateral quan-
tum dot13,14 weakly coupled to source and drain reservoirs,
where the total Hamiltonian is given by

H = HS + HQD + HD + HT. �1a�

The source and drain Hamiltonians HS and HD, respectively,
are taken to be noninteracting Fermion systems shifted by
the bias:

HS�D� = �
s�d�

��s�d� �
1

2
eVB�ds�d�

† ds�d�, �1b�

with ds�d�
† and ds�d� a creation and an annihilation operator,

respectively, for particles in the source �drain� reservoir.
The quantum dot Hamiltonian in Eq. �1a� is given by

HQD = �
i

���i + eVg�ci
†ci + Vint, �1c�

where the single-particle energies ��i are shifted by the ap-
plied gate voltage Vg and Vint is the interaction among the
confined particles, which we leave general in the present
work.

Finally, the coupling between the quantum dot and res-
ervoirs is described by the tunneling Hamiltonian

HT = �
k
���

s

Tk
sds + �

d

Tk
ddd�ck

† + H.c.	 , �1d�

where H.c. denotes the Hermitian conjugate, and where Tk
s�d�

is the tunneling coefficient for a particle tunneling through
the barrier between the single-particle states 
s� �
d�� in the
source �drain� reservoir and 
k� in the dot. We assume that
the operators in each subsystem are independent of each
other and that the eigenstates of the system are known. For
Vint�0 in Eq. �1c�, these states are, in general, correlated
states—coherent superpositions of Slater determinants.

III. QUANTUM MASTER EQUATION

We derive master equations for a nonequilibrium system
�VSD�0� by means of the reduced density matrix, �mn, of the
system.7 In the Born–Redfield theory,15,16 the diagonal ele-
ments are given by

�̇mm = �
n

Wmn�nn − �
n

Wnm�mm. �2�

The general form of the transition rate Wmn from state 
n� to

m�, where both states are in general many-body correlated
states, is given by17a�Electronic mail: e.vaz@dal.ca. URL: http://soliton.phys.dal.ca.
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Wmn =
2�

�
�
�	
�

−





d��Ãnm
�	��,�F − v−�B�	

S �� + v−�

+ Ãnm
�	��,�F − v+�B�	

D �� + v+�� , �3�

where v�=e�Vg�VB /2�, and

Ãnm
�	��,�� = Anm

�	������ − �� + Amn
�	������ − �� , �4a�

Anm
�	��� = 
n
c�

† 
m�
m
c	
n�
�� − �nm� �4b�

are generalized quantum dot spectral functions with �nm

=�n−�m and ���� a step function. The analogous spectral
function for the source reservoir at zero temperature is

B�	
S ��� = �

s

T�
s T	

s�
�� − �s� , �5�

and B�	
D ���= 
B�	

S ���
s→d.
The first term in the integrand of Eq. �3� describes the

dot interaction with the source reservoir. This portion of Wmn

may be written as Wmn
S+ +Wmn

S− , respectively, denoting the ad-
dition and removal of an electron to or from the dot, corre-
sponding to the two terms of Eq. �4a�. The second term in
Eq. �3� describes analogous interactions with the drain reser-
voir, allowing us to symbolically decompose Eq. �3� into
four terms,

Wmn = Wmn
S+ + Wmn

S− + Wmn
D+ + Wmn

D−, �6�

denoting the addition and removal of particles from the
source and drain reservoirs.

It is useful to define a generalized chemical potential �N
n

as the energy required to add a particle to the N-particle
ground state, yielding a �N+1�-particle system in the nth
excited state �n=0 is therefore the usual chemical potential�.
That is, �N

n =EN+1
n −EN

0 , where EN+1
n is the nth excited state

of the �N+1�-particle system and EN
0 is the ground state of

the N-particle system. At zero temperature and zero bias, the
system is in the N-particle ground state when the chemical
potential �N−1

0 lies below the Fermi energy of the reservoirs
and �N

0 lies above the Fermi energy.

IV. TRANSITION CONDITIONS

If we denote by N the number of confined particles at
equilibrium and by Nk the number of particles in the state 
k�,
then by an analysis of Eqs. �4a�, �4b�, and �5�, one can de-
duce that Wmn is nonzero only when one or more of the
following four sets of conditions are satisfied:

N � Nm = Nn + 1, ��N
Nn + g+� � ��nm �

1
2eVB� , �7a�

N � Nm = Nn + 1, ��Nn

N−1 + g−� � ��mn �
1
2eVB� , �7b�

N � Nm = Nn − 1, ��Nm

N + g+� � ��mn �
1
2eVB� , �7c�

N � Nm = Nn − 1, ��Nm

N−1 + g−� � ��nm �
1
2eVB� . �7d�

Here, �N
M ��M

0 −�N
0 denotes the difference in chemical

potentials between M particles and N particles in the dot. In
addition, g+��N

0 − ��F−eVg� denotes the energy difference

between the chemical potential of the N-particle dot and the
chemical potential of the source reservoir, and similarly
g−���F−eVg�−�N−1

0 denotes the energy difference between
the chemical potential of the drain reservoir and that of the
�N−1�-particle dot. The energy difference �mn�
Em−
En,
where 
En is the excitation energy of the state 
n�. That is,
if E0

Nk is the ground-state energy of the Nk-particle system,
then Ek=E0

Nk +
Ek with 
Ek�0. The relations N�Nm

=Nn�1 in Eqs. �7a�–�7d� are a consequence of sequential
tunneling by �only� a single electron. On the other hand, the
relations ��N1

N2 +g��� ��pq�eVB /2� are a consequence of
resonant tunneling. Moving out of the CB regime relaxes the
first set of inequalities while non-Markovian effects relax the
second set.

V. CURRENTS: ONE AND TWO CHANNEL SYSTEMS

We consider the current through a quantum dot such that
electrons tunnel into the dot from the source reservoir and
out of the dot to the drain. The evolution of the diagonal
elements of the density matrix �Eq. �2�� for the system
depends on both the source and drain reservoirs and can be
separated into a contribution due to coupling with the source
and a contribution due to coupling with the drain,

�̇mm = �̇mm
S + �̇mm

D = �
n

��Wmn
S+ �nn − Wnm

S+ �mm�

+ �Wmn
D−�nn − Wnm

D−�mm�� . �8�

We denote current into the dot through the source barrier
by IS and current out of the dot through the drain barrier by
ID. At long times, the current is proportional to the difference

between these two quantities: I= IS− ID=e
Ṅ�S−e
Ṅ�D,

where, for example, 
Ṅ�S=�mNm�̇m
S .

Using Eq. �8� we obtain

IS = e�
mn

Nm�Wmn
S+ �n − Wnm

S+ �m� , �9a�

ID = e�
mn

Nm�Wnm
D−�m − Wmn

D−�n� , �9b�

and IS=−ID in the steady state regime.
We consider the configuration shown in Fig. 1, where the

FIG. 1. �Color online� Diagram of dot energy regimes. �a� No transport
channels in the bias window, �b� single transport channel �N

0 in the bias
window, and �c� two transport channels �N

0 and �N−1
1 in the bias window.
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initial equilibrium state of the system is the N-particle
ground state, and we calculate the steady state currents
through the dot for the respective cases of one �Fig. 1�b�� and
two �Fig. 1�c�� channels in the transport window. We define
three many-body states: 
1��
N�0 is the N-particle ground
state, 
2��
N+1�0 is the �N+1�-particle ground state, and

3��
N�1 is the N-particle first excited state. The transitions
between these states are governed in part by Eqs. �7a�–�7d�.

There will precisely be one channel in the transport
window �Fig. 1�b��, whenever all of the following three
inequalities are satisfied:

g+ �
1
2eVB � g−, �10a�

1
2eVB � �N − g+, �10b�

1
2eVB � �N+1 + g+, �10c�

where �N�E1stexc
N −Eground

N is the excitation energy of the first
excited state of the N-particle system �this excitation can be
due to an electron-electron interaction or due to Zemann
splitting in the presence of a magnetic field18�. Assuming
initially unit occupation of only the N-particle ground state,
the infinite coupled set �Eq. �2�� is reduced, by application of
Eqs. �7a�–�7d� to two equations:

�̇11 = W12�22 − W21�11, �11a�

�̇22 = W21�11 − W12�22. �11b�

That is, transport involves the ground states of the N- and
�N+1�-particle systems �only�, as expected. Solving this
coupled set and inserting into Eqs. �9a� and �9b�, the steady
state currents are found to be

Ib = Ib
S = Ib

D = e
W21

S+W12
D−

W21
S+ + W12

D− , �12�

which is the standard expression19,20 for a two-level steady
state dc.

The two-channel regime �Fig. 1�c�� is entered upon re-
laxing condition �10b�. If we again assume unit occupation
of the N-particle ground state as our initial condition, set �2�
is now reduced to three equations:

�̇11 = W12�22 − W21�11, �13a�

�̇22 = W21�11 + W23�33 − �22�W12 + W32� , �13b�

�̇33 = W32�22 − W23�33. �13c�

Transport now involves the ground states of the N- and
�N+1�-particle ground states—states 
1� and 
2�,
respectively—as well as the first excited state with
N-particles—state 
3�. �Note that if condition �10c� rather
than �10b� was relaxed, the expressions and the states in-
volved would differ.� Solving this coupled set and inserting
into Eqs. �9a� and �9b�, the steady state currents are found to
be

Ic = Ic
S = Ic

D =
eW21

S+W23
S+�W12

D− + W32
D−�

W21
S+W32

D− + W23
S+�W12

D− + W21
S+�

. �14�

Upon increasing the bias from zero, the steady state
transport current should change from zero to Ib �Eqs. �12a�
and �12b��, and finally to Ic �Eq. �14��. Negative differential
conductance will be observed whenever Ic� Ib. That is, an
increase in the bias reduces the current. General conditions in
which such phenomena occur are explored in the subsequent
sections.

VI. ASYMMETRIES

To explore the relative magnitudes of Ib and Ic, we define
two anisotropies. The first is an extrinsic anisotropy charac-
terizing the barrier widths. If we assume that tunneling to
and from the source is proportional to tunneling to and from
the drain, we can write

Wmn
S+ /Wnm

D− � �mn �15�

for all many-body states 
n� and 
m�. Through Eq. �3�, these
can be related directly to the tunneling coefficients Tk

d and Tl
s

appearing in Eq. �1d�. In particular, the noninteracting limit
yields

�mn →
limit

noninteracting


Tk0

s0
2/
Tk0

d0
2, �16�

where Tk0

s0 and Tk0

d0 are the tunneling amplitudes of the reso-
nant states. In general, 0���
.

The second anisotropy is intrinsic to the dot and denotes
the relative ease with which particles can tunnel to different
orbitals. Core orbitals tightly bound to the center of the dot,
for example, have weaker coupling to the leads than do or-
bitals localized around the edge of the dot. For the particular
case of the many-body states 
1�, 
2�, and 
3� defined above,
we write

W12
D−/W32

D− � � , �17�

where 
1� and 
3� are N-body states, and 
2� is an
�N+1�-body state. The magnitude of � will be determined by
the spatial extent of the single-particle orbitals involved in
the respective transitions. Starting from the �N+1�-particle
state 
2�, W12

D− describes an electron tunneling out of the dot,
leaving the system in the N-particle state 
1�, whereas W32

D−

describes a similar process, with the system ending up in
state 
3�. The ration � depends on the particular orbitals
involved.

In the example we give below, 1���
.

VII. QUENCHING OF CURRENT

Examining the currents Ic �Eq. �14�� and Ib �Eq. �12�� in
terms of the anisotropy parameters �mn and �, we find

Ic

Ib
=

�1 + ���1 + �21�
��1 + �21 + �21/�23�

� R . �18�

For R�1, current is suppressed and, in the extreme case of
�23→0 �i.e., W23

S+→0�, the presence of the second channel in
the transport window completely quenches the current,
Ic→0. A detail of the Coulomb diamond for which this
analysis applies is given in Fig. 2.

024703-3 Dark channels in resonant tunneling transport through artificial atoms J. Chem. Phys. 129, 024703 �2008�
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As an illustrative example, we consider a two-
dimensional parabolic quantum dot, confining two electrons,
with sequential resonant tunneling proceeding by the addi-
tion and removal of a third electron. The three states corre-
sponding to Fig. 1�c� are the ground -state singlet 
1�, the
lowest-energy triplet 
3�, and the three-particle ground state

2�. These respective configurations are shown in Fig. 3. The
orbitals can be labeled by two harmonic oscillator indices
plus spin, 
mns�, where the shell number is given by m+n
=0,1 ,2 , . . ., and the angular momentum Lz=n−m
=0, �1, �2, . . . . With regard to Fig. 3, we have 
1�
= 
00↑ ,00↓�, 
2�= 
00↑ ,00↓ ,01↓�, and 
3�= 
00↓ ,01↓�. The
orbital 
01� penetrates the barrier1 to a greater degree than the

00� orbital, and so the tunneling amplitude T00

s�d� has a
smaller magnitude than T01

s�d�; depending on the geometry and
the magnetic field, this difference can be severe. In general,
we expect ��1 in Eq. �17�.

In the two-channel regime, we look first at the symmet-
ric barrier case �mn=1. Here, suppression of current, R�1
�Eq. �18��, occurs whenever ��2, that is, whenever tunnel-
ing into the edge is more than two times as likely as tunnel-
ing into the core. In this case, current is never completely
quenched; the limiting case ��→
� has R→ 2

3 .
Complete quenching does occur, however, if we addi-

tionally have a barrier asymmetry. Specifically, if the source
barrier is sufficiently opaque such that tunneling into the core
from the source reservoir is suppressed �W23

S+→0, see Fig. 3�
but tunneling from the core to the drain is not �W32

D−�0�,
then �23→0 and Ic→0 even though Ib�0; the addition of
the second transport channel in the bias window suppresses
the current completely. Once state 
3� becomes occupied, the
system is blocked and no other transitions can occur.

This quenching of current is a dynamical blockade: It

requires an interplay between both ground and excited states.
This is in contrast to effects such as �a� spin blockade, where
a transition changing the number of electrons by 1 is accom-
panied by a change of spin greater than 1

2 ,21 or �b� blockade
due to spin polarized injection and extraction of charge
carriers,22 where the current is quenched due to the Pauli
exclusion principle.

The quenching of current will be destroyed whenever the
spin-flip plus orbital decay rate is larger compared to the
dwell time of the tunneling electron. In this case, a direct
transition from 
3� to 
1� may occur by emission of a phonon
and simultaneous absorption of spin through nuclear baths,
spin-orbit coupling, or other spin-symmetry-breaking pro-
cess. Likewise, strong Coulomb correlations will generally
open up additional tunneling pathways, likely involving edge
orbitals, and this too will destroy the quenching of the
current.

VIII. CONCLUSIONS

In conclusion, we have derived a set of general yet well-
defined conditions for quenching of transport through a mul-
tichannel quantum dot. We find that under certain tunneling
anisotropies, the presence of a second transport channel may
decrease the current through the dot. Specifically, if the tun-
neling rates to or from core states are less than half than the
rates to or from edge states, the current may be suppressed.
Complete quenching of the current may occur if, in addition
to the edge/core anisotropy, an anisotropy between source
and drain barriers is also present. The presence of these dark
channels is a measure of the lifetime of excited states.

Finally, although the present work focused on the two-
electron case, the general phenomena should appear in
numerous locations throughout the Coulomb diamonds; it
can generally appear whenever ground-state tunneling tran-
sitions involve edge orbitals, and excited states tunneling
involves core orbitals, and asymmetric source and drain
barriers are present.
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