
ANALYSIS OF CLUSTER AND STRIPE SOLUTIONS IN A

ONE-DIMENSIONAL MODEL OF BIOLOGICAL AGGREGATION

by

Hanadi Alzubadi

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science

at

Dalhousie University

Halifax, Nova Scotia

May 2012

c© Copyright by Hanadi Alzubadi, 2012



DALHOUSIE UNIVERSITY

DEPARTMENT OF MATHEMATICS AND STATISTICS

The undersigned hereby certify that they have read and recommend to

the Faculty of Graduate Studies for acceptance a thesis entitled “ANALYSIS OF

CLUSTER AND STRIPE SOLUTIONS IN A ONE-DIMENSIONAL MODEL OF

BIOLOGICAL AGGREGATION” by Hanadi Alzubadi in partial fulfillment of the

requirements for the degree of Master of Science.

Dated: May 18, 2012

Supervisor:

Readers:

ii



DALHOUSIE UNIVERSITY

Date: May 18, 2012

Author: Hanadi Alzubadi

Title: ANALYSIS OF CLUSTER AND STRIPE SOLUTIONS IN A

ONE-DIMENSIONAL MODEL OF BIOLOGICAL

AGGREGATION

Department or school: Department of Mathematics and Statistics

Degree: M.Sc. Convocation: October Year: 2012

Permission is herewith granted to Dalhousie University to circulate and to have

copied for non-commercial purposes, at its discretion, the above title upon the request of

individuals or institutions. I understand that my thesis will be electronically available to

the public.

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than brief excerpts requiring
only proper acknowledgement in scholarly writing) and that all such use is clearly
acknowledged.

Signature of Author

iii



Table of Contents

List of Tables vi

List of Figures vii

Abstract viii

List of Abbreviations and Symbols Used ix

Acknowledgements x

Chapter 1 Introduction 1

Chapter 2 The Model 4

Chapter 3 Literature Overview 6

3.1 Motivation for the Discrete Model . . . . . . . . . . . . . . . . . . . . 7

3.2 Related Results Using Continuous PDE Model . . . . . . . . . . . . . 8

Chapter 4 Clusters Problem Analysis 10

4.1 Two Clusters Steady State . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Stability of the Two-Cluster Solution . . . . . . . . . . . . . . . . . . 12

4.3 Three Clusters Steady State . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Stability Analysis for three Clusters Problem . . . . . . . . . . . . . 17

4.5 Existence of k-cluster Solution . . . . . . . . . . . . . . . . . . . . . 22

4.6 Steady State Analysis for ” k clusters” . . . . . . . . . . . . . . . . . 22

4.7 Stability Analysis for k Clusters Problem . . . . . . . . . . . . . . . . 23

Chapter 5 Stripes Analysis Problem 25

5.1 Symmetric Steady State . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Construction of the Symmetric Solution . . . . . . . . . . . . . . . . 27

5.3 Asymmetric Steady State . . . . . . . . . . . . . . . . . . . . . . . . 27

iv



5.4 Construction of the Asymmetric Solution . . . . . . . . . . . . . . . . 29

Chapter 6 Numerical Simulation 32

6.1 Cluster Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Symmetric Stripe Steady State . . . . . . . . . . . . . . . . . . . . . 35

6.3 Asymmetric Stripe Steady State . . . . . . . . . . . . . . . . . . . . . 37

Chapter 7 Conclusion 38

Bibliography 39

Appendix 41

.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

.3 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

.4 Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



List of Figures

Figure 1.1 Three cluster steady state . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2 cluster steady state . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.3 Stripe steady state . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 3.1 This figure illustrate F (r) = min(mr + δ, 1 − r) where r =

0 . . . 1.1 , δ = 0.01 and m = 0.5 . . . . . . . . . . . . . . . . . 8

Figure 5.1 Steady states of (5.8) with F (r) = min(mr+ δ, 1− r). Writing

this function using N = n+ l where n = 20 and l = 30 particles

with m = 0.5 and δ = 0.01 as indicated by the non symmetry

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 6.1 steady states of two clusters with F (r) = min(mr, 1− r), prov-

ing the unstable case where m = 0.5, using N = 50 particles . 33

Figure 6.2 Steady states of three clusters with F (r) = min(mr, 1 − r),

proving the stability condition where m = 1, using N = 60

particles. We have this result from Matlab using Euler method

with step size 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 6.3 Steady states of more than three clusters with F (r) = min(mr, 1−
r) proving the stability condition where m = 1.5, using N = 50

particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 6.4 Steady states of more than three clusters with F (r) = min(mr, 1−
r), proving the stability condition where m = 4 using N = 50

particles. We have this result from Matlab using Euler method

with step size 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 6.5 Steady states of (5.1) with F (r) = min(mr + λ, 1 − r), where

r is the distance between two the strips r = |Xi −Xj|. We use

as an example N = 50 particles with δ = 0.1 and m = 0.5 as

indicated by the symmetry condition. . . . . . . . . . . . . . . 35

vi



Figure 6.6 Stability for symmetry case. We use equation (5.6) which is

the result for stability analysis for the main system; where m =

0.5;n = 50, δ = 0.1 the red line represents the width which is 0.4 36

Figure 6.7 Steady states of (5.8) with F (r) = min(mr+ δ, 1− r). Writing

this function using N = n+ l where n = 20 and l = 30 particles

with m = 0.5 and δ = 0.01 as indicated by the non symmetry

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



Abstract

This thesis studies the model of swarming of organisms in groups or clusters and

the solution of the interaction equation in a one dimensional biological swarm model.

This process describes the behavior of some animal swarms like birds and fish that

attract or repulse each other. We will discuss the formation of point clusters and

conditions that relate to the number of clusters and their stability. Expanding the

clusters on this analysis we will observe that the formation of stripe solutions is

inevitable under certain assumption on the interaction force function. In this thesis

we are interested in determining how the number of clusters and stripes depend on the

functions, initial conditions and model parameters. While investigating the properties

we will experiment with equal and asymmetric distributions of particles and observe

that although the analytical calculations become more complicated, the same general

dependence on a few simple parameters is observed.
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Chapter 1

Introduction

Swarm analysis is an advanced topic in applied mathematics in which swarms are

modeled using differential equations. This thesis will study several swarming models

and some of the specific aggregation patterns that are observed to arise in nature and

numerical simulations. Specifically we will focus on understanding these models in

one-dimension and study the point cluster and stripe pattern solutions.

Aggregation models try to simulate the process of collective behavior of large

animal groups such as flocks of birds or schools of fish that are observed to exhibit

attraction and repulsion behaviour. We will explore the formation and stability of

some of these complex equilibrium patterns, and demonstrate that they often depend

on the values of simple parameters. We will use linear stability analysis to study

the behaviour of these steady states and verify our analytical findings with numerical

results.

Particles, biological organisms or mechanical robots, have been observed to aggre-

gate in two or more clusters. We will start by studying two and three cluster steady

state solutions and then generalize our analysis to the arbitrary k-cluster steady

state solution. We will then derive conditions that determine the stability of these

steady states. The aim of the study of this one-dimensional swarm is to completely

understand the steady states and requirements for their stability. In particular we

will analyze in detail the dependence of number of clusters on the slope of the force

function at the origin.

There is a large body of work done on the subject of aggregation models. While

we will use the discrete model that consists of a system of Ordinary Differential

Equation (ODEs), we will also introduce a popular continuous Partial Differential

Equation (PDEs) model and discuss some of the important results in one dimension

that relate to our work.
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We will study the model we will be using in detail. We will first discuss formation

of point clusters and discuss necessary and essential conditions that relate to the

number of clusters and their stability. Expanding on this analysis we will observe that

the formation of stripe solutions is inevitable if certain assumptions are used to define

the interaction force function; the formation of this steady-state will be computed.

While investigating the properties of cluster and stripe solutions, we will experiment

with equal and asymmetric distributions of particles and observe that although the

analytical calculations become more complicated, the same general dependence on a

few simple parameters is observed. The numerical simulations, describing the cluster

and stripe shape that we will discuss in this thesis, are illustrated in figures 1.1, 1.2

and 1.3 (indicating the distance d on the x axis during the time t on the vertical axis).

Figure 1.1: Three cluster steady state
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Figure 1.2: cluster steady state

Figure 1.3: Stripe steady state



Chapter 2

The Model

The models for swarming behaviour can become really complex if we try to include all

of the biological components. For example, complex aggregation models may include

environmental factors such as gravity, wind, sound and light, chemicals and the pres-

ence of a predator[16]. This behaviour can be modeled discretely or generalized to a

continuous PDE model when the number of particles is assumed to be large. It turns

out that even the simplest models yield a rich variety of steady state patterns that

are observed in nature and laboratory experiments. We will thus use the simplest

discrete model that describes non-local aggregation behaviour and use it to analyze

the cluster and stripe patterns, which are the focus of this thesis. In this model the

position of the j th particle Xj depends on the position of all the other particles.

The contributions of the other particles to the position of the jth particle depend on

the distance between the two particles via an interaction force F . This model can be

thus described by the following system of ordinary differential equations:

d

dt
Xi =

N∑
j=1

F (|Xi −Xj|)
Xi −Xj

|Xi −Xj|
, i = 1, . . . , N (2.1)

where N is the total number of interacting particles. We assume that the force F

reflects repulsive-attractive behaviour of the particles: we have attraction if F < 0

and repulsion if F > 0. Following biological observations we assume that the particles

tend to exhibit repulsive behavior at small distances and attract when the distance

is sufficiently large. For convenience in analytical calculations we will often simplify

the model by defining f(r) as F (r)
r

and thus rewriting the model as follows:

d

dt
Xi =

N∑
j=1

f(|Xi −Xj|)(Xi −Xj) i = 1, . . . , N (2.2)

Also note that since all of the analysis in this thesis is done in one dimension, the

vector norm |Xi −Xj| can be treated simply as an absolute valued function, and the

4
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particle positions can be visualized simply as points on the real axis.

In the following chapters we will carry out analysis for different steady state solu-

tions and introduce the restrictions on interaction forces necessary to yield particular

types of solutions.



Chapter 3

Literature Overview

Before we present our study in swarm behavior, we would like to introduce some

related studies. One of the first papers on biological swarms appeared in 1954 when

Beder [7] suggested a simple mathematical model for the behavour of schools of

fish. Since then many different approaches have been used to analyze the swarming

phenomenon, and many new mathematical models have been developed. Popular

discrete models analyze the position of each particle in the swarm as a function of

position and the velocities of other particles. Other researchers [23] tried to model

these complex social interaction and aggregation behaviours in a swarm in terms of

Newton’s equation of motion

miai = F i

where mi describes the mass of the individual, ai its acceleration, and F i gives the

total acting force. Many other studies considered different models of group behavior

with non-local interactions between particles. There are many studies related to these

models such as self assembly of antiparticles [18,19], theory of granular gases [20], in-

vasion models [13], chemotaxic motion [17,14] and molecular dynamics simulations

of matter. The aggregation model has been extensively analyzed, see for example

[18,5,8,4,6,15,16,20,3,1]. Furthermore, there are studies in self-propelled particle mo-

tion which analyze the second order models [21,12,9]. The analysis of swarm models

that use the attractive-repulsive force law is covered in [20,1]. Moreover, we recog-

nize many models of group behaviour between the species [2,10,11,22]. We aim to

extend the analysis of these models by understanding cluster and stripe steady state

solutions. In this thesis we will investigate the problem in one-dimension using linear

stability analysis.

6
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3.1 Motivation for the Discrete Model

The motivation for the model we used in our study comes from work in which the

following ODE is analyzed [3]:

Ẋi =
N∑
j=1

F (|Xi −Xj|)
Xi −Xj

|Xi −Xj|

The repulsive - attractive interaction force used corresponds to the Morse potential

and is described into the following equation:

F (r) = e−r −Ge
−r
l

Here G < 1 and l > 1. In the continuum limit as N goes to infinity the above discrete

model can be translated into the following continuous model

ρt +∇.(ρv) = 0 (3.1)

v = −∇k ∗ ρ

where k is the interaction potential and denotes convolution, where ρ is the density

at xi and v the velocity. In our work we will use the discrete model, which will

be explained in detail in the following chapter. However, we will specialize to one

dimension and demonstrate our results when the gradient of the interaction potential

is piece-wise linear. We take F (r) = min(mr+ δ, 1− r), as illustrated in figure (3.1).
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Figure 3.1: This figure illustrate F (r) = min(mr + δ, 1 − r) where r = 0 . . . 1.1 ,
δ = 0.01 and m = 0.5

3.2 Related Results Using Continuous PDE Model

The generalized continuous particle aggregation model:

∂tρ = ∇x.(ρ∇x[W ∗ ρ+ V ]) (3.2)

has many advantages over the discrete model when studying certain steady state

solutions and has been used in many papers. In this model ρ(t, x) describes the

density of particles at position x ∈ Rd. The conditions are time t > 0, the interaction

potential W (x) is even and V (x) is an external potential. The detailed study of the

cluster steady state solutions in one dimention has been done by Fellner and Raoul

[15] using this continuous model with
∫ n
0
ρ(t, x)dx = 1. Observe that (3.1) is a special

case of (3.2) with v = 0. In one dimension F (r) = −W ′ corresponds to the interaction

force F in the discrete model.

Fellner and Raoul proceed to analyze the quadratic interaction potential W (x), where

W (x) = W (−x). They take Wε(x), which define the family of interaction potentials,

in the following way:

Wε(x) = x2 − |x|ε

W ′
ε(x) = 2x− signε(x)

W ′′
ε (x) = 2− δε(x)
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where

δε(x) =

{
1/2ε |x| < ε

0 |x| > ε

Then

signε(x) :=

∫ x

0

δε(s) ds

|x|ε :=

∫ x

0

signε(s) ds

Note that
∫∞
−∞ δε(x) dx = 1 so that δ is concentrated near zero. Observe that the

gradient of this potential is linear when two particles are sufficiently far away. i.e,

−W ′ = 1 − 2x when x /∈ (−ε, ε). In addition, −W ′(0) = 2(0) − signε(0) = 0, which

is constant for the fixed value of ε. Our work includes the special case of the Fellner

and Raoul definition of the interaction potential; the essential assumptions for the

potential and its gradient correspond precisely to the assumptions for the potential

and the linear intercation force we used in this thesis.

In the following chapters we will study cluster steady states, which correspond

to the δ concentrations in the Fellner and Raoul continuous model. Although our

approach to these solutions is very different, there are many parallels between the

methods used in this thesis and those used by Fellner and Raoul. For example, in the

later chapters when the stability of the cluster steady states is analyzed, we observe

that applying two different ansatz for the perturbations of the cluster steady states

of the solution gives the complete description of the cluster stability. In the first case

the center of mass of perturbations of all particles is preserved. In the second all

particles are perturbed identically. The work of Fellener and Raoul features the same

observation, and these perturbations are referred to as Reallocations and Shifts.

In this thesis we will first develop a method of analyzing cluster steady states for

the discrete model. We will then be able to use this method to analyze more complex

steady state structures such as stripe solutions.



Chapter 4

Clusters Problem Analysis

In numerical simulations, particular choices of the interaction function lead to for-

mation of point clusters. We observe that this behaviour can only occur when the

repulsion at the origin is very weak, and the necessary condition is that F (0) = 0.

Furthermore, when this condition is satisfied, we observe formation of different num-

bers of clusters; this appears to depend on the value of certain parameters of the

function such as the slope at the origin. Experimentation with various initial condi-

tions lead us to believe that the particles do not always distribute themselves equally

between clusters; instead it is possible to have steady states where the particles are

not evenly distributed. In this chapter we will carry out a careful analytical analysis

of the cluster steady states. We will begin by working out the details for the two and

three cluster configurations, and then extend the theory to the general ”k-cluster”

steady state.

4.1 Two Clusters Steady State

We begin our study of the cluster solutions of the aggregation model by deriving the

two-cluster steady state for both equal and asymmetric particle distribution. In this

section, we consider a solution of two clusters of size n1 and n2, and have the clusters

separated by some distance d. We use equation (2.2) in all our analysis.

We will first analyze the two cluster steady state when the distribution of particles is

symmetric and both clusters contain an equal number of particles.

Proposition 4.1. Suppose that F(r) satisfies the conditions F (0) = 0 = F (d). Then

the system (2.2) admits a steady state consisting of ”two clusters” where N is even:

X1, . . . , XN
2

= 0

XN
2
+1, . . . , XN = d

10
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.

Proof. Let Xi be partitioned in the following way (using indicies x and y):

xi = Xi

yi = Xi+n

where i = 1, . . . , n ; n = N
2

and N is even. Substituting xi, yi into (2.2) gives the

following system:

ẋi =
n∑
j=1

F (|xi − xj|)sign(xi − xj) +
n∑
j=1

F (|xi − yj|)sign(xi − yj) (4.2)

ẏi =
n∑
j=1

F (|yi − xj|)sign(yi − xj) +
n∑
j=1

F (|yi − yj|)sign(yi − yj) (4.3)

In the steady state for xi , yi the left hand sides of (4.2) and (4.3) vanish, giving

0 =
n∑
j=1

F (|xi − xj|)sign(xi − xj) +
n∑
j=1

F (|xi − yj|)sign(xi − yj) (4.4)

0 =
n∑
j=1

F (|yi − xj|)sign(yi − xj) +
n∑
j=1

F (|yi − yj|)sign(yi − yj) (4.5)

Equations (4.4) and (4.5) are satisfied when we take the steady state xi = 0 and

yj = d.

We can now consider the case when the distribution of particles is asymmetric, and

each cluster contains a different number of particles. Consider the following steady

state where n1 + n2 = N and n1, n2 are not equal.

x1, . . . , xn1 = 0

y1, . . . , yn2 = d
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4.2 Stability of the Two-Cluster Solution

We will first consider the symmetric case where the distribution of particles in each

of the clusters is equal. Since the x′is are equal for all i, we observe that |xi − xj| =
|0− 0| = 0 for all i, j. Similarly, since the y′is are equal for all i, |yi − yj| = 0. Also,

note that |xi − yi| = |0− d| = d. We are using these conditions to illustrate the

stability.

Theorem 4.6. The steady state consisting of ”two equal clusters” problem, as con-

structed in proposition 1, is stable if F ′(0) < −F ′(d) and F ′(d) < 0 .

Proof. We begin the steady state analysis by perturbing the steady state xi, yi in the

following way:

xi(t) = xei + eλt φi (4.7)

yi(t) = yei + eλtψi (4.8)

where φi, ψi � 1 , xei = 0 , yei = d and i = 1, . . . , n. Differentiating (4.7) and (4.8)

with respect to time gives:

ẋi(t) = ẋei + λeλt φi

ẏi(t) = ẏei + λeλtψi

Since ẋei = 0 , ẏei = 0 , xei = 0 and yei = d, we get:

xi(t) = 0 + eλt φi

yi(t) = d+ eλtψi

ẋi(t) = λeλtφi

ẏi(t) = λeλtψi

Substituting these into equation (4.2) gives:

λeλtφi =

N
2∑
j=1

F (
∣∣eλt(φi − φj)∣∣) sign(φi − φj)

+
N∑
j=1

F (
∣∣−d+ eλt(φi − ψj)

∣∣)sign(−d+ eλt(φi − ψj))
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Expanding F by using Taylor series with φi , ψi � 1 gives:

λeλtφi =

N
2∑
j=1

(F (d)− F ′(d)eλt(φi − ψj))sign(φi − ψj)

Since F (0) = 0 and F (d) = 0 we simplify the above equation to get:

λφi =
1

2n

{
n∑
j=1

F ′(0) (φi − φj)−
n∑
j=1

F ′(d) (ψj − φi)

}
(4.9)

where n = N
2

Similarly substituting in equation (4.3) we find:

λψi =
1

2n

{
n∑
j=1

F ′(0) (ψi − ψj)−
n∑
j=1

F ′(d) (φj − ψi)

}
(4.10)

We observe that this system has 2n eigenvalues. The conditions hold for every i

(where i is the number of particle in each clusters).

(Case 1) We start the first case by letting
∑n

j=1 φj = 0 and
∑n

j=1 ψj = 0.

Applying this condition to equations (4.9), (4.10) gives:

λφi =
1

2n
{F ′(0)nφi + F ′(d)nφi}

λψi =
1

2n
{F ′(0)nψi + F ′(d)nψi}

Simplifying the above equations gives the following expression for the eigenvalues:

λ =
F ′(0) + F ′(d)

2
(4.11)

This eigenvalue λ < 0, provided that F ′(0) < −F ′(d) in the steady state, corre-

sponding to stability.

Consider the vector space V defined by:

V =

{
−→
φ ,
−→
ψ : φ, ψ ∈ Rn,

N∑
j=1

φk = 0 ,
N∑
j=1

ψk = 0

}

Then dim(V ) = 2n− 2. Therefore the multiplicity of λ is 2n− 2.

(Case 2 ) Let φj = a , ψj = b.

Substituting these condition into (4.9) and (4.10) gives:

λa =
F ′(d)

2
(a− b)
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λb =
F ′(d)

2
(b− a)

Rewriting this in matrix notation gives the following eigenvalues problem:

λ

(
a

b

)
=

1

2

(
F ′(d) −F ′(d)

−F ′(d) F ′(d)

)(
a

b

)

The eigenvalues can easily be computed for the matrix

(
A B

B A

)
where A = F ′(d)

2

and B = −F ′(d)
2

:

(
A

2
− λ)2 − B

2

2

= 0

λ =
1

2
(A±B) (4.12)

This gives the eigenvalues λ = 0 and λ = F ′(d). Together with case 1 we have 2n

eigenvalues. For stability we require λ < 0. Therefore the eigenvalues given by (4.12)

are stable if F ′(d) < 0.

We can now generalize this to the situation when we have an unequal distribution.

Theorem 4.13. Consider the steady state consisting of two clusters having n1, n2

particles, respectively, with n1 + n2 = N . Then the two clusters is stable if

F ′(0)n1 + F ′(d)n2 < 0 and F ′(0)n2 + F ′(d)n1 < 0.

Proof. In this case equations (4.9) and (4.10) will change as follows equations:

λφi =
1

N

{
n1∑
j=1

F ′(0) (φi − φj) +

n2∑
j=1

F ′(d) (φi − ψj)

}
, i = 1, . . . n1 (4.14)

λψi =
1

N

{
n2∑
j=1

F ′(0) (ψi − ψj) +

n1∑
j=1

F ′(d) (ψi − φj)

}
, i = 1, . . . n2 (4.15)

where n1 is the number of particles in first position xi, n2 is the number of particles

in the second position yi and n1 + n2 = N . To compute the eigenvalues we consider

two cases:

(case 1) Let
∑n

j=1 φj = 0 and
∑n

j=1 ψj = 0.

Substituting into equations (4.14) and (4.15) gives:

λφi =
1

N
{F ′(0)n1φi + F ′(d)n2φk}
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λψi =
1

N
{F ′(0)n2ψi + F ′(d)n1ψk}

Rewriting this gives the following eigenvalues:

λ1 =
F ′(0)n1 + F ′(d)n2

N
, λ2 =

F ′(0)n2 + F ′(d)n1

N

(Case 2) In this case we will take φj = a, ψj = b for every k. Substituting into

equations (4.14) and (4.15) gives:

a λ =
1

N
{−F ′(d)n2b+ F ′(d)n2a}

bλ =
1

N
{−F ′(d)n1a+ F ′(d)n1b}

Rewriting in matrix notation gives the following eigenvalue problem:

λ

(
a

b

)
=

1

N

(
F ′(d)n2 −F ′(d)n2

−F ′(d)n1 F ′(d)n1

)(
a

b

)

(F ′(d)n2 − λ) (F ′(d)n1 − λ)− F ′(d)n1n2 = 0

λ (λ− (F ′(d)n1 + F ′(d)n2)) = 0

After computing the eigenvalues we have λ3 = 0 , λ4 = n2+n1

N
F ′(d) = F ′(d).

4.3 Three Clusters Steady State

The previous sections discussed the steady state analysis and stability of the two-

clusters solution. In this section we will increase the number of clusters to three and

analyze the three-cluster steady state. First, we assume that the particles are equally

distributed between the clusters.
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Let xk be the position of the kth particle in the first cluster, yk be the position of

the kth particle of the second cluster and zk be the position of the kth particle of the

third cluster.

Equation (2.2) implies the following system for xk, yk and zk:

ẋk =
1

3n
{

n∑
j=1

F (xk − yj)sgn(xk − yj) +
n∑
j=1

F (xk − yj)sgn(xk − yj)

+
n∑
j=1

F (xk − zj)sgn(xk − zj)} (4.16)

ẏk =
1

3n
{

n∑
j=1

F (yk − yj)sgn(yk − yj) +
n∑
j=1

F (yk − xj)sgn(yk − xj)

+
n∑
j=1

F (yk − zj)sgn(yk − zj)} (4.17)

żk =
1

3n
{

n∑
j=1

F (zk − zj)sgn(zk − zj) +
n∑
j=1

F (zk − xj)sgn(zk − xj)

+
n∑
j=1

F (zk − yj)sgn(zk − yj)} (4.18)

Proposition 4.19. The system (2.2) admits a steady state for three equal clusters

if −F (d) = F (2d), where d is the equal distance between the position yk − xk and

zk − yk.

Proof. We assume that yk − xk = d = zk − yk. We apply this in equations (4.16),

(4.17) and (4.18) and get the following system:

F (d) (−1) + F (d+ d) (−1) = 0

F (d) (+1) + F (d) (−1) = 0

F (d+ d)(+1) + F (d) = 0

where d is the equal distances between three clusters. By solving these equations we

will have.

−F (d) = F (2d)
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4.4 Stability Analysis for three Clusters Problem

We now explore the stability analysis for three clusters. We have the following propo-

sition.

Proposition 4.20. The three equal cluster equilibrium is stable, if

F ′(0) + F ′(d12) + F ′(d13) < 0 , F ′(0) + F ′(d12) + F ′(d23) < 0,

F ′(d13) + F ′(d23) + F ′(0) < 0 and F ′(dij) < 0

where d12 = d23 = d and d13 = 2d and d is given in proposition (4.18) .

Proof. Let x, y and z be the partition of the clusters on the line such that |x− y| =
d12, |y − z| = d23, and |x− z| = d13.

Considering xk ,yk ,zk where φk ,ψk, ξk � 1 we get:

xk(t) = xek + eλt φk (4.21)

yk(t) = yek + eλtψk (4.22)

zk(t) = zek + eλtξk (4.23)

where xek = 0 , yek = d12 and zek = d13.

Substituting (4.21),(4.22) and (4.23) in equations (4.16), (4.17) and (4.18) gives

the following system:

λφk =
1

3n

{
n∑
j=1

F ′(0)(φk − φj)−
n∑
j=1

F ′(d12) (ψj − φk)−
n∑
j=1

F ′(d13) (ξj − φk)

}
(4.24)

λψk =
1

3n

{
n∑
j=1

F ′(0) (ψk − ψj)−
n∑
j=1

F ′(d12) (φj − ψk)−
n∑
j=1

F ′(d23)(ξj − ψk)

}
(4.25)

λξk =
1

3n

{
n∑
j=1

F ′(0)(ξk − ξj)−
n∑
j=1

F ′(d13) (φj − ξk)−
n∑
j=1

F ′(d23)(ψj − ξk)

}
(4.26)

As in theorem (4.12) we consider two cases.

(case 1) Let
∑n

j=1 φk = 0,
∑n

j=1 ψk = 0 and
∑n

j=1 ξk = 0.

Substituting these condition into equations (4.24), (4.25) and (4.26) gives:

λφk =
1

3
{F ′(0)φk + F ′(d12)φk + F ′(d13)φk}
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λψk =
1

3
{F ′(0)ψk + F ′(d12)ψk + F ′(d23)ψk}

λ ξk =
1

3
{F ′(d13) ξk + F ′(d23)ξk + F ′(0) ξk}

Simplifying these equations gives:

λ =
1

3
{F ′(0) + F ′(d12) + F ′(d13) }

λ =
1

3
{F ′(0) + F ′(d12) + F ′(d23) }

λ =
1

3
{F ′(d13) + F ′(d23) + F ′(0)}

Stability requires that:

F ′(0) + F ′(d12) + F ′(d13) < 0 , F ′(0) + F ′(d12) + F ′(d23) < 0 and

F ′(d13) + F ′(d23) + F ′(0) < 0.

(Case 2): Let φk = a, ψk = b, ξk = c.

Substituting into equations (4.24), (4.25)and (4.26) gives:

λa =
1

3n
{−nF ′(d12)(b− a)− nF ′(d13)(c− a)}

λb =
1

3n
{−nF ′(d12) (a− b)− nF ′(d23)(c− b)}

λc =
1

3n
{−nF ′(d13) (a− c)− nF ′(d23)(b− c)}

Rewriting this system in matrix notation gives the following eigenvalues problem:

λ


a

b

c

 =
1

3


(F ′(d13) + F ′(d12)) −F ′(d12) −F ′(d13)

−F ′(d12) F ′(d12) + F ′(d23) −F ′(d23)
−F ′(d13) −F ′(d23) (F ′(d13) + F ′(d23))




a

b

c


(4.27)

Assuming F ′(dij) < 0, the matrix in (4.27) has non-positive eigenvalues by the Ger-

shgorin theorem (see page(24)).

If we take F (r) = min(mr, 1− r) and apply it in equations (4.24), (4.25) and (4.26)

we have:

λφk =
1

3n
{m

n∑
j=1

(φk − φj) +
n∑
j=1

(ψj − φk) +
n∑
j=1

(ξj − φk)}
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λψk =
1

3n
{m

n∑
j=1

(ψk − ψj) +
n∑
j=1

(φj − ψk) +
n∑
j=1

(ξj − ψk)}

λξk =
1

3n
{m

n∑
j=1

(ξk − ξj) +
n∑
j=1

(ξj − φk) +
n∑
j=1

(ψj − ξk)}

We have from first case λ = m−2
3

, which results in the steady state being stable if

m < 2. Also if we apply case 2 where φk = a, ψk = b, ξk = c we get the following

matrix:

λ


a

b

c

 =
1

3


−2 1 1

1 −2 1

1 1 −2




a

b

c


where the eigenvalues are λ = 0 and λ = −1.

Definition 4.28. A matrix is said to be diagonally dominant if for every row of the

matrix, the magnitude of the diagonal entry in a row is larger than or equal to the

sum of the magnitudes of all the other |aii| ≥
∑

j 6=i |aij| .

We can now consider a steady state for the three clusters problem for a asymmet-

ric number of particles.

From the main equation (3.2) we get the following system:

0 = n1F (0)− n2F (d12)− n3F (d13) (4.29)

0 = −n1F (d12) + n2F (0) + n3F (d23) (4.30)

0 = −n1F (d13)− n2F (d23) + n3F (0) (4.31)

where F (0) = 0. The above system becomes:

F (d13) = −F (d12)
n2

n3

= −F (d23)
n2

n1

We can compute d12 and d23 by substituting F (r) = min(mr, 1−r) using equations

(4.29), (4.30) and (4,31) :

F (d13) = −F (d12)
n2

n3
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d12 + d23
n3

n2 + n3

− n2 + n3

n2 + n3

= 0

F (d13) = −F (d23)
n2

n1

d12 + d23
n1 + n2

n1

− n2 + n1

n1

= 0

Solving the above equations gives:

d12 =
n1 + n2

n1 + n2 + n3

d23 =
n2 + n3

n1 + n2 + n3

In the case n1 = n3, we have d12 = d23 = n1+n2

2n1+n2
.

Proposition 4.32. The asymmetrically spaced three clusters equilibrium is stable if:

n1F
′(0) + n2F

′(d12) + n3F
′(d13) < 0, n2F

′(0) + n1F
′(d12) + n3F

′(d23) < 0,

n1F
′(d13) + n2F

′(d23) + n3F
′(0) < 0 and F ′(dij) < 0.

where n1 + n2 + n3 = N .

Proof. When the number of particles in three clusters are asymmetric, equations

(4.16), (4.17) and (4.18) result in the following equations, where n1 + n2 + n3 = N .

λφK =
1

N

{
n1∑
j=1

F ′(0) (φk − φj)−
n2∑
j=1

F ′(d12) (ψj − φk)−
n3∑
j=1

F ′(d13) (ξj − φk)

}
(4.33)

λψK =
1

N

{
n2∑
j=1

F ′(0) (ψk − ψj)−
n1∑
j=1

F ′(d12) (φj − ψk)−
n3∑
j=1

F ′(d23)(ξj − ψk)

}
(4.34)

λξK =
1

N

{
n3∑
j=1

F ′(0) (ξk − ξj)−
n1∑
j=1

F ′(d13) (φj − ξk)−
n2∑
j=1

F ′(d23)(ψj − ξk)

}
(4.35)

First we compute the eigenvalues by considering two cases:

(Case 1) Let
∑n1

j=1 φj = 0,
∑n2

j=1 ψj = 0 and
∑n3

j=1 ξj = 0

Substituting these conditions in to equations (4.33), (4.34), (4.35) gives:

λφk =
1

N
{n1F

′(0)φk + n2F
′(d)φk + n3F

′(2d)φk} (4.36)
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λφk =
1

N
{n1F

′(0)φk + n2F
′(d)φk + n3F

′(2d)φk} (4.37)

λ ξk =
1

N
{n3F

′(0) ξk + n1F
′(d)ξk + n2F

′(2d) ξk} (4.38)

For stability we need (4.36), (4.37) and (4.38) to be negative.

(Case 2) Let φk = a, ψk = b and ξk = c

Substituting into equations (4.33), (4.34) and (4.35) gives:

λa =
1

N
{−n2F

′(d12)(b− a)− n3F
′(d13)(c− a)}

λb =
1

N
{−n1F

′(d12) (a− b)− n3F
′(d23)(c− b)}

λc =
1

N
{−n1F

′(d13) (a− c)− n2F
′(d23)(b− c)}

Rewriting it in matrix notation gives the following eigenvalues problem:

λ


a

b

c

 = 1
N


n2F

′(d12) + n3F
′(d13) −n2F

′(d12) −n3F
′(d13)

−n1F
′(d12) n1F

′(d12) + n3F
′(d23) −n3F

′(d23)

−n1F
′(d13) −n2F

′(d23) n1F
′(d13) + n2F

′(d23)




a

b

c


The asymmetrically spaced three clusters equilibrium is stable if: n2F

′(d12) +

n3F
′(d13) < 0, n1F

′(d12) + n3F
′(d23) < 0,

n1F
′(d13) + n2F

′(d23) < 0 and F ′(dij) < 0 where n1 + n2 + n3 = N .
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4.5 Existence of k-cluster Solution

We will show the existence of the arbitrary k-cluster steady state using the following

energy argument.

Theorem 4.39. Suppose that F (r) < c0 with c0 > 0 for all sufficiently large r > r0

and suppose that F (r) is continuous for all r ≥ 0.

Then for any k ≥ 1 there exists y1 . . . yk ∈ < such that:

k∑
j=1

F (|yi − yj|)
yi − yj
|yi − yj|

= 0 , i = 0, . . . , k (4.40)

Proof. Let consider the odd function G(r) = −
∫
F (r) dr and we define E by:

E(y1 . . . yk) =
k∑
i,j

G(|yi − yj|) (4.41)

Then equation (4.40) is equivalent to ∂
∂yi
E = 0, i = 1, . . . , k. Thus if E has a

minimum, then (4.40) is satisfied.

Now we have G(r) ∼ c0 r as r −→ ∞, to be more precise G(r) > c0 r + c1, ∀ r > 0,

for some c1.

Thus E −→∞ as yj −→∞ for any j. It follows by a compactness argument that E

has a minimum.

4.6 Steady State Analysis for ” k clusters”

In the previous sections we analyzed two and three-cluster steady states. We would

like to be able to extend our analysis to the arbitrary number of clusters.

Proposition 4.42. The system (2.2) admits a steady state for k clusters:

X1, . . . , XN
k

= 0

XN
k
+1, . . . , X 2N

k
= d12

X 2N
k

+1, . . . , X 2N
k

= d13

...
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X (k−1)N
k

+1
, . . . , XN = d1j

where X1, . . . , XN
k

is the partition of the first cluster, XN
k
+1, . . . , X 2N

k
is the partition

of the second cluster and X (k−1)N
k

+1
, . . . , XN = dij is the partition of the N th cluster.

For convenience, we define xji to be the ith particle in the jth cluster:

x1i = Xi , x2i = Xi+l . . . x
n
i = Xi+(k−1)l, where l = N

k
and i = 1, . . . n.

4.7 Stability Analysis for k Clusters Problem

The following system illustrates the ”k clusters” problem for equation (2.2):

ẋs
l =

n∑
j=1

m∑
k=1

F (
∣∣xls − xkj ∣∣) sign(xls − xkj ) (4.43)

where n is the number of particles in each hole and k is the number of clusters along

the x axis.

Perturbing the steady state:

xls = ϕls + eλtϕls

where ϕls � 1 and ϕls = 0, d12 . . . , dij. Differentiating gives:

ẋs
l = 0 + λeλtϕls

Then substituting into the equation (4.43) gives:

λϕls =
1

kn

n∑
j=1

k∑
i=1

F ′(dij)(ϕ
l
i − ϕsj) (4.44)

where dij = xeli − xesj .

Assume that ϕli = αl and ϕsj = αs

λαl =
1

nk

n∑
j=1

k∑
i=1

F ′(dij)(αl − αs) (4.45)

Proposition 4.46. The steady state consisting of ”k clusters” is stable if F ′(dij) < 0

∀i, j = 1 . . . k where i 6= j ,and
∑k

j=1 njF
′(dij) < 0 for i = 1 . . . k.



24

Proof. To show that the steady state is stable, we have to show that all eigenvalues

in k clusters case satisfy λ < max (aii) for all diagonal entries of the diagonal matrix

x < 0.

λαl =
1

nm

n∑
j=1

m∑
i=1

F ′(dij)αl −
n∑
j=1

m∑
i=1

F ′(dij)αs

The diagonal entries are:

1

nm

n∑
j=1

m∑
i=1

F ′(dij)αl =
1

n

n∑
j=1

F ′(dij)

This will give a matrix which is said to be diagonally dominant if F ′(dij) < 0, thus∑
i 6=j njF

′(dij) < 0 satisfied.

Gershgorin circle theorem: Every eigenvalue of matrix Ann satisfies:

|λ− Aii| ≤
∑
j 6=i

|Aij| , i = 1, 2, . . . n



Chapter 5

Stripes Analysis Problem

In numerical simulations we observed that if the interaction force is weak, but non-

zero repulsive at the origin, the cluster steady state becomes impossible and is often

replaced by a stripe steady state: particles arrange themselves in a thin stripe, where

the distance between each particle appears to be uniform.

We will explore this behavior with the particular example of a piecewise-linear

interaction force F (r) = min(mr + δ, 1 − r) , with 0 < δ � 1 where m and δ are

positive constants. We observe that using various initial conditions, these stripes may

contain an equal or asymmetric number of particles. We will explore this behavior

in detail for the two-stripe steady state, examining both symmetric and asymmetric

and compute their steady state.

5.1 Symmetric Steady State

We label in equation (2.2) :

x1 . . . xn = X1 . . . Xn

y1 . . . yn = Xn+1 . . . XN

where n = N
2

. For the stripe we have following equations for ẋi and ẏi:

ẋi =
n∑
j=1

F (|xi − xj|)
xi − xj
|xi − xj|

+
n∑
j=1

F (|xi − yj|)
xi − yj
|xi − yj|

(5.1)

ẏi =
N∑

j=n+1

F (|yi − yj|)
yi − yj
|yi − yj|

+
N∑

j=n+1

F (|yi − xj|)
yi − xj
|yi − xj|

(5.2)

These equations illustrate the steady state for two stripes where xi is the first position

of the stripe and yj is the second position of the stripe for i > j,
xi−xj
|xi−xj | = +1. Then,
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F = δ+m(xi−xj). In the other case, j > i,
xi−xj
|xi−xj | = −1. Then, F = δ−m(xi−xj).

Therefore,

ẋi =
n∑
j=1

(m |xi − xj|+ δ) sign(xi − xj) +
n∑
j=1

(1− |xi − yj|) sign(xi − yj) (5.3)

For convenience we divide equation (5.3) in two parts. We assume that yn = −xn
and x1 < x2 < . . . < xi. This implies yj > xi where

xi−yj
|xi−yj | = −1. Then the first part

of the equation (5.3):

S1 =
n∑
j=1

(m |xi − xj|+ δ) sign(xi − xj))

=
i−1∑
j=1

(m(xi − xj) + δ)(+1) +
n∑

j=i+1

(m(xj − xi) + δ)(−1)

=
i−1∑
j=1

m(xi − xj) + (i− 1)δ +
n∑

j=i+1

m(xi − xj)− (n− (i+ 1))δ

S1 =
n∑
j=1

m(xi − xj) + (2i− n− 1)δ (5.4)

where xi − yj = xi + xj and F (xi − xj) = 1 − 2xi. Thus, the next part of equation

(5.3) becomes:

S2 =
n∑
j=1

(1−|xi − yj|) sign(xi−yj) =
n∑
i=1

(1+(xi+xj))(−1) = −n−
n∑
j=1

(xi+xj) (5.5)

Substituting equations (5.4) and (5.5) into (5.3) gives:

ẋi = n(m− 1)xi −
n∑
j=1

(1 +m)xj + (2i− n− 1)δ − n (5.6)

To verify the result, we take m = 1 and δ = 0 that gives the two cluster steady

state where xi = −1
2
, which implies the same result we had before where F (r) =

min(mr, 1− r).
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5.2 Construction of the Symmetric Solution

In this section we construct a stripe solution. We assume that the the stripe has the

following form:

Let xj = a+ c j and xi = a+ c i, the equation (5.6) becomes:

n(m− 1)(a+ c i)−
n∑
j=1

(1 +m) (a+ c j) + (2i− n− 1)δ − n = 0 (5.7)

Collecting the ith term in equation (5.7) gives:

i[n c (m− 1) + 2δ] = 0

c =
2δ

n(1−m)

The rest of the term in equation (5.7) then yield:

n a (m− 1)− (m+ 1)[a+ c
n(n+ 1)

2
]− (n+ 1)δ − n = 0

a[(m− 1)n− (m+ 1)] = [
(m+ 1)(n+ 1)

(m− 1)
+ (n+ 1)]δ + n

a = [(
(m+ 1)(n+ 1)

(m− 1)
+ (n+ 1))δ + n]/[(m− 1)n− (m+ 1)]

Note that we must have c > 0, since we assumed that x1 < x2 < x3 . . ., which imposes

the restriction m < 1. This corresponds precisely to the stability regime of two equal

clusters when δ = 0 (see Theorem 4.6).

5.3 Asymmetric Steady State

Stability analysis for two clusters for F (r) = min(mr + δ, 1− r) where δ � 1:

We suppose that:

xi = xe + δφi

yi = ye + δψi

If δ = 0, then xe = −0.5 and ye = 0.5 and we will have the same result in chapter 4.

To compute φ̇i and ψ̇i we first find the values for ẋi and ẏi from (5.1) and (5.2):

ẋi =
k∑
j=1

F (|xi − xj|)sign(xi − xj) +
l∑

j=1

F (|xi − yj|)sign(xi − yj)
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ẋi =
i−1∑
j=1

F (xi − xj)(+1)−
k∑

j=i+1

F (−(xi − xj))−
l∑

j=1

F (−(xi − yj)) (5.8)

where k is the number of particle in the first stripe and l is the number of particle in

the second stripe (which these numbers are different).

Next we approximate:

F (xi − xj) = F (xe + φiδ − xe − φjδ) = F ((φi − φj)δ) ' F (0) + F ′(0)(φi − φj)δ

F (xi − yj) = F (xe + φiδ − ye − ψjδ) = F ((xe − ye) + (φi − ψj)δ)

= F (xe − ye) + F ′(xe − ye)(φi − ψj)δ

F (−(xi − xj)) = F (0)− F ′(0)(φi − φj)δ

On the right hand side of (5.8) we have ẋi = φ̇iδ, so that the leading order terms

in (5.7) yield

φ̇iδ =
i−1∑
j=1

(F (0) + F ′(0)(φi − φj)δ)−
k∑

j=i+1

(F (0)− F ′(0)(φi − φj)δ)−
l∑

j=1

(F (xe − ye)

−F ′(xe − ye)(φi − ψj)δ)

Then substituting F (0) = δ,F (xe − ye) = 0, we obtain the following equation for φ̇i:

φ̇iδ =
i−1∑
j=1

(δ + F ′(0)(φi − φj)δ)−
k∑

j=i+1

(δ − δF ′(0)(φi − φj))

+δF ′(xe − ye)
l∑

j=1

(φi − ψj)

φ̇i = i− 1 + F ′(0)
k∑
j=1

(φi − φj)− (k − i) + F ′(xe − ye)
l∑

j=1

(φi − ψj)

φ̇i = F ′(0)

[
kφi −

k∑
j=1

φj

]
+ F ′(d)

[
lφi −

l∑
j=1

ψj

]
+ 2i− k − 1 (5.9)

When F ′(0) = m and F ′(d) = −1, (5.9) becomes:

φ̇i = m

[
kφi −

k∑
j=1

φj

]
−

[
lφi −

l∑
j=1

ψj

]
+ 2i− k − 1 (5.10)
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Similarly we find the equation for ψ̇i:

ψ̇i = m

[
lψi −

l∑
j=1

ψj

]
−

[
kψi −

k∑
j=1

φj

]
+ 2i− l − 1 (5.11)

5.4 Construction of the Asymmetric Solution

Next we construct the asymmetric equilibrium solution. Let φi = a+ib and ψi = c+id.

Substituting into equation (5.10) we obtain:

0 = m [k (a+ ib)−
k∑
j=1

(a+ ib)]− [l(a+ ib)−
l∑

j=1

(c+ id)] + 2i− k − 1

0 = m[k(a+ ib)− a(k + 1)− 1

2
(k + 1)2 +

1

2
(k + 1)b+ a]− l(a+ ib) + c(l + 1)

+
1

2
d (l + 1)2 − 1

2
(l + 1)d− c+ 2i− 1− k (5.12)

Collecting the i th terms in equation (5.12) to solve for b we get:

−lb+ 2 +mkb = 0

b =
2

l −mk
We write the remaining value in equation (5.12) as

m(ka+a−a(k+1)−1

2
b(k+1)2+

1

2
(k+1)b)+

1

2
d(l+1)2−la−c+c(l+1)−1−1

2
(l+1)d−k = 0

Now we do a similar substitution for equation (5.11) which gives:

m[l(c+ id)− c(l + 1)− 1

2
d(l + 1)2 +

1

2
(l + 1)d+ c]− k(c+ id) + a(k + 1)

+
1

2
b(k + 1)2 − 1

2
(k + 1)b− a+ 2i− 1− l = 0 (5.13)

Collecting the i th terms in equation (5.13) gives:

mld− kd+ 2 = 0

d =
2

k −ml
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Then writing the remaining terms in equation (5.13) gives following result:

m(lc+ c− c(l + 1)− (1/2)d(l + 1)2 + (1/2(l + 1))d) + (1/2)b(k + 1)2 − kc− a

+a(k + 1)− l − (1/2(k + 1))b− 1 = 0

Setting equation (5.12) and (5.13) in Matrix form:

M =


−l m((1/2)k + 1/2− (1/2)(k + 1)2) l (1/2)(l + 1)2 − (1/2)l − 1/2

0 −l +mk 0 0

k (1/2)(k + 1)2 − (1/2)k − 1/2 −k m((1/2)l + 1/2− (1/2)(l + 1)2)

0 0 0 ml − k



V =


−1−K

2

−1− L
2


Solving MX = V for X = a, b, c, d we obtain:

a

b

c

d

 =


−l−k l c+mk−l2+k+ml2 c−m2 k l c+mk2c−ml+k2

−kl−m2lk+mk2+ml2

−2
−l+mk

c

−2
−l+mk


where c is a free parameter. If we take l = 20, k = 30, m = 0.5 and c = 1 we obtain:

a

b

c

d

 =


−4.150

0.4000

1

0.100


Note that we must have b > 0 and d > 0 since we assumed that x1 < x2 < x3 . . .,

which imposes the restriction m < 1. This corresponds precisely to the stability

regime of two non equal clusters when δ = 0 (see Theorem 4.13).

∆1 = (k − 1) b δ
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∆2 = (l − 1) d δ

Substituting k = 30, l = 20, b = 0.4 and d = 0.1 we have:

∆1 = (30− 1)(0.4)(0.01) = 0.116

∆2 = (20− 1)(0.1)(0.01) = 0.019

To verify our theory, we compared this result with the full numerical simulation of

equation (5.8). The results of this simulation are shown in Figure 5.1. From the

numerical simulation we get that by measuring the width of LHS that ∆1 ≈ 0.115

and of the RHS that ∆2 = 0.019, which is very close to our theoretical result. This

confirms that our theoretical results are accurate.

Figure 5.1: Steady states of (5.8) with F (r) = min(mr + δ, 1 − r). Writing this
function using N = n + l where n = 20 and l = 30 particles with m = 0.5 and
δ = 0.01 as indicated by the non symmetry condition



Chapter 6

Numerical Simulation

In this chapter we will summarize the numerical simulations we conducted to first

understand the cluster and stripe equilibria and then verify numerically that our

analysis was indeed yielding the correct results. We will first describe numerical

simulations for the cluster steady states, followed by the numerical simulations for

the stripe steady state. A sample program is included in the Appendix.

6.1 Cluster Steady State

We do numerical simulations by using the Euler method for the basic equation. The

numerics are plotted by using Mat-lab program. We use n = 50, then test stability by

taking various values of the slope m. The function F (r) = min(mr, 1− r) applies in

the two clusters, three and ”k clusters”. The results we find will confirm the stability

in m = 1 where the number of clusters are two and m = 2 where the number of

clusters are three.

To find the distances d1, d2 in three clusters, which in this case are equal:

F (2d) = −F (d)

Substituting in F (r) gives:

1− 2d = −1 + d

d =
2

3

32
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Figure 6.1: steady states of two clusters with F (r) = min(mr, 1 − r), proving the
unstable case where m = 0.5, using N = 50 particles

Figure 6.2: Steady states of three clusters with F (r) = min(mr, 1 − r), proving the
stability condition where m = 1, using N = 60 particles. We have this result from
Matlab using Euler method with step size 0.5.
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Figure 6.3: Steady states of more than three clusters with F (r) = min(mr, 1 − r)
proving the stability condition where m = 1.5, using N = 50 particles.

Figure 6.4: Steady states of more than three clusters with F (r) = min(mr, 1 − r),
proving the stability condition where m = 4 using N = 50 particles. We have this
result from Matlab using Euler method with step size 0.5.
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6.2 Symmetric Stripe Steady State

When we analyze this problem theoretically and numerically we get the same results

for n = 25, δ = 0.1 and m = 0.5 (the result are c = 0.16 and a = 3.6 for xj = a + cj

where j = 1 . . . n). The numerical result confirm these findings. We measured the

width of the segment and compared it with the theoretical results:

∆ = (25− 1)(0.16)(0.1) = 0.384 ∼ 0.4

We have the same result numerically by measuring the width in the two graphs below.

Figure 6.5: Steady states of (5.1) with F (r) = min(mr + λ, 1 − r), where r is the
distance between two the strips r = |Xi −Xj|. We use as an example N = 50
particles with δ = 0.1 and m = 0.5 as indicated by the symmetry condition.
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Figure 6.6: Stability for symmetry case. We use equation (5.6) which is the result
for stability analysis for the main system; where m = 0.5;n = 50, δ = 0.1 the red line
represents the width which is 0.4
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6.3 Asymmetric Stripe Steady State

Figure 6.7: Steady states of (5.8) with F (r) = min(mr + δ, 1 − r). Writing this
function using N = n + l where n = 20 and l = 30 particles with m = 0.5 and
δ = 0.01 as indicated by the non symmetry condition



Chapter 7

Conclusion

The approach I have used in my work has been used previously for studying various

models. Both continuous and discrete models are important in the analysis of swarm

equilibria. In this thesis we have presented the stability analysis for the discrete

model in one dimension using linear stability analysis. We have demonstrated that

the stability depends on the value of the slope at the origin, regardless of whether

the particles are evenly distributed among the clusters or not. We first worked out

the 2-cluster and 3-cluster steady states, and then generalized it to the arbitrary

k-cluster case. To do the analysis we first approached the problem analytically and

then confirmed the stability thresholds numerically to confirm our results.

In the last two chapters we have analyzed the stripe steady state, which arises

when the function is slightly positive at the origin (unlike the cluster steady state

which can only occur if the function is zero at the origin). To generate and study this

steady state we have perturbed functions used in the k-cluster analysis by a small

positive value δ. This repulsion at the origin causes the clusters to expand and form a

stripe. We analyzed this steady state by first assuming equal distribution of particles,

and then without assuming any symmetry.

In the future this work can be generalized to particle models in higher dimensions.

The difference will be in providing more sets of clusters and small changes in the basic

models to be suitable for higher dimensional result. Throughout this thesis we used

a simple family of functions F (r) = min(mr, 1 − r) to study the model and verify

the analytic results by direct numerical simulation. In the future, various functions

with more complex properties can be used to explore swarm equilibrium and their

stability.
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Appendix

.1 Appendix A

cluster matlab code for figures (1.1), (1.2), (6.1) and (6.4)

function dx=hanadi(t,x)

m=0.5;

n=50;

dx=zeros(n,1);

y=zeros(n,n);

for k=1:n

for i=1:n

y(i,k)=-min(m*abs(x(i)-x(k)),(1-abs(x(i)-x(k))))*sign(x(i)-x(k));

end

dx(k)=sum(y(:,k));

end

end

.2 Appendix B

Matlab code for figure(6.5)

function dx=firstgraphex2(~,x)

m=0.5;

b=0.1;

n=50;

dx=zeros(n,1);

y=zeros(n,n);

for k=1:n

for i=1:n

y(i,k)=min((b+m*abs(x(i)-x(k)),(1-abs(x(i)-x(k))))*sign(x(i)-x(k));

end

dx(k)=sum(y(:,k));

end

end
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.3 Appendix C

Matlab code for figure(6.6)

function dx=hanadin(t,x)

m=0.5;

n=25;

b=0.1;

dx=zeros(n,1);

y=zeros(n,n);

for i=1:n

dx(i)=n*(m-1)*x(i)+(i-1)*b-n-(n-(i+1))*b-(1+m)*sum( x );

end

.4 Appendix D

matlab code for figure (5.1)

function dx=hanadi(t,x)

m=0.5;

b=0.1

n=20;

l=30;

dx=zeros(n,1);

dy=zeros(l,1);

y=zeros(n,n);

x=zeros(l,l);

for k=1:n

h=1:l

for i=1:n

y(i,k)=-min(b+m*abs(x(i)-x(k)),(1-abs(x(i)-x(k))))*sign(x(i)-x(k));

end

dx(k)=sum(y(:,k));

end

end

Appendix holes
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code for view the figure

clear;

global m;

global n;

n=60

m=0.5;

x=zeros(n,1);

%for i=1:(n/2)

%x(i)=0;

%x(25+i)=1;

%end;

y=x;

y=x+0.001*(rand(n,1)-0.5*ones(n,1))

for i=1:(n/3)

x(i)=0;

x(n/3+i)=2/3;

x(2*n/3+i)=4/3;

end;

y=x+0.1*(rand(n,1)-0.5*ones(n,1));

y=rand(n,1)*2;

m = 0.5;

y = linspace(0, 2, n)’;

[T,Y] = ode45(@hanadi,[0 2],y);

clf;

hold on;

for i=1:n

plot(Y(:,i), T, ’k’)

end;


