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Abstract

Inference in generalized linear mixed models (GLMM) remains a topic of debate.

Baayen, Davidson, and Bates (2008) outlines criticism against conventional ways of

performing inference for GLMMs. There are various alternatives proposed but lit-

tle consistency is found on which is the most reasonable. Our focus is on assessing

temporal trends for mainly ecological count data. That is, we hope to provide a prag-

matic approach to Poisson GLMMs for ecological researchers within the statistical

programming environment R. To achieve this, we start by providing a description of

the selected estimation and inferential procedures. We then complete a large scale

simulation to evaluate each of the estimation methods. We implement a power analy-

sis to assess each of the selected inferential procedures. We then go on to apply these

procedures to data sampled by The National Parks of Canada. Finally, we conclude

by giving a summary of our findings and outlying work for the future. Keywords:

GLMM, Poisson, Temporal Trend, P-value, Parametric Bootstrapping

xi
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Chapter 1

Introduction

1.1 Motivation

Generalized Linear Mixed Models have become a very powerful and widely used

statistical tool. They are often applied to investigate a variety of properties associated

with the grouping of data, combined with the situation where the response variable

is not continuous. Although Linear models (LM)s are the workhorse of statistics,

there are times when they should not be applied. For instance, if one wants to

account for variation due to some grouping structure it can be assumed there is a

random effect associated with group. This can be achieved by employing a linear

mixed model (LMM). Within this context, the random effect or effects are assumed

to follow a Gaussian distribution. LMs are also not appropriate if the response

is non-normal but can be modeled by a member of the exponential family. The

inclusion of a link function connecting the predictor to the response leads to the

implementation of a generalized linear model (GLM). Suppose we are dealing with

both scenarios; there exists a random effect, and the data is non-normal. A mix

between LMMs and GLMs seems to be the most appropriate framework, and hence

the need for GLMMs. However, inferential procedures surrounding GLMMs remain

a highly debated statistical topic.

1
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GLMMs are often applied in ecological settings. Especially when sampling is done

over time on multiple locations and the response is non-normal. Given this context,

many researchers are interested in obtaining an estimate of the temporal trend in

order to say something about the metric of interest. There are a number of methods

that achieve estimation. However, assessing whether or not the trend is statistically

significant remains a challenge.

Presently, a variety of statistical methods such as GLIMMIX within SAS give

p-values associated with a fixed trend effect. However, such methods use a degree of

freedom approximation and are subject to controversy [1]. This debate was further

highlighted by the fact that p-values are not included in the summary of glmer, a

popular R method for GLMMs, which is written and maintained by Doug Bates.

Other procedures were also proposed to assess the statistical significance of fixed

effects, such as parametric bootstrapping, and Markov chain Monte Carlo algorithms.

The National Parks of Canada have developed ecological monitoring programs to

assess the status and trend in ecological integrity using a series of indicators. The pro-

grams include numerous measures of ecological integrity in different ecosystems that

capture key elements of biological diversity or ecosystem processes. Monitoring mea-

sures must be scientifically credible, and provide meaningful results. An important

component of these requirements is that the study design have sufficient replication

to ensure satisfactory levels of statistical power to detect trend, and to determine sta-

tus. Most of the measured variables are not normally distributed, and many of the

study designs involve repeated sampling of observations over time at a fixed series of

sites. This design suggests that a generalized linear mixed model (GLMM) approach

would be suitable for analyzing trend and estimating status, where both the sampling

site intercepts and slopes are random effects. As noted previously, there is disagree-

ment in the literature over how to assess the statistical significance of these models,

and also how to extract appropriate uncertainty estimates for the fixed and random
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effects. A related area of uncertainty is how to design a monitoring study that has

appropriate statistical power, using a GLMM as the statistical testing framework.

1.2 Literature Review

An understanding of a wide variety of topics was required for the problem at hand.

In order to work with GLMMs an understanding of LMMs and GLMs was required.

Select sections from several text books were important to achieve this. “Mixed-Effects

Models in S and S-plus” by JC Pinheiro and DM Bates [2] was a good reference for

LMMs. For a pragmatic approach to GLMs we used “Extending the Linear Model”

with R by J. Faraway [3] and for theoretical questions we referred to “Generalized

Linear Models”by McCullagh and Nelder [4]. For the background of GLMMs we used

“Generalized, Linear, and Mixed Models” by C McCulloch and S Searle [5], “Linear

and generalized linear mixed models and their applications”by J Jiang [6], and a draft

of the soon to be released “lme4 : Mixed-effects Modeling with R” by Doug Bates [7].

We came across a promising method that fell within the Bayesian paradigm and

was implemented in R. To fill in details we consulted “Bayesian computation with R”

by J Albert [8] and “Introducing Monte Carlo Methods with R” by C Robert and C

Casella [9]. Also, the writer of this procedure J Hadfield has published a very detailed

article outlying the process titled “MCMC Methods for Multi-response Generalized

Linear Mixed Models: The MCMCglmm R package” [10].

A background in SAS’s long standing implementation for GLMMs can be found in

an article titled “The Glimmix Procedure” [11]. While R’s older procedure’s method-

ology can be found summarized in an article titled “PQL Estimation Biases in Gener-

alized Linear Mixed Models” by J Woncheol [12]. Both of these use degree of freedom

approximation for the inference of fixed effects, and have come under scrutiny by

Doug Bates [13].
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There is also a huge body of information regarding GLMMs found on R-sig-

mixed-models. This is an Internet forum interested in issues surrounding mixed effect

modeling in R and is primarily interested with the lme4 package, but often addresses

general mixed modeling concerns. There are constant postings from lead statistical

researchers and developers. Much of Ben Bolker’s work surrounding GLMMs use

within ecology was also highly valuable. We also had correspondence with Doug

Bates, who gave us recommendations on available methods.

Our review of the literature confirmed that there is still confusion on how to

assess the significance of fixed effects for GLMMs. Ecological Researchers constantly

face problems surrounding best practices for how certain factors effect the power of

various inference methods to assess trend. Such factors include the number of groups

sampled from and the number of time points or years of sampling.

1.3 Ecological Data

A real application where GLMMs apply is a Salmon data set from Fundy National

Park sampled by Parks Canada and depicted in Figure 1.2. This is count data and

there seems to be variability associated with site. Conventionally, this data set would

be modeled as a Poisson GLMM with a random intercept and slope effect.

We have analyzed salamander data also collected by Parks Canada (as seen in

Figure 1.1) to portray a case where there is reduced random slope variability asso-

ciated with plot. We include this analysis to demonstrate how the methods contend

with such a situation.

The goal of this thesis is to provide ecological researchers with guidelines for

GLMMs in deciding such things as number of sites, number of years to sample, and

number of repeat observations per site in conjunction with determining which of

the readily available procedures should be used for analysis. Chapter 2 will give
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Figure 1.1: Salamander Sampling. The year sample was taken is denoted along the
x-axis, Salamander count is on the y-axis. Each window within the figure represents
samples taken from a unique sampling site.
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Figure 1.2: Salmon Sampling. The year sample was taken is denoted along the x-axis,
Salmon count per plot is along the y-axis. Each window within the figure represents
multiple samples taken from unique plots in Fundy National Park.
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a description of the methods and inference approaches. Chapter 3 will discuss a

simulation study designed to address how well the methods perform with respect to

estimation. This chapter will also demonstrate how different factors affect the validity

of inference using power analysis. Finally, Chapter 4 will present conclusions of our

findings and future work.



Chapter 2

Methodology

2.1 Model

According to [5] in order to specify the model for a GLMM one usually starts with the

assumption that the response vectors y1, . . . ,yN are independent given the random

effects, where yi = (yi1, yi2, . . . , yini
) are ni samples that are observed along with the

p× ni covariate matrix Xi = (xi1,xi2, . . . ,xini
) for the fixed effects β = (β1, . . . , βp).

Also, Zi = (zi1, zi2, . . . , zini
) is the q × ni covariate matrix for the random effects

u = (u1, . . . , uq). One then defines the conditional distribution of the response vector

y given the random effects u and further assumes that the conditional density follows

a distribution from the exponential family:

yi|u ∼ indepfYi|u(yi|u)

fYi|u(yi|u) = exp{[yiγi − b(γi)]/τ
2 − c(yi, τ)} (2.1)

We should note that E(yi|u) = ∂b(γi)/∂γi = µi and V (yi|u) = τ2

aij
V (E(yi|u)) where

τ is a dispersion parameter and aij is a prior weight, usually 1. Following a similar

7
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structure set up for GLM and denoting the link function by g(·):

E(yi|u) = µi

g(µi) = x′
iβ + z′iu. (2.2)

Within the GLMM context fU is assumed to be a Gaussian probability density func-

tion with mean 0 and variance-covariance matrix Σ(θ), that is u ∼ N (0,Σ(θ)).

2.2 Likelihood Approach

It is very common within classical Statistics to employ maximum likelihood to esti-

mate unknown model parameters. Within a random effects context, in order to write

down the likelihood of (2.1) one must integrate over the q-dimensional distribution

of the random effects u.

L(β,θ) =

∫

u

∏

i

fYi|u(yi|u)fU(u)du (2.3)

A special case of the the above form is a Poisson GLMM, where there exists an

intercept random effect for different groups. Let yij denote the jth count taken on

the ith group. The form of the model is:

yij|u ∼ indep Pois(µij); i = 1, 2, ..., N ; j = 1, 2, ..., ni;

log(µij) = x′
ijβ + ui (2.4)

ui ∼ N (0, σ2
u).

We assume that the random effects follow a normal distribution with mean 0 and

variance σ2
u. We employ a log link function and x′

ij is simply the covariate associated

with the fixed effect for the jth count for the ith group. There is a common random
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effect for each of the i groups and through this construct observations from the same

group are modeled as correlated. The log likelihood is given by the following equation:

l = log

(

N
∏

i=1

∫ ∞

−∞

ni
∏

j=1

µ
yij
ij e−µij

yij !
1√
2πσ2

u

e
−1

2σ2
u
u2

i dui

)

= y′Xβ −
∑

i,j

log yij! +
∑

i

log

∫ ∞

−∞
exp

(

yi.ui −
∑

j

ex
′

ijβ+ui

)

1√
2πσ2

u

e
−1

2σ2
u
u2

i dui.

(2.5)

According to [5] Equation (2.5) cannot be simplified further or evaluated in closed

form. Many of the methods currently in development for generalized linear mixed

models deal with approximating this likelihood. It also becomes increasing more

challenging to numerically maximize the likelihood as the dimension of the random

effects increases.

Another way to parameterize the model is within the Bayesian context using

Markov chain Monte Carlo methods. It is argued that using a diffuse prior for the

fixed effects will result in a posterior close to the likelihood.

2.3 Estimation Approaches

In this section we describe a variety of approaches used to estimate unknown GLMM

model parameters. We will focus on describing the methods that apply Laplacian

approximation, penalized quasi likelihood, and MCMC when preforming our power

simulations. This will be discussed in the next chapter.

2.3.1 Maximum Likelihood

2.3.1.1 Laplacian Approximation

In R one of the most popular functions for fitting GLMMs is called glmer and is

found within the package lme4 which is written and maintained by Douglas Bates.
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Methodology can be found at [7]. By default it uses laplacian approximation within

its method to approximate the likelihood. The user is also given the choice to use max-

imum likelihood (ML) or restricted maximum likelihood (REML). It is well known

that ML underestimates the variance of the random effects components [12]. REML

was developed as a way to reduce this bias. ML estimates standard deviations of

the random effects assuming that the fixed-effect estimates are correct, while REML

estimation averages over some of the variability in the fixed-effect parameters. The

following derivations are done with respect to ML. glmer does calculations with re-

spect to a linear transformation of the random effects rather than the random effect

themselves. The reason will become clear after we have shown the motivation behind

the transformation U = Λ(θ)U . The transformation leads to Λ(θ) being the relative

covariance factor where Var(U) = Σ(θ) = Λ(θ)Λ′(θ) and U(θ) = ZΛ(θ), where Z is

the design matrix associated with the random effect. For GLMMs, U ∼ N (0,Σ(θ)),

U ∼ N (0, Iq). This slight difference allows glmer to estimate parameters even when

Σ(θ) is singular. The estimates also remain stable as Σ(θ) approaches singularity. In

this thesis attention is restricted to the case where the distribution of the observations

given the random effects is Poisson. The distribution can be denoted:

(Y|U = u) ∼ pois(µ
Y|U), (2.6)

where µ
Y|U(u) = exp(Xβ + ZΛ(θ)u), the exponential function being the inverse of

the log link function, which is the canonical link function. As previously stated in

Equation (2.1), the model is defined in terms of (Y|U = u). However, we observe y

not u so we are forced to focus our attention on derivations surrounding the condi-

tional distribution (U|Y = y). The glmer fitting procedure is a way of approximating
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the likelihood of the parameters given the data,

L(θ,β|Y = y) =

∫

u

fY|U(y|u)fU(u)du

=

∫

u

∏

i

fYi|U(yi|u)fU(u)du. (2.7)

The product of distribution functions inside the integral is the unscaled conditional

distribution of U|Y. As stated previously, the likelihood is intractable so in order to

approximate it glmer starts with the conditional mode:

ũ(y|θ,β) = argmax
u

fY|U(y|u)fU(u). (2.8)

This is done by employing a quadratic approximation to the logarithm of the un-

scaled conditional distribution of (U|Y = y). This can be thought of as a penalized,

reweighted residual sum of squares,

ũ(y|θ,β) = argmin
u

∥

∥

∥

∥

∥

∥

∥







W1/2(µ)(y − µ
Y|U(u))

−u







∥

∥

∥

∥

∥

∥

∥

2

(2.9)

whereW(µ) is the diagonal weight matrix and is defined as the inverse of the variance

of Yi|U = u. We are able to rewrite equation (2.8) as equation (2.9) because both

fY|U(y|u) and fU(u) are exponential functions. We know that exponential functions

are monotone increasing and the values inside the functions are negative. Therefore

the mode corresponds to when the negative exponentiated value is at its minimum.

Parameter estimates for the model are found using a penalized iteratively reweighted

least squares algorithm (PIRLS). The parameters are effectively determined for a

fixed W matrix. W is then updated using the current estimated parameters and the
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algorithm repeats. Given a fixed W we solve

min
u

∥

∥

∥

∥

∥

∥

∥







W1/2(y − µ
Y|U(u))

−u







∥

∥

∥

∥

∥

∥

∥

2

. (2.10)

This is essentially solving a nonlinear least squares problem, solving

P(UMWMU′ + Iq)P
′δu = UMW(y − µ)− u (2.11)

where δu is the update and, M = dµ
dη

= Var (Y|U) = W−1 is the diagonal Jacobian

matrix. P is a q × q fill-reducing permutation. Re-ordering the columns of ZΛ(θ)

does not effect the theory of GLMMs however it does effect the time and storage

needed to evaluate the matrix L, which will be discussed shortly. For the Poisson

case with no overdispersion Var (Y|U) = E (Y|U) = µ
Y|U(u). Convergence occurs

when δu is sufficiently close to 0. Once convergence occurs the Cholesky factor, L

used to evaluate the update is

LL′ = P(UMU′)P′. (2.12)

L is calculated in order to make it easier to solve for the conditional mode. It is a

lower triangular matrix which makes otherwise intractable calculations manageable.

The ability to compute L is imperative to making glmer a feasible and robust method.

The likelihood is proportional to the density of the distributionN (ũ,LL′). Employing

the laplace approximation method, is equivalent to fitting a Gaussian at the mode of

the function of interest. Written on the deviance scale

d(β,θ|y) = dg(y,µ(ũ)) + ‖ũ‖2 + log (|L|2), (2.13)
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where dg(y,µ(ũ)) is the same deviance found in a GLM i.e. (the same model without

random effects for y and µ). Finally, the above calculations allow us to have estimates

of the unknown GLMM model parameters.

2.3.1.2 Adaptive Gauss-Hermite Quadrature Approximation

As an alternative to laplacian approximation one can also employ Adaptive Gauss-

Hermite Quadrature (GHQ) approximation. While laplacian and GHQ are both

methods to approximate the likelihood. GHQ approximates the likelihood by choos-

ing optimal subsets at which to evaluate the integrand. Adaptive GHQ uses infor-

mation gained from an initial parameterization to increase precision. While adaptive

GHQ is said to be more precise than laplacian approximation there is a sacrifice with

respect to speed. Adaptive GHQ gets exponentially slower as one increases the di-

mension of random effects; so much so that the procedure is not feasible for 2 or 3

random effects [14].

2.3.2 Penalized Quasi Likelihood

Another method used for estimation of the parameters of a GLMM is penalized

quasi likelihood. A method for implementation can be found with the R package

MASS. Following [15] and [12] and in keeping with previously stated notation one

can estimate the parameters in the following manner. First, denote the integrated

quasi-likelihood L(β,θ) by:

L(β,θ) =
1

√

(2π)q|Σ(θ)|

∫

exp

[

− 1

2τ

N
∑

i=1

ni
∑

j=1

dij(yij, µij)−
1

2
uTΣ−1(θ)u

]

du

(2.14)

where we define dij(y, µ) = −2aij
∫ µ

y

yij−c

v(c)
dc to be the deviance measure of fit. Also,

v(·) is the variance function coming from an exponential family. We also simplify the
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variance of the random effects by assuming they are orthogonal. As noted before,

one cannot integrate the true likelihood in closed form, the same is true for the quasi

likelihood. One can then use the Laplace approximation for the equation:

PQL(β,u) = − 1

2τ

N
∑

i=1

ni
∑

j=1

dij(yij, µij)−
1

2
uTΣ−1(θ)u (2.15)

which we can denote as the penalized quasi likelihood. If [15] Equation (2.15) is

replaced with its quadratic expansion at û = arg minPQL(β,u) for fixed β and θ

and defining β̂ = arg minPQL(β, û). The standard restricted maximum likelihood

estimating equation for θ using the updating term y∗ij is determined by letting y∗ij =

g(yij) = g(µ̂ij)+(yij− µ̂ij)g
′(µ̂ij) be the two term Taylor expansion of g(yij). Finally,

we can write the model in the following form:

Y ∗ = Xiβ̂ + Ziû+ ǫi (2.16)

where ǫi ∼ N(0,W−1
i ) andWi is a diagonal matrix with elements wij = [V (µij)(g

′(µij))
2]−1.

As given in [15], the implementation of the above can be done by looping through

the following steps.

1) Given starting values for θ and u one can estimate β by solving the following

normal equation

N
∑

i=1

XT
i V

−1
i Xiβ =

N
∑

i=1

XT
i V

−1
i Y ∗

i , (2.17)

where Vi = W−1
i + ZiDZT

i .

2) We estimate u with the following equation

u =
N
∑

i=1

DZT
i V

−1
i (Y ∗

i −Xiβ̂). (2.18)
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3) We denote θs as the Restricted Maximum Likelihood (REML) estimator of θ and

define the estimator as

θs =
Σn∈Qs

û2
n

Σn∈Qs
(1− tnn)

, for s = 1, . . . , c, (2.19)

where

Qs = n :
s−1
∑

i=1

qi < n ≤
s
∑

i=1

qi, S = W −WX(XTWX)−1XTW, (2.20)

XT = (XT
1 , · · · , XT

N), Z
T = (ZT

1 , · · · , ZT
N), W = diag(W T

1 , · · · ,W T
N ), (2.21)

and tnn is the nth diagonal term of T = (I + ZTSZD)−1.

4) We then update Y ∗
i with each iteration through these steps. When convergence

is reached the final estimators are known as the PQL estimators. The covariance

matrix of β̂ and û are given by the equations

Cov(β̂) =

[ N
∑

i=1

XT
i V

−1
i Xi

]−1

, Cov(θ̂) = H−1. (2.22)

Denoting the H components as

hst =
1

2

∑

i∈Qs

∑

i∈Qt

(

ZT
(i)PZ(j)

)2

, (2.23)

denoting Z(i) as the ith row vector of Z, V −1 = diag(V −1
1 , · · · , V −1

N ) and

P = V −1 − V −1XCov(β̂)XTV −1. (2.24)

Despite glmer and glmmPQL being similar in that they both use laplacian approx-

imation to reach parameter estimates, they are actually quite different. glmmPQL

approximates a quasi likelihood not a true likelihood. That is, only the expectation
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and variance of the distribution of the response variable given the random effects

needs to be specified, and not its form. Another key difference is that glmer applies

a transformation to the (co)variance matrix Σ(θ) which is one of the reasons why

glmer is a more robust estimation procedure. We’ll now move onto a method that is

philosophically much different than the previous two.

2.3.3 Markov Chain Monte Carlo

The R package MCMCglmm relies heavily on a Bayesian paradigm and Markov chain

Monte Carlo (MCMC) methods. This thesis is primarily written from a classical

statistics standpoint, details such as choosing the prior and burn-in period were chosen

pragmatically to mimic classical statistics as closely as possible. Before explaining

the package’s implementation we give a brief explanation of MCMC [8].

Markov Chain Monte Carlo methods are often used to summarize the posterior

distribution. The MCMC sampling scheme sets up an irreducible, aperiodic Markov

chain for which the stationary distribution equals the posterior distribution of interest.

Two of the most popular sampling schemes are known as the Metropolis-Hastings

algorithm and the Gibbs sampler. We are effectively interested in the density of the

posterior denoted p(θ|y), which is the probability of the parameters given the data.

This is conceptually different than a classical or frequentist perspective, where one

cannot treat the parameter of interest as a random variable. The Metropolis-Hastings

algorithm starts with an interest in sampling from this posterior and supposes one

has an initial value of the parameter θ(0) and specifies a rule for simulating the tth

value in the sequence θ(t) given the (t− 1)th value in the sequence. The rule is made

up of a proposal density which simulates a candidate value θ(∗) and the probability of

acceptance of θ(∗) as the next value in the sequence which is known as an acceptance

probability and will be temporarily be denoted P . A brief description of the algorithm

is as follows:
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1) Simulate θ(∗) from the proposal density p(θ(∗)|θ(t−1),y)

2) Calculate the ratio

R =
p(θ(∗)|y)p(θ(t−1)|θ(∗),y)
p(θ(t−1)|y)p(θ(∗)|θ(t−1),y)

(2.25)

3) Compute the acceptance probability as P = min(R, 1)

4) Let θ(t) = θ(∗) with probability P otherwise θ(t) = θ(t−1).

The sequence of simulated draws θ(1), · · · , θ(t) will converge to a random variable

that is distributed according to the posterior p(θ|y) [16]. Note that, the Metropolis-

Hastings algorithm becomes more difficult to set up as the dimensions of θ increase

because one must specify a proposal density that is multi-dimensional.

The Gibbs sampler is also very popular especially when the parameter of interest has

high dimension. Consider the case where θ = (θ1, · · · , θp) and we cannot sample di-

rectly from the joint density p(θ|data). However we do have access to the conditional

distributions:

p(θ1|θ2, · · · , θp, data) (2.26)

p(θ2|θ1, θ3, · · · , θp, data) (2.27)

... (2.28)

p(θp|θ1, · · · , θp−1, data) (2.29)

By simulating the individual parameters from a set of p conditional distributions

and by the property set forth by [17] we now have a way in which to recover a joint

distribution from its conditionals. Consider the 2 variable case, where we do not have

access to the joint distribution of two random variables (X, Y ) or to the marginal
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distributions. The joint probability using the product rule can be characterized by

f(x, y) = fX|Y (x|y)f(y). (2.30)

We follow the algorithm outlined by [18] and [9] for the 2 stage Gibbs sampler.

Given a starting value X0 = x0, for t = 1, 2, · · · generate

1) Yt ∼ fY |X(.|xt−1); (2.31)

2) Xt ∼ fX|Y (.|yt). (2.32)

Simulating one value from each of these distributions is known as one cycle of Gibbs

sampling. This algorithm has effectively created a Markov chain for the marginal

distribution of Y . Now that the conditional distributions have been specified fully

and we can sample from the marginal distribution it is straightforward to use the

product rule to obtain a sample from the joint distribution f(x, y). There exists a

rich literature describing MCMC methods in much more depth; one reference is [19].

The rest of this subsection will follow [10] closely in order to describe the implemen-

tation of the R package MCMCglmm. MCMCglmm is an alternative approach for fitting

a GLMM model. The resulting posteriors are the distributions of the model pa-

rameters. Philosophically this is distinctly different than working within a classical

framework where the parameters of interest are not represented as random variables.

MCMCglmm begins with the probability of the ith data point and can be denoted as:

f(yi|li) (2.33)

where f is the probability distribution function of the response variables y and li are

the so called latent variables. li is similar to the inversed link function predictor found

in a traditional GLMM. However, it allows for a multiplicative dispersion parameter



19

by including ei. Equation (2.33) could be written as:

f(yi|λ = g−1(li)) (2.34)

where g is the so called link function. In a Bayesian context we can write the latent

variables in vector form as:

l = Xβ + Zu+ e, (2.35)

where X and Z are design matrices for the fixed and random effects respectively

and e is a vector of residuals. We consider the situation when y follows a Poisson

distribution, in this case e is designed to account for overdispersion. The effects are

assumed to come from a multivariate normal distribution:













β

u

e













∼













N













β0

0

0













,













B 0 0

0 G 0

0 0 R

























(2.36)

where β0 is a prior vector for the means β with prior (co)variance matrix B. G

and R are the expected (co)variance for u and e respectively. That is, one must

make an assumption on the form of the (co)variance matrices. Note that the fixed

effects, random effects, and residuals are assumed to be independent. The variance

structure for the random effects within MCMCglmm can be quite general. Also, the

parametrization of G and R is interchangeable ie, they are parameterized in the

same manner. G’s form is as follows:

G = (V1 ⊗A1)⊕ (V2 ⊗A2)⊕ · · · (2.37)
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where A are design-like matrices that imply the structure of the individual random

effects. ⊕ is the direct sum operation defined as:

A⊕B =







A 0

0 B






=

































a11 · · · a1n 0 · · · 0

... · · · ...
... · · · ...

am1 · · · amn 0 · · · 0

0 · · · 0 b11 · · · b1q
... · · · ...

... · · · ...

0 · · · 0 bp1 · · · bpq

































(2.38)

and ⊗ denotes the Kronecker product defined as:

A⊗B =













a11B · · · a1nB

...
. . .

...

am1B · · · amnB













. (2.39)

In order to obtain estimates of the parameters one can use MCMC. Starting with a

prior each iteration updates the variance structure of G and R followed by updating

the location vector θ = [β′, u′]′. It is then able to update the latent variable l.

MCMCglmm updates the latent distribution l in the following way. The conditional

probability distribution of l is denoted:

P (li|y,θ,R,G) ∝ f(yi|li)fN(ei|riR−1
/i e/i, ri − riR

−1
/i r

′
i) (2.40)

where fN is a multivariate distribution. Also, vectors and matrices that have /i as

a subscript denote that rows and/or columns associated with ith observation have

been removed. The second term on the right of Equation (2.40) is the probability

distribution of the linear predictor residual, conditional on the residuals associated

with data points other than i. Therefore, this conditional distribution only involves
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other residuals which are expected to show residual covariation that is set in the

design of R. Due to the above, MCMCglmm updates the latent distribution in blocks,

where the block is defined as groups of residuals which are expected to be correlated.

The j blocks that have non-zero residual covariance are defined as:

P (lj|y,θ,R,G) ∝
∏

i∈j
pi(yi|li)fN(ej|0,Rj) (2.41)

which simplifies to:

P (lj|y,θ,R,G) ∝ pi(yi|lj)fN(ej|0,Rj). (2.42)

l is updated using either a Metropolis-Hastings update or the slice sampling method

purposed by [20]. During the burn-in phase MCMCglmm uses adaptive methods to find

an optimal multivariate normal proposal distribution on each iteration of lj which has

a covariance matrix mM , where m is chosen so the proportion of successful jumps is

optimal with a rate of .44 when lj is scalar and .23 when lj has a high dimension [21].

M is the average posterior (co)variance of lj.

MCMCglmm updates the location vector θ = [β′, u′]′ by following a method purposed

by [22] that employs Gibbs samples from θ as a complete block by solving the sparse

linear system:

θ̃ = C−1W′R−1(l−Wθ⋆ − e⋆) (2.43)

defining C as the mixed model coefficient matrix:

C = W′R−1W +







B−1 0

0 G−1






(2.44)
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and W = [X,Z]. θ⋆ and e⋆ are random draws from the distributions:

θ⋆ ∼ N

(







β0

0






,







B 0

0 G







)

(2.45)

e⋆ ∼ N(Wθ⋆,R). (2.46)

Obtaining the inverse of G is generally not hard because of the form of Equation

(2.37) which results in:

G−1 = (V−1

1
⊗A1

−1)⊕ (V2
−1 ⊗A2

−1)⊕ · · · (2.47)

One would also have to get the inverse of Vi which is not hard because each Vi is

generally of low dimension. Ai is quite often the identity matrix and therefore does

not need to be inverted. θ⋆ and e⋆ are inserted into Equation (2.43) and the inverse

of C is solved using Cholesky factorization [23]. Finally θ̃ + θ⋆ gives a realization

from the probability distribution:

P (θ|l,W,R,G). (2.48)

MCMCglmm must also update the variance structures denoted G and R using Gibbs

Sampling when dealing with conjugate priors. The sum of squares matrix or the first

parameter of the inverse Wishart distribution corresponding with variance compo-

nents has the structure:

S = U′A−1U (2.49)

where U is the matrix of random effects, with each column corresponding to the ap-

propriate row/column of V which in turn corresponds to the appropriate row/column
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of the design-like matrix A. V can be sampled from an inverse Wishart distribution:

V ∼ IW ((Sp + S)−1, np + n), (2.50)

where n is the number of rows in U, and Sp and np are the prior sum of squares and

prior degrees of freedom respectively.

The previous explanation is quite general, so to illustrate the procedure we consider

our previous example with a Poisson response, a fixed intercept and slope effect, and

intercept and slope random effects for each of the three groups. Employing MCMCglmm

to fit this GLMM structured model is implemented in the following way. We’ll start

with the design matrices for the fixed and random effects

X =





















































1 1

...
...

1 10

1 1

...
...

1 10

1 1

...
...

1 10





















































Z =





















































1 0 0 1 0 0

...
...

...
...

...
...

1 0 0 10 0 0

0 1 0 0 1 0

...
...

...
...

...
...

0 1 0 0 10 0

0 0 1 0 0 1

...
...

...
...

...
...

0 0 1 0 0 10





















































. (2.51)

Next, starting values for the initial variance structures of G and R are chosen by

assuming

G = V1,1 ⊗A1,1 ⊕V1,2 ⊗A1,2 = σβ0
I3 ⊕ σβ1

I3 (2.52)

R = V2 ⊗A2 = σeI30, (2.53)
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where the initial value for V1,1,V1,2, and V2 follow an inverse Wishart distribution

with specified scale matrix, and degree of belief parameter found in the prior speci-

fication for variance components. And where Sp and np are the prior sum of squares

and prior degrees of freedom, respectively. With these temporary or working variance

structures one can update the location vector θ = [β′, u′]′. Inputting the working

values into Equations (2.44), (2.45), and (2.46), and finally (2.43) and following the

steps outlined above effectively updates the location vector. A common prior for

the fixed effects β is a multivariate normal distribution with a mean of β0 = 0 and

(co)variance matrix

B =







108 0

0 108






. (2.54)

We are now able to update the latent variable l and thus have estimated values for

the residual vector e. The starting value for e is 0. Using the updated values from

the first iteration one can now update the variance structure of G and R using Equa-

tions (2.49) and (2.50). Repeating these steps and saving the resulting parameter

estimates after the burn-in phase gives the desired posterior sample. In summary

the MCMCglmm procedure updates the linear predictor using the Metropolis-Hasting

algorithm or slice sampling then Gibbs samples θ, and finishes by Gibbs sampling

(co)variance components sequentially [10].

2.4 Inference Approaches

Once each of the models has been parameterized, inference methods are employed in

order to draw conclusions regarding the importance of included variables. As stated
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previously, this thesis is concerned with the significance of a temporal trend. There-

fore, the proceeding inference methods will focus on the significance of the fixed effect

associated with year or some other time related predictor, and not with inferential

procedures associated with random effects. Also, different inferential approaches are

appropriate for different estimation approaches, Table 2.1 demonstrates these combi-

nations with corresponding R packages.

We focused on evaluating R procedures for GLMMs. glmmPQL is a quasi likelihood

Table 2.1: Estimation and Inference

Inference Methods Estimation Methods
PQL Laplacian MCMC

Asymptotic Wald Test glmmPQL glmer

DF Approximation
Resampling Parametric Bootstrap (LRT) glmer

Credible Interval MCMCglmm

procedure which uses a Wald test to carry out inference on β1. glmer can approximate

the likelihood using Laplacian Approximation or Gaussian Quadrature. We focused

on Laplacian approximation. Inference within glmer can be carried out using a Wald

test. Currently, there are no complex degree of freedom approximation techniques

available in R as there are in SAS. We used parametric bootstrapping primarily as

an inferential procedure, bootstrapping the likelihood ratio between nested models.

But, we can also use bootstrapping as an estimation approach once we have estimated

model parameters using other procedures; in which case, we bootstrap under the full

model. In Section 3.2 we evaluate the version of bootstrapping that estimates model

parameters. In Section 3.3 we evaluate the version of parametric bootstrapping that

is an inferential procedure. MCMCglmm is a Bayesian procedure that obtains posterior

distributions of the model parameters. Inference for MCMCglmm is carried out using

credible intervals.
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2.4.1 Asymptotic Inference

Many statistical estimators have asymptotic properties that make inference straight-

forward. However, GLMM is not one of these areas and it is a heavily debated topic

as to how to do inference for GLMMs. Often, to test the significance of a single fixed

factor one will compare two models, one containing the factor of interest, and the

other without. The comparison is normally done using a likelihood ratio test (LRT).

That is, −2 multiplied by the log likelihood ratio and compared to a χ2 distribution

with the degree of freedom (df) bring the difference of the full model df minus the

nested df. However, when testing a fixed effect within a GLMM context employing

a (LRT) is unsuitable, for small to moderate sample sizes the ratio is not well ap-

proximated by a χ2 distribution. This may depend on the number of groups, total

number of samples, and total number of parameters [2]. Therefore, we will not focus

on using this method of inference. Despite the uncertainty, methods of asymptotic

inference are available [15]. Running a power simulation will give us a better insight

into how useful these methods of inference can be under a variety of scenarios.

2.4.1.1 Wald test

The Wald test is a parametric statistical test which approximates the LRT. It uses

both the maximum likelihood estimate for the parameter of interest θ̂ and the stan-

dard error se(θ̂). Where the standard error is calculated using the Laplace approx-

imation to the deviance in place of the standard error of the residuals. In order to

investigate a possible difference between θ̂ and θ0, the parameter of interest under

the null hypothesis. Often θ0 = 0 represents no relationship between the predictor

variable and the response. The test statistic can be denoted by ZWald where

ZWald =
θ̂ − θ0

se(θ̂)
, (2.55)
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follows (approximately) a standard normal distribution. Inference within glmer em-

ploys the Wald test above.

Inference for glmmPQL is done a little differently. The test statistic can be denoted

by TWald where

TWald =
θ̂ − θ0

se(θ̂)
, (2.56)

and for our purposes will be compared to a T distribution with the degrees of freedom

equaling N−q− (p−1). N is the number of observations, q is the number of random

effect groups, and p is the amount of fixed effects parameters. The choice to having

two different reference distributions was motivated by the package outputs. Infer-

ence for PQL is a somewhat naive approach, as a Wald test requires the maximum

likelihood estimates and PQL does not provide the true ML estimates.

The difference between the above approaches will be small while sample size is not

too small because all the T distribution will be very close to standard normal [24].

2.4.1.2 Degree of Freedom Approximation

Some statistical software packages use degree of freedom approximation when doing

inference for GLMMs. This refers to denominator degrees of freedom within an F

statistic. It is known that the degrees of freedom must lie somewhere between 1 and

N − 1 and there have been a wide variety of methods proposed to approximate this

value. The simplest approximation is the minimum number of degrees of freedom

contributed by random effects that affect the term being tested, but range in com-

plexity to methods that adjust the standard error such as the Kenward and Roger,

and Satterthwaite approximations [25] and [26]. The approximation has come un-

der scrutiny by notable statistical researchers such as Doug Bates, who has argued

against the assumption “the reference distribution for these F statistics should be an
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F distribution with a known numerator degrees of freedom but a variable denomina-

tor degrees of freedom” Bates goes onto argue “we can answer the question of how

to calculate a p-value by coming up with a formula to assign different denominator

degrees of freedom for each test. The denominator doesn’t change. Why should the

degrees of freedom for the denominator change?” [13]. We have not included the

complex degree of freedom approximation methods within our power analysis. We

have restricted our attention to methods that can be applied in R.

2.4.2 Resampling Approaches

2.4.2.1 Parametric Bootstrapping

The concept of the bootstrap was first introduced by [27], to estimate the distribution

of test statistics. This of course is very useful when the asymptotic properties of a test

statistic are unknown. Suppose θ follows an unknown distribution, it is a member of

a parametric family, and we have an estimate of θ denoted θ̂. We would like the so-

called sampling distribution fθ(·|θ) in order to do inference. However, since this isn’t

feasible we apply a bootstrapping method by generating observations from fy(·|θ̂)

followed by computing θ̂∗. We then go on to approximate fθ̂(·|θ) by fθ̂∗(·|θ). This

allows us to have a sample of different summaries such as the mean and standard

error. For the purposes of this thesis we will implement parametric bootstrap in the

following way:

1) Fit data to the full and null models, that is, a model that does and does not include

β1 denoted β̂full and β̂null, respectively. Then, compute the test statistic which for our

purposes will be the deviance, denoted D̂.

2) Generate data set using β̂null, fit the full and null model to the simulated data and

record the test statistic of interest, D̂∗.

3) Repeat step 2 a sufficient amount of times to obtain a distribution of the test



29

statistic under the null hypothesis.

4) Finally, we will compute p-values by comparing D̂ to the distribution of D̂∗.

We have effectively used the bootstrap distribution of D̂∗ as an approximation to the

sampling distribution of D̂.

2.4.2.2 Markov Chain Monte Carlo Generalized Linear Mixed Models

One of the nice properties of working within the Bayesian paradigm is that once a

sample from the posterior is obtained it is relatively easy to make inference on the

resulting model. Oftentimes, this is done using highest posterior density or cred-

ible intervals. These intervals are similar but not equivalent to classical statistics

confidence intervals. The package MCMCglmm calculates credible intervals in the

following manner. For the parameter of interest, the interval is constructed from the

empirical cumulative distribution function of the sample as the shortest interval for

which the difference in the empirical cumulative distribution function values of the

endpoints is the nominal probability. This procedure makes the assumption that the

resulting posterior is not severely multi-modal. For the purposes of this paper, if the

credible interval includes 0 one would conclude that the predictor of interest has no

effect on the response. Also, if the interval does not include 0 then the predictor does

have some effect on the response.

Now that the estimation and inference procedures have been described in detail,

we proceed to assessing them in the following section using large scale simulations.



Chapter 3

Simulation Approach to Evaluating

Estimation and Inference Methods

3.1 Introduction

The problem of selecting a best approach for estimation and inference within GLMMs

is very complex. The problem is too hard to solve analytically so we are forced to

implement a simulation study. The focus of this chapter is on obtaining a variety of

properties associated with the selected methods. This is achieved by the implemen-

tation of a simulation study.

Section 3.2 is devoted to the accuracy of the estimation procedures. Given just one

possible set of parameters (otherwise known as unique scenarios) we employ all of the

estimation methods and see how close the estimates are to the true values. Section 3.2

is also primarily concerned with the finite sampling distribution. We select the most

stable method glmer and run a large scale simulation in order to mimic the behavior

of the finite sampling distribution. We do this for two reasons. The first is that we

want to compare the other estimation procedures to the sampling distribution while

the second is to determine under what conditions the sampling distribution follows a

normal distribution. This is relevant for constructing confidence intervals. In Section

3.3 we switch our focus to inferential procedures. Here, we are interested in which of

30
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the procedures provide the best power associated with detecting a temporal trend for

a variety of conditions. Finally, in the fourth section we apply each of the estimation

and inferential procedures to 2 data sets provided by The National Parks of Canada.

3.2 Estimation and sampling Distribution

In this section we evaluate the selected methods precision with respect to different

estimation approaches. In other words, we want to see how close the estimated values

are to the true parameter values. Distinct parameter settings let the number of groups

and time points vary. The goal here was to see the effect different sampling sizes have

on estimation.

β0 σβ0
β1 σβ1

Ng Nt Nr

Original loge(10) 0.5 0.1 0.05 10 10 1
Reduced Years loge(10) 0.5 0.1 0.05 10 5 1
Reduced Groups loge(10) 0.5 0.1 0.05 5 10 1
Reduced Both loge(10) 0.5 0.1 0.05 5 5 1

Table 3.1: Estimation Scenarios. This table depicts combinations of parameters or
unique scenarios we will be sampling from in Sections 3.1 and 3.2. Ng, Nt, and Nr

denoting number of sampling groups, number of sampled time points, and number of
repetitions per time point per group respectively.

All computation was completed using R version 2.12.0, MASS version 7.3-7, lme4

version 0.999375-35, and MCMCglmm version 2.06. Given a set of parameters, we

simulated 1000 Poisson GLMM data sets and applied each of the 4 estimation meth-

ods. For parametric bootstrapping we used 200 bootstrap samples. In this section

bootstrapping is used as an estimation method, bootstrapping from the full model.

However, to use parametric bootstrapping as an inferential procedure we sampled

from the null distribution. For MCMCglmm we stayed as close to default input values

as possible, with 13000 iterations 3000 of which were a burn-in period. The prior

for the random effect (co)variance matrix is an inverse Wishart distribution with 1
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and .002 scale and degree of freedom parameters, respectively. We set the additive

over-dispersion parameter to be very close to 0 to mimic traditional GLMM models.

For glmmPQL and glmer we saved the resulting parameter estimates. However, since

both parametric bootstrap and MCMCglmm give us distributions for each parameter for

each simulation we saved a sequence of quantiles. For each simulated data set, the re-

sampling procedures will produce a bootstrapped or posterior distribution. We save

quantiles of interest as a way to summarize the distributions. In order to compare

parametric bootstrap and MCMCglmm to the other methods we used the 50th percentile

or the median of the associated distributions. We will give a fuller explanation of the

sequence of quantiles in latter half of this section.

We simulated using the parameter values given in Table 3.1, where each row is a

unique scenario. For instance, the first scenario labeled original (given in the first row

of Table 3.1) has 10 groups, each with one observation taken at each of 10 time points

resulting in a sample size of 100. The parameter values were β0 = loge(10), β1 = 0.1,

σβ0
= 0.5, and σβ1

= 0.05 with Ng, Nt, and Nr denoting number of sampling groups,

number of sampled time points, and number of repeated samples per time point per

group, respectively. An example of one simulated data set from the first scenario is

shown in Figure 3.1. The intercept and slope for each group does vary, for example

if considered independently, group 4 and 10 will have larger slope values than groups

2 and 9. 1000 data sets resembling Figure 3.1 were simulated, the density of the

estimated values are shown in Figure 3.2. Considering the first scenario, we find that

all methods perform similarly and do a relatively good job at estimating the fixed

effects β0 and β1. However, for the random effect standard deviations this is not the

case. Estimating σβ0
using glmer, glmmPQL and parametric bootstrapping result in

similar estimates, which is not surprising. These estimates are also slightly shifted

to the left resulting in an underestimation of σβ0
. MCMCglmm is more severely shifted

to the left than than the other procedures. Estimates of σβ1
exhibit similar patterns
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as that of σβ0
except that MCMCglmm is severely under estimating σβ1

. However, σβ1

is small, and variances close to 0 can be hard to estimate particularly for MCMC

(personal correspondence D. Bates).

Time

C
o
u
n
t

10

20

30

40

50

60

2 4 6 8 10

l

l

l
l

l

l
l l

l

l

1

l

l
l

l

l l

l

l

l

l

10

2 4 6 8 10

l
l

l l

l

l

l

l
l l

2

l

l

l
l l

l

l

l

l l

3

l

l

l

l
l

l

l

l

l
l

4

l l

l l

l l l
l l l

5

l
l

l
l

l

l

l

l

l

l

6

10

20

30

40

50

60

l l
l

l l l

l
l

l
l

7

10

20

30

40

50

60

l
l l l

l l

l l l

l

8

2 4 6 8 10

l

l

l l
l l

l
l

l l

9

Figure 3.1: Simulated GLMM Data Set with a Poisson response. The parameters are
set to β0 = loge(10), β1 = 0.1, σβ0

= 0.5, and σβ1
= 0.05. β1 > 0 signifying an overall

increasing trend. Each of the windows within the figure are unique sample groups,
where each group has uncorrelated random intercept and slope effects associated with
it.
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under the same parameter values as Figure 3.1. The methods are distinguished using
different types of lines denoted in the legend. The parameter of interest is expressed
in each panel’s x-axis. For bootstrapping and MCMCglmm the 50th quantile of the
parameters are presented.

Other scenarios were included under a similar simulation framework (1000 data

sets were simulated for each scenario). The scenarios have the same parameters as the

first unique scenario but reduced the number of time points sampled to 5 for the first

additional scenario. For the second, we held number of time points at 10 and reduced

the number of sample groups to 5. Finally for the third, we reduced both the number

of groups and time points to 5. These scenarios are also shown in Table 3.1. These

simulation results provide a sense of how the procedures behave under less satisfactory

sampling conditions. Reducing the number of sample time points to 5 resulted in β0

being slightly underestimated for each of the methods. Estimates for β1 remain on

target. σ̂β0
remains underestimated for all of the methods. MCMCglmm grossly under



35

estimates σ̂β1
, with a peak at 0. glmer, glmmPQL, and bootstrapping under estimate

σβ1
. Additional simulations from the parameter settings labeled reduced years and

reduced groups (not included as a figure) exhibit similar patterns but with reduced

accuracy and precision. Estimates of σβ1
get flatter but with peaks forming at 0 for

each of the methods. Reducing the number of sample groups and time points results

in estimates for the fixed effects remaining stable while the estimates for the random

effect standard deviation generally deteriorate.
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Figure 3.3: Quantile Normal plots. The methods are distinguished using different
types of lines denoted in the legend. The parameter of interest is expressed in each
panel’s x-axis. For bootstrapping and MCMCglmm the 50th quantile of the parameters
are presented. Curves were plotted with respect to the scale of glmmPQL. The data
was simulated using the first unique scenario described in Table 3.1.
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We are also curious if these estimates obtained from simulating from the first

unique scenario follow a normal distribution, particularly in the interest of construct-

ing confidence intervals. If the parameter estimates do indeed follow a normal distri-

bution then one can construct confidence intervals in the conventional manner using

the equation θ̂ ± Zα/2
SE(θ̂)/√n. Wald tests need a specific distribution to perform

adequately. Figure 3.3 contains normal plots for each of the methods with respect to

parameters of interest for the first scenario. Normally these types of graphs are plot-

ted with one line and if the line lies on x = y this provides us with evidence that the

distribution is normally distributed. However, if the distributions are linearly related,

the points in the plot will approximately lie on a straight line. Therefore, curves that

are roughly straight will provide evidence that the estimates are normally distributed.

Referring to Figure 3.3 we can see that the plots for the fixed effects β0 and β1 are

all straight and therefore are distributed normally. However, the same cannot be

said about the random effect standard deviation estimates. For glmer, glmmPQL and

bootstrapping the plots of σβ0
are approximately straight, indicating that they likely

follow a normal distribution. However, σβ0
for MCMCglmm is not straight therefore it

isn’t likely that it follows a normal distribution. Considering σβ1
, we see that the

curves are not straight and therefore appear non-normal.

Also note, we chose to employ glmer within parametric bootstrapping because it

is more stable. For the parameters we have selected, it would make little difference,

as glmer and glmmPQL seem to be performing identically with respect to estimation.

Also, glmmPQL does not provide a likelihood upon which we base our test statistic.
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Figure 3.4: Density of finite sampling distributions simulated under 4 sets of pa-
rameter values. Sample size parameter values and the true parameter of interest are
distinguished using different line types which are indicated in the legend. The pa-
rameter of interest is denoted in the x-axis of each panel. Estimates were obtained
from 100, 000 simulations applying glmer.

In the second half of this section we summarize the results of a large scale simula-

tion designed to get a sense of the properties of the finite-sample distribution of the

model parameters. We conduct this simulation to see how close the parameter distri-

butions obtained from the re-sampling approaches are to the sampling distribution, in

addition to wanting to know if the sampling distribution follows a normal distribution.

If so, we construct confidence intervals in the conventional way. We construct the fi-

nite sampling distribution by applying our most stable estimation procedure (glmer)

to an large number of simulations (100, 000) and save the parameter estimates.
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Figure 3.5: Bootstrapped Quantile Distribution. The figure contains box plots for
bootstrapped quantile estimates. The quantiles of interest are denoted in the x-axis
of each panel. The parameter of interest is expressed in the y-axis of each panel. We
have also included quantiles of the discrete sampling distribution as a reference frame
for the bootstrapped estimates as is implied in the legend. The data was simulated
under the first scenario in Table 3.1.

Using the same parameter values shown in Table 3.1, we simulate 100, 000 data

sets and estimate model parameters using glmer. The resulting density plots are

shown in Figure 3.4. The first set of parameter values (which we’ll refer to as the

original parameter values) resulted in sampling distributions that look normally dis-

tributed, with the random effects being slightly underestimated as expected [28].

However, when we reduce group size and number of time points, the fixed effects es-

timates become more variable around the true value. The distribution of the random

effect standard deviation estimates act very strangely: σ̂β0
develops a local maxi-

mum close to 0, while that of σ̂β1
becomes skewed with additional probability mass
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near 0. This is not surprising as the sampling distribution of variance estimates is in

general strongly asymmetric [7]. As mentioned in the previous section, parametric

bootstrapping and MCMCglmm both effectively estimate a distribution for the param-

eters of interest. We used 200 data bootstrapped samples. We simulated 1000 data

sets under the first unique scenario and saved quantile estimates for Bootstrapping

and MCMCglmm. The quantiles of interest are the .5%, 1%, 2.5%, 5%, 10%, · · · , 95%,

97.5%, 99%, 99.5% quantiles. The resulting plots are shown in Figures 3.5 and 3.6,

respectively. The quantile estimate curves of the sampling distribution are also in-

cluded in these figures. We see when comparing the bootstrapped quantiles to the

sampling distribution that the fixed effects are estimated adequately. However, boot-

strapping tends to underestimate both σ̂β0
and σ̂β1

. MCMCglmm also approximates

the sampling distribution for the fixed effects adequately. However, it usually un-

derestimates σ̂β0
and performs horribly for σ̂β1

especially in the tails. The sampling

distribution’s quantile estimates are well above the spread of the σ̂β1
posterior distri-

bution produced by MCMCglmm. Given the aforementioned estimation results it seems

best to employ glmer or glmmPQL for estimation in practice, with a slight preference

towards glmer, as it is approximating a true likelihood and not a quasi likelihood.

Furthermore, under this balanced design the discrete sampling distribution for the

fixed effects appears to be distributed normally so it is reasonable to construct con-

fidence intervals in the conventional manner.

In this section we have observed a few properties of the estimation procedures. For

balanced designs with parameter values given in Table 3.1 the asymptotic estimation

procedures perform satisfactory for the fixed effects. Investigation of the finite sam-

pling distributions reveals that constructing confidence intervals for the fixed effects

is appropriate. All methods underestimate σβ0
and σβ1

especially MCMCglmm.

The next section will proceed to evaluate different methods of inference associated

with these estimation procedures.
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Figure 3.6: MCMC Quantile Distribution. The figure contains box plots for posterior
quantile values. The quantiles of interest are denoted in the x-axis of each panel. The
parameter of interest is expressed in the y-axis of each panel. We have also included
quantiles of the discrete sampling distribution as a reference frame for the posterior
quantile values. The data was simulated under the first scenario in Table 3.1.

3.3 Power Analysis Approach

Statistical power is derived from the decisions one can make when performing a

statistical test. In standard hypothesis testing, there are two types of error coined

Type I and Type II. Type I error occurs if the the null hypothesis (H0) is rejected

when it is true. Type II error occurs if the the null hypothesis is not rejected although

the alternative hypothesis (H1) is true. These decisions are shown in Table 3.2.

Statistical power is the probability of rejecting H0 given H0 is false [29]. For our

purposes, H0 will be that the time variable has no overall effect on the response.

Specifically, H0 will assume that β1 = 0. Furthermore, we will simulate GLMM data
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with a Poisson response in which a fixed and random slope is included. An example

of such a simulation is shown in Figure 3.1. Knowing that H0 is false we calculate

the probability of rejecting the null hypothesis for each of the inferential procedures

using a large scale simulation.

H0 True H1 True
Fail to Reject H0 X Type II Error
Reject H0 Type I Error X

Table 3.2: Decision Table.
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Figure 3.7: Power Figure. Each window plots factor levels along the x-axis and
power along the y-axis for each corresponding inferential procedure. Each procedure
is denoted by distinguishing symbols and colors as seen in the left legend. The mean
of each procedure’s power for each level are depicted using distinguishing lines and
colors as is denoted in the right legend.

Power analysis is useful in calculating minimal sample size parameters required

to accept the outcome of inferential procedures. In our case, factors that effect the
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sampling framework are the number of groups (Ng), number of time points (Nt), and

repeat samples within a group for each time point (Nr). Power analysis also gives

us a way to calculate a lower bound for the effect size that experimental design is

likely to detect. In particular, for a fixed sample size we’ll have an idea of how small

the magnitude of β1 can be in order for us to detect a trend. But, this is further

complicated by σβ1
, as the coefficient of variation increases (cv =

σβ1

β1

) we expect the

procedure’s ability to detect a trend to deteriorate.
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Figure 3.8: β1 Power Figure. This figure depicts the dynamics of statistical power
with respect to β1 holding all other factors constant for each of the inferential pro-
cedures. Each window correspond to one of the 16 unique combinations of σβ1

, Ng,
Nt, and Nr used in the power simulation. The windows are ordered from left to right
along the rows which correspond to the first 16 rows of Table 3.3. To illustrate, the
window in the second row third column has the same power, σβ1

, Ng, Nt, and Nr

values as the seventh row of Table 3.3. Values for β1 are denoted along the x-axis with
statistical power on the y-axis. Corresponding inferential procedure are distinguished
with different line colors. Black, red, yellow, and blue are associated with glmmPQL,
glmer, Parametric Bootstrapping, and MCMCglmm, respectively.

We implemented the power simulation in the following manner. We begin by set-

ting the values of β1, σβ1
, Ng, Nt, and Nr. We’ll refer to these different combinations

as unique scenarios. For all scenarios β0 and σβ0
are set to loge(10) and .5, respec-

tively. We keep these constant as to not add more dimensions to our simulation.

There are already 64 unique scenarios, if we had let β0 and σβ0
vary even with just
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two levels each there would have been upwards of 256 scenarios. Since we are also

simulating 500 times for each scenario it would have not been feasible for the scope of

this thesis. We are also not primarily concerned with β0 and σβ0
as they are nuisance

parameters, we fix their values while recognizing that different values of β0 and σβ0

could affect our power calculations.

Given a unique scenario we simulate 500 data sets and for each data set and apply

the estimation and inferential procedures. For glmmPQL and glmer we declare they

have detected a trend if their associated p-value is less than .05. In other words, our

testing level (α) is set to .05. For parametric bootstrapping we use 200 bootstrapped

simulations and declare that parametric bootstrapping has detected a trend if the

p-value < .05. We then carry out MCMCglmm, calculating a 95% highest density

interval for β1. If 0 is not included in the interval we declare that β1 contributes

significantly to the model.

We do this for each of the simulated data sets obtaining a power value for the

initial unique scenario by computing the number of times we detected a trend and

divide by the number of iterations.

Selecting the levels for the unique scenarios was done pragmatically. We used

values that were likely to be estimated in ecological GLMMs. We designed the ex-

periment to include 5 factors, each having 2 levels (a high and a low level) except β1

which has 4. It was hypothesized that the magnitude of β1 was the most important

factor. Each of the 64 unique scenario power simulation took approximately 60 hours

of computational time using the cluster provided by the Mathematics and Statistics

Department of Dalhousie University. Leading to approximately 3840 hours of com-

putation. Of course, we simulated in parallel to reduce the overall computation time

considerably.

The results from the power simulation are shown in Table 3.3. Combinations of

parameter values are located on the left of the vertical line while the associated power
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for each of the inferential methods is on the right. Another perspective of the power

results is shown in Figure 3.7. This figure depicts graphically how change in factor

level effects power for each of the inferential procedures.

For a perspective of how β1 effects statistical power while holding all other factors

constant we construct Figure 3.8. We generally see that power increases as we increase

the levels of β1, which is not surprising. The lowest statistical power for all of the

inferential procedures are given when Ng = 10, Nt = 5, Nr = 1, and σβ1
= .10 as seen

on rows 9, 25, 41, and 57 of Table 3.3, and in the third row first column in Figure

3.8.

In order to get a sense of what factors contribute to each inferential procedure’s

power we implemented a standard analysis of variance (ANOVA) on the results of

the power simulations. We included all 2 factor interactions. We transformed the

statistical power (our response) using the following the equation logit(power-.01) thus

releasing the restriction that the response must be on the interval [0, 1] . Analysis of

the Wald test obtained using glmmPQL revealed that all the main effects are indeed

significant (α = 0.05), with three two level interactions contributing significantly to

the response. The highest levels of variation in ANOVA come from the factors: β1,

σβ1
, Ng, Ny, and Nr, in descending order. Furthermore, higher levels of β1, Nr, Nt,

Ng lead to higher power. However, increasing the level of σβ1
decreases our ability to

detect a trend within glmmPQL. Considering the significant interactions we observe a

positive two level interaction between Nr and Nt, and between β1 and Ng, implying

an added compound effect when moving to higher levels of these factors. However,

we observe a negative two level interaction effect between β1 and σβ1
and between

σβ1
and Nt. That is, power is not as high as it would be considering only the main

effects given the increase in power associated with β1 and decrease associated with

σβ1
, the same goes for σβ1

and Nt.
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The same analysis as above was carried out with our response being the power of

the Wald test obtained using glmer and found similar results. All the main effects

were significant along with the two level interactions between Nr and Nt, β1 and

Ng, σβ1
and Nt, and between β1 and σβ1

. The interactions that were positive above

remained positive and the negative interaction remained negative. These similar

results are not surprising given both procedures use the same inferential method.

We’ll now consider the power of parametric bootstrapping. As seen in Table 3.3

there are two variations of parametric bootstrapping. Their distinction lies in the

formulation of the null distribution. As we have stated previously, we obtain the test

statistic as the difference in the log likelihoods of the full and null models. We con-

struct the distribution of the the test statistic under the null hypothesis by simulating

under the null model. The first variation of parametric bootstrapping (referred to as

Parametric Bootstrapping) defines the null model as having only β1 set to 0. Within

the second variation (which we’ll refer to as modified parametric bootstrapping) β1

and σβ1
are both set to zero. For a fair comparison to the other inferential procedures

which are term-wise, we’ll focus on the first variation of parametric bootstrapping.

However, the problem with this procedure is that we bootstrap from a model with a

random effect and no associated fixed effect which appears to be unconventional. But,

as seen in Table 3.3 power increases with σβ1
for modified parametric bootstrapping

and remains quite high when β1 is on its lowest level. More discussion with follow on

this topic.

Continuing the description of the procedures, the test statistic is always at least

zero because the log likelihood of the full model is always at least as big as the log

likelihood of the null model. We parametrize the full and null models using maxi-

mum likelihood not restricted maximum likelihood within glmer. We are comparing
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Ng Nt Nr β1 σβ1
glmmPQL glmer P BS MCMCglmm Mod P BS

10 5 1 0.050 0.05 0.34 0.36 0.28 0.21 0.52
10 10 1 0.050 0.05 0.80 0.80 0.67 0.66 0.99
20 5 1 0.050 0.05 0.60 0.61 0.50 0.50 0.84
20 10 1 0.050 0.05 0.95 0.96 0.93 0.92 1.00
10 5 3 0.050 0.05 0.60 0.61 0.48 0.44 0.90
10 10 3 0.050 0.05 0.84 0.85 0.74 0.72 1.00
20 5 3 0.050 0.05 0.88 0.88 0.82 0.84 0.99
20 10 3 0.050 0.05 0.98 0.98 0.96 0.96 1.00
10 5 1 0.050 0.10 0.27 0.29 0.18 0.17 0.79
10 10 1 0.050 0.10 0.37 0.39 0.26 0.28 1.00
20 5 1 0.050 0.10 0.43 0.44 0.33 0.36 0.96
20 10 1 0.050 0.10 0.55 0.55 0.48 0.52 1.00
10 5 3 0.050 0.10 0.36 0.37 0.26 0.28 0.97
10 10 3 0.050 0.10 0.38 0.38 0.28 0.27 1.00
20 5 3 0.050 0.10 0.52 0.52 0.46 0.48 1.00
20 10 3 0.050 0.10 0.60 0.60 0.55 0.54 1.00
10 5 1 0.150 0.05 0.99 0.99 0.97 0.98 1.00
10 10 1 0.150 0.05 1.00 1.00 1.00 1.00 1.00
20 5 1 0.150 0.05 1.00 1.00 1.00 1.00 1.00
20 10 1 0.150 0.05 1.00 1.00 1.00 1.00 1.00
10 5 3 0.150 0.05 1.00 1.00 1.00 1.00 1.00
10 10 3 0.150 0.05 1.00 1.00 1.00 1.00 1.00
20 5 3 0.150 0.05 1.00 1.00 1.00 1.00 1.00
20 10 3 0.150 0.05 1.00 1.00 1.00 1.00 1.00
10 5 1 0.150 0.10 0.93 0.93 0.85 0.85 1.00
10 10 1 0.150 0.10 0.99 0.99 0.98 0.97 1.00
20 5 1 0.150 0.10 1.00 1.00 0.99 0.99 1.00
20 10 1 0.150 0.10 1.00 1.00 1.00 1.00 1.00
10 5 3 0.150 0.10 0.98 0.98 0.96 0.96 1.00
10 10 3 0.150 0.10 0.99 0.99 0.98 0.99 1.00
20 5 3 0.150 0.10 1.00 1.00 1.00 1.00 1.00
20 10 3 0.150 0.10 1.00 1.00 1.00 1.00 1.00
10 5 1 0.100 0.05 0.85 0.86 0.76 0.75 0.93
10 10 1 0.100 0.05 1.00 1.00 0.99 1.00 1.00
20 5 1 0.100 0.05 0.99 0.99 0.98 0.98 1.00
20 10 1 0.100 0.05 1.00 1.00 1.00 1.00 1.00
10 5 3 0.100 0.05 0.97 0.98 0.94 0.94 1.00
10 10 3 0.100 0.05 1.00 1.00 1.00 1.00 1.00
20 5 3 0.100 0.05 1.00 1.00 1.00 1.00 1.00
20 10 3 0.100 0.05 1.00 1.00 1.00 1.00 1.00
10 5 1 0.100 0.10 0.67 0.70 0.54 0.58 0.97
10 10 1 0.100 0.10 0.87 0.88 0.76 0.78 1.00
20 5 1 0.100 0.10 0.91 0.91 0.83 0.86 1.00
20 10 1 0.100 0.10 0.99 0.99 0.98 0.98 1.00
10 5 3 0.100 0.10 0.80 0.81 0.68 0.70 1.00
10 10 3 0.100 0.10 0.87 0.88 0.79 0.78 1.00
20 5 3 0.100 0.10 0.98 0.98 0.96 0.96 1.00
20 10 3 0.100 0.10 0.99 0.99 0.99 0.98 1.00
10 5 1 0.025 0.05 0.11 0.12 0.08 0.06 0.31
10 10 1 0.025 0.05 0.35 0.36 0.25 0.21 0.93
20 5 1 0.025 0.05 0.22 0.23 0.16 0.16 0.51
20 10 1 0.025 0.05 0.48 0.48 0.40 0.40 1.00
10 5 3 0.025 0.05 0.25 0.25 0.17 0.15 0.65
10 10 3 0.025 0.05 0.37 0.37 0.25 0.23 1.00
20 5 3 0.025 0.05 0.36 0.36 0.27 0.26 0.86
20 10 3 0.025 0.05 0.58 0.58 0.51 0.50 1.00
10 5 1 0.025 0.10 0.13 0.14 0.10 0.08 0.69
10 10 1 0.025 0.10 0.18 0.20 0.11 0.13 1.00
20 5 1 0.025 0.10 0.16 0.17 0.12 0.15 0.91
20 10 1 0.025 0.10 0.22 0.22 0.15 0.17 1.00
10 5 3 0.025 0.10 0.18 0.19 0.11 0.12 0.97
10 10 3 0.025 0.10 0.17 0.17 0.09 0.10 1.00
20 5 3 0.025 0.10 0.20 0.20 0.16 0.16 1.00
20 10 3 0.025 0.10 0.22 0.22 0.18 0.19 1.00

Table 3.3: Power Simulation Results. This table contains the results from our power
simulation. The factors of interest are expressed on the left of the table. Resulting
in 64 combinations or unique scenarios. The corresponding power of each unique
scenario are expressed on the right of the table for each of the inferential methods.
P BS and Mod P BS are abbreviations for parametric bootstrapping and modified
parametric bootstrapping. Ng, Nt, and Nr denote number of groups, number of time
points or years, and number of repetitions per time points per group, respectively.
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likelihoods so using ML is more appropriate [2]. Finally, we calculate the p-value as

the density to the right of the test statistic of the bootstrapped distribution.

A few more words on the distinction of the variation of parametric bootstrapping.

The issue arises when we have to say what we mean by the statement that the slope

is 0. There are two possible interpretations. The first interpretation associated with

Parametric bootstrapping is that β1 = 0. The second interpretation associated with

modified parametric bootstrapping is that β1 = 0 and σβ1
= 0. The disadvantage

with the first approach as that we go against convention and parametrize a model

with a random effect without the associated fixed effect. The disadvantage of the

second approach is that we would have to simulate data in the following manner: as

β1 moves towards 0 then σβ1
should also approach 0.

To clarify, in Table 3.3 one can see a lot of high power values for modified para-

metric bootstrapping. In order to shed some light on the issue we simulated from four

unique scenarios under both the above null hypotheses. Each scenario was simulated

250 times performing modified parametric bootstrapping and obtaining a p-value

upon each iteration. Under the null hypothesis with β1 = 0 and σβ1
= 0 we found

that the p-values were approaching a uniform distribution on interval [0, 1]. Conse-

quentially, the test would reject H0 with respect to the selected critical region given

H0 is true. On the contrary, if we implement modified parametric bootstrapping to

data that has been simulated under the other null hypothesis, that is β1 and σβ1
6= 0

than the p-values are not uniform. We decided for a fair comparison to the other

inferential procedures we would focus on parametric bootstrapping, that is when we

exclude only the fixed effect β1 from the null model. Similarly as above, we applied

ANOVA to see what factors effect the power of parametric bootstrapping. In this

instance, all the main effects are declared significant. We also observed the exact

same significant two factor interactions as glmmPQL and glmer which are between Nr

and Nt, β1 and Ng, σβ1
and Nt, and between β1 and σβ1

. The interactions that were
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positive above remained positive and the negative interaction remained negative. Fi-

nally, we analyze MCMCglmm as above and observe similar results obtained for glmmPQL

and glmer. We should also note that although power is interpreted differently in a

Bayesian context, power does remain a useful measure. It symbolizes how much the

unique scenarios can be expected to refine our prior beliefs. For MCMCglmm power,

all the main effects are significant. Also, there is a significant positive interaction

between Nr and Nt, and a negative interaction between β1 and σβ1
, and between σβ1

and Nt.

We have seen that increasing β1, Nt, Ng, and Nr contributes to higher power for

all of the methods. However, for all inferential procedures increasing σβ1
results in

decreased power, thus a decreased probability of detecting an existing trend. Often,

researchers have some degree of control over Ng Nt and maybe even Nr. Therefore,

sampling procedures which have been designed to have a higher number of Ng or

Nt are more likely to detect a trend. According to the ANOVA, Ng had the highest

amount of variation out of the factors a researchers can control. The significant inter-

actions in all the above analyses do appear reasonable. For example, increasing both

Nr and Nt does increase the sample size. This leads to a higher compounded power

than if both Nr and Nt were effecting power independently. We’ll now compare each

of the inferential procedures, in conjunction with making recommendations on the

design of sampling that would maximize our ability to detect a trend given different

the procedures.

3.3.1 Comparison of Inferential Procedures

With respect to power, glmer outperforms all of the selected inferential procedures

with glmmPQL slightly behind it. Parametric bootstrapping and MCMCglmm performed

the worst. The resampling approaches generally obtain about .10 less statistical power

than the asymptotic approaches for moderate values of β1. There was no crossover
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of power between unique scenarios and procedures except for between MCMCglmm and

Parametric Bootstrapping. In other words for the other methods, if one procedure

outperformed another it did so for all unique scenarios. MCMCglmm and parametric

bootstrapping outperformed the other exactly 24 times while obtaining the same

power 16 times. This is all clear upon viewing Table 3.3. With respect to the design

of the simulated data, the asymptotic inferential procedures perform better than the

re-sampling approaches. However, we expect that as we move away from balanced

designs and include outliers that asymptotic procedures will not perform as well as

the re-sampling approaches.

3.3.2 Design Implications

While there is no formal standard on what specifies an adequately powered test, a

good rule of thumb is for a test to have power of at least .80. Given we specify

a critical value of .05, (α = .05) we would have a four to one ratio between the

probability of Type II and Type I error. That is, the risk of a false negative would

be four times as large as a false positive. In order words, if the power is too low it is

not beneficial to implement an experiment.

Researchers are obviously subject to designing their study based upon unknown

β1 and σβ1
. Considering all of the inferential procedures, we see that if cv < 1

(equivalently β1 > σβ1
) all procedures have relatively adequate power with only a few

values for MCMCglmm dipping below .80. However, when cv > 1 this ceases to be the

case. In this situation, researchers must have high levels Ng, Nt, and Nr to ensure

adequate power. When the magnitude of β1 is half the size of σβ1
even having high

levels of Ng, Nt, and Nr is not enough to ensure power of .80. If cv = 1 we have

adequate power values provided not all of Ng, Nt, and Nr are low. When β1 is as low

as .025 all inferential procedures will be hard pressed to detect a trend.
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3.4 Analysis of Real Application

In this section we apply each of the methods to two data sets sampled by The Na-

tional Parks of Canada. The Salamander data set (as seen in Figure 1.1) serves as an

example in which the random slope effect does not appear to be high. We include this

analysis to illustrate how the methods behave when there is little slope variability

associated with the grouping structure. Since the response is a count, it is conven-

tional to model the response with a Poisson distribution. We include fixed intercept

and slope parameters associated with year. We’ll assume the random intercept and

slope effects associated with group are independent of each other.

Table 3.4: Salamander Estimation. This table contains GLMM estimates obtained
using the procedures outlined in the left column for the Salamander data set shown
in Figure 1.1.

ParameterEstimates 95% HD Intervals
glmmPQL glmer MCMCglmm PBS

β0 4.147 4.088 (3.734, 4.426) (3.753, 4.357)
β1 -0.09901 -0.08806 (-0.129, -0.03959) (-0.3869, 0.2184)
σβ0

0.3283 0.5005 (0.09902, 0.6814) (0.262, 0.6924)
σβ1

2.684e-06 0.05709 (0.0007945, 0.01058) (0.2943, 0.7146)

Table 3.5: Salamander Inference. This table contains the results of the inferential
procedures applied to the salamander data set.

method p-value/sig
glmmPQL 3.446e-07
glmer 2.107e-06
P BS ≈ 0.005

MCMCglmm sig value < .05

Employing each of the estimation methods results in the parameter estimates

shown in Table 3.4. Estimates for β0 and β1 supplied by glmmPQL and glmer are

similar for the fixed effects. 95% highest density intervals of the posterior distribution

obtained from MCMCglmm for the fixed effects are also shown. The intervals include the

estimated values obtained from glmmPQL and glmer. We are more interested in how
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the estimating procedures cope with little variability associated with the grouping

of the data. We see that glmmPQL produces estimates of σβ1
close to 0. glmer

attributes a higher standard deviation of the random effects associated with group.

The posterior distribution for the standard deviations is quite close to the boundary.

Given the low estimate glmmPQL provides for σβ1
it may be reasonable to apply

glmmPQL without a random slope effect. Inferential procedures for β1 were applied

and their results are shown in Table 3.5. Parametric bootstrapping for estimation and

inference are not the same. For estimation we bootstrap under the full distribution

and record the parameter estimates. However, for inference we bootstrap under the

null distribution and record the deviance. Given lower variability with respect to

the grouping structure, the estimation and inferential procedures seem to perform

adequately.

We have also included salmon data collected by Parks Canada to illustrate esti-

mation and inference methods. Salmon were sampled using closed site multiple pass

electro fishing. A section of a stream called a plot was closed off by a net, preventing

salmon from exiting or entering. An electro fishing device was run through the area

to temporarily stun the fish. Unconscious fish were collected and measured and the

process was repeated. Stunned fish were not returned to the stream until sampling

was completed. This was done yearly on multiple plots, returning to the same plot

every year. For simplicity, we will not consider the sampling sweeping structure and

take the response variable to be the sum of salmon caught per plot. This data set is

shown in Figure 1.2. In contrast to the Salamander data the Salmon data exhibits

more variability in the slope of each plot. We’ll model these data using a GLMM,

assuming that the response given the random effects follows a Poisson distribution.

The predictor is related to the mean response via a log link function. We include in-

tercept and slope fixed effects, denoted β0 and β1. We also assume that the intercept

and slope random effects are independent and are normally distributed.
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Figure 3.9: Salmon Posterior Distributions. Each window exhibits posterior densities
for the Salmon model produced by MCMCglmm. Parameters of interest are denoted in
the x-axis and density along the y-axis.
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the distribution of the test statistic derived under the null model using parametric
bootstrapping.



54

Table 3.6: Salmon Estimation. This table contains GLMM estimates obtained using
the procedures outlined in the left column for the Salmon data set shown in Figure
1.2.

ParameterEstimates 95% HD Intervals
glmmPQL glmer MCMCglmm PBS

β0 4.053 4.057 (3.424, 4.581) (-0.7475, 0.7171)
β1 -0.09593 -0.1019 (-0.1337, -0.07479) (-0.1541, -0.06099)
σβ0

0.4771 0.5816 (0.1009, 1.436) (0, 1.019)
σβ1

0.01072 0.02534(0.0002807, 0.004149) (0, 0.05449)

Table 3.7: Salmon Inference. This table contains the results of the inferential proce-
dures applied to the Salmon data set.

method p-value/sig
glmmPQL 1.003e-10
glmer 1.842e-23
P BS ≈ 0

MCMCglmm sig value < .05

Employing each of the methods results in the estimates seen in Table 3.6. The

estimates for the fixed effects using glmmPQL and glmer are quite similar. Both

estimate β̂1 < 0 indicating that the salmon population is declining each year. A 95%

highest density interval of the posterior of β1 produced by MCMCglmm lies within only

negative values thus agreeing with the estimates from the other methods. This model

also explains variability in the intercept and slope by associating it with different

plots. Estimates of σβ0
are high, implying that the initial populations of each plot

do vary. Estimates of σβ1
are lower than σβ0

but are not small enough to rule out

a random slope effect. Therefore, slope does vary within each plot but in general

exhibit a decreasing pattern as is established by a significant negative fixed slope

effect estimate.

We are also interested whether the parameter β1 contributes significantly to the

model. This would allow us to say something meaningful about the trend of the

Salmon population. Inferential procedure results are shown in Table 3.7. The 3

classical approaches agree with each other. That is, the p-values associated with

β1 are quite small. The histogram of the bootstrapped test statistic under the null
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hypothesis is shown in Figure 3.10. The Bayesian approach also agrees with the

classical approaches in that the the posterior of β1 consists of negative values with high

density close to glmmPQL and glmer estimates. A graph of the posterior distribution

for all of the parameters is shown in Figure 3.9, and we can say that β1 contributes

to our understanding of salmon populations.



Chapter 4

Conclusion

4.1 Conclusion

Based upon a variety of large scale simulations of a Poisson GLMM with random

intercept and slope effects we have observed multiple properties of the selected es-

timation and inferential procedures. In the long run, glmmPQL and glmer perform

similarly. All methods underestimate the standard deviation of the random effects,

especially MCMCglmm. This problem is more severe when we are sampling from less

than 10 groups, or for less than 10 time points.

Upon generating a discrete sampling distribution we notice that the estimates

of the fixed effects are distributed normally, provided there are enough groups and

time points. However, the distribution of the random components behaves strangely.

This indicates that asymptotic normal confidence intervals for the fixed effects can

be appropriate but should not be constructed for the random components. Our pri-

mary focus in this thesis was to investigate inferential procedures associated with β1.

We have seen that the Wald test corresponding to glmer gives the highest statistical

power, with the Wald test associated with glmmPQL performing slightly worse. The

95% credible intervals provided by MCMCglmm and p-values obtained by parametric

bootstrapping produce marginally worse statistical power than the asymptotic ap-

proaches. The highest statistical power was observed when β1, Ng, Nt, and Nr were

56
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high and σβ1
were low. Ng was the most important of the factors that researches nor-

mally are able to control. Generally, all the inferential procedures will have difficulty

detecting a trend if β1 < .05 especially when σβ1
is large. However, increasing the

levels of Ng, Nt, and Nr will increase the probability of observing a significant trend.

The results of the power simulation would recommend having as many sampling

groups and time points as feasible.

4.2 Discussion

It may seem surprising that the asymptotic approaches perform better than the re-

sampling approaches. We think this may be a result of the design of our simulated

data. We simulated data that was balanced and without outliers. As we move

away from such designs the re-sampling approaches may start to out perform the

asymptotic approaches.

Within parametric bootstrapping, we had a choice of how to specify the null

distribution which we simulate from. We could have let β1 = 0 and σβ1
6= 0 or

β1 = 0 and σβ1
= 0 (our focus went into the first interpretation but did some analysis

corresponding to the second approach as seen in the furthest column to the right

in Table 3.3). In order to test the second variation of parametric bootstrapping

more fairly we would have had to change how we set up the factors within the power

simulation. This would entail reducing σβ1
alongside β1. We felt it a fairer comparison

to the other procedures to implement parametric bootstrapping in the first way. As

the second variation would effectively test for both β1 and σβ1
.

4.3 Future Work

We accomplished what we intended in our investigation of GLMM estimation and

inferential procedures. Nevertheless, given the scope of this thesis, there remain a
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number of properties that we are interested in. In the future we would like to take our

focus away from a Poisson response variable. Although count data are an important

part of ecological modeling, we would investigate cases where the response variable

follows other members of the exponential family, such as binomial or multinomial.

We could also further the analysis by including more levels of each of the contributing

factors. Furthermore, we’re interested in how unbalanced designs and the inclusion

of outliers change power for each of the inferential procedures. One would expect

parametric bootstrapping and MCMCglmm to become more reliable than conventional

inferential procedures in these circumstances. We could also design our simulated

data to exhibit a variety of correlation structures. For instance, we could include

correlation between the two random effects or include unequal correlation between

repetitions of the same group of the same year and the same group of a different year.

Likewise, we could design the simulation program to include over and under disper-

sion. Once we have investigated these properties, we could design a general GLMM

method within R for Parametric Bootstrapping, as Parametric Bootstrapping can be

a challenging procedure for researchers with limited computational background. In

closing, many of the problems facing GLMM inference remain an open ended problem

that will take considerable time and effort to solve.
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