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Abstract

Software bug reports often lack crucial information (e.g., steps to reproduce, expected

behaviour), which makes bug resolution challenging. A recent study found that 78% of

bug reports from open-source projects (e.g., Eclipse) contain less than 100 words each

and thus require the developers to spend more time on bug resolution. According to an

existing survey, 77% of 327 professional developers from major technology companies

(e.g., Google, Meta) consider missing information a major problem and emphasize

complementing them with useful information (e.g., environment configuration). In this

thesis, we propose and evaluate two novel approaches that complement deficient bug

reports with relevant information using Generative AI. In our first study, we propose

— BugMentor — a novel approach that combines structured information retrieval and

neural text generation (e.g., CodeT5) to generate appropriate answers to the follow-up

questions from bug reports. Our approach identifies past, relevant bug reports to a

given bug report, constructs the context and then leverages it to generate the answers.

According to our evaluation, BugMentor generates good answers and outperforms

three existing baselines significantly in terms of four appropriate metrics (e.g., BLEU,

Semantic Similarity). We also conduct a developer study involving 10 participants

where BugMentor’s answers were found to be more accurate, precise, concise and useful.

In our second study, we propose — BugEnricher — a novel approach that enriches bug

reports with meaningful explanations using neural text generation. We fine-tuned the

T5 model on software-specific vocabulary (e.g., Stack Overflow tags) to generate expla-

nations against software-specific terms and jargon, which has the potential to enrich a

bug report. Our evaluation using three performance metrics shows that BugEnricher

generates understandable to good explanations according to Google’s standards and

outperforms two baselines from the literature. We also conduct a case study to demon-

strate the benefit of our bug report enhancement and found that it was able to improve

an existing technique in detecting textually dissimilar duplicate bug reports, which

has been reported as a major challenge. Given the empirical evidence above, our ap-

proaches have strong potential to support bug resolution and bug report management.
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Chapter 1

Introduction

1.1 Motivation

Software bugs are human-made mistakes in a software system that prevent it from

working as expected [1]. Existing studies have shown that software bugs cost the

global economy billions of dollars every year [2], [3]. Hundreds of software bugs

are submitted to bug-tracking systems like GitHub and JIRA as bug reports [4].

These bugs are then triaged, analyzed, and resolved by developers. Developers spend

∼50% of their programming time finding and fixing bugs [2]. Thus, bug resolution

has been one of the major challenges in software maintenance [3]. A recent study

suggests that up to 78% of 32,198 bug reports collected from four open-source projects

(e.g., Eclipse, Mozilla, Firefox, GCC) have less than 100 words each, which might

not be sufficient (a.k.a., short bug reports) [5]. These short bug reports required

121 days extra on average for their resolutions as opposed to the well-written bug

reports [5]. That is, missing information in bug reports could lead to their delayed

resolution [5]. According to a recent survey [3], 77% of 327 software practitioners (e.g.,

developers, testers, managers) from the major technology companies (e.g., Google,

Meta, Amazon, Microsoft) consider missing information as a major problem and

emphasize on complementing bug reports with useful information (e.g., steps to

reproduce, environmental configuration) [3]. Missing information has also been found

to be a key factor behind the non-reproducibility of software bugs [6]. Thus, missing

information has been a major challenge and complementing the bug reports with

relevant information would greatly benefit the developers in their bug resolution.

Ideally, bug reports should contain all the information, such as system config-

uration, expected behaviour, observed behaviour, and reproducing steps that help

a developer resolve a bug [7]. However, in practice, they often do not contain all

the required information for reproducing or resolving a bug [7]. Let us consider

the example bug report in Fig. 1.1. It discusses a task backlog problem where the

1
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Figure 1.1: An example bug report with missing information (ID #13095)

task dependencies are consistently in a waiting state. However the reporter does not

provide any system configuration details, logs or steps to reproduce. As a result, the

report was later marked as “needs more information” and then closed. According to

existing literature [7], 64.8% of bug reports do not contain any expected behaviour of

target software systems, and 48.6% of them do not explicitly describe the steps to

reproduce a bug. Many software projects on GitHub now require the bug reports to

adhere to specific templates or standard guidelines [8]. However, many bug reporters

might fail to comply with them and might not be able to provide all the information

during report submission [9]. Developers thus often pose follow-up questions to bug

reporters soliciting the missing information. Unfortunately, the bug reporters often

find it challenging to answer the follow-up questions in a timely fashion, according to

a recent developer survey [6]. Such a lack of responses could lead to non-reproducible

or unresolved bugs [10]. However, there has been only a little research investigating

the follow-up questions from bug reports or their answers.

Answers to the follow-up questions provide more contextual information regarding

a reported bug, which could help the developers resolve the bug. However, newcomers

or novice developers to a project might need additional help to accurately understand
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Figure 1.2: An example bug report (ID #77246)

or resolve a bug. In particular, complex contextual information and the incomplete

or inaccurate content in bug reports could make bug understanding a challenging

task [11]. Let us consider the example bug report in Fig. 1.2. The bug report uses

several software-specific terms such as “custom distro”, “RHEL” and “yum/dnf”.

It discusses the ansible version mismatch between the custom distribution of Red

Hat Enterprise Linux (RHEL) and the Yellowdog Updater Modified (yum)/dandified

YUM (dnf) package management tool. To a newcomer, all these terminologies could

be daunting and discouraging. However, decoding them is essential to understand

and diagnose the reported bug. According to an existing study [12], even with prior

experience, developers often struggle to acquire a comprehensive understanding of

any application domain and understand the discussions from a bug report. Thus, a

lack of explanation for the domain-specific terms or jargon could be a major issue

towards bug understandability.

1.2 Problem Statement

Bug reports are a valuable resource for software maintenance and continuous evolution.

Over the last few decades, there has been extensive research to support various bug

report management tasks, including bug triage [13], [14], issue report classification

[15], [16], duplicate bug report detection [17], [18], and bug localization [19], [20].

However, the problem of missing information or domain-specific jargon in bug reports

has not been comprehensively studied or addressed. Given the evidence above, adding
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complementary information to deficient bug reports could greatly benefit software

practitioners in their work.

There have been existing studies that provide complementary information through

Question Answering (QA) to support various software engineering tasks. Tian et

al. [21] designed APIBot that can answer questions related to an API by analyzing

relevant API documentation. Bansal et al. [22] designed a context-aware QA system to

answer basic questions about subroutines. Lu et al. [23] proposed a QA approach that

can provide answers by executing structured queries generated from bug templates.

However, there has been only a little research investigating the follow-up questions

from bug reports or their answers. Breu et al. [10] first conducted a mix of quantitative

and qualitative analysis on follow-up questions and found that 32.34% of the questions

were never responded to. They suggest that the questions in the bug reports were

critical to the effective triaging, reproduction and resolution of a bug. Recently, Imran

et al. [9] proposed a technique that recommends follow-up questions against a deficient

bug report using structured information retrieval. Although both studies above deal

with the follow-up questions from a bug report and are a source of inspiration, they

do not answer the questions.

There have been existing studies to support newcomers or inexperienced developers

who may struggle to comprehend software bug reports. An existing survey by Tan et

al. [24] suggests that a clear description of a bug that does not rely on in-depth domain

knowledge is necessary to help newcomers understand and resolve the bug. Recently,

Correa et al. [25] suggest that the inclusion of web links (to external knowledge

sources or artifacts) in the issue tracker discussion can benefit the developers. Zhang

et al. [5] propose to supplement a bug report with a list of sorted sentences that are

extracted from past, relevant bug reports. Dit et al. [26] proposed a technique that

recommends relevant comments so that the developers can make explicit connections

between the recommended comments and existing ones. Such connections could help

the developers better understand a bug report. While the above approaches offer

complementary information to support bug understanding, they do not focus on the

domain-specific terms or jargon, which warrants for further investigation.

Given the above discussions, missing information is one of the key factors that

affect developers when comprehending software bug reports and could lead to delayed
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bug delayed reproduction and resolution. It affects bug reports in two different

ways. First, bug reports often do not contain sufficient information for timely

resolution. Developers thus pose follow-up questions asking the bug reporter for

missing information. However, bug reporters or any user facing a similar bug may

find it challenging to answer them due to a lack of domain-knowledge. Second, bug

reports may contain domain-specific terms or jargon that may not be well understood

by novice or newcomer developers. Traditional bug tracking systems do not provide

any support to comprehend such domain-specific terms or jargon. To the best of our

knowledge, existing literature might also not be sufficient to enhance the bug reports

plagued by missing information. We thus perform two studies to complement such

deficient bug reports with missing information using automated tools and technologies.

1.3 Our Contribution

In this thesis, we propose and evaluate two novel techniques that support developers

in bug resolution by complementing a deficient bug report in two different ways.

In our first study, we propose a novel technique — BugMentor — that can offer

relevant answers to follow-up questions from bug reports by combining structured

information retrieval and neural text generation. First, we capture textually relevant

questions, answers, and bug reports against a follow-up question using structured in-

formation retrieval [27]. Then we capture each item’s embeddings using Word2Vec [28]

and re-rank them based on their semantic relevance to the question. Second, we

generate meaningful answers to the follow-up question by leveraging the ranked items

above as context with a neural text-generation technique (e.g., CodeT5).

We evaluate answers from BugMentor using four performance metrics — BLEU

score [29], METEOR [30], Semantic Similarity [31], and WMD [32]. We achieve a

BLEU score of 34.12 which indicates that our generated answers are understandable

to good according to Google AutoML documentation [33]. We also conduct an

ablation study to justify our combination of structured information retrieval and

neural text generation in BugMentor. We find that BugMentor can capture a rich

context leveraging structured information retrieval and thus can generate meaningful

answers. BugMentor also outperforms all three baselines — Lucene [34], CodeT5 [35],

AnswerBot [36] — in all four metrics. To further demonstrate its benefit, we conduct a
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developer study involving 10 participants. According to the participants, the answers

from BugMentor were more accurate, more precise, more concise and more useful

compared to the baseline answers.

In our second study, we propose – BugEnricher – a novel technique that can

enhance bug reports with meaningful explanations to their domain-specific terms or

jargon using neural text generation. First, we collect thousands of domain-specific

vocabulary and their explanations from three different sources – StackOverflow, API

documentation, and glossary. Second, we fine tune the T5 model [37] on our collected

vocabulary and explanations. Third, we use TF-IDF to extract the infrequent

domain-specific terms from each bug report. Finally, we generate natural language

explanations to the domain-specific terms or jargon using our fine-tuned T5 model.

Our evaluation using three performance metrics shows that BugEnricher can

generate understandable and good explanations according to Google’s standard, and

can outperform two existing baselines — T5 [37] and AnswerBot [36] — from the

literature. To further demonstrate the benefit of our explanations, we conduct a case

study using the bug reports enriched with explanations. We evaluate the performances

of an existing technique [38] for duplicate bug report detection that is impacted by

the problem of textually dissimilarity [39]. We find that the enriched bug reports

were able to improve the performances of the existing technique in detecting textually

dissimilar duplicate bug reports.

Given the empirical evidence, our proposed techniques have the potential to

significantly improve the bug report management and their resolution.

1.4 Related Publications

Several parts of this thesis are either submitted or ready to be submitted to different

conferences. We provide a list of papers here. In each of these papers, I am the

primary author, and all the studies were conducted by me under the supervision of

Dr. Masud Rahman. While I wrote these papers, the co-author took part in advising,

editing, and reviewing the papers.

• Usmi Mukherjee and M. Masudur Rahman. Answering Follow-up Questions

from Bug Reports Leveraging Structured Information Retrieval with Neural
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Text Generation. In Proceedings of the 47th International Conference on Soft-

ware Engineering (ICSE 2025), pp.13, Ottawa, Canada, April-May 2025.(Pre-

submission)

• Usmi Mukherjee and M. Masudur Rahman. BugEnricher: Explaining Domain-

specific Terms and Jargon from Bug Reports with Neural Machine Translation.

In Proceeding of the 40th IEEE International Conference on Software Mainte-

nance and Evolution (ICSME 2024), pp. 12, Flagstaff, Arizona, October 2024

(Pre-submission).

1.5 Outline of the Thesis

The thesis contains five chapters in total. To complement missing information in

bug report effectively, we conduct two independent but interrelated studies, and this

section outlines different chapters of the thesis.

• Chapter 2 discusses several background concepts (e.g., embedding, transformers,

neural language modeling) that are required to follow the rest of the thesis.

• Chapter 3 discusses our first study that proposes BugMentor, a novel approach

that combines neural text generation (e.g., CodeT5) and structured information

retrieval to generate appropriate answers to the follow-up questions.

• Chapter 4 discusses our second study that proposes BugEnricher, a novel

transformer-based generative model that generates natural language explana-

tions for software-specific terms in Bug Reports.

• Chapter 5 concludes the thesis with a list of directions for future works.



Chapter 2

Background

In this chapter, we introduce the required terminologies and concepts to follow the

remaining of the thesis. Section 2.1 discusses Neural Language Modelling (NLM),

a deep learning based approach to learn the probability distribution of a textual

corpus. Section 2.2 discusses Neural Machine Translation (NMT), a deep neural

network based approach for automated translation. Section 2.3 discusses structured

information retrieval for question answering. Section 2.4 describes embedding, the

process of converting high dimensional vector data into low dimensional semantic

representation. Section 2.5 discusses the definition of domain-specific terms or jargon

that are present in software bug reports. Section 2.6 discusses TF-IDF, a statistical

measure for determining the importance of a term in a document.

2.1 Neural Language Modelling

A language model is a probabilistic model for natural language texts. It generates

the probability of occurrence of a word or a phrase within a given text corpus. Such

probability distributions could be useful in various tasks. For example, in a text

generation task, a language model predicts the next word wL on the basis of all

preceding words and their probability of co-occurrence [40], [41].

wL = arg max
wv∈V

P (wv|wL−1wL−2...w1) (2.1)

where wL is the next predicted word, V is the vocabulary, and wL−1, wL−2, ..., w1

are the previously predicted words.

Neural language models use neural networks to capture the complex patterns and

dependencies of natural language and leverage them to compute the probabilities of

the next word. In particular, they attempt to predict the next word while estimating

the numerical representation of the words and texts (a.k.a., embeddings) [42]. Our first

study – BugMentor – uses neural language modelling to generate answers to follow-up

8



9

questions. Our second study – BugEnricher – uses neural language modelling to

generate explanations for domain-specific jargon.

2.2 Neural Machine Translation

Neural Machine Translation (NMT) is an automated translation technique based on

deep neural networks [43]. NMT has made significant progress, capturing the attention

of both researchers and practitioners. It supports various software engineering tasks

such as automatic program repair [44], [45], commit message generation [46], and

code summarization [47]. An NMT model consists of two main components: an

encoder and a decoder. The encoder accepts a sequence as input and uses Neural

Language Modeling to construct a numerical representation of the input called the

context vector. This context vector is then fed into the decoder, which, based on

this vector, sequentially generates the target sequence, one token at a time. We

use Transformer [37], [48] based state of the art NMT models – CodeT5 [35] and

T5 [37] as a part of our studies. In our first study – BugMentor, we use NMT for

generating answers to the follow-up questions from bug reports. In our second study

– BugEnricher, we use NMT for generating explanations for domain-specific terms or

jargon from bug reports.

2.3 Structured Information Retrieval

Information Retrieval (IR) is a popular method that facilitates access to vast reposi-

tories of information (e.g., World Wide Web). In traditional IR, there are two major

components: query and corpus. The query consists of a few keywords, whereas the

corpus represents a collection of searchable documents. These queries and corpus

are preprocessed using standard natural language preprocessing techniques such as

text normalization, stopword removal and lemmatization. The query corpus is also

indexed by collecting various statistics such as term frequency (TF, the number of

times a term occurs in a given document) and document frequency (DF, the number

of documents in which the term appears) [27]. These terms and document statistics

are then used in algorithms such as TF-IDF and BM25. Traditional IR, however,

does not take into account the underlying structure of the query and the corpus.
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Structured IR is found to be more effective in retrieving. It has the potential to reduce

noise and spurious matching due to the structured nature of the search. For example,

in our first study, BugMentor uses three main components of the bug reports – title,

description, and follow-up questions – that are used to match with the corpus bug

reports. Structured IR divides both query and document into granular abstractions

and calculates the lexical similarity between them [27].

2.4 Word Embedding

Word embedding is a vector representation of words in a Vector Space Model (VSM).

It encodes the meaning of the word in such a way that semantically similar words are

closer to each other within the vector space [49]. An embedding function E : X → Rd

takes an input X in the domain X and generates its vector representation in a

d-dimensional vector space [50]. Each word or phrase is mapped to a vector of real

numbers that represent the meaning of the input [51]. Word embedding can overcome

issues faced by traditional VSM, such as the sparse representation problem of one-hot

encoding or the vocabulary mismatch issue of TF-IDF and BM25. Several techniques

employ neural networks to learn richer word representations, such as Word2Vec [52]

and GloVe [53]. We use Word2Vec embeddings to determine semantic relevance

between bug reports in our first study, BugMentor.

2.5 Domain-specific Terms or Jargon

Domain-specific terms or jargon are specialized vocabularies for a particular appli-

cation domain such as programming language, library or software. They may have

specific meanings or interpretations unique to that domain. They can be categorized

based on their type, application domain (e.g., Android, Firefox), domain concepts

(e.g.,semantic labels/classes) [54], [55]. The explanations or meanings for domain-

specific terms can be found in their corresponding documentation and glossary. In

our second study, BugEnricher, we explain the domain-specific terms or jargon from

several domains including two programming languages - Java and Python.



11

2.6 TF-IDF

Term Frequency - Inverse Document Frequency (TF-IDF) is a statistical measure of

the importance of a term within a document. Each word in the document can have a

TF-IDF score. First, the Term Frequency (TF) is computed using the occurrence of

each term within a document and can be normalized using the total number of terms

in the document as follows.

tf(t, d) =
number of times term t appears in document d

total number of terms in document d
(2.2)

Second, the Document Frequency (DF) refers to the number of documents containing

the term. Words unique to a small percentage of documents (e.g., technical jargon

terms) receive higher importance than the common words across all documents (e.g.,

a, the, and). Inverse Document Frequency (IDF) measures the rarity or uniqueness

of a term across the entire collection of documents by inverting the DF as follows.

DF (t) = occurrence of term t in N documents (2.3)

IDF (t) = log(N/(DF (t) + 1)) (2.4)

Finally, the TF-IDF score is the product of the TF and IDF scores. The greater the

TF-IDF score, the more significant the term in that document [56].

tf-idf(t, d) = tf(t, d)× idf(t) (2.5)

We compute the TF-IDF score to determine the less frequent but important domain-

specific terms or jargon from a bug report in our second study, BugEnricher.

2.7 Summary

In this chapter, we introduce different terminologies and background concepts to

help one follow the remainder of the thesis. We discuss Neural Language Modelling

in Section 2.1, deep learning based approach to learn the probability distribution

of a textual corpus; Neural Machine Translation in Section 2.2, a deep learning

approach for automated translation; Structured Information Retrieval in Section 2.3

for effective retrieval of documents for a given query; Word Embeddings in Section 2.4

for vector representation of text; Section 2.5 defines domain-specific terms or jargon
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and TF-IDF in Section 2.6 for determining important keywords in a document with

respect to a collection of documents.



Chapter 3

BugMentor: Answering Follow-up Questions from Bug

Reports Leveraging Structured Information Retrieval with

Neural Text Generation

Software bug reports often lack crucial information (e.g., steps to reproduce), which

makes bug resolution challenging. Developers thus ask follow-up questions to capture

additional information. However, according to existing evidence, bug reporters often

face difficulties answering them, which leads to the premature closing of bug reports

without any resolution. Recent studies suggest follow-up questions to support the

developers, but answering the follow-up questions still remains a major challenge.

In this chapter, we propose BugMentor, a novel approach that combines neural text

generation (e.g., CodeT5) and structured information retrieval to generate appropriate

answers to the follow-up questions.

The rest of this chapter is organized as follows. Section 3.1 introduces our study

and discusses the novelty of our work. Section 3.2 discusses a motivating example

to demonstrate the effectiveness of BugMentor. Section 3.3 discusses our proposed

technique. Section 3.4 presents our experimental design, datasets, and evaluation

metrics. Section 3.5 discusses the evaluation results of BugMentor. Section 3.6

discusses relevant works to our study. Section 3.7 discusses the threats to the validity

of our study. Finally, Section 3.8 summarizes this study.

3.1 Introduction

Software bugs are human-made errors in a software system that prevent the software

from working as expected [1]. Studies have shown that software bugs cost the global

economy billions of dollars every year [2], [3]. Developers also spend ∼50% of their

programming time finding and fixing bugs [2]. Thus, bug resolution has been one

of the major challenges in software maintenance [3]. Hundreds of software bugs are

13
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submitted to bug-tracking systems like GitHub and JIRA as bug reports [4]. These

bugs are then triaged, analyzed, and resolved by developers.

Ideally, bug reports should contain all the information, such as system configu-

ration, expected behaviour, observed behaviour, and reproducing steps that help a

developer resolve a bug [7]. However, in practice, they often do not contain all the

required information for reproducing or resolving the bug [7]. According to existing

literature [7], 64.8% of bug reports do not contain any expected behaviour of target

software systems, and 48.6% of them do not explicitly describe the steps to reproduce

a bug. Missing information like this has been found to be a key factor behind the

non-reproducibility of software bugs [6]. In a survey conducted by Zou et al. [3], 77%

of 327 professional developers from the major technology companies (e.g., Google,

Meta, Amazon, Microsoft) consider missing information as a major problem and

emphasize on complementing bug reports with useful information (e.g., steps to

reproduce, environmental configuration) [3]. In short, missing information has been

a key challenge toward cost-effective bug resolution.

Many software projects on GitHub now require bug reports to adhere to specific

templates or standard guidelines [8]. Unfortunately, many bug reporters might fail

to comply with them and might not be able to provide all the information during

report submission [9]. Developers thus often pose follow-up questions to bug reporters

soliciting the missing information. Unfortunately, the bug reporters often find it

challenging to answer the follow-up questions in a timely fashion, according to a

recent developer survey [6]. For instance, Fig. 3.1 shows how a bug report was

closed prematurely without any resolution due to a lack of responses to the follow-up

question posed by the developer.

Over the last few decades, there has been extensive research to support various bug

report management tasks, including bug triage [13], [14], issue report classification

[15], [16], duplicate bug report detection [17], [18], and bug localization [19], [20].

However, there has been only a little research investigating the follow-up questions

from bug reports or their answers. Breu et al. [10] first performed both quantitative

and qualitative analyses on follow-up questions and found that 32.34% of the questions

were never responded to. According to them, these unanswered questions in the bug

reports were critical to the effective triaging, reproduction and debugging of a bug.
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Recently, Imran et al. [9] proposed a technique that recommends follow-up questions

against a deficient bug report using information retrieval. While both studies above

deal with the follow-up questions of a bug report, they do not answer them.

Automated Question Answering (QA) has been an active research topic for

decades in Information Retrieval (IR) and Natural Language Processing (NLP)

communities [21]–[23], [36], [57]–[62]. There also have been several works in the context

of software engineering. Tian et al. [21] designed APIBot that can answer questions

related to an API by analyzing relevant API documentation. Bansal et al. [22]

designed a context-aware QA system to answer basic questions about subroutines. Lu

et al. [23] proposed a QA approach that can provide answers by executing structured

queries generated from bug templates. However, their approach might fail when a bug

report does not contain the requested information. Xu et al. [36] designed AnswerBot

that can synthesize answers for a non-factoid technical question from StackOverflow

Q&A website. While the above approaches are a source of inspiration, they do not

answer the follow-up questions posed by developers against the bug reports.

In this chapter, we propose a novel technique — BugMentor — that can offer

relevant answers to follow-up questions from bug reports by combining structured

information retrieval and neural text generation. First, we capture textually relevant

questions, answers, and bug reports against a follow-up question using structured infor-

mation retrieval [27]. Then we capture each item’s embeddings using Word2Vec [28]

and re-rank them based on their semantic relevance to the question. Second, we

generate meaningful answers to the follow-up question by leveraging the ranked items

above as context with a neural text-generation technique (e.g., CodeT5) [63].

We select the top 20 popular projects from GitHub that use four programming

languages and collect 30,869 bug reports from them for our experiments. We evaluate

our technique using four popular metrics for text generation, namely BLEU score [29],

METEOR [30], Semantic Similarity [31], and WMD [32]. We achieve a BLEU score of

34.12 which indicates that our generated answers are understandable to good according

to Google AutoML documentation [33]. We also conduct an ablation study to justify

our combination of structured information retrieval and neural text generation in

BugMentor. We find that BugMentor can leverage the rich context captured through
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structured information retrieval and thus can generate meaningful answers. BugMen-

tor also outperforms all three baselines — Lucene [34], CodeT5 [35], AnswerBot [36]

in all four metrics. To further demonstrate its benefit, we conduct a developer study

involving 10 participants. According to the participants, the answers from BugMentor

were more accurate, precise, concise and useful compared to the baseline answers.

To summarize, we make three contributions in this work:

(a) A novel technique — BugMentor — that can generate relevant answers to

follow-up questions from bug reports by combining structured information

retrieval and neural text generation (e.g., CodeT5).

(b) A comprehensive evaluation and validation of BugMentor using both popular

performance metrics (e.g., BLEU score, METEOR score, WMD, Semantic

Similarity) and a developer study involving 10 participants.

(c) A replication package [64] that includes our working prototype, experimental

dataset, and other configuration details for the replication or third-party reuse.

3.2 Motivating Example

To demonstrate the potential benefit of our work, let us consider the example bug re-

port in Fig. 3.1. It has been taken from the tensorflow repository which is maintained

by the organization tensorflow on GitHub [65]. The bug report (Step (a), Fig 3.1)

discusses a memory allocation issue and provides minimal steps to reproduce the issue.

However, it does not follow the standard issue template provided by GitHub [66] and

lacks sufficient information about the system configuration. Subsequently, the devel-

oper (@mohantym) requests the missing information as a follow-up question inquiring

whether they experienced the same issue on nightly version of the software (Step (b),

Fig. 3.1). However, neither the bug reporter (@DanielZanchi) nor anyone else provided

an answer to the follow-up question. As a result, the bug report was initially marked as

stale (Step (c), Fig. 3.1) and later closed due to a lack of response (Step (d), Fig. 3.1).

As shown in Fig 3.1, without proper support in gathering missing information,

software bugs either take longer to be resolved or remain unresolved and are ultimately

closed. Several bugs, such as memory allocation bugs, are considered to be severe [67]
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Figure 3.1: An example of a bug report (ID #58280) being closed due to a lack of
response to the follow-up question
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that significantly impact software quality. Our work — BugMentor — delivers mean-

ingful answers to the follow-up questions, as shown in the answer for issue #58280.

Answer for issue #58280

Question: Have you checked in nightly version too? Could you let us know your

system details for replicating this issue (Xcode Version, OS details, lite c wheel)?

Generated Answer: Adding two flags to Xcode’s ‘Other Linker Flags’ settings

and modify the Podfile to use the nightly TensorFlow build, specifically ‘Tensor-

FlowLiteSwift’ and ‘TensorFlowLiteSelectTfOps’.

We see that BugMentor was able to capture the context of the discussed problem

above and provide useful suggestions. According to the bug report (Fig. 3.1), integrat-

ing the TensorFlow library into an Xcode project resulted in a memory allocation bug.

BugMentor suggests modifying the “Other Linker Flags” from Xcode to link the IDE

to various versions of the TensorFlow library, such as TensorFlowLiteSwift or Ten-

sorFlowLiteSelectTfOps. It should be noted that these library versions were carefully

extracted by our technique from the problem context in the bug report. Furthermore,

BugMentor was able to deliver complementary information (e.g., Other Linker Flags)

that could be useful in resolving the library integration problem. The effectiveness of

such an idea was further confirmed by a discussion on StackOverflow Q&A site [68].

3.3 BugMentor: Proposed Technique

Fig. 3.2 shows the schematic diagram of our proposed technique — BugMentor. As

the input, it accepts a bug report of interest, its follow-up question, and a corpus

of past bug reports with their follow-up questions and corresponding answers. As

the output, our technique generates a relevant answer to the follow-up question. We

discuss different steps of our technique in detail in the following sections.

3.3.1 Constructing the Corpus

We construct our corpus using past bug reports and their discussion history from 20

real-world open-source software systems on GitHub (Step 1, Fig 3.2).
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Choosing the Repositories for the Corpus

To construct our corpus, we collect high-quality repositories using a semi-automated

approach. We follow the approach of Imran et al. [9] and choose GitHub [69] as a

data source. GitHub [69] is a popular open-source platform that supports various

software maintenance practices, including bug report management. We select the

repositories and collect the bug reports as follows.

First, we select the most starred active repositories containing a minimum of

500 issues (reported as of May 2023) using GitHub’s advanced search [70]. We then

categorize the repositories into four subsets based on their programming languages —

Python, Java, Javascript and C++ — where each programming language had five

repositories.

Choosing the Bug Reports for the Corpus

From each repository, we then select the issues that were closed within the last five

years. We select the issues that are labelled as “bug”, “crash”, or “defect” to ensure

that they are discussing software bugs or defects. We also select the bug reports

labelled as “needs more info” and “stale” that were closed due to a lack of activity.

We use GitHub’s REST API [71] to collect the bug reports and their discussion

history. Each of our collected bug reports consists of several fields, namely issue ID,

title, bug description, bug reporter, label, creation time, and resolution time.

Selecting Follow-up Questions

To select follow-up questions from each bug report, we first collect their issue comments

using a GitHub API client [72]. From each comment, we capture four different fields,

namely — comment ID, author of the comment, comment, and comment time.

Following the strategy of Imran et al. [9], we collect the comments that begin with

an interrogative word and end with a question mark. We use NLTK’s Classifier [73] to

identify these comments, as was applied previously [74]. We also consider comments

that requested additional information using words such as ‘please’ or ‘can you’ as

valid comments. Then we select the first valid, interrogative comment that is not

written by the author as our follow-up question from each bug report. We manually
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check up to 30 comments from each bug report to identify our follow-up questions.

Selecting Candidate Answers

The next step in our corpus construction is to select candidate answers against the

follow-up questions above. We apply three criteria to the selection of our candidate

answers: (a) Candidate Answer 1 — the first comment after the follow-up question

that was not authored by the question submitter [9], (b) Candidate Answer 2 — the

first comment after the follow-up question that was authored by the bug reporter,

and (c) Candidate Answer 3 — the most similar comment to the follow-up question

based on BM25 algorithm [75]. Finally, our corpus consisted of hundreds of bug

reports where we capture the Bug ID, title, description, follow-up question and three

candidate answers from each bug report.

Data Pre-processing

We apply standard natural language pre-processing to each bug report, follow-up

question and candidate answer from our corpus. First, we remove redundant or noisy

elements such as escape sequences, special characters, URLs, stack traces or images

from each item [9]. We use appropriate regular expressions from NLTK [76] to retain

the natural language text and code elements while discarding the rest. Second, we

perform lemmatization on all items in our corpus. This step ensures that words are

transformed to their root forms, facilitating better analysis [77].

3.3.2 Capturing Relevant Candidate Answers

We then capture relevant candidate answers against each follow-up question (Step

2, Fig 3.2). We use the ElasticSearch implementation [78] of Lucene [34], [79], [80],

a widely adopted search engine combining Boolean search and Vector Space Model

(VSM), for our task. We employ the Okapi BM25 algorithm [81] from the engine for

similarity calculation. In particular, we calculate two BM25-based relevance scores

where we adapt an existing work of Saha et al. [27]:

s′
(
d⃗, q⃗
)
=
∑
r∈Q

∑
f∈D

s(df , qr) (3.1)
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Figure 3.3: Capturing relevant answers with structured Information Retrieval

Here qr is a query representation, and df is a field from the past bug report (e.g.,

title, description).

Detecting Relevant Candidate Answers

First, we capture five items from each of the given and past bug reports — title

(t), description (d), follow-up question (q), title + description (t+d), and title +

description + question (t+d+q). Then we conduct 25 (5x5) similarity calculations

between these bug reports using Eq 3.1, and add all 25 similarity scores as shown

in Step 1a in Fig. 3.3. According to existing literature [27], such an element-based

similarity calculation can help prevent spurious matching. This score indicates the

general relevance between a given and past bug reports.

Second, we capture five items from the given bug report — title (t), description (d),

and follow-up question (q), title + description (t+d), and title + description + question

(t+d+q) and three candidate answers (ca1, ca2, ca3) from each past bug report.

Then, we conduct 5 (5x1) similarity calculations using Eq. 3.1, for each of the three

candidate answers, as shown in Step 1b, in Fig. 3.3. This score indicates the relevance

between the follow-up question (and its bug report) and each candidate answer.
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While the score from Step 1a indicates a general relevance between bug reports,

the score from Step 1b measures more granular relevance between the question and

answer. Thus, the above two scores capture relevance from two different aspects that

could be complementary to each other. We thus combine the scores from Step 1a

and Step 1b to determine the relevance of each answer against the given follow-up

question (and corresponding bug report) in Step 1c.

Ranking Based on Textual Relevance

We rank the candidate answers based on their BM25-based relevance scores calculated

above (Steps 1-2, Fig. 3.3). In particular, we capture the top K (e.g., 5) relevant

candidate answers from the corpus against a follow-up question (Steps 3, Fig. 3.3). It

should be noted that these answers can come from various bug reports.

Ranking Based on Semantic Relevance

BM25 algorithm relies on keyword matching for relevance estimation, which could

suffer from the vocabulary mismatch problem [82]. We thus incorporate embedding-

based similarity into our approach and detect the semantically relevant candidate

answers. We capture word embeddings, trained by Word2Vec [83] on Stack Over-

flow [28], and calculate the cosine similarity between the embeddings of the follow-up

question and that of each candidate answer. We then re-rank the answers based on

their semantic relevance to the question and return the top K answers.

Capturing the Top Relevant Answers

We combine both BM25-based ranking and semantic relevance-based ranking using

the Degree of Interest (DOI) method. Rahman et al. [84] use the following formulae

to combine two orthogonal rankings:

DOI =
I

N
(3.2)

Here, I is the position of an answer in the ranked list and N is the total number

of answers. First, we calculate the DOI score of each answer within the BM25-based

list and then, we calculate the DOI score within the semantic relevance-based ranked
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list. Then we combined the DOI scores for each answer and rank the answers based

on their combined DOI score.

3.3.3 Constructing the Context

Generative question-answering models such as CodeT5 rely on context to comprehen-

sively understand the semantics or intent of a question and to generate an answer to

the question [85], [86]. We thus construct the context to enrich our follow-up question

(Step 3, Fig 3.2). To construct the context, we use three items from the previous step

— one answer from the ranked list, its bug report, and the given bug report. The

answer and its bug report are likely to contain additional information to compensate

for the missing information in the given bug report that triggers a follow-up question.

We repeat the context construction for each of the K candidate answers and send

them to our CodeT5 model for final answers.

3.3.4 Generating Relevant Answers

We then generate relevant answers to the follow-up question by leveraging our context

above with CodeT5, a pre-trained encoder-decoder Transformer model for neural text

generation. CodeT5 has been pre-trained on 8.35M methods from open-source code

accompanied by documentation and adopts an encoder-decoder network to generate

texts [35] (Step 3, Fig 3.2). The model requires two components to operate, a question

and its context. We provide the model with a follow-up question and its context from

the previous step and capture an answer to the follow-up question from the model.

For example, our technique — BugMentor — offers the following answer against the

example question in Fig. 3.1.

Generated Answer: Adding two flags to Xcode’s ‘Other Linker Flags’ settings

and modify the Podfile to use the nightly TensorFlow build, specifically ‘Tensor-

FlowLiteSwift’ and ‘TensorFlowLiteSelectTfOps’
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3.4 Experiment

We curated a large dataset containing 30,869 bug reports and their follow-up questions

from 20 subject systems and evaluate BugMentor using four appropriate metrics

from relevant literature — BLEU [29], METEOR [30], Semantic Similarity [31]

and WMD [32]. To place our work in the literature, we also conduct an ablation

study [34], [35] and compare our technique with three baseline techniques. Through

our experiments, we answer four research questions as follows:

(a) RQ1: How does our technique perform in answering follow-up questions in

terms of different automatic evaluation metrics?

(b) RQ2: Can our technique outperform the existing baselines in terms of automatic

evaluation metrics?

(c) RQ3: How do different components impact the overall performance of BugMen-

tor?

(d) RQ4: How accurate, precise, useful, and concise are the answers from BugMen-

tor?

3.4.1 Dataset Construction

Corpus Creation

To construct our corpus, we chose the top 20 popular projects from GitHub written

in 4 different programming languages and collected 30,869 bug reports from them.

We also capture a follow-up question and three candidate answers from each bug

report. Finally, our corpus consisted of hundreds of bug reports where we capture the

Bug ID, title, description, follow-up question and three candidate answers from each

bug report. We apply standard natural language pre-processing to each item from

our corpus. Please check Section 3.3.1 for further details on corpus construction.

Ground-Truth Construction

To evaluate BugMentor, we first construct a randomly sampled held-out dataset (i.e.,

95% confidence level and 4.06% error margin) containing 550 bug reports (∼27 bug
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Table 3.1: Inter-annotator Agreement

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Bucket 6
Pairs κ Pairs κ Pairs κ Pairs κ Pairs κ Pairs κ

A1 & A2 0.72 A2 & A3 0.58 A3 & A4 0.44 A4 & A5 0.66 A5 & A6 0.49 A1 & A2 0.41
A2 & A3 0.24 A3 & A4 0.43 A4 & A5 0.53 A5 & A6 0.40 A1 & A5 0.44 A2 & A6 0.29
A3 & A1 0.39 A4 & A2 0.58 A5 & A3 0.65 A6 & A4 0.27 A6 & A1 0.49 A6 & A1 0.40

reports x 20 systems). We then involve six human annotators (e.g., graduate students)

to determine the ground truth answers against the follow-up question from each bug

report. We divided 550 bug reports into six buckets (Table 3.1), each containing ∼90

bug reports, their questions, and candidate answers. Each bucket was annotated by

three annotators, resulting in ∼270-275 bug reports per annotator. We used majority

voting [87] to determine the ground truth answers. That is, the answer having the

majority of votes was chosen as the ground truth answer against a follow-up question.

When the answers did not have a clear majority, i.e. for 3% of the dataset, the three

annotators engaged in discussions to resolve conflicts and determine the ground truth

answer [87]. Each annotator spent ∼2.5-3 hours to complete the annotation.

We compute the Cohen’s κ for all pairs of annotators, and the result is reported

in Table 3.1. Although we use majority voting for annotation, our calculated metrics

show the agreement level for each pair of annotators. We found an average of 0.46,

which indicates a moderate agreement between any two annotators.

3.4.2 Evaluation Metrics

To evaluate BugMentor’s answers against the ground truth, we use four relevant

metrics from literature — BLEU Score [29], METEOR Score [30], Word Mover’s

Distance [32] and Semantic Similarity metric [31]. They are defined as follows:

1) BLEU — Bi-Lingual Evaluation of Understudy:

BLEU score is a commonly used metric for evaluating translation [29], which has

found application in many software engineering tasks (e.g., comment generation [88]).

It compares a candidate text to a reference text and determines how similar they are

based on the matching of their n-grams. The BLEU score is calculated as follows:
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BLEU = BP · exp

(
N∑

n=1

wnlog(pn)

)
(3.3)

where N is the maximum n-gram order, wn is the weight assigned to the n-gram

order, BP is the brevity penalty - a factor that penalizes the BLEU score when

the candidate text is shorter than the reference text and pn is the modified n-gram

precision, which measures the ratio of the overlapping n-grams (between the candidate

text and the reference text), and the total number of n-grams in the candidate text.

2) METEOR — Metric for Evaluation of Translation with Explicit

ORdering:

The METEOR score is a metric for evaluating the quality of machine translation

output based on both lexical and syntactic information [30]. It measures the similarity

between a candidate text and the reference text by sequentially applying exact match,

stemmed match and wordnet-based synonym match between the texts.

3) WMD — Word Mover’s Distance:

WMD [32] is a similarity measure between two texts based on the meaning or

relationships between their words. It is the minimum cost to transform one text into

another by calculating the Euclidean distance between their word embeddings.

4) SS — Semantic Similarity:

In a recent work, Haque et al. [31] investigate which metric reflects human assessment

of similarity the best. They suggest that Sentence-BERT [89] provides semantically

meaningful sentence embeddings. Thus when a candidate text is compared with the

reference text based on these embeddings using cosine-similarity, it has the highest cor-

relation with human-evaluated similarity. Semantic similarity is computed as follows:

SemSim(ref, gen) = cos(sbert(ref), sbert(gen)) (3.4)

where sbert(ref), sbert(gen) are the numerical representations from Sentence-

BERT for the reference text and generated text respectively.
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3.5 Evaluation of BugMentor

3.5.1 Answering RQ1 — How does our technique perform in answering

follow-up questions in terms of different automatic evaluation

metrics?

In this experiment, we analyze the performance of BugMentor using four different

evaluation metrics - BLEU score [29], Semantic Similarity [31], METEOR [30]

and WMD [32]. We divide our held-out dataset into four subsets based on their

corresponding programming languages and report the results for each subset. Table 3.2

shows the performance details of BugMentor in various settings - within the project

and cross-project. It should be noted that a higher value for BLEU, METEOR,

and Semantic Similarity and a lower value for WMD metrics are desirable in our

experiments.

Table 3.2: Performance of BugMentor

Metrics Top K Python Java JavaScript C++ Whole Dataset

Within Project

BLEU ↑
Top 1 26.20 22.36 26.06 25.73 24.47

Top 3 29.25 32.70 31.76 28.03 28.90

Top 5 34.12 33.82 32.38 30.25 31.94

METEOR ↑
Top 1 0.14 0.24 0.30 0.21 0.24

Top 3 0.23 0.26 0.34 0.26 0.36

Top 5 0.29 0.57 0.36 0.29 0.42

SS ↑
Top 1 43.20 42.90 46.30 46.13 50.63

Top 3 58.80 42.90 45.50 54.30 53.49

Top 5 64.50 54.70 54.20 56.10 57.01

WMD ↓
Top 1 5.09 4.97 4.91 5.35 4.18

Top 3 4.89 4.64 4.75 4.93 3.80

Top 5 4.82 3.27 4.29 4.56 3.65

Cross Project

BLEU ↑
Top 1 16.71 14.24 12.36 16.03 14.84

Top 3 20.52 15.12 16.99 18.97 17.90

Top 5 21.86 17.70 19.30 19.92 19.70

METEOR ↑
Top 1 0.12 0.13 0.11 0.09 0.11

Top 3 0.14 0.16 0.13 0.11 0.14

Top 5 0.15 0.19 0.14 0.12 0.15

SS ↑
Top 1 26.80 26.23 27.76 27.30 27.02

Top 3 29.15 29.52 29.75 29.27 29.42

Top 5 31.89 31.80 30.93 30.75 31.34

WMD ↓
Top 1 5.23 5.62 5.10 5.43 5.34

Top 3 5.02 5.64 5.01 5.38 5.26

Top 5 4.87 5.68 4.98 5.36 5.22
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BugMentor achieves an average BLEU Score of 24.47 for Top 1 answer, and a

maximum of 31.94 for Top 5 answers when our whole dataset is considered. In the case

of cross-project setting, these scores drop to 14.84 and 19.70, respectively. However,

our technique achieves a maximum of 26.20 for the Top 1, 32.7 for Top 3 and 34.12 for

Top 5 answers across all four subsets. These BLEU scores indicate that our generated

answers are understandable and good according to Google’s AutoML Translation

documentation [33]. This also shows that the answers generated by BugMentor have a

significant overlap with the ground truth in terms of words and word order. However,

BLEU score primarily focuses on capturing the precision of an answer against the

ground truth. Hence we also evaluate our answers using the METEOR score, where

recall is captured by taking into account additional information such as synonyms,

word forms, and sentence structure [30].

As shown in Table 3.2, BugMentor achieves an average METEOR score of 0.24 for

Top 1 answer, and a maximum of 0.42 for Top 5 answers against the whole dataset,

which are considered to be reasonable [90]. In cross-project setting, our technique

achieves an average METEOR score of 0.11 for Top 1 answer, and a maximum of

0.15 for Top 5 answers. It achieves a maximum of 0.30 for Top 1, 0.34 for Top 3,

and 0.57 for Top 5 answers across four subsets. This shows that BugMentor was

able to produce a significant part of the ground truth texts in the generated answers.

However, since BLEU and METEOR scores rely on keyword matching between a

generated answer and the ground truth answer, they may not capture the semantic

relevance between them. Hence we also evaluate our technique using WMD [32] and

Semantic Similarity [31]. They also have been shown to correlate better with human

judgement of relevance [29], [91].

In Table 3.2, we find that BugMentor achieves an average WMD of 4.18 for Top 1

answer, and a minimum of 3.65 for Top 5 answers, when the whole dataset is consid-

ered. In cross-project setting, our technique achieves an average WMD of 5.34 for Top

1 answer, and a minimum of 5.22 for Top 5 answers. These distance scores show that

BugMentor was able to generate answers semantically similar to the ground truth and

were worded closely to the ground truth. However, WMD may not be sufficient to re-

flect the importance and context of words in a sentence [91], [92]. We thus also evaluate
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our answers using semantic similarity against the ground truth. The metric is appro-

priate when there may not be any syntactic overlap between the answers, which is a

common phenomenon in question answering, according to existing literature [93], [94].

From Table 3.2, we also find that the answers from BugMentor have an average

Semantic Similarity score of 50.63% for Top 1 answer, and a maximum of 57.01% for

Top 5 answers when the whole dataset is considered. It achieves an average Semantic

Similarity score of 27.02% for Top 1 answer, and a maximum 31.34% for Top 5 answer

in cross-project setting. BugMentor achieves a maximum of 46.13% for Top 1, and

a maximum of 64.5% for Top 5 answers when all subsets are considered. All these

numbers indicate a high similarity in meaning and content between BugMentor’s

answers and the ground truth.

Summary of RQ1: BugMentor can generate relevant answers to follow-up questions

that are understandable to good according to Google’s Standard and achieves an

average BLEU score of 31.94. Its answers also have a high semantic overlap with the

ground truth answers and thus achieve an average semantic similarity score of 57%.

3.5.2 Answering RQ2 — Can our technique outperform the existing

baselines in terms of automatic evaluation metrics?

To the best of our knowledge, there exists no work that can offer relevant answers

to follow-up questions from bug reports. However, Lucene [34] is a popular IR-

based tool that has been used to recommend answers in the programming Q&A

site [95], [96]. CodeT5 [35] is a large language model for generating answers to

questions. AnswerBot [36] can synthesize answers for technical, non-factoid questions

on StackOverflow. We thus consider them as our baselines for the comparison. We call

them BaselineLucene, BaselineCodeT5 and AnswerBot, respectively in this experiment.

We evaluate the answers from all three baselines against the ground truth using

four evaluation metrics. Tables 3.3 and 3.4 show the comparison details between

BugMentor and these baseline techniques.

To implement BaselineLucene, we provide a follow-up question as the query and

all candidate answers as the corpus to the Lucene tool. Then we collect the top

K answers from the tool by executing the query for our evaluation. BaselineLucene
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Table 3.3: Comparison of BugMentor with BaselineLucene and Answerbot

Metrics Top K AnswerBot BaselineLucene BugMentor

BLEU ↑
Top 1 4.31 8.60 24.47

Top 3 6.71 10.54 28.9

Top 5 4.24 14.31 31.94

METEOR ↑
Top 1 0.05 0.18 0.24

Top 3 0.12 0.19 0.36

Top 5 0.07 0.21 0.42

SS ↑
Top 1 36.47 42.75 50.63

Top 3 47.69 45.45 53.49

Top 5 47.69 48.78 57.01

WMD ↓
Top 1 5.7 4.55 4.18

Top 3 4.81 4.46 3.80

Top 5 5.01 4.37 3.65

Table 3.4: Comparison of BugMentor with BaselineCodeT5

Metrics Top K BaselineCodeT5 BugMentor

BLEU ↑

Top 1

2.4 24.47

METEOR ↑ 0.04 0.24

SS ↑ 11.01 50.63

WMD ↓ 7.32 4.18

achieves a BLEU score of 8.60, METEOR score of 0.18, Semantic Similarity of 42.75

and WMD of 4.55. On the other hand, BugMentor achieves a BLEU score of 24.47,

METEOR score of 0.24, Semantic Similarity of 50.63 and WMD of 4.18. Thus, our

technique outperforms the baseline in all four metrics.

To implement BaselineCodeT5, we provide a follow-up question as the query and

its corresponding bug report as context to the CodeT5 model, which generates an

answer. We observe that BaselineCodeT5 performs significantly poorly when compared

to BugMentor and BaselineLucene. For example, BaselineCodeT5 achieves a BLEU score

of 2.4, METEOR score of 0.04, Semantic Similarity of 11.01 and WMD of 7.32, which

are 42%-90% lower than the corresponding measures from BugMentor.

To implement AnswerBot, we use the replication package provided by the au-

thors [36], [97]. We provide a follow-up question as the query and all bug reports

along with their candidate answers as the corpus. We observe that AnswerBot per-

forms significantly poorly when compared to BugMentor and BaselineLucene. For

example, AnswerBot achieves a maximum BLEU score of 6.71, METEOR score of
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0.12, Semantic Similarity of 47.69 and a minimum WMD of 4.81, which are lower

than the corresponding measures from BugMentor.

We also perform Mann-Whitney Wilcoxon test [98] to check if the performance

of BaselineLucene, BaselineCodeT5, AnswerBot are significantly lower than that of

BugMentor using BonFerroni Correction [99]. We find that BugMentor performs

significantly higher than BaselineLucene and AnswerBot, i.e., p-value = 0.010<0.016

in terms of all four metrics.

Besides the comparison with traditional baselines, it is important to consider

the other the competitive landscape, particularly with the emergence of popular

Language Model-based approaches (LLMs) such as ChatGPT. Upon conducting

a limited qualitative analysis, we observe that while ChatGPT exhibit a profound

understanding of the bug report context, they fall short in providing answers to follow-

up questions with the desired level of specificity. Furthermore, the responses generated

by LLMs tend to be more verbose, lacking the precision found in BugMentor’s answers.

BugMentor gains a deeper understanding of the bugs from historical bug reports,

excels in capturing a broader context, and thus was able to generate more accurate

responses to follow-up questions. In future, we plan to extensively compare BugMentor

with the modern LLM-based approaches such as ChatGPT.

Summary of RQ2: BugMentor performs better in answer generation than all three

baselines in terms of four evaluation metrics. According to the statistical significance

test, BugMentor outperforms the closest competitors BaselineLucene and AnswerBot –

by a statistically significant margin.

3.5.3 Answering RQ3 — How do different components impact the

overall performance of BugMentor?

Our technique has three key components — (a) structured information retrieval, (b)

embedding similarity-based ranking and (c) neural text generation. In this experi-

ment, we conduct an ablation study to determine the contribution of each component.

In particular, we design different variants of BugMentor with each component and

evaluate their performance in answer generation. Table 3.5 summarizes our results

from the ablation study.
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Table 3.5: Experimental Results from the Ablation Study

Metrics Top K
Components

BugMentorL BugMentorCT5 BugMentorL+E BugMentorL+CT5 BugMentor

BLEU ↑
Top 1 7.62 2.40 5.65 23.58 24.47

Top 3 12.05 6.63 30.50 28.90

Top 5 19.40 8.35 33.41 31.94

METEOR ↑
Top 1 0.21 0.04 0.28 0.26 0.24

Top 3 0.23 0.28 0.30 0.36

Top 5 0.25 0.31 0.32 0.42

SS ↑
Top 1 50.36 11.01 53.28 45.48 50.63

Top 3 53.96 53.49 50.38 58.11

Top 5 57.09 60.33 53.69 57.01

WMD ↓
Top 1 4.29 7.32 3.97 4.92 4.18

Top 3 4.15 3.89 4.62 3.80

Top 5 4.02 3.72 4.42 3.65

BugMentorL = BugMentorLucene, BugMentorCT5 = BugMentorCodeT5,
BugMentorL+E = BugMentorLucene+Embedding ,
BugMentorL+CT5 = BugMentorLucene+CodeT5

We find that BugMentor outperforms all of its variants based on either individual

components or their combinations. The combination of structured information

retrieval and neural text generation (a.k.a., BugMentorLucene+CodeT5) is a close second

when compared using BLEU and Semantic Similarity scores. We see that the absence

of the embedding component reduces its performance from that of BugMentor by

3.63% in terms of BLEU and 10.17% in terms of Semantic Similarity and increases in

WMD by 17.70% when the Top 1 answer is captured. Thus, the Embedding component

improves the semantic closeness between the generated answers and ground truth.

From Table 3.5, we also note that the combination of Lucene and Embedding

(a.k.a., BugMentorLucene+Embedding) is the closest competitor to BugMentor when

BLEU is considered. However, the absence of the text generation component (a.k.a.,

CodeT5) reduces the performance of the variant by 76.91% in terms of BLEU. It

also shows a decrease in performance by 22.22% in terms of METEOR, 7.95% in

terms of Semantic Similarity and an increase in WMD by 2.36% when Top 3 answers

are considered. Thus, the CodeT5 component has a significant impact on improving

not only the understandability of our generated answers (i.e., BLEU) but also their

syntactic and semantic relevance to the ground truth answers (i.e. METEOR, WMD,
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Semantic Similarity).

From Table 3.5, we also find that the components from BugMentor do not perform

well when evaluated individually. For example, if we omit both Embedding and

CodeT5 components and only use Lucene, the performance degrades by 68.85%

in terms of BLEU, 12.5% in terms of METEOR and 0.53% in terms of Semantic

Similarity and WMD increases by 2.63% for Top 1 answer. Similarly, if we use only

the CodeT5 component, the performance degrades by 90.19% in terms of BLEU,

83.33% in terms of METEOR and 78.25% in terms of Semantic Similarity and WMD

increases by 75.11% for Top 1 answer.

Summary of RQ3: Our ablation study demonstrates the contribution of the three

components — structured information retrieval, embedding similarity-based ranking,

and neural text generation (a.k.a CodeT5) — towards the overall performance of

BugMentor. We also found that BugMentor outperforms its four variants based on

individual components or their combinations, which justifies the presence of all three

components in BugMentor.

3.5.4 Answering RQ4 — How accurate, precise, useful, and concise are

the answers from BugMentor?

The metric-based evaluation above demonstrates the benefits of our technique in

answering follow-up questions using four similarity measures. We conduct a developer

study to further demonstrate the benefits of our technique in a practical setting.

Given a bug report (e.g., title, description, and follow-up question), we evaluate how

accurate, precise, useful, and concise (details in Table 3.6) our answers are according

to human developers.

Table 3.6: Quality Aspects of the Generated Answers

Quality Overview

Accurate It provides the same factual information as the reference.

Precise It can answer the question completely

Concise It is short and still answers the question.

Useful The provided information has the potential to answer the question.
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Study Participants: The target group for our study consists of English-speaking

software developers with professional experience in four programming languages —

Python, Java, JS, and C++ — that were used by our collected projects. We sent an

open invitation through our personal connections, and 10 graduate students responded

to our invitation. Each of them had professional experience in software development

and at least two years of experience in the aforementioned programming languages.

We provide them with a quick overview of our project using relevant examples and a

secured link containing our survey. None of the participants knew the specifics of our

designed technique — BugMentor.

Study Setup: For our study, we use 12 use cases where each use case consists

of a bug report and a follow-up question. To select these use cases, we apply random

sampling without replacement to the held-out dataset (Section 3.4.1). To avoid

information overload, we select such bug reports that (a) do not have any stack trace

information and (b) do not warrant any project-specific knowledge to understand

the bug. We select three randomly sampled bug reports from each subset (based on

programming language, Section 3.4.1) and collect corresponding follow-up questions,

ground truth answers, and the answers from both BugMentor and three baseline

techniques — AnswerBot, BaselineLucene and BaselineCodeT5.

We present all 12 use cases to each of the participants. Then the participants

were instructed to assess the accuracy, precision, usefulness and conciseness of the

generated answers (by BugMentor and baselines) with respect to the ground truth

answers. We also instruct the participants to submit their evaluation on a five-point

Likert scale, where 1 indicates strongly disagree and 5 indicates strongly agree. We

also anonymize the source of all generated answers to avoid any potential

bias towards any of the techniques. We thus collect a total of 192 data points (12

questions × 4 explanations × 4 evaluation aspects) from each of the 10 participants.

The design of our developer survey has been reviewed and approved by the

Dalhousie University Research Ethics Board (REB file #: 2023-6885).

Study Results and Discussion: Table 3.7 summarizes our findings from the

developer study. We note that, on average, the participants found the answers from

BugMentor to be the most accurate, precise, useful, and concise. Based on the

median and mode values, we see that the participants agree with our answers the
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Figure 3.4: Comparison of BugMentor with the baseline techniques using the Likert
scores

most. Similar to the findings in RQ2, the participants found the closest competitor of

BugMentor to be BaselineLucene in terms of precision, usefulness and conciseness and

BaselineCodeT5 in terms of accuracy. According to the median values, the developers

agree with AnswerBot, BaselineLucene and BaselineCodeT5 in several cases. However,
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Table 3.7: Comparison of BugMentor with the Baseline Techniques using a Developer
Study

Quality Model Mean Median

Accurate

BaselineLucene 3.03 3

BaselineCodeT5 2.55 3

AnswerBot 2.65 2

BugMentor 3.10 3

Precise

BaselineLucene 2.25 2

CodeT5 2.56 3

AnswerBot 2.34 2

BugMentor 2.96 3

Useful

BaselineLucene 2.62 2

BaselineCodeT5 2.46 2

AnswerBot 2.4 2

BugMentor 2.94 3

Concise

BaselineLucene 2.68 2

AnswerBot 1.7 2

BaselineCodeT5 2.95 3

BugMentor 3.32 4

based on the mode values, we note that the participants disagree with their answers

in many more cases.

Fig. 3.4 shows the distribution of participants’ agreement levels with different qual-

ity aspects of the answers. We see that the participants strongly agree with BugMentor

for a substantial part of the time (e.g., ∼40% for accuracy), and strongly disagree only

a few times (e.g., <20% times), which none of the baselines achieved. On the other

hand, nearly half of the time, the participants disagree with AnswerBot, BaselineLucene

and BaselineCodeT5 regarding various quality aspects of their provided answers.

We also perform Mann-Whitney Wilcoxon test [98] to check if the developers’

preferences to BaselineLucene, BaselineCodeT5 and AnswerBot are significantly lower

than that of BugMentor using BonFerroni Correction [99]. We find that the pref-

erence levels for BugMentor are significantly higher than all three baselines, i.e., p

= 0.0010<0.016 for BaselineLucene, p = 0.0016<0.016 for BaselineCodeT5, and p =

0.00016<0.016 for AnswerBot.
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Table 3.8: Manual Analysis

Dataset AC AP AP + AddInfo AddInfo

Java 7 9 12 20

Python 8 9 17 14

C++ 4 4 16 24

JavaScript 8 5 16 19

Average% 14.06 14.06 31.77 40.10

AC = Answers Completely, AP = Answers Partially,
AddInfo = Additional Information

Manual Analysis: To further investigate the usefulness of BugMentor’s answers,

we perform a manual analysis on 192 bug reports (i.e. 48 samples for each programming

language). We select these samples from the whole collection with a 95% confidence

level and 4.95% error margin. We collect the bug reports, follow-up questions, ground

truth and generated answers. Table 3.8 shows the summary of our analysis.

We analyze our generated answers to the follow-up questions, contrast them against

the ground truth, and determine whether they respond to the question completely,

partially or simply provide additional information. We find that BugMentor, on

average, was able to answer the questions completely for 14.06% of the cases from each

programming language. It was able to answer 14.06% of the questions partially while

adding complementary information to 31.77% of the answers. Furthermore, in 40%

cases, our technique delivered such answers that did not match with the ground truth

answers but were complementary or somewhat relevant to the questions. For example,

let us consider the bug report shown below discussing the issue of links in Atom. It does

not provide the version of the operating system that the reporter uses. The ground

truth answer indicates the OS version and the issue persistence in the safe mode of the

browser. We see that BugMentor’s answer captures the context and points out that the

problem might lie with Ubuntu version rather than other running applications. Thus,

BugMentor can provide complementary information that can benefit the developer.

Title: Links do not work in Atom

Description: After upgrading to Atom, links no longer open in a new tab in Chrome.

For example, clicking on any of the release notes links does nothing.
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Question: What OS do you experience this issue in safe mode?

Actual Answer: Ubuntu; safe mode exhibits the same issue.

Generated Answer: Since upgrading to Ubuntu, I’ve had no issues. However,

similar problems with other apps make me suspect it’s related to the Ubuntu version.

Even in safe mode, Atom still exhibits the problem.

Summary of RQ4: Developers with professional experience found the answers of

BugMentor to be accurate, precise, concise, and useful, with respect to the ground

truth answers. Their preference levels for BugMentor were also higher than those

of the three baseline techniques by a statistically significant margin.

3.6 Related Work

Question Answering (QA) has been an active research topic in both Information

Retrieval (IR) and Natural Language Processing (NLP) communities [21]–[23], [36],

[57]–[62]. There also have been several works that focus on question-answering in

the context of software engineering. Breu et al. [10] first analyzed follow-up questions

from bug reports and found that 32.34% of them were never responded to. Recently,

Imran et al. [9] proposed Bug-AutoQ that recommends follow-up questions against

a deficient bug report leveraging development history using information retrieval.

However, their technique does not answer the follow-up questions.

Murgia et al. [100] leverage the search feature of StackOverflow Q&A site to sug-

gest relevant questions against error messages from a version control system. However,

their technique was trained to provide only simple, recurring questions related to Git

error messages. Tian et al. [21] propose APIBot that can answer questions related to

an API by analyzing the relevant API documentation. However, their solution was

limited to API-related questions only. Bansal et al. [22] design a context-aware QA

system to answer basic questions about subroutines. Lu et al. [23] propose another

QA approach that can provide answers by executing structured queries generated

from a bug report template. Xu et al. [36] designed AnswerBot to synthesize answers

for technical, non-factoid questions from StackOverflow. However, they only use the

title of a question overlooking the detailed problem context (e.g., question body), and



40

thus their answers might be unaware of the problem context. We compare BugMentor

with AnswerBot using experiments, and the detailed comparison can be found in

Section 3.5.2. Abdellatif et al. [58] designed MSRBot to answer the most common

questions related to software development and maintenance. However, their answers

might be limited by the available information in the mined repositories. Song et

al. [101] designed BURT to support bug reporters of Android applications, but their

approach might not generalize to other software applications.

Recently, Language Model-based approaches (LLMs) such as ChatGPT have

emerged as a powerful text generation tool. After conducting a limited qualitative

analysis (Section 3.5.2), we note that while ChatGPT exhibit an understanding

of a given bug report, they often struggle to come up with precise answers to

follow-up questions. BugMentor has a better understanding of past bug reports

and thus captures a broader context. In the future, we plan on conducting a

thorough comparison between BugMentor and contemporary LLM-based approaches

like ChatGPT.

In short, existing relevant works focus on improving deficient bug reports and

answering specific questions related to API, subroutines and Git error messages. To

the best of our knowledge, our proposed technique is the first to automatically answer

the follow-up questions from bug reports, which makes our work novel. We also

combine structured information retrieval with neural text generation (e.g., CodeT5)

to generate the answers, which were found to be meaningful, accurate, precise, useful,

and concise according to two types of evaluation — automated metrics and developer

study. Our technique also outperforms three baselines.

3.7 Threats to Validity

We identify a few threats to the validity of our findings. In this section, we examine

these threats and discuss the steps that were taken to mitigate them.

External Validity: Threats to external validity refer to the lack of generalizabil-

ity in the findings [102]. One threat could stem from our selection of subject systems.

We select 20 software systems written in four programming languages: Python, Java,

JavaScript, and C++, which might not represent all systems at GitHub. However,

the underlying algorithm of BugMentor is not bound to any programming language
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and thus can be easily adapted to any other platforms.

Another threat stems from the small sample size of the held-out dataset for

evaluation (e.g., 550). However, to mitigate this concern, we selected them carefully

through random sampling from all four subsets (95% confidence level, 4.06% error

margin, Section 3.4.1). We also maintain diversity in selecting our 20 subject systems

(Section 3.4.1).

Construct Validity: Construct validity refers to the extent to which the exper-

iment measures what it intends to measure [103]. Inappropriate use of evaluation

metrics could be a threat to construct validity. However, we chose our evaluation

metrics — BLEU, METEOR, Semantic Similarity, and WMD — based on relevant

literature [29]–[32]. We also chose the four quality aspects of generated answers based

on relevant literature [9], [104]. Thus, threats to construct validity might be mitigated.

Internal Validity: Threats to internal validity relate to experimental errors and

subjective biases [105]. We use manually annotated ground truth to answer both RQ1

and RQ2, which could be a source of threat. However, to mitigate this, the annotators

were given appropriate training for their annotation tasks. We also employ majority

voting [87] for decision-making and calculate Cohen’s κ to demonstrate the agreement

levels between annotators [87]. In the developer study, the assessment of answers can

be influenced by subjective bias. However, we anonymize the source of all answers to

avoid any bias towards any technique. Another source of threat could be the replication

of the baseline techniques. For the replication of CodeT5, we collected the pre-trained

model from HuggingFace [106], and for the replication of Lucene, we used Elastic-

Search [78], a standard library. To replicate AnswerBot [36], we used the replication

package from the original authors [97]. Furthermore, we followed the documentation

closely for any customizations. Thus, threats to internal validity might be mitigated.

3.8 Summary

To summarize, in this study, we propose BugMentor, a novel technique to answer

follow-up questions from deficient bug reports by combining structured information

retrieval and neural text generation. Our technique leverages the relevance between

past and current bug reports to gather additional context, which helps us generate an

appropriate answer to the question. Our evaluation using four performance metrics
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shows that BugMentor can generate understandable and good answers to follow-

up questions, as per Google’s Standard. Our technique outperforms three existing

baselines. We also evaluate BugMentor using a user study using 10 developers. The

developers found the answers from BugMentor to be more accurate, precise, concise

and useful compared to the baseline answers. Thus, BugMentor has the potential

to support bug resolution with complementary information in the form of answers

to follow-up questions. However, newcomers or novice developers often struggle to

understand bug reports due to their lack of in-depth knowledge about an application.

Thus we perform another study to further improve the quality of bug reports by

providing explanations to their domain-specific terms or jargon.



Chapter 4

BugEnricher: Explaining Domain-specific Terms and Jargon

from Bug Reports with Neural Machine Translation

Existing studies have shown that about 78% of bug reports from open-source projects

(e.g., Eclipse, Firefox) include less than 100 words each and claim more time from devel-

opers for bug resolution [5]. Our first study in Chapter 3 aims to support the developers

by generating answers to follow-up questions from deficient bug reports. While our

answers have been found useful, novice developers might need more help in their bug

understanding. In this chapter, we propose — BugEnricher — that can supplement

bug reports with meaningful explanations to their domain-specific terms or jargon. Our

evaluation using three performance metrics (e.g., BLEU, METEOR, Semantic Similar-

ity) shows that BugEnricher can generate understandable and good explanations ac-

cording to Google’s standard and can outperform existing baselines from the literature.

The rest of this chapter is organized as follows. Section 4.1 introduces our study

and reports the gap in the literature and our contribution. Section 4.2 illustrates

the usefulness of our technique with a motivating example. Section 4.3 presents

our proposed technique for explaining software-related terms. Section 4.4 discusses

our experimental design and datasets. Section 4.5 discusses our evaluation results.

Section 4.6 discusses relevant studies from the literature. Section 4.7 identifies possible

threats to the validity of our work. Finally, Section 4.8 summarizes this study.

4.1 Introduction

Software bugs are human-made mistakes that prevent a software system from operating

as expected. According to a recent study [2], [3], software bugs cause the global

economy to suffer enormously and lose billions of dollars every year. Bug finding

and corrections take up approximately 50% of a developer’s programming time. Bug

resolution is, therefore, one of the most challenging issues in software maintenance [3].

Hundreds of software bugs are submitted as bug reports to bug-tracking systems such

43
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as GitHub and JIRA [4]. The developers then examine and resolve these bugs by

carefully analyzing the corresponding bug reports.

Given a reported bug, developers need to first understand its root cause and

symptom before they come up with a solution [107]. A recent study suggests that

information in the majority of bug reports is incomplete and inaccurate [108], [109].

Zhang et al. [5] found that up to 78% of bug reports from four open-source projects

(e.g., Eclipse, Mozilla, Firefox, GCC) contain less than 100 words each (a.k.a., short

bug reports). These short bug reports, on average, took 121 extra days to get resolved

when compared to the well-written bug reports due to the lack of information [5].

Thus, understanding the bug reports could be a challenge due to incomplete or

inaccurate information with complex problem context [11]. This challenge could

exacerbate for newcomers or novice developers to a project who need additional

assistance to understand or resolve a bug. According to a recent study [12], even with

prior experience, developers often need help to acquire a comprehensive understanding

of any application domain and understand the discussions from a bug report. One

significant obstacle to bug understanding for novice developers could be the lack of

explanation for the domain-specific terms or jargon in the bug reports.

There have been existing studies to support newcomers or inexperienced developers

who may struggle to comprehend the bug reports. An existing survey by Tan et al. [24]

found that a clear bug description, which does not rely on in-depth domain knowledge,

is crucial to assist newcomers in understanding and resolving the bug. Recently, Cor-

rea et al. [25] suggest that including web links in issue tracker discussions can benefit

developers by providing external knowledge sources or artifacts. Zhang et al. [5]

recommend complementing bug reports with carefully curated sentences from relevant

past bug reports. Dit et al. [26] propose a technique that suggests relevant comments

from past bug reports so that developers can make explicit connections between the

suggested and existing comments. Including such comments in a bug report can be

helpful for the developers to gain a better understanding of the issue. While the above

approaches offer complementary information to support bug understanding, they do

not focus on domain-specific terms or jargon, which warrants further investigation.

In this chapter, we propose a novel technique — BugEnricher — that can sup-

plement bug reports by generating explanations for their domain-specific terms and
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jargon using neural text generation. First, we construct a vocabulary for two popular

programming languages — Java and Python. We scrape the domain-specific terms or

jargon and their explanations from three different sources — StackOverflow, Glossary,

and API documentation. Second, we fine-tune a transformer-based text-generation

model (e.g., T5) with the domain-specific terms or jargon and their corresponding

explanations collected above. Third, we generate the explanations for domain-specific

terms from bug reports using our fine-tuned model and examine their effectiveness

using a case study.

We collect 28,7690 Java, 21,365 Python and 141,567 miscellaneous domain-specific

terms or jargon and their explanations from the aforementioned sources for our ex-

periments. We evaluate our technique — BugEnricher — using three popular metrics

on text generation, namely BLEU score [29], METEOR [30], Semantic Similarity

Score [31]. We achieve a BLEU score of 28.85, which is understandable to good

according to Google AutoML documentation [33]. Our technique also outperforms

two baselines — AnswerBot [36] and T5 [37] — in all three metrics. We also conduct

a case study using duplicate bug reports and attempt to enrich duplicate bug reports

that are textually dissimilar [39]. We find that the enrichment of bug reports by

BugEnricher led to an improvement in the performance of an existing technique

for duplicate bug detection. Thus, the empirical findings above suggest that our

technique has the potential to enrich a bug report significantly, which could lead to

improved bug understanding and management.

We thus make the following contributions in this study:

(a) A large dataset of 141,567 domain-specific terms and jargon and their corre-

sponding explanations that are carefully curated from Stack Overflow Q&A

site, glossary, and API documentation.

(b) A novel approach — BugEnricher — that can complement bug reports with

meaningful explanations of their domain-specific terms or jargon using neural

text generation (e.g., fine-tuned T5).

(c) A replication package [110] that includes our working prototype, experimental

dataset, and other configuration details for the replication or third-party reuse.
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4.2 Motivating Example

Figure 4.1: An example of a bug report from BugZilla (ID #530801)

Table 4.1: Generated Explanations by BugEnricher

Domain-Specific Terms or Jargon Explanations

Javadoc It is documentation generated

BindingLinkedLabelComposer It is for composing labels

annotation It is used to describe an annotation object

null-analysis It is a Java library for analyzing null data

module It is a unit of Java code

To demonstrate the potential benefits of our work, let us consider the example

bug report in Fig. 4.1. It has been taken from the Eclipse project on BugZilla1. The

example report discusses a bug related to BindingLinkedLabelComposer that lacks

awareness of modules. The problem stems from Javadoc when using the annotation-

based null analysis. Specifically, the module name does not appear when hovering

over a module. Table 4.1 shows the explanations generated by BugEnricher. These

explanations were used to enrich the example bug report, and the enriched bug report

can be found below.
1https://bugs.eclipse.org/bugs/show_bug.cgi?id=530801
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Enriched Bug Report

When I enabled annotation (It is used to describe an annotation object) based null

analysis (It is a Java library for analyzing null data), Javadoc (It is documentation gen-

erated) hovers use BindingLinkedLabelComposer (It is for composing labels). In that

context, Javadoc hover for a module (It is a unit of Java code) does not show the mod-

ule name, because the BindingLinkedLabelComposer knows nothing about modules.

In our case study, the enriched bug report improved the rank of its duplicate

report from the 19th to the 13th position in the ranked list when detected by a BM25-

based technique [38], [39]. This significant improvement in the ranking highlights

the importance of our provided explanations, demonstrating an improvement in the

quality of bug reports.

4.3 Methodology

As input, our technique takes a bug report containing domain-specific terms or jargon

that require additional explanation. As output, it generates explanations for those

terms. Fig. 4.2 shows the schematic diagram of our proposed technique. In the

following sections, we discuss different steps of our approach.

4.3.1 Vocabulary Construction

First, we construct a vocabulary of domain-specific terms along with their meanings

(a.k.a., explanations) for two popular programming languages — Python and Java. We

collect them from three different sources — StackOverflow Tags, API Documentation

and Glossary.

(a) StackOverflow Tags

To collect the domain-specific terms and their meanings, we use StackOverflow as

our first source. Each post on StackOverflow consists of several tags that convey

the key concepts of the post. The meaning of each tag is defined on StackOverflow.

We collect 10,022 Java tags, 9,594 Python tags and 105,822 miscellaneous tags from

Stack Exchange Data Explorer (SEDE) using the SQL query — “select ∗ TagName
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Figure 4.2: Schematic diagram of BugEnricher

from Tags”. The “Tags” table contains all the name of the tags in the “TagName”

field. To capture the Java or Python related tags, we collect a list of Tags that

contain the keyword “Java” and “Python” or ”py” in their names. We then scrape

the explanations of all the collected Tag names using Beautiful Soup2. An example

of the StackOverflow tag is shown below.

Tag and Explanation at StackOverflow

Tag: google-chrome-extension

Explanation: Extension development for the Google Chrome web browser. You

write them using web technologies such as HTML, JavaScript, and CSS.

Java related Tag and Explanation at StackOverflow

Tag: javafx-11

Explanation: The JavaFX platform enables developers to create client applications

based on JavaSE that behave consistently across multiple platforms. Built on Java

2https://pypi.org/project/beautifulsoup4/
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technology since JavaFX 2.0, it was part of the default JDK since JDK 1.8, but

starting Java 11, JavaFX is offered as a component separate from the core JDK.

Python related Tag and Explanation at StackOverflow

Tag: python-mode

Explanation: Python-mode is a vim plugin that helps you to create Python

code very quickly by utilizing libraries including pylint, rope, pydoc, pyflakes,

pep8, and mccabe for features like static analysis, refactoring, folding, completion,

documentation, and more.

(b) API Documentation

We collect the API documentation of the most recent stable version of both Python

(3.11) and Java (17) programming languages from their official documentation [111],

[112]. We use Beautiful Soup3 and Request4 libraries for all our scraping.

First, we scrape the overview page from the official documentation containing the

names of all the modules, their explanations and the URLs to further description of the

defined packages and services. We store these module names and their explanations.

Then, from the URLs collected in the previous step, we further scrape the package

and service names, their explanations, and the URLs to further description of the

defined classes and interfaces. Similarly, from the URLs collected in the previous

step, we collect the classes and interfaces names, their explanations, and the URLs

to the fields, methods and constructors names and their explanations. In total, we

collect 18,738 Java and 11,771 Python terms and their explanations from the API

documentation. An example of the terms and corresponding explanations from Java

17 and Python 3.11 API documentation is shown below.

Term and Explanation from Java 17 API Documentation

java.io: Provides for system input and output through data streams, serialization

and the file system.

3https://pypi.org/project/beautifulsoup4/
4https://pypi.org/project/requests/
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java.lang: Provides classes that are fundamental to the design of the Java program-

ming language.

Term and Explanation from Python 3.11 API Documentation

str.splitlines: Return a copy of the string with the leading and trailing characters

removed.

int.bit count: Return the number of ones in the binary representation of the absolute

value of the integer. This is also known as the population count.

(c) Glossary

As our third source, we collect 126 Java and 244 Python language-specific terms

defined in the glossary. For Java we scrape from the oracle glossary 5 and for python

we scrape from the python glossary6.

Term and Explanation from Java and Python Glossary

Python:

DOM: Document Object Model. A tree of objects with interfaces for traversing the

tree and writing an XML version of it, as defined by the W3C specification.

Java:

immutable: An object with a fixed value. Immutable objects include numbers,

strings and tuples. Such an object cannot be altered. A new object has to be created

if a different value has to be stored. They play an important role in places where a

constant hash value is needed, for example, as a key in a dictionary.

After collecting the data from the three data sources, we discard any duplicates

based on their terms and explanations. We divide the data into three different subsets

— Java, Python and Miscellaneous. The miscellaneous subset consists of terms and

explanations from different programming languages. Table 4.2 contains the descriptive

statistics of our dataset. We find that the average length of each domain-specific

term is approximately 13 characters, and their explanations have an average length

of approximately 188 characters.

5https://www.oracle.com/java/technologies/glossary.html
6https://docs.python.org/3.11/glossary.html
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Table 4.2: Dataset Details

PL Source Size
ATL

(characters)

AEL

(characters)
Complete Size

Python

Stack Overflow 10,022 10.58 115.27

28,760API Documentation 18,738 16.72 360.10

Glossary 126 14.31 361.40

Java

Stack Overflow 9,594 11.88 121.38

21,365API Documentation 11,771 15.90 89.61

Glossary 244 10.87 154.19

Micellaneous Stack Overflow 105,822 11.55 114.02 105,822

PL = Programming Language, ATL = Average Term Length,
AEL = Average Explanation Length

4.3.2 Data Cleaning

We use standard natural language pre-processing techniques to clean the domain-

specific terms or jargon and their explanations. First, we remove the noisy elements like

— HTML tags and URLs. Second, we use the “pyspellchecker”, a spell-checking library7

to correct the spellings of any misspelled words. We then perform lemmatization on

all items in our corpus. This step ensures that words are transformed into their root

forms, facilitating better analysis [77].

4.3.3 Data Splitting

After we obtain the cleaned data from the previous step, we split each subset of terms

and explanations into training, validation and test sets. We split each subset of our

dataset (Java, Python, Miscellaneous) into training, validation and testing with the

following ratios: 80% training, 10% validation, and 10% testing data.

4.3.4 Fine Tuning the Model

Model Input, Output and Structures: We fine-tune the T5 model from Hug-

gingFace8 on the T5ForConditionalGeneration variant [106], with our collected data.

We use domain-specific terms or jargon as input (a.k.a., source sentence) and their

7https://pypi.org/project/pyspellchecker/
8https://huggingface.co/t5-base
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explanations as output (a.k.a., target sentence). We train the T5 model with its

associated encoder and tokenizer [37]. The model has a 512-dimensional embedding

size, a 6-layer encoder, and eight attention heads per layer. The model also has

positional embeddings for sequences up to 512 tokens, contributing to its ability to

handle diverse input lengths.

Hyperparameter Tuning: Applying grid search for hyper-parameter tuning

is not feasible due to the large number of parameters in a T5 model (e.g., 60M to

220M parameters) [113]. We thus perform heuristic-based hyperparameter tuning.

We fine-tuned the T5 model through multiple iterations until it reached a stable

BLEU score by tuning parameters such as learning rate, maximum sequence length,

training batch size, and number of training epochs. We also repeat our training with

ten random splits of the Java, Python and Miscellaneous datasets using scikit-learn’s

library [114] and report the average performance. We set the following parameters

for our model training — the train and valid batch sizes are both 8; the learning

rate is 1e− 4; the maximum source and target text lengths are 128 and 512 tokens,

respectively; and a random seed of 42 for reproducibility. Further details about the

hyperparameters can be found in the replication package [110].

Model Optimization and Regularization: In configuring the model archi-

tecture, the feed-forward dimension is set to 2048, and dropout with a rate of 0.1

is applied for regularization. We also use the AdamW optimizer [115], a variant of

the Adam optimizer that corrects the weight decay regularization. The T5 model

is trained on the Colossal Clean Crawled Corpus (C4), a large collection of approx-

imately 750GB of English texts sourced from Common Crawl for text generation

tasks. Thus, we did not pre-train it for our task since our dataset consists of natural

language English language texts [37].

Hardware Configuration and Training Time: Our experiments are run on

one NVidia A100 GPU with 40GB of memory. For the Java Dataset, the average

model training time was approximately 30 hours, and the model was trained for 18

epochs. The average model training time for the Python dataset was approximately

30 hours, and the model was trained for 16 epochs. In the case of the Miscellaneous

Dataset, a more extended training period is required. The average model training time

for this dataset was approximately 120 hours, and the model is trained for 12 epochs.
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4.4 Experiment

We evaluate our technique using three datasets containing domain-specific terms or

jargon and their corresponding explanations using appropriate metrics from the rele-

vant literature —- BLEU score [29], Semantic Similarity (SS) [31], and METEOR [30].

Our datasets are based on Stack Overflow posts, API documentation, and glossary

from two programming languages (Table 4.2). To place our work in the literature, we

also compare our technique with two baseline techniques. Through our experiments,

we answer three research questions as follows:

(a) RQ1: How does our technique perform in explaining domain-specific terms or

jargon according to the automatic evaluation metrics?

(b) RQ2: Can our technique outperform the existing baseline techniques in gener-

ating explanations to domain-specific terms or jargon?

(c) RQ3: Does our enrichment of bug reports help improve an existing technique

for duplicate bug report detection?

4.4.1 Dataset Construction

To evaluate different aspects of our technique through experiments, we construct two

datasets as follows:

(a) Test Vocabulary

To answer RQ1 and RQ2, we reuse the dataset that we constructed earlier (Section 4.3)

and perform splitting to get 10% testing data. Our test dataset contains 2,876 Java,

2,136 Python and 10,582 Miscellaneous terms and their explanations. We call them

JavaTEST , PythonTEST , and MiscellaneousTEST respectively.

(b) Bug Report Vocabulary

To answer RQ3, we collect 92,854 bug reports from an existing benchmark constructed

from three open-source systems — Eclipse, Firefox and Mobile [39]. We follow the

approach of Jahan et al. [39] and apply standard natural language pre-processing

techniques to each bug report. We discard stopwords since it does not capture
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any semantic meaning. We then split the bug report into tokens and remove noisy

elements such as non-alphanumeric characters, numbers, HTML tags, and URLs.

Lastly, we convert each bug report into lowercase text.

To obtain the infrequent, domain-specific terms or jargon from a bug report, we

apply TF-IDF based scoring to its content. We then collect the top 10 least frequent

terms as domain-specific keywords from each bug report for explanation generation.

4.4.2 Generating Explanations and Enriching Bug Report

Using our fine-tuned T5 model, we generate the explanations for each of the domain-

specific terms or jargon that are obtained from the previous step as follows.

(a) Test Vocabulary:

We generate an explanation for each term from all three datasets — JavaTEST ,

PythonTEST , and MiscellaneousTEST . We thus collect 2,876 Java, 2,136 Python and

10,582 Miscellaneous terms and generated explanations.

(b) Bug Report Vocabulary:

Using our fine-tuned model, we also generate explanations for the top 10 domain-

specific terms or jargon from each bug report. The explanations are then injected

into relevant places (see Section 4.2) within the texts to construct the enriched

bug reports. We repeat this for all three subject systems — Eclipse, Firefox and

Mobile. We call these enriched bug reports — EclipseEnriched, FirefoxEnriched and

MobileEnriched and use them to answer RQ3.

4.4.3 Evaluation Metrics

To evaluate the explanations from BugEnricher (a.k.a., fine-tuned T5 model) against

the ground truth, we use three relevant metrics from literature — BLEU Score [29],

METEOR Score [30], and Semantic Similarity metric [31]. They are defined as follows:
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BLEU — Bi-Lingual Evaluation of Understudy

BLEU score is a commonly used metric for evaluating translation [29], which has

found application in many software engineering tasks (e.g., comment generation [40],

text summarization [116]). It compares a candidate text to a reference text and

determines how similar they are based on the matching of their n-grams. The BLEU

score is calculated as follows:

BLEU = BP · exp

(
N∑

n=1

wnlog(pn)

)
(4.1)

where N is the maximum n-gram order, wn is the weight assigned to the n-gram

order, BP is the brevity penalty — a factor that penalizes the BLEU score when

the candidate text is shorter than the reference text, and pn is the modified n-gram

precision, which measures the ratio of the overlapping n-grams (between the candidate

text and the reference text), and the total number of n-grams in the candidate text.

SS — Semantic Similarity

In a recent work, Haque et al. [31] investigate which metric best reflects human similar-

ity assessment. They suggest that Sentence-BERT [89] provides semantically meaning-

ful sentence embeddings. Thus, when a candidate text is compared with the reference

text based on these embeddings using cosine similarity, it has the highest correlation

with human-evaluated similarity. The semantic similarity score is computed as follows:

SemSim(ref, gen) = cos(sbert(ref), sbert(gen)) (4.2)

where sbert(ref), and sbert(gen) are the numerical representations from Sentence-

BERT for the reference text and generated text, respectively.

METEOR — Metric for Evaluation of Translation with Explicit

ORdering

The METEOR score is a metric for evaluating the quality of machine translation

output based on both lexical and syntactic information [30]. It measures the similarity

between a candidate text and the reference text by sequentially applying exact match,

stemmed match and wordnet-based synonym match between the texts.
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4.5 Evaluation of BugEnricher

4.5.1 Answering RQ1 — How does our technique perform in explaining

domain-specific terms or jargon according to automatic evaluation

metrics?

In this experiment, we analyze the performance of BugEnricher using three evaluation

metrics - BLEU score [29], Semantic Similarity [31] and METEOR score [30]. We

evaluate our fine-tuned model using a total of 15,594 domain-specific terms or jargon

from three datasets — JavaTEST , PythonTEST , and MiscellaneousTEST (Section 4.4.2).

We collect explanations from BugEnricher for each of these terms and compare them

against the ground truth explanations. Table 4.3 shows the performance details of

BugEnricher. It should be noted that a higher value for BLEU, METEOR, and

Semantic Similarity is desirable in our experiments.

BugEnricher achieves a maximum BLEU score of 28.85 for Java and 24.63 for

Python, which are considered understandable to good according to Google’s AutoML

Translation documentation [33]. This shows that the explanations from our model

have a significant overlap with the ground truth in terms of individual words and

phrases. However, the BLEU score emphasizes capturing the precision of a response

against the ground truth. Thus, we also evaluate our answers using the METEOR

score, which takes into account additional information such as synonyms, word forms,

and sentence structure when capturing recall [30].

In Table 4.3, we find that our model achieves a maximum METEOR score of 0.27

for Java and 0.23 for Python. This shows that BugEnricher was able to produce a

significant part of the ground truth texts in its generated explanations. However,

since BLEU and METEOR scores rely on keyword matching between a generated

explanation and the ground truth explanation, they may not capture the semantic

relevance between them. Hence, we also evaluate our generated explanations using

Semantic Similarity (SS) metric. Explanations from BugEnricher achieve a maximum

of 53.26% Semantic Similarity (SS) for Java and 48.85% for Python, which indicates

a major semantic overlap with the ground truth explanations.

In Table 4.3, we also report the performance of BugEnricher in cross-language

settings (a.k.a, BugEnricherMiscellaneous) where the domain terms or jargon are related



57

Table 4.3: Performance of BugEnricher

Model BLEU METEOR SS

BugEnricherPython 24.63 0.23 48.85

BugEnricherJava 28.85 0.27 53.26

BugEnricherMiscellaneous 24.27 0.18 41.57

to multiple programming languages and general software engineering. The goal

was to determine the generality of our technique. We collect an explanation for

each term from the MiscellaneousTEST dataset that contains 10,522 domain-specific

terms or jargon and compare them against the ground truth explanation. We find

that BugEnricher achieves a maximum BLEU score of 24.27, METEOR of 0.18 and

Semantic Similarity (SS) of 41.57%. This shows that the generated and ground truth

explanations are semantically and contextually similar even with this dataset. Despite

the performance drop, BugEnricher can offer reasonable explanations across different

programming languages, which is promising.

Summary of RQ1: BugEnricher can generate meaningful explanations for domain-

specific terms or jargon in Python and Java. The generated explanations are un-

derstandable to good according to Google’s Standard, and they achieve a maximum

BLEU score of 28.85, METEOR score of 0.27 and Semantic Similarity score of 53.26,

which are promising.

4.5.2 Answering RQ2 — Can our technique outperform the existing

baseline techniques in generating explanations to domain-specific

terms or jargon?

In this experiment, we compare our technique with two existing baselines in terms

of evaluation metrics. To the best of our knowledge, there exists no work that

automatically generates relevant explanations against domain-specific terms or jargon

from a bug report. However, two existing question-answering techniques could be

closely relevant to ours. AnswerBot [36] can synthesize answers for Java-related

technical, non-factoid questions from StackOverflow. T5 [37] is an encoder-decoder

model trained on a large natural language corpus and has found numerous applications,
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Table 4.4: Baseline Performances

Model BLEU METEOR SS

BaselineAnswerBot 15.23 0.16 32.47

BaselineT5 10.62 0.13 27.89

BugEnricherJava 28.85 0.27 53.26

including Question Answering. We thus consider these two techniques as our baselines

for the comparison. We call them BaselineAnswerBot, and BaselineT5 respectively.

Table 4.4 shows the comparison details between BugEnricher and these baselines.

To implement BaselineAnswerBot, we use the replication package provided by the

authors [36], [97]. To adapt it to our task, we append “What is” as a prefix to each

domain-specific term in the JavaTEST dataset (Section 4.4.2) to construct the question.

We use the author-provided corpus to capture answers (a.k.a., explanations) from this

baseline. We observe that BaselineAnswerBot performs significantly poorly compared

to BugEnricher but performs better than BaselineT5. For example, BaselineAnswerBot

achieves a maximum BLEU score of 15.23, METEOR score of 0.16 and Semantic

Similarity of 32.47, which are lower than the corresponding measures of BugEnricher.

BugEnricher achieves an overall performance gain [117] of 72.12% across all three

metrics compared to BaselineAnswerBot.

To implement BaselineT5, we use the T5-base model on HuggingFace [106]. We

provide the model with the domain-specific terms from the JavaTEST (Section 4.4.2)

for our experiment. We use the T5ForConditionalGeneration implementation [106] of

the baseline and capture explanations for each domain-specific terms or jargon. From

Table 4.4, we observe that BaselineT5 performs poorly compared to BaselineAnswerBot

and BugEnricher in generating explanations. For example, BaselineT5 achieves

a BLEU score of 10.62, a METEOR score of 0.13 and a Semantic Similarity of

27.89. This shows very limited contextual or semantic overlap between the generated

explanation and the ground truth. Overall, BugEnricher achieves a performance

gain [117] of 88.34% across all three metrics, compared to BaselineT5.

Summary of RQ2: BugEnricher performs better in generating explanations than

both baselines in terms of three evaluation metrics. BugEnricher outperforms both

baselines BaselineT5 and BaselineAnswerBot by 72.12% and 88.34% respectively, across
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all three metrics.

4.5.3 Case Study: Answering RQ3 — Does our enrichment of bug

reports help improve an existing technique for duplicate bug

report detection?

Textually dissimilar duplicate bug reports differ from textually similar duplicate bug

reports in terms of their underlying semantics and structures. For instance, textually

dissimilar duplicate bug reports often have missing components (e.g., observed be-

haviours) or components that are written differently, which could lead to their overall

textual differences [39].

In this experiment, we examine whether our enrichment of bug reports with

meaningful explanations can improve the detection of textually dissimilar but duplicate

bug reports [39]. We use a popular IR-based technique — BM25 — to detect duplicate

bug reports, as chosen by an existing work [39]. First, we extract the top ten infrequent

terms from each bug report using TF-IDF (See Section 2.6). Then, we generate their

explanations using BugEnricher and inject these explanations within the bug report.

We call the datasets containing enriched bug reports — EclipseEnriched, FirefoxEnriched

and MobileEnriched in our experiment. Please check Section 4.4 for further details on

the experimental setup. We calculate, the Recall-rate@K of BM25 technique [38]

performance metric for k = 1, 5, 10 and 100, as shown in Table 4.5.

We observe that the Recall-rate@K of the IR-based technique improves for the

enriched bug reports across the three subject systems — EclipseEnriched, FirefoxEnriched

and MobileEnriched. Interestingly, it performs better with EclipseEnriched compared

to FirefoxEnriched and MobileEnriched. We also conduct the Mann-Whitney Wilcoxon

test [98] to check if the performance metrics with EclipseEnriched, FirefoxEnriched and

MobileEnriched are significantly higher. We find that the performance improves by a

statistically significant margin (p-value = 0.0004 < 0.05). Thus, according to the

above evidence, BugEnricher was able to offer complementary information to the bug

reports through the explanations of domain-specific terms or jargon.
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Table 4.5: Performance of a Duplicate Bug Report Detection technique using Enriched
Bug Reports

BM25 for Duplicate Bug Report Detection

Dataset
Textually Dissimilar Duplicates (Recall-rate@k)%

k=1 k=5 k=10 k=100

Eclipse 21.83 37.5 41.27 52.58

EclipseEnriched 28.16 40.24 44.94 56.17

Firefox 11.64 20.82 26.56 46.72

FirefoxEnriched 15.47 21.05 26.71 49.63

Mobile 15.73 28.09 35.96 59.55

MobileEnriched 24.14 28.16 38.22 61.24

Summary of RQ3: BugEnricher is able to offer complementary information to

textually dissimilar duplicate bug reports and enrich them through its explanations

for domain-specific terms or jargon. These enriched bug reports were also found to

improve the performance of an existing duplicate bug report detection technique by

a statistically significant margin.

4.6 Related Work

Several existing studies attempt to help newcomers comprehend bug reports by com-

plementing them with additional information. Correa et al. [25] proposed the inclusion

of web links in issue tracker discussions that can benefit developers by providing

external knowledge sources or artifacts. Zhang et al. [5] suggest enhancing bug reports

with ranked sentences extracted from historical bug reports using information retrieval.

Dit et al. [26] introduce a technique that recommends relevant comments to help devel-

opers establish explicit connections between the recommended comments and existing

comments. Moran et al. [118] proposed FUSION, a tool for enhancing Android bug re-

ports with reproduction steps of an Android bug. Mattia et al. [119] proposed EBUG

that can provide a real-time understanding of reproduction steps in software bug

reports. Xu et al. [36] developed AnswerBot to generate responses for technical, non-

factoid questions from StackOverflow. We compare BugEnricher with AnswerBot [36]
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using experiments. The detailed comparison can be found in Section 4.5.2.

In short, existing techniques provide additional information to complement bug

reports through external resources and past relevant bug reports. However, they do

not address the challenges novice or newcomer developers face in comprehending

bug reports. To the best of our knowledge, our technique is the first to enrich bug

reports with domain-specific terms or jargon explanations using neural text generation,

which makes our work novel. We found that the generated explanations from our

technique outperform two existing baselines according to automated metrics. We also

found that the enrichment of textually dissimilar bug reports with explanations for

domain-specific terms or jargon improved the performance of an existing duplicate

bug detection.

4.7 Threats to Validity

We identify a few threats to the validity of our findings. In this section, we examine

these threats and discuss the steps that were taken to mitigate them.

External Validity: Threats to external validity refer to the lack of generalizability

in the findings [102]. One threat could stem from our selection of data sources. We

select the API documentation and glossary of two programming languages and the

Stack Overflow tags, which might not represent all relevant sources for software-specific

terms or jargon. However, the underlying algorithm of BugEnricher is not bound to

any programming language and thus can be easily adapted to any other data sources.

Construct Validity: Construct validity refers to the extent to which the exper-

iment measures what it intends to measure [103]. Inappropriate use of evaluation

metrics could be a threat to construct validity. However, we chose our evaluation met-

rics — BLEU, METEOR, and Semantic Similarity — based on relevant literature [29]–

[32]. Thus, threats to construct validity might be mitigated.

Internal Validity: Threats to internal validity relate to experimental errors and

subjective biases [105]. A source of threat could be the replication of the baseline

techniques. For the replication of T5 [37], we collected the pre-trained model from

HuggingFace [106]. To replicate AnswerBot [36], we used the replication package

from the original authors [97]. Furthermore, we followed the documentation closely

for any customizations. Thus, threats to internal validity might be mitigated.
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Limitation: Our study contributes to explaining domain-specific terms or jargon

that can be valuable to a developer in comprehending the bug report. However, it is

essential to acknowledge certain limitations that may impact the generalizability and

interpretation of the findings. Our selection of data could also introduce sampling

bias. In future, we will consider more sources for domain-terms and jargon.

(a) Generalizability of Data: In our study, we only use three different sources for

collecting our data — StackOverflow, Glossary and API documentation. However,

they may not capture all domain-specific terms or jargon that could be present on a

bug report.Our selection of data could also introduce sampling bias. In future, we

will consider more sources for domain-terms and jargon.

(b) Dependency on Pre-trained Models: Our study utilizes pre-trained models such

as T5 for generating explanations. The effectiveness of these models is contingent

upon the quality and representativeness of the pre-training data. Issues such as

biases present in the pre-trained models or their limited understanding of certain

domain-specific nuances could impact the accuracy of explanations generated for bug

reports.

4.8 Summary

Our previous study (Chapter 3) provides missing information to deficient bug reports

by answering their follow-up questions. In this chapter, we propose BugEnricher

that generates explanations to software-specific terms by learning from thousands of

domain-specific terms and their explanations from Stack Overflow, official API docu-

mentation, and an online glossary. Our evaluation using three performance metrics

shows that BugEnricher is able to generate understandable to good explanations to

the domain-specific terms when compared against the ground truth as per Google’s

standards. Our technique was also able to outperform two existing baselines across

three metrics. Furthermore, we also conduct a case study using duplicate bug reports

and attempt to enrich duplicate bug reports that are textually dissimilar. We find

that the enrichment of bug reports by BugEnricher improved the performance of an

existing technique for duplicate bug detection. Thus, the empirical findings above

suggest that our technique has the potential to enrich a bug report significantly, which

could lead to improved bug understanding and management.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Missing information in bug reports makes bug resolution challenging for developers [3].

Bug reports often do not contain all the required information for reproducing or

resolving the bug [5]. Developers pose follow-up questions to bug reporters seeking

missing information. However, bug reporters often fail to provide answers in a timely

fashion. Furthermore, complex contextual information in bug reports could make

bug understanding challenging. Newcomers or novice developers of a project might

thus need additional help to understand or resolve a bug accurately. First, there have

been several existing studies that provide complementary information to bug reports

using automated techniques [9], [10], [21]–[23]. However, there has been little research

investigating the follow-up questions from bug reports or their answers. Second,

existing studies offer complementary information to support bug understanding, lever-

aging external resources and past relevant bug reports [5], [25], [26], [36], [118], [119].

However, they do not focus on the domain-specific terms or jargon, which warrants

for further investigation. This thesis addresses the issue of missing information by

complementing deficient bug reports with additional information. Thus, we conduct

two separate but complementary studies (Chapter 3) and Chapter 4), and we have

the following outcomes.

• The first study (Chapter 3) proposes a novel technique — BugMentor — that

can offer relevant answers to follow-up questions from bug reports by combining

structured information retrieval and neural text generation. We evaluate our

technique on top 20 (5 Java, 5 Python, 5 C++ and 5 JavaScript) GitHub

projects and four evaluation metrics (i.e., BLEU, Semantic Similarity, WMD

and METEOR). Our evaluation using four performance metrics shows that

63
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BugMentor can generate understandable and good answers to follow-up ques-

tions, as per Google’s Standard. Our technique was also able to outperform

three existing baselines across all four metrics. We also evaluate BugMentor

using a user study using 10 developers. The developers found the answers from

BugMentor to be more accurate, precise, concise and useful compared to the

baseline answers. Thus, BugMentor has the potential to support bug resolution

with complementary information in the form of answers to follow-up questions.

• The second study (Chapter 4) proposes a novel technique — BugEnricher — that

generates explanations to software-specific terms by learning from thousands

of domain-specific terms and their explanations from Stack Overflow, official

API documentation, and an online glossary. We evaluate our technique on

Python, Java, and Miscellaneous (a.k.a., cross-language) and three evaluation

metrics (i.e., BLEU, Semantic Similarity, and METEOR). BugEnricher is

able to generate understandable to good explanations to the domain-specific

terms when compared against the ground truth as per Google’s standards. Our

technique was also able to outperform two existing baselines across three metrics.

Furthermore, we also conduct a case study using duplicate bug reports and

attempt to enrich duplicate bug reports that are textually dissimilar. We find

that the enrichment of bug reports by BugEnricher improved the performance

of an existing technique for duplicate bug detection.

5.2 Future Work

We have several directions for future research from both our studies. We present the

potential future work for each study below.

5.2.1 BugMentor

There are several avenues for future work from BugMentor. First, we plan to design

a tool that can be integrated with real-world platforms like GitHub or JIRA to assist

the bug reporters and the developers in their work. In particular, real-time feedback

from the stakeholders can be leveraged to improve our retrieval algorithm. Second,

BugMentor does not use a fine-tuned version of CodeT5. If the labelled dataset (Refer
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to Section 3.4.1 for details) can be extended, it can be used to fine-tune the CodeT5

model, which could lead to better answers.

5.2.2 BugEnricher

In the future, there are numerous potential directions for BugEnircher. First, we

plan to investigate how image and video data attached to the bug report can provide

additional context to the bug report. Second, we plan on fine-tuning BugEnricher

with vocabulary from popular libraries from both Python and Java and improving

the explanations further to generate code examples and investigate if these enriched

bug reports can improve existing automated bug localization techniques.
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