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Abstract

Electrides are ionically bonded materials that have delocalized electrons serving as

anions. When electrides have a layered crystal form, the electrons are confined within

the 2D gaps between the atomic layers and operate as high-mobility, low-scattering

charge carriers with remarkably low work functions. The atomically-thin form of

layered electrides, called electrenes, retain these 2D electron gas-like states at the

surface and interlayer regions.

In this work, density functional theory is used to explore if the conduction prop-

erties and work functions of monolayer and bilayer electrenes can be improved using

biaxial strain loading, up to ±5%. The electron transport characteristics are indi-

rectly examined by calculating the state density of electrons near the Fermi level,

and the average distance of surface states from the atomic lattice, <z>, to approx-

imate the electron-phonon coupling. The electrenes of interest are those from the

alkaline earth sub-pnictogenide family of inorganic layered electrenes: Ca2N, Sr2N,

Sr2P, Ba2N, Ba2P, Ba2As, and Ba2Sb.

The manipulation of electronic states in electrenes is found to be highly variable,

with some electrenes experiencing minimal changes, while others see a definitive in-

crease in state density near the Fermi level, mostly originating from near the edge

of the Brillouin zone. The biggest improvement is in monolayer Ba2N, where surface

state density increases by 56% under 2% compressive strain. However, state density

and <z> do not necessarily correlate, so low electron-phonon coupling of these states

is not guaranteed. The bilayer electrenes show the largest <z> and the most variation

with strain. Bilayer Ba2Sb is expected to have the lowest electron-phonon coupling

with a <z> of 2.2 Å at 5% tensile strain. Work function sees a consistent reduction in

all cases under tensile strain, with bilayer electrenes having lower values than their

monolayer counterparts. The lowest work function value observed in bilayer Ba2Sb,

which starts at 2.38 eV when unstrained, and drops to 2.24 eV under 5% tensile

strain. These findings indicate that strain can be used to manipulate and enhance

the electronic transport properties of electrenes.

ix



Chapter 1

Introduction

In ionically bonded materials, atoms transfer electrons to fill their respective valence

shells, and this leaves the atoms with net opposing charges. Cations are atoms which

have donated electrons and anions are those atoms which accept electrons. The

traditional example is NaCl. Na is an alkali metal and has one valence electron, and

chlorine is a halogen with one vacancy in its valence shell. When the electron is

transferred between them, it leaves Na with a positive charge and Cl with a negative

charge ([Na]+, [Cl]−). The resulting polarization due to this electron distribution

induces an electrostatic attraction between ions which is the source of the bonding

in the material. This is the simplest model of ionic bonding and it holds when the

excess number of electrons in the donating atoms match the required electrons in the

valence shells of the receiving atoms.

However, there are cases where the material has a surplus of donated electrons that

cannot be taken up by the anions. It then becomes possible for these excess electrons

to spill out from the cation and fill whatever empty space is available in the atomic

lattice, and thereby act as the anion. Such materials with anionic electrons are called

electrides, and are of great interest for their electrical properties [2, 3]. Electrides are

classified based on the dimensionality of the space the anionic electrons occupy. Zero-

dimensional (0D) electrides have electrons surrounded on all sides by the lattice, and

are localized to that region in the material. One-dimensional (1D) electrides means

there are channels present in the lattice that allow the electrons to occupy the length

of the channel and move freely along it. Two-dimensional (2D) electrides confine the

electrons in only one direction, allowing them to move freely in a plane.

The first ever confirmed 2D electride, the ionic crystal Ca2N, was reported by

Lee et al. in 2013 [4]. Calcium is an alkaline earth metal with two s-orbital valence

electrons, while nitrogen is able to accept three electrons in its p-orbital valence shell.

By the stoichiometry of the compound, this leads to nitrogen taking three of the four

1
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electrons donated by the two calcium atoms, leaving one remaining to serve as the

anionic electron; [Ca2N]
+·e−. Because Ca2N is a layered material, comprised of 3-

atom thick atomic slabs (with a thickness of 2.5 Å) separated by 3.9 Å of interstitial

space, the excess electron fills this interlayer space. As a result, the atomic slabs act

as the cation and the interlayer electrons act as the anion.

Figure 1.1 shows the atomic structure and electron density of Ca2N. Also shown is

the band structure of bulk Ca2N representing the electron eigenstates, where a single

band crosses the Fermi level; this band corresponds to the interlayer states.

Γ Γ
Figure 1.1: Atomic lattice with overlaid electron density (left) and band structure
(right) of Ca2N. Electron density in calculated for an energy range from EF − 1 eV
to EF . These first-principles results are courtesy of Dr. Vahid Askarpour.

In this study, the authors confirmed the single-crystal phase of their Ca2N sample

and from electrical measurements determined that it is a highly conductive metal. At

room temperature it had a resistivity of 2.8 μΩcm, which is smaller than that of pure

calcium metal (3.6 μΩcm) and similar to aluminium (2.7 μΩcm). Hall effect measure-

ments found that the electron mobility was 160 cm2V−1s−1 at 300 K with a carrier

concentration of 1.39×1022 cm−3, and that mobility increases to 520 cm2V−1s−1 at

a low temperature of 2 K. These mobility values are many times larger than that of

common metals, which are often in the tens of cm2V−1s−1. The higher mobility of

Ca2N is believed to arise from low electron-phonon coupling, originating from how

the conducting interlayer electrons are spatially separated from the lattice and thus

less sensitive to atomic motion.
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From the low-temperature transport properties, the mean scattering time and

mean free path are calculated to be 0.6 ps and 120 nm. According to the authors,

these large values, which are similar to those observed in 2D electronic systems, is

evidence that conduction in Ca2N is mainly by the interlayer anionic electrons.

The paper also reports on the work function of Ca2N in both a single crystal

and polycrystalline pellets determined using ultraviolet photoelectron spectroscopy

(UPS). The work function was found to be anisotropic due to the confinement of

the free carriers in the interstitial region between the atomic layers. The measured

out-of-plane and in-plane work functions are 3.5 eV and 2.6 eV, respectively. This

is in agreement with the ab initio calculations of a previous study [5]. The in-plane

work function is very low compared to other metals, which typically have values above

4 eV, owing to the loosely-bound nature of the electrons at the Fermi level.

The second confirmed 2D electride to be synthesized was polycrystalline Y2C

in 2014 [6]. It has the same crystal structure as Ca2N, but possesses a different

stoichiometric arrangement. Yttrium is a transition metal with three valence electrons

(2 s-orbital, 1 d-orbital) while carbon requires four electrons to fill its p-shell, meaning

that the chemical formula for the ionic electride should be [Y2C]
2+·2e−. What the

study found however was that unlike Ca2N, a first-principles calculation predicted

that while the anionic electrons do generally reside in the interstitial region between

the atomic planes, they also extend into the lattice and do not form a continuous

uniform 2D sheet of charge in the interlayer, as is seen in Ca2N. As a result, the

chemical formula was deemed closer to [Y2C]
1.8+·1.8e−.

Polycrystalline Y2C has a resistivity of 217 µΩcm at 300 K, a value comparable to

polycrystalline Ca2N [4], though it is characterized as a semi-metal. The study doesn’t

report the mean free path or scattering time, but it does conclude that the effective

mass of charge carriers (6.2 me for electrons) is much greater than that reported

for Ca2N, which in the 2013 paper was found to be 1.9 me or 2.5 me, depending

on the method of measurement, where me is the mass of an electron in free space.

The study also reports the electron-phonon coupling constant of Y2C, a dimensionless

metric that describes the average strength of the electron-phonon coupling. The study

gives a coupling constant of λ=0.21 for Y2C.

The work function of polycrystalline Y2C was determined using UPS to be 2.9 eV,
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while calculations performed using density functional theory (DFT) found an out-of-

plane work function of 3.72 eV. Single crystal Y2C has since been synthesized [7] and it

was found to have a carrier concentration of around 1.25×1022 cm−3, about the same

as single crystal Ca2N (1.39×1022 cm−3), and an electron mobility of 0.8 cm2V−1s−1,

which is two hundred times less than that of Ca2N (160 cm2V−1s−1). In all regards

it seems that Y2C is second to Ca2N as both an electron source and a conductive

material, but a distinctive feature of Y2C is that it is paramagnetic in polycrystalline

form, and expected to be ferromagnetic when in single crystal form [8]. The study

that synthesized the single crystal Y2C didn’t report ferromagnetism, but did observe

an anisotropic magnetization that favored the out-of-plane direction [7].

Since the discovery of 2D electrides, there have been numerous high-throughput

studies attempting to find new electrides with improved transport properties and

even lower work functions. These studies used computational methods to search for

thermodynamically stable forms of layered electrides by seeking to model materials

with unbalanced oxidation numbers.

The starting point was tests of materials similar to Ca2N, drawing from the same

families of elements to see if electride behavior was reproducible in heavier elements

with similar valence shells. Calculations predicted that Sr2N and Ba2N were also

electrides [9] (Ca2N, Sr2N, and Ba2N had all been previously synthesized as stable

materials [10]), and so then large batches of possible compounds were analyzed, even-

tually revealing Sr2P, Ba2P, and Ba2As were all 2D electrides like Ca2N [11]. Layered

electrides of this type were called alkaline earth sub-pnictogenides.

Y2C was initially predicted to be a layered electride in an early version of one of

these studies along with several other materials, including Gd2C, Tb2C, Dy2C, Ho2C,

and Er2C [12]. The paper established a new family of layered inorganic electrides

called the layered rare earth sub-carbides. All but Y2C were predicted to be ferro-

magnetic by the computational paper, and in fact Gd2C, Tb2C, Dy2C, and Ho2C had

all been synthesized and confirmed to be ferromagnetic by experiment before they’d

been identified as electrides [13, 14, 15]. The weaker magnetic properties of Y2C

seems to be due to yttrium being a transition metal, as the other carbide materials

are composed of lanthanoids. In 2020, Gd2C was synthesized as a single crystal, and

like Y2C, it’s anionic electrons were shown to be more localized than in Ca2N [16].
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As computational studies continued, a third family of electrides was discovered

called the alkaline earth monofluorides. This family has the form MF, with the

three initial members being CaF, SrF, and BaF. These materials have a slightly

different crystal structure than the alkaline earth sub-pnictogenides and the rare

earth sub-carbides, and they are more difficult to study as they are less energetically

favorable than MF2. Though calculations pointed to the possibility of metastability,

no samples of an alkaline earth monofluoride have been synthesized to date [11].

Calculated electron density maps indicate that these materials have anionic electron

distribution more similar to alkaline earth sub-pnictogenides rather than the rare

earth sub-carbides, as their interlayer states are more delocalized from the cations

and better contained between the atomic slabs [17].

Since the three initial electride families were identified, high-throughput compu-

tational searches have discovered hundreds of electride candidate materials [18, 19].

Moreover, recent computational screening methods have lead to the discovery and

synthesis of a semiconducting electride, Sc2C, with a theoretically calculated 0.305 eV

indirect band gap and 0.476 eV direct band gap [20]. As more discoveries are made,

the parameters for these computational searches changes to accommodate new forms

of electride crystals, which lead to further discoveries.

A major step in the advancement of electride research was the synthysis of atom-

ically thin samples of Ca2N in 2016 [21]. It’s commonly understood that nanoscale

materials can develop properties that do not appear in their bulk counterparts; for

example, MoS2 is an indirect band gap semiconductor, but when its thickness is re-

duced down to a monolayer it becomes a direct band gap semiconductor [22]. Thus,

the demonstration of few-layer Ca2N creates the opportunity for new and unique elec-

tronic characteristics. Following the common lexicon of 2D materials study, the 2D

versions of electrides were dubbed electrenes.

We note there can be confusion about terminology in the literature, since it can

be unclear whether a 2D electride is referring to a layered bulk electride with 2D

confined electrons or an electride of nanoscale thickness. To avoid any ambiguity, in

this thesis “electride” is reserved for the bulk crystal and “electrene” is reserved for

the few-layer material.

Due to Ca2N’s large interlayer distance and relatively low cleavage energy [4, 23],
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it was an obvious choice for exfoliation of single or few layers. Several computational

studies had previously predicted the existence of a monolayer Ca2N [23, 24] and

made predictions about its electrical properties, but it wasn’t until the 2016 study

that an experimental sample had been exfoliated. Those studies predicted that in the

absence of contained interlayer regions, the anionic electrons of the electride would

reside on the surfaces of the material, and the experimental results support this with

confirmation of a metallic, crystalline nature which preserves the delocalized anionic

electrons.

The presence of the electron gas environment on the surface of the material makes

electrenes highly reactive, and only stable in a nitrogen atmosphere or immersed in an

organic solvent. Even then, the exfoliation and handling process leaves the material

prone to oxidation [21]. This is a limitation it shares with bulk electrides, though its

readiness as an electron donor opens up applications as a catalyst material for desired

reactions, an application for which electrides are already being considered [25].

Possibly due to the difficulty in handling and preserving them, there are no other

experimental studies of alkaline earth sub-pnictogenide electrenes to date, though

many theoretical studies have been performed to identify candidates and determine

their properties. From the alkaline earth sub-pnictogenides family of electrides, the

following have been theoretically confirmed as stable: Ca2N, Sr2N, Sr2P, Ba2N, Ba2P,

Ba2As, Ba2Sb [24, 26, 1].

A key feature in the electrical structure of the alkaline earth sub-pnictogenide

electrenes is the presence of two partially-filled conduction bands that cross the Fermi

level (see Fig. 1.2). These bands are associated with the anionic electron gas states

on the surfaces of the material [23, 24]. These surface state bands have different

energies due to the interaction between the top and bottom surfaces [27]. In the

case of a bilayer electrene, instead of a monolayer, a third lower-energy band cuts

through the Fermi level, which is associated with the 2D delocalized anionic electron

states confined to the interstitial region between the two atomic slabs. As more

atomic layers are added, each will introduce an additional interlayer band, and the

two surface bands will eventually become degenerate as the distance between the top

and bottom surfaces increases and their interaction decreases [24].
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Figure 1.2: Band structure of monolayer (top) and bilayer (bottom) Ca2N with Fermi
level set to 0 eV [1].

A computational study by Zeng et al. [28] investigated the theoretical electron-

phonon coupling and carrier mobility of monolayer Ca2N. As would be expected for

delocalized electrons, the electron-phonon coupling matrix elements were found to

be small compared to common metals and graphene, though this conflicted with

the electron-phonon coupling constant of λ=0.78 they determined, which was high

compared to ordinary metals.

The electron mobility of monolayer Ca2N was calculated to be 189 cm2V−1s−1

at 300 K, which is an improvment on the mobility of bulk at room temperature

(160 cm2V−1s−1 [4]). The mobility is greater than that of common metals, but is

still strikingly lower than the mobility of graphene under ambient conditions (5000-

15000 cm2V−1s−1 [29]). This was attributed to higher electron velocities for graphene,

despite the higher scattering rate. The carrier concentration of monolayer Ca2N was

calculated to be 8.93×1014 cm−2, but if the electron density could be reduced to

1.33×1014 cm−2, thereby moving the Fermi level towards the bottom of the surface
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band, the mobility could climb up to 3000 cm2V−1s−1 at 300 K [28].

The work function of monolayer electrenes have been found to be slightly higher

than bulk electrides along the out-of-plane direction. With Ca2N, bulk has a measured

work function of 3.5 eV [4], while the value for monolayer has been calculated to be

just above 3.6 eV [24]. Monolayer Sr2N has a lower work function between 3.3 eV and

3.4 eV, indicating the electrons are more loosely bound, but it and monolayer Ca2N

see a drop in work function as further layers are added [24, 1]. As another example, the

calculated work function of monolayer Gd2C starts at 3.43 eV and converges towards

a value of 3.35 eV at five layers [30]. Conversely, the computational study Liu et

al. determined an out-of-plane work function for monolayer Gd2C of 3.75 eV [17].

Interestingly, this study demonstrates that there is a strong correlation between the

binding energy between layers of the electrides and the work function, a feature they

establish is not present in van der Waals materials. The study also demonstrated

that the difference between the in-plane and the out-of-plane work function of a

monolayer is fairly consistent, with the average difference being 0.78 eV over twelve

different electrene materials from each of the three main families of electrides. As

a final observation, the work function of alkaline earth sub-pnictogenides and mono-

fluorides decreases as the mass of the alkaline earth metal increased, and the work

function of all sub-pnictogenide compounds is lower than their corresponding mono-

fluoride compounds in monolayer.

Their high conductivity along with their low work functions makes electrides and

electrenes attractive for a variety of potential applications. Their possible use as a

catalyst has been previously mentioned, but the loosely bound electrons would also

make it a prime reducing agent [31] or solid-state dopant in nanoscale or 2D materi-

als [32, 33]. Work has also focused on using electrides as an electron injection layer

for thin-film transistors in driving organic light-emitting diodes [34]. Computations

have been performed looking at Ca2N and Sr2N monolayer as anode materials in Na-

ion batteries with strong results coming from Ca2N due to its high specific capacity,

metallic character, fast Na diffusion, and good cycling stability [35].

The use of 2D semiconductors in transistors is impeded by the high metal–

semiconductor interface resistance due to the lack of dangling bonds in the out-of-

plane direction. To reduce the contact resistance, first-principles studies are looking
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at creating heterostructures by inserting a layered electride, such as Ca2N, at the

interface to act as an electron-rich ohmic contact and reduce the potential barrier.

Initial results indicate electride surface states disappear and get donated to the metal

and semiconductor, thereby lowering the potential barrier and enabling an Ohmic

contact [36].

One of the most unique uses of electride materials is as a transparent conduc-

tor [37]. It has been established that Ca2N has high electron mobility, low phonon

scattering, long mean free paths, and high carrier concentrations, but another avenue

of active study is the optical properties of electride and electrene materials. Experi-

mental tests of few layer Ca2N found that a 10 nm-tick film would transmit 97% of

light [4]. Thus, electrenes could find applications in which both high conductivity

and high optical transmission are needed.

The process of searching for stable electrenes with desirable electrical properties is

a time consuming endevour, and so it would be beneficial to find a way of altering the

known electrenes so as to achieve better performance. A common and very effective

method of controlling the properties of 2D materials is strain engineering. Strain

engineering alters the lattice structure of a material, and unlike bulk materials, 2D

materials can withstand much greater strain values without structural failure. In the

case of graphene, a relative strain value of up to 25% can be applied before material

failure [38, 39].

The alteration of the atomic structure in this way can produce drastic changes in a

material’s electronic structure due to the alteration in bonding distances and orbital

overlap. This can allow for fine tuning of electrical properties like the magnitude

of a semiconductor band gap by about ∼70 meV per strain percent [40], or induce

transitions from an indirect to a direct band gap [41]. Strain loading can also alter a

material’s phonon vibrational modes [42] and decrease effective carrier mass by up to

16% for electrons, or by nearly 80% for electron holes with 6% tensile or compressive

strain respectively [43, 44].

Given how readily the anionic electrons of an electrene conform to the arrangement

of the atomic lattice, the strain response of electride materials could be of great

importance to their properties and performance. The layered electride Mg2N shows

how dramatic strain effects can be. Unlike other alkaline earth metal nitrides, Mg2N
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is both a 0D electride, a recently discovered semiconducting electride [45], and has

fewer anionic electrons than is typical with [Mg2N]
0.45+·0.45e−. When applying strain

along the out-of-plane direction, the material starts as a semiconductor, and then

transitions to a conductor with 2% tensile strain. Not only that, at 5% strain, tensile

or compressive, Mg2N becomes a 2D electride, although the pressure required to

achieve these strain values is on the order of gigapascals [46].

As another example, Pereira et al. [47] reports that Mo2N monolayer becomes

an eletrene at low temperatures, and manipulating strain allows for control of the

electron-phonon coupling constant, going from λ ≈1.9 to λ ≈1.2 at 2% tensile strain.

Strain loading also allows for control of the critical temperature at which superconduc-

tion occurs, with values changing from 19.3 K to 24.8 K. Similar coupling response

to strain has been calculated for the electride MgONa, where the electron-phonon

coupling was reduced from 0.82 to around 0.75 under 2.5% compressive strain [48].

A computational study by Mortazavi et al. [49] reports on the conductivity re-

sponse of monolayer Ca2N and Sr2N to uniaxial strain, and finds that tensile strain

reduces the current response of the material up to between ∼14% and ∼24%, while

compressive strain increases the current. The authors attribute this change to com-

pressive strain increasing the overlap of atomic orbitals in the material while tensile

strain induces localization of the orbitals. They find that the peaks in the electrostatic

potential increase with tensile strain, which is interpreted as increasing electron scat-

tering. Conversely, a decrease in the peak values of the electrostatic potential with

compressive strain is believed to result in lower scattering. A study on the supercon-

ducting properties of monolayer Ba2N demonstrates a potentially similar conductance

relation to strain, with a reduction of the electron-phonon coupling constant with

compressive strain from its unstrained value of 0.59 to around 0.45 with -2% biaxial

strain [50].

These studies provide an indication of the response that can be expected from

2D electrenes, but there are other types of electrene materials which have not been

studied and other desirable properties that have not been explored. It is the goal

of this work to investigate, using first-principles modeling, how strain influences the

elctronic characteristics of seven 2D electrenes that are part of the alkaline earth sub-

pnictogenide family (Ca2N, Sr2N, Sr2P, Ba2N, Ba2P, Ba2As, Ba2Sb). The range of
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explored strain values will be limited to ±5% due to the unknown structural failure

point of the materials in question; previous computational study places the failure

of monolayer Ba2N at 5% tensile strain, so exploration beyond this point would not

produce practical results [50]. A particular interest is focused on whether strain could

be used to modulate the transport properties and the electron-phonon coupling of the

anionic electrons, in addition to these material’s ability to act as electron donors.



Chapter 2

Theoretical and Computational Approach

2.1 Lattice Structure and Band Theory

2.1.1 Periodic Lattice for Real and Reciprocal Space

All the materials examined in this thesis are crystalline solids, meaning their atomic

structure forms a periodic lattice defined by the lattice vectorsR = n1a1+n2a2+n3a3,

where ai are the primitive lattice vectors and ni are integers. The region defined by

the primitive lattice vectors is called the primitive cell and contains the unique atomic

environment that is repeated to form the periodic lattice. Starting from the position

of the atoms in the primitive cell, the position of eVery other atom in the crystal is

given by a linear combination of a1, a2 and a3.

While the primitive lattice vectors are unique, there is no unique way of defining

the primitive cell. However, one common definition is the Wigner-Seitz cell. It is

defined as all the volume in the lattice which is closer to point R = 0 than any other

point on the lattice, bordered by planes that orthogonaly transect the midway point

between R = 0 and its adjacent lattice points. Translating this volume by every

lattice vector R will perfectly tile the lattice space without overlap or gaps.

For any structure which is periodic in real space, that structure will also have

periodic behavior in reciprocal k-space. k here represents the wavevectors of electronic

states, which will be examined later on. To introduce reciprocal space, we examine the

properties of a periodic function. A continuous periodic function representing some

observable quantity on the lattice will by necessity have the property f(r) = f(r+R),

and can be represented in a Fourier expansion over a set of wavevectors G,

f(r) =
∑
G

cGe
ir·G. (2.1)

These two principles taken together make it clear that the set of wavevectors G must

follow the constraint

eiR·G = 1. (2.2)

12
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Much like the direct lattice, all the points G are determined by the translation G =

m1b1 + m2b2 + m3b3, where bi are the primitive reciprocal lattice vectors and mi

are integers. The vectors bi can be constructed via the primitive vector relation

ai · bj = 2πδij, which is satisfied by defining the vectors bi in the following way:

b1 =
2πa2 × a3

a1 · (a2 × a3)
, b2 =

2πa3 × a1

a1 · (a2 × a3)
, b3 =

2πa1 × a2

a1 · (a2 × a3)
. (2.3)

With this definition of G and bi, it can be shown that Eq. 2.2 is always satisfied.

These vectors define a periodic space referred to as k-space or reciprocal space, and

behave analogously to the R and ai vectors in real space.

When the Wigner-Seitz cell is constructed for the reciprocal lattice in k-space, it

is referred to as the Brillouin zone. The Brillouin zone is very useful in the analysis

of crystalline materials as many quantities of interest arise from summing over all the

k states in the Brillouin zone, as will be shown later.

The value of k is quantized by the size of the material due to the boundary

conditions, which impose that only integer multiples of the fundamental wavelength

are allowed. This condition limits the possible values for the components of k to

ki = 2π
Li
ni, where Li is the material length along direction i and n is an integer.

However, given that Li is typically much greater than the size of the primitive lattice

vector ai, the allowed values of ki have a difference much smaller than the length of

the reciprocal lattice vector bi =
2π
ai
, and so the value of k can be treated as effectively

continuous. This simplifies the analysis of the material properties and is valid so long

as the total size of the material is much greater than that of the primitive lattice

vectors.

2.1.2 Blöch’s Theorem

Having established the principles of the atomic lattice, we turn to describing the elec-

tron states that exist in a periodic potential. Such states will conform to Schrödinger’s

equation, [
− h̄2

2me

∇2 + V (r)

]
ψk(r) = Ekψk(r), (2.4)

where ψk is the wavefunction for an electron with wavevector k and Ek is the eigenen-

ergy of that state. The term in brackets is the Hamiltonian in which the first term is

the operator for the kinetic energy and V (r) is a potential acting on the electron.
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In 1929, the physicist Felix Blöch [51] demonstrated how the wavefunction solution

to the Schrödinger equation in a periodic potential will have the form,

ψk(r) = uk(r)e
ik·r, (2.5)

where eik·r is a plane wave with wavevector k and uk(r) is a function with the same

spatial periodicity as the lattice, i.e. uk(r) = uk(r+R). These modified plane wave

solutions make up the possible single-electron states for the material.

For a free electron, the wavefunction is just a plane wave eik·r with uk(r) = 1. In

this case the momentum of the electron is directly proportional to the wavevector k

as the momentum operator p = h̄
i
∇ returns,

pψk =
h̄

i
∇eik·r = h̄

i
(ik)eik·r = h̄kψk, (2.6)

meaning that the expectation value for the momentum of a plane wave is h̄k.

For a Blöch wave function this is no longer the case, since the Blöch solutions are

not eigenstates of the momentum operator,

pψk =
h̄

i
∇(uk(r)e

ik·r) =
h̄

i
[(ik)uk(r)e

ik·r + eik·r∇uk(r)] = h̄kψk +
h̄

i
eik·r∇uk(r).

(2.7)

Instead, h̄k is called the crystal momentum as, similar to the true momentum, it

possesses useful conservation laws that limit how electrons can transition between

states when interacting with an external potential.

It can be shown that the wavefunction and eigenenergy are insensitive to trans-

lations of G, i.e. ψk = ψk+G and Ek = Ek+G. It is therefore convenient to take all

k-points and fold them into the first Brillouin zone, which is allowable due to the

equivalence of all k-points separated by G. This sort of representation is known as

the reduced zone scheme, and simplifies problems involving the reciprocal lattice as

we only need focus on the first Brillouin zone.

Every k-point in the Brillouin zone will have multiple eigenenergies, and so they

must be indexed by the band number n. The group of states that share a band index

are referred to as a band and are discrete over k-space due to the quantization of

k. The unique set of states defined inside the first Brillouin zone is called the band

structure, and due to the equivalence of ψk = ψk+G and Ek = Ek+G, is periodic over

reciprocal space.
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Since k need only be defined over the Brillouin zone, the number of quantized

states is limited by the reciprocal lattice vector bi =
2π
ai

in direction i. Given that

Li = Niai, where Ni is the number of unit cells in direction i, the components of

k will equal the reciprocal lattice vectors at ki =
2π
Li
Ni. Since the discrete k-points

have a spacing of dki =
2π
Li
, the number of k-states in a band is therefore equal to the

number of unit cells that are in the whole material. As this number grows, the bands

begin to behave as if they are continuous.

The band structure of a material will have gaps along the energy spectrum in

which there exist no eigenenergy states and so no bands. These gaps play a major

role in determining the electrical properties of a material depending on how difficult

it is for electrons to occupy higher energy bands. A conductor will have the Fermi

level of the material cross a band; since the band is partially filled, there are many

electrons that can contribute to conduction under an applied potential. Insulators

have their Fermi level in a band gap, so the highest energy band with filled states is

entirely filled, and a large energy is needed to excite the electrons to the next higher

energy (conduction) band. If the Fermi level is in the band gap, but the band gap is

less than roughly 3 eV, such materials are semiconductors.

The behavior of the electrons is determined by the shape of the band they occupy.

The group velocity for a state is given by

vk =
∇kE(k)

h̄
, (2.8)

and the effective mass of that state is given by the tensor

1

m∗
ij(k)

=
1

h̄2
δ2E(k)

δkiδkj
. (2.9)

This simplifies for a free electron which has a purely quadratic shape in k-space,

E(k) =
h̄2k2

2m0

, (2.10)

and serves as a good approximation for the extrema of bands of a semiconductor,

vk =
h̄(k− kmin)

m∗(k)
, (2.11)

where kmin is the location of the band minimum.
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2.2 Density Functional Theory

2.2.1 Kohn-Sham Equation

Solving the many-body Schrödinger equation for theN electrons in the material would

be incredibly difficult to tackle as each electron would add 3 degrees of freedom to the

many-body wavefunction Ψ(r1, r2, r3, ..., rN). A methodology must be used to reduce

the problem to a manageable size, and such an approach begins with the Hohenberg-

Kohn theorem from 1964 [52]. What this theorem proves is that for an interacting,

non-relativistic electronic system in an external potential, the ground-state energy of

that system is uniquely defined by the ground-state density of the system, n(r). This

greatly simplifies the problem as it now only requires we solve for the 3-dimensional

density function, which minimizes the energy rather than a 3N -dimensional many-

body wavefunction.

Hohenberg and Kohn define the form of the energy functional, in atomic units,

as,

E[n(r)] =
∫
v(r)n(r)dr+

1

2

∫ n(r)n(r′)

|r− r′|
drdr′ + T [n(r)] + EXC [n(r)], (2.12)

where the first two terms represent the classical electrostatic energy of the ion-electron

and electron-electron interactions, where v(r) is the ionic potential. The third and

fourth terms represent the kinetic energy and the quantum exchange-correlation en-

ergy which accounts for quantum and many-body interactions. Neither of these two

functionals have a known form in terms of n(r), and without knowing what these

functionals are the ground state density can’t be determined exactly.

In 1965, an approximation was provided for these functionals by Kohn and Sham [53].

They make the assumption that the density of the system is the sum of the occupied

single-particle states,

n(r) =
N∑
i=1

|ψi(r)|2. (2.13)

By minimizing E[n(r)] with respect to the states ψi, Kohn and Sham showed that

the solutions ψi must obey a single-particle Schrödinger equation known as the Kohn-

Sham equation [
−∇2

2
+ vKS[n(r)]

]
ψi(r) = Eiψi(r), (2.14)
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where the electrons are taken to be non-interacting, subject only to the effective

potential

vKS[n(r)] = v(r) +
∫ n(r′)

|r− r′|
dr′ +

δEXC [n(r)]

δn(r)
. (2.15)

The kinetic energy functional is approximated as simply the sum of kinetic energies

of the occupied single-particle states,

N∑
i=1

[
−∇2

2
ψi(r)

]
=

N∑
i=1

Ek,iψi(r). (2.16)

The exchange-correlation energy is still unknown, but the effective potential due to

the exchange-correlation effect is given by

vXC [n(r)] =
δEXC [n(r)]

δn(r)
. (2.17)

Density Functional Theory (DFT) looks to solve the Kohn-Sham equations using

iterative computational methods. Due to the dependence of the Kohn-Sham Hamil-

tonian on the solution ψi via the density n(r), the problem requires a self-consistent

solution approach. This is done numerically by starting with a guess of the density

n0(r), and then refining this solution with each iteration to within a certain error of

the actual value. From this initial guess the Hamiltonian is calculated and is used

to solve the Kohn-Sham equation for ψi. The solution is then used to determine the

new density n1(r), and if the density is self-consistent within a defined threshold,

the iterative process concludes and n1(r) is used to calculate the properties of the

material. If the solution is not self-consistent, the density is updated and the process

is repeated until convergence is reached.

This study uses the DFT code QUANTUM ESPRESSO [54] to model materials.

QE has a variety of functionalities, the primary one being the aforementioned self-

consistency calculation for solving the Kohn-Sham equations. It uses a modified

Broyden method for updating n(r) at each iteration, as described above [54, 55].

DFT is also able to calculate the inter-atomic forces [56] and stresses [57] acting on

the atoms. By minimizing the energy due to these forces, the code can find the

optimal atomic positions and lattice vectors using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [54].

The exchange-correlation energy still has no known exact form, and so an ap-

proximation must be made. The local density approximation (LDA) takes the en-

ergy density ϵXC [n(r)], the exchange-correlation energy per particle, to be that of
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a homogeneous electron gas. LDA works best for materials where n(r) is largly

uniform like in simple metals, but generally causes over-binding where the bonding

strength of the atomic lattice is larger than it should be, leading to shortened lattice

constants and bonding distances [58]. Alternatives to LDA take into account the

spatial non-uniformity of the charge density. The generalized gradient approxima-

tion (GGA) does this by including the density gradient in the exchange-correlation

density, ϵGGA
XC [n(r),∇n(r)]. GGA’s do not have the same overbinding problem as

LDA, but can overcorrect and lead to underbinding [59, 60]. Another alternative is

meta-generalized gradient approximation (meta-GGA) [61], which takes GGA a step

further by including a dependence on higher order derivatives of the charge density,

thereby capturing non-linear behavior.

All of these approximations are considered local functionals as they depend only

on the electron density at or near the point at which they are evaluated, but there

are ones that include non-local effects. Hybrid functionals include exact exchange

integrals from Hartree-Fock theory involving multiple wavefunctions [62], which is far

more computationally intense than the previous approximations, but has far greater

accuracy at predicting electronic properties like band gaps. This study uses a GGA

established by Perdew, Burke and Ernzerhof (PBE) [60], which has both a low com-

putational demand and resonable accuracy, in combination with a van der Waals

model for determining accurate atomic structures.

2.2.2 van der Waals Correction

When calculating the optimal atomic structure of a material, it is important to in-

clude a correction for the van der Waals (vdW) interation. vdW forces occur due

to a transient induced polarization between atoms in proximity to each other, caus-

ing a momentary attraction. It is a comparatively weak force, but becomes more

relevant for 2D materials where the interlayer bonding isn’t very strong. vdW cor-

rections are absent from standard XC functionals as they are a non-local effect. XC

functionals corrected to include non-local behavior are called van der Waals density

functionals (vdW-DF), and while they offer much higher accuracy than purely local

XC functionals, they require far more computational operations [63].
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There are a number of vdW corrections that are semi-empirical and use pre-

determined pairwise dispersion coefficients, CAB, for a given pair of atoms A and B.

Such methods generally have a two-body dispersion energy correction of the form,

Edisp =
∑
A,B

∑
n=6,8,10...

sn
CAB,n

rnAB

fn(rAB), (2.18)

where n is the order of the dispersion term, rAB is the distance between the atoms

A and B, sn is a scaling factor, and fn(rAB) is a damping function that prevents

divergences at small rAB [64, 65, 66].

One correction of this type is the exchange-hole dipole moment (XDM) model [65].

The central assumption of this model is the attribution of the transient vdW dipole

moments to the quantum effect of the exchange hole caused by the Pauli exclusion

principle. The exchange hole is a decrease in the probability of finding identical

electrons in vicinity of one another. This drop in the wavefunction magnitude around

other electrons forms a dipole moment, which causes a dispersion interaction with

nearby atoms. Using this theory, XDM precalculates its dispersion coefficients to use

in its vdW correction [67].

The most common way of accounting for vdW is the semi-empirical Grimme’s

dispersion-corrected DFT (DFT-D). It is widely used due to its numerical simplicity,

and its broad applicability to a variety of chemical environments and XC functionals.

This study uses the third version of this model, DFT-D3, with two-body contribu-

tions only. This version of DFT-D manages to reduce the empirical components of

the method, primarily by using a first-principles approach to determine dispersion

coefficients CAB,n, and cut-off radii for the damping function fn, where dispersion

order only goes to n = 8 [64]. In this work, the Becke-Johnson damping scheme is

used due to its improvements on calculation accuracy [68].

2.2.3 k-point Sampling and Smearing

Many quantities of interest require an integration over all k-states in the Brillouin

zone, including the charge density n(r) during the self-consistent calculations of

the Kohn-Sham equation. In practice these integrations are done numerically as

a sum over a uniform k-point grid. This grid is generated using the Monkhorst-Pack
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scheme [69],

kprs = upb1 + urb2 + usb3, (2.19)

where bi are the reciprocal lattice vectors, and ua are sequences of numbers deter-

mined by,

ua = (2a− qi − 1)/2qi (a = 1, 2, 3, ..., qi). (2.20)

This scheme creates a uniform k-mesh along each reciprocal lattice vector, confined

to the Brillouin zone.

The accuracy of this k-point sampling method increases with the number of k-

points, the final grid containing a total of q1 · q2 · q3 uniformly spaced points. The

computation is further expedited by exploiting the symmetries of the Brillouin zone,

which possesses the same symmetries as the atomic lattice. By determining the por-

tion of the Brillouin zone that is unique under these symmetries, called the irreducible

Brillouin zone, the integration need only be performed for those irreducible k-points.

When doing k-space integrals on metals, as is done in this study, it is important

to consider the fact that DFT calculations are performed at absolute zero, meaning

there is an abrupt cut-off between occupied and unoccupied states in the middle of the

band. This discontinuity requires a high number of k-points to properly sample, which

increases the computational load. A smearing approximation smooths out the electron

population when transitioning from occupied to unoccupied states near the Fermi

level. In this study Marzari-Vanderbilt cold smearing is used for atomic structure

optimization and self-consistent electronic calculations, where the discontinuity is

modeled by a Gaussian function multiplied by a first order polynomial [70]. For DOS

calculations, the tetrahedron method with Blöchl corrections [71] is used as it provides

better accuracy for these particular calculations.

2.2.4 Basis Set

When solving the Kohn-Sham equations numerically, the eigenfunctions ψi are almost

always represented as a linear combination of some basis set functions. One of the

simplest basis sets is a linear combination of atomic orbitals (LCAO), which consists

of a linear combination of energetically relevant atomic orbitals over every atom in the

unit cell [72]. Compared to more generalized basis sets, LCAO requires far fewer basis

functions and so is an efficient method that produces accurate results, but requires
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attention to selecting and optimizing the proper functions for the system as seeking

convergence can lead to overcompleteness [73].

Other localized basis sets include Gaussian type orbitals (GTO), which are much

more efficient to calculate. However, GTOs are too dissimilar from the form of the

Schrödinger solution for atomic orbitals, being both differentiable at r = 0 and de-

caying too quickly in r. What is used instead of a pure Gaussian then is a linear

combination of Gaussians to approximate a Slater type orbital (STO), which has a

much more accurate functional form but no analytic solution to XC integrals. Given

that the number of primitive Gaussians in each basis function increases the complex-

ity of the calculation, there is a significant trade off between speed and accuracy when

using GTO in this way. The number of Gaussians used must therefore be carefully

considered, the general convention being three as the optimum number of Gaussian

functions [74].

One common basis set used in DFT, and the one used in this work, is a plane

wave basis, which takes maximal advantage of the periodic behavior of the atomic

lattice. Because the periodic portion of the Blöch wavefunction (Eq. 2.5), un,k(r),

shares the periodicity of the lattice, it can be represented as a Fourier sum over the

reciprocal lattice vectors G,

un,k(r) =
∑
G

cn,k,Ge
iG·r, (2.21)

where cn,k,G are the Fourier coefficients that depend on n, k and G. This gives the

Blöch wavefunction the form

ψn,k(r) =
∑
G

cn,k,Ge
i(G+k)·r. (2.22)

This series is theoretically infinite since the reciprocal lattice vectors extend indefi-

nitely, but in practice the sum is truncated to a finite number of terms. Large G

vectors beyond some cutoff point are removed as large G vectors correspond to a

plane wave with a small wavelength, and by removing these components from the ex-

pansion, the spatial resolution of the wavefunction is reduced. Since the wavevector

k determines the energy of a plane wave, this cut off point is usually specified as some

energy value,

Ecut ≥
h̄2|k+G|2

2me

. (2.23)
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By using a convergent series like the plane wave basis, it ensures that increasing

the number of terms in the series returns greater accuracy, but requires comparatively

more terms than other basis sets. QUANTUM ESPRESSO is a code that uses a plane

wave basis set, and so this is the basis set adopted in this study.

2.2.5 Pseudopotentials

There are difficulties that arise with a plane wave basis, since rapid oscillations in

ψi require many more Fourier terms in the basis expansion. Such rapid oscillatory

behavior occurs in excited eigenfunctions, where ψi is confined in an external potential

well like that very near to the atomic nucleus, and so an approximation is needed to

reduce the size of the basis set. Additionally, the atomic potential of the ions in the

crystal lattice are of a very simple form, proportional to the inverse of the radial

distance, but this simple form causes numerical difficulties due to a singularity at

r = 0.

The pseudopotential approximation solves both of these issues by taking advantage

of the fact that only the valence electrons of the atoms are involved in chemical

bonding. The core electrons are inert and screen out the Coulomb potential of the

ions, so the effects of both the core electrons and the ions can be combined into a single

pseudopotential acting on the valence electrons. This eliminates the singularity of the

ion potential and promotes the valence electrons to be the lowest energy eigenstates.

These states have a smooth behavior suitable for a plane wave expansion.

Generating an accurate pseudopotential requires adhering to several restrictions,

the first of which was described by Topp and Hopfield in 1973 [75]. This restriction

requires that after a specified cut-off radius rc, which delineates between valence and

core, the wave function solution must match the solution of the true potential. Fur-

ther constraints are that the solution must conserve the charge density for r less than

rc, called norm-conservation, and its eigenenergies must match the true eigenenergies.

Lastly, the resulting pseudopotential must match both the true potential beyond rc,

and match its scattering behavior. Using the Schrödinger equation, the pseudopo-

tential can be back-solved based on the pseudo-wavefunction that adheres to these

constraints.

The desirable features sought in a pseudopotential approximation are accurate
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transferability across different chemical environments, and softness in the eigensolu-

tions that reduces the number of plane waves needed to represent them. In pursuit

of these criteria, all the pseduopotentials used in this study are ultra-soft pseudopo-

tentials (USP) taken from the QUANTUM ESPRESSO library [76]. For USP, the

norm-conservation of the charge density in the core is disregarded to produce a pseu-

dopotential that can be constructed from as few plane waves as possible. This of

course causes a charge deficit in the core region which must be accounted for by

augmenting the electron density n(r) during the self-consistent calculations with a

term set to vanish beyond a given radius. The result is that the pseudopotential

has much more accurate behavior in the valence electrons across different chemical

environments, all while using a smaller plane wave basis set [77].



Chapter 3

Results

In this chapter, we investigate seven electrene materials that obey the formula M2X

in monolayer and bilayer form using DFT, where M is an alkaline earth metal and

X is a pnictogen. These materials are Ca2N, Sr2N, Sr2P, Ba2N, Ba2P, Ba2As, and

Ba2Sb.

The focus of this study is on the effect of in-plane strain placed on the electrenes.

All materials have therefore been calculated with various strain loads of up to ±5%,

which was achieved by modifying the in-plane lattice constant. An atomic position

optimization calculation was then run holding the lattice constants fixed to their

strain values. This will show what effect strain has on the electrical properties of

electrene materials as calculated from first principles.

We begin by presenting the results of the convergence tests to establish the value

of the DFT calculation parameters that provide acceptable accuracy. Afterwards, we

present the results of the unstrained monolayer and bilayer Ca2N, in order to provide

a baseline for comparison with literature and other electrenes. Then in a brief aside,

the unique properties of electrenes will be compared to another metallic 2D material,

to illustrate the differences between electrenes and traditional metals. The effects

of strain will then be examined in monolayer and bilayer Ca2N to make an initial

assessment of the material’s responses before moving on to compare the strain results

of all materials to determine if any patterns arise that show potential for improving

electron transport properties.

3.1 Convergence of DFT Calculation Parameters

There are three principle parameters that control the precision of calculations done in

Quantum Espresso. The first is discussed above in section 2.2.4 and limits the spatial

resolution of the Blöch wavefunctions by truncating the basis set used to construct

them. Since the basis set is comprised of plane waves with increasing wavevectors,

24
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Figure 3.1: Convergence of total energy with respect to the wave function cutoff
energy parameter, Ewfc

cutoff, for monolayer and bilayer Ca2N. The convergence threshold
is set to 1 meV.

higher order terms correspond to finer spatial resolution of the wavefunctions, such

that the accuracy is improved when additional terms of the expansion are included.

The cutoff for the truncation is expressed as an energy Ewfc
cutoff as shown in Eq. 2.23,

with a larger energy cutoff corresponding to more terms included in the plane wave

expansion.

To determine what constitutes an acceptable value for the calculation parameters,

a series of self-consistent DFT total energy calculations are performed by varying the

value of one calculation parameter. Once the total energy is within a set accuracy

limit, in this case 1 meV, that parameter value is adopted.

Figure 3.1 shows the convergence test of the electrene material Ca2N in both its

monolayer and bilayer forms for the wavefunction energy cutoff Ewfc
cutoff, where the total

energy is displayed as the absolute difference relative to the highest cutoff value. The
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Ca2N Sr2N Sr2N Ba2N Ba2P Ba2As Ba2Sb
Monolayer 150 160 150 140 110 140 160
Bilayer 180 180 180 150 150 150 160

Table 3.1: Converged Ewfc
cutoff parameter for all electrenes, reported in Rydbergs [Ry].

monolayer material converges to within the chosen limit between 130 Ry and 140 Ry,

and levels off just under the limit between 140 Ry and 160 Ry. From this, the value

of Ewfc
cutoff was chosen to be 150 Ry. The bilayer material comes under the limit just

after 170 Ry, so the cutoff value for bilayer was chosen to be 180 Ry. The chosen

value of Ewfc
cutoff for all materials, using the same procedure, is shown in Table. 3.1.

The second calculation parameter tested for convergence is Erho
cutoff. This parameter

is similar to the first in that it limits the spatial resolution of the charge density

by truncating the plane wave basis. The charge density is derived from the norm

Figure 3.2: Convergence of total energy with respect to the charge density cutoff
energy, Erho

cutoff, for monolayer and bilayer Ca2N. The convergence threshold is set to
1 meV.
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Ca2N Sr2N Sr2N Ba2N Ba2P Ba2As Ba2Sb
Monolayer 1800 1800 1600 1700 1600 1600 1700
Bilayer 1800 1800 1900 1800 1600 1700 1600

Table 3.2: Converged Erho
cutoff parameter for all electrenes in Ry.

squared of the wavefunction, and thus can contain higher frequency components which

require a different energy cutoff. Moreover, since these calculations use ultra-soft

pseudopotentials, there is also an augmentation term applied to the charge density to

account for the charge deficit in the core region due to the non-norm-conservation of

USP (section 2.2.5). Since this deficit is in the core region, the augmentation contains

the high-oscillation components of the charge density, and thus requires higher order

terms to represent in the plane wave basis.

The convergence graph of Erho
cutoff for Ca2N (Fig. 3.2) falls entirely below the

convergence limit, so by this metric any value of Erho
cutoff would be acceptable, but to

limit the choice, the convention of ∼10Ewfc
cutoff is adhered to. The cutoff value for both

monolayer and bilayer is chosen to be 1800 Ry.

The final calculation parameter is the density of the k-point grid used to sample

the Brillouin zone (section 2.2.3). Since calculations will be done for 2D materials,

the only wavevector components of interest are those in the xy-plane (i.e. in plane),

so the k-mesh used to sample k-space will also be a 2D plane.

The number of grid points along each reciprocal lattice vector determines the grid

density, with an increasing number leading to higher resolution of k-space. To ensure

a grid sampling point falls on the high-symmetry Γ point located at the origin of

k-space, the number of grid points along each direction is limited to odd numbers.

Figure 3.3 shows the convergence of the total energy with increasing k × k point

count for Ca2N monolayer and bilayer. The selected values for k-point density for all

electrenes are shown in Table 3.3. Note that more stringent k-point densities, over

the minimum set by the total energy threshold, were adopted for improved accuracy.

These computations use a PBE GGA for the exchange-correlation energy [60]

and Grimme’s DFT-D3 with two-body contributions and Becke-Johnson damping

scheme for van der Waals correction [64, 68]. The k-point sampling grid is gener-

ated using the Monkhorst-Pack scheme [69]. Marzari-Vanderbilt cold smearing [70] is

used for atomic structure optimizations and self-consistent electronic calculations to
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Figure 3.3: Convergence of total energy with respect to the k-point density for mono-
layer and bilayer Ca2N. The convergence threshold is set to 1 meV.

account for state occupation discontinuities, while for DOS calculations, the tetrahe-

dron method with Blöchl corrections is used [71]. A plane wave basis set is used with

ultra-soft pseudopotentials, and energy and force thresholds of 10−5 a.u. for atomic

and cell relaxation. At least 20 Å of vacuum is included in the cross plane direction

during calculations to insure isolation of the atomic layers.

Ca2N Sr2N Sr2N Ba2N Ba2P Ba2As Ba2Sb
Monolayer 152 132 112 132 92 92 92

Bilayer 132 132 112 132 92 92 92

Table 3.3: Converged k-point density for all electrenes.
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3.2 Unstrained Ca2N Electrene

We begin by presenting the results of Ca2N, which have been previously reported, to

introduce the electrene properties and establish consensus with the scientific litera-

ture. All materials studied in this thesis have a hexagonal crystal structure with 3

atoms per primitive cell for monolayers and 6 atoms per primitive cell for the bilayers.

The monolayer Ca2N was found to have an in-plane lattice constant of a = 3.584 Å,

which is consistent with the lattice constant value reported by other first-principles

studies in the range 3.562-3.620 Å [23, 24, 49, 78]. The bilayer in-plane lattice con-

stant is a = 3.579 Å, which is likewise similar to another first-principles result of

3.562 Å [24].

Figure 3.4: Atomic structure of monolayer (left) and bilayer (right) Ca2N. Larger
atoms are calcium, smaller atoms are nitrogen.

The determined layer thickness for monolayer and bilayer (shown in Table 3.4)

agree well with literature values of 2.516 Å and 2.509 Å, respectively, as does the

interlayer gap distance for bilayer (3.598 Å) [24]. Other sources indicate a monolayer

thickness of 2.515 Å [78] and 2.52 Å [49], so clearly, variation in layer thickness is low.

Material a c Layer thickness Interlayer gap
Ca2N Monolayer 3.584 29.998 2.518
Ca2N Bilayer 3.579 34.582 2.510 3.597

Table 3.4: Lattice parameters of Ca2N. a and c are the in-plane and out-of-plane
lattice constants and are measured in Angstroms, as are the single layer thickness
and interlayer gap.
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High-symmetry points of the Brillouin zone are labeled based on the type of crystal

system it belongs to, and in doing so gives a standard by which reciprocal space can

be navigated. By picking a path from point to point, the eigenenergies can be more

easily visualized, which is referred to as the band structure or electron dispersion.

Here we plot the band structure along the high-symmetry points displayed in Fig.

3.5.

ky

kx

b1

b2

K

K’

M

Γ

Figure 3.5: First Brillouin zone and reciprocal lattice vectors of monolayer Ca2N.
Displayed high-symmetry k-points are Γ, M and K.

The band structures of monolayer and bilayer Ca2N are shown in Fig. 3.6. The

two Fermi-crossing bands in Fig. 3.6a are associated with the 2D electron gas layers

occupying the free-space regions of the material (2DEG-FS). Since the monolayer

form only has two free-space regions, the surfaces above and below the atomic slab,

the bands are associated with states in these regions. The third Fermi-crossing band

that appears for bilayer (3.6c) appears due to the new free-space region in between

the two atomic layers, so this band is associated with interlayer 2DEG-FS states.

Since this region is essentially an overlap of two atomic surface regions, this band has

energies deeper below the Fermi level and thus contains more electrons compared to

a surface band.
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Figure 3.6: Band structure (a) and density of states (b) of monolayer Ca2N. (c) Band
structure and (d) density of states of bilayer Ca2N. Density of states also includes the
orbital projections. Zero on the energy scale corresponds to the Fermi energy.

The majority of existing literature for Ca2N electrene is in agreement with these

results [24, 78, 28, 21], though there is slight disagreement with the results of Zhao,

Li, and Yang [23] on the energy of the monolayer surface bands. This seems to be due

to a disagreement in calculated Fermi energy between studies, causing a consistent

shift in the energy range of the band structure (an offset of about 0.25 eV). There

is stronger disagreement with the monolayer band structure found by Mortazavi et.

al. [49], particularly around and between the M and K points. In the Mortazavi et.
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al. paper, bands seem to maintain strict order moving through this region, with no

band crossings between -4eV and 4eV, where as this study found a great number of

band crossings in the same range.

In addition to calculating the density of states (DOS), Quantum Espresso is also

able to project the DOS onto the atomic orbitals to determine the DOS contributions

of each orbital. This is referred to as the projected density of states (PDOS). Figure

3.6b,d shows the DOS of both monolayer and bilayer Ca2N, and observing these

figures make it clear how the DOS relates to the band structure of the material.

Abrupt changes occur where new bands begin, and peaks occur where extant bands

have a flatter character. Both increase the number of states in the energy range, but

one increases it in a discrete manner while the other increases it gradually. Likewise,

places where bands end show sudden drops in the DOS. Such behavior is expected

for a 2D parabolic band (like that near the band minimum or maximum shown in

Fig. 3.6a,c), which will contribute a step-function DOS [79].

The projected orbitals shown in the figure indicate that in the energy range around

the Fermi level, the DOS is dominated by the calcium p orbital for both monolayer

and bilayer. However, it should be noted that this type of orbital projection is not

very effective at capturing all contributing states for electride-type materials. States

that exist in the regions between the atomic layers and not in orbitals localized around

the atoms of the material are under-represented in PDOS, with an earlier calculation

of bulk Ca2N needing to include a non-atom-centered orbital in the interlayer region

in order to capture the state contributions. That calculation is in agreement with the

results determined here, showing Ca dominated surface and interstitial states around

the Fermi level, and N dominated states below the Fermi level (around -2 eV) [4].

Weighted k-points can be used to examine the orbital character of bands. The

weighted k-points of Ca2N monolayer and bilayer are shown in Fig. 3.7 and Fig. 3.8,

and it is clear that the relative contribution of the orbitals change across the bands,

indicating that the spatial distribution of states is changing. Near the Γ point, Ca

s-orbitals are in higher proportion for the surface and interlayer bands, though the

DOS in Fig. 3.6 indicates this is due to a reduction in p-orbital contribution rather

than an increase in s-orbital strength. This agrees well with the k-resolved state

densities shown in Appendix C, which demonstrates p-orbital bonding features at
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Figure 3.7: Weighted k-points of monolayer Ca2N showing (left) calcium orbital con-
tributions and (right) nitrogen orbital contributions..

Figure 3.8: Weighted k-points of bilayer Ca2N showing (left) calcium orbital contri-
butions and (right) nitrogen orbital contributions.

the M point, indicating that Ca s-orbitals are more relevant to 2DEG-FS character,

which is located predominantly at the Γ point. Bands below the Fermi level, at

roughly -2 eV in bilayer Ca2N, have a large N p-orbital contribution, which is in

agreement with Fig. 3.6.

To gain further understanding of the electrical character of the individual bands,

the k-resolved electron density can be determined for the specific state ψk,n. Figure

3.9 shows the results of this calculation for k = Γ in the case of Ca2N bilayer, for

all the bands between -2 eV and 0 eV. As is expected, the two highest energy bands

(labeled a and b) display 2DEG-FS behavior and are located on the outer surfaces

of the bilayer. The next lowest energy band (labeled e) is also a 2DEG-FS state
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Figure 3.9: (Left) |ψk,n|2 at k = Γ in the case of bilayer Ca2N for each band between
-2 eV and 0 eV. (Right) Zoomed-in band structure of bilayer Ca2N.
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and is concentrated in the interlayer region. All other calculated bands seem to be p

orbitals of nitrogen, with at least partial p orbitals also appearing in the surface and

interstitial bands. This is in agreement with the PDOS of bilayer which shows very

high nitrogen p-orbital contribution in bands located roughly -2 eV below the Fermi

level.

To get a quantified image of the spatial distribution of states, the integrated local

density of states (ILDOS) modifies the DOS by the spatial density before integrating

over a specified energy range:

ILDOS(r) =
2

Nk

∫ E2

E1

∑
k,n

|ψk,n(r)|2δ(E − Ek,n)dE, (3.1)

where Nk is the number of k-points in the Brillouin zone. For this study, all ILDOS

were determined for the energy range ±0.1 eV around the Fermi energy, as this range

is most relevant to the electron transport properties of the material.

Taking the planar average of the ILDOS returns the average distribution of states

along the z-axis (out-of-plane direction) for the energy range |E − EF | ≤ 0.1eV, as

shown for monolayer and bilayer Ca2N in Fig. 3.10 and Fig. 3.11. It is clear from

these figures that the major concentration of states exists outside the atomic layers

Figure 3.10: Planar average of the ILDOS for monolayer Ca2N along the out-of-plane
axis. Shaded regions on the surfaces are used to calculate the surface state density.
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Figure 3.11: Planar average of the ILDOS for bilayer Ca2N along the out-of-plane
axis. Shaded areas on the surfaces and interstitial region are used to calculate the
surface state density and interlayer state density, respectively.

on the surfaces and in the interstitial region for bilayer Ca2N, as is anticipated for

2DEG-FS behavior.

The degree to which the surface states extend from the surface of the atomic

layers can be determined by finding the average distance of the ILDOS from the

outer atomic position:

〈z〉 =
∫ zCa
−∞ z · ILDOS(z)dz∫ zCa
−∞ ILDOS(z)dz

− zCa. (3.2)

Here, zCa is the z position of the outermost Ca atom on the left of the material.

For monolayer, the average z position relative to the surface is 1.51 Å, and for bilayer,

the average z position is 1.70 Å. The higher value of z for bilayer is likely due to the

electrostatic repulsion of the interlayer electrons acting on the surface state electrons.

To quantify the number of 2DEG-FS states in these regions, the ILDOS was

integrated along the z-axis over the regions of interest.

〈σ〉 =
∫ zCa1

−∞
ILDOS(z)dz +

∫ ∞

zCa2

ILDOS(z)dz (3.3)

For the surface state density of monolayer Ca2N, we find a value of 0.032 states/Å2.
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This constitutes 83% of the total states around the Fermi level being outside the

atomic structure of Ca2N.

Bialyer Ca2N has the additional interlayer region that can be integrated, so it

has 0.021 states/Å2 on its outer surfaces, representing 36% of the total states, and

0.027 states/Å2 in its interlayer region, which is 46% of the total states, leaving only

18% inside the atomic structure of bilayer. This reduction in surface state density

from monolayer to bilayer indicates an affinity towards interlayer states rather than

interlayer being just a combination of two surface regions.

Like the ILDOS, Quantum Espresso can take the planar average of the electric

potential along the z-axis, which is shown in Fig. 3.12. It is then simple to determine

the work function of the material by taking the difference between the vacuum energy

(flat potential energy in the vacuum region) and the Fermi level. The calculated work

function of Ca2N monolayer and bilayer are 3.60 eV and 3.37 eV respectively, values

that are consistent with the results of previous DFT calculations for the out-of-plane

work function [24].

Figure 3.12: Planar averaged electrostatic potential relative to the Fermi level versus
out-of-plane direction for monolayer (left) and bilayer (right) Ca2N.
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3.2.1 Comparison to Another 2D Metal

In the interests of establishing the unique properties of electrenes, here we take a

moment to perform a comparative analysis to another 2D metal, 1T-MoS2, which is

a transition-metal dichalcogenide (TMDC).

Like Ca2N, TMDCs have layered crystal structures. They are of the form MX2

where M is a transition metal and X is from the chalcogen family of elements. They are

covalently bonded rather than ionically bonded like Ca2N, and are easily exfoliated to

single layers due to the weak van der Waals interlayer bonding [80]. Under standard

conditions MoS2 is a semiconductor [81, 82], but the material can undergo phase

transitions which alters its electrical properties. The thermodynamically stable form

of MoS2 has a trigonal prismatic structure where the two layers of sulfur atoms are

aligned in the cross-plane direction, referred to as the 2H phase. The 1T phase is a

higher energy polymorph with an octahedral structure where the sulfur atoms become

off-set in the cross-plane direction. In this phase, MoS2 becomes a conductor, and

also matches the octahedral structure of Ca2N [83, 84, 80]. Both of these factors make

2D 1T-phase MoS2 ideal to highlight the unique attributes of Ca2N as an electrene

material.

Figure 3.13: The atomic structure of 1T-MoS2.

Performing a DFT calculation of 1T-MoS2 yields the expected conductive behavior

and crystal structure, with a hexagonal lattice constant of a=3.139 Å which compares

well to the 3.168 Å reported in another DFT study [85]. Literature is also in agreement

with the calculated band structure [86] and DOS projected orbitals [87], both shown in
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Figure 3.14: Electronic structure of monolayer 1T-phase MoS2. The band structure
(left) and the projected DOS (right) are presented.

Fig. 3.14. The band structure shows the Fermi level crossing several bands, confirming

the metallic behavior of 1T-MoS2. The PDOS shows that states in the vicinity of

the Fermi level are composed of d-orbital Mo and p-orbital S states, whereas Ca2N is

mostly s-orbital Ca states in the same region.

The planar average of the ILDOS for monolayer 1T-MoS2 is shown in Fig. 3.16.

With 1T-MoS2, the electron states are centered around the atomic positions, unlike

Ca2N, with the average surface state density located 0.53 Å beyond the sulfur atom.

Figure 3.15: ILDOS of monolayer 1T-MoS2, integrated ±0.1eV around the Fermi
level.
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Figure 3.16: Planar average ILDOS of monolayer 1T-MoS2, integrated ±0.1 eV
around the Fermi level.

This is nearly one Angstrom closer to the surface atom compared to that of monolayer

Ca2N (1.51 Å). The surface state density of 1T-MoS2 constitutes 32% of the total

integrated ILDOS, greatly decreased compared to the 83% of monolayer Ca2N. The

3D spatial distribution of the ILDOS is presented in Fig. 3.15.

For a direct graphical comparison, Fig. 3.17 shows the ILDOS of both monolayer

MoS2 and monolayer Ca2N normalized by total integrated ILDOS. From this it is

clear how the ILDOS of Ca2N extends farther out from the lattice compared to 1T-

MoS2. This extension of states is unique to the electride family of materials, and

distinguishes them from other conductive materials.

Lastly, the work function of monolayer 1T-MoS2 was determined to be 5.052 eV,

a 40% increase from that of monolayer Ca2N. Because the surface electrons in Ca2N

are located far from the atoms, they possess a lower work function, whereas they are

more tightly bound in 1T-MoS2.
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Figure 3.17: Planar average ILDOS normalized by total integrated ILDOS for mono-
layer Ca2N and monolayer 1T-MoS2, integrated ±0.1 eV around the Fermi level. The
z position of the surface atoms of both materials, Ca and S, are indicated by vertical
lines.

3.3 Strained Ca2N Electrene

Next, we begin investigating how the properties of Ca2N change when placed under

strain, both tensile and compressive. To illustrate these changes, the most extreme

and the least extreme results will be explored with ±5% and ±1% strain applied in

both of the in-plane directions simultaneously.

Figure 3.18 presents how the band structure and DOS vary with strain. It is ap-

parent that the effects of ±1% strain on the band structure are minimal, with notable

changes in band energy or DOS only occurring in ±5% cases. This would indicate

that the electric properties of Ca2N have a slow response to strain, particularly near

the Fermi level. The DOS reveals that the general trend of this response is that ten-

sile strain moves states to a lower energy while compressive strain shifts states to a

higher energy. This could be due to compressive strain forcing atoms closer together,

causing an increase in electrostatic repulsion.

The exception to this trend is the highest energy surface band near the zone

center, which instead increases energy with positive strain and decreases energy with
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Figure 3.18: Band structure (left) and DOS (right) of Ca2N in monolayer (a,b) and
bilayer (c,d) forms with applied in-plane strain.

negative strain. A similar feature is observed in the interstitial band of bilayer between

Γ and M. This possibly occurs due to the fact the number of occupied states must

be unchanged between strain cases, as strain neither adds nor removes electrons from

the material. Therefore any increase in occupied states in one band must be offset by

a loss of occupied states in another. To observe how the k-resolved electron density

evolves with strain, see Appendix C for the changes at the Γ point and the M point.

There is a particular resistance to band movement under strain seen in the surface
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and interstitial bands, with an almost pinning effect near to the Fermi level. Given

that it is band behavior near the Fermi level which dictates electron mobility, it is

important to have a clear understanding of how the concentration of states changes

in this region. Figure 3.19 shows how the planar ILDOS around the Fermi energy

changes with strain. Monolayer displays a direct relationship between compressive

strain and the ILDOS, with up to a ∼12% increase at the maximum peak. This is

corroborated in Fig. 3.20 which shows the surface state density increasing by up to

Figure 3.19: Effects of strain on the planar averaged ILDOS of monolayer (top) and
bilayer (bottom) Ca2N over the energy range EF±0.1eV.
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10% with a -5% compressive strain.

This trend in the ILDOS is the opposite of the DOS shown in Fig. 3.18b. The

DOS shows a minute increase under +5% strain and a minute decrease under -5%

strain in the energy range of the ILDOS. The discrepancy can be explained by the

change in lattice constants of the unit cell under strain. Tensile strain increases in the

area over which states are distributed, causing a drop in the surface state density and

ILODS, which are spatially dependent. A compression of the lattice vectors produces

the opposite effect in compressive strain cases. Therefore, the strain trend seen in the

ILDOS and density of surface states for monolayer Ca2N can be attributed entirely

to the change in the area of the unit cell with strain.

Figure 3.20: Surface state density versus strain for monolayer and bilayer Ca2N.

Simply by changing the shape of the lattice, electron mobility shows potential

improvement under compressive strain given the increase of state density around the

Fermi level. Figure 3.20 confirms that the surface state density of bilayer also rose

by 7% at -4% strain, but falls off significantly for -5%. The interlayer state density,

shown in Fig. 3.21, is not monotonic either, and drops at compressive strain below

-3%. This could potentially offset the improvements in surface state density at -4%

strain given the greater proportion of states in the interlayer region.
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Figure 3.21: Interlayer and surface state density versus strain for bilayer Ca2N.

Figure 3.22 shows the average z position of the surface state density around the

Fermi level for monolayer and bilayer. The average z correlates directly with the

applied strain, but only changes by about 0.1 Å between minimum and maximum

strain for monolayer, and 0.17 Å for bilayer. This is again likely due to the compression

of the atomic layer with positive strain, causing lattice states to be pushed out onto

the surface.

The work function of strained Ca2N was extracted from the electrostatic potential

energy (shown in Appendix B). Figure 3.23 shows a monotonic decrease of the work

function with increasing strain values, varying the most for bilayer. The change in

work function is 0.3 eV for monolayer and 0.4 eV for bilayer across ±5% strain, and

brings the work function for bilayer Ca2N below 3.2 eV. This is due to the thickness of

the atomic layers decreasing with applied tensile strain (the table of Poisson’s ratios

is included in Appendix A). As the layers get thinner, the electrons are squeezed

together, increasing the mutual repulsive force between them and reducing the energy

needed to extract one electron to the vacuum level.
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Figure 3.22: Average z position of surface state density relative to outer atomic layer
versus strain.

Figure 3.23: Work function of monolayer and bilayer Ca2N versus strain.



47

3.4 M2X Electrenes

Having examined the DFT results for monolayer and bilayer Ca2N, and corroborating

those results with the literature for electrenes, we now extend our analysis to include

all seven electrenes of the form M2X (Ca2N, Sr2N, Sr2P, Ba2N, Ba2P, Ba2As, Ba2Sb).

Material a c Layer thickness
Ca2N 3.584 29.998 2.518
Sr2N 3.829 32.000 2.755
Sr2P 4.407 32.000 3.160
Ba2N 3.959 32.000 3.022
Ba2P 4.576 32.000 3.427
Ba2As 4.689 32.000 3.510
Ba2Sb 4.947 32.000 3.709

Table 3.5: Lattice parameters of monolayer electrenes. a and c are the in-plane and
out-of-plane lattice constants and are measured in Angstroms, as is the single layer
thickness.

Material a c Layer thickness Interlayer gap
Ca2N 3.579 34.582 2.510 3.597
Sr2N 3.823 34.000 2.749 3.961
Sr2P 4.416 34.000 3.146 3.849
Ba2N 3.979 34.000 3.013 4.388
Ba2P 4.592 34.000 3.437 4.316
Ba2As 4.703 32.000 3.518 4.259
Ba2Sb 4.964 34.000 3.718 4.146

Table 3.6: Lattice parameters of bilayer electrenes. a and c are the in-plane and
out-of-plane lattice constants and are measured in Angstroms, as are the single layer
thickness and interlayer gap.

3.4.1 Band Structure and Density of States

The band structures of all seven monolayer electrenes are shown in Fig. 3.24. In all

cases, there are two surface bands that cross the Fermi level, which are responsible

for the surface states on either side of the materials. The energy range of the bands

decreases as the elements move down the periodic table. This leads to flatter bands

with the heavier elements, which results in a larger DOS, as seen in Fig. 3.25. With
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Figure 3.24: Band structures of all monolayer electrenes with applied strain.

the application of strain, in all cases, the states near the Fermi level show little

movement. Most of the band movement is observed at the M point.

An interesting feature of the Ba series of electrenes is how the lower surface band

has a local maximum along the Γ-M path. With Ba2N, this local maximum occurs

just above the Fermi level. Importantly, this feature can be made to cross the Fermi

level with the application of tensile strain in the case of Ba2P, Ba2As, and Ba2Sb.

The lower surface band of Sr2P can also be made to cross the Fermi level with a local

minimum at the M point. This demonstrates how an applied strain can move states
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up or down in energy depending on its location in the Brillouin zone.

This is corroborated by the peaks in the DOS shown in Fig. 3.25. Peaks highlight

the location of flat regions (often near the Brillouin zone edge) in the band structure,

with abrupt step-like increases in the DOS corresponding to the band edges. Tracking

the movement of these features as strain is applied allows us to see how states move

up and down the energy scale as strain is modulated. Focusing on energies near to

the Fermi level, which are relevant for conduction (roughly 10 kBT around EF ), we

identify that Sr2P and Ba2X display the largest changes in DOS with strain. This

Figure 3.25: Density of states of all monolayer electrenes with applied strain.
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suggests that these materials could show increased electron transport performance

under strain.

However, the charge available for transport may be harmed by the fact that the

Ba2X series sees the top surface band advancing toward the Fermi level, with the band

in Ba2Sb having almost no filled states at all. This is reflected in the DOS where

the first peak moves progressively closer to 0 eV from Ba2N to Ba2Sb. In addition,

as the upper surface band moves toward the Fermi level it flattens, and the electron

velocity of those states (proportional to the slope of the band) decreases, which would

Figure 3.26: Band structures of all bilayer electrenes with applied strain.
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Figure 3.27: Density of states of all bilayer electrenes with applied strain.

negatively impact transport.

From the band structure of the bilayer materials, shown in Fig. 3.26, Ca2N and

Sr2N display similar properties, with a weak strain dependence near the Fermi level.

Under tensile strain the upper surface band increases in energy while the interlayer

band decreases in energy, which is also clearly observable in the DOS shown in Fig.

3.27. The flat interlayer band at the M point makes a distinctive peak in the DOS.

The surface and interlayer bands of Sr2P and the Ba2X electrenes cross the Fermi

level at the M point due to the applied strain. Multiple bands intercept near the M
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point, with different dependencies on strain, leading to complex band behavior. From

Fig. 3.27, we find an increase in DOS at the Fermi level for tensile strain in Sr2P,

Ba2As, and Ba2Sb and for compressive strain in Ba2As. This suggests that improved

electronic conduction due to strain could be possible in those electrenes. However,

further insights can be gained from the ILDOS, as presented below.

(a) Sr2P

(b) Ba2N

(c) Ba2P

(d) Ba2As

(e) Ba2Sb

Figure 3.28: Band structures of monolayer electrenes with bands that cross the Fermi
level due to strain.

The region of the band structure that showed the largest response near the Fermi

level is in the vicinity of the M point. To better highlight band movement under

strain, Fig. 3.28 and Fig. 3.29 show the band structure for monolayer and bilayer

electrenes (which have bands crossing at the Fermi level as a result of strain) around

the M point.

For monolayers, Sr2P has an unoccupied portion of one of its surface bands drop to

the Fermi level at 5% tensile strain. Ba2P, Ba2As, and Ba2Sb have occupied portions

of a surface band rise above the Fermi level along the Γ-M path at 5% tensile strain.

In the case of bilayers, the bands closest to the Fermi level near the M point are
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(a) Ba2N (b) Ba2P

(c) Ba2As (d) Ba2Sb

Figure 3.29: Band structures of bilayer electrenes with bands that cross the Fermi
level due to strain.

pushed up by tensile strain and pushed down by compressive strain. One exception

is Ba2Sb, which shows opposite band movement with strain.

3.4.2 Integrated Local Density of States

Figure 3.30 shows the planar averaged ILDOS integrated over the energy range

EF±0.1 eV for all monolayer electrenes to compare their conduction states, and how
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Figure 3.30: Planar averaged ILDOS for all monolayer electrenes versus out-of-plane
direction as a function of strain. Vertical lines show atomic positions for the un-
strained lattice.
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those states along the z-axis change with strain.

The shape of the ILDOS distribution shown in Fig. 3.30 changes a great deal

going from Ca2N and Sr2X to Ba2X. The clear peaks of the surface state regions are

less distinct as the peaks become much broader and overlap significantly with ILDOS

located near the center, in most cases producing a minimum at z=0. In a previous

study of these electrenes [1], ILDOS in the central region was flatter, and the peaks

more separated. The difference is that the energy integration range in the ILDOS

of the previous study ranged from the bottom of the surface bands up to the Fermi

level, while in this study the energy range is focused around the Fermi level. This

suggests there is a change in the spatial character of states near the Fermi level versus

the states near the bottom of the surface bands.

The electrene’s response to strain is quite variable. Ca2N has a very clear strain

response, increasing for compressive strain and decreasing for tensile strain. In Sr2N,

the ILDOS drops off dramatically for both ±5% strain. The monolayer Sr2P and

Ba2X have ILDOS that increase substantially in the interior of the lattice under

tensile strain. On the surfaces, the ILDOS can increase or decrease with either tensile

or compressive strain, with no clear trend among these electrenes. Strain response is

thus particular to the electrene being examined in this energy range.

To quantify and compare the state density of the monolayers, the ILDOS is in-

tegrated over the entire z range and over only the surface regions. The results are

displayed in Fig. 3.31.

In the previous study [1], it was shown that the density of surface states decreases

with the heavier elements as a result of the larger atomic radii leading to increased

lattice constants, causing an otherwise equivalent amount of charge to be distributed

over a greater area. Here it is shown that this is not the case for states near the Fermi

level. Ca2N and Sr2N, the electrenes that should have the smallest lattice constants,

have among the lowest total state and surface state densities for all strain cases. This

indicates other electrenes have a higher density of surface states outside the atomic

lattice which are conducive to low-scattering transport.

Quantifying the surface states in this way also shows that changes in the surface

state density due to strain are reflected in the total state density. This indicates that

the density of high conduction 2DEG-FS states is benefiting from strain engineering
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Figure 3.31: State density of all monolayer electrenes for (top) the entire range of z
and (bottom) only the surface regions.

in a way that is proportional to the over all state density, despite the energy shift

of states being disproportionate across the Brillouin zone under strain. States which

show clear 2DEG-FS character (like those near the bottom of the surface bands at the

Γ point) are likely to be more beneficial to conduction versus states near the M point

that display less 2D character and are not necessarily localized to the surfaces. These

results show that the density of such poorly localized states is not disproportionately
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favored by strain manipulation.

What has yet to be determined is what the electron-phonon coupling strength

of these non-2DEG-FS states are. It seems unlikely they have as low a coupling as

those states that have 2DEG-FS character, but at this time it is difficult to come to a

conclusion on how they affect the conductive properties of the materials in comparison

to Ca2N. For the time being, the states most impactful to transport efficiency will

be assumed to be those in the 2DEG regions of the material, so the surface and

interlayer state counts will be considered the best indicator of overall conductivity.

This is a reasonable assumption as bands which correspond to more localized states

are generally very flat, which means lower electron velocities and lower conduction.

All bilayer electrenes, shown in Fig. 3.32, display a central ILDOS peak for the

interlayer states and secondary peaks on the sides due to the surface states, with the

exception of Ba2N. The most prominent changes in ILDOS due to strain are focused

near the interlayer region, although the strain trend is again very different among

different electrenes. This suggests that these bilayers could show similar variation

in their conductivity response to strain, with Ba2N and Ba2Sb presenting the most

increase in the interlayer ILDOS with strain.

Figure 3.33 shows the total, surface and interlayer state density for all bilayers. It

shows that a bilayer form improves the interlayer state density for Ca2N and Sr2N,

having now some of the highest state densities in this region, though the Ba2X series

has the highest state density in surface regions. For the interlayer region, Ca2N, Ba2P

and Ba2As show the best performance.

The state density of bilayer electrenes show a great deal of difference in the way

interlayer and surface densities are affected by strain. There is a downturn in the

interlayer state density of Ca2N and Sr2N at -4 and -5% strain, and a drop in surface

states for Sr2N at any value of compressive strain. Ba2As surface density decreases

with tensile strain until +5%, and has nearly strain-invariant interlayer states. The

electrenes with the most variable density are Ba2N and Ba2Sb in the interlayer region,

but all electrenes, monolayer or bilayer, seem to have strain cases which maximize the

density of states in the energy range around the Fermi level. This should correspond to

a maximization of conduction benefiting states under strain modulation. What isn’t

known at this time is if there is a benefit to maximizing the surface state density,
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Figure 3.32: Planar averaged ILDOS for all bilayer electrenes versus out-of-plane
direction as a function of strain. Vertical lines show atomic positions for unstrained
lattice.
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Figure 3.33: State density of all bilayer electrenes for (top) the entire range of z,
(middle) the surface states, and (bottom) only the interlayer region.
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interlayer state density, or total state density.

A good way to approximate the electron-phonon coupling, and thus the electron

scattering rate, could be by looking at the <z> of the electron density extending out

from the atomic lattice, which should be unusually large for electrene materials given

the physical separation of the conducting electrons from the atoms. <z> has been

calculated for all monolayer and bilayer electrenes, and is presented in Fig. 3.34.

A study looking at the strain response of monolayer Ba2N shows that this is a

viable approximation of the coupling strenth, as it found that the electron-phonon

coupling constant increases exponentially from λ=0.59 up to λ=1.49 for 4% tensile

strain, and decreases down to around λ=0.45 at 2% compressive strain [50]. This

agrees well with the results of <z> under strain for monolayer Ba2N.

The general trend between electrenes seems to be that heavier elements have a

larger <z> than lighter ones, though there are exceptions to this trend, as in Ba2N.

This is attributable to the decreasing electronegativity of heavier elements not binding

electrons as tightly. We also see that bilayer surface states have a greater average

distance than monolayer. This is likely due to the electrostatic repulsion of the higher

density interlayer states. The values for bilayer increase with tensile strain (excluding

Ba2N), as do the monolayer values for Ca2N and Sr2N, which can be attributed to

tensile strain reducing the thickness of the material and causing electrons to repel

each other as charge density increases within and between the atomic layers. The

calculated Poisson’s ratios for all materials is included in Appendix A.

Monolayers other than Ca2N and Sr2N do not follow this strain behavior and

instead display staggered or unresponsive trends, not changing much at all or oc-

casionally dropping to lower values. As strain brings new states within the energy

integration range, the ILDOS distribution will change, and in some cases will add

states near the atomic layer since there is no large interlayer charge to repel the

electrons, thereby resulting in a decrease in <z>. This is most clearly illustrated in

monolayer Sr2P, where there is a subtantial increase of the ILODS in the vicinity of

the lattice at +5% strain, resulting in a minimum value of <z>.
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Figure 3.34: Average z position of surface state density relative to outer atomic layer
versus strain.
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Figure 3.35: Work function of monolayer and bilayer electrenes versus strain.
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3.4.3 Work Function

The work functions of all materials are shown in Fig. 3.35. The monolayer electrenes

consistently have larger work functions over their bilayer counterparts, and lower

response to strain. Bilayer Ca2N and Sr2P see the biggest decrease in the work

function, by 0.2 eV for +5% in both cases. Lighter rare earth electrenes have higher

work functions, possibly due to atoms with larger radii having weaker electron affinity,

and so Ba2Sb already had the lowest work function at 2.38 eV, and with this strain

effect, the work function is reduced to 2.24 eV (the lowest calculated work function

in this study).

Monolayer Ba2X show a few features of note, the first being a variable change in

the work function under different strain values. The trend for bilayer is a fairly linear

change, but monolayer sees a leveling off of the work function to a steady value under

compressive strain. This value is 2.74 eV for Ba2P, 2.68 eV for Ba2As, and 2.53 eV

for Ba2Sb. The strain response of Ba2N is non-monotonic and displays a maximum

value of 2.98 eV at 0% with monolayer and 2.94 eV at -2% with bilayer, but overall

is relatively insensitive to strain.

The lower work functions for bilayer electrenes has previously [1] been attributed

to the greater <z> of bilayer surface states; as electrons are pushed farther away from

the lattice, it requires less energy to extract them. All electrenes follow a similar

trend of decreasing work function as strain is increased. This correlates with the

trend of increasing <z> with strain, as was previously found in Ref. [1]. To verify this,

Fig. 3.36 presents a scatter plot of work function versus <z>. A negative correlation

is observed between these quantities, most clearly for bilayer electrenes.

Monolayer materials do not have as strong a correlation between work function

and <z>. This is most apparent in monolayer Sr2P and Ba2As, which has a weak

positive correlation. However, this seems to have no effect on the trend of the work

function which decreases irrespective of <z> up to +5% strain. In fact, Sr2P has the

highest proportional response to strain, seeing over 5% decrease in the work function

compared to ∼4% for most other monolayer materials.
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Figure 3.36: Work function versus z of surface state density as a function of strain
for (top) monolayer electrenes and (bottom) bilayer electrenes. Strain is indicated
by the opacity of the markers, with -5% strain plotted with most saturation and
+5% strain plotted with least saturation. The unstrained case is indicated by a black
outline.

Heavier elements have a much flatter trend between work function and z , in-

dicating that as the atomic radii increase, the range of the work function over ±5%
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strain becomes smaller. The range of work function values over ±5% strain is only

weakly connected to the range of <z> for monolayers, but more strongly correlated for

bilayers. Ba2N is an outlier as both a monolayer and a bilayer, showing almost no

change in the work function for any strain value.
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Conclusions and Outlook

The appeal of electrene materials is obvious; the delocalized anionic electrons have

the potential for high conductivity through low electron-phonon coupling, and their

low work functions make them ideal electron donors. The goal of this study was to

explore how these electrical properties could be manipulated via the application of

tensile or compressive strain up to 5% in the family of layered, inorganic electrenes

known as alkaline earth sub-pnictogenides, with the formula M2X where M is an

alkaline earth metal and X is a member of the pnictogen family of elements. This

family includes the 7 electrenes: Ca2N, Sr2N, Sr2P, Ba2N, Ba2P, Ba2As, and Ba2Sb.

The transport properties of these electrenes were examined using two indirect

metrics: the state density in free-space regions of the material (surface and interlayer)

and the average z position of surface state density relative to the surface of the

atomic lattice. Electrical current is dependent on electron density, so looking at the

surface and interlayer state density in the energy range near the Fermi level should

indicate the density of electrons available for conduction which have a 2D delocalized

distribution and low electron-phonon coupling. Under the assumption that having

the transport states be physically separated from the lattice will reduce the scattering

rates, the relative electron-phonon coupling strength is approximated by calculating

the average distance of the surface state density from the atomic lattice.

Results show that the band structures of electrenes have varying responses to

strain in the region of interest around the Fermi level. Some show little sensitivity

to strain while others show a strong dependence. There is an underlying negative

correlation in state density with strain due to a decrease of the area over which states

are distributed, forcing them closer together and increasing their density, but this

trend seems limited to changes of around 10% at most.

Materials that do see strong energy shifts in bands near the Fermi level see these

shifts in states near to the M point of the Brillouin zone, displaying bands that

66
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can move across the Fermi level under strain. As a result, these materials can dis-

play noticeable increases in state density. Monolayer Ba2N and Ba2P see a surface

state density increase of 0.015 states/Å2 (corresponding to 56%) at -2% strain and

0.013 states/Å2 (corresponding to 31%) at +2% strain, respectively. Such substan-

tial increases can only be due to a significant proportion of new states entering the

conduction range.

But what can’t be forgotten is that these states are being manipulated at the M

point, and M point states will not have the same spatial distribution as those delo-

calized states at the Γ point. The delocalized electron behavior that makes electrenes

so interesting is broadly associated with the Fermi-crossing bands, however, weighted

k-point results and analysis of the region very near to the Fermi level shows that

the majority of the delocalized 2DEG-FS states likely exist near the bottom of these

bands, closer to the Γ point. The states in the vicinity of the Fermi level, which

control the transport properties, can be more localized than first expected, and may

have increased scattering rates as a result.

The electron-phonon coupling, and thus the scattering rates, are inferred by look-

ing at the average z of state density, and results show that <z> tends to trend up with

tensile strain for most materials, though monolayer Sr2P, Ba2N, and Ba2As show this

trend reversed. So despite the protrusion of an M point feature into the conduction

region of monolayer Sr2P causing an increase in the surface state density under high

tensile strain, the resulting decrease in <z> may hamper the transport efficiency of

these new states due to higher scattering rates. The highest values of <z> are those

for bilayer materials, being significantly higher than <z> for monolayers. The highest

value of <z> is seen in bilayer Ba2Sb under 5% tensile strain, where it reaches nearly

2.2 Å. A substantial increase of its interlayer state density of around 0.0075 states/Å2

(corresponding to 58%) is also observed at +4% strain.

The biggest jump in <z> is for monolayer Ba2N, where the average z increases by

nearly 0.3 Å at -3% strain. This is paired with a roughly 0.01 states/Å2 increase in

the surface state density, which could make for a noticeable increase of conduction

properties. The large increase in the surface states of monolayer Ba2P on the other

hand is paired with a minimal decrease of <z>, on the order of half an Angstrom.

Given the variability in the strain response of all materials, it is difficult to come to a
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conclusion about the best way to improve the conductivity of electrene materials as

a group, but by balancing the individual responses of state density and <z> of each

material, we can predict the most promising candidates for transport improvement.

Over all electrenes, the one with the lowest work function was found to be bilayer

Ba2Sb under 5% tensile strain with 2.24 eV. This follows the expected trend seen

in electrenes for the work function; heavier elements will have greater radii which

pushes surface electrons farther away from the lattice and more effectively screens the

electrostatic potential, such that the surface electrons are less energetically bound. In

addition, tensile strain compresses the material in the out-of-plane direction, causing

electrons to be pushed out of the lattice and away from their binding atoms. The

largest decrease observed due to strain was in bilayer Ca2N and Sr2P, where the

work function fell by about 0.2 eV under +5% strain to around 3.2 eV and 2.5 eV,

respectively.

Moving forward in the investigation of strain’s effect on electrene materials, there

are several unanswered questions that must be addressed. For instance, an increase

in surface state density does not guarantee an increase in the conduction. A thorough

treatment of the electron-phonon coupling of the M point states is needed before it

can be decided if it is beneficial to bring these states into the conduction range over

increasing state density using compressive strain. While this is possible, it remains a

very computationally demanding task to undertake.

A first-principles study of monolayer Ba2N demonstrates that it becomes dynam-

ically unstable at 5% tensile strain, making any investigation of the scattering behav-

ior beyond that point inconsequential [50]. In order to ensure that the results of this

study are meaningful, and to focus future efforts, calculations must be performed to

look at the instability point of all materials to find what range of strain values are

physically plausible.

For example, a computational study looking at monolayer Ca2N and Sr2N predicts

that under uniaxial loading, the ultimate strain point of the materials is between 14%

and 24%, and 12% and 22%, respectively [49]. In addition, if electrenes are to be strain

loaded for use in practical applications, it is important to know what kind of loading

force is required. The study predicts stress values (reported in GPa·nm) of between

4.4 and 6.5 for Ca2N, and between 3.1 and 4.7 for Sr2N are required to achieve their
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ultimate strain point.

Another potential research avenue is to explore not only biaxial strain (i.e. uniform

expansion or contraction), like we did here, but also uniaxial strain (apply strain along

one of the in-plane directions) which might show different results. Given how the

anionic electrons conform to the available free-space of the material, moving forward

with strain engineering may involve folding or bending the lattice. Deforming the

lattice in an out-of-plane direction could result in constructing regions of exceptionally

high electron density where the surfaces of the electrene are brought closer together.

This could result in even higher carrier concentrations available for low-scattering

conduction or push states further out from the lattice, resulting in lower work function

values.

As a last consideration, taking full advantage of the transport properties of elec-

trenes may involve lowering the Fermi level to near the bottom of the surface bands,

where the most desired transport states likely reside. Inoshita et al. [12] came to

a similar conclusion in their computational study of the electride Y2C, where they

found that 2D confinement of the anionic electrons was improved at energy ranges

further below the Fermi level, and suggested that increased mobility of interlayer

electrons might be achieved by hole doping. Zeng et al. [28] likewise calculated that

monolayer Ca2N sees an enormous increase in carrier mobility of nearly 1500% if the

Fermi level were lowered near the bottom of the surface band.

There are many difficulties associated with this proposition. Firstly, doping likely

can’t be used to achieve this outcome. The dopant concentrations needed would

not be possible as doping is limited to roughly a few percent. Instead, electrene

alloying may be able to reduce the surface and interlayer electrons. For example,

something like CaxK2−xN where x<2, due to potassium being able to donate one

less electron than calcium. This strategy would introduce scattering sites at the

randomly distributed alloying atoms; practically unavoidable in an atomically thin

material. While additional alloy scattering would be detrimental, the fact that the

conduction states of the electrene are external to the lattice may help to alleviate this

problem.

Identifying the proper alloy would be key to implementing this solution, but an-

other route may be possible. A reliable method has yet to be found for stabilizing
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the highly reactive electrenes in ambient conditions, but one possibility is by confin-

ing it with another atomically-thin material. If a confining material can be found

that accepts the right amount of charge without corrupting the band structure of the

electrene, two design problems could be solved using a single solution. However, the

confining material would have to be designed to take the proper amount of electrons

from a notoriously eager donor without destroying the delocalized states altogether.
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Appendix A

Poisson’s Ratios

Material -5% -4% -3% -2% -1% +1% +2% +3% +4% +5%
Ca2N 2.34 2.35 2.36 2.37 2.37 2.38 2.38 2.39 2.39 2.39
Sr2N 2.28 2.28 2.28 2.28 2.29 2.28 2.29 2.30 2.30 2.30
Sr2P 1.47 1.46 1.44 1.42 1.41 1.36 1.33 1.30 1.27 1.24
Ba2N 2.58 2.57 2.55 2.53 2.52 2.47 2.45 2.42 2.39 2.37
Ba2P 1.48 1.46 1.44 1.42 1.40 1.36 1.34 1.31 1.28 1.26
Ba2As 1.37 1.36 1.34 1.32 1.30 1.26 1.24 1.21 1.18 1.15
Ba2Sb 1.14 1.12 1.10 1.09 1.06 1.01 0.99 0.96 0.92 0.90

Table A.1: Poisson’s ratios of all monolayer electrenes versus strain. Calculated as
the negative ratio of in-plane strain to out-of-plane strain.

Material -5% -4% -3% -2% -1% +1% +2% +3% +4% +5%
Ca2N 1.06 1.05 1.04 1.03 1.02 1.01 1.00 0.98 0.97 0.96
Sr2N 1.12 1.11 1.11 1.10 1.09 1.06 1.06 1.05 1.04 1.03
Sr2P 0.65 0.64 0.64 0.63 0.62 0.60 0.59 0.58 0.57 0.55
Ba2N 0.92 0.92 0.92 0.92 0.91 0.93 0.93 0.93 0.93 0.93
Ba2P 0.67 0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.60 0.59
Ba2As 0.63 0.62 0.62 0.61 0.60 0.58 0.58 0.57 0.56 0.54
Ba2Sb 0.53 0.53 0.52 0.51 0.50 0.49 0.47 0.46 0.45 0.43

Table A.2: Poisson’s ratios of all bilayer electrenes versus strain. Calculated as the
negative ratio of in-plane strain to out-of-plane strain.

79



Appendix B

Electrostatic Potential Energy

The electric potentials in Fig. B.1 all have the same response to strain as Ca2N, and

it is clear that the biggest factor affecting electric potential is the choice of pnictogen.

Nitrogen has the deepest potential well, which then shrinks as you go to heavier

elements. The results for the bilayer electric potential in Fig. B.2 are much the same.

Figure B.1: Planar averaged electrostatic potential energy relative to the Fermi level
for all monolayer electrenes as a function of strain.
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Figure B.2: Planar averaged electrostatic potential energy relative to the Fermi level
for all bilayer electrenes as a function of strain.



Appendix C

k-Resolved Electron Density

(a) Ca2N (b) Sr2N (c) Sr2P (d) Ba2N (e) Ba2P (f) Ba2As (g) Ba2Sb

Figure C.1: The k-resolved charge distribution of all unstrained monolayer materials
at the Γ point. The top and bottom images correspond to the upper and lower energy
surface bands, respectively.

(a) Ca2N (b) Sr2N (c) Sr2P (d) Ba2N (e) Ba2P (f) Ba2As (g) Ba2Sb

Figure C.2: The k-resolved charge distribution of all unstrained bilayer materials at
the Γ point. The top, middle, and bottom images correspond to the upper surface,
lower surface, and interstitial bands, respectively.

Figures C.1 and C.2 show the k-resolved electron density for the surface and interlayer

bands at the Γ point. The Ba2X series have 2DEG-FS layers that are less continuous
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than other materials, indicating that the Ba2X series has less effective conductive

states than Ca2N or Sr2X.

(a) -5%. (b) -1%. (c) 0%. (d) +1%. (e) +5%.

Figure C.3: The k-resolved state distribution of bilayer Ca2N at the Γ point versus
strain.

Figure C.3 shows how the k-resolved charge density evolves with strain in bilayer

Ca2N. Of note is how the top most surface state becomes discontinuous by +5%

strain, though the most dramatic change is the shift in the interlayer band character.

For strain ≥0%, the interlayer 2DEG character is the third Fermi-crossing band, but

when negative strain is applied that character shifts to the concave band at -2 eV.

The cause of this radical change in band character is uncertain, but may be related
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to the fact all bands between those of 2DEG-FS character in negative strain cases are

degenerate with another band at the Γ point.

(a) -5% (b) -1% (c) 0% (d) +1% (e) +5%

Figure C.4: Ca2N monolayer k-point resolved charge distribution for bands at the M
point. Images correspond to order of bands shown on the right.

(a) -5% (b) -1% (c) 0% (d) +1% (e) +5%

Figure C.5: Ca2N bilayer k-point resolved charge distribution for bands at the M
point. Images correspond to order of bands shown on the right.

The most amount of energy shift in the bands is observed at the M point, so

the states at this point have been evaluated. Figure C.4 and Fig. C.5 show the

k-resolved electron density of the surface and interlayer bands at the M point for
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Ca2N monolayer and bilayer. They show a very different density character than the

2DEG-FS that is expected for electrenes.

The Fermi-crossing bands no longer fill the free space layers and now exist at least

in part or entirely within the atomic lattice. The states that exist in the lattice seem

to take on the characteristics of p-orbital bonds. The interlayer band of the bilayer

seems to no longer be those of a 2D confined electron gas, but is partitioned into

seemingly 1D channels. This is also seen in the monolayer band. This might produce

asymmetric transport properties in these states. The middle bilayer band also now

has states which connect the two atomic layers, giving it more interlayer character

than surface layer character previously observed at the Γ point. What these results

demonstrate is that the electron density evolves dramatically over the length of a

band.

What is noticeable about the 1D channels is that they appear to be orientated

along the cell vector a. This anisotropy seems to arise from the nature of the M-point,

which lies directly on the ky axis of reciprocal space. The cell vector a lies directly

on the x axis in real space, indicating that the momentum of electron states at the

M-point is exactly perpendicular to the orientation of the 1D channels seen in the

figures.



Appendix D

Total Energy Under Strain

Figure D.1: The calculated total energy of Ca2N monolayer (left axis) and bilayer
(right axis) at tested strain values.
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Figure D.2: The calculated total energy of Sr2N monolayer (left axis) and bilayer
(right axis) at tested strain values.
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Figure D.3: The calculated total energy of Sr2P monolayer (left axis) and bilayer
(right axis) at tested strain values.
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Figure D.4: The calculated total energy of Ba2N monolayer (left axis) and bilayer
(right axis) at tested strain values.
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Figure D.5: The calculated total energy of Ba2P monolayer (left axis) and bilayer
(right axis) at tested strain values.
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Figure D.6: The calculated total energy of Ba2As monolayer (left axis) and bilayer
(right axis) at tested strain values.
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Figure D.7: The calculated total energy of Ba2Sb monolayer (left axis) and bilayer
(right axis) at tested strain values.
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