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ABSTRACT

Warming four times faster than the rest of the globe, the Arctic region is experiencing
rapid changes. At the heart of this amplification of anthropogenic climate change lies
a strong coupling between the different components of the climate system, including
the ocean and sea ice. The numerous non-linear processes dictating the physical and
biogeochemical interactions between the ocean and sea ice influence the local and global
climate. Those interactions are investigated by combining theoretical approaches and a
hierarchy of numerical models.

The processes regulating sea ice thermodynamics are non-linear and obfuscate an
intuitive understanding of the evolution of sea ice in a changing climate. A simple
thermodynamic sea ice model is used to highlight that sea ice acts as a rectifier for
atmospheric forcing and integrates external forcing to generate low frequency internal
variability. The ice–ocean heat flux, despite being poorly constrained by observations,
dictates the future of sea ice in a warming world.

The Arctic Ocean is experiencing longer and more frequent marine heatwaves in recent
decades. A heat budget applied to a regional numerical model provides an overview of the
driving mechanisms triggering and dissipating marine heatwaves in the Arctic. Notably,
sea ice melt lengthens marine heatwaves by shoaling the surface mixed layer. Marine
heatwaves act to provide a pathway for heat from the atmosphere to the subsurface ocean.

The Arctic Ocean is a carbon sink, regulating atmospheric concentrations of green-
house gases. Importantly, sea ice is not a simple physical lid on the ocean, but plays a
role as a pump for carbon into the ocean. By combining a theoretical framework and a
one-dimensional numerical model, the drivers of this pump are identified and the underes-
timation of the ocean carbon sink in global climate models is quantified for present and
future states of the Arctic.

In this thesis, interactions between ice and ocean in the current and future state of
the Arctic Ocean are investigated and the role of sea ice as a climate component is
highlighted, regulating heat and carbon exchanges between the atmosphere and the ocean
and dampening weather noise to generate climate variability.
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CHAPTER 1

INTRODUCTION

J’ai montré mon chef-d’œuvre aux
grandes personnes et je leur ai
demandé si mon dessin leur faisait peur.
Elles m’ont répondu : « Pourquoi un
chapeau ferait-il peur ? »1

Le Petit Prince
Antoine de Saint-Exupéry

1.1 Climate, the Ocean and Sea Ice

As the concentration of greenhouse gases in the atmosphere steadily increases due to

unsustainable fossil fuels combustion and land use change, so does the average global

temperature (IPCC, 2021b). The monthly global temperature in July 2023 temporarily

exceeded 1.5 °C warming above pre-industrial levels2, setting the global temperature on

track to breach that symbolic threshold set by the 2015 Paris Agreement. Greenhouse gas

concentrations in the atmosphere keep increasing, exceeding 417 ppm for carbon dioxide

(CO2) in 2022, the highest than at any time over the last 2 million years (Calvin et al., 2023),
1I showed my masterpiece to the grown-ups, and asked them whether the drawing frightened them. But

they answered: “Frighten? Why should any one be frightened by a hat”
2Copernicus Climate Change Service bulletin, July 2023
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and more than 50 % above the 280 ppm average for pre-industrial levels. Methane (CH4)

atmospheric concentrations reached 1866.3 ppb in 2019, a 156 % increase compared to

pre-industrial levels while nitrous oxide (N2O) reached 332 ppb, a 23 % increase (Canadell

et al., 2021). Yet, those numbers do not draw a representative picture of anthropogenic

carbon emissions, as the atmosphere accumulated “only” 46 % of the CO2 emitted by

humans in the 2010–2019 decade (decadal average 10.9 ± 0.9 PgC yr−1), the rest being

distributed between the ocean (23 %) and the terrestrial vegetation (31 %). The oceanic

carbon sink carries large uncertainties, with estimates from different sources varying by up

to a factor of 3 (Friedlingstein et al., 2022). It also exhibits large decadal variability, with

a stagnating carbon uptake in the 1991-2002 period followed by a rapid growth over the

next two decades, and strong spatial disparities, with the mid- and high-latitudes being

primarily sinks of CO2 and tropics being neutral (Friedlingstein et al., 2022).

The oceanic carbon sink is expected to significantly weaken in future scenarios (Canadell

et al., 2021). Indeed, while the ocean-borne fraction of total anthropogenic CO2 has been

remarkably constant at 23± 5 % over the observational era (Friedlingstein et al., 2022),

recent observations show that ocean carbon processes are starting to respond to the oceanic

sink (Canadell et al., 2021). The ocean has absorbed over 90 % of the heat accumulated

by the Earth system, due to the high heat capacity of seawater and its ability to transport

this heat to depth (Forster et al., 2021). The solubility of CO2 is directly controlled

by the seawater temperature, meaning that a warming ocean has a reduced capacity to

absorb carbon (e.g. Takahashi et al., 1993; Sarmiento and Gruber, 2006). This interplay

between the heat and carbon uptake by the ocean is coined the “ocean heat – carbon nexus”

(Canadell et al., 2021). Numerous feedbacks link both aspects of this nexus and lead to an

increase in the amplitude of the partial pressure of CO2 (pCO2) seasonal cycle, a decrease

in the ocean buffering capacity and a reduced CO2 solubility of the ocean. Reducing

uncertainties in climate change projections therefore requires a better understanding not

only of oceanic carbon processes, but also of heat fluxes and storage in the ocean.
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Figure 1.1: Comparison of observed and simulated annual mean surface temperature
change. (a) The left map shows the observed changes in annual mean surface temperature
in the period 1850–2020 per °C of global warming (°C). White indicates areas where time
coverage was too short to calculate a reliable linear regression. The right map is based on
model simulations and shows change in annual multi-model mean simulated temperatures
at a global warming level of 1 °C (20-year mean global surface temperature change relative
to 1850–1900). (b) Simulated annual mean temperature change (°C) from Coupled Model
Intercomparison Project Phase 6 (CMIP6) multi-model mean change at three different
global warming levels, that is, the same method as for the right map in panel (a). Taken
from IPCC (2021a).
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The Arctic region is amongst the fastest changing regions of the globe (Fig. 1.1). The ice

is melting with a decline in September extent of 12.7 % over 1979-2021 (Meier and Stroeve,

2022), the Arctic atmosphere is warming by 0.79 ◦C decade−1, four times faster than the

global average (Rantanen et al., 2022), the oceanic circulation is changing: there is a

“polar transition” to a new state (Meredith et al., 2019; Weingartner et al., 2022). Increased

poleward heat transport leads to a shift from salinity to thermally-driven stratification at

the Arctic gates (Timmermans and Marshall, 2020). In parallel, the increased nutrient

transport and change of light regime due to ice thinning and melting induce a modification

of the phytoplankton blooms, with the typical summer bloom being replaced by an early

spring bloom followed a secondary fall bloom as in subpolar waters (Ardyna and Arrigo,

2020), a phenomenon coined “Atlantification” or “Borealization” of the Arctic (Polyakov

et al., 2020a; Muilwijk et al., 2023). Those changes are drastic and happening at a fast rate,

due to the Arctic “Amplification”: the links between the atmosphere, the ocean and the

cryosphere lead to feedbacks (Serreze et al., 2007; Bekryaev et al., 2010; Goosse et al.,

2018; Meredith et al., 2019; England et al., 2021). A typical example is the ice albedo

positive feedback: the ice and snow, which reflect a large proportion of the solar radiation,

are melting and replaced by melt ponds or open water, which have a lower albedo and

absorb more solar radiation. This leads to increased heat uptake and therefore more ice

and snow melt (e.g. Meehl and Washington, 1990; Hall, 2004). The sea ice decline in

non-summer months also leads to more cloud nucleation, increasing downward longwave

radiation and warming, leading to a positive cloud – sea ice feedback (Schweiger et al.,

2008). A complete picture needs to include links to terrestrial and freshwater systems as

well, with thawing permafrost releasing methane, increasing coastal erosion and enhancing

heat and organic matter riverine inputs into the ocean (Westbrook et al., 2009; Koven et al.,

2013; Holmes et al., 2018). Those changes in the Arctic climate have repercussions at lower

latitudes. Fisheries are impacted by ecosystem changes, shipping routes by increased open

waters; sea ice loss is also likely to influence mid-latitude weather through modification
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of the jet stream patterns (Meredith et al., 2019). Global sea level rise is impacted by the

Greenland ice sheet melt (e.g. Dowdeswell, 2006). Understanding the complex coupling

between the different components of the Arctic climate system is important to better our

understanding of the Arctic climate and provide Indigenous communities with solutions to

adapt. It would also improve earth system models and therefore reduce uncertainties in the

projections of the global climate for the rest of a fast-changing century and beyond.

1.2 Trends, Variability and Extremes

Climate differs from weather in that it is the study of the statistical distribution of weather

properties, rather than its specific state at a given moment in time. As a convention,

properties are averaged over 30 years or more, mainly for historical reasons as observations

were only available for three decades when initial guidelines were provided (WMO, 2017),

but also to average over interannual variability. Climate change is quantified by looking

at trends, i.e. multi-decadal to centennial changes in the mean state. Superimposed on

the trend, variability encompasses changes occurring on daily or shorter to interannual

or decadal timescales. Interannual variability can mask or exaggerate trends, adding

uncertainties to their evaluation (Fig. 1.2; see also Deser et al., 2012; Swart et al., 2015).

Constraining variability is therefore important to evaluate the signal-to-noise ratio and the

time of emergence of climate signals (Hawkins and Sutton, 2012).

But the importance of understanding variability goes beyond a simple quantification

problem related to this intuitive linear superposition. The climate system is a complex,

chaotic, non-linear system (e.g. Richardson, 1922; Lorenz, 1963; Ghil and Lucarini, 2020).

A change in the mean state can lead to a change in the variability. A typical example is the

decreasing extent of sea ice in the Arctic that triggers an amplified seasonal cycle of ice

formation and melt due to the ice growth – ice thickness negative feedback (Massonnet

et al., 2018). The opposite is also true, as increased variability can generate a change in

the mean state. For example, phytoplankton mostly grow in spring and therefore react
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Figure 1.2: Minimum Arctic sea ice extent, in September. The solid lines illustrate the
impact of internal variability on trend calculations. Data from the National Snow and Ice
Data Center.

more to a change in spring conditions than in winter conditions (Huybers and Wunsch,

2003; Lim et al., 2019). Such a system, only integrating parts of a forcing, is called a

rectifier, as the electric device converting alternative current into direct current. When

both effects reinforce each other, positive feedback loops and runaway behaviours come

into action. A typical example is the aforementioned Arctic Amplification, where the

increasing trend in atmospheric temperature changes the seasonal variability of the surface

albedo, which in turn reinforces the positive warming trend (Serreze et al., 2007; Meredith

et al., 2019). This positive feedback and others, related to the non-linearities of the

climate system and the strong coupling between its sub-components, are crucial to identify

in order to anticipate the evolution of the climate. Those non-linearities also lead to

interactions across scales, both temporal and spatial. While it is often helpful to separate

short, weather time scales from long, climate time scales to simplify our understanding of

the Earth system (e.g. Hasselmann, 1976), the frequency spectrum is actually continuous

(cf. Stommel diagrams such as Fig. 1.3 or in Stommel, 1963). Turbulence and other

energy cascades are typical examples of interactions across timescales that span a large

range of variability (Kolmogorov, 1962). Finally, climate variability is a pre-requisite to

overshoot potential tipping points. Early warnings of reaching a climate bifurcation point
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are more likely with increased variance (Ditlevsen and Johnsen, 2010). Tipping points are

often seen in simple models. However, adding complexity to those models, in particular

by representing more realistic coupling to other components of the climate system, can

account for negative feedbacks stabilizing the system, making tipping points disappear.

For example, a perennially ice-free Arctic simulated by simple ice models disappears

when coupling the ice models to a ocean mixed layer or an atmosphere (Flato and Brown,

1996; Eisenman and Wettlaufer, 2009; Tietsche et al., 2011). In this context, understanding

mechanisms that can lead to this increased variability and those that can stabilize it is a

prerequisite to assess the likelihood of tipping into a new state (cf. the current debate about

the collapse of the Atlantic Meridional Overturning Circulation, Ditlevsen and Ditlevsen,

2023).

The relative emphasis on trends in the study of anthropogenic climate change can be

explained by their robustness in climate models (Thornton et al., 2014), as well as by a

sample size issue, as it requires fewer observations to estimate the mean than the variance.

They are usually easier to communicate as they are represented by one relatable number

and are representative proxies for the average physical and biogeochemical conditions

faced by marine ecosystems. Yet, they underestimate the actual impact of climate change

on biological and human systems. Accounting for variability is necessary as it defines

the real range of conditions actually faced by those systems; their resilience to change is

dictated by their capacity to sustain extremes in temperature, oxygen concentration, acidity

levels, etc. The occurrence of those extremes has seen increased attention over the last few

decades, with the latest IPCC report dedicating a whole chapter to the topic (Seneviratne

et al., 2021). Extreme events are typically considered as weather events, as their timescales

are usually on the order of a few days to weeks. But their prediction and evolution rely on a

climate perspective, as they can be understood as realisations from a statistical distribution

(Coles, 2001). By definition, extreme events are not easy to statistically quantify as their

occurrences are typically rare, yet the more extreme, rarer events are more impactful from
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Figure 1.3: A highly schematic, Stommel-type diagram that shows the continuum between
spatial and temporal scales that couple global, basin-size, regional and local scales in
the Arctic region. Decoupling those scales help to attain a conceptual, overarching
understanding of the Arctic marine system; yet, interactions between those scales, e.g.
local upwelling on the shelves leading to ice melt that modifies the thermohaline forcing,
eventually impacting the global overturning circulation, exist and cannot be ignored. Taken
from Wassmann et al. (2020).

an ecosystem perspective. Disentangling the processes leading to extreme events then

becomes a more fruitful approach to anticipating the evolution and impacts of those events

(Holbrook et al., 2019; Sen Gupta et al., 2020; Oliver et al., 2021). This is particularly

true in regions where observations are already scarce.

1.3 Theory and Numerical Models

The Arctic environment experiences conditions considered harsh in comparison to typical

oceanographic and meteorologic fieldwork. Therefore, in-situ observatories are particularly

difficult to maintain. More broadly, observational and statistical methods are of less utility

when disentangling complex interactions of the climate system. Theory can provide a
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robust and universal approach to climate science (cf. the Allegory of the Cave from

Plato or the basket of apples by Descartes; for more oceanography-relevant context, see

also Wassmann et al., 2020; Boyd and Bogen, 2021). Theoretical treatment of ocean

and ice processes can highlight the most relevant processes at play (e.g. Stefan, 1891;

Ekman, 1905; Stommel, 1948). When the complexity of the model prevents a mathematical

understanding of the processes at play, numerical models of increasing complexities

provide a stepping stone towards building intuition and understanding of the topics of

interest. Considering the stochastic nature of the climate system (Lorenz, 1963), the

ability to run multiple simulations with slight variations in initial conditions and boundary

forcings provide a pathway towards understanding and quantifying statistical properties of

the relevant processes that cannot be provided by observations essentially representing a

unique realization of the climate. Numerical models and theory can also project the future

state of the climate, crucial for societal mitigation of and adaptation to climate change. In

order to complement the remote and in-situ observational means, numerical models are

widely used.

Climate policies at national and international levels depend on reliable projections

of the climate conducted through Earth System Model (ESM) intercomparison projects,

such as the Coupled Model Intercomparison Project (CMIP, Eyring et al., 2016) used

by the Intergovernmental Panel on Climate Change (IPCC, 2021a), the Sea Ice Model

Intercomparison Project (Notz and SIMIP Community, 2020) or the Arctic Ocean Model

Intercomparison Project (AOMIP, Proshutinsky and Kowalik, 2007). Yet, those models are

imperfect. They tend to underestimate global warming (Carvalho et al., 2022) or sea ice

loss (Notz and SIMIP Community, 2020; Shu et al., 2020). There is therefore a need to

reduce their uncertainties, as well as to better understand the temporal and spatial scales at

which they can be relied upon.
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1.4 Sea Ice – Ocean Interactions: Objectives and Outline

of the Thesis

In light of the rapid warming occurring in the Arctic region and of the predicted loss

of summer Arctic ice cover (e.g. Notz and SIMIP Community, 2020), it is crucial to

better understand the interactions between sea ice and the underlying Arctic Ocean. The

numerous non-linearities of the atmosphere–ice–ocean system generate complex feedback

loops with important consequences on the physical and biogeochemical properties of the

ocean. The role of sea ice as a component of the climate system is also important to

consider, regulating the albedo of the planet and insulating the ocean from direct heat and

gas exchanges with the atmosphere. It determines much of the current climate trend of the

Arctic through positive feedbacks. While remote and in-situ observations at the ice surface

are relatively available at large scale and over several decades, the ice-ocean interface

remains undersampled and often ignored and estimates of the heat or gas fluxes at that

interface can vary by orders of magnitude, if even considered.

This thesis aims to address the following overarching questions: (1) How does anthro-

pogenic climate change impact ocean and sea ice in the Arctic? (2) How can non-linearities

of the complex ice–ocean system modify variability and extremes of physical and bio-

geochemical properties? (3) How can numerical models of ice and ocean be used and

improved to further our understanding of ice-ocean processes?

More specifically, I address three distinct topics, using three different methods.

1.4.1 Non-Linearities of the Sea Ice System

Multiyear ice is disappearing (Babb et al., 2022; Meier and Stroeve, 2022). The Arctic sea

ice cover is predicted to become seasonal by the middle of the XXIst century. But accurately

predicting the decreasing trend of ice extent and thickness requires a proper understanding

of the internal variability, i.e. the variation of mean and other statistical moments of

ice thickness under constant or periodic external forcing, as it is the main uncertainty
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(Swart et al., 2015; Massonnet et al., 2018). Moreover, while ice melt is thought to

be primarily driven by bottom melt (Carmack et al., 2015), the lack of observational

constraints on the ice-ocean heat flux raises the question of the respective contributions of

atmospheric and oceanic heat fluxes in the observed ice trends. Disentangling internal and

external variability is also necessary (Årthun et al., 2019). Constraining internal variability

requires ensemble runs with slightly varying initial conditions or forcings, which cannot

be easily conducted with cost-intensive ESMs. To circumvent this issue, an idealized sea

ice thickness model is developed, based on the 0-layer Semtner (1976) ice model, and

forced with realistic stochastic atmospheric and oceanic heat fluxes. This model will help

to answer the following questions:

• How sensitive is sea ice thickness to the main thermodynamical model parameters

and to the dominant heat fluxes?

• Given specified atmospheric and oceanic forcing (stochastic, idealised or realistic),

on what time scales does the ice-ocean system respond?

• How do trends atmospheric and ice-ocean heat fluxes consistent with anthropogenic

climate change modify the response of ice thickness (mean state, internal variability

and trends) in the Arctic Ocean?

1.4.2 Marine Heatwaves in the Arctic Ocean: Drivers and Processes

Marine Heatwaves (MHWs), prolonged extreme ocean temperature events, are found

to be becoming more frequent and longer in the global ocean (Oliver et al., 2018b),

including in the Arctic Ocean (Huang et al., 2021b). They have significant consequences

on biodiversity, ecosystems such as kelp forest (Smale et al., 2019), fisheries such as the

one relying on Bering Sea snow crabs (Szuwalski et al., 2023) and can cause rapid ice

melt events by triggering albedo runaway feedback (Woodgate et al., 2010). While a few

recent studies have investigated the statistical properties of MHWs in the Arctic Ocean
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using satellite products of sea surface temperature, there is a lack of understanding of the

processes leading to the onset and decay of MHWs in the Arctic environment. Moreover,

there is no clear understanding of the role of sea ice in MHWs. Surface measurements of

temperature are not sufficient to break down the sources and sinks of heat triggering an

MHW. To address this, a coupled ice-ocean model is set up for the North Atlantic, Pacific

and Arctic Oceans. The calculation of a heat budget on the model outputs will provide

insights on the following questions:

• Can numerical models resolve the ice-ocean response to atmospheric anomalous

forcing consistent with MHWs?

• What are the dominant drivers of marine heatwaves in the Arctic environment?

• Does sea ice dampen or exacerbate the ocean’s response to an atmospheric heatwave?

1.4.3 The Sea Ice Carbon Pump: Underestimation of Oceanic Carbon

Uptake in the Arctic Ocean

In ESMs, sea ice is typically modelled as an inert slab of ice, from a biogeochemical

perspective. That is, ice is considered as simple frozen seawater, if not simple pure

freshwater ice. Yet in reality, sea ice is a mushy layer: a bi-phasic system in which a crystal

lattice composed of frozen water holds liquid brine in pockets and channels. In those brine

pockets, nutrients and light allow for the presence of viruses, bacteria and phytoplankton,

and cold saline conditions generate complex carbonate cycling, with the formation of

calcium carbonate crystals called “ikaite” which alters the concentration of alkalinity and

Dissolved Inorganic Carbon (DIC). The rejection of brine during ice formation and of

fresh meltwater during ice melt impacts the seasonal cycle of the partial pressure of CO2

in the underlying ocean, leading to increased oceanic carbon uptake. The magnitude of

this process, known as the Sea Ice Carbon Pump (SICP, Rysgaard et al., 2007; Delille

et al., 2014), is still debated (Rysgaard et al., 2011; Moreau et al., 2016; Grimm et al.,

2016; Mortenson et al., 2020) and its drivers are not well identified. A mixed approach
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based on a theoretical framework and a one-dimensional model will be used to identify the

main drivers of the SICP, its relative importance in the ocean carbon uptake and to analyse

its spatio-temporal variability, including its future under different shared socio-economic

pathways. The following questions will be addressed:

• What are the main drivers of the sea ice carbon pump?

• How can the ice melt influence biogeochemical properties cycling in the Arctic

Ocean?

• How will projected ice decline impact oceanic carbon uptake in the Arctic Ocean

during the next century?

1.4.4 Outline

The remainder of this thesis is organized as follows. The context and background infor-

mation are provided alongside some methodological considerations in Chapter 2. The

non-linear response of sea ice thickness to realistic oceanic and atmospheric forcing is

examined in Chapter 3. The dominant processes triggering and dissipating MHWs, along

with the impact of sea ice on their duration and intensity, are determined in Chapter 4. A

new evaluation of the underestimation of oceanic carbon uptake in the Arctic due to the

lack of parameterization of the SICP, along with an identification of its main drivers, is

presented in Chapter 5. Finally, a summary of the thesis and a discussion of the interactions

between sea ice and ocean found here are detailed in Chapter 6.
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CHAPTER 2

BACKGROUND AND METHODS

I am just going outside and may be
some time.

Captain Lawrence Oates (1880-1912),
British Antarctic explorer

2.1 Arctic Oceanography

2.1.1 Exploration & Epistemology

The shores of the Arctic Ocean have been inhabited for over 4000 years by paleo-Inuit and

other circumpolar peoples, and their modern-day descendants. Its scientific exploration

began less than 500 years ago, with the Northeast Passage as a main motivation. Then a

Terra Incognita to Europeans, the North Pole was a fantasised place, claimed to be located

either over a hole leading to the center of the earth as represented in some early maps, or

over undiscovered land. But the most widespread theory until the end of XIXth century

was that the warm Atlantic water flowing north would melt the ice and maintain an open

ocean, a “Polynya", beyond an initial barrier of ice. This theory, found in the literature

in Jules Vernes’ Captain Hatteras as well as in maps of that century (e.g., Figure 2.1),

justified many an expedition, such as De Long’s onboard the Jeannette, which was crushed

by the ice in 1881 north of Bering Strait. Remains of the ship were found two years later
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past the southern tip of Greenland. The fact that those remains crossed the Arctic Sea,

along with examination of mud trapped in ice and phylogenetic considerations, led Fridtjof

Nansen to hypothesise the existence of a current flowing through the Arctic Ocean, over

the North Pole (Nansen, 1890-03, 1890). His subsequent expedition aboard the Fram

led him to prove the existence of this Transpolar Drift as well as that of a deep ocean up

North, marked the end of the Open Polar Sea theory1 and laid the foundations of Arctic

Oceanography.

Figure 2.1: Map from Silas Brent, 1872, representing the hypothesized Open Polar Sea.
Taken from Rudels (2012).

The advent of ice breakers, built on the model of the Fram, led to a new era of expeditions

and explorations, but mostly constrained to the marginal seas. Airships also became part of

the toolbox, used for example by Amundsen to fly over the North Pole in 1927, and planes

allowed the transportation of gear to set up drifting ice camps starting with the North

Pole 1, in 1937 (Rudels, 2015). Those ice camps, along with submarine observations,

constitute the bulk of available observations for the 1950-1990 period. Icebreakers started
1“[Otto Sverdrup] even talks seriously of the open Polar Sea, which he once read about; he always comes

back upon it, in spite of my laughing at him." Nansen, Farthest North, 1897
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being more widely used for scientific expeditions in the 1980s, along with the first satellite

observations. While remote-sensing can provide reliable observations of sea ice, the ice

cover, along with regular cloud cover, is preventing satellites to measure oceanographic

properties such as sea surface temperature, chlorophyll-a or salinity. The new century

saw renewed effort to measure ice and under-ice properties in an autonomous fashion.

Ice-Tethered Profilers (ITPs, Toole et al., 2011), first deployed in 2005, and moorings

either at the Arctic gateways or in the Central Arctic, have partially filled the gap in

winter data. Focus is currently on the development of Argo floats capable not only of

detecting the presence of sea ice, but also of breaching the strong density gradients found

in the Arctic Ocean (Lee et al., 2022). And yet, after more than 120 years of scientific

and technological advances, Nansen’s daring and visionary approach is still a source of

inspiration for contemporary science, with the MOSAiC expedition reproducing the same

route, locked in sea ice, drifting along the Transpolar Drift from the Siberian shelves to

Fram Strait (Shupe et al., 2020).

I have here emphasised the scientific history of our knowledge of the Arctic. Inuit have a

rich and deep knowledge of the Arctic environment including the sea ice and ocean systems

(Freeman, 1970; Laidler and Elee, 2008; Laidler and Ikummaq, 2008; Laidler et al., 2008;

Krupnik et al., 2010). This knowledge is also becoming more and more integrated into

research frameworks (e.g. Witte et al., 2021). Already relied upon by Arctic explorers

(Robert Peary, Fridtjof Nansen etc.) for survival reasons in the XIXth and XXth century, it

is now moving away from a purely exploitative approach and a new emphasis is put into a

knowledge “co-production" perspective, where science does not only benefit from but also

serve Inuit knowledge and vice versa (e.g. Wilson et al., 2021; Bishop et al., 2022). While

this is a welcome change to scientific research, I have not adopted this approach here.

2.1.2 Hydrography and Oceanography

The Arctic Ocean is often referred to as the Arctic Mediterranean Sea, due to its enclosed

geography (Figure 2.2a). Its only connection to the Pacific Ocean, through Bering Strait,
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Figure 2.2: Maps of the region of interest, with prominent geographical, circulation and
ice features. (a) Names of geographical features, basins and shelf seas. (b) Main oceanic
circulation and Arctic gateways. (c) Climate Data Record (CDR, Meier et al., 2021)
satellite observations of sea ice concentration (colours) and extent (15 % concentration
contour) evolution, for summer (cyan) and winter (orange), calculated over 1989-1993
(dashed lines) and 2016-2020 (solid lines).

is shallow (55 m). The sounds connecting the Central Arctic to Baffin Bay through the

Canadian Arctic Archipelago (CAA) do not exceed 220 m. East of Greenland, the Barents

Sea offers a shallow connection to the Atlantic Ocean, but the main gateway is Fram Strait,

the only deep strait (2600 m) allowing two-way flow (Figure 2.2b). The Bering Strait and

Barents Sea provide inflows of Pacific and Atlantic waters, respectively. The sounds across

the CAA only allow light, cold and fresh polar waters to flow over the shallow sills into

Baffin Bay. Fram Strait, on the other hand, allows for warm, salty Atlantic waters to flow

into the Arctic on the eastern side and at depth, while the western surface experience fresh,

cold polar water outflows (Fieux, 2010).

In the recollection of his expedition, Nansen writes (Nansen, 1897):

I have already alluded more than once to our unsuccessful endeavours to reach

the bottom by sounding. Unfortunately, we were not prepared for such great

depths, and had not brought any deep-sea sounding apparatus with us. We

had, therefore to [...] sacrifice one of the ship’s steel cables in order to make

a lead-line. [...] The depth proved to range between 3,300 and 3,900 metres

(1,800 to 2,100 fathoms). This was a remarkable discovery, for, as I have
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frequently mentioned, the unknown Polar Basin has always been supposed to

be shallow, with numerous unknown lands and islands.

The Arctic Ocean is divided into two main basins (Figure 2.2a): the Eurasian Basin and

the Canadian Basin separated by the Lomonosov Ridge2. The Eurasian Basin is subdivided

by the Nansen-Gakkel Ridge into the Nansen Basin, closest to Barents and Kara Sea, and

the Amundsen Basin. The Canadian Basin is subdivided by the Mendeleyev and the Alpha

Ridges into the Makarov Basin, closest to the North Pole, and the Canada Basin. Shallow

shelves bordering the Arctic are the recipients of either Pacific inflow for the Chukchi

Shelf, of Atlantic waters for the Barents and Kara Seas, or of the many river runoffs.

The six main Arctic rivers make up 10 % of the world’s total river runoff (Aagaard and

Carmack, 1989), while the Arctic Ocean only accounts for 1 % of the volume and 3 % of

the area of the world ocean.

The Arctic Ocean stratification is dominated by salinity variations, making it a β-ocean

with a sharp halocline (Figure 2.3), in opposition with an α-ocean which is thermally

stratified (e.g. Carmack, 2007). The surface mixed layer (ML) is fresh and cold and

influenced by sea ice melt and freezing. The thickness of this ML is seasonal. Below it,

the Near-Surface Temperature Maximum (NSTM), in the Canadian Basin, is a seasonal

and local feature, warmed in summer by shortwave radiation penetrating below the ML

(Toole et al., 2010, cf. also Figure F.3). Pacific Waters (50-150 m) can be subdivided

into the Pacific Summer Water (50-100 m), forming a local temperature maximum which

can induce an important vertical heat flux to the mixed layer or even at times directly

to the sea ice, and the Pacific Winter Water (100-150 m), forming a local temperature

minimum and rich in nutrients due to remineralization occurring while transiting over

the Chukchi Shelf (Pacini et al., 2019). Below that, Atlantic waters, originating from

Fram Strait or the Barents Sea, are saltier and warmer (300-500 m; Figure 2.3b). While

2The existence of this ridge was hypothesised by Harris (1911) using tidal observations on the Arctic
shelves, nearly 40 years before its discovery by Soviet scientists (Rudels, 2015)
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intense, subsurface eddies are well documented in the Canadian Basin (Carpenter and

Timmermans, 2012), vertical mixing is relatively weak between Pacific and Atlantic waters,

leading to the frequent observation of staircases and double-diffusive processes in the

halocline separating both water masses. Below the Atlantic waters, the deep and bottom

waters are inferred to be of old (over 500 years old), deep-convection origins (Rudels,

2015).

The Eurasian Basin experiences a similar dynamic ML, though saltier and lying directly

above the Atlantic waters. The stratification is therefore weaker. Similarly to the Pacific

Waters, Atlantic waters can be subdivided into two sub-water masses. While the waters

flowing through Fram Strait stay relatively warm, the branch going through Barents Sea

experiences significant changes, the waters losing heat to the atmosphere and their salinity

being modified by river runoff and brine distillation (Carmack et al., 2015), therefore

exiting Barents Sea with a higher density than the Fram Strait branch.

The main circulation features in the Arctic Ocean are a surface anticyclonic, wind-

driven circulation called the Beaufort Gyre in the Canadian side. This gyre overlays a

cyclonic circulation of the Atlantic waters around the basins margins. The Transpolar Drift

carries organic-rich waters from the Siberian Shelves to Fram strait (Figure 2.2b). This

surface-constrained current (upper 50 m) varies in strength and path with the Arctic Ocean

Oscillation index, with a period of 10 to 15 years (Proshutinsky et al., 2015).

The last few decades have seen warmer Atlantic waters penetrating deeper in the

eastern Arctic, pushing the transition zone between the α- (North Atlantic) and β-ocean

(Polyakov et al., 2020a). This transition zone and its northward migration is visible in

satellite images, since sea ice can only form in a salinity stratified upper water column;

a temperature-stratified ocean will rather convect when cooled down (Timmermans and

Marshall, 2020). The retreat of sea ice extent (orange area) shows the extent of this

transformation (Figure 2.2c).
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Figure 2.3: Examples of typical Arctic stratification. Instantaneous salinity, potential
temperature (◦C) and frequency (N2, s−2) profiles (from Ice-Tethered Profilers 55 and 56,
Toole et al. (2011)) from 2011 and 2012 in the Canada Basin (blue profiles) and Eurasian
Basin (green profiles). The Near-Surface Temperature Maximum (NSTM), Pacific Summer
Water (PSW), Pacific Winter Water (PWW) and Atlantic Water (AW) are indicated in the
second panel.
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Figure 2.4: Illustration of ice formation stages and rheology. a) Frazil ice collected into
streaks by Langmuir circulation. b) Wake of an icebreaker propagating through frazil ice
before reaching consolidated ice. Some pancakes can be seen, encased in the thin sheet
of consolidated ice. The blue ice is typical of multiyear ice. c) Midnight sun over ice
pancakes among first-year ice floes. d) Crack propagating through an ice floe, and ice
leads in the background. e) Ice ridges. Pictures by B. Richaud.

2.2 Sea Ice

At the early stages, sea ice forms as frazil ice (Fig. 2.4.a and b) then aggregates as pancake

ice (Fig. 2.4.b and c; see also Laidler and Ikummaq, 2008, for example). Those pancakes,

by dampening the waves, allows the ice to consolidate (Fig. 2.4.b). Afterward, ice growth

can come from the surface, through snow accretion (though this is marginal in the Arctic),

or the bottom via seawater freezing. It can also ridge via convergence (Fig. 2.4.e). Similarly,

ice can melt from the surface via snow melt first then ice melt, potentially forming melt

ponds if the water cannot filter through the ice, or from bottom melt if the ocean is a

net source of heat. In the Arctic, over the past decades, bottom melt has continuously

increased and now explains more than half of the seasonal ice melt (Carmack et al., 2015).

2.2.1 Rheology of Sea Ice

For his expedition, Nansen designed the Fram to be able to not only withstand considerable

pressure, but also to be able to be lifted above the ice when the pressure would become
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too high. This came from the experience of previous unfortunate expeditions, such as the

Jeanette’s, which was crushed by the ice compression. A similar fate would happen to the

infamous Endurance during Shakelton’s expedition in the Antarctic.

Sea ice, as those ships, is subject to non-linear deformation and failure such as leads

and ridges when stress is applied. This stress originates from momentum fluxes such as

wind and currents compressing and diverging ice floes. The rheology of sea ice, i.e. the

relationship between sea ice deformation and applied stresses, is complex as the ice cover

is composed of an assemblage of ice floes of differing age and mechanical properties

connected by thinner ice, leads and ridges. The relatively smooth variations of atmospheric

and oceanic stress do not translate to a homogeneous stress, but rather in tipping points

leading the ice to change state from a viscous to a plastic behaviour at large scales, for

example (Feltham, 2008). This leads to the grinding of floes when they slide against each

other, in piles of ice rubble creating ridges and keels if they collide together or cracks and

leads if the floe is submitted to divergence (Fig. 2.4.d and e).

The modelling of ice rheology has been addressed by the seminal work of Hibler (1979),

considering sea ice as a viscous-plastic material. In this framework, sea ice behaves as

a viscous material for small loads, until it reaches a threshold stress to then behave as

a plastic material, simulating cracks, ridges and hummocks. The addition of an elastic

behaviour for closure (Hunke and Dukowicz, 1997) improved the computational cost of

general circulation models and is now implemented in many ESMs (Hunke et al., 2010).

Different versions of this elastic-viscous-plastic rheology exist (Feltham, 2008; Bouchat

et al., 2022), including granular material rheology (Tremblay and Mysak, 1997) or brittle

rheology (e.g. Ólason et al., 2022).

2.2.2 Dynamics of Sea Ice

Encased in the ice pack, Nansen noticed during his expedition that the Fram was not moving

in the direction of wind, but rather with some angle to it. By sharing this observation and

his measurements to Vagn Walfrid Ekman, he allowed the latter to develop and validate a
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theory on the importance of the Coriolis effect on oceanic currents (Ekman, 1905), now

known as Ekman transport.

Sea ice is indeed subject to dynamics that are the results of the combined momentum

fluxes of wind and oceanic currents (e.g. Rousset et al., 2015):

m
∂u

∂t
= ∇σ + A(τa + τw)−mfk× u−mg∇η (2.1)

where m is the ice mass, u the ice horizontal velocity, ∇ the horizontal differential operator,

σ the internal stress (see Section 2.2.1), A the ice concentration, τa and τw the air-ice and

ocean-ice stresses, −mfk× u the Coriolis force and −mg∇η the pressure force due to

gradient in sea elevation. In steady state, the dominant balance for ice is between air-ice

stress, ocean-ice stress, Coriolis and the internal stress divergence. The stresses applied by

wind and currents are proportional to the surface roughness which reflects the presence or

absence of ridges and keels.

In the Arctic Ocean, the anticyclonic circulation dominating the Beaufort Sea drives

the ice pack in a clockwise movement, while the cyclonic conditions predominant on the

Siberian shelves are concomitant to the Transpolar Drift and to an export of sea ice through

Fram Strait into the Greenland Sea.

2.2.3 Thermodynamics of Sea Ice

The presence of sea ice renders the study of the Arctic heat budget significantly different

from the rest of the global ocean. Sea ice redistributes heat fluxes: the presence of snow or

melt ponds at its surface will dramatically change its albedo (Perovich and Polashenski,

2012). Moreover, ice is a reservoir of enthalpy, absorbing energy when melting. Yet, the

estimate of this enthalpy is not trivial, because sea ice is a mushy layer, incorporating

pockets of brine (Feltham et al., 2006). This means that any temperature change is

accompanied by a phase change at the pore scale. Hence, its apparent heat capacity

depends on temperature and salinity (Thomas, 2017, and references therein).
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The ice growth and melt is controlled by thermodynamics in the ice:

Li
∂Hi

∂t
= ΔF (2.2)

where Li is the latent heat capacity of sea ice, Hi the thickness of the ice and ΔF the

balance of heat fluxes between the surface and the bottom. At its most simple form, this

can be approximated as proportional to the surface air temperature, thus ice growth rate

increases with colder air temperatures. In practice, more complete treatments of ΔF are

required which consider all relevant heat fluxes and the vertical profile of ice temperature.

The temperature inside the ice is controlled by the heat diffusion and conduction, with brine

convection potentially advecting heat as well. Shortwave radiation can also penetrate the

ice and change the temperature profile accordingly. At the atmosphere-ice and ocean-ice

interfaces, the heat balance is controlled by the atmospheric and oceanic heat fluxes and by

the heat conduction within the ice. Ice models cover a wide range of complexity, depending

on resources, context and objectives. Details of a simple heat budget ice thickness model

are provided in Chapter 3 and will therefore not be treated here.

2.2.4 Biogeochemistry of Sea Ice

Sea ice has a significant impact on the biogeochemical cycling. It not only controls light

and nutrient availability in the underlying waters, it also provides a habitat for ice algae,

bacteria and viruses within the crystal lattice (Miller et al., 2011) as well as at the frozen

interface (Boetius et al., 2013). Higher trophic levels rely on it as well (e.g. polar bears,

ringed seals). Sea ice also regulates air-sea gas exchange by acting as a physical lid

in the first order, on top of regulating carbon distribution in the top layers of the water

column through stratification and vertical mixing. Moreover, sea ice acts as a source of

Dimethylsulfide (DMS), a precursor of aerosol with climate-relevant consequences. Its

release in spring can initiate cloud nucleation (Levasseur, 2013), with consequences on

heat fluxes.
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Figure 2.5: Schematic representation of the Sea Ice Carbon Pump. The presence of
alkalinity and DIC in sea ice leads to an increase of pCO2 during ice formation and to a
decrease of pCO2 during ice melt. This triggers anomalous oceanic carbon uptake during
ice melt, while the expected anomalous carbon outgassing to the atmosphere during ice
formation is quickly prevented by the ice cover (see Section 5 for further details).

The biogeochemistry inside sea ice is rarely accounted for, yet can be important for

carbon cycling. Sea ice stores and traps brine inside the crystal lattice. This brine is rich in

DIC and alkalinity. During the early stages of ice formation, alkalinity is preferentially

retained, due to CO2 fluxes at the ice-air interface and ikaite precipitation. The rejected

brine is therefore enriched in DIC, while the brine trapped in sea ice has a high alkalinity-

to-DIC ratio, compared to underlying seawater. This ratio further increases in spring, due

to sympagic primary productivity. When the ice melts, the alkalinity-rich brine is released

and decreases pCO2 values, leading to a stronger downward air-sea carbon flux (Fig. 2.5).

This mechanism is known as the sea ice carbon pump (Rysgaard et al., 2011).

2.3 Carbonate Chemistry and Biogeochemistry in the

Arctic Ocean

The Arctic Ocean is an important carbon sink, as it accounts for 5 to 14 % of the global

oceanic CO2 uptake, despite covering only 3 % of the global ocean area (Bates and Mathis,

2009). Nonetheless, little is known about the variability of the carbon flux and its future in

the context of climate change (Duke et al., 2023). Air-sea gas exchanges are predominantly
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dictated by the presence or absence of sea ice, as it acts as a physical lid in the first order.

The increased carbon uptake due to a longer open water season drives a strong acidification

of the Arctic waters, with some of the lowest pH values observed in the Canadian Arctic

Archipelago (Canadell et al., 2021). Aragonite saturation levels have accordingly been

already observed under the saturation level in the Canadian Arctic (Yamamoto-Kawai et al.,

2009).

Primary production in the Arctic Ocean is driven by a wide range of processes (Lannuzel

et al., 2020). The relatively weak vertical mixing, due to sea ice insulating the upper ocean

from wind mixing and the strong stratification, prevent nutrient replenishment of surface

water, leading to an oligotrophic Beaufort Gyre, while lateral nutrient input from Atlantic

waters feed some limited primary production in the Eurasian Basins. On the shelves,

nutrient riverine input can be locally important (Tremblay et al., 2015). Light availability,

highly seasonal due to the long Arctic night and day, is controlled by sea ice thickness and

surface albedo. Earlier ice melt and delayed ice formation increased the phytoplankton

growth season, shifting the bloom earlier in the season and allowing for a secondary, fall

bloom (Ardyna and Arrigo, 2020).

This decrease in ice extent and increase in open waters lead to an increased carbon

oceanic uptake in the Arctic. Once carbon dioxide (CO2) dissolves in water, most of it

reacts to carbonic acid, which then dissociates to form bicarbonate (HCO3
– ) and carbon-

ate (CO3
2 – ) bases. The summed concentration of those three molecules is referred to

as Dissolved Inorganic Carbon (DIC –– [CO2] + [HCO3
– ] + [CO3

2 – ]). Bicarbonate and

carbonate being bases, they can react with free protons, therefore buffering ocean acidity.

Total alkalinity provides an appropriate measure of this buffering capacity of seawater

to neutralize added acids while keeping electroneutrality. It is defined as the excess of

proton acceptors over proton donors and includes therefore bicarbonate and carbonate

molecules, along with hydroxide and borate ions and a few other minor bases. Alkalinity

differs from the simple imbalance between bases and acids due to the fact that some bases,
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such as carbonate, can accept two protons (forming first bicarbonate then carbonic acid)

and needs therefore to be accounted twice in the definition of alkalinity. The carbonate

alkalinity, i.e. Alk –– [HCO3
– ] + 2 [CO3

2 – ], accounts for 96 % of the total alkalinity and is

therefore used in this work as a reasonable estimate of total alkalinity. Note that DIC and

alkalinity are both conservative with respect to changes in salinity, temperature or pressure.

Partial pressure of CO2, on the other hand, is not conservative and increases with increased

temperature, salinity and DIC, and decreases with increased alkalinity (e.g. Sarmiento and

Gruber, 2006).

2.4 Climate System: Heat Fluxes, Variability and

Extremes

2.4.1 Energetics of the Climate System

Planet Earth can be approximated as a black body, emitting longwave (thermal) radiation

following Stefan-Boltzmann law and subject to shortwave radiation from the Sun. If we

assume no atmosphere, the temperature of the Earth follows

cT
∂T

∂t
= (1− α(T ))S −R(T ) (2.3)

with cT denoting the heat capacity of the Earth, T its temperature, α(T ) its albedo, S the

solar heat input and R = σT 4 the thermal outgoing radiation with σ the Stefan-Boltzmann

constant. The albedo α, which is the reflection of solar radiation back to space, depends

on the ice and snow cover and therefore on the temperature T of the Earth. A simple

parameterization assumes that the albedo evolves linearly between 0.8 below a temperature

T1, in the case of a fully snow-covered planet, and 0.2 above a temperature T2, in the case

of a snow-free planet. If we assume the energy budget of the Earth to be at equilibrium,

(1− α(T ))S = R(T ). Using a constant incoming solar radiation, it can be shown that

this equilibrium is satisfied at three different temperatures (Fig. 2.6). Yet, only the lower
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Figure 2.6: Equilibriums in a toy model of an Earth climate

and higher equilibriums are stable: for those equilibriums, a small increase in temperature

would lead to a negative derivative (Eq. 2.3 and Fig. 2.6), bringing temperature back to

its initial state and vice versa. The middle equilibrium is different, as a small positive

perturbation would lead to a positive derivative and therefore a positive feeback.

A direct consequence of this model is that the Earth has to be either a “snowball”, at

a low temperature T = T1, or a “fireball” at high temperature T = T2. This is obviously

not the case in reality. One of the fundamental assumptions of the model, the absence of

atmosphere, is wrong: in reality, longwave radiation is emitted at the top of the atmosphere,

at a temperature that differs from the Earth surface temperature. Including a atmospheric

temperature profile would allow for a stable equilibrium at observed temperatures. It

would also decouple the surface temperature from the top-of-atmosphere temperature,

leading to potential evolution of the ice cover (and therefore the albedo) over timescales

that would differ from the atmospheric timescales and therefore allow for feedbacks and

self-oscillations of the system. The beauty of this model is to very simply highlight the

importance of water on Earth, as it is water, in its solid phase, that dictates the albedo,
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and in its gaseous phase, that controls the longwave emission through greenhouse effect

(water vapour and clouds being the largest contributors to the greenhouse effect). It is then

tempting to consider the ocean, the largest single body of water on Earth, as the heart of the

climate machinery. This toy model, despite its limitations, also highlights several important

points that are relevant to this thesis: heat fluxes, in particular longwave and shortwave

radiation, control the energetics of the climate system (cf. Chapters 3 and 4); the presence

of ice is critical to set the albedo and therefore reduce the heat sources (cf. Chapters 3 and

4); the cycling of greenhouse gases also have an impact on the energy budget (cf. Chapter

5); a more realistic model implies non-linearities and feedback mechanisms between

components of the climate system, that can lead to interactions across different temporal

scales (cf. Chapter 3).

2.4.2 Heat Flux

A proper description of heat fluxes is important to simulate the evolution of ice and ocean

thermodynamics and the energy balance of the climate system. Surface heat fluxes can be

decomposed into four components: sensible flux linked to vertical temperature gradients

and wind speed, latent heat flux due to phase changes, shortwave radiation coming from

the sun and longwave radiation emitted by the ocean, atmosphere and ice. On average over

the Arctic, sensible and latent contributions at both the atmosphere-ocean and atmosphere-

snow interface are small (≤ 10 W m−2 Serreze et al., 2007). Shortwave radiation shows a

very strong seasonal cycle due to the long Arctic night and day, going from 0 W m−2 in

winter to over 300 W m−2 downward in summer, when it becomes the main flux (Maykut,

1986). In comparison, longwave radiation is relatively constant through the year, around

50 W m−2 upward (Serreze et al., 2007; Maykut, 1986). These heat fluxes are highly

dependent on the atmospheric situation (clouds, wind, etc.) and the presence or absence

of sea ice. Shortwave radiation can penetrate through sea ice, following Beer-Lambert’s

law, to reach the underlying seawater. Among the other sources of heat into the Arctic

Ocean, Atlantic and Pacific waters advect a significant amount of heat either at the surface
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or at depth, which can then be brought up via vertical mixing (Docquier and Koenigk,

2021). The heat transport from the Atlantic through the Barents Sea, evaluated at an annual

mean of 73 TW, has been increasing by 2.4 TW per decade over 1998-2016 and is due

to both increased volume transport and heat content (Docquier and Koenigk, 2021). The

heat transport through Bering Strait, estimated to average to 14 TW, is also increasing, by

∼2 TW per decade over 1990-2015, but in this case mostly driven by an increased volume

transport (Woodgate, 2018) while the increased heat transport through Fram Strait is rather

due to a temperature increase (Beszczynska-Möller et al., 2012).

2.4.3 Climate Variability in the Arctic

Superimposed on the seasonal cycle, those heat fluxes exhibit fluctuations at other timescales.

On interannual to decadal time scales, empirical climate modes of variability have been ob-

served. Around the North Pole, the Arctic Oscillation (AO, Thompson and Wallace, 1998)

has been identified as a relevant index to track this variability. Derived from atmospheric

pressure fields and strongly correlated with the well-studied North Atlantic Oscillation

(NAO, Hurrell and Deser, 2010), the AO describes the zonal wind patterns through a

measure of the intensity of the winter polar vortex. This index is well correlated with

surface atmospheric temperature over the whole northern hemisphere: for example, the

AO was at its maximum recorded value in 2020, during the Siberian Heatwave (Overland

and Wang, 2021). Both the NAO and the AO exhibit strong intraseasonal and interannual

variability, with no clear preferred time scale of variation, although a period of 7-11 years

between positive and negative phases has been suggested for the NAO. The Arctic Ocean

Oscillation (AOO, Proshutinsky and Johnson, 1997) is based on the wind-driven sea sur-

face height and provides therefore a better index for oceanic processes. Its analysis led to

the hypothesis of a potential relaxation (or even reversal) of the anticyclonic Beaufort Gyre

with a period of 10-15 years (Proshutinsky et al., 2015). This is deemed a plausible culprit

for the Great Salinity Anomalies (Haak et al., 2003), events during which large freshwater

fluxes from the Arctic Ocean affected the deep convection in the Labrador Sea (Dickson
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et al., 1988). Yet, the AOO has been consistently in a positive phase since the beginning

of the Beaufort Gyre Exploration Project initially designed to continuously monitor the

circulation in the high Arctic: the possibility of a reversal of the Beaufort Gyre remains

therefore an open question.

The fact that the AOO has remained in a positive phase since the early 2000s, while it

was oscillating between positive and negative phases from 1940 to 2000 (Proshutinsky

et al., 2015), has raised questions about the potential prevalence of climate change and

anthropogenic forcing for explaining the Arctic state since the turn of the century. The

impacts of climate change on the Arctic are well-studied and documented (e.g., Meredith

et al., 2019). The most publicised impact is the ice loss, with far-reaching consequences

on oceanic stratification, circulation, popular predators such as polar bears, but, as well,

on the Arctic Amplification through albedo feedback (Hall, 2004). Less publicised, those

changes in ice cover boost carbon uptake and therefore acidification, leading to observed

aragonite undersaturation (Yamamoto-Kawai et al., 2011). Precipitation, both in solid

and liquid phase, are also projected to increase in the wake of anthropogenic warming.

Combined with permafrost thawing, this is expected to increase river runoff in the Arctic

and therefore freshwater content. Permafrost thawing on land and underwater is expected

to release methane hydrates, likely leading to a strong positive carbon-climate feedback

(Westbrook et al., 2009).

2.4.4 Extremes

These changes are happening fast compared to the rest of the globe. The Arctic ecosystem

has already started to adapt, with a modified phytoplankton bloom seasonality (Ardyna

and Arrigo, 2020), an expanded habitat for kelp (Goldsmit et al., 2021) and a modified

zooplanktonic assemblage (Ershova et al., 2015; Darnis et al., 2022). The resilience of the

ecosystem, its capacity to resist adverse perturbation, is dictated by its capacity to adapt to

an environment that becomes more and more extreme (see Fig. 2.7 for an illustration of

how increased mean and variance can increase the number of extreme events).
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Figure 2.7: Synthetic temperature time series with linear trend and increasing variance to
illustrate the change in extremes. (a) Synthetic temperature (black line), including trend,
climatology and noise, superimposed on the climatology (grey dashed line). (b) Deseason-
alised temperature (black line), trend (grey dashed line), threshold (90th percentile, green
line) used for the detection of extremes (red). The increasing standard deviation of the
temperature anomalies is also illustrated at the beginning and end of the time series (blue
bars). The number of extreme events increases through time, as both the trend and the
increasing variance push the temperature above the threshold.

Winter conditions remains harsh, with freezing temperature, ice cover and polar night

for several months in a row. But summer conditions have become warmer and fresher,

spreading the range of conditions ecosystems have to be able to sustain. Superimposed

on this strong seasonality, extreme events such as marine heatwaves (MHWs) are also

becoming more frequent globally (Oliver et al., 2018b; Frölicher et al., 2018; Oliver et al.,

2019) and in the Arctic (Huang et al., 2021b; Hu et al., 2020). While the research on the

impact of MHWs on Arctic ecosystems is scarce, those events have been found to have

32



significant impact on ecosystems in other regions of the globe, including coral bleaching

(Hughes et al., 2017), toxic algal blooms and changes in fishery catches (Mills et al.,

2013; Smale et al., 2019; Fox-Kemper et al., 2021; Smith et al., 2021). The anthropogenic

warming trend is responsible for most MHWs in the recent decades (Oliver et al., 2018a;

Oliver, 2019; IPCC, 2019; Fox-Kemper et al., 2021) and those can therefore be expected

to keep increasing in frequency and duration. While mitigation of MHWs is unlikely

without a significant and rapid global reduction in greenhouse gas emissions, predicting

and adapting to them goes through a better understanding of their mechanisms and drivers.

MHWs are also an early warning of the mean conditions the ocean will be experiencing in

a warming climate.

While deoxygenation is not yet a concern for the Arctic Ocean, as the cold seawater

temperatures maintain the oxygen solubility at high levels (Sarmiento and Gruber, 2006),

acidification is a global and regional issue (Canadell et al., 2021). The lower salinity, the

increased air-sea CO2 uptake due to lower sea ice cover and the increased riverine input due

to permafrost thawing are leading to undersaturation of aragonite (Yamamoto-Kawai et al.,

2009, 2011). Rapid ice melt events, potentially triggered by an MHW (Woodgate et al.,

2010), could lead to extremes in aragonite undersaturation and therefore to compound

extremes.

2.5 Numerical Models

Numerical models are useful tools in the context of Arctic-focused science, as they

complement the scarce observations and provide insights on processes. This thesis uses a

hierarchy of numerical models, adapted to the specific research questions. Models of two

basic types are used in this thesis: simple and complex. Simple models allow to explore

sensitivity and focus on specific processes by running a large number of simulations at

low computational cost. Complex models on the other hand aim to resolve all relevant

processes given the temporal and spatial scales of the model.
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2.5.1 Sea Ice Thickness Model

A simple thermodynamic sea ice model is specifically developed and used for Chapter 3.

This model is based on the seminal work by Semtner (1976) and is often referred to

as a 0-layer sea ice model (see Eq. 2.2). Two heat budgets are solved to calculate the

melt-growth rate of a single slab of sea ice. A first budget, balancing atmospheric heat

fluxes and heat conduction within the ice, provides the surface temperature of the ice. If

this temperature exceeds the melting point, the excess, nonphysical heat is used to melt the

ice; if not, ice cannot grow at the surface and the freezing temperature is used to update the

heat conduction within the ice. A second heat budget is then calculated at the ice-ocean

interface as a balance between the heat conduction in the ice and the oceanic heat flux

to determine the basal melt or growth. The ice temperature at the ice-ocean interface is

assumed constant at the freezing point of seawater. Moreover, the temperature gradient

within the ice is assumed to be linear.

This simple model is used to explore sensitivities of sea ice thickness to the main model

parameters, as well as to changes in the mean and variance of atmospheric and oceanic

heat fluxes. It provides a simple but powerful tool to explore non-linearities of the sea ice

system, allowing for a robust interpretation of results of ensemble runs through the lens

of the mathematical equations embedded in the model. A more thorough description is

provided in Chapter 3.

2.5.2 GOTM-PISCES Model

Another simple model simulating biogeochemistry is coupled to a one-dimensional hydro-

dynamic model to investigate the sea ice carbon pump in Chapter 5.

The hydrodynamic model is the one-dimensional General Ocean Turbulence Model

(GOTM Burchard et al., 1999; Umlauf and Burchard, 2005), a non-hydrostatic water

column model specifically developed to simulate hydrodynamic and thermodynamic

processes, with a focus on vertical mixing and turbulence closure schemes. This model
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is coupled to the Pelagic Interactions Scheme for Carbon and Ecosystem Studies volume

2 (PISCES-v2 Aumont et al., 2015) simulating the basic trophic levels as well as the

carbonate chemistry. A simple parametrization is implemented to simulate the DIC and

alkalinity fluxes between ice and ocean.

Initial conditions and forcings are then provided by a three-dimensional ice-ocean

regional model (see below) to explore spatio-temporal variability of the impact of the

ice-ocean carbon flux parametrization into the sea ice carbon pump. The sensitivity of the

results to the model parameters can also be explored. Further description of the model and

validation are provided in Chapter 5.

2.5.3 The 3Oceans Model

On top of those two models, I also rely on a complex regional coupled ocean-ice-

biogeochemistry model, used not only to investigate MHWs in Chapter 4, but also to

provide forcings for the other models when necessary.

The 3Oceans model, also called the North Atlantic, Pacific and Arctic (NAPA) model3,

is a three-dimensional ocean-ice-biogeochemistry model. The ocean component is the

Nucleus for European Modelling of the Ocean (NEMO, Madec et al., 2017), version

3.6. It is a finite difference, hydrostatic, primitive equation ocean general circulation

model. The Louvain-la-Neuve Ice Model v3 (LIMv3, Rousset et al., 2015) is a dynamic-

thermodynamic ice model with one layer of snow and two layers of ice and following an

elastic-viscous-plastic (EVP) rheology (Bouillon et al., 2013). It uses an ice thickness dis-

tribution instead of a single ice category, which is considered as a significant improvement

for realistic ice simulations (Uotila et al., 2017). The Pelagic Interactions Scheme for

Carbon and Ecosystem Studies v2 (PISCESv2, Aumont et al., 2015) is a biogeochemical

model which simulates the basic trophic levels, including two groups of phytoplankton

(nanophytoplankton and diatoms), two groups of zooplankton (microzooplankton and

3This model was set up and run with the tremendous help of Timothée Bourgeois, Xianmin Hu, Youyu
Lu and Katja Fennel.
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Figure 2.8: Ice concentration comparison between 3Oceans (NAPA) model and satellite-
based product. Top panels: March ice concentration; bottom panels: September ice
concentration.

mesozooplankton), five different nutrients (phosphate, nitrate, ammonium, silicate and

iron) and three groups of detritus (big Particulate Organic Carbon, small Particulate Or-

ganic Carbon and Dissolved Organic Carbon). It also describes the biogeochemical cycle

of carbon, accounting for alkalinity and Dissolved Inorganic Carbon (DIC). Air-sea CO2

flux follows Wanninkhof (2014) and the carbonate chemistry follows the OCMIP protocols

(Orr, 1999).

As its name suggests, the model covers the North Atlantic above 25°N, the North Pacific

above 45°N and the whole Arctic, using an ORCA-like tripolar grid with a 1/4° horizontal

resolution, ranging from 25 km at the equator to 10 km in the Canadian Arctic Archipelago.
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It uses z-coordinates for the vertical levels, with 75 levels in total, among which 9 are

located in the first 10 meters, giving the necessary high details for simulating the shallow

summer Arctic mixed layer. Outputs are given at a daily frequency, providing a higher

temporal resolution than what is customary for ocean models.

Boundary conditions are provided by GLORYS2v3 for the physics and by the World

Ocean Atlas (WOA) and GLODAPv2 for the biogeochemistry. River runoff is based on the

Dai (2017) climatology while riverine nutrient inputs are calculated from GlobalNEWS2

(Mayorga et al., 2010). The main simulation used in this thesis is forced by ERA5

(Hersbach et al., 2020) data over 2014-2021, with initial conditions taken from a previous

run covering 1958-2015 with the DRAKKAR Forcing Set (Dussin et al., 2016).

The model behaves relatively well, properly capturing the general circulation features

and the seasonal cycles of the different properties. The ice concentration exhibits the right

patterns, with stronger concentration on the Canadian side than in the Eurasian side in

summer. When comparing to satellite-based products, the model tends to overestimate sea

ice extent in the Pacific side in summer and Greenland Sea in winter and to underestimate

it along the Siberian Shelves in summer (Figure 2.8). This underestimation is a known

issue of most ice models (Notz and SIMIP Community, 2020). The model ice concentration

also tends to disagree with satellite-based products in September, at the ice edge. The

marginal ice zone is a notable dynamic area, which cannot be simulated realistically without

integrating the relevant processes at play at finer scales, but also to observe remotely.

The model is capable of properly capturing MHWs. During the Siberian heatwave

(Summer 2020), the 3Oceans model generates a strong positive Sea Surface Temperature

(SST) anomaly from June to November, well in line with the atmospheric temperature

anomalies from the ERA5 forcing (Figure 2.9). This gives confidence that the model is

behaving properly and that it can be used to investigate processes related to MHWs in

polar environments. More MHW-specific validation is provided in Chapter 4.

While the horizontal resolution is too coarse to capture the small eddies of those high
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Figure 2.9: Sea Surface Temperature (SST) anomalies from the 3Oceans model, during
the Siberian Heatwave. Contours show air temperature anomalies from ERA5.

latitudes, a few of the bigger eddies shed by the Barrow Canyon (southwest of Beaufort

Gyre) are well captured by the model, including their timing and depth, and match well

with mooring observations (not shown). Overall, I am confident that despite the expected

limitations and quantitative mismatches, the 3Oceans model provides a satisfying and

useful baseline to explore the proposed processes.

2.6 Statistical Methods

In parallel to the use of a hierarchy of numerical models for the physical and biogeochemi-

cal properties of sea ice and ocean, a set of statistical tools are relied upon to decompose

and analyse time series.

2.6.1 Noise Types and Spectra

As briefly described in Chapter 1, a time series can be decomposed into a trend and

the superimposed variability. Some of the modes of the variability have a strong and
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distinguishable signal, e.g. the seasonal cycle of SST or the semi-diurnal cycle of tides.

But most of the modes of variability cannot be attributed as easily and have a random,

stochastic component, such as fluid turbulence or internal variability, which is an in-

trinsic characteristic of the system, arising despite a constant or periodic forcing. The

sum of those irregular contributions to the time series is usually considered as noise.

Figure 2.10: Density spectrum of a white

noise (C10) and two red noises with differing

slopes (η10 and S10). Taken from Kilpatrick

et al. (2011).

Noise is often unwanted in other fields

such as electronics or acoustics, as it hides

the signal of interest. In climate science

though, noise can be a useful description

of the distribution of the energy in the fre-

quency space.

In particular, a parallel with colours can

provide a useful generic overview and can

be easily visualized using the power spec-

trum of the signal (Shumway and Stof-

fer, 2006). When the energy is evenly

distributed over all frequencies, the noise

is qualified as white, as the white colour

comprises all colours of the visible spec-

trum (Fig. 2.10, C10). The power spectrum

would then be flat. If there is more energy

at the low frequencies, the spectrum ex-

hibits a slope decreasing with frequencies and the noise is then called red (Fig. 2.10, η10

and S10). A blue noise is less common and would be the opposite. Climate-relevant

fields such as temperature or atmospheric pressure often exhibit red noises, as their slow

variations are proportionally more energetic. Yet, weather noise is often conveniently

approximated as a white noise when the timescales of interest are larger than weather
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timescales (e.g. Hasselmann, 1976).

The power spectrum of a stochastic process is the Fourier transform of its auto-

covariance function. The spectrum is continuous as a function of the frequency f , and

is therefore not readily quantified when using a finite discrete time series. In practice,

the signal is made stationary and its density spectrum is estimated by calculating the

periodogram and smoothing it through a tapered filter. The periodogram is estimated from

the Fourier coefficients and is therefore providing information on the distribution of the

variance in the frequency space (e.g. Wilks, 2011).

2.6.2 Extremes and MHW detection

Superimposed on the long-term trend and the low frequency oscillating internal variability,

the high frequency variability, related to timescales of the order of days, can be linked with

extreme events, such as heatwaves or acidification events (e.g. Burger et al., 2022). The

definition and detection of extreme events uses different statistical methods, depending on

the context and the research question. A first method, based on the return period, relies

on fitting a distribution to maxima and then identifying extreme events according to their

frequency of occurrence (e.g. based on a Gumbel distribution). This is for example used

for flood or storm events. Another method, called Peak-Over-Threshold (POT), generalises

this approach to exceedances above a specific threshold, either absolute or relative to the

metric (Coles, 2001). Other approaches further generalise without assuming an underlying

general distribution, as for MHWs (Hobday et al., 2016) or deoxygenation events (Brennan

et al., 2016).

For example, a now widely used definition of MHWs relies on calculating a temperature

time series climatology over a pre-determined baseline. An MHW is then defined relative

to a high percentile threshold, typically the 90th. Using a percentile rather than an absolute

value is important to account for the fact that the variability can spatially and seasonally

vary. When the temperature exceeds this threshold for five days or more, the event is

considered an MHW (Figure 2.11). Moreover, two MHWs separated by two days or less
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Figure 2.11: Schematic of the method of detection of a marine heatwave. (a) Threshold
values are defined based on the 90th percentile value. (b) These percentile values vary
through the year (dashed line), as does the climatological mean (solid blue line). (c) Short
duration heat spikes less than five days are not MHWs. A temperature event that is at least
five days or longer than this minimum duration is defined according to duration (MHWD)
above the threshold value, intensity (imax, temperature above the climatological mean)
and the rate of temperature increase (ronset) and decrease (rdecline) during the event. The
mean event intensity (open circle, imean) is the mean intensity during the MHW, while icum
(shading) is the sum of daily intensities during the MHW. The start and end days of the
MHW are represented by ts and te respectively. Taken from Hobday et al. (2016)

below the threshold would be considered as one continuous event.

An increase in the variance, as is happening in the Arctic where winter conditions are

stable but summer conditions become warmer and warmer, can increase the number of

days exceeding the threshold and therefore MHWs (Fig. 2.7). Similarly, a change in the

trend can quickly increase the number of extreme events detected, particularly in stable

environments such as the Arctic. On some areas, this can eventually lead to saturation,

i.e. permanent MHW conditions. The relevance of studying such situations can be argued

from a statistical point of view, but their impacts on ecosystems are notable (Hobday et al.,
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2016; Smale et al., 2019; Smith et al., 2021).

2.6.3 Auto-Regressive Models

The chaotic nature of the ocean, atmosphere and cryosphere intervenes at all scales,

preventing deterministic equations from properly reproducing the observed variability of

those climate components. Introducing a random noise in those deterministic equations

emulates this chaotic aspect of geophysical fluids. Many geophysical processes can be

represented by first (sometimes second) order linear differential equations as a stochastic

process:

a
dx(t)

dt
+ bx(t) = f(t) (2.4)

where x is the process of interest, a and b are the coefficients of the equation and f(t) is an

external forcing, the aforementioned random noise. By discretizing along time, Eq. 2.4

becomes

xt = ϕxt−1 + wt (2.5)

where xt is the realization of the stochastic process x at time t, ϕ = a
a+bδt

a parameter, δt

the time step of discretization, usually standardized (δt = 1) and wt =
δt

a+bδt
f(t) a random

noise. This is called an auto-regressive model of order 1, AR(1): the state of x depends on

its previous value and on a random residual. The order of the AR model depends on the

imprint of the previous values of the process: a second order AR model, also widely used,

would depend on xt−1 and xt−2.

The process related to Eq. 2.5 is stationary for −1 < ϕ < 1 (Wilks, 2011). If 0 < ϕ < 1,

the process is dampened as the next value tends to be close to its previous value and often

called a random walk process, or sometimes a red noise process, as the model integrates

short term fluctuations into smooth variations superimposed onto the noise process w

(von Storch and Swiers, 1999; Wilks, 2011). AR models are discretized in time and its

differential counterpart also yield some important strengths.
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2.6.4 Stochastically Forced Climate Models

Simple deterministic models highlight key processes, but sometimes at the cost of oversim-

plification. On the other side of the spectrum, fully coupled numerical models can resolve

spatio-temporal variability but hinder simple understanding of the processes at play due to

their inherent complexities and the volume of produced data. Stochastic models fill the

gap between those approaches by providing a statistical analysis of the climate processes

of interest while relying on simple deterministic equations (Hasselmann, 1976; Moon and

Wettlaufer, 2017). It is then capable to account for inter-scale processes and simulates

effectively the integration of white noise atmospheric signals (such as weather processes)

by ocean or cryosphere into red noises (e.g. Kilpatrick et al., 2011).

A canonical example is the stochastic modelling of Sea Surface Temperature (SST)

anomalies T ′ by Frankignoul and Hasselmann (1977). Neglecting any lateral advection or

entrainment, the SST anomalies can be described through the equation

dT ′

dt
=

f ′

HML

− λT ′ (2.6)

with HML being the mixed layer depth (simplified as constant in their case), f ′ the atmo-

spheric forcing anomalies, which is taken as a random function of time, and λ a constant

positive feedback factor. This equation is the same as Eq. 2.4, with a = HML and λ = b
a
.

This is a simplified surface mixed layer heat budget in which mixed layer temperature

is represented by SST and air-sea heat fluxes by f . If discretized, this equation would

have the same form as the first-order auto-regressive process of Eq. 2.5. If f ′ is a white

noise process, its integration becomes a red noise process with a singularity at very low

frequency. The negative feedback term −λT ′ removes this singularity, stabilizing the

behaviour of T ′. Despite the simplistic aspect of the model, the behaviour of the simulated

T ′ matches well with observations of SST anomalies, in particular from a spectral point of

view.
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Going one step further, Di Lorenzo and Ohman (2013) suggest that ocean ecosystem

variability could be explained by two similar auto-regressive models, the first one inte-

grating atmospheric pressure (a white-noise signal) into Pacific SST and the second one

integrating this SST (a red-noise signal) into zooplankton variability.
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CHAPTER 3

NON-LINEAR RESPONSE OF SEA ICE

THICKNESS TO OCEANIC AND

ATMOSPHERIC FORCING
1

3.1 Introduction

The rapid changes of the Arctic environment in the context of accelerating anthropogenic

climate change have led to the proclamation of “The New Arctic Ocean” (Weingartner

et al., 2022). The Arctic is warming at four times the rate of the global average (Rantanen

et al., 2022), minimum sea ice extent (in September) has declined by 12.7 % per decade

and ice more than 4 years old has virtually disappeared (Meier and Stroeve, 2022), with

consequences on biogeochemical cycling (Lannuzel et al., 2020; DeGrandpre et al., 2020;

Duke et al., 2023, e.g.), ecosystems (Arrigo and van Dijken, 2011; Boetius et al., 2013;

Ardyna and Arrigo, 2020, e.g.) and Indigenous peoples (IPCC, 2019). The accelerated

Arctic warming, called the Arctic Amplification (e.g. Serreze and Francis, 2006; Meredith

et al., 2019; England et al., 2021), is due to the strong coupling between the ocean,

atmosphere and cryosphere, leading to numerous feedbacks mechanisms (Goosse et al.,

2018) such as the albedo feedback (Meehl and Washington, 1990; Hall, 2004), the lapse-

rate feedback (Pithan and Mauritsen, 2014) and the increase in poleward heat transport

1A manuscript of this work conducted in collaboration with Michael Dowd and Christoph Renkl and
under supervision of Eric Oliver is in preparation.
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due to halocline warming (Beer et al., 2020). Arctic sea ice is at the intersection of those

feedbacks and couplings.

Heat fluxes are at the heart of the Arctic Amplification. Incoming heat fluxes at the

atmosphere–ice or atmosphere–ocean interface are composed of radiation, divided between

longwave (thermal) radiation emitted by the atmosphere and clouds behaving as a grey

body and shortwave (solar) radiation emitted by the sun or reflected by clouds. In the

Arctic, due to the long polar night and day, incoming shortwave radiation exhibits a

strong seasonal cycle, ranging from 0 W m−2 during the winter months to over 300

W m−2 (Maykut, 1986; Serreze et al., 2007) with peaks up to 600 W m−2 on daily or

hourly time scales (e.g. Witte et al., 2021). Most of this incoming shortwave radiation

is reflected towards the atmosphere due to the high albedo of the snow and ice, but with

large spatial and temporal disparities depending on the presence of melt ponds or leads.

Incoming longwave radiation is primarily emitted by greenhouse gases and follows a

seasonal cycle as well, ranging from 100 W m−2 in winter to over 300 W m−2 in summer

(e.g. Maykut, 1986; Witte et al., 2021). The ice and ocean surface also emit longwave

radiation, typically overcompensating for the incoming longwave radiation and leading

to net negative incoming longwave radiation that is stable all year round, at around -

50 W m−2 (Serreze et al., 2007). Turbulent sensible heat flux and latent heat flux also

need to be considered, though they are typically one order of magnitude smaller than the

radiative fluxes. The sensible heat flux is parameterized as a function of wind speed and

vertical temperature gradient at the surface and fluctuates around 0 W m−2 with maximum

fluctuations of the order of a few tens of W m−2 (Maykut, 1986; Serreze et al., 2007; Witte

et al., 2021), while the latent heat flux in the lower atmosphere over ice (excluding latent

heat associated with freezing and melting of ice) is of the order of -10 W m−2 (Maykut,

1986; Serreze et al., 2007) and is usually neglected in Arctic studies (e.g. Witte et al., 2021).

The four heat fluxes described above are experiencing changes related to the fast Arctic

warming. Increased cloudiness, observed (Wang and Key, 2005; Eastman and Warren,
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2010) and projected (Vavrus et al., 2011), is linked with decreased shortwave radiation

and increased longwave radiation (Francis and Hunter, 2006; Serreze and Barry, 2011).

The increased atmospheric moisture content (Screen and Simmonds, 2010) and poleward

moisture transport (Kay et al., 2012; Previdi et al., 2021), already observed and projected

in the future, also increases radiative forcing, as water vapor is a powerful greenhouse

gas. While there is no significant trend in storm activity (Vessey et al., 2020), some

changes in the storm track location is expected under warming scenarios (Crawford and

Serreze, 2017), with consequences on wind and atmospheric temperatures and therefore

on the variability of sensible and latent heat fluxes. The storm track is also documented to

exhibit strong interannual variability correlated with the Arctic Ocean Oscillation regime

(Proshutinsky et al., 2015). Understanding how sea ice responds to the trends and the

variability changes is critical to better predict the future state of the Arctic sea ice cover; its

response to biases in the heat fluxes used to force models is another important knowledge

gap (Massonnet et al., 2018; Batrak and Müller, 2019; Lin et al., 2023).

Sea ice is also subject to another important heat flux at its lower surface: turbulent

sensible heat flux at the ice-ocean interface (McPhee, 2008). This ice-ocean heat flux is

a function of the ice–ocean temperature gradient, the velocity differential between ice

and ocean and a heat transfer coefficient. Because of the difficulties in observing and

measuring under-ice temperature and vertically resolved ice-ocean differential velocity

close to the ice-water interface, this ice-ocean heat flux is much less constrained. No long-

term, regional scale observational capacity exists, though Ice-Tethered Profilers (Toole

et al., 2011) attempt to fill that gap. Nonetheless, ice-ocean heat flux has increased and

accelerated over the last few decades, by 0.2 W m−2 decade−1 over 1979-2002 (Krishfield

and Perovich, 2005) and by 0.9 W m−2 in winter between 2006 and 2018 (Zhong et al.,

2022). Both estimates are likely to be conservative, the first one being calculated before

the most dramatic, recent Arctic changes and the second one being restrained to the winter

season. Recent studies have highlighted that ice-ocean heat flux has recently supplanted the
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atmospheric heat flux as the primary driver for ice melt (Steele et al., 2010; Carmack et al.,

2015; Planck et al., 2020). Increased heat content in the Arctic Ocean (e.g. Timmermans

et al., 2018; Timmermans and Marshall, 2020; Docquier and Koenigk, 2021) could also

be responsible for Arctic Amplification (Beer et al., 2020). Yet, ice-ocean heat flux is

usually considered as constant, set to a low value (e.g. 2 – 4 W m−2) in most standalone

ice model studies (Maykut and Untersteiner, 1971; Semtner, 1976; Bitz and Lipscomb,

1999; Eisenman and Wettlaufer, 2009; Wagner and Eisenman, 2015) and while it is better

accounted for in more complex ice-ocean coupled models, the computational cost of

such models prevents a thorough analysis of links between ice-ocean heat flux and sea

ice thickness variability and trends (e.g. Hunke, 2010). Despite the sparse observations,

a few features of the ice-ocean heat flux can be drawn. It exhibits a relatively strong

seasonal cycle, with small, stable winter values (O(1) W m−2) and an increase starting

in mid-spring to a peak summer value occurring around August, then decreasing back to

the winter value in early fall (Maykut and McPhee, 1995; Krishfield and Perovich, 2005).

The summer ice-ocean heat flux can exhibit a wide range and exceed 100 W m−2 in storm

events which increase the differential velocity and mix warm subsurface waters upward

(McPhee, 2008; Peterson et al., 2017). Solar radiation penetrating through the ice into the

surface mixed layer of the ocean, as well as vertical mixing or lateral advection of warmer

waters, can generate a vertical temperature gradient under the ice and explain the seasonal

cycle of the heat flux. The mobility of the ice pack modifying the ice-ocean differential

velocity can also explain the seasonality. The projected positive trend in eddy activity of

the Arctic Ocean (Armitage et al., 2020; Von Appen et al., 2022) can be expected to change

the frequency and magnitude of the ice-ocean heat flux by increasing ice–ocean differential

velocity (Manucharyan and Thompson, 2022) as can increasing marine heatwaves (Fox-

Kemper et al., 2021; Huang et al., 2021b) by changing the temperature gradient. The

influence of this fast changing heat flux on ice thickness, including mean state, variability

and trend, remains poorly understood despite being the primary driver of ice melt.
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In the age of plentiful remote observations, ice thickness remains a poorly constrained

property of sea ice. Satellite altimeters provide measurements of the freeboard (snow and

ice elevation above sea level) near the ice edge since the early 2000s. The reliability of

freeboard as a proxy of ice thickness depends on assumptions made on the snow thickness

(Kwok et al., 2004) with large related uncertainties (Wang et al., 2016), while the presence

of melt ponds prevent any estimate of the freeboard during the important summer months

(Landy et al., 2022). In-situ observations can provide reliable estimates but ice thickness

is spatially very variable and the scale is therefore an important issue (Webster et al.,

2022). Models are therefore often relied upon as a source of information for ice thickness.

Yet, model spread is high (e.g. Notz and SIMIP Community, 2020) and the declining

trend and sensitivity of sea ice area to climate forcing are known to be underestimated by

state-of-the-art earth system models (Notz and SIMIP Community, 2020; Shu et al., 2020).

In particular, the prediction of the first ice-free summer remains a topic of discussion

(Overland and Wang, 2013; Massonnet et al., 2015; Jahn et al., 2016; Kim et al., 2023), as

the stability of seasonally ice-free Arctic was thought to be non-physical in the present

climate (e.g. Eisenman and Wettlaufer, 2009) until recently (Wagner and Eisenman, 2015;

Moon and Wettlaufer, 2017).

The main source of uncertainty to estimate the trend of sea ice extent decline is the

internal variability of sea ice, the variation of its mean and other statistical moments under

constant or periodic external forcing. Predictions of an ice-free Arctic have been made

using observational trends, numerical models or statistical inferences of rapid ice loss

events such as the ice minimums of 2007 and 2012 (Overland and Wang, 2013). No matter

the source, the imprint of internal variability on long time scales can mask or enhance the

estimates of ice loss and therefore the prediction of the first ice free summer (Swart et al.,

2015; Notz and SIMIP Community, 2020; Holland and Hunke, 2022). Internal variability

is intrinsic to the system and can typically arise from feedbacks that destabilise the system

despite a constant or periodic forcing (e.g. IPCC, 2021c). Numerous feedback mechanisms
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occur in the ice system that can generate such internal variability (Goosse et al., 2018).

The albedo feedback is a positive feedback related to the change in albedo, the proportion

of shortwave radiation reflected back into the atmosphere. Snow and cold ice have a high

albedo, while warm ice and melt ponds have a low albedo, increasing the proportion of

shortwave radiation absorbed by the ice and heat input into the system, leading to more

melt and further lowering the albedo (Meehl and Washington, 1990; Hall, 2004). Another

important feedback mechanism regulating the ice variability is the negative, stabilizing ice

growth-thickness feedback, related to the thermodynamics of sea ice: a thin layer of ice

conducts heat more efficiently, leading to stronger cooling at the ice-ocean interface if the

atmosphere is cold enough and leading to more basal ice formation (Bitz and Roe, 2004).

This feedback is tied to the mean state of the ice and, along with the albedo feedback, is

critical to assess sea ice changes and to reduce ice thickness biases in numerical simulations

(Massonnet et al., 2018). Both feedbacks exist because of non-linearities in the sea ice

system and highlight the importance of building a proper intuition about them.

An approach at understanding internal variability was provided in the 1970s by Hassel-

mann (1976), using stochastic climate models. Following this development, the stochastic,

rapidly fluctuating white noise of atmospheric weather is integrated by the climate system

components into the slowly varying red noise of climate variability. This theoretical

framework was successfully applied to the upper ocean by Frankignoul and Hasselmann

(1977) to explain how chaotic disturbances of the atmospheric heat fluxes evolving on short

time scales can generate slow changes in the sea surface temperature fluctuating on times

scales of months to years. The theoretical framework of stochastic climate models has

been successfully applied to other systems, such as the atmospheric temperature (Lemke,

1977), the dynamics of Arctic and Antarctic sea ice cover (Lemke et al., 1980) or Atlantic

multidecadal variability (Liu et al., 2023), and has since been deemed influential enough

to be worth of the Nobel Prize in 2021, attributed to Klaus Hasselmann. The concept

has been expanded to double integrations (Kilpatrick et al., 2011), where the red noise

50



response of the ocean is itself integrated by a component of the climate system to explain

variations on even longer time scales, for example proposing a hypothesis for the evolution

of zooplankton abundance in the Northeast Pacific as a response of sea surface temperature

variability captured by the Pacific Decadal Oscillation, which is itself an integration of

atmospheric fluctuations represented by the Aleutian Low pressure system (Di Lorenzo

and Ohman, 2013). The sea ice climate components sits at the interface between the

atmosphere and the ocean and is therefore subject to heat fluxes from the both boundaries.

Following the stochastic climate framework, the atmospheric forcing can be approached as

a white weather noise, while the oceanic forcing, itself an integration of the atmospheric

white noise, is a slower evolving red noise. How will sea ice thickness respond to both

forcings, merging different time scales? The non-linearities inherent to the sea ice system

prevent an intuitive expectation of a linear combination of both forcings. In other words,

it remains to be understood under which circumstances the rapid atmospheric stochastic

noise will dominate (leading to a red noise ice response, similar to the oceanic response)

or be dominated by the slower oceanic stochastic noise (leading to a double integration

and an even slower response of the sea ice), when both stochastic forcings will combine

and how, and how the rapidly evolving Arctic, including the trends and variability of the

atmospheric and oceanic properties, could impact the internal variability of the sea ice

system.

The impact of variability in the forcing of non-linear climate systems is of high interest

and under continuous scrutiny in the context of climate change. Increased variance of a

climate variable could give early warnings for tipping points and other catastrophic state

changes (e.g. Lenton et al., 2008; Ditlevsen and Johnsen, 2010; Wagner and Eisenman,

2015; Ditlevsen and Ditlevsen, 2023). Increased variance can lead the system to cross

a bifurcation point, the threshold necessary to jump from one equilibrium state into the

next. Non-linear systems can also accumulate variability in the mean state, similar to the

electrical rectifier that integrates the positive phase of a sinusoidal. This is for example
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the heart of the "rectification" hypothesis for biological processes occurring in seasonally

ice-covered waters (Yager et al., 1995). Similarly, increased variance can have important

impacts for ecosystems that cannot thrive over specific thresholds, such as oxygen-sensitive

fish species (Brennan et al., 2016) or coral reefs subject to bleaching (Oliver et al., 2019;

Smale et al., 2019). This is the case for sea ice as well, as exceeding the melting point

of ice for surface temperature leads to the formation of grey ice and melt ponds that can

absorb higher amounts of solar radiation, leading to the already mentioned ice albedo

positive feedback. The sea ice extent, with the rapid ice loss events of 2007 and 2012 in

the Arctic, and more recently of 2017, 2022 and 2023 around Antarctica, is exhibiting this

increased variability, leading to discussions about the potential for a tipping point related to

ice processes (Serreze and Francis, 2006; Holland et al., 2006; Eisenman and Wettlaufer,

2009). Several studies have investigated stochastic equations of a simple enthalpy model

combining ice and upper ocean to study the stability of the ice system and the influence

of noise on the system (Moon and Wettlaufer, 2011, 2013, 2017; Wagner and Eisenman,

2015), but without including the influence of ice-ocean heat flux.

In this study, I use a simple sea ice model to investigate the non-linear responses of sea

ice thickness to stochastic forcing, including impacts on mean state, variability and trends.

A description of the sea ice model, based on Semtner (1976)’s 0-layer ice thickness model

is first provided, including the expected non-linearities of the system (Section 3.2). The

stochastic forcing are idealised but realistic, using parameters constrained by reanalysis

data based on ERA5 (Hersbach et al., 2020) for the atmospheric forcing and using model

outputs and in-situ observations for the oceanic forcing (Section 3.3.1). The inputs and

output of the model are generated and analysed using statistical methods briefly introduced

(Section 3.3.2). The model is first explored using parameter and forcing sensitivity

experiments, aimed at building an intuition about the behaviour of the model, such as the

dominant influence of the melt albedo and the heat conductivity on the ice thickness mean

state, at the root of the albedo and ice growth-ice thickness feedbacks. The introduction of
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stochastic noise in the forcing leads to a non-linear response, impacting the mean state of

sea ice towards lower values and introducing a low frequency variability. While the model

is particularly sensitive to atmospheric noise in its non-linear response, getting thinner

when subject to zero-mean noise, the increasing trend of the ice-ocean heat flux dictates the

fate of summer ice (Section 3.4). I discuss the limitations of this study and the implications

of the results for the variability and future of the Arctic sea ice cover, including a proposed

inverse energy cascade perspective for sea ice thickness (Section 3.5), before providing

concluding remarks (Section 3.6).

3.2 Sea ice Model

The evolution of the thickness of sea ice due to thermodynamical processes is investigated.

The first attempt to explore the evolution of ice was provided by Stefan (1891) using a

simple heat conduction approach and analytical methods. The development of computers

allowed for the use of numerical approaches, including the seminal work by Maykut and

Untersteiner (1971) using a multi-layer ice model solving for the surface ice temperature

as part of the model rather than a forcing. By reducing the vertical resolution while

maintaining a good quantitative agreement, Semtner (1976) proposed a simplified but

robust sea ice model, still relied upon for more complex climate models (e.g. Fichefet and

Maqueda, 1997; Bitz and Lipscomb, 1999; Rousset et al., 2015). Hibler (1979) introduced

a distribution of ice thickness to account for spatially heterogeneous conditions, as well

as rheology of sea ice. The inclusion of brine pockets, notably by considering enthalpy

instead of temperature, has lead to energy-conserving models (Bitz and Lipscomb, 1999;

Eisenman and Wettlaufer, 2009). For a more exhaustive review of ice model evolution,

including the dynamics, the reader can refer to Hunke et al. (2010). The evolution of ice

models has been mostly guided by the perspective of quantitatively reliable climate models,

navigating the inevitable conundrum of computationally efficient models that provide

realistic results. In this study, the focus is put on qualitative results and thermodynamic
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Figure 3.1: Ice model variables and forcing. See text and Table 3.1 for symbols.

processes and is therefore less constrained by quantitative considerations. I ignore sea ice

dynamics and rheology; thus I ignore thickness changes due to convergence–divergence

or ridges. I therefore rely on the simple, 0-layer ice model derived by Semtner (1976),

as it provides qualitatively satisfying simulation of ice thickness (for a discussion of the

limitations of the model, see Sect. 3.5).

The model is based on heat flux balances at the surface and bottom of a slab of ice of

thickness Hi (in m), with surface temperature (at the ice-atmosphere interface) Ts and

bottom temperature (ice-ocean interface) Tb (in K). I assume that there is no snow on top

of the ice. Within this single slab of ice, the temperature gradient is assumed to be linear.

The heat conduction inside the ice is then

Fc,i = −ki
∂T

∂z
= −ki

Ts − Tb

Hi

(3.1)

with the heat conductivity ki (in W m−1 K−1) considered constant (see Table 3.1 for

symbols and standard values of the main parameters used in this study) and the vertical axis

z positive upward, its origin fixed at the ice-atmosphere interface (Figure 3.1). Following

this convention, the heat flux Fc,i is also positive upward.
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A first heat balance is calculated for the bottom ice-ocean interface. The incoming

sensible heat flux Fw (in W m−2, positive upward) between the ice and the ocean is partially

balanced by the heat conduction. The remaining heat can only be dissipated by a latent

heat flux, leading to ice growth or melt:

Li
∂Hi

∂t

∣∣∣∣
bot

= Fc,i − Fw (3.2)

where Li is the constant latent heat capacity (in J m−3) and ∂Hi

∂t

∣∣
bot

is the ice growth rate

(in m s−1) at the bottom (z = −Hi). If Ts < Tb, the heat conduction is positive and exports

heat from the bottom to the surface, leading to a positive ice thickness rate and therefore

ice growth if the heat conduction is larger than the ice-ocean heat flux. On the other hand,

if Ts > Tb, the heat conduction is negative, leading to ice melt.

Another heat balance is calculated at the ice-atmosphere interface, but with an important

difference: at the surface ice cannot grow since there is no water to freeze. If the surface

temperature Ts is below the melting point (273.15 K = 0 °C), the conductive heat flux

Fc,i is entirely balanced by the atmospheric heat fluxes Fs (in W m−2, positive downward,

contrary to the other heat fluxes):

Fc,i + Fs = 0. (3.3)

If Ts reaches the melting point, it cannot go higher and the excess heat is then converted

into a latent heat flux of melting. The ice growth rate at the surface (z = 0) can then be

written as

Li
∂Hi

∂t

∣∣∣∣
surf

=

⎧⎪⎪⎨
⎪⎪⎩
0 if Ts < 273.15 K

−Fs − Fc,i if Ts = 273.15 K
(3.4)

The total ice growth rate is given by the sum of the growth rates at the surface and the
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bottom. Both heat balance equations 3.2 and 3.4 can then be combined to give

Li
∂Hi

∂t
= Li

∂Hi

∂t

∣∣∣∣
surf

+ Li
∂Hi

∂t

∣∣∣∣
bot

=

⎧⎪⎪⎨
⎪⎪⎩
−ki

Ts−Tb

Hi
− Fw if Ts < 273.15 K

−Fs − Fw if Ts = 273.15 K
(3.5)

In this formulation, Hi is the model prognostic variable, Fw and Fs are forcing variables,

Li and ki are model parameters and Ts and Tb are model diagnostic variables. The bottom

temperature Tb is typically considered to be constant at the freezing point of seawater (cf.

Semtner, 1976; Maykut and Untersteiner, 1971; Eisenman and Wettlaufer, 2009; Rousset

et al., 2015) and this convention is followed here.

As detailed in Section 3.1, the atmosphere-ice heat flux Fs includes longwave (thermal)

and shortwave (solar) radiation, and sensible and latent heat fluxes (Figure 3.1). The

net longwave radiation is the sum of downward radiation emitted by the atmosphere and

upward radiation emitted by the ice surface following Stefan-Boltzmann law, with an

emissivity close to unity (Maykut and Untersteiner, 1971). The net longwave radiation

can then be written F net
lw = Flw − σT 4

s with Flw the downward longwave radiation and

σ = 5.67× 10−8 W m−2 K−4 the Stefan-Boltzmann constant. The net shortwave radiation

takes into account that a fraction is reflected due to the albedo α of the ice. The net

shortwave radiation at the top of the ice is therefore (1 − α)Fsw. The albedo of the ice

depends on a number of parameters, including the composition of the ice (Perovich and

Polashenski, 2012). A simple approach is taken by assuming the albedo to vary between

two states to reflect the fact that the albedo of melt ponds and bare ice αm is lower than the

albedo of snow αi:

α =

⎧⎪⎪⎨
⎪⎪⎩
αi if Ts < 273.15 K

αm if Ts = 273.15 K
(3.6)

with αi > αm (see Table 3.1). The latent heat flux at the surface Flh only includes the latent

heat due to sublimation (evaporation of ice) and deposition (condensation of water vapour)
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since the melting of sea ice is already included in equation 3.5. Finally the sensible heat flux

at the ice surface Fsh depends on the wind speed Uwd and on the gradient of temperature

in the boundary layer above the ice. It also depends on the air density ρa, air specific heat

capacity cp,a and transfer coefficient csh. The sensible heat flux is parameterized as

Fsh = ρacp,acshUwd(Ta − Ts) = fsh(Uwd)(Ta − Ts) (3.7)

with fsh(Uwd) = ρacp,acshUwd a transfer function of the wind speed and Ta the atmospheric

temperature at 2 meters. The total atmosphere-ice heat flux can then be written

Fs = (1− α)Fsw + Flw − σT 4
s + fsh(Uwd)(Ta − Ts) + Flh (3.8)

Eqs. 3.3 and 3.8 then provide a fourth-order polynomial for Ts

σT 4
s +

(
fsh(Uwd) +

ki
Hi

)
Ts −

(
(1− α)Fsw + Flw + fsh(Uwd)Ta + Flat +

kiTb

Hi

)
= 0

(3.9)

which has only one physical root. It can then be solved to calculate Ts and close equa-

tion 3.5.

The model is solved numerically using the Python language. The forcings are interpo-

lated onto the model time step, then the surface temperature is calculated via equation 3.9

and finally equation 3.5 is solved. Because the heat conductivity does not hold when there

is no ice, the minimum ice thickness is capped to 0.001 m. The model is integrated with a

solver based on an implicit Runge-Kutta scheme, of order 5(4), implemented in the Scipy

python library. The time step is variable to optimize convergence time and accuracy, but is

set to not exceed 8 hours.

The conditional expression of equation 3.5 has mathematical consequences. If the

surface temperature is at the melting point, the ice thickness follows a first order linear

differential equation of the form ∂Hi

∂t
= F0(t) with F0(t) a forcing term independent of
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Hi. If the surface temperature is below the melting point, then the ice thickness follows a

non-linear differential equation of the shape ∂Hi

∂t
= F1(t)

1
Hi

+ F2(t) with F1(t) and F2(t)

forcing terms. While F2(t) is independent of Hi, F1(t) is a function of Ts which depends

on Hi. Moreover, the switch from one state to the other depends on Ts, which is once

again dependent on Hi. This model is therefore partially non-linear with Hi on various

levels. The conditional expression acts as a rectifier for the atmospheric forcing, including

it directly into the melting rate when the surface temperature is at the melting point, but

discarding it during the growing phase; the opposite is also true for the conductive heat

flux inside the ice. This is likely to lead to accumulation of the variability into the mean

state, as described earlier (Section 3.1).

The two-state albedo implemented here (Eq. 3.6) also leads to some non-linearity in

the system, increasing absorbed shortwave radiation when the ice is melting. This leads

to the well-known albedo positive feedback mechanism (Meehl and Washington, 1990;

Hall, 2004). Another feedback mechanism simulated by our model is the ice growth-ice

thickness negative feedback: when the ice is thinner, the conductive flux is higher, meaning

more heat can be extracted from the ocean to freeze seawater, and therefore more growth

there is (Bitz and Roe, 2004). It is not trivial to anticipate how those non-linearities

will integrate atmospheric and oceanic forcing, in particular if those contain a stochastic

component.

3.3 Input Data and Statistical Methods

3.3.1 Forcing data

The model is forced using idealised forcing emulating the statistical properties of real

atmospheric and oceanic variability. In order to elucidate the impact of stochastic forcing

on the ice state, the different components of the forcing variables have to be generated

independently. The ECMWF ReAnalysis v5 (ERA5, Hersbach et al., 2020) product was

used to define idealised but realistic climatology, trend and stochastic forcing (Figure 3.2).
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The general approach is to define the trend and climatology empirically from the data in

such a way that the remaining residuals are stationary and can be modeled as a simple

stochastic process. The ERA5 data extends over 43 years, from 1979 to 2021, at an hourly

resolution resampled to a daily time step through daily average, with a 1/4° horizontal grid

spacing. More specifically, 3 representative grid cells have been extracted at longitude 210°

and latitudes 72°N, 75°N and 85°N, covering the Beaufort Gyre (see Figure B.3). Those

latitudes were chosen to provide different representative ice conditions: seasonal (72°N),

perennial with thin summer ice (75°N) and perennial with thick summer ice (85°N). While

the incoming downward longwave and shortwave radiation at the surface are directly taken

from ERA5, the atmospheric sensible heat flux depends on ice conditions and needs to

be calculated via equation 3.7, using wind speed Uwd and atmospheric temperature Ta.

Wind speeds are relatively constant through time in the Arctic (Spreen et al., 2011; Vavrus

and Alkama, 2022) and sensitivity experiments found the thermodynamic model to not be

sensitive to wind speed variations (not shown; see also Section 3.4.3). A constant wind

speed value is therefore used, varying from 5.8 to 6.2 m s−1 depending on the latitude and

calculated as the annual average from ERA5 (Table 3.1). The model was also found to

not be very sensitive to latent heat flux variability (not shown; see also Section 3.4.3) so

this component is imposed as a climatology only, calculated from ERA5 (see below for

climatology calculation).

I decompose the downward longwave radiation Flw (Figure 3.2.a) and the atmospheric

temperature Ta (Figure 3.2.c) with an additive method:

Flw = FTrd
lw + FClim

lw + σlw × FNRes
lw (3.10)

and

Ta = FTrd
Ta

+ FClim
Ta

+ σTa × FNRes
Ta

(3.11)

A smoothed trend FTrd for each day of the year is necessary, due to the strong seasonality
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of the trend (Figure 3.2.d and f). First, the time series is smoothed using a 11-day rolling

average. Then, the slope of the trend is calculated using a linear fit for each day of year.

Then, the slope is smoothed again using a 31 day running average (insets in Fig. 3.2.d and

f). Once the signal is detrended, the climatology FClim is evaluated using a harmonic fit

(Figure 3.2.g and i). The choice of this method rather than a spectral analysis or a more

standard day-of-year average is justified by the wish to keep some energy in the spectrum

at the annual frequency and its harmonics. I fit 6 harmonics of the annual cycle and extract

the amplitude and phase for those harmonics, then reconstruct the climatology and remove

it from the detrended signal. The remaining residuals still exhibit a strong seasonally

varying variance and are therefore not stationary yet. I calculate a seasonally-varying

standard deviation σ following the same method (Figure 3.2.g and i) and normalize the

residuals to obtain FNRes. The normalized residuals are then generated stochastically (see

Section 3.3.2).

The downward shortwave radiation Fsw (Figure 3.2.b) necessitates a specific, multiplica-

tive decomposition

Fsw = FTrd
sw + FClim

sw × σsw × (1 + FNRes
sw ) (3.12)

because of the strong seasonality and the fact that the radiation is consistently equal to

0 for several months of the year; an additive decomposition similar to the one described

above does not yield satisfying results, with artificial negative values when reconstructing

the signal. For the climatology, a method similar to the trend calculation is followed,

by using all data within an 11-day window centred on the day of year from which the

climatological mean is calculated and then smoothed using a 31-day moving average

(Figure 3.2.h; cf. also Hobday et al., 2016, for the method). The detrended signal is

divided by this climatology (infinite values due to a division by 0 during the polar night are

assigned a value of 1). The standard deviation σ is then calculated and smoothed using a
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25-day moving window, instead of the 31-day one used previously, as a better compromise

to keep as much data as possible (due to the polar night, there is once again a division

by 0, leading to data that need to assigned a default value of 0) while still capturing the

seasonality of the variance (Figure 3.2.h). Once the normalized residuals are isolated, the

autocorrelation functions are calculated (Figure 3.2.j, k and l). Those show a relatively

quick decay and can therefore be used to fit an autoregressive (AR) model of order 1 (see

below and Table 3.1 for values) which can be used to generate stochastic residuals.
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The ice-ocean sensible heat flux is particularly difficult to constrain, due to the lack of

available observations necessary to build realistic forcing. Most of the previous studies

using standalone models tend to apply a constant ice-ocean heat flux, often 2 W m−2 (e.g.

Maykut and Untersteiner, 1971; Semtner, 1976; Wagner and Eisenman, 2015). Yet, as

mentioned in Section 3.1, Fw exhibits a strong seasonality and trend. To evaluate realistic

parameters for Fw, I turn to Ice-Tethered Profilers (ITP, Toole et al., 2011) observations,

that provide year-round under-ice temperature observations for the Central Arctic, as

well as to an regional ice-ocean numerical model covering the North Atlantic, North

Pacific and Arctic (hereafter named NAPA) and based on NEMOv3.6-LIMv3 (Madec

et al., 2017; Rousset et al., 2015). This model is described in Chapter 2 and Zhang et al.

(2020), which provides area weighted heat flux between ice-covered and open water areas

at the ocean surface. None of those data are perfect, as the model data includes open-

water heat flux, especially during summer, and the ITP data only provides temperature

and not sensible heat flux. But by combining both sources and comparing them to the

available scientific literature, a reasonable estimate of the climatology and variance can be

determined (Figure 3.3). The seasonal cycle of the modeled ice-ocean heat flux shows a

stable, small heat flux in winter, with values around 2 W m−2 from October to May, and

significant increase to a peak of around 30 W m−2, in mid-August (Figure 3.3.a and b).

This is consistent with ITP temperatures and with the literature (e.g. Maykut and McPhee,

1995; Krishfield and Perovich, 2005). Superimposed on the seasonal cycle, large variations

occur, especially in summer, with values up to 100 W m−2, once again consistent with the

scientific literature (Maykut and McPhee, 1995; Krishfield and Perovich, 2005; McPhee,

2008). Once the climatology is calculated following the same method as for shortwave

radiation and removed, the residuals exhibit a large seasonally-varying standard deviation

σFw , following the same temporal pattern as the climatology with values going from 1 in

winter to above 10 in the peak of summer (Figure 3.3.b). The normalized residuals are not

perfectly stationary, due to the strong interannual variability over the relatively short (8
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years) time series. Because of that, the autocorrelation function calculated over the whole

time series yields significantly different results than using a subset of the time series (not

shown). In particular, the first two years exhibit a significantly different behaviour than

the other years (inset in Fig. 3.3.c). Those first two years are therefore discarded from the

calculation of the autocorrelation function. The autocorrelation function of the normalized

residuals show some oscillations on top of the decay (Figure 3.3.c). This indicates that

an auto-regressive model of order 2 is more appropriate to capture the variability of those

normalized residuals.

3.3.2 Statistical Methods

In order to properly simulate the residuals as stochastic noise to be added to the climatology

and trend, the statistical properties of the normalized residuals and any links between the

forcing variables have to be captured. For example, cloudy low-pressure systems can be

expected to reduce shortwave radiation while increasing longwave radiation due to the

moisture content and have a time scale of several days. Thus, weather band variability

for these two variables is not independent. Let us thus consider the forcing X to be

multidimensional. The state of X at time t is modelled as depending on its previous

state, while still incorporating some randomness. This is typically represented by an

auto-regressive process of order p (AR(p))

Xt =

p∑
i=0

ΦiXt−i +Wt (3.13)

where Φi is an n × n matrix representing the AR model parameters, n is the number of

forcing variables and W is a multivariate white noise process with mean zero and standard

deviation σW . The off-diagonal elements of Φi are assumed to be null, so that the state of

a variable at time t depends only on its own previous state. The model parameters Φi can

be estimated using the autocorrelation function of the previously mentioned normalized

residuals (Yule-Walker equations, see e.g. Wilks, 2011).
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The three atmosphere-ice forcing residuals are assumed to be mechanistically linked

and are therefore modeled using a multivariate AR(1) process

Xt =

⎡
⎢⎢⎢⎢⎣
FNRes
lw

FNRes
Ta

FNRes
sw

⎤
⎥⎥⎥⎥⎦

t

=

⎡
⎢⎢⎢⎢⎣
ϕlw 0 0

0 ϕTa 0

0 0 ϕsw

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
FNRes
lw

FNRes
Ta

FNRes
sw

⎤
⎥⎥⎥⎥⎦

t−1

+

⎡
⎢⎢⎢⎢⎣
w1

w2

w3

⎤
⎥⎥⎥⎥⎦

t

(3.14)

with Wt denoting a random normal multivariate generated by providing a covariance

matrix

Σ = σ2
W

⎡
⎢⎢⎢⎢⎣

1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1

⎤
⎥⎥⎥⎥⎦ (3.15)

where ρ12 = ρ21 is the cross-correlation between FNRes
lw and FNRes

Ta
and so on. Covariance

between the three forcing variables arises through correlations in the noise forcing Wt and

not through the memory parameter Φ. The normalized residuals for the ice-ocean heat

flux are generated using an AR(2) model resulting in two parameters ϕ1
Fw

and ϕ2
Fw

and are

assumed to be independent from the atmosphere-ice forcing. The values for all the filtered

AR parameters and the cross-correlations can be found in Table 3.1.
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Figure 3.3: Ice-ocean heat flux decomposition. a) Non-solar heat flux at the ocean surface
from a ice-ocean coupled numerical model (black line). This heat flux is a weighted
average between ice-covered area and open water for a grid cell in the northern Beaufort
Gyre, where ice concentration is the highest. Example of unfiltered Ice-Tethered profiler
(ITP) observations for under-ice temperature (red), for one year, in the central Beaufort
Gyre. The location does not match the grid cell. b) Climatology (dark blue, left y-axis)
and standard deviation (light blue, right y-axis) derived from the numerical model 8-year
time series. c) Autocorrelation function for the normalized residuals (shown in inset). The
first two years are discarded as they still exhibit a strong seasonal variability. d) Simulated
trend and seasonal cycle of ice-ocean heat flux, before addition of stochastic noise, to force
the model.
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Once daily time series of normalized residuals have been generated for all forcing

variables, they can be scaled by multiplying them by the previously calculated seasonally

varying standard deviations σlw, σTa , σsw and σFw , then added to the climatology (or

multiplied in the case of shortwave radiation). The resulting generated forcing variables

are interpolated to the model time step to force it and can be used to investigate the

impact of changing variability by modifying the AR parameters ϕ or scaling the standard

deviations σ. For AR processes of order 1 and 2, a positive ϕ (as is the case here, Table 3.1)

means that the resulting process is a low-pass filter of the white noise w and is therefore a

red noise, with spectral density decreasing with frequency.

3.4 Results

The model is run with three different climatological baselines, representative of different

ice states and latitudes: a seasonal ice cover (72°N), a thin perennial ice (75°N) and a

thick perennial ice (85°N). The choice of two perennial ice states is motivated by the

non-linearities of the system: the response of the model is expected to depend on its mean

state (Massonnet et al., 2018). The simulated ice thickness for each of those climatological

baselines is realistic, with the ice varying between 0.0 and 2.1 m for the seasonal ice cover

(Figure 3.4.a), from 0.3 to 2.3 m in the thin perennial ice (Figure 3.4.b) and from 0.6

to 2.5 m in the thick perennial ice conditions (Figure 3.4.c). Two main features can be

observed when comparing the runs with stochasticity (black lines) to the climatological

baselines (grey lines): 1) the ice thickness exhibits some slow, interannual variability,

with a time scale of the order of 7 to 10 years and 2) the ice thickness is nearly always

lower than the climatological baseline, especially for its minimum, in the perennial states.

Those features are investigated in details in Section 3.4.4. The ice surface temperature

(Figure 3.4.d for thin perennial case) follows closely the atmospheric temperature except

in summer when the atmospheric temperature stagnates around 0 °C while the ice surface

temperature exceed the melting point. This nonphysical temperature is due to the solving
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of the surface heat balance and the excess heat is actually converted in melting latent heat

in the model.

Figure 3.4: Typical model run with stochastic noise for thick perennial ice state. Ice
thickness simulated by the model for the climatological baseline (grey line) and run with
stochastic noise (black) for the a) seasonal, b) thin perennial and c) thick perennial ice states.
The forcing for the thin perennial case are also provided. d) Atmospheric temperature Ta

provided as input (light blue) and simulated surface ice temperature (dark blue); it should
be noted that while the ice surface temperature here exceeds 0 °C, the model internally
caps it to the melting point. e) Heat fluxes provided as input, including the climatological
latent heat flux. Panels on the right provide a zoom on two arbitrarily chosen years and the
time series means (without spin-up years, dashed lines), to give further details.

3.4.1 Model Adjustment Timescale

The climatologically-forced model reaches a seasonal steady state after 3 to 4 years, no

matter the initial condition (not shown). Thorndike (1992) calculated two different typical

time scales, a first natural time scale τ1 of 24 days for the ice growth and a time response
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to changes in forcing τ2 of the order of 3 years. While their model is slightly different

from the one presented here, similar results are found and can be expanded. In the case of

the ice growth phase, if the ice-ocean heat flux is neglected, equation 3.5 provides

∂Hi

∂t
= − ki

Li

Ts − Tb

Hi

(3.16)

The adjustment of the model depends on its state Hi. If Eq. 3.16 is linearized around some

non-zero thickness H0, it yields (see Sect. A.1 for derivation)

∂Hi

∂t
=

1

τ
Hi − 2H0

τ

where τ =
LiH

2
0

kiΔT
and ΔT = Ts − Tb. This is an ordinary differential equation who’s

solution is an exponential decay with an e-folding time scale τ . It can be seen that the

time response of the ice to a change in the temperature gradient is quadratic in the ice

thickness and inversely proportional to the temperature gradient. The time scale can then

be evaluated for a range of realistic values for H0 ∈ [0; 3] m and ΔT ∈ [−30;−0.1] K,

yielding time scales between a week and several decades (Figure 3.5). The model outputs

are superimposed in the (H0, ΔT ) space for the seasonal and thick perennial climatological

baseline runs (Figure 3.5, green and red lines respectively). The cycle occurs counter-

clockwise: starting in summer at the thickness minimum on the left, the ice cools down

and grows simultaneously until it reaches a minimum ΔT in February, then warms quickly

while still growing until the temperature difference reaches 0 in May. At this point, the ice

surface starts to melt, until reaching its minimum thickness in September. Following this

cycle, the time scale is of the order of months during the first phase of the ice growth, until

the temperature difference decreases and the time scale drastically increases to several

years or decades. Because the melting phase of ice does not follow Eq. 3.16 anymore, there

is no time scale associated with it as the ice would never reach a steady state, apart from the

no-ice state (Hi = 0 m). For the seasonal ice state, the time scale reaches 0 at the minimum
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of the thickness cycle, resetting the memory of the ice. This is not the case for the perennial

case, where the memory of the system at its minimum is still on the order of months. It is

in this way that perennial ice states may generate low-frequency interannual-to-decadal

variability. This illustrates that the mean ice thickness has a clear, quadratic impact on

how fast the ice can react to a change in its surface temperature. The response time of

the ice depends on its mean state, with thicker ice having a longer adjustment timescale,

particularly during the warmer months.

Figure 3.5: Time scale for the ice response to temperature gradient given its thickness.
The black line shows the contour for a time scale of 1 year; the adjustment timescale
calculation is not valid in the hatched grey zone, as it is outside of the freezing phase. The
green and red lines show the climatological baseline of the ice model for the seasonal and
thick perennial ice cases, respectively (Fig. 3.4.a and c, grey lines), plotted in the Hi – ΔT
domain. The cycle goes counter-clockwise, months are indicated by their first letter. The
bottom temperature is fixed at Tb = −1.75 °C and so the surface temperature is given by
Ts = ΔT + 1.75.

3.4.2 Model Parameter Sensitivity

A first assessment of the model sensitivity to parameters can provide insights on dominant

processes in the model and on dominating sources of uncertainties. The model is run with
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Table 3.2: Description of the runs.
Experiment (Section) Noise Trend Ensemble Length Total

size (yrs) number
Parameter sensitivity (Sect. 3.4.2) No No 1 40 540
Forcing sensitivity (Sect. 3.4.3) No No 1 20 96
Stochasticity sensitivity (Sect. 3.4.4) Yes No 1 40 768
Gain function (Sect. 3.4.4) Yes No 10 40 750
Trends (Sect. 3.4.5) Yes Yes 10 30 1050

the same atmospheric and oceanic climatological forcing (no trends nor stochastic forcing)

for a number of years until it reaches steady state (see Table 3.2 for a summary of the runs

conducted in this study). The model is systematically run with modified parameter values

over a realistic range (see Table 3.1). I focus on sensitivity to albedo (melting and solid ice

αm and αi) and thermal parameters (latent heat capacity Li and heat conductivity ki). The

range of these parameters is taken to include reported observed values (Pringle et al., 2007;

Weeks and Hibler, 2010; Perovich and Polashenski, 2012; Shokr and Sinha, 2015). A set

of metrics are then calculated for the last year of each run, including mean ice thickness,

amplitude of the seasonal cycle (maximum minus minimum ice thickness), the day of year

of melt onset, identified as the date at which ice thickness reaches its maximum value, or

the length of the melting season, calculated as the number of days between the maximum

and the minimum ice thicknesses.

The model is most sensitive to variations in the melting albedo and the heat conductivity

(Fig. 3.6). The solid ice albedo is varied from 0.4 (typical of pancake ice or young grey

ice) to 0.8 (representative of cold snow), while the melting albedo is ranged from 0.1

(slightly higher than open water) to 0.7 (albedo of melting snow) (Perovich, 1998; Perovich

and Polashenski, 2012). A lower melt albedo αm leads to increased absorption of solar

radiation in summer and enhanced ice melt, as expected from the albedo positive feedback.

This leads to an increase in mean annual ice thickness, from 1.2 m for αm = 0.1 to 2.0 m

for αm = 0.7 in the case of thin perennial ice (Fig. 3.6.b). The solid ice albedo αi doesn’t

control the ice thickness significantly, as it is mostly representative of the polar night
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Figure 3.6: Parameter sensitivity experiment for melt albedo (x-axis) versus ice albedo
(y-axis) (top 9 panels) and ice conductivity (x-axis) versus latent heat capacity (y-axis)
(bottom 9 panels), for the seasonal (left column), thin perennial (middle column) and
thick perennial (right column) climatological ice states. Each line focuses on a specific ice
metric.
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conditions, but it modifies the onset of ice melt, triggering it nearly 15 days earlier when

using αi = 0.4 rather than αi = 0.8 (Fig. 3.6.d-f). The ice albedo determines when the

surface temperature reaches the melting point at the beginning of summer (Eq. 3.9). Both

albedo parameters play a role in determining the onset of the freezing season (Fig. 3.6.g-i),

but for differing reasons: an increased melt albedo increases the net shortwave radiation

and therefore the time when the ice surface temperature Ts goes below its melting point at

the end of summer, while the solid ice albedo shifts the whole seasonal cycle.

Next, the sensitivity to sea ice thermodynamic properties can similarly be explored.

The latent heat capacity is varied from 230 × 106 J m−3 (typical of a salinity of 4 and

temperature of -1 °C) to 300 × 106 J m−3 (representative of temperatures below -8 °C,

Ono, 1967) while the heat conductivity is varied from 2 (below the value of 2.1 observed

at 0 °C) to 3.2 W m−1 K−1 (heat conductivity at -73 °C, Pringle et al., 2007; Weeks and

Hibler, 2010; Shokr and Sinha, 2015). Between the thermodynamics parameters, the heat

conductivity ki is the dominant parameter in setting the ice thickness, as it determines the

ice growth rate. Over the range of values (ki ∈ [2; 3.2]), 0.5 to 0.8 m of ice can be added in

the case of perennial ice states (Fig. 3.6.k-l). A higher value leads to more heat extracted

to the surface and therefore more ice growth: this is the ice growth-ice thickness negative

feedback. For this reason, the ice conductivity modifies the amplitude of the seasonal cycle

in the seasonal ice state, by allowing more ice growth when starting from the same initial

condition (no ice). It does not change the seasonal amplitude in the perennial ice states,

since the ice melt remains constant for varying ki values: a higher conductivity pushes

the mean ice state towards higher thicknesses for which the slower seasonal ice growth

will compensate the constant ice seasonal melt (Fig. 3.6.m-o). The latent heat capacity Li

increases the amplitude of the seasonal cycle (Fig. 3.6.m-o) but not the mean ice thickness

(Fig. 3.6.j-l) by directly scaling the ice growth rate and increasing ice growth as much as

ice melt. It is the only parameter that has a linear response, in line with expectations when

looking at Eq. 3.5. It has no significant impact on the mean state, except in the seasonal
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ice state for which the minimum is capped at zero (Fig. 3.6.j). Neither the latent heat

capacity nor the heat conductivity play a significant role in determining the length of the

melt season for the perennial ice states (Fig. 3.6.q and r), but significantly increase it in the

seasonal state (Fig. 3.6.p), though for different reasons: a higher conductivity means more

ice to melt, lengthening the melt season by 30 days over the range, while an increased

latent heat capacity rather slows down the ice melt, lengthening the melt season by 10 to

20 days over the full range.

For the remainder of this study, standard constant values are used for those four model

parameters. The melt albedo αm is set to 0.5 and the ice albedo αi is set to 0.8, to match

typical observed values (Perovich and Polashenski, 2012). The latent heat capacity Li is set

to 300× 106 J m−3 and the heat conductivity ki to 2.3 W K−1 m−1 to match other model

studies (Semtner, 1976; Eisenman and Wettlaufer, 2009) or recommendations (Weeks and

Hibler, 2010) (see Table 3.1).

3.4.3 Model Forcing Sensitivity

Next the sensitivity of the model to forcing is investigated. To do so, once again a control

run is performed using the climatological baselines. Then, each of the heat fluxes are

turned off one after the other by setting the heat flux to 0 W m−2 and run for 20 years

(Table 3.2). For the longwave radiation, the net heat flux (Flw − σT 4
s ) is set to zero by

turning off both downward and upward longwave radiation together.

For all ice states, the ice thickness is most sensitive to shortwave radiation, since it

always acts as a source of heat so turning it off increases the mean ice thickness by several

meters (Fig. 3.7). In the seasonal ice climatological state without shortwave forcing, ice

becomes perennial with a minimum thickness of 3.8 m after 20 years (Fig. 3.7.a). The

absence of shortwave radiation keeps the ice model in its freezing stage, with the surface

temperature never reaching the melting point (Eq. 3.5). The model never reaches steady

state, continuously growing (no albedo feedback) though with a slowing rate (due to the

ice growth-ice thickness feedback). The net longwave radiation and ice-ocean heat flux
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have a second order impact, of opposite sign. The net longwave radiation acts as a sink

of heat: turning it off removes 0.2 to 0.3 m of ice in winter and leading to seasonal ice

state for previously perennial ice conditions (Fig. 3.7.b and c). Meanwhile, the ice-ocean

heat flux acts as a source of heat, increasing ice thickness by 0.5 to 1 m when turned off.

This is not enough to lead to perennial conditions in the seasonal ice climatological state,

but the ice free season is significantly shortened, from 39 days to 9 days only (Fig. 3.7.a).

The atmospheric sensible and latent heat fluxes play a minimal role, the sensible heat

flux acting mainly as a source of heat but sometimes as a sink as well. When turned off,

the mean ice thickness increases by a few centimeters, up to 0.15 m at most in the thick

perennial ice state in summer. The latent heat flux is a sink of heat, leading to lower ice

thickness in summer for all ice states when turned off. Its impact is on the order of 0.1 to

0.2 m for the thickness minimum and a few centimeters for the rest of the year.

Those results were anticipated, in line with the magnitude of each of those heat fluxes

(see Section 3.1). Shortwave radiation has a strong seasonal cycle and reaches a peak

amplitude of hundreds of W m−2 while net longwave radiation is rather constant through

the year, averaging around 50 W m−2. The sensible and latent heat flux are also relatively

constant through time, though the latent heat flux shows some seasonal variability, and

are both an order of magnitude smaller than longwave radiation (Serreze et al., 2007).

The ice-ocean heat flux exhibits a seasonal cycle, with a summer peak around 50 W m−2

(Krishfield and Perovich, 2005), but the winter values are much smaller and could therefore

be expected to have a lower impact during that season. Yet, the physics are different, as the

ice-ocean heat flux intervenes in both melting and freezing phases (Eq. 3.5), explaining

an overall stronger impact on the ice thickness compared to the atmospheric heat fluxes.

Our results are in line with the observed magnitudes of the heat fluxes, but emphasize

that the ice-ocean heat flux is the second most important driver to determine the mean ice

thickness and therefore cannot be ignored. This should especially be kept in mind as the

ice-ocean heat flux values used here can be considered as conservative with regards to
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recent observations (e.g., averaged ocean-to-atmosphere heat fluxes exceeding 100 W m−2

over long periods have been observed, MacKinnon et al., 2021; Babb et al., 2022).

Figure 3.7: Sensitivity of sea ice to heat fluxes, for a) seasonal, b) thin perennial and c) thick
perennial ice states. Each line shows the seasonal cycle of a run with the associated heat
flux turned off, except the control run which has all heat fluxes on (black line). Longwave
radiation Flw, shortwave radiation Fsw, ice-ocean heat flux Flw, sensible heat flux Fsh and
latent heat flux Flh.

3.4.4 Sensitivity to Forcing Noise

The previously described results give confidence in the realistic behaviour of the model,

which can then be used to investigate the impact of stochastic forcing on ice thickness

mean state and variability. Stochastic noise generated using a multivariate AR(1) model

for longwave and shortwave radiation Flw and Fsw and atmospheric temperature Ta and an

AR(2) model for ice-ocean heat flux Fw (see Section 3.3.2 and Table 3.1). The magnitude
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of the forcing is scaled by a factor ranging from 0 to 1.5 and then multiplied by the

(seasonally varying) standard deviation of each forcing variable. The resulting noise has

a cyclo-stationary (seasonal) variance, but its mean is still zero. It is then added to the

climatology. As for the model parameter sensitivity study, a range of metrics are calculated.

Because of the stochasticity of the forcing, each year is different from the others and the

last year is not representative of the whole time series anymore. The model is run for 40

years (Table 3.2) and discard the first 4 years as spin-up, then extract the metrics of interest

for each of the remaining 36 years. I calculate anomalies by subtracting the metrics of the

climatological baseline (no stochastic noise) and average them across all years.

The most striking feature is the decrease in ice thickness when any zero-mean noise is

added, in particular to longwave radiation and atmospheric temperature, for perennial ice

states (Figure 3.8.b and c; see also Figure 3.4). The change in the mean ice thickness is

driven by a markedly lower ice minimum, while the maximum shows little or no change,

resulting in an increased amplitude of the seasonal cycle. The stochastic noise leads to

a stronger ice melt and a lower minimum, while the ice growth-ice thickness negative

feedback brings the thickness maximum back to its climatological baseline, except in the

case of thick perennial ice where the thickness remains below the climatological baseline.

The change in minimum is of the order of 0.3 m for thick perennial ice, around 40 % of its

climatological minimum. In the case of thin perennial ice, it is enough to lead to summer

ice free conditions in most years, shortening the melt season by 15 days (the timing of the

maximum is not significantly changed, not shown). In the seasonal ice state, the minimum

cannot go below 0 m and there is no significant difference apart from added noise. The

response of the model is therefore non-linear: a zero-mean noise leads to a change in the

mean state of the ice. It is interesting to note that in all ice states the impact of the scaling

of the noise is mostly linear: more variance means more departure from the climatological

mean.

Another feature visible when looking at the time series of the stochastically forced model,
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Figure 3.8: Non-linear response of sea ice to stochastic noise. Metrics of ice thickness
relative to climatological baseline (without stochastic noise) for seasonal (first column),
thin perennial (second column) and thick perennial (third column) sea ice states. Minimum
ice thickness (first row), seasonal amplitude (second row) and length of the melt season
(third row) are calculated for each year of the run after removal of the first 4 spin-up years.
The metrics from the climatological baseline are then subtracted to obtain anomalies and
are finally averaged over the 36 years of the run. The scaling of the variance, from 0.0 to
1.5 with 0.5 increments is on the x-axis for ice-ocean heat flux Fw (repeated every four
grid cells) and for atmospheric temperature Ta (each increment includes four runs, for
Fw) and on the y-axis for shortwave radiation Fsw (repeated every four grid cells) and for
longwave radiation Flw (each increment includes four runs, for Fsw). Red square indicate
the run with all variance scaling equal to 1. Hashed grid cells indicate runs for which more
than half of the years are ice-free in summer.
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using the default standard deviation (scaling of 1.0, i.e. representative of realistic forcing

variability), is the emergence of a slow, interannual variability, with a periodicity of 7 to 10

years. This is particularly striking when removing the climatology for each individual run

(Figure 3.9). Note that the climatology of the run differs from the climatological mean, as

the stochastic noise induces a non-zero mean response, as pointed out earlier. The model

integration of the rapidly fluctuating surface and bottom noises lead to strong internal

variability. This is in line with the theory of stochastic climate models which integrate

the white weather noise into a red oceanic noise response, concentrating the variance

at the lower frequencies (e.g. Hasselmann, 1976; Frankignoul and Hasselmann, 1977;

Kilpatrick et al., 2011). While the seasonal ice state resets every summer and therefore

exhibits limited interannual variability (Fig. 3.9.a), the perennial ice states allow for more

year-to-year memory (Fig. 3.9.c and d).

It can be instructive to investigate the response of the ice model to the stochastic forcing

in the frequency space. To do so, periodograms can be estimated for the stationary

model output, after removing the climatology and normalizing the anomalies. The density

spectrum is then computed and smoothed using a low-pass filter in frequency space to

provide the periodogram (Fig. 3.9.b, d and f). The decay with increasing frequency

confirms the above-mentioned integration of the rapid fluctuations of the atmospheric

and oceanic noises (red and blue periodograms) into a slowly varying red noise and is

reminiscent of the stochastic climate models (e.g. Kilpatrick et al., 2011, their Fig. 8).

The atmospheric and oceanic periodograms are flat (white noises) for periods longer than

1 month, then decay as red noise with a small slope. The cut-off for the ice thickness

is rather around the per year frequency and is less clear as the periodogram still exhibit

features for lower frequencies. The slope is also steeper above the cut-off frequency. The

peaks in the perennial states at frequencies lower than 1 yr−1 confirm the presence of the

interannual variability, though the normalization tends to reduce their visibility. The exact

location of those peaks depend on the realisation of the stochastic forcing and therefore on
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Figure 3.9: Deseasonalised ice thickness variability. Modelled ice thickness once the
climatology has been removed, for a) seasonal, c) thin perennial and e) thick perennial ice
states. Here, the climatology is not the same as the climatological baseline: the climatology
is computed for the run itself, by removing the first 4 spin-up years then using the same
climatology calculation as for the ice-ocean heat flux (Sect. 3.3.1). A low-pass filter using
a 1-year bandwidth is also shown (orange line). Periodograms of the deseasonalised,
normalized ice thickness (grey), oceanic (blue) and atmospheric forcing (red) are also
shown for b) seasonal, d) thin perennial and f) thick perennial ice states.
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the run (not shown).

The gain function is another useful mathematical tool to visualize which frequencies

the model is most sensitive to. A flat gain would indicate that the model responds evenly

to the input at all frequencies, a negative slope would indicate a dampening of the high

frequencies and a stronger response at lower frequencies and a positive slope the reverse.

The gain function is calculated as the amplitude of the cross-spectral density between the

input (one of the forcing variables) and the output (the ice thickness), for the stationary

signal.

The gain function (Figure 3.10) shows the amplitude gain in frequency space by com-

paring the output to the input. The model is forced by four forcing variables that can be

aggregated into two main components: atmospheric (Flw+Fsw+Fsh with Fsh a function of

Ta) and oceanic (Fw). The gain function is calculated for the atmospheric and ocean inputs

separately. For times scales shorter than 100 days (or 3 months), the gain function of the

anomalies decreases with increasing frequencies. In the case of the thick perennial ice state,

the slope of the gain function is slightly steeper for time scales lower than 10 days than for

time scales between 10 and 100 days (Figure 3.10.c and f). This slope indicates that the

fast variability of the atmosphere and ocean is integrated into slower variations of the ice

thickness. For the seasonal ice state (Figure 3.10.a and d), the gain function is relatively

flat for frequencies lower than 100 days−1, coherent with the expectations of a system

that restarts annually from the same initial conditions (no ice). For perennial ice states,

particularly thick perennial, the slope remains negative for frequencies lower than 100

days−1, indicating significant amplification of interannual-to-decadal variability. Another

interesting feature is the peak for both perennial ice states and ice-ocean heat flux at time

scales of several years (Figure 3.10.b and c). This is in line with the estimated periodicity

of 7 to 10 years of the generated internal variability. As for the periodogram, the exact

location of the peak depends on the realisation of the stochastic noise (not shown), but its

presence is inherent to the model: the ice does generate a low frequency internal variability.
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Figure 3.10: Gain function, calculated as the cross-spectral density between ice thickness
and ice-ocean heat flux (top row) or atmospheric heat fluxes (bottom row) using Welch’s
method on anomalies. The gain function is calculated for seasonal (left column), thin
perennial (middle column) and thick perennial (right column) ice states, for different
scaling of the standard deviation. Note that the alternate forcing is climatological only (e.g.
first row shows stochasticity of ice-ocean heat flux only, while the atmospheric heat fluxes
are kept as climatologies).

The peak is also visible in the gain of atmospheric forcing for thick perennial ice and for

thin perennial ice with a low standard deviation factor, while the higher standard deviation

factors induce a flat, high value gain at the lowest frequencies, similar to the seasonal gain

(Figure 3.10.e and f). This is explained by the switch from perennial to seasonal ice state,

as higher noise variance in the signal leads to a higher negative thickness anomaly. The

amplitude of the noise roughly scales the gain function, with higher noise variance leading

to higher gain, excepted for low frequencies for the atmospheric heat flux gain, where the

gain seems less correlated with the noise amplitude for perennial ice states. The limited

spectral sampling of those lower frequencies invites to caution when interpreting those

results, though the reason is thought to be linked with the mentioned change in ice state.
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3.4.5 Sensitivity to Forcing Trends

Environment conditions in the Arctic are changing fast. The atmosphere is warming and its

moisture content is increasing, leading to positive longwave radiation and air temperature

trends. The poleward oceanic heat transport is also increasing and the longer open-water

season leads to more oceanic uptake of atmospheric heat, released later in the season. I

have shown that increased variability of the heat fluxes can have impacts on the mean state

of ice thickness, with some differences between the ice states considered here. A better

understanding of the impact of trends, both atmospheric and oceanic, is also important to

frame the previous results.

Linear trends of varying magnitudes are added to the stochastic forcing and run an

ensemble of simulation to average out stochastic noise-dependent results (Fig. 3.11). For

the atmospheric forcing, the trends extracted from the ERA5 data over the 1979-2021

period are used (Fig. 3.2.d-f) and scaled by a factor between 0.0 (no trend) and 2.0 (twice

the ERA5-calculated trend). The oceanic heat flux trend is more difficult to generate

as very few observations are available to constrain a realistic trend. A stronger trend is

expected in summer than in winter (see Section 3.1) and is therefore scaled by the seasonal

cycle of the ice-ocean heat flux (Fig. 3.3.d). The range of used values is centered around

the winter trend reported by Zhong et al. (2022) (a 0.9 W m−2 increase over a 12 years

period). The model is first run 4 years without trend for spin-up, then run for 26 years with

trends (Table 3.2).

Unsurprisingly, the trends lead to a decrease in maximum and minimum ice thickness,

except in the seasonal ice state where the minimum is already at zero (Figure 3.11). The

decreasing trend of ice thickness is not linear but rather logarithmic despite the linearly

increasing trend. This is difficult to see in most cases but is visible for the maximum ice

thickness in thick perennial state (Figure 3.11.c) and can be explained by the ice growth-ice

thickness feedback: the thinner the ice, the faster the growth meaning that the ice can

recover faster during the freezing season, slowing down the ice loss. This is yet another
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Figure 3.11: Impact of forcing trends on ice thickness metrics, for model ensemble run
using 30 members (line: ensemble mean; shade: one standard deviation). Impact on annual
maximum ice thickness from increasing trend in a), b) and c) ice-ocean heat flux and d), e)
and f) atmospheric forcings. g) to l): same but for annual minimum ice thickness.
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consequence of the non-linearities of the system. Another feature is the stronger impact

of the ice-ocean heat flux trend compared to the atmospheric trends for the minimum

thickness (Figure 3.11.g-i). Both perennial ice states turn to seasonal within 20 years

when applying an ice-ocean heat flux trend, except for the smallest trend (Figure 3.11.h

and i). In particular, even for the thick perennial ice state, the winter trends equal to or

above 0.75 W m−2 dec−1 all lead to ice free summers for all members of the ensembles

(shaded areas indicate the ensemble standard deviation). For the maximum ice thickness,

the atmospheric heat flux seems to have more impact than the ice-ocean heat flux. This

can be understood when looking at the actual slopes of the atmospheric trends which are

overall positive in winter (during the ice growing season) but close to null or even negative

for the shortwave radiation in summer (Figure 3.2.d-f). It therefore makes sense that the

ice-ocean heat flux drives the summer, minimum ice thickness while the atmospheric trend

dominates the winter maximum thickness. The impact of trends are also stronger for

the ice minimum than the maximum. For example, a realistic atmospheric trend (factor

of 1.0) leads to an ensemble mean decrease of 0.1 m for the maximum thickness and a

loss of 0.2 m for the minimum thickness, in the thick perennial state. The ice-ocean heat

flux trends also lead to a stronger response of the minimum thickness compared to the

maximum, with a loss of 0.5 m in the minimum, compared to 0.15 m for the maximum.

Note that the spread is also higher for the minimum.

The trends are slightly non-linear. Nonetheless, assuming it to be linear allows for easier

interpretation of the slope without changing the main message. For the maximum ice

thickness, the magnitude of the slope is equally controlled by the surface and bottom trends

(Figure 3.12.a-c). The minimum ice thickness quickly reaches zero, yielding a misleading

low slope for high trend values, especially for ice-ocean heat flux (Figure 3.12.f, x-axis).

This explains that the strongest decreasing trend for the perennial ice thickness minimum

occurs for oceanic trends between 0.25 and 0.75 W m−2 dec−1 and for atmospheric trends

between 0.25 and 1.5 (Figure 3.12.f and to a lesser extent e). Nonetheless, it can be seen
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Figure 3.12: Trends of maximum and minimum ice thickness and first ice-free summer, as
a function of oceanic (x-axis) and atmospheric (y-axis) forcing trends. a) to f): Slope of
linearly fitted trend for a), b) and c) thick perennial maximum ice thickness, calculated as
the ensemble mean. d), e) and f) Same but for the minimum ice thickness. g), h) and i):
first year where 75 % of the ensemble members reach a seasonal state (no ice in summer).
The results are calculated for seasonal (left column), thin perennial (middle column) and
thick perennial (right column) ice states.

that the slope value increases faster with increasing oceanic trend than with the atmospheric

trend. The trends have limited to no impact on the length of the melting season (not shown),

except when they lead a shift from perennial to seasonal ice, leading to a shorter melt

season for obvious reasons. The year when most (75 %) of the ensemble members reach

seasonal ice state unsurprisingly follows the same story as the minimum, with a dominant

impact of the ice-ocean heat flux. For most oceanic trends except the smallest value when

no or little atmospheric trend is added, the thick perennial state switches to seasonal before

the end of the 30 year runs (Figure 3.12.j) and within 10 years for winter trends above 1.0

W m−2 dec−1.
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3.5 Discussion

A 0-layer ice thickness model was used to investigate the response of sea ice to stochastic

forcing. This model is as simple as possible, assuming no thermal inertia (one layer of ice

only), no brine pockets or channels potentially altering the conductivity or the latent heat

vertically or temporally (Vancoppenolle et al., 2009; Worster and Rees Jones, 2015), no

snow layer insulating the ice (although the formulation accounts for the snow albedo), no

penetration of solar radiation and no dynamics or rheology of the ice (e.g. Hibler, 1979).

The limitations of this model are therefore numerous and need to be considered. The

real strength of such a simple model is to keep a direct link between processes, results

and interpretation. This allows for a robust qualitative understanding of the behaviour of

the model, despite the relative complexity of the non-linear processes involved. Another

significant advantage is the relatively low computational cost of the model, allowing

for model ensemble simulations over decades necessary in the stochastic context used

here. For example, this study relies on over 3200 runs simulating a total of more than

115,000 years, excluding runs necessary to study development. Adding more processes

such as an extra ice layer increases not only the complexity of the model and therefore the

difficulties to interpret the results from a physical perspective, but also its computational

cost. Nonetheless, the skill of the model remains an important question. I focus here on

qualitative behaviour and restrain from validating quantitatively the model, though initial

studies using the 0-layer model have shown a good quantitative and qualitative agreement

with more complex thermodynamical ice models (Semtner, 1976). As in those earlier

studies, our model does not account for rheology. Sea ice is a viscous-plastic material

than can fail and compress under internal stress, potentially generating leads or ridges

(e.g. Tremblay and Mysak, 1997; Feltham, 2008). Those phenomenons would impact ice

thickness and thermodynamic properties at very local scales. Those processes are beyond

the scope of this study and are unlikely to impact its qualitative results. Similarly, the
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lack of dynamics is deemed acceptable in most cases except in certain regions where

the dynamics can play a dominant role (e.g. Fram Strait), as the most critical role that

sea ice can play is thermodynamic, because of its high albedo and insulation properties

(Holland and Hunke, 2022; Le Guern-Lepage and Tremblay, 2023). Those are accounted

for, though in a simple form. Sea ice is a complex, multi-phase medium, with the inclusion

of brine and air in pockets and channels that can convect and diffuse tracers within the

ice column. The brine changes the thermal properties of sea ice as well as the nutrient

availability and can provide a medium for ice algae growth, which can absorb shortwave

radiation and change the temperature profile. Many recent ice models account for such

processes by including mushy layer thermodynamics (Feltham et al., 2006, and references

therein), to simulate a biphasic medium. A direct implication of modelling the ice as a

mushy layer is that the thermal properties (ki and Li, mainly) are time- and space-varying.

While such a complexity is likely important for quantitative studies to match observations,

simpler models that do not incorporate the mushy layer framework still show an overall

good agreement with observations (e.g. Maykut and Untersteiner, 1971; Semtner, 1976;

Thorndike, 1992), thus capturing the most basic, important sea ice processes. It is therefore

deemed that keeping the thermal properties constant should not significantly impact the

qualitative results this study is based on. The use of a single ice layer is also at odds

with the typical multi-layer models used in many of the most recent ice models. As a

thought experiment, one can consider the addition of a snow layer, which insulates the

ice layer from atmospheric forcing. This would not change the albedo parametrization

used here, as we already account for the albedo change between snow and ice, but it

would create a piecewise linear temperature profile in the snow-ice system. The effect

would be an overall less variable conductive ice flux within the ice layer, leading to a

strengthening of the inverse energy cascade discussed below, with a stronger integration

of the fast weather fluctuations into internal variability. Finally, it has been found that

the complexity of ice models is decorrelated from their skill in simulating mean ice state,
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freezing and melting. Using numerical general circulation models from the Coupled Model

Intercomparison Project, phase 5 (CMIP5) ensemble, Massonnet et al. (2018) calculated

the open-water formation efficiency and the ice formation efficiency, two diagnostics based

on thermodynamics that are tied to the ice volume variability in the high Arctic. Ranking

the CMIP5 models by complexity and including their own version of a Semtner (1976)

0-layer model, they found "no obvious link between model physics on the one hand, and

[the two diagnostics] and the mean state on the other hand" . I am therefore confident that

this 0-layer simple ice model is sufficient from a qualitative perspective.

The ice thickness exhibits a non-linear response to stochastic forcing, where a zero-

mean stochastic noise added onto the climatological forcing generates a non-zero response

in the mean thickness state (Figure 3.13.b). This is emphasized for summer ice where

the thickness loss can amount to 40 %. The conditional form of Eq. 3.5 (Fig. 3.13.a)

can explain this surprising response, as increased variability can provoke ice surface

temperature to reach the melting point sooner than under climatological conditions and

triggering the albedo feedback process to melt more ice. The non-linear formulation of

the outgoing longwave radiation, varying to the fourth power of the surface temperature,

would also emphasize positive anomalies over negative anomalies, leading to a net negative

ice thickness anomaly, but the induced outgoing longwave anomaly would be two orders

of magnitude lower than the outgoing longwave value, therefore negligible. The ice

growth-ice thickness negative feedback can partially compensate for this ice loss if the

ice gets thin enough, but not systematically. While the quantitative aspect of this result is

a consequence of the formulation and parameters used, it has physical grounds, as snow

and ice do change their albedo significantly once they start to melt or to switch to slush.

The albedo feedback is a well understood and validated process. This mean state offset

has implications for model validation and simulations: a model run under climatological

forcing should not be quantitatively validated against observations, as noise needs to be

accounted for to generate realistic mean statistics. Similarly, using spatially-averaged
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forcing will smooth the noisiness of the forcing variable and therefore lead to mean bias in

the ice thickness. Because the variability depends on the mean state, biases in the latter will

have repercussions on the former. This could be a potential factor in the underestimation

of ice sensitivity and decline in earth system models (Stroeve et al., 2007; Rampal et al.,

2011; Notz and SIMIP Community, 2020; Holland and Hunke, 2022).

The impact of the high frequency forcing variability is also visible in the frequency

space, as the gain function exhibits a decreasing slope towards high frequencies. This

hints to an inverse energy cascade, as the energy input at short time scales is transferred

towards longer time scales (Fig. 3.13.b). Similar to the turbulence theory (Richardson,

1922; Bailly and Comte-Bellot, 2015), this transfer of energy arises from non-linearities

in the equations. If the ice-ocean heat flux is neglected, the thickness equation 3.5 when

surface temperature is below the melting point can be rearranged as

Hi
∂Hi

∂t
= − ki

Li

(Ts − Tb) (3.17)

If the temperature difference inside the ice is assumed to vary as a sinusoidal Ts − Tb =

ATe
iωTt of amplitude AT and frequency ωT, and if the ice thickness is assumed to respond

as a sinusoidal Hi = AHe
iωHt with an amplitude AH and frequency ωH, the apparition of

the half-harmonic of the forcing frequency ωH = ωT

2
can be seen (see Appendix A.2 for

derivation). In other words, periodic forcing drives a periodic response at a lower frequency,

and this effect arises due to the non-linearity on the left-hand side of Eq. 3.17. This result

could be expanded for all frequencies if the temperature in the ice is decomposed into

Fourier components and in this case an inverse energy cascade is obvious. This is at the

root of the slope in the gain function, with short time scales in the forcing integrated into

longer time scales. This special simplified case neglects any melting and ice-ocean heat

flux and considers the ice temperature to be the forcing. The model used in this study

is more complex, with ice temperature responding to the atmospheric forcing and the
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heat conduction and therefore already exhibiting some non-linear response to the forcing

frequencies. The quick calculations provided here therefore only help to grasp the reasons

behind the shape of the gain function in a qualitative way. Nonetheless, a parallel can

be drawn between the non-linear integration of energy towards low frequency by sea ice

and other physical processes such as turbulence theory or wave-wave interactions. The

inverse energy cascade unveiled here highlights the role of sea ice as a climate component,

dampening the atmospheric and oceanic variability on days to weeks scale to generate

seasonal to interannual variability.

As described earlier (Section 3.1), the fast changes occurring in the Arctic have conse-

quences on the variability of the heat fluxes. A shift in the storm track or the increased

generation of clouds lead to a decrease in shortwave radiation in summer and an increase in

longwave radiation, especially in winter and during the shoulder seasons with the increased

presence of liquid water clouds. In light of the response of the ice to increased variability

of longwave radiation, a negative anomaly in ice thickness can be expected, leading to

thinner ice and increased seasonal amplitude in perennial ice regions (Fig. 3.13.c). This is

independent of the trend. The increasing trends of longwave radiation and atmospheric

temperature, mostly occurring in winter and in the shoulder seasons, go together with a

decreasing trend of solar radiation in summer. This results in an overall decreasing trend

of ice thickness, especially for the maximum, along with increased variance in the timing

of the melt onset and the minimum value. Considering that the trend used here is derived

for the period covering 1979-2021, it is likely a conservative estimate of the trend for

more recent years and for the next decades. The decreasing trend for ice thickness can

therefore be expected to be on the order of 0.1 m decade−1 or above (corresponding to

a slope factor of 1.5 or 2) rather than around 0.05 m decade−1 (slope factor of 1.0). On

top of this temporal aspect, there is also some spatial variability in the expected trends. If

the Arctic Ocean Oscillation index remains positive, as it has over the last 25 years, the

storm track can be expected to be directed towards the Siberian Shelves (Proshutinsky
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Figure 3.13: Conceptual summary of the results. a) Ice model seen as the combination
of a rectifier of atmospheric fluxes and low-pass filter for ice-ocean, atmospheric and
conductive heat fluxes (Eq. 3.5). b) Impacts of stochastic noise in forcing on ice thickness:
atmospheric stochasticity reduces ice thickness, while both atmospheric and oceanic
stochasticity generate internal variability. c) Projected changes in ice thickness due to
anthropogenic climate change: increased atmospheric variability due to changes in storm
tracks or cloud nucleation lead to thinner ice, while increased eddy variability of the Arctic
Ocean leads to stronger internal variability. Increased winter longwave radiation and
decreased summer shortwave radiation due to increased moisture content and cloudiness
lead to decreasing ice thickness, especially in winter, while increased oceanic heat content
and ice pack mobility strongly decrease ice thickness, especially in summer.
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et al., 2015), leading to more variability in the atmospheric heat fluxes in the Eurasian side

of the Arctic Ocean. If the AOO were to switch to a negative phase, the storm track would

likely shift towards the Central Arctic, enhancing the heat flux variability and leading to

a negative anomaly for ice thickness along with increased variability over the Canadian

side of the Arctic, while reducing variability over the Siberian Shelves, potentially leading

to some recovery of the ice there (ice thickness is currently thicker on the Canadian side

while the Siberian Shelves are frequently ice free in summer, Meier and Stroeve, 2022). It

is worth noting that if such was the case, the shift from a positive to a negative AOO index

would likely have more significant consequences on the oceanic circulation, including a

reversal of the Beaufort Gyre and a Great Salinity Anomaly event (Proshutinsky et al.,

2015), that would overshadow the effects mentioned here.

Yet, according to our results, the trend in atmospheric forcing is less important in setting

the future of sea ice than the trends in ice-ocean heat flux. While the increasing trend

for the atmospheric forcing variables is mostly occurring in winter or in the shoulder

season and is even slightly decreasing in summer for the shortwave radiation, the trend

for ice-ocean heat flux is mostly expected to increase in summer, through increasing

open water season length leading to higher mixed layer temperature, a more mobile ice

pack leading to stronger sensible heat flux and increased frequency in marine heatwaves

(Fig. 3.13.c). This is likely to be the dominant driver for the declining trend in sea ice in

summer. Just as for atmospheric heat fluxes, some spatial variability can be expected for

the ice-ocean heat flux trends, with a stronger increase near the Arctic gateways (Fram and

Bering Straits and Barents Sea Opening, see Rudels, 2015, for locations) and close to river

mouths. A significant limitation of this result is the lack of robust constraint on the past,

current and future trends of ice-ocean heat flux, including its seasonality. I carefully built

our parametrization using a mix of model and in-situ data and estimates from the scientific

literature, but none of the sources are independently sufficient to realistically constrain the

heat flux. Nonetheless, I consider this parametrization as encompassing the likely trend
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in a conservative way, as summer-averaged ice-ocean heat fluxes above 100 W m−2 are

thought to have explained some of the recent multiyear ice losses (MacKinnon et al., 2021;

Babb et al., 2022). Considering the dominant role of the ice-ocean heat flux, not only

in driving the trend but also the seasonal cycle, mean state and variability of sea ice, a

concerted effort in better observing and constraining it is necessary. Increased variability

of the ice-ocean heat flux does not generate a significant response on the mean ice state, so

the increased frequency of eddies in the Arctic Ocean (Von Appen et al., 2022) should not

produce a offset similar to increased longwave radiation or atmospheric temperature in

the ice mean state. But the increased energy at high frequencies are still expected to yield

increased low frequency variability. This could lead to less predictable sea ice at seasonal

to interannual time scales in perennial ice conditions, until reaching a seasonal state where

variance diminishes for obvious reasons. Observationally constraining ice-ocean heat flux

seasonality, variability and trend would provide critical information to better understand

and predict the fate of sea ice and the redistribution of energy at the different time scales

of the weather-climate systems.

3.6 Conclusion

A simple 0-layer ice model was used to investigate the impact of stochastic forcing on

ice thickness, with a specific focus on the ice-ocean heat flux. In line with expectations

and scientific literature, the ice was found to be sensitive to the melt albedo and the heat

conductivity, as they drive positive and negative feedbacks that determine the ice mean

state and seasonal cycle, as well as to shortwave radiation. Ice-ocean heat flux was found

to be as important as longwave radiation to regulate ice thickness, though of opposing

role. Adding a stochastic noise to the climatological forcing changes the minimum ice

thickness, with residuals until the peak of the following winter if the ice is too thick for the

ice thickness-ice growth feedback to compensate the increased melt. An inverse energy

cascade was also found to occur, transferring energy from the short daily time scales to
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the longer interannual time scales. This is the case for both atmospheric and oceanic

forcing. Adding a trend to the forcing has different impacts depending on the forcing.

While atmospheric trend has a dominant impact on the winter maximum ice thickness,

ice-ocean heat flux mostly impacts summer minimum ice thickness. Overall, adding a

trend to ice-ocean heat flux has a stronger impact on sea ice, though the limited number of

available observations prevent to confidently constrain it.

This study provides a picture of sea ice as in integral component of the climate system,

absorbing high frequency variability into its mean state as well as cascading energy from

weather noise to climate variability. The fate of sea ice as a seasonal system would reduce

its capacity to integrate variability at interannual time scales, as the absence of ice in

summer would reset its "memory". This could have significant consequences on the

atmospheric and the oceanic systems, considering how tightly it is intertwined with those

climate components.
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CHAPTER 4

MARINE HEATWAVES IN THE ARCTIC

TRANSFER HEAT FROM THE

ATMOSPHERE TO THE SUBSURFACE

OCEAN

The previous chapter focused on the internal variability and long-term trend of sea ice

which were found to react strongly to the ice-ocean heat flux. Better understanding the

variability of the ocean heat flux is therefore important. This heat flux is a function of the

mixed layer temperature, which can experience large fluctuations. In this chapter, I look at

marine heatwaves, events of extreme temperature anomalies, and try to disentangle the

processes generating and dissipating those events, as well as the role of sea ice in those

events.1

4.1 Introduction

The region north of the Arctic Circle is warming four times faster than the global average

(Rantanen et al., 2022). This fast increase of the atmospheric temperature is called Arctic

Amplification (Serreze et al., 2009; Bekryaev et al., 2010) and is due to the strong coupling

between the atmosphere, the cryosphere and the ocean. Changes in oceanic and sea ice

1A version of this chapter is currently under review as Richaud B., E. C.J. Oliver, X. Hu, S. Darmaraki,
K. Fennel, and Y. Lu, Marine heatwaves in the Arctic transfer heat from the atmosphere to the subsurface
ocean, under review at Journal of Geophysical Research: Oceans.
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properties are numerous and often drastic. The most publicised one is the decline of sea

ice, with a strong downward trend in September ice extent of 13 % per decade over the

satellite era starting in 1979 and a nearly complete disappearance of sea ice older than

4 years (Meredith et al., 2019; Meier and Stroeve, 2022). The sea ice melt reduces the

albedo, leading to more solar radiation absorbed by the ocean, which in turn melts more ice,

leading to the positive albedo feedback (Hall, 2004). The sea ice decline in non-summer

months also leads to more cloud formation, enhancing downwelling longwave radiation,

here again leading to a positive cloud-sea ice feedback (Schweiger et al., 2008). New

feedbacks are regularly proposed and investigated (e.g. Ivanov et al., 2016), with positive

or negative influences on the Arctic Amplification (Goosse et al., 2018). In parallel, heat

inflow through the Arctic gateways has increased (Docquier and Koenigk, 2021), either due

to increases in volume transport of Pacific waters (Woodgate, 2018) or in heat content of

the Atlantic waters (Beszczynska-Möller et al., 2012). As a consequence, conditions in the

Eastern Arctic are resembling Atlantic conditions more and more, a phenomenon called the

Atlantification or Borealization of the Arctic (Timmermans and Marshall, 2020; Muilwijk

et al., 2023), with consequences for the water column stratification and stability (Carmack,

2007) as well as for nutrient availability and ecosystems (Polyakov et al., 2020a). The

changes in stratification, particularly on the northward migration of the transition between

the α-stratified (i.e. temperature-driven) and β-stratified (i.e. salinity-driven) ocean and

on the weakening of the halocline, could have important consequences, with a potential

shift from winter ice formation to deep convection (Carmack, 2007; Lique et al., 2018). In

addition, the increased heat inflow has led to a positive temperature trend of subsurface

waters of Pacific and Atlantic origins, driving a stronger upward heat flux (Polyakov et al.,

2017, 2020b; Timmermans et al., 2018). Associated with that is a suspected shift in the

main source of ice melt, changing from atmospheric, surface melt to oceanic, basal melt

(Carmack et al., 2015). Heat fluxes in the Arctic Ocean are changing, with consequences

on its heat budget and on the characteristics of extreme events in the region, such as marine
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heatwaves.

Marine Heatwaves (MHWs) are anomalously warm events, with a variety of lasting

ecosystem and socio-economic consequences such as the recent collapse of the Bering

Sea snow crab population (Szuwalski et al., 2023), and have therefore recently been under

the scientific and public spotlights. Hobday et al. (2016) propose a framework to define

and detect MHWs, as “a discrete prolonged anomalously warm water event in a particular

location”, during which water temperature exceeds a percentile threshold (often the 90th

percentile calculated over a climatological period), for at least five consecutive days. An

assessment of the evolution of MHWs in the global ocean found surface events to be more

frequent, more intense and longer over the last century (Oliver et al., 2018a; Frölicher

et al., 2018), with strong links to anthropogenic climate change (Oliver et al., 2021).

This observed, historical trend is expected to accelerate further in the next century under

global warming (Oliver et al., 2019; Frölicher et al., 2018; Fox-Kemper et al., 2021). The

development and dissipation of MHWs can be mechanistically driven by a wide range

of physical processes linked to heat sources and sinks. Surface heat exchanges with the

atmosphere (e.g. Olita et al., 2007; Chen et al., 2015) or potentially the sea ice, lateral

heat fluxes through advection or mixing (e.g. Oliver et al., 2017) and to a lesser extent

vertical heat fluxes through entrainment or mixing have been documented to drive MHWs

around the world (Holbrook et al., 2019; Oliver et al., 2021) and in more regional studies

(e.g. Schlegel et al., 2021). A small number of studies have recently focused on MHWs

in the Arctic Ocean (Hu et al., 2020; Huang et al., 2021b) or in adjacent seas (Carvalho

et al., 2021; Golubeva et al., 2021; Mohamed et al., 2022). Those studies rely mostly on

the OISSTv2.1 observational dataset (Reynolds et al., 2002; Huang et al., 2021a). The

long period of satellite coverage allows for a robust climatological assessment of MHW

characteristics in seasonally ice-free areas. All studies document an increase in duration,

frequency and intensity, and link those changes to increased atmospheric temperature

and decreased sea ice coverage. A caveat of the newest version of the OISST product is
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the change in the calculation of sea surface temperature (SST) in partially ice-covered

areas after the first of January 2016. The ice-SST regression applied in OISSTv2.0 is

replaced by a freezing-point calculation in OISSTv2.1, which induces a significant offset

on the shelves (Huang et al., 2021a, their section 4.c). Therefore, MHW statistics after

2016 derived from a baseline encompassing years before 2016 might be biased in partially

ice-covered regions. Another limitation of surface temperature satellite observations lies in

their inability to properly identify and quantify the role of individual MHW drivers (e.g. Hu

et al., 2020; Golubeva et al., 2021). The description of those drivers is critical to properly

understand the nature of the MHWs in the complex coupled ice-ocean environment. In

particular, while sea ice is known to be an important factor in the heat budget of surface

polar oceans, notably through the albedo feedback, the quantification of this importance

and its role during extreme events is limited.

Given that sea ice and ocean systems are linked through numerous feedback loops

(Goosse et al., 2018), identifying the influence of sea ice on the mechanisms creating

and dissipating MHWs is critical. For example, Hu et al. (2020) suggest that ice melt

could shoal the halocline and lead to a concentration of atmospheric heat flux in the mixed

layer, possibly enhancing ice melt and therefore inducing a plausible but not yet validated

positive feedback. On the other hand, a more mobile ice pack could lead to increased

vertical mixing with subsurface waters, as in the Eurasian side of the Arctic (Muilwijk

et al., 2023), which would inhibit the existence of such a positive feedback. Similarly,

advection of warm Pacific waters through the Bering Strait have triggered the onset of

albedo feedback events (Woodgate et al., 2010; Timmermans et al., 2018). The strong

coupling between the different climate components of the Arctic renders the disentangling

of causes and consequences non-trivial, yet important to anticipate, mitigate and adapt

to the impacts of anthropogenic climate change. More broadly, a proper understanding

of the physical processes driving MHWs in the Arctic Ocean will help anticipate their

evolution in the diverging scenarios for the rest of the 21st century and beyond (IPCC,
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2021a; Fox-Kemper et al., 2021). The future of the Arctic will have key social, cultural

and economical repercussions, for example for indigenous communities relying on Arctic

ecosystems or for navigation routes.

This study aims to fill some of those gaps by using a three-dimensional ice-ocean

numerical model covering the Arctic Ocean and adjacent seas from 2014 to 2021. A

surface mixed layer heat budget identifies and quantifies the processes leading to the onset

and decay of MHWs in the Arctic Ocean. A statistical analysis of mechanisms responsible

for MHWs is provided, including the dominating role of surface heat flux to trigger MHWs

and of bottom heat flux to dissipate them. The results support that MHWs provide a

pathway for atmospheric heat to subsurface waters. The model, the MHW detection

method and the surface mixed layer heat budget decomposition are described first (Section

4.2). A brief validation of the model and a description of the results are then provided

(Section 4.3). Finally, the impacts of MHWs on the Arctic heat distribution are discussed

(Section 4.4).

4.2 Methods

4.2.1 Model

The North Atlantic, Pacific and Arctic (NAPA) model, is a three-dimensional ocean-ice

model. The ocean component is the Nucleus for European Modelling of the Ocean (NEMO,

Madec et al., 2017), version 3.6. It is a finite difference, hydrostatic, primitive equation

ocean general circulation model. The Louvain-la-Neuve Ice Model v3 (LIM3, Rousset

et al., 2015) is a dynamic-thermodynamic ice model with one layer of snow and two

layers of ice, it uses an elastic-viscous-plastic rheology and it relies on an ice thickness

distribution instead of a single ice category. As its name suggests, the model covers the

North Atlantic north of 26°N, the North Pacific north of 45°N and the whole Arctic, using

an ORCA-like tripolar grid (Madec et al., 2017) with a nominal horizontal resolution of

1/4°, ranging from 25 km at the low latitudes to 10 km in the Canadian Arctic Archipelago
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(Figure 4.1). It is therefore eddy-permitting but not eddy-resolving. It uses z-coordinates

for the vertical levels, with 75 levels in total, 9 of which are located in the first 10 meters,

giving the high vertical resolution necessary for simulating the shallow summer Arctic

mixed layer. Outputs are written at a daily frequency. Boundary conditions are provided

by GLORYS2v3 produced by Mercator Ocean (Ferry et al., 2012) and river runoff is

based on monthly climatology (Dai and Trenberth, 2002). The model is forced at the

surface by ERA5 (Hersbach et al., 2020) over 2014-2021 with initial conditions taken

from a previous run covering 1958-2015 using the DRAKKAR Forcing Set (Dussin et al.,

2016). A general validation of the model is provided in Zhang et al. (2020) and more

validation specific to MHWs can be found in section 4.3. We obtain daily, two-dimensional

fields of ice concentration, freezing-melting flux, solar and non-solar heat fluxes at the

ocean surface, weighted according to the proportion of open and ice-covered waters, and

three-dimensional fields of seawater temperature, salinity, u- and v- velocities.

Figure 4.1: Maps of the region of interest. a) Model domain and horizontal resolution
(background color), model-simulated ice extent, defined as ice concentration above 15 %,
in March (dark grey) and September (light grey), averaged over 2014-2021, and the
160 tiles of 20 x 20 grid cells used for the analysis (red grid). b) Model bathymetry and
locations of interest; a curious reader can explore Rudels (2015) for a more in-depth and
exhaustive description of the different Arctic seas, basins and ridges.
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4.2.2 Marine Heatwaves

Extreme events can be defined using a range of methods. Classic methods are often based

on return periods or peaks over threshold (Coles, 2001). In the context of MHWs, a

wide-spread and generally accepted definition has been provided by Hobday et al. (2016)

and uses a peak-over-threshold definition without assuming an underlying probability

distribution for the events. This methodology is applied here to the modelled mixed layer

temperature, from 2014 to 2021. A daily climatology of temperature is first calculated

over an 11-day window then smoothed with a 31-day rolling average. A Marine Heatwave

is defined as an anomalously warm event persisting at least 5 days above the daily 90th

percentile. Gaps between events of two days or less followed by a 5 days or longer event

are ignored. The peak of an MHW is defined as the temperature maximum relative to

the threshold, the “onset” is defined as the period between the first day of the MHW and

the peak, while the period between the peak and the last day of the MHW is called the

“decay”. This definition has been implemented in different software packages, including

Python (https://github.com/ecjoliver/marineHeatWaves). Considering

the very stable conditions in the Arctic Ocean during winter, with surface water temper-

atures at the freezing point for several months, the 90th percentile threshold can be very

close to the climatological mean and a very small departure from the freezing point (of

the order of a few hundredths of a Celsius degree) can lead to the detection of an MHW.

The biological and physical significance of such events are yet to be determined but we

consider them out of the scope of this study and leading to potential biases in the statistical

description of Arctic MHWs. While some Arctic studies add an absolute, summer-based

value threshold condition to circumvent that issue (e.g. Huang et al., 2021b), we rather

filter MHWs based on their intensity. More specifically, an Arctic MHW has a mean

intensity relative to the climatological mean that exceeds a chosen value of 0.1 °C. The

number of detected MHWs is not very sensitive to the intensity threshold value, especially

in summer. A lower value would include more winter, small amplitude MHWs that we aim
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to discard, while a higher value would eliminate some of the shoulder seasons and summer

MHWs, that could be considered as relevant (Appendix, Figure D.1). The importance and

processes related to the winter MHWs are discussed later (Section 4.4).

4.2.3 Surface Mixed-Layer Heat Budget

In order to isolate the different drivers of each MHW, a surface mixed layer heat budget is

calculated. While the NEMO model calculates mixed layer depth as an output variable, its

definition is not suited to the Arctic Ocean. The model mixed layer depth is defined as a

potential density difference of 0.01 kg m−3 with respect to the density at 10 meter depth,

meaning the mixed layer depth cannot be shallower than 10 m. Yet, because of the strong

stratification due to ice melt, the summer Arctic surface mixed layer is regularly observed

to be significantly thinner than 10 meters (Peralta-Ferriz and Woodgate, 2015). In order

to better match observational mixed layer values and modelled stratification, we redefine

the surface mixed layer depth as the depth at which the potential density exceeds 0.05 kg

m−3 with respect to the density at 5 meter depth. This new definition provides a realistic

simulation of the summer mixed layer with negligible differences to the original NEMO

mixed layer depth in other seasons (not shown). A heat budget can then be calculated for

this mixed layer.

In general, over a fixed area, the rate of change of the averaged mixed layer temperature

can be written as (Moisan and Niiler, 1998; Oliver et al., 2021)

∂〈T 〉
∂t

= −〈u〉 · ∇〈T 〉+ 〈∇ · (κh∇T )〉︸ ︷︷ ︸
Qlat

(4.1)

− 1

H
κz

∂T

∂z

∣∣∣∣
−H

−
(〈T 〉 − T |−H

H

)(
∂H

∂t
+ u|−H · ∇H + w|−H

)
︸ ︷︷ ︸

Qbot

+
Fsurf

ρ0cpH︸ ︷︷ ︸
Qsurf

where T is the mixed layer temperature (here in °C), H the mixed layer depth (in m), ∂T
∂t

the
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temperature tendency (here in °C s−1), u the horizontal velocity vector and w the vertical

velocity (here in m s−1), ∇ the horizontal gradient operator, κh and κz the horizontal and

vertical diffusivity coefficients (here in m2 s−1), ρ0 the seawater density taken constant at

1026 kg m−3, cp the seawater heat capacity taken constant at 3991.9 J kg−1 °C−1 (Madec

et al., 2017) and Fsurf the surface heat flux (in J s−1 m−2). The 〈·〉 notation refers to vertical

averaging of the quantity 〈x〉 = 1
−H

∫ 0

−H xdz. For a discussion on the dynamical relevance

of those terms in the context of MHWs, see Oliver et al. (2021).

In order to maintain a concise and simple interpretation of the evolution of the mixed

layer temperature, the heat budget is simplified by grouping terms together as the lateral

heat flux Qlat, the bottom heat flux Qbot and the surface heat flux Qsurf . The surface

heat flux encompasses thermal (longwave) and solar (shortwave) radiations, as well as

sensible and latent heat fluxes, surface weighted between air-sea (open water) and ice-sea

(ice-covered ocean) areas. The calculation for the heat budget is done offline, using the

daily outputs from the NAPA model. Some diagnostic variables were not written out,

including those necessary to calculate the vertical mixing and the lateral eddy diffusivity

and the offline calculation leads to numerical noise. In consequence, the budget cannot be

perfectly closed and leads to some residuals Qresi. The mixed layer temperature equation

thus becomes
∂〈T 〉
∂t

= Qlat +Qsurf +Qbot +Qresi (4.2)

To circumvent the lack of vertical mixing and advection calculation due to missing model

outputs, a two-layer heat budget is proposed: a first heat budget is calculated for the lower

layer below the surface mixed layer as

∂〈T low〉
∂t

= Qlow
lat +Qlow

surf (4.3)

with 〈T low〉 denoting the vertically-averaged temperature of the lower layer and Qlow
lat the

lateral heat flux for the lower layer. For the lower layer of the water column, the bottom
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heat flux is null (geothermal fluxes are neglected in the present configuration). Qlow
surf is the

heat flux at the interface between the mixed layer and the lower layer of the water column

and is therefore the opposite of the bottom heat flux of the mixed layer: Qlow
surf = −Qbot. It

accounts for vertical mixing, entrainment (including mixed layer tendency, lateral induction

and vertical advection) and solar radiation penetrating deeper than the mixed layer and

cannot be entirely calculated, as mentioned above. Yet, it can be evaluated using Eq. 4.3

and re-injected in the mixed layer heat budget (Eq. 4.2).

The residuals arising from the lack of lateral eddy diffusivity calculations are minimized

by calculating the heat budget over a spatial area large enough to average out the eddy

diffusivity. The domain is decomposed into tiles of 20 by 20 grid cells; tiles with less

than 300 grid cells are discarded. Another benefit of calculating the heat budget over tiles

instead of individual grid cells is the decorrelation of MHW occurrences between those

tiles. The mixed layer temperature of a grid cell is strongly correlated with the temperature

of the surrounding grid cells and this correlation was found to decrease for grid cells

further than 10 grid cells away, although with strong spatial variability (not shown). Using

tiles of 20 by 20 grid cells thus increases the independence between detected MHW events

at adjacent tiles. The tiles are further filtered out by excluding tiles where the March ice

concentration never exceeds 15 % in the 2014 to 2021 period, to constrain our study on

seasonally ice-impacted regions (Figure 4.1.a, dark shade). A total of 160 tiles were found

to match those criteria. For the remainder of the study, we restrain our definition of the

Arctic Ocean to the area covered by those tiles. Following this tiling process, the remaining

residuals are found to be small, on average five times smaller than the other terms and

typically more than an order of magnitude smaller for the higher intensity MHWs. They

can nonetheless be used to constrain uncertainties on the heat budget and the relative

influence of each term. To do so, the residual term is entirely attributed to the temperature

tendency or heat fluxes terms, one after the other, providing upper and lower bounds for

each term (see Appendix C.2).
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4.2.4 Reynolds Decomposition of Surface Heat Flux

In order to better analyse the relative contribution of each term to the MHWs, heat

budget anomalies are calculated by decomposing each term X in a slowly varying part

X (the climatology) and a perturbation X ′ defined such that X ′ = 0, as in a Reynolds

decomposition. Equation 4.2 then becomes

∂(T + T ′)
∂t

=
∂T

∂t
+
∂T

∂t

′
= Qlat+Q′

lat+Qsurf+Q′
surf+Qbot+Q′

bot+Qresi+Q′
resi (4.4)

Since an MHW is an extreme deviation from the climatology, we focus on the anomalies

and the equation of interest is

∂T

∂t

′
= Q′

lat +Q′
surf +Q′

bot +Q′
resi (4.5)

By integrating equation 4.5 separately over the onset and the decay, one can determine

the heat sources and sinks that trigger or dissipate the extreme event and rank them for

each MHW. The dominant process, contributing the most as a source during the onset (or

as a sink during the decay), is called the primary process; the next contributing process is

called secondary and we disregard the tertiary and higher processes for the remainder of

this study.

When applying equation 4.2 to the surface mixed layer, the surface term is proportional

to the ratio between the surface heat flux and the mixed layer depth H:

Qsurf =
Fsurf

ρ0cpH

As mentioned earlier (Section 4.1), the shoaling of the mixed layer has been hypothesised

to concentrate atmospheric heat flux and facilitate the emergence of an MHW. In order to

investigate the relative contributions of surface heat flux and mixed layer change in the

density of heat input in the surface mixed layer, Q′
surf can be further decomposed into
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contributing components. We find that

Q′
surf =

1

ρ0cp
F ′surf

1

H
+

1

ρ0cp
Fsurf

(
1

H

)′
+

1

ρ0cp

(
F ′surf

(
1

H

)′)′
(4.6)

For details, see Appendix C.1.

A hypothetical temperature with no shoaling T ns can be evaluated by removing the

contribution of shoaling from the temperature tendency:

∂T ns

∂t
=

∂T

∂t
− 1

ρ0cp
Fsurf

(
1

H

)′
(4.7)

which, when integrated from the beginning of the MHW t0 to some day t1 and assuming

that T ns(t = t0) = T (t = t0), leads to

T ns(t = t1) = T (t = t0) +

∫ t1

t0

(
∂T

∂t
− 1

ρ0cp
Fsurf

(
1

H

)′)
dt (4.8)

Similar calculation can be conducted by including the last term of Eq. 4.6. The MHW

algorithm (see Section 4.2.2) can then be applied to the new time series to estimate the

influence of ice-melt induced shoaling on the MHW (Section 4.3.4).

4.3 Results

4.3.1 Case Study: The 2020 Siberian Heatwave

In the summer of 2020 an intense atmospheric heatwave occurred over Siberia, breaking

several temperature records and leading to notable forest fires (Ciavarella et al., 2021;

Overland and Wang, 2021). A concurrent intense MHW can be observed from satellite

data products such as OISSTv2.1 (Huang et al., 2021a)2 and has been briefly documented

elsewhere (Huang et al., 2021b, their Figure 1.a). This MHW is well reproduced by the

NAPA model and exhibits similar behaviour, reaching a first peak early June, a second
2Cf. the Marine Heatwave Tracker, http://www.marineheatwaves.org/tracker.html,

Schlegel (2020)
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peak in the first half of July, a third peak early August and a fourth peak end of August

(Figure 4.2.a). While the satellite-derived OISSTv2.1 product provides only sea surface

temperature, our study examines the MHW over the mixed layer, leading to a difference in

the intensity simulated by the model. We therefore find 4 MHWs in our analysis, while

Huang et al. (2021b) only detect one, long MHW, but with similar local maxima, though

the first peak from our model does not exceed the threshold for the OISSTv2.1 product

and is therefore not included in the MHW detected by the satellite-derived product.

Figure 4.2: Illustration of the heat budget decomposition for the Siberian Marine Heatwave
of Summer 2020. This event was detected as four separate MHWs. a) Detection of
the Marine Heatwaves (red) and their peaks (blue dot), when the surface mixed layer
temperature (black line) exceeds the 90th percentile (green line); the climatology is also
indicated (blue line). b) Time series of the main heat budget terms and their cumulative
role for the c) onset and the d) decay of each of the four detected MHWs (temperature
tendency in black, lateral advection in blue, surface heat flux in yellow, bottom heat flux in
red, residuals in grey). e) Geographic location of the tile analysed here (blue dot).

All four onsets are primarily due to the strong atmospheric heat flux into the ocean

(Figure 4.2.b and c) consistent with the existence of the atmospheric heatwave at this time.

The decays of each MHW are led by different processes, with the first and third MHWs
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fading mostly due to bottom flux, the second one being mainly cooled down by surface

flux despite a strong source of heat from the bottom and the fourth MHW is dissipated by

lateral advection with some heat lost to the subsurface (Figure 4.2.b and d). The decay

of the second MHW is co-occurring with a decrease of the air temperature to 4.5 °C on

the 13th of July 2020 and less incoming solar radiation according to the ERA5 reanalysis

product (not shown), explaining the anomalous atmospheric sink of heat. The heat budget

analysis provides a detailed description the mechanisms behind this specific event but can

also be used to obtain a general overview of the main processes for all MHWs in the Arctic

Ocean.

4.3.2 Detected Arctic Marine Heatwaves and Dominant Processes

We then apply our method to the entire Arctic domain. We detect a total of 923 MHWs

in all seasons between 2014 and 2021, the majority of them occurring in summer. The

characteristics of those MHWs are spatially variable, with the maximum peak intensity

occurring at lower latitudes and on the shelves (Figure 4.3.d). The Hudson Bay and Kara

Sea in particular see peak intensities exceeding 3 °C (see Figure 4.1.b for the location

of the most regularly mentioned places in this study). The longest MHWs occur on the

Siberian Shelves (including Kara, Laptev and Chukchi Seas) and over the Eurasian Basin,

as well as in Baffin Bay, with MHWs that last over 40 days on average (Figure 4.3.f).

This is consistent with satellite-derived MHWs (Huang et al., 2021b). The frequency

of MHWs, being between 0.125 (i.e. one over the whole period analysed here) and 2.5

per year, is higher around Svalbard, in Baffin Bay and Chukchi Sea (Figure 4.3.c), once

again matching well the literature. The date of start and end of MHWs is a bit more

difficult to interpret, considering the relatively low number of MHWs for each tile and

their occurrence all year round. For example, the average start date of two MHWs starting

in January (e.g., day of year 5) and December (e.g., day of year 360) would be in June (day

of year 177) instead of January 1st. Nonetheless, MHWs seem to start earlier in Baffin Bay

and Kara Sea and later northward of Bering Strait, with matching pattern for the end date.
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The good match with the currently published literature (Huang et al., 2021b) provides

confidence that the model is simulating realistic MHWs and is therefore likely to provide a

useful description of the main processes.

Figure 4.3: Commonly used marine heatwave metrics averaged over each analysed tile
(dots): mean day of year (doy) for the onset (a) and decay (b), mean frequency (c), mean
peak (d) and mean (e) intensity relative to climatology and mean duration (f) of the marine
heatwaves for the period extending from 2014 to 2021, for the simulated MHWs. The
same colorbar is used for (a) and (b); idem for (d) and (e).

We apply the analysis presented for the 2020 Siberian Marine Heatwave (section 4.3.1)

to all tiles and detected MHW events. Two thirds of the MHWs (between 66 and 69 %)

are onset by surface heat flux, while the rest of the MHWs are equally triggered by lateral

advection and by bottom heat flux (Figure 4.4.a). Lateral advection plays an important role

nonetheless, being the secondary process in 52 to 56 % of the MHWs (Figure 4.4.b). The

decay shows a different picture, with most of the MHWs being primarily dissipated by

bottom heat flux (43 to 45 %), closely followed by surface heat flux (40 to 41 %) (Figure

4.4.d). Lateral advection primarily dissipates only 15 to 16 % of the MHWs, but once
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again plays a significant secondary role for 38 to 40 % of them (Figure 4.4.e). This gives

an overall picture of MHWs with different sources and sinks of heat during their onset

and decay. The small spread in those estimates show the small amplitude of residuals and

therefore give confidence in the heat budget (Figure 4.4, black whiskers). This general

description of MHWs in the Arctic Ocean provides an overall picture of the mechanisms

at play. There remains the potential for temporal and spatial variability of the dominating

processes.

4.3.3 Marine Heatwave Processes: Spatio-Temporal Variability

The occurrence of MHWs and their dominating processes for the onset and the decay differ

strongly between seasons (Appendix, Figure D.2). The winter (January to March) MHWs

are scarce, amounting to only 69 (7 % of the total), but exhibit a contrast with the general

overview provided earlier. Only 10 % of them are driven by the surface flux, while 48 %

are triggered by lateral advection and 42 % by bottom flux. The winter events are also

mostly dissipated by surface flux (51 %), in line with the expectation of cold atmospheric

conditions and ice formation. The three other seasons (spring, April to June, with 107

MHWs, summer, July to September, with 591 MHWs and fall, October to December,

with 156 MHWs) all show a dominance of the surface heat flux for triggering the extreme

events, but while spring and summer match the general picture of decay being dominated

by bottom flux, fall MHWs exhibit a sharp difference, with most events (70 %) being

dissipated by the surface heat flux, in line with the above-mentioned expectation of a

cooling atmosphere and freezing conditions.

The existence of an MHW during freezing conditions is counter-intuitive and could be

deemed paradoxical. To explore the possibility for such an occurrence, a complementary

view is provided by clustering the onset and decay of MHWs by ice-ocean freshwater

flux (Appendix, Figure D.3). A positive flux means the ice is melting. An arbitrary

threshold of 1 kilogram of water per squared meter is used to divide between three states:

melt, freeze and no ice. Most MHWs detected in this study occur in melting conditions
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Figure 4.4: General overview of the primary (a and c) and secondary (b and d) processes
for all detected MHWs during the onset (a and b) and decay (c and d). Percentages are
based on the total number of events detected over the Arctic OCean between 2014 and
2021. Whiskers show the full range of the number of driven MHWs, when accounting for
residuals as a measure of uncertainty.

(61 % for the onset, 53 % for the decay) and a third of them occur with no ice melt nor

freeze. Surprisingly, a non-negligible number (8 %) of MHW onsets occur while the ice is

freezing and twice more MHWs (16 %) are dissipated in those ice conditions. An obvious

explanation for the co-occurrence of an MHW and freezing conditions is the use of the

relatively large tiles (around 200 by 200 km), which can agglomerate spatially diverse

conditions. Another potential explanation is the use of the mixed layer temperature to
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detect MHWs: while the temperature should theoretically be homogeneous in this layer, it

is not always the case in practice and in a few rare instances those MHWs are occurring at

the subsurface while the ice is freezing at the top (not shown). The role of the freshening

of the Arctic Ocean on the detection of MHWs is also discussed in Section 4.4. Overall,

the dominant processes of MHWs follow the same progression as previously described,

with the surface heat flux being dominant for the onset when the ice is melting or gone

and bottom heat flux dominating the dissipation of MHWs. The ice condition clustering

does provide complementary information about the dissipation of MHWs, with bottom

flux being more strongly dominant in no-ice or melting conditions. Surface heat flux

dissipates most MHWs when the ice is freezing, unsurprisingly. The lateral advection

triggers over 60 % of the MHWs when the ice is freezing, while around 30 % of those

are due to bottom flux, supporting the hypothesis of spatially (horizontally or vertically)

heterogeneous conditions to explain the presence of MHWs during freezing conditions.

The temporal variability of ice conditions described so far can also be interpreted as

spatially varying, with some areas more likely to exhibit ice formation or melt, depending

on ice dynamics. Indeed, the patterns of the dominant processes of Arctic MHWs are

reflected spatially as well (Figure 4.5). The surface heat flux is the dominant onset process

over most of the Arctic Ocean, except north of Bering Strait, in Baffin Bay and along the

eastern shore of Greenland, where it shares the role of triggering MHWs with either the

bottom heat flux, or with the lateral advection term in Baffin Bay and north of Bering

Strait. During the decay phase, the surface heat flux clearly plays a smaller role, though

still important everywhere. The bottom heat flux plays a limited role during the onset,

apart from the above-mentioned regions, and is a dominant process for the decay over

most of the Arctic, especially in Baffin Bay, Kara Sea, the Eurasian Basin and Hudson

Bay. It is worth noting the absence of bottom dissipation of MHWs in the Beaufort Gyre,

further discussed in Section 4.4. The role of lateral advection exhibits strong spatial

patterns, mostly constrained to the shelves and Baffin Bay, for both phases of MHWs.
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Those locations are mostly consistent with known oceanographic features, such as the

northward inflow of warm Pacific waters through Bering Strait, the inflow of warm Atlantic

waters through the Barents Sea Opening, the recirculation of the West Greenland boundary

current in Baffin Bay and north of the Labrador Sea, or the anticyclonic Beaufort Gyre in

the Central Arctic Ocean, which would bring cold waters southward from the North Pole

along the Canadian Arctic Archipelago to the Beaufort Sea. This explains the importance

of the advective term in this area during the decay, while being limited during the onset.

Figure 4.5: Geographic distribution of the MHWs primarily driven by lateral (a and d),
surface (b and e) or bottom (c and f) heat fluxes, for the onset (a, b and c) and the decay
(d, e and f). Each dot represents a tile and the size of the tile shows the proportion of the
detected MHWs for that specific tile that are driven by either lateral, surface or bottom
heat flux; a white space means none of the detected MHWs in that tile are primarily driven
by the associated heat flux; pale grey regions indicate locations not covered by this study.
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4.3.4 Can Ice Melt Enhance a Marine Heatwave?

The asymmetry of the dominating MHWs process between onset and decay highlights

differences in the mechanisms at play. The overwhelming dominance of the surface heat

flux during onset in ice-melt conditions (triggering over 75 % of those MHWs) raises the

question of a potential feedback mechanism that could explain this. The albedo feedback

is a typical suspect and the lateral advection of warm waters triggering the onset of ice

melt and therefore of an albedo feedback event has been documented in the Chukchi Sea

(Woodgate et al., 2010). According to the geographical distribution of MHWs onset by

lateral advection (Figure 4.5), such events can be expected in the Chukchi Sea, but also in

Baffin Bay and north of the Barents Sea Opening.

Another potential feedback mechanism is related to ice melt. The stratification induced

by meltwater tends to shoal the mixed layer, leading to a smaller volume to heat and

therefore facilitating the onset of an MHW. The MHW would in turn generate more ice melt,

therefore inducing a positive feedback loop. This mechanism has been hypothesised by

other studies (Hu et al., 2020) but not demonstrated because of the lack of available mixed

layer observations. The model outputs can provide critical information to corroborate

or refute the existence of such an ice melt - marine heatwave positive feedback. To this

aim, a Reynolds decomposition of the surface heat flux is conducted, as described in

Section 4.2.4.

The terms of interest (from Eq. 4.6) to determine the role of ice melt in the onset of an

MHW are those related to the anomalous mixed layer depth, Fsurf

(
1
H

)′ and
(
F ′surf

(
1
H

)′)′
(Figure 4.6.c, red and purple lines). The first term accounts for changes of the mixed layer

heat input due to the shoaling, if climatological surface heat flux was applied, while the

second term looks at the correlated impact of the mixed layer shoaling projected onto the

anomalies of surface heat flux. The respective contributions of those terms to the mixed

layer temperature anomalies can be calculated by dividing by ρ0cp and integrating over

the MHW duration, then removed from the mixed layer temperature to obtain an expected
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temperature without mixed layer shoaling. In the case of the summer 2020 Siberian MHW,

the ice melt occurring in June and beginning of July (Figure 4.6.b) creates an anomalous

shoaling of the mixed layer, but is not enough to compensate the anomalous negative

surface flux (Figure 4.6.c, green line) which leads to colder than climatological conditions

(Figure 4.6.a and c, black line). The fast warming of the mixed layer starts early July with

the positive heat flux anomaly (the mixed layer depth anomaly is close to 0), until the mixed

layer temperature exceeds the threshold on the 25th of July, marking the beginning of the

MHW at this location. It is interesting to note that the surface flux anomaly decreases after

that date but is partly compensated by the mixed layer depth anomaly increase, sustaining

the MHW. In other words, ice melt - mixed layer depth shoaling feedback helps to lengthen

the MHW after it has been initiated. When removing this shoaling-generated warming from

the mixed layer temperature, the resulting anomalous temperature still results in an MHW,

but does not reach the same peak value and drops below the threshold 11 days earlier than

in the actual temperature (Figure 4.6.a, dashed black and dotted grey lines). The impact

can even be seen for the rest of the summer, with the second MHW also reaching lower

intensity and duration, or even not happening at all if including the covariance of shoaling

and surface heat flux anomalies
(
F ′surf

(
1
H

)′)′. Nonetheless, the dominant process driving

the MHW onset remains the surface flux anomaly. The term encompassing the mixed layer

depth anomaly increases while the melt flux goes back to 0, indicating that there is no ice

to melt anymore, but this doesn’t discard the previous ice melt as a main reason for the

shoaling, since the anomalies are relative to the climatology. While the shoaling could be

due to several physical processes, including lower wind mixing, the wind stress doesn’t

exhibit any significant anomalies during July 2020 (not shown).

The focus on this specific event is instructive on the relative behaviours of the decom-

posed terms, but it does not provide a robust conclusion on the overall impact of ice melt

onto the surface heat flux. Following a similar approach as with the heat budget process

ranking, each of the Reynolds decomposition terms can be integrated during the onset of
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Figure 4.6: Illustration of the Reynolds decomposition of the surface heat flux during the
summer 2020 Siberian Heatwave. a) Detection of the MHW (red) when the mixed layer
temperature (black line) exceeds the 90th percentile (green) and impact of the mixed layer
shoaling on the MHW when Fsurf

(
1
H

)′ is excluded (black dashes) and when Fsurf

(
1
H

)′
+(

F ′surf
(

1
H

)′)′ are excluded (grey dots). The climatology is also indicated (blue). b)
Freshwater flux between the ice and ocean, due to ice melt or ice formation. c) Reynolds
decomposition of the surface heat flux, following equation 4.6: the total surface heat flux
(black line) is the sum of its average (blue), the anomalies due to the heat flux only (green),
the anomalies due to the variations of the mixed layer depth only (red) and the covariance
between both anomalies (purple). d) Location of the tile analyse here (blue dot). Note
that this tile is slightly northward of the one analysed in Figure 4.2, to better illustrate the
potential influence of the mixed layer shoaling.

each MHW and then ranked. According to this calculation, the vast majority (88 %) of the

MHWs whose onset is triggered by the surface heat term are dominated by the surface heat

flux anomaly F ′surf
1
H

, while the rest (12 %) are driven by the mixed layer anomaly term

Fsurf

(
1
H

)′; the third term, accounting for the covariance of both anomalies, is nearly always

negligible when ranking drivers. The ice melt – MHW feedback therefore doesn’t seem to

be a significant process in the onset of extreme temperature events in the Arctic Ocean.
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But as demonstrated in the specific case of the Siberian MHW, the shoaling can extend

and intensify MHWs. Using the same approach as earlier, Fsurf

(
1
H

)′ and
(
F ′surf

(
1
H

)′)′
can be converted into mixed layer temperature contributions and removed from the actual

temperature, to then estimate the change on the MHW properties. Removing the first term

only or both can provide bounds on the impact of ice-induced mixed layer shoaling. When

conducting this analysis on the 335 MHWs that are primarily driven by surface heat flux

and during whose onset the shoaling term is positive, it can be calculated that 10–15 % of

those MHWs have a duration that drops below the 5 day limit in the absence of mixed-layer

shoaling, meaning those would not be considered as MHWs anymore (consistent with

the previous estimate of 12 % of MHWs triggered by the mixed layer depth anomaly).

More importantly, the mean duration is reduced by 18–25 %, the mean intensity by 19 %

(19.1 and 18.6 % for each method, respectively) and the cumulative intensity by 29–31 %

(Appendix, Figure D.4). The shoaling term has a limited impact on the peak intensity,

reducing it by 1–5 % only. This indicates that these MHWs are primarily triggered by

surface heat flux anomalies but are then prolonged by the shoaling term.

4.3.5 Salinity-Induced Trends of Winter Arctic Temperature

The presence of sea ice in the Arctic Ocean is due to its β-stratification, induced by salinity

rather than temperature as is the case in most of the world ocean. As a consequence, the

winter temperature reaches the freezing point, which is a function of salinity. The winter

temperature is therefore salinity-constrained, leading to interesting considerations on the

role of salinity in the presence of MHWs in the Arctic.

In the framework provided by Hobday et al. (2016), an MHW is defined as temperature

excess relative to the 90th percentile. If the winter temperature is consistently near the

freezing point, the threshold would be very close to the climatology. Even small departures

of the winter temperature from this climatology would therefore match the definition of an

MHW. Such a small departure could be induced by vertical mixing with warmer subsurface

waters, or by transient eddies. Another cause for such a departure could be a long-term
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trend in the salinity, since such a trend would change the freezing point. The Arctic Ocean

has been steadily freshening over the last two decades at least (e.g. Brown et al., 2020;

Proshutinsky et al., 2019), leading to a higher freezing point and thus rising wintertime

surface temperatures.

Using the mixed-layer salinity from the model, the freezing point can be calculated

over the Arctic. The ice-covered temperature closely follows the calculated freezing point,

providing confidence that salinity is controlling the winter temperature over the Arctic

Ocean in the NAPA model (Figure 4.7). The simulated freshening in March (month of

maximum ice extent) over 2014-2021 is of the order of 1 psu per decade in the Central

Arctic Ocean (North of 80°N) and leads to an increasing trend of the freezing point of up

to 0.1 °C per decade over most of the central Arctic Ocean, with some spatial variation.

The Siberian shelves, including the Chukchi, Laptev and Kara Seas exhibit a decreasing

trend, particularly close to the main river estuaries, but the climatology-based treatment

of river runoff in the model might limit the robustness of the trend calculation in those

areas. Superimposed on the linear trend, interannual variability of salinity also affects the

freezing point and complicates the interpretation of winter MHWs (e.g. Figure 4.7.b).

The freshening-induced increasing trend alone, of a magnitude close to 0.1 °C per

decade, is enough to occasionally raise the winter temperature above the threshold (Figure

4.7.a and b, red periods). In other words, those specific MHWs are triggered not by a heat

flux, but by a freshwater flux. The introduction of the criteria on MHW intensity relative to

the climatology is enough to discard those events in most cases, but not always (Appendix,

Figure D.1). The relevance of those events is discussed in the next section.

4.4 Discussion and Conclusion

Processes leading to marine heatwaves in the Arctic Ocean are elucidated using a coupled

ice-ocean model and a surface mixed layer heat budget approach for the onset and decay of

the extreme temperature events. The seasonality and geographic distribution are revealed,
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Figure 4.7: Impact of the Arctic freshening onto the mixed layer winter temperature and
on winter marine heatwaves. (a) Map of the trends of the freezing point in the mixed layer
in March, due to the Arctic salinity trend, for each of the tiles of our domain (dots). Two
representative examples are illustrated, for (b) the central Beaufort Gyre (black circle)
and (c) the Laptev Sea (grey square), showing the mixed layer temperature (black line),
the climatology (blue line), the 90th percentile threshold (green line), the freezing point
calculated from surface salinity (light blue line) and the periods when this freezing point
exceeds the MHW detection threshold (red areas). The increasing trend for the freezing
point in March is also shown (red dashed line).

including relations with the ice-ocean melt flux. The surface heat flux, dominated by

atmospheric heat flux, is the main process for the onset of most (two thirds) of the detected

MHWs, over the whole Arctic and at all seasons, except during freezing conditions when

lateral advection becomes the dominating process, along with bottom heat flux. MHWs are

mainly dissipated by the bottom heat flux, through vertical mixing and entrainment, with

the exception of freezing conditions when heat is lost at the surface to the cold atmosphere

or the sea ice. Lateral advection is the main secondary process in both onset and decay.

With the Arctic Amplification leading the Arctic Ocean from a perennially towards a

seasonally ice-covered ocean, the role of the surface heat flux can be expected to gain

in importance for the onset of MHWs, with more and more open waters and therefore

a strengthening of the albedo feedback. Most of the Arctic MHWs are already driven

by surface heat flux and this can be expected to increase. It is worth noting that due to
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this albedo feedback, along with the strong stability of the lower Arctic atmosphere, the

dominant part of the surface heat flux is composed of the solar and longwave radiation and

not the sensible heat flux driven by the surface air temperature, in line with the scientific

literature (Serreze et al., 2007) and contrary to what has been suggested recently (Huang

et al., 2021b).

The dissipation of MHWs exhibits seasonal and geographic variability, but is mainly a

consequence of bottom heat flux, over most of the Arctic. Subsurface waters are dominantly

colder than the surface mixed layer waters during MHWs, cooling the mixed layer when

mixing with it. The reduced sea ice concentration can increase wind mixing (Rippeth and

Fine, 2022) and the retreat of the ice edge over continental shelves can induce downwelling

(Carmack and Chapman, 2003). The Beaufort Gyre and the Chukchi Sea are an interesting

exception, where the β-stratification of the Arctic allows for the presence of the Near

Surface Temperature Maximum, a seasonal warm layer of water sitting below the mixed

layer and heated by solar radiation penetrating deeper than the halocline in the oligotrophic

waters (Jackson et al., 2010). While our model reproduces the existence of this Near

Surface Temperature Maximum, its geographic extent (not shown) is more constrained

than in other studies (Steele et al., 2011, e.g.). Its presence means that any vertical mixing

would occur with warm waters, reducing the potential for cooling the mixed layer, and

therefore explains well the reduced bottom dissipation over the Chukchi Sea and the

south-western side of the Beaufort Gyre. For the eastern side of the Beaufort Gyre, though,

its absence in our model does not explain the lack of bottom dissipation. Two main reasons

can explain this: the first is the very small number of MHWs in this area (Figure 4.3.c),

the second is the denser ice pack which reduces the wind-induced vertical mixing.

For most of the Arctic Ocean, particularly for spring and summer seasons, MHWs

are mainly triggered by surface heat flux and dissipated by bottom heat flux, therefore

providing a pathway for heat from the atmosphere to the subsurface (Figure 4.8.a). This

heat could be either stored on the long term in the underlaying waters (Pacific Summer
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waters over the Amerasian Basin, Atlantic waters over the Eurasian Basin) or reinjected

in the mixed layer in fall and winter when the mixed layer deepens during ice formation.

The impact of stored solar heat on sea ice has been documented (e.g. Timmermans, 2015;

Timmermans et al., 2018). The physical impacts of MHWs can be hypothesised to be

similar, delaying freeze-up or enhancing ice melt later in the season, yet more extreme by

definition.

Figure 4.8: Conceptual summary of the primary methods of formation of MHWs in the
Arctic Ocean. a) Schematic view of the lifecycle of an Arctic MHW: surface heat flux
(yellow) initiates positive mixed layer temperature anomalies dissipated by bottom heat
flux (dark red) that can lead to positive subsurface temperature anomalies; lateral heat
fluxes (blue) can also play a role in triggering and dissipating MHWs. b) Shoaling of the
mixed layer due to ice melt, leading to an MHW; conceptual description of the contribution
of ice-induced shoaling (red line) onto mixed layer temperature (black line) and shape of
an MHW without it (green line). MLD stands for Mixed Layer Depth and MLT for Mixed
Layer Temperature.

In spring, the ice melt shoals the mixed layer and is therefore hypothesized to concentrate

the atmospheric heat later in the season, potentially leading to MHWs and more ice melt

(Figure 4.8.b). Our results support part of this hypothesis: conceptually, the surface heat

flux anomaly is the determining factor for triggering the timing and peak of an MHW, but
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the shoaling prolongs it beyond its expected decay. As mentioned earlier, the atmospheric

heat flux is mostly due to solar radiation, which can penetrate deeper than the mixed

layer in oligotrophic waters. This process is at the root of the Near Surface Temperature

Maximum in the Chukchi Sea and the southern parts of the Amerasian Basin. Therefore,

the impact of melt-induced shoaling on the heat input in the surface mixed layer is likely to

be limited. Nonetheless, the Reynolds decomposition of the surface heat flux does support

the existence of a noticeable impact, as the shoaling of the mixed layer is responsible

for 18 to 25 % of the MHW duration and increases their mean intensity significantly

(Appendix, Figure D.4). It is also the dominating process for the onset of 12 % of the

surface-driven MHWs. Here, the impact of shoaling on MHW metrics is only accounted

for during the MHW itself (see section 4.2.4), but preconditioning could also be significant.

Integrating the mixed layer shoaling effect from the beginning of the ice melt rather than

during the MHW would lead to even more important changes in the MHW properties,

as would integrating the shoaling effect over the whole summer period if several MHWs

are occurring during one summer. This is well illustrated in the case of the summer 2020

Siberian MHW, for which the second MHW would not even occur if the contribution of

both shoaling effect terms was removed from the temperature tendency from the start of

the first MHW until the end of the second one (Fig. 4.6.a, dotted grey line). The estimates

provided in this study should therefore be considered as conservative. A limitation of this

analysis is that, while we are confident that the shoaling is mostly due to ice melt in the

β-stratified Arctic Ocean, we cannot exclude the influence of wind mixing, precipitation

or other processes leading to a change in the stratification. The methodology developed

in this study could prove helpful in other, thermally stratified parts of the global ocean to

disentangle the self-reinforcing effect of surface MHWs strengthening the mixed layer

stratification. It is also worth mentioning that in eutrophic waters on the Eurasian side of

the Arctic Ocean, the ice melt-induced stratification may generate phytoplankton blooms

and reduce the efficiency of the vertical sinking of organic matter, increasing organic
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matter concentration in the surface and allowing for more solar radiation absorption at the

surface. While we do not resolve the biologically driven absorption changes, this process

is unlikely to significantly impact the results of this study.

The temperature anomalies can be advected, especially on the shelves and northward of

the main Arctic gateways following the general oceanic circulation features (e.g. Rudels

and Carmack, 2022). This has been found to trigger ice melt and the onset of an albedo

feedback loop north of the Bering Strait (Woodgate et al., 2010). Our analysis supports

those findings and provides the location of further hotspots where such processes could

regularly occur, including the Barents Sea Opening, the Siberian Shelves and Baffin Bay.

Therefore, upstream MHWs should be considered as a potential source of basal melt or

of ice formation delay when investigating sea ice seasonality changes. Adapting the heat

budget decomposition to a Lagrangian framework, following the spatial track of MHWs,

could provide a new and complementary perspective on the impact of MHWs on sea ice.

Marine heatwaves in seasonally ice-covered oceans present specific challenges to prop-

erly define and detect them. In this study, we use a relatively short time series of 8 years,

compared to the recommended 30 years (Hobday et al., 2016). Other studies have used

short time series with success (e.g., Oliver et al., 2017). It has also been shown that using

10 years provides MHWs that “are not appreciably different from the MHWs detected with

30 years” (Schlegel et al., 2019). Moreover, the characteristics of Arctic MHWs detected

using the short baseline (Figure 4.3) matches the spatial patterns provided by other studies

using a longer baseline (e.g., Huang et al., 2021a), despite differences in the products used

(modelled mixed-layer temperature compared to satellite-derived SST). Using SST from

OISSTv2.1, it can be seen that using a 30-year baseline lowers the threshold compared to

using an 8-year baseline over recent years. This effect is due to the long-term warming

trend, particularly important in the Arctic region. The detected MHWs are longer and

more intense when using a longer baseline. The drivers of the longer MHWs could be

decomposed into a component related to the long-term warming and a component related
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to oscillations around the warming. With a shorter baseline, only the latter component is

captured. It can be expected that the surface heat flux forcing for MHW onset would likely

be more important with a longer baseline, as it would include more of the long-term albedo

feedback and atmospheric warming. It is less obvious to estimate how the decay drivers

would change when using a longer baseline. The observed warming of the subsurface

Pacific and Atlantic waters (Timmermans and Marshall, 2020) could be an indication

of increased downward vertical heat transport, especially on the shelves (Timmermans

et al., 2018), but could also reduce the capacity of the surface mixed layer to export heat

below on the long term, as the temperature differential diminishes. On the other hand,

a more mobile ice pack can increase wind-induced vertical mixing, but the direction of

the associated heat flux would depend on the vertical temperature gradient. A change of

the baseline for the Siberian MHW presented in Section 4.3.1 hints towards a stronger

surface heat flux for the onset and a stronger bottom heat flux for the decay (not shown),

but further investigation is necessary to properly fill this knowledge gap. The lateral heat

flux would likely be impacted as well. During onset and using a longer baseline, this

term might increase at the Arctic gateways, as it would incorporate more of the long-term

increased heat transport from Atlantic and Pacific into the Arctic. Its role during MHWs

decay could also increase, as the more mobile ice pack in recent decades would allow

more lateral exchanges in the marginal ice zone with freezing waters. It should be pointed

out that as the threshold is defined using the 90th percentile, and because the warmer years

are recent years in the context of a fast-warming Arctic, a long and a short baseline will

capture a relatively similar threshold (the distribution tail would be similar), despite the

climatologies being potentially different.

Another difficulty to detect MHWs in the Arctic is related to the highly stable tempera-

ture in winter conditions, which leads to a threshold close to the climatology. A shortened

ice season means that the earlier open water conditions are quickly detected as MHWs.

While some studies tend to restrain their scope to summer MHWs or introduce a high,
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summer-defined threshold, we kept all MHWs that exceed the mixed layer temperature

climatology by more than 0.1 °C. Despite this threshold added to the classic definition

(Hobday et al., 2016), some of the detected MHWs still occur in winter in ice-covered

conditions, due to the increasing trend of the freezing point related to the freshening of

the Arctic. Considering that the freshening of the Arctic has been observed for several

decades (Rudels and Carmack, 2022), using a longer baseline would increase the number

of those winter MHWs and lengthen them. Detrending the time series for each day of

the year would likely be a solution to get rid of the freshening-induced MHWs, if this

was desired. The literature on decadal trends of the winter mixed layer temperature in the

Arctic is scarce due to the lack of in-situ and satellite observations in ice-covered regions.

The Arctic is therefore often blanked out (e.g. Meredith et al., 2019), but the few available

estimates are in line with a trend of 0.1 °C per decade (Chen et al., 2019; Fox-Kemper

et al., 2021). The higher winter temperature does not only trigger MHWs in the winter, but

also raises the starting point of the seasonal cycle, meaning that for identical seasonal heat

forcing, the summer maximum temperature will also be higher, potentially increasing the

number of summer MHWs. The general warming trend is also an issue in other seasons,

but those have been better studied, especially in other parts of the global ocean (Oliver,

2019).

The relevance of cold season MHWs is difficult to quantify. They may have physical

consequences on ice growth and melt and on the rest of the seasonal cycle, which shouldn’t

be overlooked. Their biological and biogeochemical impacts are beyond the scope of

this study, but it should be noted that the temperature and salinity of sea ice control the

sympagic (i.e. inside the ice) carbonate cycling (e.g. Delille et al., 2014; Moreau et al.,

2015). Moreover, ecosystems adapted to the stable Arctic environment cannot shift their

latitudinal range, contrarily to what is seen at other latitudes. On the other hand, a warming

baseline can expand the habitat of some species, such as kelp (Goldsmit et al., 2021).

The impact of MHWs on ecosystems is a thriving topic for the rest of the global ocean
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(Oliver et al., 2019; Hobday et al., 2018; Smale et al., 2019) and specific events have

been regularly documented, whether during the North Pacific "Blob" (Walsh et al., 2018),

the 2003 Mediterranean MHW (Garrabou et al., 2009) or the Tasmanian MHW of 2015-

2016 (Oliver et al., 2017). In the Arctic as well, some studies have identified immediate

responses of fish to extreme events (Husson et al., 2022) and the complex but important

ecological consequences of sea ice loss are an active field of research (e.g. Arrigo and

van Dijken, 2011; Lannuzel et al., 2020). Studies disentangling the impact of the extreme

events from the amplified Arctic trend on the local ecosystems are scarcer but highly

needed, including those dedicated to benthic ecosystems that could be vulnerable to the

subsurface fate of heat uncovered in this study.
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CHAPTER 5

UNDERESTIMATION OF OCEANIC

CARBON UPTAKE IN THE ARCTIC

OCEAN: ICE MELT AS PREDICTOR OF

THE SEA ICE CARBON PUMP

Chapter 4 showed that extreme heat events are occurring over the whole Arctic Ocean. Ice

melt shoals the mixed layer and by doing so, extends the duration of marine heatwaves.

The expected increased ice melt is likely to lead to longer marine heatwaves. The Arctic

Ocean is also vulnerable to another type of extreme events, namely ocean acidification.

Those events are caused by the increased CO2 uptake. Better understanding the role of

sea ice in the carbon cycling in the Arctic Ocean is therefore important in the context of

compound events. In this chapter, I explore the role of sea ice on the atmosphere-ocean

CO2 flux.1

5.1 Introduction

According to current estimates, the Arctic Ocean accounts for 5 to 14 % of the total global

oceanic carbon uptake (Bates and Mathis, 2009; Schuster et al., 2013; MacGilchrist et al.,

1A version of this chapter is published in The Cryosphere, as Richaud, B., Fennel, K., Oliver, E. C.
J., DeGrandpre, M. D., Bourgeois, T., Hu, X., and Lu, Y.: Underestimation of oceanic carbon uptake
in the Arctic Ocean: ice melt as predictor of the sea ice carbon pump, The Cryosphere, 17, 2665–2680,
https://doi.org/10.5194/tc-17-2665-2023, 2023.
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2014; Yasunaka et al., 2016, 2018). Longer open water seasons are expected to increase

Arctic oceanic carbon uptake in the near term, with complex feedbacks altered by climate

change (Lannuzel et al., 2020; Steiner et al., 2015; Ouyang et al., 2020), but the scarcity of

biogeochemical observations in the Arctic Ocean prevents reliable calculations of carbon

flux (e.g., Landschützer et al., 2014), as well as proper validation of climate models in the

region.

In the Arctic Ocean, air-sea gas exchange is mostly prevented by sea ice in winter while

being partially allowed in summer when there is open water. While carbon fluxes between

ice and atmosphere are known to exist (Delille, 2006; Miller et al., 2011; Geilfus et al.,

2012; Nomura et al., 2010), large uncertainties remain on their significance (Watts et al.,

2022) and sea ice is therefore often considered as a physical lid. Melting and freezing

of sea ice affect the partial pressure of CO2 (pCO2) in the surface ocean and thus the

air-sea flux which depends on the pCO2 gradient between the surface ocean and overlying

atmosphere (e.g., Wanninkhof , 2014). Melting dilutes dissolved constituents in the surface

ocean, thus decreasing dissolved inorganic carbon (DIC = [CO2] + [HCO3 – ] + [CO3
2 – ])

and pCO2; the opposite is true when ice is forming (DeGrandpre et al., 2019). Moreover,

when sea ice forms, it rejects the dissolved salts in the brine filling the gaps between

the crystal lattice. Part of this salty, carbon-rich brine is expelled from the ice (Miller

et al., 2011). Sinking of some of this dense brine provides a pathway for carbon export

below the mixed layer (König et al., 2018; Barthélemy et al., 2015, and references therein).

DIC and alkalinity (here simplified as carbonate alkalinity = [HCO3 – ] + 2 [CO3
2 – ]) are

also stored inside the sea ice in brine channels. Since alkalinity is retained preferentially

(Rysgaard et al., 2007, 2009), this carbon storage in ice affects surface ocean pCO2 during

melting and freezing beyond the above-mentioned effects of dilution-, concentration-, and

brine-driven carbon export.

During ice growth, precipitation of ikaite (hydrated CaCO3) occurs within sea ice: Ca2+ +

2 HCO3
– → CaCO3(s) + H2O + CO2(aq) (Dieckmann et al., 2008). This precipitation traps
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alkalinity inside the ice crystal lattice and increases DIC in the brine (Rysgaard et al., 2009,

2013). Brine drainage then expels part of this DIC, lowering its concentration inside the

sea ice while increasing it in underlying water. Brine drainage also allows for the exchange

of nutrients between ice and ocean, feeding sympagic (ice-affiliated) ice algae in spring

and further decreasing DIC in ice through primary production (Vancoppenolle et al., 2013).

By the end of the ice growth season, the alkalinity to DIC ratio is significantly higher in

sea ice than in adjacent seawater. During the melt season, ikaite dissolves in seawater

preferentially releasing alkalinity over DIC, thus further lowering sea surface pCO2 and

increasing oceanic carbon uptake (Rysgaard et al., 2012). This process is commonly

referred to as the “sea-ice carbon pump” (Rysgaard et al., 2007). The intensity of this

pump and the underlying drivers are still subject to discussion (e.g. Delille et al., 2014) and

the long-term fate of the uptaken carbon is controlled by subduction processes, including

advection of water masses to depth (Bopp et al., 2015; Karleskind et al., 2011).

While the role of biotic and abiotic processes on the carbon cycle within sea ice

is becoming better understood, their impact on the underlying seawater is less clear.

Using a conceptual model, Rysgaard et al. (2011) estimated that the sea-ice carbon pump

could generate an additional uptake of 50 TgC yr−1, accounting for 17 to 42 % of high

latitude carbon uptake. Applying an empirical relationship between CO2 flux and sea ice

temperature to a numerical model, Delille et al. (2014) estimate that Antarctic sea ice

uptakes 29 TgC yr−1. In their idealized climate scenarios, Moreau et al. (2016) found that

the impact of carbon storage in sea ice weakens the Arctic CO2 sink while Grimm et al.

(2016) suggested a moderate role of the sea-ice carbon pump in the modern global carbon

cycle but acknowledged its potential importance on regional scales. Finally, in a regional

ocean model, Mortenson et al. (2020) showed that the amplitude of the DIC seasonal cycle

increased by 25 % in the surface ocean but with an unchanged annual carbon uptake (<1 %

increase). The discrepancies between those studies suggest that the importance of carbon

storage in ice in the global carbon cycle is still an open question, with increasing relevance
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due to the current and projected evolution of sea ice.

The sea ice carbon pump is considered to result mostly from three groups of processes:

(i) sea ice growth or melt, which implies a freshwater flux (upward or downward) from the

ocean to the ice, (ii) brine rejection, which proportionally decreases the uptake of solutes

in sea ice, and (iii) active biogeochemical processes, which modify the alkalinity to DIC

ratio in sea ice. Most, if not all, Earth System Models (ESMs) lack a representation of

biogeochemical processes within sea ice and are therefore unable to account for (ii) and

(iii), but encompass (i) by dilution and concentration of tracers, similar to the handling of

precipitation and evaporation. In the present study, we do not distinguish between (ii) and

(iii) and instead consider that the carbon cycling in sea ice encompasses both aspects. We

also consider our reference point (later referred to as CTRL) to be that of current ESMs,

i.e. they include processes (i) but not processes (ii) and (iii).

Arctic sea ice extent and thickness have declined rapidly over the past decades at a rate

of -83,000 km2 yr−1 for September ice extent during the 1979-2018 period and with a

decline in ice thickness by 65 % from 1975 to 2012 (Meredith et al., 2019). This decline is

expected to continue. Arctic amplification, a combination of positive feedbacks including

summer albedo loss and changes in cloudiness, is leading to twice the rate of warming of

the atmosphere compared to the global average (Meredith et al., 2019, Box 3.1). Increased

“Atlantification” of the Eurasian Arctic Basin, characterized by a progression of Atlantic

water masses into the Arctic seas, is contributing to amplified basal ice melt (Polyakov

et al., 2017). These dynamic and thermodynamic processes have direct impacts on sea

ice seasonality and extent (Perovich and Richter-Menge, 2009) and ice-free summers are

predicted to happen within the next few decades (Overland and Wang, 2013; Notz and

SIMIP Community, 2020). Yet, since sea ice extent in winter decreases slower than in

summer, the seasonally ice-covered area is expanding. Such an amplified seasonality in

sea ice may intensify the sea ice carbon pump, as sea ice forms in open water that had

previously been perennially ice-covered.
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We use two independent and complementary approaches to investigate the supplemen-

tary carbon flux in the Arctic Ocean. We define the supplementary carbon flux ΔF as the

fraction of the air-sea CO2 flux that is solely due to the storage of carbon and alkalinity in

ice. This term is quantified here as the difference in air-sea CO2 flux between a reference

situation where there is no ice-ocean carbon flux, i.e including aforementioned processes

(i) but not (ii) nor (iii), and situations where ice-ocean carbon flux occurs, i.e including (i),

(ii) and (iii). First, we combine a set of mathematical formulations to obtain an equation

that provides a theoretical framework for the description of the impact of alkalinity and

DIC storage in sea ice on air-sea CO2 fluxes. These theoretical considerations suggest

that sea-ice melt and open-water fraction are the main drivers of an increased oceanic

carbon uptake induced by storage of alkalinity and DIC in sea ice. Second, a simple

parameterization of the presence of alkalinity and DIC inside the sea ice is implemented

in a one-dimensional (1D) ocean model applied to different locations of the Arctic. A

large set of sensitivity runs with this 1D model consolidates and expands on the role and

importance of melt and open-water-fraction and shows that the alkalinity-to-DIC ratio in

sea ice plays a major role in the magnitude of the increased uptake. By forcing the model

with a wide range of plausible ice conditions, we obtain a predictive linear relationship

between annual ice melt and ice-induced annual supplementary carbon uptake (ΔF ). This

relationship can be used to correct carbon uptake estimates from numerical models that

do not account for carbon storage in ice. By applying the relationship to an Earth System

Model (ESM) from the sixth phase of the Climate Model Intercomparison Project (CMIP6)

ensemble, we show how the impact of sea ice on carbon uptake may evolve under different

future emission scenarios.
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5.2 Theoretical Framework for Ice-Sea Carbon Flux and

Induced Air-Sea CO2 Uptake

The impact of carbon storage in sea ice on the air-sea CO2 flux is analyzed using differential

equations that account for the impact of freezing and melting on surface water alkalinity

and DIC. The air-sea flux is expressed as a function of sea surface pCO2, which depends

on temperature, salinity, alkalinity and DIC.

We assume the flux of alkalinity and DIC between the sea ice and the underlying water to

be proportional to the freshwater flux induced by freezing and melting of sea ice, F ice−sea
FW

(m s−1), and the concentration of alkalinity and DIC inside the ice. The DIC and alkalinity

concentrations are assumed to be homogeneous in the ice. The freshwater flux is positive

(downward) for melting. The change in sea surface pCO2, written ∂pCOice−sea
2

∂t
, resulting

from the freshwater flux can then be expressed as

∂pCOice−sea
2

∂t
(t) =

1

H0

g(t)F ice−sea
FW (t)

with

g(t) =
∂pCO2

∂Alk
(t)[Alk]ice +

∂pCO2

∂DIC
(t)[DIC]ice (5.1)

where H0 is the mixed layer depth (in m), considered constant for ease of interpretation;

[Alk]ice and [DIC]ice are the concentrations of alkalinity and DIC inside sea ice (mmol

m−3) and ∂pCO2

∂Alk
and ∂pCO2

∂DIC
are the fractional change of pCO2 with alkalinity and DIC,

respectively (μatm m3 mmol−1). Note that ∂pCO2

∂Alk
and ∂pCO2

∂DIC
are generally non-linear.

The relation between the air-sea flux of CO2 and seawater pCO2 is

Fair−sea
CO2

= kgSCO2λ(pCO
atm
2 − pCO2) (5.2)
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where pCO2 and pCOatm
2 refer to pCO2 in surface seawater and atmosphere (μatm) resp.,

kg is the gas transfer velocity (m s−1), SCO2 is the CO2 solubility (mol m−3 μatm−1) and λ

is the fraction of open water (lead fraction, unitless; Ahmed et al., 2019). Here, the air-sea

CO2 flux is defined as positive downward.

The supplementary flux, ΔFt, is calculated as the difference between a case with

carbon storage in ice, referred to as ICE, and a control (CTRL) case, where storage is not

considered and ice growth or melt only leads to a freshwater exchange, i.e.

ΔFt = Fair−sea, ICE
CO2

−Fair−sea, CTRL
CO2

= −kgSCO2λ(pCO
ICE
2 − pCOCTRL

2 )

with pCO2
ICE and pCO2

CTRL the sea surface pCO2 in the ICE and CTRL cases, respec-

tively. In the rest of this manuscript, we will denote ΔpCOi−c
2 = pCOICE

2 − pCOCTRL
2 .

We assume that in both CTRL and ICE cases, sea surface pCO2 experiences the same

alterations due to biological processes and changes in temperature and salinity caused by

vertical and horizontal mixing and air-sea-ice interactions. This assumption neglects the

possibility that non-linearities of the carbonate system lead to differences in the impact

of these processes on pCO2 between the CTRL and ICE cases. Moreover, we assume

that ∂pCO2

∂DIC
is constant. Calculations conducted with CO2SYS (Lewis and Wallace, 1998)

based on mooring data located in the Beaufort Gyre (DeGrandpre et al., 2019, 78° N,

150° W) and our model data (see Beaufort Gyre setup in Sect. 5.3.1) yield a coefficient of

variation of ∂pCO2

∂DIC
of only 6 % and 5 %, respectively. This supports the assumption of a

constant ∂pCO2

∂DIC
over the range of expected DIC. These two assumptions are only used in

this theoretical derivation, not in the numerical analysis.

The change of pCO2 over time can be written as

∂pCO2

∂t
=

∂pCO2

∂DIC

∂DIC

∂t
+

∂pCO2

∂Alk

∂Alk

∂t
+

∂pCO2

∂T

∂T

∂t
+

∂pCO2

∂S

∂S

∂t

with the temperature and salinity contributions (the last two terms on the right-hand side)
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being identical in the ICE and CTRL cases.

The contributions from alkalinity and DIC can come from advection, diffusion, mixing,

biological processes (production, respiration, remineralization), and air-sea or ice-ocean

carbon fluxes. As already described, the ice-ocean carbon flux modifies the surface seawater

pCO2, which in turn impacts the air-sea carbon flux. Here, the ice-ocean and air-sea carbon

fluxes are the two only processes that are not considered as identical between CTRL and

ICE cases and are therefore the only two terms left when subtracting the equations for

∂pCO2

∂t
for the CTRL and ICE cases from each other. The following differential equation

governing the evolution of ΔpCOi−c
2 can be derived (see details in the supplement):

∂ΔpCOi−c
2

∂t
(t) = −∂pCO2

∂DIC

1

H0

kg(t)SCO2(t)λ(t)ΔpCOi−c
2 (t) +

1

H0

g(t)F ice−sea
FW (t)

(5.3)

The solution to Eq. 5.3 is:

ΔpCOi−c
2 (t) = e−A(t)

∫ t

0

1

H0

g(s)F ice−sea
FW (s)eA(s)ds (5.4)

where A(t) is a primitive of ∂pCO2

∂t
1
H0

kgSCO2λ and s is the variable of integration, with

units of seconds. The primitive of a function can be calculated as its time integral plus an

unknown constant α

A(t) =

∫ t

0

∂pCO2

∂DIC

1

H0

kg(s)SCO2(s)λ(s)ds+ α

This yields a solution for the instantaneous difference in pCO2 between CTRL and

ICE scenarios. To retrieve the previously defined supplementary carbon uptake, i.e., the

cumulative air-sea CO2 flux that is induced by the pCO2 change, we can insert Eq. 5.4 into
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the left-hand side of Eq. 5.3 and integrate over a period T :

ΔFt(T ) =
1

∂pCO2

∂DIC

∫ T

0

g(t)F ice−sea
FW (t)

(
eA(t)−A(T ) − 1

)
dt (5.5)

A unique derivation to our knowledge, this formulation is composed of three main terms:

g(t), which is a function of the concentration of alkalinity and DIC in the ice (Eq. 5.1);

the freezing-melting flux F ice−sea
FW ; and the more complicated exponential of the primitive,

which contains the lead fraction λ in A(t). A(t) is an integral of the lead fraction and can

be interpreted as keeping a memory of the evolution of the ice conditions.

The sign of g(t) determines the sign of ΔFt. Using realistic alkalinity and DIC values

for the Arctic Ocean (e.g. [Alk]sw = 2300 mmol m−3, [DIC]sw = 2100 mmol.m−3, [Alk]ice

= 540 mmol m−3 and [DIC]ice = 300 mmol m−3, as in Rysgaard et al. (2011); Miller et al.

(2014) or [Alk]ice = 415 mmol m−3 and [DIC]ice = 330 mmol m−3, as in DeGrandpre et al.

(2019); and Revelle and alkalinity factors of 14 and -13.3 respectively, as in Takahashi

et al. (1993)) yields a negative sign for g(t). It can be shown that the term between

parentheses in Eq. 5.5 is always negative, meaning that for ice melt (F ice−ocean
FW > 0), ΔFt

is downward (uptake); the opposite is true for ice formation (cf. Appendix E). According

to this formulation, the dependency of ΔFt on [Alk]ice and [DIC]ice is bi-linear due to the

shape of g(t).

It is important to note that the gas transfer velocity and the CO2 solubility, used in the

primitive A(t), require no assumption of shape or value. The gas transfer velocity kg can

depend on the wind speed (e.g. Wanninkhof , 2014), on the wave slope (Bogucki et al.,

2010) or on turbulence generated by ice drag and convection (Loose et al., 2014). Similarly,

the CO2 solubility could follow Weiss (1974) or any other expression.

One can calculate the solution numerically using the carbonate properties of seawater and

sea ice (i.e., their alkalinity and DIC), the sea ice concentration, the ice-ocean freshwater

flux, the gas transfer velocity (e.g., using Loose et al. (2014)) and the CO2 solubility (which
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depends on temperature and salinity, Weiss, 1974). The product of the Schmidt number

and CO2 solubility can reasonably be considered constant (Etcheto and Merlivat, 1988),

therefore removing the dependency on temperature and salinity Wanninkhof (2014, their

Eq. 6) and providing an even simpler form than proposed above.

In order to interpret the role of λ, its value can be constrained as follow. We assume

that ice formation is associated with full ice cover (λ ≈ 0) and that melting occurs in open

waters (λ ≈ 1). We will see that this is supported by ocean model output in Sect. 5.4.1.

Then, during ice formation when λ is very small, limλ→0(e
A(t)−A(T ) − 1) = 0.

This implies that the integrand in Eq. 5.5 is negligible during freezing and non-negligible

during melting. Thus, ice formation has a relatively small contribution to the temporal

integral of the supplementary carbon flux, while ice melting significantly increases the

CO2 flux. Since melting leads to uptake, according to the sign examination above, the net

outcome of the supplementary carbon flux is uptake.

Note that if H0 was assumed to be variable in time, it would remain inside the integrands

on both sides of Eq. 5.5. The integrand is then likely to be small during the melting season

when the mixed layer shoals, and larger during the freezing season, when λ is close to 0

and the integrand is already small. A variable mixed layer depth would therefore reinforce

the already dominant influence of the melting season in the value of the supplementary

carbon uptake.

5.3 Numerical Ocean Model

We implemented a parametrization of carbon storage and release by sea ice in a 1D ocean

model, independent of the theoretical arguments in Sect. 5.2, to investigate its impact on the

air-sea CO2 flux in different regions of the Arctic Ocean. We do not use any of the results

or assumptions from Section 5.2. By using a wide range of initial and forcing conditions

derived from a realistic 3D model, a large ensemble of 1D simulations is generated to

account for spatial and temporal variability in forcing conditions. Analysis of the ensemble

138



provides insights into the main drivers of the supplementary carbon uptake and allows us

to derive a formula to estimate the supplementary carbon flux in existing Earth System

Model (ESM) simulations. Here we describe the 1D model set-up and forcings, as well as

the ESM outputs used to project the evolution of the supplementary carbon flux in different

scenarios.

5.3.1 One-dimensional Ocean Model

The 1D General Ocean Turbulence Model (GOTM, Burchard et al., 1999) is coupled to

the Pelagic Interactions Scheme for Carbon and Ecosystem Studies volume 2 (PISCES-v2,

Aumont et al., 2015), specifically adapted to the Framework for Aquatic Biogeochemical

Models (FABM, Bruggeman and Bolding, 2014). The vertical grid has fixed layer thick-

nesses, with a resolution of 1 m near the surface and increasing with depth (9 layers in the

first 10 m, 24 layers in the first 100 m). Air-sea CO2 flux is calculated by the model using

values from Wanninkhof (2014) with 10 m wind speed. The carbonate chemistry in the

model follows the OCMIP protocols (Orr, 1999).

The evolution of alkalinity and DIC in surface waters is parameterized by

dDIC

dt
= [DIC]ice

F ice−sea
FW

Hcell

+
Fair−sea

CO2

Hcell

+ PhysDIC +BioDIC

dAlk

dt
= [Alk]ice

F ice−sea
FW

Hcell

+ PhysAlk +BioAlk

where the first term on the right-hand side describes the ice-ocean carbon flux with [Alk]ice

and [DIC]ice the Alkalinity and DIC concentrations in ice and held constant throughout

a simulation, F ice−sea
FW the flux of freshwater between ice and ocean due to ice melt or

freezing (m s−1, positive downward), Hcell the thickness of the uppermost ocean grid

cell (here 1.02 m), Phys includes the dispersive transport terms as well as dilution and

concentration due to sea ice melting and freezing or due to precipitation and evaporation

and Bio represents the biological sources and sinks of Alk and DIC, and Fair−sea
CO2

is the

air-sea CO2 flux. Preliminary runs showed that the biological terms have a similar impact
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on carbon uptake regardless of whether the carbonate system inside sea ice is represented

or not, and thus yield a negligible impact on supplementary carbon uptake (less than 1 %

normalized difference). They were therefore deactivated for the ensemble runs to save

computational effort.

Surface forcings were prescribed from a 3D physical-biogeochemical-ice-ocean model

based on NEMO-LIM-PISCES (Madec et al., 2017; Rousset et al., 2015; Aumont et al.,

2015) for the North Atlantic, North Pacific, and Arctic Oceans, hereafter referred to as

the NAPA model. The NAPA model, including the validation with observational data,

is documented in Zhang et al. (2020) and Zheng et al. (2021). In our application of

this 3D model, the atmospheric forcing was obtained from ERA-5 reanalysis product

(Hersbach et al., 2020) from 2014 to 2019. Outputs were written out daily, providing the

necessary temporal resolution to capture sub-seasonal variability. We used the simulated

ice concentration, latent and sensible heat fluxes, longwave and shortwave radiative fluxes,

freshwater fluxes (due to ice melt-freeze and evaporation-precipitation), and momentum

fluxes (due to wind and ice drift) at the top of the surface layer of the model, calculated as a

weighted average between open water and under ice conditions to force the 1D model. This

methodology allows us to simulate the impact of sea ice in our 1D model without having

to resort to a full ice component. Other inputs necessary for air-sea CO2 flux include the

wind speed and mean sea-level pressure from ERA5, as well as atmospheric pCO2 from

the Alert Station, Nunavut (Keeling et al., 2001).

In generating the ensemble of 1D simulations, every 10th horizontal grid cell of the

NAPA domain was selected with the following exceptions. Since our focus is on open-

ocean conditions with a significant presence of sea ice, coastal locations with water depths

shallower than 100 m as well as the Canadian Arctic Archipelago, Hudson Bay and the

Baltic Sea were excluded. Also excluded were grid cells with both ice melt and freezing

rates of less than 0.1 m yr−1. Given NAPA’s average grid spacing of ∼12 km in the

Arctic, every 10th grid cell leads to roughly one cell every 120 km for a total of 732
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cells covering a wide range of ice conditions. For each of these locations, we ran the 1D

model for six 1-year simulations starting on January 1st for the years 2014 to 2019, with

initial conditions from the NAPA model. Since the 1D model cannot explicitly represent

horizontal advection, its solutions were nudged toward the properties simulated by the

NAPA model with a timescale of 4 months for temperature and salinity and 1 year for

alkalinity and DIC. As a consequence, subduction processes are mostly but not entirely

neglected in this 1D model.

Based on the above setup, we systematically ran the 1D model in two configurations

CTRL (no carbon in sea ice) and ICE (storage of carbon in sea ice). In both configurations,

sea ice growth and melt generates a freshwater flux that concentrates or dilutes tracers at

the surface ocean. The runs are listed in Table 1. The supplementary carbon uptake ΔFm

is calculated as the difference in annual air-sea CO2 flux between the ICE (or ICE2) and

the CTRL runs. We consider the air-sea CO2 flux in the CTRL run as the baseline, since it

corresponds to the values reported by numerical models that do not account for the sea

ice carbon pump. Potential predictors of the supplementary carbon flux are investigated

including the net freezing-melting flux (the integral over a year of the freshwater flux

between ice and ocean), the gross melting (freezing) flux which only accounts for ice melt

(formation), and the yearly integrated ice concentration (which ranges between 0 and 365).

We bin the latter metric into 9 bins of equal size and applied a linear regression between

gross annual ice melt and the supplementary carbon uptake for each of these bins, which

can be considered different ice regimes.

5.3.2 Application to an Earth System Model

ESM output from the CMIP6 suite of models can be used to estimate the supplementary

carbon flux in projected future climate scenarios. We chose the ACCESS-ESM1.5 model

(Ziehn et al., 2020) because it has a plausible simulation of sea ice (according to Notz

and SIMIP Community, 2020) and its monthly-averaged freshwater ice-ocean flux due

to ice thermodynamics (CF standard name: fsitherm) and air-sea CO2 flux (CF standard
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Table 5.1: Description of 1D model runs. For more in-depth sensitivity experiments (*),
we selected a representative station in the Beaufort Gyre (78° N, 150° W) for the years
2014 and 2015, where mooring observations are available (DeGrandpre et al., 2019, see
comparison in the supplementary materials).
Acronym: Alk in ice DIC in ice Alk:DIC ratio

Description (mmol m−3) (mmol m−3)

CTRL: 0 0 N/A
Simulation without
carbon storage in ice
ICE: 540 300 1.80
Simulation with car-
bon storage in ice
ICE2*: 415 330 1.26
Simulation with car-
bon storage in ice
Sensitivity*: 340 to 700 260 to 600 0.57 to 2.69
Simulation with car-
bon storage in ice

with a 20 increment with a 20 increment

name: fgco2) are available. The horizontal resolution of the ocean component of ACCESS-

ESM1.5 is 1°, with 50 vertical levels. The historical simulation covers 1850 to 2015, and

three available Shared Socio-economic Pathways (SSP) scenarios (SSP1-2.6, SSP2-4.5,

and SSP5-8.5) cover the period from 2015 to 2100. Monthly outputs of the freshwater

ice-ocean flux and air-sea CO2 flux were extracted for the historical simulation and the

three SSP scenarios.

Consistent with the methodology applied to our 1D model study, only grid cells where

ice melt or freeze was over 0.1 m yr−1 were used. For each year between 1850 and 2100

and each remaining grid cell, ice-ocean freshwater flux was summed for melting months

only (thus excluding negative values of fsitherm).

5.4 Results

5.4.1 Ensemble of 1D Model Experiments

In the CTRL run (no ice-ocean carbon flux), pCO2 increases to maxima of 347 and 354

μatm in the winters of 2014 and 2015, respectively, due to the removal of freshwater and
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Figure 5.1: Model outputs for a grid cell representative of Central Beaufort Gyre (78° N,
150° W) over 2014-2015. (a): Ice concentration. (b): Surface seawater alkalinity to DIC
ratio for the CTRL (no ice carbon flux; red line), ICE ([Alk]ice = 540 mmol m−3, [DIC]ice
= 300 mmol m−3 ; light blue line) and ICE2 ([Alk]ice = 415 mmol m−3, [DIC]ice = 330
mmol m−3; dark blue line) runs. (c): Ice melt and formation (>3mm day−1; background
color); observed atmospheric pCO2 at the Alert weather station (dashed black line) and
simulated surface seawater pCO2 (solid lines) for the three above-mentioned runs.

associated concentration of DIC and alkalinity (Fig. 5.1c). The pCO2 decreases to minima

of 305 and 265 μatm in the summers of 2014 and 2015, respectively, when ice melts and

dilutes seawater constituents. In the ICE run, when accounting for the ice-ocean carbon

flux, the seasonal cycle of pCO2 is similar, but amplified reaching higher maxima (360 and

375 μatm in 2014 and 2015, respectively) and lower minima (254 and 153 μatm in 2014

and 2015, respectively).

The reason for this amplification is illustrated in Fig. 5.1b. When accounting for

the ice-ocean carbon flux, the alkalinity-to-DIC ratio at the surface decreases during the

freezing season and increases during the melting season, a behavior that is opposite to

the control run. Since an increase in alkalinity decreases pCO2 and an increase in DIC

increases pCO2, the storage and release of both properties by sea ice have counteracting

effects. The alkalinity effect dominates and leads to a decrease in seawater pCO2 when ice
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melts, amplifying the seasonal cycle of pCO2. The degree of amplification depends on the

values of [Alk]ice and [DIC]ice, as illustrated by comparing the ICE and ICE2 runs with

different alkalinity-to-DIC ratios of the ice-ocean carbon flux. ICE2, which has a lower

alkalinity-to-DIC ratio (1.26 compared to 1.80 for ICE), shows lower maximum values

(350 and 359 μatm in 2014 and 2015, respectively) and higher minimum values (290 and

225 μatm in 2014 and 2015, respectively) of pCO2, compared to ICE.

How this amplification of the seasonal cycle of pCO2 affects the seasonal air-sea CO2

flux depends on the ice cover shown in Fig. 5.1a. According to the formulation in Eq.

5.2, almost complete ice cover (λ = 0) in winter results in an air-sea CO2 flux close to

0 when pCO2 is highest. Lower sea ice cover in summer allows for some air-sea gas

exchange directly proportional to the air-sea pCO2 gradient. Integrated over a full seasonal

cycle, the amplification of the pCO2 cycle results in net oceanic CO2 uptake added to the

baseline. In the case of the Beaufort Gyre station location, averaged over both years, this

supplementary uptake ΔFm amounts to 45.5 mmol C m−2 yr−1 for an alkalinity-to-DIC

ratio of 1.80 (ICE) and 13.6 mmol C m−2 yr−1 for a ratio of 1.26 (ICE2), over a 3-fold

difference. Note that these are low flux values relative to other oceans (usually higher than

1 mol C m−2 yr−1), mainly because of the ice cover.

The effect of carbon storage on the annual net CO2 flux is explored more thoroughly for

the Beaufort Gyre location by varying [Alk]ice from 340 to 700 mmol eq m−3 and [DIC]ice

from 260 to 600 mmol m−3 (Fig. 5.2). The net CO2 flux (Fig. 5.2a) and supplementary

carbon uptake ΔFm (Fig. 5.2b) are strongly dependent on the alkalinity-to-DIC ratio in ice

(white contours). Notably, the net CO2 flux varies by a factor of 2 to 3 for realistic values

of the alkalinity-to-DIC ratio. Thus, alkalinity and carbon storage in ice has a significant

impact on the net air-sea CO2 flux in the model.

Next, we investigate the role of ice conditions, including the freezing-melting rate and

ice concentration on the air-sea CO2 flux. The NAPA model simulates a wide range of

ice melt rates over the Arctic Ocean, spanning from 0 to over 7 m yr−1 and with areas
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Figure 5.2: Dependence of annual net CO2 uptake on alkalinity and DIC concentrations in
ice. The two panels show results from model sensitivity runs for a wide range of alkalinity
and DIC values in ice (20 units increments). (a): Annual net CO2 uptake (background
colors); net CO2 uptake value for the standard run is highlighted by the dashed black line
for reference (note that the standard run is not part of the runs shown in the background
colors, since [Alk]ice=[DIC]ice=0). (b): Supplementary carbon flux ΔFm due to carbon
storage in ice (background colors). ALK:DIC ratio in ice is superimposed (white lines).

of high ice melt in the Labrador and East Greenland Currents and the southern edge of

the Beaufort Gyre (Fig. 5.3a). The NAPA model also simulates freezing conditions that

mostly occur when the lead fraction is close to 0 (Appendix F). Indeed, over 88 % of the

freezing days occur when the ice concentration is above 0.9. This supports the assumption

made in Sect. 5.2, where we considered freezing to mostly occur when the lead fraction is

close to 0.

Gross freezing rates and yearly integrated ice coverage are poorly correlated to ΔFm

(r2=0.12 and r2=0.15 respectively). Yearly net freezing-melting is more strongly correlated

with ΔFm (r2=0.39). However, a better predictor of ΔFm is ice melt, excluding any

freezing, hereafter called gross annual melt (r2=0.86; Fig. 5.4). An explanation for this

strong relation is that winter ice cover prevents air-sea flux during the freezing period. This

is an independent confirmation of the interpretation of the mathematical derivation made
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Figure 5.3: Region of interest and sea ice regime from the NAPA model domain. Each
dot gives the location of the forcing conditions used to force the 1D model in this study.
(a): Mean gross annual ice melt. (b): Mean yearly temporal integral of ice concentration.
The red dot shows the grid cell used for Fig. 5.1 and 5.2.

in Sect. 5.2.

The high correlation between the gross annual ice melt (FMelt) and ΔFm gives confi-

dence in a linear model relating those two metrics:

ΔFm = 113.6 · FMelt − 10.1 (5.6)

Another driver for ΔFm is the yearly integrated ice concentration (Fig. 5.4, colors),

which is largest where full ice cover persists for most of the year (Fig. 5.3b). While model

experiments with lower ice coverage (dark blue) follow the regression well (solid black

line), runs with higher ice coverage (light blue) have a steeper slope.

The 1D simulation ensemble can be used to calculate a yearly Arctic-wide increase due

to ice-ocean carbon flux, for the 2014-2019 period. The ICE runs represent an increase of

30.0 ± 9.1 % (mean ± standard deviation calculated over the 6 years period), compared to

the CTRL runs. Equation 5.6 depends on the parameterization of carbon ice-ocean flux

and of air-sea CO2 flux, but is not otherwise model-specific. Therefore, it can be applied
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Figure 5.4: Scatter plot of the 1D Arctic-wide runs. The supplementary carbon uptake
ΔF is plotted as a function of the gross annual ice melt. The color of the dots shows the
temporal integral of ice melt over the year, in days. The squared correlation coefficient r2

between both variables is given in the top left corner.

to other model outputs.

5.4.2 Application to an Earth System Model

The amplification of the air-sea CO2 exchange due to the storage of carbon and alkalinity

in ice is sensitive to the gross annual ice melt and the seasonality of the ice concentration.

Both parameters are rapidly changing due to global warming. To investigate the impact

of these changes on the supplementary carbon uptake, we turned to outputs from the

ACCESS-ESM1.5 (Ziehn et al., 2020). This model, as any ESM, does not include any

carbon storage in sea ice, although the freshwater flux between the ocean and sea ice is

accounted for. We applied the linear relation in Eq. 5.6 to estimate the missing carbon

uptake of CO2 and, by adding it to the modelled carbon uptake, provide a corrected estimate

of the oceanic carbon uptake in polar regions. While subduction processes are simulated in
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the initial outputs, our offline methodology does not correct mixing and advective carbon

transport for the supplementary carbon due to the sea ice carbon pump. Therefore, an

inherent assumption to our methodology is the subduction of all the added carbon.

Although the linear relation between gross annual melt and ΔFm (Eq. 5.6) was derived

from daily data, a very similar relationship is obtained when monthly data is used instead

(RMSE between daily vs. monthly calculated gross annual ice melt <0.06 m yr−1, not

shown), giving us confidence that Eq. 5.6 can be used. The linear relation was applied

to the extracted gross ice melt, resulting in a yearly supplementary carbon uptake for

each grid cell. Spatially integrated over the area of interest, this yields an Arctic-wide

supplementary carbon uptake due to ice-ocean carbon flux, which can then be added to

the model-derived carbon flux over the same area to yield a corrected carbon flux. The

ratio between ΔFm and the model-derived carbon flux, expressed as a percentage, allows

for easier interpretation of the magnitude of the process. This ratio can be interpreted as a

measure of how much the ESM underestimates the Arctic Ocean carbon uptake. Those

metrics were integrated over the different periods, yielding cumulative carbon uptake

estimates over the historical and projection periods.

Due to the CO2 undersaturation of the Arctic Ocean, the net carbon flux is positive

(into the ocean) for all periods and scenarios. During the historical run, the modelled

uptake slowly increases from 180 Tg C yr−1 in 1850 to 200 Tg C yr−1 in 1995 (a linear

regression gives a slope of 0.26 Tg C yr−2 with r2 = 0.5, p-value < 0.001), then stagnates

during the last 20 years (r2 = 0.0, p-value = 0.4) (Fig. 5.5a). The supplementary carbon

flux, on the other hand, remains relatively constant over the whole period (Fig. 5.5a),

meaning the corrected carbon uptake (Fig. 5.5a) follows a similar pattern as the model

estimate. It also leads to a slow decrease in the ratio of ΔFm over the model estimate (Fig.

5.5b). The increase in uptake may be driving increasing pCO2 levels in the Arctic Ocean

(Ouyang et al., 2020; DeGrandpre et al., 2020).

Projecting into the future, all three climate scenarios show a decrease in modelled and
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Figure 5.5: Correction of ACCESS-ESM1.5 Arctic Carbon Uptake by applying the linear
relation to model outputs, for historical (black), SSP1-2.6 (green), SSP2-4.5 (blue) and
SSP5-8.5 (red) scenarios. (a): Arctic oceanic carbon uptake from ACCESS-ESM1.5 (solid
lines) and corrected estimates (dashed lines). The shaded area between lines corresponds
to the supplementary carbon uptake ΔFm. (b): Ratio of ΔFm over model-derived carbon
flux, expressed in percentage. This gives an estimate of how much the ACCESS-ESM1.5
model underestimates Arctic oceanic carbon uptake due to the lack of parameterization of
ice-ocean carbon flux.

corrected carbon uptakes although interannual variability is high. In scenario SSP5-8.5

(Fig. 5.5a), and SSP1-2.6 to a lesser extent (Fig. 5.5a), carbon uptake increases until the

2040s, before dropping rapidly during the remainder of the century. The severe sea ice

decline in SSP5-8.5 leads to a similar decrease in ΔFm, while the two other scenarios

show a relatively constant ΔFm over the 21st century.

Those scenarios differ in how large the fraction of ΔFm is compared to the total carbon

uptake (Fig. 5.5b). Over the historical period, it slowly decreases starting above 15 % to

arrive at around 12.5 % in 2015. It keeps decreasing in SSP5-8.5 to reach 5 % in 2100, but

the other scenarios show a different story, levelling off at around 11 % in SSP2-4.5, and

returning to 15 % in SSP1-2.6.

Integrated over 1850-2100, the modelled carbon uptake sums up to 41.6, 40.2 and 42.3
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Table 5.2: Cumulative carbon uptake from ACCESS-ESM1-5 model outputs, for historical
(black), SSP1-2.6 (green), SSP2-4.5 (blue) and SSP5-8.5 (red) scenarios. Corrected
refers to carbon uptake calculation while taking account of sea ice-induced supplementary
carbon uptake as calculated using our linear regression (Eq. 5.6). Percentage refers to the
normalized difference (in %) between the model-derived and corrected cumulative carbon
flux.
Cumulative

carbon flux

Historical SSP1-2.6 SSP2-4.5 SSP5-8.5

(Pg C) (1850 to 2015) (1850 to 2100) (1850 to 2100) (1850 to 2100)
Model-derived 28.3 41.6 40.2 42.3
Corrected 32.3 47.3 45.8 47.6
Percentage 14.1 % 13.7 % 13.9 % 12.5 %

Pg C for scenarios SSP1-2.6, SSP2-4.5 and SSP5-8.5 respectively, and the supplementary

carbon uptake adds another 5.7, 5.6 and 5.3 Pg C respectively (Table 2). Those cumulative

supplementary carbon fluxes represent 12.5 to 14.1 % of the model-derived cumulative

flux (Table 2).

Therefore, discarding the storage of carbon in sea ice in ESMs can lead to a significant

underestimation of the carbon uptake in the Arctic Ocean, with varying impacts depending

on the scenario considered, as described in the Discussion.

5.5 Discussion

In this study, the link between ice-ocean and air-sea carbon fluxes was investigated using

two independent methods: a theoretical framework and numerical modelling. The methods

provide consistent, complementary results, both pointing to a linear relationship between

ΔF and ice melt and an exponential relation with the open-water fraction (Eq. 5.5 and Fig.

5.4).

Only three assumptions were made during the theoretical derivation. The assumption

of a constant ∂pCO2

∂DIC
was addressed in Sect. 5.2. The second assumption was a constant

value of the mixed layer depth H0, also discussed in Sect. 5.2. The third assumption is

the negligible effect of non-linearities in the carbonate system. Here, it is worth noting
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that the 1D numerical model does not rely on those assumptions and accounts for the

varying ∂pCO2

∂DIC
and H0, and for the non-linearities of the carbonate system. Therefore, the

good agreement between the theoretical framework and the model ensemble results builds

confidence that these assumptions are justified. Back-of-the-envelope calculations using

typical orders of magnitudes (pCO2 = 350 μatm, changes in pCO2 = 20 μatm) also show

that non-linearities would represent less than 10 % of the total changes induced by the

temperature, salinity, DIC and alkalinity variations, further supporting our assumptions.

A simplified version of the theoretical equation 5.5 can be evaluated with g and

∂pCO2

∂t
1
H0

kgSCO2 considered as constant (cf. Appendix E), to better compare both methods.

The ice concentration and freezing-melting flux used to force the 1D model (described

in Section 5.3.1) can then be applied to this simplified version to calculate ΔFt (Fig.

5.6). While the constant values and the offline calculations of ΔFt prevent a quantitative

comparison with ΔFm shown in Fig. 5.5, both methods provide a consistent qualitative

behaviour, with a clear linear relationship between FMelt and ΔF , and an increasing slope

with increasing ice cover.

To interpret the relatively complex equation obtained in the theoretical framework (Eq.

5.5), we considered that ice formation is associated with ice-covered waters, related to

the exponential term. Again, this simplification is supported by results from the NAPA

model (cf. Sect. 5.4 and Appendix F). The functional form may not apply to some regions

with distinct ice regimes, including ice-exporting polynyas and ice-importing marginal

ice zones. In those regimes, the exponential term and therefore the slope of the relation

between ΔF and ice melt would be different. However, our solution is applicable to most

of the Arctic Ocean.

We presented an approach for how Arctic carbon uptake estimates from ESMs can

be corrected using our linear relation between ΔFm and sea ice melt (Sect. 5.4.2). In

doing so, past and potential future impacts of the sea-ice carbon pump in the Arctic can

be analyzed. Our analysis suggests that uptake due to the sea-ice carbon pump increased
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Figure 5.6: Evaluation of a simplified version of Equation 5.5 with the 1D model forcings:
g(t) and kg SCO2 are considered as constant at -315 μatm and 0.073 (cf. Appendix E). The
general shape of the scatter plot shows reasonable agreement with the online calculation of
the supplementary carbon flux shown in Figure 4.

during the historical period (Fig. 5.5a) due to longer open-water seasons and increased

atmospheric pCO2. This is consistent with observations in the Canadian Arctic where

higher pCO2 levels are correlated with low ice extent (DeGrandpre et al., 2020). Because

the sea ice carbon pump only applies to the seasonally ice-covered areas, the decline in ice

extent translates into a stagnation of the supplementary carbon uptake toward the end of

the historical period and decreases during all SSP scenarios (Fig. 5.5a). In the SSP5-8.5

projection, the inhibition of the impact of carbon storage in sea ice is linked to drastic

ice loss and therefore to less ice melt. In SSP1-2.6 and SSP2-4.5, the ice seasonal cycle

remains significant, leading to a larger importance of ΔFm.

In all scenarios, except SSP5-8.5, we deem the current and future role of carbon storage

and release by sea ice as non-negligible. Without it, the ACCESS-ESM-1.5 model could be

underestimating carbon uptake over seasonally ice-covered areas by 5 to 15 %, or 10 to 15
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% if we exclude SSP5-8.5. Note that this range differs from our calculation using the shorter

NAPA model run from 2014 to 2019, in which the supplementary carbon uptake increases

the yearly carbon uptake by 30.0 ± 9.1 % (mean ± standard deviation over 6 years). The

discrepancy is mostly due to a lower ice melt simulated by the ACCESS model compared

to the NAPA model (∼18 % lower), though both models have a reasonable agreement

with satellite observations in terms of sea ice extent and concentration. We note that

ACCESS-ESM-1.5 is the only CMIP6 model that provided the ice-ocean freshwater flux

and air-sea CO2 flux, which are necessary inputs for our parameterization. An extension

of this calculation to other ESMs would be possible if suitable output was available for

more models.

Our estimated supplementary carbon flux is consistent with numbers given by Rysgaard

et al. (2011) who suggested that the sea-ice carbon pump could represent 20 % of the

air-sea CO2 flux in open Arctic waters at high latitudes. Rysgaard et al. (2011) assumed

complete subduction of the brine, while we did not. Our estimates are higher than those

from two other modelling studies. Grimm et al. (2016) reported that 7 % of simulated net

polar oceanic CO2 uptake is due to the sea ice carbon pump. Moreau et al. (2016) found a

weakened Arctic carbon sink when including the sea-ice effect. Neither of these two studies

assumed complete subduction and rather diagnosed it from their model, finding it to be

relatively small. It has been previously suggested that the differences between the estimates

of Rysgaard et al. (2011) and Moreau et al. (2016) are due to the different assumption about

subduction. This study does not support that interpretation. While a direct comparison

between all those studies is difficult, we suggest that the vertical resolution is crucial

for properly resolving the mechanisms at play. The coarse resolution used by Grimm

et al. (2016) and Moreau et al. (2016) (9 and 10 layers in the first 100 m, respectively,

compared to 9 layers in the first 10 m in our configuration) prevent them from capturing

the shallow summer mixed layer observed in the Arctic. Using the same resolution as

Moreau et al. (2016) in our 1D model leads to significant changes in the magnitude of
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the air-sea flux, either positive or negative depending on whether the mixed-layer depth is

under- or over-estimated. The importance of high vertical resolution, capable of properly

representing the shallow mixed layers in Arctic regions, is not surprising. On top of that,

a proper representation of subduction, included in the Grimm et al. (2016) and Moreau

et al. (2016) studies but beyond the scope of the present one-dimensional study, would be

important to more fully understand the long-term fate of carbon in the global ocean. Yet, in

an undersaturated ocean, the amplification of the pCO2 seasonal cycle can in itself explain

an increased seasonal carbon uptake. Without any subduction, this would then lead the

Arctic Ocean to reach equilibrium with the atmosphere faster than without accounting for

the sea ice carbon pump, eventually saturating the surface ocean and reducing the carbon

uptake. The output from the ACCESS-ESM1.5 model accounts for subduction, but the fate

of supplementary carbon estimated here cannot be determined without a proper coupling

of a sea ice biogeochemical component. It is therefore unknown whether, at the decadal

time scales considered for that model, carbon flux driven by advection and mixing would

proportionally increase and export the supplementary carbon or whether the latter would

saturate the surface mixed layer, leading seawater pCO2 to catch-up with atmospheric

values faster than without accounting for the sea ice carbon pump. Thus, our estimate

should be considered an upper bound of the impact of the sea ice carbon pump.

While the amplified seasonal cycle of carbonate properties found in our study agrees

well with Mortenson et al. (2020), they suggest a negligible impact of ice-ocean carbon

flux on annual oceanic CO2 uptake. A potential source of this disagreement could be their

lower alkalinity-to-DIC ratio in sea ice (1.25 in their study, 1.8 for this study’s reference

case). We have shown that the resulting supplementary carbon uptake is sensitive to this

ratio (Sect. 5.4.1 and Fig. 5.2).

Our parameterization of the alkalinity-to-DIC ratio may be overly simplistic. First, the

vertical profiles of alkalinity and DIC in sea ice, assumed homogeneous here, might be C-

shaped to follow salinity profiles, though observations do not necessarily support a vertical
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heterogeneity (e.g. Miller et al., 2011; Rysgaard et al., 2009). As long as the parametrized

values are representative of the freezing and melting ice over a seasonal cycle, we believe

that the vertical homogeneity assumption is reasonable. Second, the alkalinity-to-DIC

ratio is known to increase over time. The ratio can change for several reasons: (1) CO2

outgassing from ice to the atmosphere when brine is expelled at the surface (Miller et al.,

2011) or when permeability is restored by increasing temperatures in early spring (Delille

et al., 2014; Nomura et al., 2010) decreases DIC, although uncertainties in these fluxes

are high (Watts et al., 2022), (2) primary production from ice algae consumes CO2 and

nitrate, therefore reducing DIC while increasing alkalinity (Delille et al., 2007; Rysgaard

et al., 2007), (3) formation of ikaite crystals trapped in sea ice retains alkalinity while CO2-

enriched brine is exchanged with seawater (Rysgaard et al., 2007, 2009, 2011). However,

the main driver of supplementary carbon uptake is sea ice melt, occurring towards the

end of the seasonal cycle, when the alkalinity-to-DIC ratio is expected to be highest (Sect.

5.4.1). Therefore, applying a constant, high ratio is likely to best match real conditions

while keeping the parameterization in its simplest possible form. Moreover, while the

value of 1.8 might seem high, it is within the range of observed values (1 to 2, Miller et al.,

2011; Rysgaard et al., 2009, 2011). Nonetheless, a better constraint on this ratio is needed,

which requires a proper understanding of the conditions of ikaite formation.

The empirical linear relation determined in Sect. 5.4.1 (Eq. 5.6) involves annual ice melt

only, to the exclusion of ice formation. Outputs from the 3D numerical ice model show

that whenever the freeze-melt rate is negative (i.e., ice is forming), the ice concentration

is close to 1 preventing gas exchange. While this might be due to artifacts inherent to

numerical models (e.g., lack of resolution of small leads), our linear relation is derived

for application on the latter and therefore stands in this context. It should be noted that

we excluded shallow shelves from our runs, such as the Laptev Sea shelves. Those areas

are highly productive with regard to ice formation in polynyas (exceeding 7 meters per

year, Dmitrenko et al., 2009) and subject to active leads in winter. Therefore, in those
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regions, during ice formation, carbon storage in sea ice could yield anomalous outgassing,

though intense ice formation has also been linked to enhanced CO2 uptakes (Else et al.,

2011). Brine sinking in those areas is also significant enough to form deep water masses

and is therefore likely to provide a carbon export mechanism over multiyear time scales.

Investigating this mechanism would require a fully coupled 3D model.

In this study, a 1D model was used preferentially for computational reasons. This

provided more flexibility for parameterization and sensitivity tests and allowed us to

generate a large ensemble of simulations which would be computationally prohibitive with

a full 3D model. For the same reason, we disabled the biological processes in our 1D

model. It could be hypothesized that respiration will increase pCO2 in winter when ice is

acting as a lid and primary production will lower it in summer, in phase with the chemical

process described here, thus further amplifying the sea ice carbon pump. The storage and

release of carbon by sea ice complete the picture drawn by the rectification hypothesis

(Yager et al., 1995) which assumes that half of the air-sea CO2 exchange that would be

occurring in the typically ice-free ocean is cancelled by the presence of sea ice. While

this rectification hypothesis is fully applicable in areas of local ice formation and melt, the

southern-most areas of our domain of interest (e.g., Labrador Current and East Greenland

Current, Fig. 5.3) only involve melting of advected ice, usually in winter and are therefore

out of phase with the previously described seasonal cycle of pCO2. Melting of advected

sea ice would then decrease pCO2 and increase carbon uptake in winter without modifying

it in summer. Deep convection events frequently happening in those areas could then have

important consequences for the carbon export at depth, but this is beyond the scope of this

study.

5.6 Conclusion

In this study, we used two independent but consistent approaches, a theoretical framework

and numerical models, to explore the effect of storage and release of alkalinity and DIC
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by sea ice on air-sea CO2 fluxes. Our theoretical derivation and numerical results show

that the ice-ocean carbon flux amplifies the seasonal cycle of surface pCO2 in phase with

the seasonal cycle of sea ice concentration. This leads to a significant increase of oceanic

carbon uptake in seasonally ice-covered areas in the Northern Hemisphere. One of the

key findings of this study is that ice melt is a direct driver of the supplementary carbon

uptake and can therefore be used to correct carbon uptake estimates. This supplementary

carbon uptake accounts for 30 % of Arctic Ocean carbon uptake according to our regional,

high-resolution model and for 5 to 15 % in the global, lower-resolution ACCESS-ESM1.5

model, depending on the chosen scenario.

We also provide two novel relations to estimate the impact of sea ice carbonate on

air-sea carbon flux. The first (cf. Eq. 5.5 for the full expression of ΔFt), derived from a

theoretical framework, can be useful for analyzing observational datasets and decomposing

sources of pCO2 variability. The second, ΔFm = 113.6 · FMelt − 10.1, derived from a

linear regression on numerical data, can be used to estimate the missing supplementary

carbon uptake in numerical models that do not account for the sea ice carbon pump. An

important strength of our theoretical framework is that no geographical assumption was

made in its derivation. Eq. 5.5 can therefore be applied to both the Northern and Southern

Hemispheres, keeping in mind that alkalinity and DIC values in sea ice may be different

between both regions, due to environmental conditions (Delille et al., 2014; Fransson

et al., 2011; Rysgaard et al., 2011).

While the results presented here offer a straightforward way for estimating the missing

carbon uptake in ESMs, additional sea ice and under-ice observations will help to better

constrain the impact of carbon storage in sea ice onto air-sea fluxes. Furthermore, it

seems prudent to add sea ice biogeochemistry in numerical models to reduce uncertainties,

especially in regional studies.

This study emphasizes the importance of accounting for carbon storage in sea ice in

numerical models for an accurate simulation of carbon fluxes in polar regions. Further
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model runs explicitly simulating the sea ice carbon pump in projection scenarios would

help validate our results and would provide useful insights into the future carbon cycle in

the Arctic and Southern Oceans, including the role of mixing and advective processes on

the fate of the added carbon. A high vertical resolution would be crucial to properly resolve

the shallow Arctic summer surface mixed layer and the carbon subduction. Modelling

studies dedicated to leads and polynyas would also help to qualify and quantify the sea

ice carbon pump in those areas of intense mixing, as well as providing guidelines on

how to parametrize those mesoscale ice features in low resolution ESMs. Observational

constraints on the temporal and spatial variability of the alkalinity-to-DIC ratio in sea ice

and a better mechanistic understanding of the fate of brine during ice formation season are

crucial for properly simulating those processes. The importance of the sea ice carbon pump

should also be kept in mind when estimating fluxes from observations. A better accounting

of the sea ice carbon pump will also facilitate the global effort to better constrain the

carbon cycle in the oceans and to understand its changes under climate change.
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CHAPTER 6

SUMMARY AND DISCUSSION

J’ai alors dessiné l’intérieur du serpent
boa, afin que les grandes personnes
puissent comprendre. Elles ont
toujours besoin d’explications.1

Le Petit Prince
Antoine de Saint-Exupéry

6.1 Summary

This thesis used a set of theoretical approaches and a hierarchy of numerical models to

investigate interactions between sea ice and the ocean, with a focus on climate-relevant

physical and biogeochemical processes in the Arctic environment. I aimed to provide some

elements of responses to the following overarching questions: (1) How does anthropogenic

climate change impact ocean and sea ice in the Arctic? (2) How can non-linearities of the

complex ice–ocean system modify variability and extremes of physical and biogeochemical

properties? (3) How can numerical models of ice and ocean be used and improved to

1I drew the inside of the boa constrictor, so that the grown-ups could see it clearly. They always need to
have things explained.
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further our understanding of ice-ocean processes? The thesis focused on three specific

topics, namely the non-linearities of governing thickness of the sea ice system, the drivers

and processes controlling marine heatwaves (MHWs) in the Arctic Ocean and the drivers

and future of the sea ice carbon pump.

6.1.1 Non-linearities of the Sea Ice System

Sea ice thickness is governed by non-linear processes that give rise to internal variability.

An accurate prediction of the fate of sea ice requires a better understanding of the processes

giving rise to this internal variability. A simple thermodynamic sea ice thickness model

based on the 0-layer Semtner (1976) model was implemented and run with stochastic,

realistic and idealised atmospheric and oceanic forcing. This model provided answers to

the following motivating questions:

• How sensitive is sea ice thickness to the main thermodynamical model parameters

and to the dominant heat fluxes?

• Given specified atmospheric and oceanic forcing (stochastic, idealised or realistic),

on what time scales does the ice-ocean system respond?

• How do trends in the atmospheric and ice-ocean heat fluxes consistent with anthro-

pogenic climate change modify the response of ice thickness (mean state, internal

variability and trends) in the Arctic Ocean?

The equations of the model were kept in mind while systematically interpreting the

results of the model, in order to build an intuition rooted in physical processes. A large

number of model runs (over 3000) was used either in sensitivity experiments or as ensem-

bles to analyse non-linearities of the ice system. It was found that sea ice is particularly

sensitive to heat conductivity and to the melt albedo of the system, as those two parame-

ters control the dominant feedback mechanisms, namely the albedo feedback and the ice

growth–ice thickness feedback. The latent heat capacity has some impact on the amplitude
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and the winter albedo on the timing of the melting–freezing phases, but less so on the

mean state. Under freezing conditions, the adjustment timescale of ice thickness depends

on the ice state, in line with the literature (Massonnet et al., 2018). Thicker and warmer

ice responds slower to changes in temperature gradient and has a longer memory of the

surface forcing, of the order of several months to several years, instead of weeks to month

for thinner ice. This indicate that sea ice is likely to be slowly varying with respect to

atmospheric variations.

More surprisingly, it was found that sea ice has a dual integration of rapid fluctuations in

the forcing. The first integration results in a change in the mean ice thickness when adding

zero-mean noise to surface forcing, with the addition of stochastic noise to longwave

radiation and atmospheric temperature leading to thinner ice in winter. The second integra-

tion of fast fluctuations leads to a slow variability of sea ice, in line with the adjustment

timescale. Fast “weather” noise added to the atmospheric and oceanic climatological

forcing results in interannual-to-decadal variations of the ice thickness. This draws the

picture of an inverse energy cascade concentrating energy into low frequency variability,

validated by the shape of the gain function (Figure 3.13.b).

Finally, the importance of the ice-ocean heat flux, often ignored or considered as constant

in other standalone ice studies, was found to set not only the mean state of sea ice, but also

its long-term changes, as realistic increasing trends of ice-ocean heat flux have the highest

potential to reduce ice thickness and lead to a summer ice-free Arctic (Figure 3.13.c).

These results can be interpreted in the context of our simple mathematical model. The

equations that the model relies on are basically the combination of a rectifier selecting the

positive phase of the atmospheric heat flux with a non-linear differential equation. The

rectifier explains the mean state change for a zero-mean noise addition and the inverse

term induces the response of ice thickness growth rate inversely proportional to its mean

state. The non-linearity explains the inverse energy cascade, integrating rapid fluctuations

into the low frequency part of the spectrum (Figure 3.13.a).
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6.1.2 Marine Heatwaves in the Arctic Ocean: Drivers and Processes

MHWs are a concern around the globe, as they have significant impacts on ecosystems.

The Arctic Ocean, despite its presumably cold state, is no exception and is experiencing

more frequent and longer MHWs, according to satellite observations. Several questions

were addressed:

• Can numerical models resolve the ice-ocean response to atmospheric anomalous

forcing consistent with MHWs?

• What are the dominant drivers of MHWs in the Arctic environment?

• Does sea ice dampen or exacerbate the ocean’s response to an atmospheric heatwave?

Using a regional ice-ocean coupled numerical model covering the Arctic Ocean and

surrounding oceans at a nominal 1/4° resolution, a heat budget was calculated to decompose

the evolution of the surface mixed-layer temperature as a set of sources and sinks, attributed

to surface, bottom and lateral heat fluxes.

It was found that two thirds of MHWs in the Arctic Ocean are triggered by surface

atmospheric heat flux, but that their dissipation is dominantly driven by bottom and surface

heat fluxes. Lateral advection is a secondary process for both onset and decay of MHWs

(Figure 4.8.a). The dominant drivers of MHWs exhibit spatio-temporal variability, with

lateral advection being important at the Arctic gateways and in winter. The bottom heat

flux plays an important role for the onset in Baffin Bay, Hudson Bay, north of Bering Strait

and in the Greenland Sea, and for the decay everywhere except in the central Beaufort

Gyre. Surface heat flux tends to dominate onset everywhere except north of Bering Strait.

The impact of sea ice melt on MHWs was also determined using a Reynolds decom-

position of the surface heat flux. It was found that the shoaling and sharpening of the

stratification of the surface mixed layer due to ice melt lengthens MHWs beyond their

expected decay and are responsible for 18 to 25 % of the MHWs duration (Figure 4.8.b).
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The freshening of the Arctic Ocean was also found to raise the freezing point of seawater,

enough for the mixed layer temperature to reach the threshold of MHWs, creating winter

MHWs. Similarly, the stability of winter conditions mean that vertical mixing of warm

subsurface waters can lead to low intensity but extreme (according to categories defined

by Hobday et al., 2018) winter MHWs. While the biological relevance of such events is

arguable, such salinity-induced or weak, winter MHWs raise the question of the proper

definition of MHWs in the Arctic and of their influence on sympagic systems.

Overall, this study draws the picture of MHWs as a pathway for heat from the atmosphere

to the subsurface ocean, with potential consequences on downstream or later oceanic

conditions, including ice formation in fall when mixed layer deepening is likely to mix

those subsurface waters back to the surface.

6.1.3 The Sea Ice Carbon Pump: Underestimation of Oceanic Carbon

Uptake in the Arctic Ocean

The importance of the SICP is still debated. In particular, a combined approach using a

theoretical framework and one-dimensional numerical modelling enabled the investigation

of the following questions:

• What are the main drivers of the sea ice carbon pump?

• How can the ice melt influence the cycling of biogeochemical properties in the

Arctic Ocean?

• How will projected ice decline impact oceanic carbon uptake in the Arctic Ocean

during the next century?

First, a theoretical approach was used to find the drivers of the supplementary carbon

uptake due to sea ice carbonate chemistry. This highlighted the role of (gross) ice melt in

setting the amplitude of the supplementary carbon uptake. This expression also highlighted

an exponential dependence on the integrated ice concentration over the seasonal cycle.
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Those results were validated by sensitivity experiments using a coupled hydrodynamic-

biogeochemical model simulating the impact of ice-ocean carbon flux on the air-ocean

carbon flux. In this model, the ice-ocean flux was found to increase the air-sea gas exchange

by 30 ± 9 %. A linear relationship between the supplementary carbon uptake and the ice

melt was then derived and applied to an ESM from the CMIP6 ensemble in different SSP

scenarios. It was estimated that this ESM was underestimating oceanic carbon uptake in the

Arctic by 5 to 15 % depending on the scenario. A better understanding and quantification

of the carbonate chemistry within sea ice is fundamental to not only be able to narrow down

those uncertainties, but also to simply develop and validate the necessary parameterizations

for sympagic ice modelling.

Box 1: “Draw me an elephant!”

Figure 6.1: Arctic and Antarctic Sea Ice Extent comparison. Data from National
Snow and Ice Data Center (NSIDC).

When looking at the sea ice extent in both oceans over the last four decades (Fig. 6.1),
the image of the first drawing of The Little Prince comes to my mind, and I wonder
whether it “frightens” me. And as a grown-up, I too need explanations to understand
those drawings. Why has the ice steadily trended down in the Arctic but not in the
Antarctic? And why is the Antarctic sea ice extent in 2023 more than 4 standard
deviations away from its mean over the last 40 years? Did this thesis unveil enough
processes and ice–ocean interactions to draw the “inside of the boa constrictor”?
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6.2 Discussion

This thesis draws a picture of the Arctic Ocean and sea ice as important components of the

climate system, with sea ice integrating atmospheric weather noise into timescales relevant

to climate modes of variability, lengthening extreme events and participating actively into

controlling greenhouse gas concentrations in the atmosphere.

6.2.1 Sea Ice as an Important Climate Component

The ocean, absorbing 23 % of the anthropogenic carbon and 91 % of the excess heat related

to greenhouse gases, has undoubtedly claimed the dominant role in the climate system.

While sea ice is more spatially constrained, it still plays a significant role in the global

climate. The cryosphere is responsible for 3 to 4 % of excess heat absorption. This thesis

highlights other important contributions of sea ice in the climate.

Sea ice plays a role on various time scales, from days to decades. As seen in Chapter 4,

it lengthens MHWs by several days to weeks. By doing so, it exacerbates extreme events,

with potential repercussions on ecosystems (Husson et al., 2022) which could trickle

down over longer time scales. As highlighted in Chapter 3, sea ice integrates fast weather

fluctuations of the order of days into timescales of years to decades, relevant to climate.

The energy cascade towards the low frequency regulates weather noise to generate climate

variability. The strong internal variability of sea ice, already demonstrated in the literature

(Swart et al., 2015), has been linked to the Arctic Ocean Oscillation (Proshutinsky et al.,

2015), with positive phases associated with thicker ice. While it is commonly assumed

that the AOO and its atmospheric parent the Arctic Oscillation (AO) lead the changes in

oceanic and ice properties, it is not trivial to determine the direction of this causality: one

might expect some level of coupling with sea ice impacting the AOO and AO. Finally,

sea ice hosts an important part of the carbon cycle and alters the chemistry of CO2, the

dominant greenhouse gas. By rectifying oceanic CO2 uptake on seasonal time scales, as

highlighted in Chapter 5, sea ice helps to regulate atmospheric CO2 concentrations and
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mitigate climate change on decadal or even secular time scales.

No matter the emission scenario, the future of sea ice seems fixed to become a seasonal

phenology (Notz and SIMIP Community, 2020), with ice-free summers in the Arctic

Ocean. The memory of sea ice would therefore not exceed the annual timescale. It is then

reasonable to wonder whether this inability to integrate weather noise to lower frequencies

might increase the energy contained at the higher frequencies and therefore exacerbate

weather noise, instead of dampening it. This could lead to more intense extreme events

at the infra-seasonal timescales. The ocean would then have to play a more significant

role in integrating the weather noise, to compensate. This could lead to more MHWs, as

the ice-ocean heat flux would not be integrated to the same scales. In the meantime, the

seasonality of sea ice would remain similar or potentially increase, as the ice growth–ice

thickness feedback would mitigate ice melt by forming more ice in the following winter.

The seasonal future of sea ice would therefore lead to the same lengthening effect for

MHWs and the same magnitude for the SICP. Of course, considering the strong non-

linearities of the sea ice system as emphasized in this thesis, a systematic approach is

required in the future to explore the specifics of those considerations, as sea ice tends to

defy intuition.

6.2.2 Ice – Ocean Interactions

One of the recurring topics through this thesis is the interactions between the ice and

ocean systems. For example, the variability of both systems manifests itself at the different

timescales addressed here. The ice variability tends to impact the ocean’s variability and

vice versa. Oceanic heat flux varying over days to months is integrated by the sea ice

system into internal variability over interannual to decadal time scales. Anomalous ice melt

at the seasonal scale feeds back to the ocean by lengthening MHWs by days or weeks, but

also by freshening the Arctic Ocean on interannual scales and therefore raising the freezing

point, pre-conditioning the mixed-layer temperature seasonal cycle. The ice–ocean heat

flux, despite the lack of multiyear continuous measurements, is of critical importance in
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setting the ice thickness mean state and long-term trend. The presence of sea ice also

modifies the biogeochemistry in the underlying ocean, while the carbonate properties of the

freezing seawater dictate the alkalinity and DIC concentrations in the ice. The temperature

of the brine is also an important factor for the ikaite precipitation, thereby raising the

question of the role ice–ocean heat flux into the carbonate system and bringing back the

ocean heat – carbon nexus mentioned in Chapter 1. The nutrient concentration of the upper

ocean and the flushing of brine in sea ice would also control sympagic algal growth, with

here again consequences on light absorption by phytoplankton and a modification of the

albedo, modifying the heat fluxes at the ocean surface.

The strong coupling between ice and ocean leads to numerous non-linearities, high-

lighted throughout this work. The thermodynamics of sea ice act as a rectifier for the

atmospheric heat flux, downplaying its negative phase and increasing its positive phase

through the albedo feedback. The same can be said about the SICP. A rectification hy-

pothesis was first proposed by Yager et al. (1995) to explain the air-sea CO2 flux seasonal

cycle in the Northeast Water Polynya, with biology leading to a carbon uptake in summer

while the seasonal ice cover prevents outgassing in the winter months when respiration

would lead to excess carbon. Very similarly, the SICP leads to a strong oceanic carbon

uptake during open water season, and while the ice formation leads to high DIC values and

anomalous supersaturation of pCO2, the high concentration of sea ice prevents outgassing,

in phase with this rectification hypothesis.

Occurrences of oceanic extreme events, whether MHWs, deoxygenation or acidification,

are of great interest for the scientific community as they are likely to exert a strong

control on the resilience of ecosystems. In the Arctic Ocean, while deoxygenation is

not an immediate concern due to the high oxygen solubility of cold waters, MHWs

and acidification have been repeatedly observed. Chapter 4 unveiled a mechanism by

which ice melt lengthens MHWs and Chapter 5 highlighted ice melt as a dominant driver

for supplementary carbon uptake. This higher CO2 uptake increases acidity levels by
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modifying carbonate concentrations, leading in turn to undersaturation state of aragonite

(Sarmiento and Gruber, 2006; Yamamoto-Kawai et al., 2009). Ice melt can therefore be

anticipated to be driving co-occurrence of two extreme events, also called a compound

event. With Arctic Amplification, increased heat fluxes into the ocean, increased amplitude

of the seasonal cycle of sea ice including increasing ice melt and increased atmospheric

levels of pCO2 leading to increased oceanic carbon uptake boosted by ice melt and the

SICP, the occurrence and intensity of those compounds events should be expected to

increase as well. While aragonite undersaturation has so far only been observed in the

oligotrophic surface waters of the Beaufort Gyre, an spatial expansion of the acidification

to more productive coastal or Eurasian environments could threaten ecosystems Indigenous

communities rely upon, with potential consequences on food security.

6.2.3 The Value of Numerical Models for Arctic Studies

This thesis relied heavily on a mix of theory and numerical models to attain the objectives

set in the introduction. The use of simple numerical models, such as the 0-layer ice

thickness model used in Chapter 3 or the 1D GOTM-PISCES model used in Chapter 5, were

valuable to explore sensitivity of the model parameters. The ease of implementation and

development of those simple models enable for parameter–space analyses (e.g Figure 5.2).

The large number of model runs that can be provided with these cost-efficient (from a

computational perspective) models provide statistical robustness, necessary when using

stochastic forcings to distinguish the source of results between external forcings and

internal behaviour. A main limitation of those simple numerical models is that they

might lack realism, as they rely on many simplifying assumptions that would break when

compared to the real ocean and sea ice. Nonetheless, their qualitative behaviour can be

sufficient to explore processes and relationships in a confident manner. For example, the

simple sea ice model forced with stochastic forcings generates internal variability with

time scales of 6 to 9 years, surprisingly accurate (cf. Figure 1.2).

Another strength of those simple numerical models is that they can be easily compared
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with theory. The typically small number of equations implemented in those models can

be kept in mind and relied upon to interpret the results. The ice thickness–ice growth

negative feedback, visible in the model results, is readily explained by the non-linear term

related to heat conduction within the ice, obvious in Eq. 3.5. Similarly, the strong linear

relationship between the ice melt and the supplementary carbon uptake and the exponential

relation to ice cover (Figure 5.4) hints toward the possibility of connecting those results to

a mathematical expression. This independent derivation (Appendix E) provides an elegant

validation and complementary tool to better understand the drivers of the SICP. Mixing

simple models and theory is a fruitful pathway for exploring processes and developing and

intuition of complex systems.

On the other end of the spectrum complex general circulation models such as the

3Oceans model provide realistic results, that can be compared with available observations.

They then become complementary to observations, as they fill spatial and temporal gaps

left by observational tools. The 3Oceans model was for example the primary source of

information for generating realistic ice–ocean stochastic heat fluxes for the simple ice

model, as the 3Oceans was in line with ITP observations and covered several years and the

whole Arctic Ocean. Complex models also provide more outputs than simple models, as

they simulate more processes. Those outputs can then be used to calculate the heat budget

necessary for the disentangling of processes controlling MHWs in the Arctic Ocean. Their

computational cost is a significant limitation, as simulating a few years of data can take

several months on high-performance computing infrastructure. Sensitivity experiments or

stochastic forcings have then to be thoroughly thought through to yield the best results, as

there is little space for mistakes.

Nonetheless, the dominant limitation of using numerical models in the Arctic environ-

ment remains the scarcity of observations they can be validated with.
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6.2.4 New Avenues of Research

Many limitations constrain the interpretation and robustness of the results presented in this

work. The mathematical and numerical models all lack some physical and biogeochemical

processes. While I argued throughout this thesis that validations, theoretical arguments

and the scientific literature provide confidence that those models are useful and reliable

in the context they are used, some of those missing processes could be important in

specific cases. More importantly, observations, whether in-situ or remote, to constrain the

parameterizations and forcings are crucially lacking. While the ice–ocean heat flux is of

primary importance to set the mean state, internal variability and trend of ice thickness,

the literature is scarce regarding its seasonal cycle, interannual variability and evolution.

A significant corpus of research estimated the ocean heat transport through the Arctic

gateways (e.g. Beszczynska-Möller et al., 2012; Woodgate, 2018; Auclair and Tremblay,

2018; Årthun et al., 2019; Timmermans and Marshall, 2020; Docquier and Koenigk, 2021),

relating this increased inflow to an actual change in the heat flux at the ice–ocean interface

is not trivial. Obtaining multiyear in-situ observations is a major challenge to overcome to

better constrain sea ice internal variability and ice–ocean feedbacks.

This sensible heat flux is typically calculated using the temperature gradient at the

ice–ocean interface (McPhee, 2008) and a common assumption (observed in this work as

well) is to keep the temperature at the bottom of the ice at the freezing point. If I consider

the temperature at the ice bottom to be at equilibrium with the sea water temperature

immediately below the ice, it makes sense that this temperature cannot physically go

below the freezing point (neglecting the possibility for supercooled seawater). Yet, nothing

should prevent the temperature to go above the freezing point, as long as it remains below

the ice melting point. No mention of such a degree of freedom was found in the current

literature, despite reports of under-ice seawater temperatures well above the freezing point

(Witte et al., 2021). If ice bottom temperature can evolve above this freezing point, the sign

and magnitude of the ice–ocean heat flux could be significantly altered and the onset of ice
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melt or formation could be similarly impacted. In-situ observations in salinity-dominated

environments such as fjords, in parallel with some mathematical refinement of the seminal

work by McPhee (2008) and of the coupling of a simple ocean layer to the simple ice

thickness model presented here could provide insights on the quantitative importance of

this degree of freedom and on whether it should be implemented in future work or not.

Similarly, the difficulty to obtain time series of sympagic carbonate properties, including

alkalinity and DIC concentrations, is a major limitation to better understand the SICP and

to quantify its importance. International effort is underway to compile in-situ observa-

tions of sympagic biogeochemical properties and to address related scientific questions

(e.g. Lannuzel et al., 2020). Their results could provide a valuable basis to develop ice

biogeochemical models (Steiner et al., 2016; Mortenson et al., 2017, 2018).

It is interesting to note that the sea ice carbon pump is a natural occurrence of ocean

alkalinisation, also a geo-engineering technique currently receiving a lot of attention.

Further understanding the sea ice carbon pump could help to estimate the scale and

feasibility of alkalinity enhancement. If, from a conservative approach, the SICP was

increasing by 30 % the Arctic oceanic carbon uptake that accounts for 14 % of global

oceanic carbon uptake (upper estimate from Bates and Mathis, 2009), knowing that the

ocean absorbs 23 % of anthropogenic carbon emissions, the SICP would represent less

than 1 % of total anthropogenic carbon emissions, while occurring yearly at the scale of a

full ocean and mobilising tens of thousands of cubic kilometers of sea ice. While sea ice

is not a perfect source of alkalinity, as it also produces DIC during ice formation, better

constraining alkalinity values would help to compare to the considered geo-engineering

projects and provide bounds to the expected impact of those projects.

As sea ice melts steadily and gets closer to a seasonal state, the role of the Arctic

Ocean to regulate the polar climate will increase. Changes in the circulation and the

stratification, more frequent and longer extreme events, longer open water season leading

to a stronger role as a heat and carbon sink are some of the expected changes. It remains to
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be determined if some of the processes investigated in this work could be transposed, at

least partially, to the Southern Ocean, which is also experiencing drastic changes (Box 1).

For example, do MHWs in the Southern Ocean also provide a pathway for heat to the

subsurface waters?
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APPENDIX A

FURTHER ANALYSIS FOR CHAPTER 3

A.1 Time Scale Derivation

During the growth phase, the ice growth rate follows

∂Hi

∂t
= −kiΔT

LiHi

− Fw

with ΔT = Ts − Tb. We aim to linearize this expression around a mean ice thickness H0.

Then H = H0 + h which can be rearranged as H
H0

= 1 + h
H0

. We assume that h
H0

<< 1

and use the first order Taylor series 1
1+h

= 1− h for h small. Then

−kiΔT

LiHi

− Fw = − kiΔT

LiH0

(
1 + h

H0

) − Fw

≈ −kiΔT

LiH0

(
1− h

H0

)
− Fw

Reintroducing h = Hi −H0, we obtain

∂Hi

∂t
≈ kiΔT

LiH2
0

Hi − 2
kiΔT

LiH0

− Fw
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We recognize the shape of an ordinary differential equation of order 1 y′ = ay + b. The

solution of such an equation is an exponential decay with a time scale τ = 1
a
, which here

yields τ =
LiH

2
0

kiΔT
.

A.2 Energy Cascade: Harmonic generation

The ice model during the growth phase follows

Hi
∂Hi

∂t
= − ki

Li

ΔT (A.1)

with ΔT = Ts − Tb. We assume that the temperature difference inside the ice varies as a

sinusoidal ΔT = ATe
iωTt of amplitude AT and frequency ωT and that the ice thickness to

respond as a sinusoidal Hi = AHe
iωHt with an amplitude AH and frequency ωH. Note that

the amplitude AH ∈ C and that any phase change is therefore included. If we inject those

expressions in Eq. A.1, we obtain

A2
HiωHe

i2ωHt = − ki
Li

ATe
iωTt (A.2)

This equation is true for all t, including t = 0 which provides

A2
HiωH = − ki

Li

AT ⇒ AH =

√
i
kiAT

LiωH

Using this expression, we can simplify Eq. A.2 to

ei2ωHt = eiωTt

This yields ωH = ωT

2
: the frequency of Hi is the half-harmonic of its forcing ΔT .

If we assume both variables to be stationary, we can decompose them into Fourier series,

and apply this calculation to all frequencies. This is similar to what is done in turbulence
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theory and explains the energy cascade. It can be noted that the amplitude of the response

|AH| is proportional to
√

1
ωH

.
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APPENDIX B

SUPPLEMENTARY FIGURES FOR

CHAPTER 3

The simple ice thickness model is forced with realistic stochastic forcing. The air tempera-

ture and longwave and shortwave radiation are decomposed into a trend, a climatology and

normalized residuals. An illustration of this decomposition for conditions representative of

a thin perennial ice state was provided in Figure 3.2. The decomposition for atmospheric

conditions leading to seasonal and thick perennial ice states are provided below.
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Figure B.3: Location of the three representative grid cells (red crosses) for the three ice
states considered in this study. The contours show the average September ice concentration
for 2014-2020, according to CDR satellite observations (Comiso and Nishio, 2008).
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APPENDIX C

FURTHER ANALYSIS FOR CHAPTER 4

C.1 Reynolds decomposition

Because ρ0cp is constant, the decomposition is restrained to the Fsurf

H
term:

Fsurf

H
=

(
Fsurf + F ′surf

)( 1

H
+

(
1

H

)′)

= Fsurf
1

H
+ F ′surf

1

H
+ Fsurf

(
1

H

)′
+ F ′surf

(
1

H

)′
(C.1)

The first term on the rhs is the climatology of the surface heat flux in the mixed layer,

the second term accounts for the anomaly of heat due to changes in the heat flux only, the

third term accounts for the heat anomaly due to changes in the mixed layer depth only and

the last term represents influence of co-occurring anomalous changes in both the surface

heat flux and the mixed layer depth. The time-mean of this last term is not null, though it

is very small and could be neglected (not shown):

F ′surf

(
1

H

)′
= F ′surf

(
1

H

)′
+

(
F ′surf

(
1

H

)′)′
(C.2)

≈
(
F ′surf

(
1

H

)′)′

The time-mean part of the covariant term F ′surf
(

1
H

)′ needs to be added to the climatological
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term of equation 4.6 to fully retrieve the climatological surface heat flux of equation 4.5:

Qsurf =
1

ρ0cp

Fsurf

H
=

1

ρ0cp
Fsurf

1

H
+

1

ρ0cp
F ′surf

(
1

H

)′
(C.3)

The other terms of equation 4.6 including the anomalies of the covariance term
(
F ′surf

(
1
H

)′)′
are contributing to the anomalous surface heat flux

Q′
surf =

1

ρ0cp
F ′surf

1

H
+

1

ρ0cp
Fsurf

(
1

H

)′
+

1

ρ0cp

(
F ′surf

(
1

H

)′)′
(C.4)

Similarly to the full heat budget approach, one can integrate each of those terms during

the onset and decay of an MHW to get a contribution to the temperature anomalies in °C,

and therefore determine the dominating mechanism, between the surface heat flux or the

variation of the mixed layer depth.

C.2 Uncertainty Calculations for Marine Heatwaves

drivers

The temperature tendency anomaly during the onset of an MHW, occurring between the

beginning at time t0 and the peak at time tp, is

∫ tp

t0

∂T

∂t

′
dt =

∫ tp

t0

Q′
latdt+

∫ tp

t0

Q′
surfdt+

∫ tp

t0

Q′
botdt+

∫ tp

t0

Q′
residt (C.5)

The residual integral
∫ tp
t0

Q′
residt is used to constrain bounds by assigning it entirely to each

of the other terms, one by one:

∫ tp

t0

(
∂T

∂t

)∗′
dt =

∫ tp

t0

Q′
latdt+

∫ tp

t0

Q′
surfdt+

∫ tp

t0

Q′
botdt (C.6)
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with
(
∂T
∂t

)∗′
= ∂T

∂t

′ −Q′
resi, then

∫ tp

t0

∂T

∂t

′
dt =

∫ tp

t0

(Qlat)
∗′ dt+

∫ tp

t0

Q′
surfdt+

∫ tp

t0

Q′
botdt (C.7)

with (Qlat)
∗′ = Q′

lat +Q′
resi,

∫ tp

t0

∂T

∂t

′
dt =

∫ tp

t0

Q′
latdt+

∫ tp

t0

(Qsurf)
∗′ dt+

∫ tp

t0

Q′
botdt (C.8)

with (Qsurf)
∗′ = Q′

surf +Q′
resi and

∫ tp

t0

∂T

∂t

′
dt =

∫ tp

t0

Q′
latdt+

∫ tp

t0

Q′
surfdt+

∫ tp

t0

(Qbot)
∗′ dt (C.9)

with (Qbot)
∗′ = Q′

bot +Q′
resi.

For each those four equations C.6-C.9, the terms on the rhs are quantified and their

contributions to the onset of an MHW can therefore be bounded by those different estimates.

In order to calculate percentages of the total temperature change, the rhs of the equation is

divided by the lhs. Estimates from Eq. C.6 are therefore different from the estimates of

non-starred terms of Eq. C.7-C.9.
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APPENDIX D

SUPPLEMENTARY FIGURES FOR

MARINE HEATWAVES IN THE ARCTIC

OCEAN

Figures complementing the analysis of MHWs in the Arctic Ocean (Chapter 4) are provided

below. In particular, Figure D.1 illustrates the sensitivity of MHW detection to the criteria

choice. Figures D.2 and D.3 show the seasonality of MHWs and their primary drivers and

the sea ice conditions during MHWs. The impact of the ML shoaling due to ice melt on

duration and mean intensity is shown in Figure D.4.
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Figure D.1: Impact of criteria choice on detected MHW. Number of remaining MHWs
for the whole period (n, in legend) and for each month (bars), with low intensity criteria
(0.05°C, grey), criteria selected for this study (0.1°C, blue) and strict criteria (0.2°C, pink).
A proper criteria eliminates the winter, small amplitude MHWs while keeping the summer
MHWs.
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Figure D.2: Seasonality of MHWs and primary process. Number (left y-axis) and
percentage (right y-axis) of MHWs primarily driven by lateral advection (blue), surface
heat flux (yellow) and vertical flux (red) for onset (a, c, e, g) and decay (b, d, f, h), in
winter (a and b), spring (c and d), summer (e and f) and autumn (g and h).
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Figure D.3: Sea ice conditions during MHWs. Percentage of MHWs primarily driven by
lateral (blue), surface (yellow) and bottom (red) heat fluxes for onset (a, b and c) and decay
(d, e and f) when ice is melting (a and d), absent (b and e) or freezing (c and f). The total
number of MHWs detected for each phase and ice condition is indicated in the top right
corner of each panel.
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Figure D.4: Changes in MHW metrics when removing the impact of mixed layer shoaling
due to ice melt. Distribution of (a) duration and (b) mean intensity for MHWs as detected
(grey), when removing the contribution of the Fsurf

(
1
H

)′ (blue) and when removing the
contribution of Fsurf

(
1
H

)′
+ F ′surf

(
1
H

)′ (orange). Changes in the distributions of MHW (c)
duration and (d) mean intensity when removing the contributions of the two previously
mentioned terms from the MHWs.
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APPENDIX E

THEORETICAL DERIVATION OF

SUPPLEMENTARY CARBON UPTAKE

DUE TO THE SEA ICE CARBON PUMP

E.1 Theoretical Derivation

How does storage of carbon in sea ice impacts the partial pressure of CO2? To answer

this question, one can consider the upper layer of the ocean, partially covered by sea ice

forming and melting. The atmospheric pCO2 and wind speed at 10m height are known,

as are the ice concentration and melting-freezing rate and the ocean surface temperature

and salinity. The surface ocean pCO2 (in μatm) would vary along the seasonal cycle

due to changes in temperature, salinity, air-sea gas exchange, dilution and concentration

related to surface freshwater fluxes (either from precipitation-evaporation, or from ice melt

and formation). Biology would also impact carbonate properties due to production and

respiration. Finally, advection and mixing could also modify surface properties.

Two scenarios emerge, with for sole difference the storage and release of alkalinity and

dissolved inorganic carbon (DIC) by sea ice.

• The first scenario, called CTRL (for control), corresponding to current Earth System

Models, does not have any carbon in sea ice. In this case, sea ice melt and formation

only dilutes and concentrate carbonate properties in underlying seawater, decreasing
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or increasing pCO2 accordingly.

• The second scenario, called ICE (for Ice Carbon Experiment) corresponding to a

more realistic approach, stores some alkalinity and DIC in sea ice. In this case,

when ice melts or freezes, on top of diluting or concentrating carbonate properties in

underlying waters, it also creates a flux of alkalinity and DIC between ice and ocean.

This will further modifies pCO2 due to chemical equilibration processes.

The difference in pCO2 between those two scenarios will in turn modify the magnitude of

the air-sea gas exchange.

E.1.1 Differential Equation

From a mathematical perspective, the difference in pCO2 between both scenarios would

translate as follow. Initial conditions are identical in both scenarios, so pCOICE
2 (t = 0) =

pCOCTRL
2 (t = 0). If f is the difference in pCO2 between both runs at each time t, Then:

∀t, pCOICE
2 (t) = pCOCTRL

2 (t) +

∫ t

0

f(s)ds

If non-linearities are neglected, temperature, salinity and biology changes would impact

pCO2 similarly in both runs. DIC and Alk changes due to dilution and concentration or

mixing would have the same impact on pCO2 in both cases as well. So all those processes

can be excluded from f .

The impact of the carbon flux between ice and ocean on pCO2 needs be taken into

account in f . [Alk]ice and [DIC]ice are the alkalinity and DIC concentration inside the

sea ice, respectively, in mmol m−3 and are assumed to be spatially constant. The flux of

alkalinity and DIC between the ice and the ocean is assumed to be directly proportional

to the freshwater flux between ice and ocean, F ice−sea
FW , in m s−1. In this case, the ice-

ocean flux of alkalinity would be equal to [Alk]ice F ice−sea
FW , and that of DIC would be

[DIC]ice F ice−sea
FW .
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Moreover, this carbon flux, by modifying the surface water pCO2, would induce a

difference in the air-sea gas exchange between both scenarios, written as:

ΔFair−sea
CO2

= Fair−sea, ICE
CO2

−Fair−sea, CTRL
CO2

ΔFair−sea
CO2

= −kg(t)SCO2(t)λ(t)
(
pCOICE

2 (t)− pCOCTRL
2 (t)

)

where kg is the gas piston velocity (m s−1), SCO2 is the CO2 solubility (kg m−3 Pa−1)

and λ = 1 − Ci the lead fraction (unitless). The air-sea carbon flux ΔFair−sea
CO2

and the

ice-ocean carbon flux are the only two non-negligible processes that need to be accounted

for in f .

Since f corresponds to the change in pCO2 due to those fluxes, we need to multiply

the two different fluxes by the slope of pCO2 in the alkalinity or DIC domain, ∂pCO2

∂Alk
and

∂pCO2

∂DIC
. Note that those two terms are fluxes at the surface and therefore have units of μatm

m−2 s−1. To match the pCO2 which has units of μatm, we can focus on surface layer of

thickness H0 (m).

Then

pCOICE
2 (t) = pCOCTRL

2 (t) +

∫ t

0

∂pCO2

∂DIC

1

H0

ΔFair−sea
CO2

(s)ds

+

∫ t

0

(
∂pCO2

∂Alk
(s)

1

H0

[Alk]iceF ice−sea
FW (s) +

∂pCO2

∂DIC
(s)

1

H0

[DIC]iceF ice−sea
FW (s)

)
ds

Then, with the notation g(s) = ∂pCO2

∂Alk
(s)[Alk]ice +

∂pCO2

∂DIC
(s)[DIC]ice and ΔpCOi−c

2 =

pCOICE
2 − pCOCTRL

2 , we get:

ΔpCOi−c
2 (t) =

∫ t

0

∂pCO2

∂DIC

1

H0

ΔFair−sea
CO2

(s)ds+

∫ t

0

1

H0

g(s)F ice−sea
FW (s)ds (E.1)
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So, using the gas transfer formulation:

ΔpCOi−c
2 (t) =

∫ t

0

−∂pCO2

∂DIC

1

H0

kg(s)SCO2(s)λ(s)ΔpCOi−c
2 (s)ds

+

∫ t

0

1

H0

g(s)F ice−sea
FW (s)ds

While proving the differentiability of all those variables is beyond the scope of this

study, it can be noted that they are continuous and unlikely to present any break or cusp.

We will therefore assume that we can safely differentiate the previous expression to obtain

the following linear differential equation of the first order:

∂ΔpCOi−c
2 (t)

∂t
= −∂pCO2

∂DIC

1

H0

kg(t)SCO2(t)λ(t)ΔpCOi−c
2 (t) +

1

H0

g(t)F ice−sea
FW (t)

(E.2)

E.1.2 Solving an EDL1

According to the Cauchy-Lipschitz theorem, the Ordinary Differential Equation of order 1

y′ + ay = b has a unique general solution (Cauchy, 1861) of the form:

y(t) = e−A(t)

(
K +

∫ t

t0

b(s)eA(s)ds

)

with A(t) a primitive of a(t) over the proper intervalle and K a constant that depends on

initial conditions (at t0).

So for equation E.2, a general solution would be of the form:

ΔpCOi−c
2 (t) = e−A(t)

(
K +

∫ t

0

1

H0

g(s)F ice−sea
FW (s)eA(s)ds

)

with A(t) =
∫ t

0
∂pCO2

∂DIC
1
H0

kg(s)SCO2(s)λ(s)ds+α a primitive of ∂pCO2

∂DIC
1
H0

kg(t)SCO2(t)λ(t).

Since the initial conditions for the control and sensitivity runs are identical, ΔpCOi−c
2 (t =

0) = 0 ⇒ K = 0.
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So ∀t,ΔpCOi−c
2 (t) = e−A(t)

∫ t

0
1
H0

g(s)F ice−sea
FW (s)eA(s)ds

E.1.3 Uptake difference

Inserting this solution in equation E.1 and rearranging, we get:

∫ t

0

1

H0

∂pCO2

∂DIC
ΔFair−sea

CO2
(s)ds =e−A(t)

∫ t

0

1

H0

g(s)F ice−sea
FW (s)eA(s)ds

−
∫ t

0

1

H0

g(s)F ice−sea
FW (s)ds

If we consider H0 to be constant, we can move it out of the integrals and make it disappear.

Similarly, if ∂pCO2

∂DIC
is constant and non-null, we can move it outside the integral and divide

both side by it.

We can then rearrange as follow:

∫ t

0

ΔFair−sea
CO2

(s)ds = ΔF =
1

∂pCO2

∂DIC

∫ t

0

g(s)F ice−sea
FW (s)

(
eA(s)−A(t) − 1

)
ds

Note that we can show that if λ(t) = 0, then ΔFair−sea
CO2

(t) = 0. So we find again the

result that the difference in uptake only depends on melting flux (with the assumption that

if λ �= 0, ice is melting).

Using realistic alkalinity, DIC and pCO2 values for the Arctic Ocean ([Alk]sw = 2300

mmol m−3, [DIC]sw = 2100 mmol m−3, [Alk]ice = 540 mmol m−3, [DIC]ice = 300 mmol

m−3 and pCO2 = 280 μatm and Revelle and alkalinity factors of 14 and -13.3 respec-

tively), it yields g(t) ≈ −314 which is negative. All the terms inside the integrand of

A(t) =
∫ t

0
∂pCO2

∂DIC
1
H0

kg(s)SCO2(s)λ(s)ds+ α are positive, meaning A(t) is monotonously

increasing with t. So t > s ⇐⇒ A(t) > A(s). This means that eA(t)−A(s) < 1. Therefore,

the sign of the integrand is determined by the sign of F ice−sea
FW .

E.1.4 Idealized case

If we make the assumption that wind speed and solubility are constant for the time period

when ice is not fully covered the water (i.e. ∀t, ∂pCO2

∂DIC
1
H0

kg(t)SCO2(t) ≡ κ), we can
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rewrite:

A(t) =

∫ t

0

∂pCO2

∂DIC

1

H0

kg(s)SCO2(s)λ(s)ds = κ

∫ t

0

λ(s)ds

= κΛ(t)

with Λ(t) =
∫ t

0
λ(s)ds. Similarly, we can consider that ∀t, g(t) ≡ γ. Then:

∫ t

0

ΔFair−sea
CO2

(s)ds =
1

∂pCO2

∂DIC

γ

∫ t

0

F ice−sea
FW (s)

(
eκ(Λ(s)−Λ(t)) − 1

)
ds (E.3)

This expression can be evaluated with the ice concentration and the freezing-melting

flux used to force the 1D model, described in Section 3.a. To do so, values for γ and κ need

to be determined. Using values from Section E.1.3, we can set γ = −314 μatm. Similarly,

relying on values from Takahashi et al. (1993), ∂pCO2

∂DIC
= 1.9 μatm mol−1 m3. Following

Wanninkhof (2014), their eq. 6, and using an average squared wind speed of 50 m2 s−2

and a surface layer of 1 m, we can set κ = 7.7× 10−4 < U2 > ∂pCO2

∂DIC
1
H0

= 7.3× 10−2.
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APPENDIX F

SUPPLEMENTARY FIGURES FOR THE

SEA ICE CARBON PUMP STUDY

A few figures for validation of the 3Oceans model and the one-dimensional GOTM-FABM-

PISCESv2 model are provided below.

Figure F.1: Histograms of freezing and melting as a function of ice concentration. calcu-
lated with daily outputs for the NAPA model, from 2014 to 2019, over the 732 grid cells
used for the 1D simulation ensemble.
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Figure F.2: Validation of sea ice: comparison between merged CryoSat2-SMOS satellite
observations and 3Oceans model. Colours show observations minus model ice thickness
during the month of maximum extent (March), averaged over 2014-2019. The contours
show the ice extent, calculated as the 15% isoline for ice concentration. For details about
satellite product, refer to Ricker et al. (2017)

Figure F.3: Comparison of 1D numerical model outputs with mooring observations from
DeGrandpre et al. (2019) in the Beaufort Gyre station location (78°N, 150°W).
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