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Abstract

Sea scallops (Placopecten magellanicus) comprise the fifth largest fishery in Canada,

the vast majority of which occurs in the Maritimes. To ensure the long-term sus-

tainability of the scallop fishery, fisheries scientists provide essential information to

DFO, including annual scallop biomass, enabling the dynamic adjustment of fishing

policies to maintain a healthy scallop population. Measuring scallop meat weights is

more challenging and time-consuming compared to measuring their shell heights. As

a result, a Length-Weight Relationship (LWR) is commonly used to estimate scal-

lop meat weights based on their shell heights. However, both meat weight and shell

height exhibit temporal and spatial variability. The original LWR lacks the ability to

comprehensively account for both aspects of variability, resulting in predictions that

lack spatiotemporal accuracy. Consequently, we have developed the Joint Weight

Height Model (JWHM) to enhance the foundational LWR by effectively addressing

the intricacies of spatial and spatiotemporal variations in both meat weight and shell

height. The JWHM is formulated within the Spatiotemporal Model (STM) frame-

work to capture these variations through a Matérn Gaussian Markov Random Field

(GMRF). This model accommodates the potential influence of environmental vari-

ables including depth, temperature, salinity, and stress, which can impact the both

scallop meat weight and shell height.

Our goal is to propose a JWHM to improve available estimates of scallop meat

weights in the Bay of Fundy. The resulting JWHM uncovers intriguing patterns

related to scallop conditions and significantly improves current predictions of scallop

meat weight in the Bay of Fundy.
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Chapter 1

Introduction

Sea scallops (Placopecten magellanicus) play an important role for the economy

in fisheries in Atlantic Canada as they comprise the fifth largest fishery in Canada,

the vast majority of which occurs in the Maritimes (Fisheries and Oceans Canada,

2021).

Figure 1.1: Sea scallops (P. magellanicus).

Photo credit: Jessica Sameoto, 2023

Indeed, overfishing stands as a significant contributor to the decline in fish

stocks and the destruction of marine habitats (Fisheries and Oceans Canada, 2009).

This practice can lead to unhealthy growth patterns in fish populations and, in severe

cases, result in increased mortality rates. Currently, the earth’s marine ecosystems are

1
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Figure 1.2: Sea scallop fishing vessel from the Maritimes.

Photo credit: Jessica Sameoto, 2023

subject to excessive fishing pressure, sometimes surpassing their capacity to maintain

healthy fish populations. This distressing trend has led numerous species perilously

close to extinction. The consequences of overfishing extend beyond ecological impli-

cations, as they also inflict substantial economic losses upon the fishery industries

(ECO, 2018). For instance, during the 1990s, Newfoundland and Labrador experi-

enced a catastrophic collapse of the Atlantic Canadian cod fishery, an event widely

recognized as a result of overfishing (Myers et al., 1997). This devastating collapse

had profound repercussions on the Atlantic regional economy (Higgins, 2009).

To ensure the long-term sustainability of the scallop fishery, DFO has imple-

mented regulations under the Atlantic Fishery Regulation (Canada, 2018). These

regulations are designed to protect overexploitation of scallops and minimize the im-

pact on the seabed caused by excessive trawling (Branch, 2022).

Fisheries science entails a rigorous scientific process of analysing available data

to provide decision makers with the necessary information (e.g., maximum sustainable

yield) to make reasoned choices (Canada, 2021). Fisheries scientists use mathematical

and statistical models called stock assessment models to analyze and understand the
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impact of fishing and environmental factors on fish stocks (NOAA Fisheries, 2023).

Length-Weight Relationship (LWR) plays a crucial role in fisheries science as

they offer valuable information about the growth, general well-being, and fitness of fish

species in marine habitats (Jisr et al., 2018). By analyzing LWRs, experts can better

understand the growth patterns, condition, and overall status of fish populations,

enabling more informed decision-making in sustainable fisheries management.

DFO has conducted an annual tow survey to monitor the Atlantic sea scallop

biomass in the Bay of Fundy since 1981. The survey design follows a stratified random

approach, with strata defined to align with historical areas of fishing effort (Fisheries

and Oceans Canada, 2017). Higher fishing effort is assumed to correlate with bet-

ter scallop habitat. In this design, tows are randomly distributed within each survey

stratum within the Scallop Production Areas (SPA) during each sampling event (Fish-

eries and Oceans Canada, 2017). For all tows, the shell heights are measured and

recorded in 5 mm size bins. However, weighing scallops is more challenging and time-

consuming than simply measuring their heights. DFO aims to sample approximately

half of all tow locations to measure both the meat (adductor muscle) and the exact

shell height (Yin et al., 2022). However, various factors including weather conditions

and vessel limitations, may result in fewer than half of the tows being sampled on

occasion. Given that only a subsample of scallops caught in the field are actually

weighed, having knowledge of the LWRs becomes crucial for estimating scallop abun-

dance. LWRs provide a valuable tool to estimate the weight of scallops based on

their length, allowing researchers to approximate the weight of the entire population

without weighing each individual. To be more specific, by measuring the lengths of a

representative subset of scallops and applying established LWRs, it becomes possible

to estimate the weights of the entire sample accurately. This approach not only saves

time and resources but also enables researchers to obtain essential weight data for
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population assessments, growth analyses, and fisheries management decisions. By

understanding and utilizing LWRs, scientists can derive important insights into the

health, condition, and size structure of scallop populations, even when direct weighing

of all individuals is not feasible.

Environmental factors play an important role in the LWRs of sea scallops. To

be more specific, scallop growth can be influenced by environmental factors, including

depth and salinity, which can be related to the quality of their living habitats (Silina,

2023).

Depth can affect factors such as light availability and substrate composition,

which in turn can impact scallop growth and survival (Côté et al., 1993). Bottom

salinity levels also play a crucial role, as wild scallops may have specific osmotic gra-

dient requirements to maintain physiological balance with their surroundings (Urbina

& Glover, 2015). Furthermore, bottom temperature can be an influential factor for

most fish species, including sea scallops. Generally, increasing temperatures can lead

to higher growth rates, up to a certain threshold that varies for each species. Once

this critical limit is reached, growth rates may decline abruptly (Lindmark et al.,

2022). Bottom stress is of interest as well, as it is believed to exert a mechanistic

influence on benthic communities for the majority of sea species (Jackson-Bué et al.,

2022).

Scallops are filter-feeding bivalves, and their habitat preferences are closely tied

to environmental factors that influence the availability of suitable food sources (Brand,

2006). For instance, depth and temperature can also influence the phytoplankton

growth and phytoplankton forms the base of the marine food web (Palomares-Garcia

et al., 2006). Enhancing phytoplankton growth can potentially improve the sufficiency

of food source for scallops (Kong et al., 2022).
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In the field of modern statistics, Spatiotemporal Model (STM) has emerged as

regarded framework for modeling data that exhibits correlations in both time and

space. When it comes to understanding the trends of scallop meat weight over time,

using a fixed shell height to predict the meat weight has proven valuable (Yin et al.,

2022). However, in order to accurately reflect the scallop population in different areas

in the Bay of Fundy, it is crucial to improve meat weight predictions by incorporating

the spatial variability in shell height. Our primary objective is to construct a joint

STM that will account for the variability in both scallop meat weight and shell height

within the study area of the Bay of Fundy. By using this model, some interesting

patterns can be discovered about the condition of scallops and can improve current

estimates of scallop meat weight for this area. Additionally, we investigate whether

the inclusion of environmental variables can improve the estimates from the joint

STM.

This chapter serves as an introduction to the research, we have now introduced

our scientific of interest. Chapter 2 describes the available data and provides data

visualizations of the variables of interest. Chapter 3 provides the background of

statistical methodology. It also discusses the procedures used to compare the resulting

models. Moving forward, Chapter 4 presents model fitting and prediction results

within the study area. It also provides insights into how well the joint model aligns

with the sampled data and its ability to make accurate predictions across the whole

study area. Lastly, Chapter 5 discusses the interpretation of the results and future

directions of this work.



Chapter 2

Data Analysis

This chapter describes the available data and provides visualizations of all vari-

ables of interest. Section 2.1 provides a detailed description of the study area and

the datasets under consideration, offering a comprehensive overview of the founda-

tional aspects of the research. In Section 2.2, the focus shifts to a visual exploration

of the data through the use of graphs, aiming to uncover discernible patterns and

relationships among the variables of interest.

6
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2.1 Data Description

Since 1981, comprehensive annual surveys of sea scallop (P. magellanicus) in the

Bay of Fundy and surrounding areas have been consistently carried out (Glass, 2017).

These surveys have been conducted aboard vessels operated by both the Canadian

Coast Guard and commercial fishing entities. The primary objective of these surveys

is to evaluate the biomass within the Scallop Production Areas (SPA) shown in Figure

2.1. These invaluable survey data are a critical asset for DFO Resource Management.

These survey data inform scientific recommendations for establishing Total Allowable

Catch (TAC) limits in each specific area (Glass, 2017).

Figure 2.1: Fishing management areas in the Bay of Fundy.

Notes. The study area designated for modeling and predictive analysis is depicted in
pink, while the black lines demarcate the boundaries of the scallop fishing manage-
ment areas encompassing SPA 1A, SPA 1B, SPA 4, and SPA 5.
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To sustainably manage scallop populations, it is essential to understand LWRs.

In this relationship, length pertains to scallop shell height, while weight corresponds

to scallop meat (adductor muscle) weight. DFO conducts an annual Meat Weight

Shell Height (MWSH) survey of the Bay of Fundy to monitor changes in scallop

LWRs.

There are 33,333 observations in the MWSH survey dataset from DFO Mar-

itimes Region Inshore SPAs spanning 2012 to 2019. There are nine cruises in the

dataset: BF2012, BF2013, BF2014, BF2015, BF2016, BF2017, BF2018, BF2019, and

RF2012. Of the nine, the last cruise, RF2012, was excluded from the analysis. This

exclusion was based on the fact that RF2012 serves as a comparative survey which is

not used for investigation. There are no observations from June 12 to June 26, and

only the years 2012 and 2015 have recorded observations during the month of June.

Due to this discontinuity (Figure 2.2), it was decided to remove the June data from

the MWSH dataset. In the end, we have data for the first eight cruises, all of which

are from the month of July spanning 8 years. Each year there were around 3,400 to

5,000 scallops captured in July in the Bay of Fundy.
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Figure 2.2: 2012-2019 MWSH survey data by month.

Notes. x axis: the day of the month. y axis: the count of scallops.

After cleaning the MWSH survey dataset, there are 28,415 observations located

in 826 unique locations across 8 years (Figure 2.3).
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Figure 2.3: MWSH survey tow locations in the Bay of Fundy across 2012-2019.

Notes. Red points represent the middle longitude and middle latitude values of each
individual tow location.

Table 2.1 presents information for five randomly selected scallop observations

from the cleaned MWSH dataset, including year, latitude, longitude, shell height

(mm), and meat weight (g). For example, in the first row of the table, this scallop

was caught in 2012, measuring 71 mm in height and 6.4 g in weight, where the loca-

tion of tow 2012 186 was centered at longitude 44.5591◦ and latitude -66.1296◦. The

scallop shell heights are carefully measured, rounded to the nearest millimeter, while

the corresponding meats undergo a thorough process where excess water is extracted,

and they are weighed with precision to the nearest 0.1 g (Yin et al., 2022).
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Table 2.1: Five random observations from the MWSH survey data.

year lon lat ID TOW weight height
2012 -65.32970 44.98778 2012 186 6.4 71
2018 -65.12256 45.26342 2018 129 7.6 84
2019 -65.04251 45.18196 2019 69 22.3 150
2016 -65.77654 45.05731 2016 173 12.3 105
2013 -65.12456 45.38990 2013 86 10.3 89

Notes. lon and lat represent the middle longitude and latitude of each tow location.
ID_TOW is a categorical variable that identifies the unique tow locations.

It is important to note that in the MWSH data, the selection of tows per year

has been carried out through a random-stratified approach from all sampled tows

conducted during the study period (Yin et al., 2022). Therefore, the tow locations

from the MWSH dataset represent a subset of all tow locations in the Bay of Fundy.

In contrast, the Shell Height Frequency (SHF) data provided by DFO is collected

at all tow locations throughout the entirety of the Bay of Fundy during the study

period. The including of the SHF survey data can give us a better understanding of

the variation in shell heights across the Bay of Fundy, thereby enriching our insights

into the scallop LWRs in this region.

In the SHF dataset, there are 40 bins (Bin 1, Bin 2,..., Bin 40) for each tow

location. These bins serve to categorize scallops according to their shell heights, rang-

ing from 0 to 199.99 mm. Scallops at each of the tow locations are sorted into bins

based on their shell heights, with each bin measuring precisely 5 mm in size (Yin

et al., 2022). As an illustration, Bin 1 contains scallops with shell heights ranging

from 0 to 4.99 mm, while Bin 40 corresponds to scallops with shell heights between

195 and 199.99 mm. To ensure comparability of SHF data between tows, the data

are standardized by adjusting for variations in tow size. Specifically, the standard-

ization process involves rescaling the scallop number to correspond to a consistent

tow length of 800 m and a tow width of 5.334 m. As an example, consider a tow,
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which originally measures 700 m in length and 5 m in width and contains 1 scallop.

After standardization to the specified dimensions, the standardized value for this tow

would be approximately 1.2 (i.e., 800m
700m

× 5.334m
5m

).

To model shell height we have to convert the height count data to height mea-

surements. Table 2.2 presents information for five randomly selected scallop obser-

vations from the cleaned SHF dataset, including information such as year, latitude,

longitude, and shell height interval. For instance, there are 1.7 scallops at tow loca-

tion 2018 13 and their shell heights are between 100 and 104.99 mm (see the highlight

row in Table 2.2). In this context, 1.7 scallops can be understood as representing the

presence of one scallop, accompanied by a 0.7 probability of another scallop being

present. To determine the count of scallops along with their respective shell height

values, we employed the rbinom (Binomial random variate generator) R function,

which yielded two scallops. To obtain the precise shell heights, we made the assump-

tion that within each shell height interval, all possible shell height outcomes have

an equal probability. This assumption implies a uniform distribution of shell heights

within each bin. Therefore, we utilized the runif (pseudo-random number generator)

R function to assign shell height values of 103.7028 and 101.9114 mm to these simu-

lated scallops. By applying the rbinom and runif functions within the context of 40

bins, the cumulative outcome yields 39 scallops within the 2018 13 location. When

this process is extended to encompass all tow locations, it grants us the capability to

calculate reasonable scallop quantities and shell heights for each unique tow location.

The scallop Shell Height (SH) dataset consists of shell heights resulting from this

procedure.



13

Table 2.2: Five random observations from the SHF data.

Year ID TOW lon lat [0, 4.99] [5, 9.99] [10, 14.99] ... [100, 104.99] ... [195, 199.99]
2017 2017 308 -64.95479 45.25436 0 0 0 ... ... 0
2016 2016 272 -65.08351 45.33167 0 0 0 ... ... 0
2013 2013 355 -66.08446 44.60441 0 0 0 ... 0 ... 0
2018 2018 13 -66.07152 44.67362 0 0 0 ... 1.7 ... 0
2012 2012 128 -65.63013 44.86039 0 0 0 ... ... 0

Similar to the MWSH dataset, across the entire SH dataset, scallops are grouped

by their respective tow locations. Each location in the SH dataset contains scallops

from some bins in order. As an illustration, Table 2.3 provides an overview of the

recording structure based on the first five observations at tow location 2018 13 within

the SH dataset. At tow location 2018 13, the first two scallops are assigned to Bin 21

(encompasses scallop shell heights ranging from 100 to 104.99 mm) with respective

shell heights 103.7028 and 101.9114 mm. Following that, the subsequent two scallops

are attributed to Bin 22 (covers shell heights in the range of 105 to 109.99 mm) with

respective shell heights 109.0785 and 105.5080 mm.

Table 2.3: The first five observations at 2018 13 from the SH dataset.

year lon lat ID TOW height
2018 -66.07152 44.67362 2018 13 103.7028
2018 -66.07152 44.67362 2018 13 101.9114
2018 -66.07152 44.67362 2018 13 109.0785
2018 -66.07152 44.67362 2018 13 105.5080
2018 -66.07152 44.67362 2018 13 113.5786
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The SH dataset comprises 50,880 observations, distributed over 2,791 unique lo-

cations across 8 years (Figure 2.4). Notably, the tow locations in the MWSH dataset

constitute a subset, comprising approximately one third of the tow locations within

the SH dataset.

Figure 2.4: SH observations of the sampled sea scallop tow locations in the Bay of
Fundy across 2012-2019.

The Bedford Institute of Oceanography North Atlantic Model (BNAM) has been

developed with the purpose of assisting various DFO monitoring programs (Wang et

al., 2018). It accomplishes this by offering a comprehensive dataset that includes

hindcast simulations and future climate projections of a range of different variables

(Wang et al., 2018). The relevant BNAM outputs are bottom temperature, stress,

and salinity. These data are represented as monthly averaged raster values from 2012
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to 2019, each with a spatial resolution of 7 km (Figure 2.5). Additionally, it is im-

portant to note that these BNAM data are spatiotemporally indexed, meaning that

the value of each data point is associated with both a specific year and tow location.

BNAM is designed with a focus on the North Atlantic region, making it well-suited

for broad-scale applications. It has proven to be suitable in the Scotian Shelf and the

outer Gulf of Maine. However, the current version of the BNAM model is of coarse

resolution for coastal areas and does not include tides (Wang et al., 2018). Since the

Bay of Fundy is strongly dominated by tidal circulation, the variable bottom shear

stress should be interpreted with caution.
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Figure 2.5: BNAM temperature, stress, and salinity.

In Figure 2.5, it is evident that the spatial patterns temperature and stress vari-

ations vary across different years. However, when it comes to salinity, the temporal

variations are less conspicuous; in the majority of locations in the region of interest,

salinity remains relatively stable across years. To integrate these pertinent environ-

mental variables into our MWSH and SH datasets, we employ the extract R function

that spatiotemporally extracts the bottom temperature, stress, and salinity values
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from the BNAM dataset.

The Digital Elevation Model (DEM) is another valuable tool for DFO (Davies

et al., 2019), facilitating spatial analysis by providing high-resolution depth data

standardized to a mean water level with a 50 m resolution (Davies et al., 2019; Glass,

2017), see Figure 2.6. A region with a depth value below 50 meters is defined as a

shallow water region. SPA 5 (see Figure 2.1) is situated within a shallow water region.

Given that depth data is collected spatially, we can effectively utilize the extract R

function to extract the depth values from the DEM dataset and integrate them into

our MWSH and SH datasets, based on the respective tow locations.

Figure 2.6: DEM depth.
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The final set of environmental covariates is listed in Table 2.4.

Table 2.4: List of environmental variables

Environmental Variable Data resource Resolution
Depth (m) DEM 50 m
Bottom temperature(◦C) BNAM 7 km
Bottom stress (kg.m−1. s−2) BNAM 7 km
Bottom salinity (psu) BNAM 7 km
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2.2 Variable Visualization

In biology, the “Cube Law” refers to a principle related to the scaling of bio-

logical organisms, particularly the relationship between their size and certain phys-

iological parameters (Gayon, 2000). This principle is also applied in the context of

the LWR in fisheries science. The contemporary form of the LWR was established by

Keys (1928), linking length, L, and weight, W , in the field of fisheries science, which

is expressed as

W = aLb (2.1)

The nonlinear LWR can be observed in the left plot of Figure 2.7.

Estimating coefficients (a and b) in a non-linear regression (Equation 2.1) is more

challenging than in a linear regression. To transform this relationship into a linear

form, the logarithmic equivalent relationship, denoted as Equation 2.2, is commonly

employed in fishery analysis. After performing a log transformation on both the

height and weight variables in the MWSH dataset, the relationship between these

two variables becomes approximately linear (the right plot of Figure 2.7) and the

scales for weight and height become closer.

log(W ) = log(a) + b log(L) (2.2)

Where log(a) represents the intercept, and b represents the slope, also called growth

rate (Jisr et al., 2018).

While, allometric growth in this context refers to the disproportionate increase
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or decrease in weight in relation to length as the fish grows (Gayon, 2000). In Equa-

tion 2.2, if b is less than 3, it suggests negatively allometric growth, indicating that the

fish, on average, become lighter as they grow longer. If b is greater than 3, it indicates

positively allometric growth, suggesting that the fish, on average, become heavier as

they grow longer (Mazumder et al., 2016). If b being equal to 3, it represents isomet-

ric growth due to the geometric properties of three-dimensional objects (Ricker, 1959).

Figure 2.7: The LWRs for scallop meat weights and shell heights in the MWSH
dataset.

Notes. The original LWR (left), the log LWR (right).
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Figure 2.8 presents the relationship between environmental variables and weight

in the MWSH dataset and Figure 2.9 shows the relationship between environmental

variables and height in the SH dataset. These relationships are not apparent, as they

lack a distinct ascending or descending pattern, unlike the relationship between weight

and height in the MWSH dataset. Given that the MWSH dataset employs log trans-

formation for both weight and height, it is reasonable to consider applying a similar

log transformation to the environmental variables within the same dataset. However,

even after applying log transformations for environmental variables and weight, as

depicted in Figure 2.10, the relationships between weight and environmental vari-

ables still appear somewhat ambiguous. Nevertheless, it is worth noting that the

log transformation has the beneficial effect of narrowing the ranges for environmental

variables, bringing them closer in scale to that of the log height in the MWSH dataset.

Figure 2.8: Weights versus environmental variables in the MWSH dataset.

Figure 2.9: Heights versus environmental variables in the SH dataset.
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Figure 2.10: Weights versus environmental variables after log transformations in
the MWSH dataset.

Figure 2.11 illustrates the empirical histograms of scallop meat weights in the

MWSH dataset, both before and after undergoing a log transformation. Prior to

this transformation, the weight histogram is heavily right-skewed, while after the log

transformation, it becomes more symmetric with a notable heavy tail. This adjust-

ment through a log transformation suggests a potential mitigation of skewness for

the original weight distribution. Figure 2.12 shows the empirical histogram of scallop

shell heights in the SH dataset. The histogram exhibits a heavy-tailed distribution

of scallop shell heights.
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Figure 2.11: Histograms of weight and log weight from the MWSH dataset.

Notes. The original weight histogram (left), the weight histogram after a log trans-
formation (right).

Figure 2.12: Histogram of height from the SH dataset.

In Figures 2.13 and 2.14, we can discern the spatial distributions of mean meat

weights and mean shell heights derived from the MWSH dataset and SH dataset,

respectively. Over the span of eight years, SPA 1A, SPA 4 and SPA 5 have heavier

and/or larger scallops on average compared to SPA 1B.
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Figure 2.13: Mean meat weights calculated from the MWSH dataset.

Figure 2.14: Mean shell heights calculated from the SH dataset.

We compute the Pearson Correlation Coefficient (PCC) for each pair of environ-

mental variables before and after transformations and draw heat maps (Figures 2.15

and 2.16). PCC, ρ, ranges between -1 and 1. If |ρ| ≥ 0.7, in this case, we say there

is a strong linear correlation between x1 and x2 (Ratner, 2009). In Figure 2.15, it is

evident that there is a strong correlation (ρ = -0.7) between salinity and temperature

before the log transformation. However, it is noteworthy that this strong correlation

in the MWSH dataset is eliminated following the log transformation. Meanwhile, in

Figure 2.16, a strong correlation (ρ = 0.72) emerges between salinity and depth.



25

Figure 2.15: The PCCs between environmental variables in the MWSH dataset.

PCCs between original variables (left) and PCCs between log transformed variables
(right).

Figure 2.16: The PCCs between environmental variables in the SH dataset.
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2.3 Summary

In this chapter, we introduced our study area and datasets. Our designated

study area is situated within the Bay of Fundy, encompassing four SPAs. The data

for our analysis are sourced from DFO and comprise both the MWSH and SHF

survey datasets from Maritimes Region Inshore SPAs spanning the years 2012 to

2019. The MWSH dataset contains the count of scallops captured in each tow with

their corresponding shell heights and meat weights. However, in the SHF dataset,

only the scallop counts per height bin are provided for each tow location. In the first

section of this chapter, we described the procedure for converting count data into

approximate shell heights to form the SH dataset.

Next, we provided a comprehensive review of the relationship between scallop

shell height and meat weight, as well as the correlations among environmental vari-

ables (depth, temperature, stress, and salinity) within the dataset. The adoption

of the logarithmic LWR is common practice in fisheries science due to its ability to

establish a closely linear relationship between shell height and meat weight. Our his-

tograms revealed that both the log-transformed weight from the MWSH dataset and

height from the SH dataset are heavy-tailed distributions. It is worth noting that

in the MWSH dataset, a strong correlation exists between salinity and temperature.

While in SH dataset, a strong correlation exists between salinity and depth. How-

ever, through the application of log transformation to all environmental variables in

the MWSH dataset, the previously observed strong correlations appear to reduce to

moderate levels.

Overall, this chapter provided a comprehensive description of all the datasets

utilized throughout this thesis and presented crucial data visualization outputs. In

Chapter 3, we describe methodologies for appropriately analysing such spatiotemporal
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data. Moving forward to Chapter 4, we embark on the modeling phase, leveraging

the insights gained from these datasets and visualizations to inform our analysis.



Chapter 3

Statistical Methodologies

This chapter describes the statistical methodologies we use for analysing the

LWRs of sea scallops in the Bay of Fundy. Section 3.1 provides an introduction to

STMs with an emphasis on the Gaussian Markov Random Field (GMRF) as a random

effect correlation structure. A comprehensive explanation of the STM fitting and

prediction processes using R project is also provided. Section 3.2 is the procedures of

model fitting. Section 3.2.1 explains Randomized Quantile Residual (RQR) and how

it is used to validate model assumptions and Section 3.2 unveils concepts of k-Fold

Stratified Cross Validation (SCV) as a measure of model predictive performance.

28
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3.1 The Spatiotemporal Model Framework

Ecological data are recognized for their spatial and temporal variability. In re-

cent years, there has been a shift towards capturing such spatiotemporal patterns by

incorporating random effects into statistical modeling frameworks, which frequently

leads to the development of mixed-effects models (Thorson & Minto, 2015). Gen-

eralized Linear Mixed Model (GLMM) has now become a cornerstone in ecological

research, facilitating a deeper understanding of complex ecological processes and en-

hancing the quality of scientific investigations in the field (Bolker et al., 2009). GLMM

not only inherits the advantages of Generalized Linear Model (GLM), such as han-

dling non-normal data, but also expands its ability to include both fixed and random

effects.

The generic GLMM formulation (Yin et al., 2022) is defined as

g(E(y)) = Xα+ Zβ,

y ∼ D,

β ∼ Θ

(3.1)

Here, y is the response variable, and g is a link function relating the expected

response to explanatory variables. X and Z are design matrices containing data on

the explanatory variables, and α and β are the coefficients of the fixed and random

effects, respectively. β is assumed to follow a generic distribution Θ. D denotes the

response distribution for y and can be any exponential family distribution.

Incorporating geographical variations in the living conditions of sea scallops is

essential for accurately estimating LWRs (Thorson & Haltuch, 2019). Furthermore,

fisheries data are often collected through time. Those changes in space and time are
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known as spatiotemporal variation (Thorson et al., 2015).

When dealing with data collected across both space and time, basic GLMMs

may lack the ability to capture the spatiotemporal variation. To solve this problem,

STMs have emerged as a powerful tool (Mailman School of Public Health, 2016).

STMs incorporate spatial and spatiotemporal variability. They provide a compre-

hensive framework for analyzing how the variable of interests under study evolve and

interact across different space and time. In essence, STM can be seen as a specific

type of GLMM with a correlation structure that is based on random effects in both

space and time. By utilizing STMs, researchers can gain deeper insights into the

intricate interplay between environmental conditions, sea scallop populations, and

other relevant factors, leading to more accurate and robust assessments of sea scallop

LWRs.

Correlating the random effects in STMs using the Gaussian Random Field

(GRF) is a widely adopted and proven method that significantly enhances predic-

tion capabilities (Thorson & Haltuch, 2019). A random field {Z(s) : s ∈ S} is a

GRF, if for all choices of points within the region of interest S, Z(s) has a multi-

variate Gaussian distribution, which can be characterized by its mean µ(s) and its

covariance matrix Σ(s).

In many fisheries science studies, the observations collected from the field rep-

resent only a sample of the entire spatial domain. In such cases, making the most

efficient use of the geographical information from the sampled observations becomes

critical. Indeed, Tobler’s first law of geography states “everything is related to ev-

erything else, but near things are more related than distant things” (Tobler, 1970,

p. 240), which emphasizes the fundamental principle of spatial correlation. This law

is a cornerstone concept in geography and spatial analysis and has implications in
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various fields, including fisheries science. The covariance function of a GRF must be

specified. The Matérn correlation functions are commonly used in geostatistics. For

a random field Z(s), the Matérn covariance function can be expressed as

Σ(si, sj) = Cov(Z(si), Z(sj)) =
σ2

2ν−1Γ(ν)
(κ||si − sj||)νKν(κ||si − sj||) (3.2)

where, Kν is the modified Bessel function of the second kind, σ2 is the marginal

variance parameter, κ > 0 is the scale parameter, and ν > 0 is the smoothness

parameter.

Generally speaking, ν is chosen before estimating other parameters in an STM,

and ρ =
√
8ν
κ

is the distance between two locations si and sj, where the spatial

autocorrelation diminishes to 0.1.

GRFs are continuous and relatively convenient for spatial and spatiotemporal

modelling, but they can be computationally expensive. The “big N problem” often

arises when we have a large number of sample locations, because it requires an N×N

covariance matrix factorization (Jona Lasinio et al., 2012). To tackle this problem,

the Stochastic Partial Differential Equation (SPDE) approach proves to be a valuable

solution (Lindgren et al., 2011). This method allows us to transform the continuously

indexed GRF, Z(s), into a discretely indexed GMRF by means of finite basis functions

defined on a Delaunay triangulation of the region, commonly referred to as a mesh

(Krainski et al., 2021).

A GMRF is a Gaussian vector in N dimensions characterized by a mean, µ, and

a precision matrix (inverse of the covariance matrix), Q. In a GMRF, conditional

independencies and dependencies among vertices are determined by the absence or

presence of edges connecting them (Sidén & Lindsten, 2020). Vertices that lack an
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edge between them are identified as non-neighbors, and as a consequence, they are

defined as conditionally independent of each other. While, vertices that are connected

directly by an edge are identified as neighbors, and as a consequence, they are defined

as conditionally dependent of each other. This inherent characteristic gives rise to a

sparse precision matrix Q, offering significant computational advantages compared to

dealing with a dense covariance matrix (Sidén & Lindsten, 2020).

Figure 3.1 illustrates a mesh structure, given a random sample of 11 observa-

tions. Equation 3.3 reflects the relationship between GRFs and GMRFs; that is,

Z(s) is a weighted average of the GMRF in the nodes of the triangles containing the

location of the observation.

Z(s) =
M∑
i=1

ϕi(s)Zi, (3.3)

Where, ϕi(.) represents a piece-wise polynomial basis function for each triangle, Zi is

zero-mean Gaussian distributed, and M is the number of nodes in the mesh.

Figure 3.1: An example of a Delaunay triangulation.

Notes. The red points represent the sampled observations and the black points are
the nodes of triangles.

The INLA R package (Rue et al., 2023) is one of the software packages used

widely in applying the SPDE approach, which combines analytical approximations

and numerical integration to approximate posterior distributions. In this package,
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the inla.mesh.create function is used to create a mesh for a group of the observa-

tions. Fisheries data are typically collected with geographic information, including

longitude and latitude, which falls under the unprojected system, referencing obser-

vation locations on the episode earth in decimal degrees (DD) or degree, minutes, and

seconds (DMS). In this unprojected system, calculating the spatial distance between

two observations is impractical. Consequently, before creating a mesh for spatial

observations, it is essential to project their geographical locations on the Universal

Transverse Mercator (UTM) coordinate system (Moraga, 2019). This transformation

can be automatically accomplished using the PBSmapping R package (Schnute et al.,

2022).

The SPDE method defines a mesh that creates an artificial set of neighbours

over the study area by calculating the spatial autocorrelation among observations

to ensure that non-neighboring components remain conditionally independent (Bel-

mont, 2022). This property greatly enhances computational efficiency. By leveraging

GMRFs, we can significantly expedite computations, as we only need to factorize

the sparse precision matrix Q, which closely approximates the inverse of the Matérn

covariance matrix Σ (Lindgren et al., 2011).

The use of the associated projection matrix is a powerful tool for interpolat-

ing any location in the field of interest. Once the mesh has been established, the

projection matrix A can be computed by a translation of spatial locations on the

mesh into corresponding vectors in the model (Moraga, 2019). In A, the number of

rows matches the total sampled locations, N , and the number of columns precisely

corresponds to the number of vertices, M , in the Delaunay triangulation.

A simple illustration of the interpolation process in a random field is shown

in Figure 3.2. In this Delaunay triangulation, the random field only contains one
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triangle and s represents any observation in the triangle region S.

Figure 3.2: An example of a 3-vertex mesh.

Notes. The red dot indicates the specific location we are interested in estimating,
while the black points represent Delaunay nodes (Z1,Z2, and Z3). The blue lines
divide the Delaunay triangulation into three areas, referred to as A1, A2, and A3.
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Applying Equation 3.3,

Z(s) = A1

A1+A2+A3
Z1 +

A2

A1+A2+A3
Z2 +

A3

A1+A2+A3
Z3.

Written in matrix form,

Z(s) = A


Z1

Z2

Z3



where A is the projection matrix defined by

A =

[
A1

A1+A2+A3

A2

A1+A2+A3

A3

A1+A2+A3

]

Rather than manually creating a projection matrix for interpolation, the sdmTMB

R package (Anderson et al., 2023) provides an automated solution for construct-

ing STMs and performing predictions within the region of interest using the SPDE

method. Template Model Builder (TMB) (Kristensen et al., 2023) is used to speed

up the optimization process by using the Laplace approximation and automatic dif-

ferentiation.

Using the same parameter definitions as Equation 3.1, the general STM form

based on the SPDE approach can be defined as



36

g(E(y)) = Xα+ Zβ,

y ∼ D,

β ∼ GMRF (0, Q)

(3.4)

where, GMRF (0, Q) represents the GMRF process, and Q is the precision matrix,

which is the inverse of the Matérn covariance Σ .



37

3.2 Assessing Model

3.2.1 Randomized Quantile Residuals

In fisheries science, it is common to assume that certain continuous response

variables, such as size and weight, follow a normal distribution (Guy & Brown, 2007).

To assess the validity of this normality assumption, a simple graphical tool - the

quantile-quantile plot, often referred to as the QQ plot (Ford, 2015), is used to visually

inspect whether such an assumption is sensible.

When non-normal patterns emerge within observations, such as heavily skewed

data, it becomes untenable to assume a normal distribution. Furthermore, in the lin-

ear modelling context, if the connection between predictor variables and the response

variable is non-linear, the normality assumption is not suitable either (Kumar, 2022).

For instance, the logarithmic equivalent LWRs mentioned in Chapter 2.

The STM framework offers a solution to address these complexities and accom-

modates exponential family distributions for the response and relationships including

non-linear ones between the response and predictors. The exponential family distri-

butions is defined as

p(y, θ) = h(y) exp(ηT (θ)T (y)−B(θ)) (3.5)

where p(y, θ) is the probability density function of variable y with parameter θ. h(y)

and T (y) are functions that can only contain y, while ηT (θ) and B(θ) are functions

that can only contain θ.

The response residuals from a STM are often not normally distributed, thus, a
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straightforward application of a QQ plot yields limited insights, rendering it less ad-

vantageous for assessing the distributional characteristics of these residuals. Pearson

residuals and deviance residuals are commonly used when dealing with GLMs. How-

ever, assessing these residuals is challenging, as they deviate from a typical normal

distribution, both marginally and conditionally. Residual QQ plots exhibit several

parallel curves to the x-axis, further complicating their interpretation, as there is no

standard reference distribution available for comparison (Feng et al., 2020).

Dunn and Smyth (1996) defined RQRs and demonstrated their applications with

GLMs. Due to randomization, the quantile residuals are able to maintain continuity

(Dunn & Smyth, 1996). This property allows them to be especially well-matched

with exponential family distributions. Moreover, RQRs can be computed faster and

interpreted more easily than other alternative forms of residuals, which makes them

a favorable choice for statistical analyses in GLMs (Dunn & Smyth, 1996). For

continuous response variables, a general form of the RQR can be simplified to

rqi = Φ−1(F (Ri ≤ ri)) (3.6)

where Ri = hi(yi, ûi), is the crude residual, defined by Cox and Snell (1968), in

correspondence with a certain relationship function hi, that relates the actual response

value yi to the estimated mean ûi. F is the cumulative distribution function of

the response defined by the assumed model (and estimated parameters) and Φ is

the cumulative distribution function of the standard normal. Apart from sampling

variability in mean and variance, the rqi converges to a standard normal distribution

if all model parameters are consistently estimated (Dunn & Smyth, 1996).

The qqnorm R function is used to create RQR plots (Dunn & Smyth, 2018) for
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GLMs. Similar to the conventional QQ plot for normal distributions, the RQR plot

(Figure 3.3) retains the standard normal distribution’s theoretical quantiles along

the x-axis. Conversely, the y-axis portrays the RQRs as defined in Equation 3.6.

In most instances, when the model’s distributional assumptions hold approximately

true, the RQR plot tends to an approximately straight line. This alignment signifies

the concordance between the model’s assumptions and the empirical data, validating

the model’s appropriateness.

Figure 3.3: An example of a RQR plot.

Notes. The line goes through the first and third quartiles.



40

3.2.2 k-Fold Stratified Cross Validations

Cross Validation (CV) is a statistical technique employed to evaluate the pre-

dictive performance of a proposed model (Great Learning Team, 2020). This method

entails a random division of the dataset into distinct training and test subsets. The

model is fitted using the training data, then its performance is evaluated on the test

data. A model might achieve an excellent fit with the training data by increasing its

complexity, which involves adding more parameters, but it could exhibit poor per-

formance when evaluated with the test data. Such models are often referred to as

overfited models, as they exhibit low bias in the training data but high variance in

the test data. Conversely, a model may adopt an overly simplistic approach, failing

to capture important features within the training dataset, but performing reasonably

well in the test data. These models are termed underfitting models, characterized by

high bias in the training data but low variance in the test data (Huilgol, 2020).

An optimal model strikes a balance between overfitting and underfitting, effec-

tively managing the trade-off between bias and variance (Hali, 2022). In the case of

such optimal models, both training and test errors are typically minimized (Singh,

2018). By evaluating the training error of the model, we can obtain a precise as-

sessment of the bias incurred during the training process (Rai, 2020). Conversely,

measuring the testing error of the model provides us with a precise understanding of

its predictive accuracy and generalization ability (Shah, 2020).

Balancing variance and bias remains a challenge even when utilizing CV. The

variability in data splitting can highly affect the model evaluations obtained during

CV, given that each data point can be selected either for training or testing.

To overcome this limitation, a k-fold CV algorithm can be employed. By im-

plementing the k-fold CV algorithm, every data point is utilized as both training and
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test data. As a consequence, the overall testing results become independent of the

specific data partition. In this algorithm, the data observations from a given dataset

are randomly split into k folds: each fold contains approximately the same number of

data observations. In each iteration, k − 1 folds of the data observations are chosen

to be the training set, the remaining fold becomes the test set. There are k separate

iterations of testing (Pandian, 2022). The predictive performance is evaluated by av-

eraging the squared prediction errors across all data observations in the given dataset

after the k iterations of testing, which is known as the Mean Square Prediction Error

(MSPE) (Arnholt, 2021). A general form of MSPE is

MSPE =
1

n

n∑
i

(yi − ŷi)
2 (3.7)

where n is the total number of the data observations in the given dataset, yi is the

observed value of each data observation, and ŷi is the estimated value of each data

observation.

In k-fold CV, individual observations are randomly assigned to different folds.

However, if we want to use k-fold CV to examine a model’s spatial predictions then

we have to account for the spatial structure across the sampling domain, otherwise

it can cause prediction bias (Ploton et al., 2020). To ensure that observations from

every location and year are included in each fold proportionally to their occurrence

in the total population, one of the widely employed techniques is stratified sampling

(Yin et al., 2022). This involves partitioning the entire dataset into distinct strata,

defined by the combined attributes of location and year for each observation. The

ID TOW variable, as discussed in Chapter 2, defines our distinct strata. Conse-

quently, during the sampling process, a random selection of sample observations can

be achieved across all strata, where the samples are selected in the same proportion
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as they appear in the population, ensuring a balanced spatial and temporal repre-

sentation across all folds (Muralidhar, 2023). Figure 3.4 illustrates an application of

stratified sampling. In this example, if the population of interest has two observations

from strata A, four observations from strata B, and six observations from strata C,

then we randomly choose 2
(2+4+6)

of the sample from strata A, 4
(2+4+6)

of the sample

from strata B, and 6
(2+4+6)

of the sample from strata C. If the required sample size

is six, then the random selection process will involve one observation from strata A,

two observations from strata B, and three observations from strata C. As a result,

observation 2, 3, 6, 8, 10, 11, and 12 are randomly chosen from their respective strata.

Figure 3.4: An example of stratified sampling.

Notes. The 12 numbered observations comprise the total population, which is divided
into three strata (A, B, and C). Red circles represent the random selection process.

CV through stratified sampling is commonly referred to as SCV. The createFolds

R function (Kuhn, 2023) can be utilized to generate k folds for a given dataset using

stratified sampling. Each fold is uniquely identified by numbers (1, 2, ..., k) for

clarity. In order to assign each data observation to its respective fold, a foldID factor

can be created in the dataset. This foldID factor then functions as a categorical

variable, indicating the fold number to which each data observation belongs. The

foldID factor is subsequently used in the sdmTMB cv R function (Anderson et al.,

2023) to compute MSPEs through k-fold CV for the models of interest.
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3.3 Summary

In this Chapter, we focused on the the statistical methodologies we use for

analysing these survey data. We first introduced STMs and demonstrated their con-

nection to basic GLMMs through the GMRF. In contrast to basic GLMMs, STMs

are capable of capturing intricate spatiotemporal variations present in data. By uti-

lizing STMs, we can gain a deeper understanding of the relationships between scallop

meat weight and shell height, enabling us to attain more precise predictions of scal-

lop meat weight. Additionally, we introduced crucial R packages for modeling STMs.

These packages not only streamline the process of fitting our models but also facili-

tate faster and more efficient predictions, enhancing the overall ease and effectiveness

of our modeling efforts. Next, we introduced a valuable tool for validating model

distribution assumptions, known as the RQR plot. Typically, when the model’s un-

derlying distributional assumptions hold approximately true, the RQR plot exhibits

a tendency to form an approximately straight line. Lastly, when comparing the pre-

dictive performance in both spatial and temporal dimensions across different models,

we employed k-Fold SCV with MSPE, which allows us to compare models without

introducing bias either spatially or temporally.

Overall, this chapter summarizes the theoretical foundation that underlies the

methodology we apply in Chapter 4.



Chapter 4

Modeling and Results

This chapter is focused on the predictions, derived from our Joint Weight Height

Model (JWHM). Section 4.1 describes the model fitting and selection process. Section

4.2 presents and discusses the results of scallop meat weight predictions obtained from

the optimal model.

44
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4.1 Model Fitting

In Chapter 2, we observed spatial variability in shell height and meat weight,

as illustrated in Figures 2.13 and 2.14, respectively. To extend the original LWR

(captured in Equation 2.2), in order to account for both spatial and spatiotemporal

variability in shell height and meat weight, thus delivering more precise predictions

for meat weight across the Bay of Fundy, we propose the JWHM as

pW,H(w , h|X,Θ) = pW |H(w|h,X,Θ)pH(h|X,Θ) (4.1)

where p(.) is the density function, w is meat weight, and h is shell height. X contains

all the fixed effects (time and environmental variables) and Θ contains all the random

effects (spatial and spatiotemporal random effects).

The JWHM, pW,H(w , h|X,Θ), is a product of the Weight Model Component

(WMC), pW |H(w|h,X,Θ), and the Height Model Component (HMC), pH(h|X,Θ). Both

WMC and HMC are spatiotemporal models and can be fitted seperately by using the

function sdmTMB (Anderson et al., 2023) described in Chapter 3. The WMC is

designed to specifically capture the variability in meat weight. It serves the purpose

of predicting meat weight given a fixed shell height value across both space and time.

The HMC is employed to effectively capture the variability in shell height across both

space and time.

In Chapter 3, we elucidated that the process of fitting an STM using the SPDE

approach necessitates the creation of a triangulation. We also provided a comprehen-

sive guide on how to employ the INLA package (Rue et al., 2023) to generate such a

mesh. It is worth noting that this mesh offers various customizable features, allowing

us to control triangle sizes and the number of nodes. In our case, we can opt to utilize
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the default mesh, as recommended by Yin et al. (2022). In this default mesh, the

nodes are positioned at tow locations and boundary extension points (created auto-

matically by the inla.mesh.create function). We created a mesh for the WMC and the

HMC, respectively shown as Figure 4.1 and Figure 4.2. Ultimately, the WMC mesh

was configured with 834 nodes, while the HMC featured an expanded mesh with 2799

nodes.

Figure 4.1: The Delaunay triangulation used for the GMRF presence of the WMC.

Notes. Orange dots represent the 826 tow locations and blue dots represent the 8
boundary extension points from the MWSH dataset used in the WMC fitting.

Figure 4.2: The Delaunay triangulation used for the GMRF presence of the HMC.

Notes. Orange dots represent the 2791 tow locations and blue dots represent the 8
boundary extension points from the SH dataset used in the HMC fitting.
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From analyzing the empirical histograms representing log weight and height, we

can initially consider a normal distribution for both model components. Notably, both

empirical histograms exhibit the potential for heavy tails. In addressing heavy-tailed

distributions, the Student t distribution with 2 degrees of freedom, sdt2, emerges as

a suitable choice. Therefore, it is reasonable for us to also assume that both meat

weight and shell height adhere to a sdt2 distribution in both model components. In

order to check the distributional assumptions for both model components, we can

utilize the RQR plot introduced in Chapter 3. Figures 4.3 and 4.4 depict the dis-

tribution comparison between the normal distribution and sdt2 for the WMC and

the HMC respectively. It is evident that sdt2 outperforms the normal distribution

in both model components, as evidenced by the RQR plots, which tend to closely

resemble a straight line. This observation underscores the superior performance of

sdt2 in capturing the distribution characteristics of the data.

Figure 4.3: The RQR plots for the WMC.

Notes. The RQR plot for the WMC with a normal distribution (left) and the RQR
plot for the WMC with a sdt2 (right).

Figure 4.4: The RQR plots for the HMC.

Notes. The RQR plot for the HMC with a normal distribution (left) and the RQR
plot for the HMC with a sdt2 (right).
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Furthermore, in Chapter 2, we thoroughly explored the benefits of employing

log transformations for not only shell height but also for the environmental variables

in the weight height relationship. Consequently, in the framework of the WMC, all

continuous explanatory variables will be represented in their log scales.

The specific WMC is shown as Equation 4.2 and the specific HMC is shown as Equa-

tion 4.3.

pW |H(wi|hi, Xi,Θi) : log(E(wi)) = α + α0 (ti) + β0(si) + β0(si, ti) + α1 log(hi) + α2 log(di)

+α3 log(ci) + α4 log(ei) + α5 log(fi)

wi ∼ sdt2,

i = 1, 2..., 28415,

β0(si) ∼ GMRF (0, Q1(s)),

β0(si, ti)
i.i.d∼ GMRF (0, Q1(s, t))

(4.2)

pH(hj|Xj,Θj) : E(hj) = γ + γ0(tj) + ζ0(sj) + ζ0(sj, tj) + γ1 dj + γ2 cj + γ3 ej + γ4 fj

hj ∼ sdt2,

j = 1, 2..., 50880,

ζ0(sj) ∼ GMRF (0, Q2(s)),

ζ0(sj, tj)
i.i.d∼ GMRF (0, Q2(s, t))

(4.3)

where, t is the year (2012-2019), s is the sample tow location, d is depth, c is bottom

temperature, e is bottom stress, and f is bottom salinity. α0(ti) and γ0(tj) are the
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fixed temporal effects. β0(si), ζ0(sj) and β0(si, ti), ζ0(sj, tj) are the spatial and time-

independent spatiotemporal random effects. Q1(s), Q2(s) and Q1(s, t), Q2(s, t) are

the spatial and spatiotemporal precision matrices.

Initially, both the WMC and HMC were assumed to incorporate both spatial

and spatiotemporal random effects. Indeed, if a model incorporates only spatial

random effects, it is referred to as a Spatial Model (SM). On the other hand, if the

model includes both spatial and spatiotemporal random effects, it is termed an STM.

To ascertain the significance of these two random effects in both model components,

we can employ the 10-fold SCV method. Stratified sampling necessitates dividing the

entire survey dataset into distinct strata based on both tow location and year, which

is identified as ID TOW. Within each fold, a random selection of the sampled scallops

can be performed, encompassing all ID TOW categories. Figures 4.5 and 4.6 display

the spatial distribution of sample observation locations and the corresponding years

within the 10 folds for both the MWSH and SH datasets.
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Figure 4.5: Spatial distributions of observations from the MWSH dataset across 10
folds by stratified sampling

Notes. Folds are ordered by numbers (foldID) and distinguished by different colors
for clarity. The x-axis represents the longitude of the sample observations, while the
y-axis corresponds to their latitude. The shapes of the observation points indicate
the year.

Figure 4.6: Spatial distributions of observations from the SH dataset across 10 folds
by stratified sampling

These visualizations provide a comprehensive view of the sampling patterns

and sample observation distribution across different folds. It is evident that there
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are observations selected from each year and nearly every tow location in each fold,

which shows representative and unbiased sampling. Therefore, 10-fold SCV will aid

us in making an informed decision regarding the choice between an SM or STM by

comparing their MSPEs for both WMC and HMC without bias from either spatial

or temporal dimensions.

The results reveal that for the WMC , the STM yields an MSPE of 14.7520,

while the SM produces an MSPE of 17.2248. In the case of the HMC, the STM

achieves an MSPE of 403.6835, and the SM results in an MSPE of 426.8411. There

is a reduction of 14.4% and 5.4% in MSPE for the WMC and the HMC, respectively,

when transitioning from an SM to an STM The deduction rates for MSPE are greater

than 1% in both model components, underscoring that STM models demonstrate su-

perior predictive performance compared to SM models for both components. Also, by

examining spatial graphs illustrating the random effects for both model components

(as depicted in Figures B.1 and B.2), we discern noteworthy distinctions in these

random effects, encompassing spatial as well as spatiotemporal dimensions. Positive

spatial random effects predominantly manifest in SPA 1A, 4, and 5, whereas negative

spatial random effects tend to be more pronounced in SPA 1B for both the model

components. In other words, locations in SPA 1A, 4, and 5 have positive spatial

effects and tend to have higher meat weight and shell height predictions on average

across the 8 years, while locations in SPA 1B have negative spatial effects and tend

to have lower meat weight and shell height predictions on average across the 8 years.

Additionally, spatiotemporal random effects exhibit variations across different years

for both the WMC and HMC. These variations manifest as distinct differences in the

spatial distribution of colors across different years.

We now employ the STM framework to determine the significant environmental

variables. Our environmental variables are considered fixed effects, and therefore, we
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can use a backward variable selection method to identify the significant environmental

ones (with a p-value less than 0.05). The procedure starts with a model containing

depth, temperature, salinity, and stress. At each step, we remove the least significant

variable from the current model and re-evaluate the model. We continue removing

variables until all remaining variables in the current model are deemed significant.

Ultimately, this process reveals that depth is the only significant environmental vari-

able for both model components. One potential explanation for this phenomenon is

that depth exhibits a significantly higher level of resolution when compared to other

environmental variables. Additionally, depth serves as a critical factor influencing

ecological dynamics in marine environments. For instance, it affects factors like light

availability, which is pivotal for the growth of phytoplankton (Brand, 2006). Phyto-

plankton, being the foundation of the marine food web, holds particular importance

for the growth of scallops (Kong et al., 2022). Another reason might be that the

spatial and spatiotemporal effects have already accounted for the variability in the

environment, potentially rendering the other environmental variables non-significant

in a linear fashion with respect to the two model components.

Furthermore, the spatiotemporal model Spatiotemporal Model incorporating

Depth (STM-D)exhibits slightly smaller MSPEs for both model components (402.9253

for the HMC and 14.7231 for the WMC) when compared to the STM. As a result,

there is a reduction of 2.0% and 1.9% in MSPE for the WMC and the HMC, respec-

tively, when transitioning from an STM to an STM-D. The deduction rates for MSPE

are greater than 1% in both model components, underscoring that the STM-D frame-

work performs better than the STM framework in both components. Consequently,

STM-D is selected for the JWHM, serving as the optimal model for predicting both

shell height and meat weight.

The STM-D parameter estimations for both model components are Table A.1
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and Table A.2. From Table A.2, α1 = 2.88 in Equation 4.2 is less than 3, it means neg-

atively allometric growth, indicating that the scallops in the study area, on average,

become lighter as they grow larger.
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4.2 Model Predictions

First we employed the STM-D to predict shell height across the study area

in the Bay of Fundy (see Figure 4.7, refer to Figure 2.1 for the study area). Over

the span of 8 years, the predictions indicate that larger scallops with shell heights

greater than 130 mm (visualized as color purple), are more likely to be found near

the Nova Scotia coast of the Bay of Fundy, mainly encompassing SPA 1A, SPA 4,

and SPA 5, than the New Brunswick coast, primarily covering SPA 1B. In the HMC,

the cumulative impact of spatial and spatiotemporal effects (see Figure B.1) reveals

positive effects in SPA 1A, 4, and 5, while negative effects are observed in SPA 1B.

These varying influences from random effects potentially contribute to reduced shell

height predictions in SPA 1B and elevated predictions in terms of shell height for SPA

1A, 4, and 5. In the majority of the study area locations, the predicted shell height

is approximately 110 mm (visualized as color blueish-green) , with a standard error

of about 7.
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Figure 4.7: Shell height predictions and standard errors from the HMC.

It is worth noting that the WMC closely resembles the STM framework estab-

lished by Yin et al. (2022) and has been actively utilized by DFO. However, the WMC

does not have the ability to capture the shell height variability. To underscore the

significance of incorporating shell height variability in the prediction of meat weight,

we conducted a comparison between using the WMC with a fixed height and the

JWHM. In the meat weight prediction utilizing the WMC, a fixed shell height of 114

mm (the average shell height from the MWSH dataset) was applied across the entire

study area. Conversely, for the meat weight prediction using the JWHM, the shell
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height values predicted by the HMC were employed consistently across the study

area. Figure 4.8 displays the meat weight predictions and their associated standard

errors obtained from both the WMC and JWHM, respectively.
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Figure 4.8: Comparison of meat weight predictions and standard errors between
the WMC and JWHM.

Notes. WMC: predicted meat weights (g) with the fixed shell height (114 mm).
JWHM: predicted meat weights (g) with the predicted shell heights (mm).
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In the central study area, the differences in spatial predictions of meat weight

are hardly noticeable when utilizing the WMC with a fixed height. Moreover, it is

worth noticing that the meat weight prediction in this central study area seems to

exhibit a declining trend with year. There is no obvious decreasing patterns in the

outer study area and the WMC yields an average meat weight prediction around

25 g (visualized as color green) from 2012 to 2015 and around 15 g (visualized as

color yellowish-green) from 2016 to 2019 in the central study area and around 10 g

(visualized as color orange) in the outer study area across 8 years.

In contrast, the JWHM reveals noticeable differences in meat weight predictions

within the central study area and more substantial differences between the central

area and the outer study area. In the central study area, the predicted meat weights

remain consistently around 25 g each year in the majority of locations. Interestingly,

the predictions indicate the presence of heavier scallops, with meat weights exceeding

45 g (visualized as color purple) near the Nova Scotia coast (SPA 1A, 4 and 5). One

possible reason for predicting these heavier scallops in SPA 1A, 4 and 5 is the predicted

shell heights from the HMC are also larger on average in these areas (see Figure 4.7).

There is no obvious declining trend of the predictions with year, but in 2018 and 2019,

the predictions indicate the scarcity of these heavier scallops near the Nova Scotia

coast. In the WMC, the spatiotemporal effects exhibit distinct influences, particularly

notable in 2019 (see Figure B.2). To be more specific, there are discernible negative

spatiotemporal effects in SPA 1A, 4, and 5. This specific pattern may contribute to

lower predictions of meat weight on average in these areas during 2019 in comparison

to other years. The JWHM predicts lighter scallops around 5 g (visualized as color

reddish-orange) occur in the outer area compared to the predictions made by the

WMC.

When comparing the prediction standard errors, there is little difference between
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the WMC and JWHM results. In the majority of the study area locations in the Bay

of Fundy, both the WMC and JWHM exhibit standard errors of less than 2. However,

it is important to highlight that the JWHM does indeed show slightly larger standard

errors in some locations compared to the WMC. This variation can be attributed to

the fact that the JWHM incorporates shell height predictions, which the WMC does

not account for. Shell height tend to be larger in these locations are more likely to

exhibit a larger meat weight variability in nature.

Based on the observations from Figures 4.7 and 4.8, it becomes apparent that

over the course of 8 years, heavier and larger scallops are more likely to predicted

in SPA 1A, SPA 4, and SPA 5 compared to SPA 1B. This finding matches up the

empirical result in Chapter 2 (see Figures 2.13 and 2.13).

Hence, it demonstrated that the JWHM provides more accurate meat weight

predictions by incorporating shell height variability, making it a superior model com-

pared to the WMC with a fixed shell height across the study area.
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4.3 Summary

In this chapter, we applied our statistical methodology and obtained modelling

results. To enhance the original LWR model’s capability to encompass variability in

both shell height and meat weight over space and time, we proposed the JWHM, which

is a product of the WMC and the HMC. Initially, we elucidated the process of model

fitting, which encompasses distribution validation, as well as the selection of random

effects and environmental variables for both model components. By examining the

RQR plots, it became evident that the sdt2 exhibited superior performance when

contrasted with the normal distribution for both model components. We used 10-

fold SCV to select random effects and backward selection to choose environmental

variables. Our results indicated that the STM-D yielded the most favorable predictive

performance for both model components.

Subsequently, we employed the STM-D to forecast shell height and meat weight

across the study area in the Bay of Fundy. To underscore the significance of ac-

counting for shell height variability, we conducted a comparison between the meat

weight predictions from the WMC with a fixed shell height and the JWHM with

predicted shell heights. Our analysis revealed that the JWHM appeared to provide

more accurate meat weight predictions, predicting heavier scallops in SPA 1A, 4, and

5, compared to SPA 1B.

Overall, this chapter details the journey of obtaining the JWHM and presents

the resulting predictions. In Chapter 5, we draw the entire thesis to a close, providing

a comprehensive conclusion and delving into potential avenues for future research.



Chapter 5

Conclusions

We encounter a more complex and time-intensive challenge when it comes to

measuring the weight of scallops, in contrast to assessing their heights. Hence, the

LWR emerges as a valuable approach for estimating scallop meat weights, relying

on their shell heights. Given the anticipated strong correlation in the growth of

scallop individuals when they are in proximity to each other (Carsen et al., 1996),

it is imperative to consider the geographical correlations in environmental conditions

that affect both the heights and weights of sea scallops. Hence, we used the widely

adopted Matérn GMRF for incorporating these important geographical correlations

into a basic LWR.

We developed the JWHM to enhance the foundational LWR by accommodat-

ing the complexities of spatial and spatiotemporal variations in meat weight and shell

height. The JWHM is the result of combining the WMC and the HMC, which were

fitted by the sdmTMB function (Anderson et al., 2023). When it comes to model

distributional assumption checking, our approach involved employing RQR plots to

demonstrate that sdt2 outperforms the normal distribution for both model compo-

nents.

In both model components, there are two random effects and four environmen-

tal variables. However, overly complicated model structures can lead to potential

61
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overfitting of data. Hence, we decided to choose significant random effects and en-

vironmental variables to avoid the unintentional selection of models that ultimately

yield less accurate predictions. Therefore, in our study, we implemented 10-fold SCV

to underscore that opting for the STM framework incorporating both spatial and spa-

tiotemporal efffects for both model components enhances their predictive performance

compared to utilizing the SM framework incorporating just spatial effects. During

the stratified sampling process, we showed that observations were chosen from each

year and from nearly every tow location within each fold. This strategic approach

was implemented to mitigate potential biases from either the spatial or temporal di-

mension during the CV procedure. Subsequently, we applied the STM framework to

both model components to refine our selection of environmental variables. The back-

ward selection method revealed that depth was a significant variable for both model

components, supported by a p-value of 0.05. Additionally, we computed MSPEs for

the STM-D in both model components. It served as a further confirmation to validate

that the STM-D framework is the optimal choice for both model components. By

independently optimizing the WMC and the HMC, we determined that STM-D is

the most suitable model framework for the JWHM.

We emphasized the importance of considering shell height variability by con-

ducting a comparison between meat weight predictions from the WMC with a fixed

shell height, which has been actively utilized by DFO, and the JWHM with predicted

shell heights. Our analysis unveiled that while the WMC with a fixed shell height

is valuable for discerning trends in scallop meat weight over time, the JWHM offers

more precise meat weight predictions. The JWHM predicts heavier scallops on aver-

age in SPA 1A, 4, and 5, in contrast to SPA 1B. To be more specific, in the central

study area, the predicted meat weights remain consistently around 25 g each year

in the majority of locations. Interestingly, the predictions indicate the presence of
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heavier scallops, with meat weights exceeding 45 g near the Nova Scotia coast (SPA

1A, 4 and 5). There is no obvious declining trend of the predictions with year, but

in 2018 and 2019, the predictions indicate the scarcity of these heavier scallops near

the Nova Scotia coast. Also, lighter scallops around 5 g tend to occur in the outer

study area in all 8 years.

Fisheries scientists are now delving into the intricacies of scallop LWRs, where

the constantly shifting environmental conditions that scallops inhabit pose a chal-

lenge in accurately modeling LWRs (Yin et al., 2022). Therefore, while the current

JWHM demonstrates remarkable efficacy in predicting within-year meat weight, its

applicability to precasting or forecasting remains uncertain.

Sea scallops (P. magellanicus) hold considerable significance for both human

well-being and Canada’s economy. In pursuit of long-term sustainability for the scal-

lop fishery, fishery stock assessments provide DFO management with essential data,

including annual scallop biomass, to dynamically adjust fishing policies and maintain

a healthy scallop population. This research study shows a significant advancement

in enhancing meat weight predictions by using the JWHM, building upon the Yin

et al. (2022) STM framework by incorporating both meat weight and shell height vari-

ability. In a comprehensive meat weight prediction comparison between the JWHM

and the current STM model employed by DFO, significant enhancements stemming

from the incorporation of both meat weight and shell height variability were vali-

dated. Our JWHM offers more accurate predictions of meat weight, therefore, the

meat weight prediction results obtained from the JWHM can provide DFO with a

more intuitive understanding of varying scallop biomass levels within different SPAs.

This enhanced insight can significantly improve DFO’s ability to dynamically monitor

scallop populations and make well-informed decisions across different regions of the

Bay of Fundy.
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Appendix A

Tables

Table A.1: HMC parameter estimation.

Fixed effects Estimate Std. Error
Intercept 116.9656 6.1867
2013 0.5949 1.4208
2014 -3.3501 1.4853
2015 3.6160 1.6061
2016 3.6376 1.3581
2017 6.7444 1.3301
2018 4.7099 1.3311
2019 4.9021 1.3222
depth -0.1444 0.03273
Random effects Estimate Std. Error
Dispersion ϕ 2.3725 0.005019
Spatial precision τs -1.7926 0.07651
Spatial scale κs -2.3916 0.1662
Spatiotemporal precision τst -2.2871 0.07685
Spatiotemporal scale κst -0.8745 0.08056

Notes. All random effect parameters are log-transformed for the optimization process
and hence, estimates reported are on the log scale. Precision parameter τ2 is the inverse
of the marginal variance σ2.
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Table A.2: WMC parameter estimation.

Fixed effects Estimate Std. Error
Intercept -10.6301 0.1395
2013 0.1552 0.03732
2014 0.0734 0.03993
2015 0.1575 0.04085
2016 -0.05211 0.03688
2017 -0.07551 0.03689
2018 -0.1484 0.03723
2019 -0.2704 0.03712
log(height) 2.8785 0.006406
log(depth) -0.05900 0.01702
Random effects Estimate Std. Error
Dispersion ϕ 0.6386 0.006923
Spatial precision τs 3.2004 0.1156
Spatial scale κs -2.8910 0.2471
Spatiotemporal precision τst 3.2259 0.09881
Spatiotemporal scale κst -2.0436 0.1197

Notes. All random effect parameters are log-transformed for the optimization process
and hence, estimates reported are on the log scale. Precision parameter τ2 is the inverse
of the marginal variance σ2.



Appendix B

Graphs

Figure B.1: Visualization of the spatial, and spatiotemporal effects with their sum
for the HMC.

Notes. omega s represents ζ0(sj) and epsilon st represents ζ0(sj, tj), and est rf is the
sum of both omega s and epsilon st
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Figure B.2: Visualization of the spatial, and spatiotemporal effects with their sum
for the WMC.

Notes. omega s represents β0(si) and epsilon st represents β0(si, ti), and est rf is the
sum of both omega s and epsilon st.



Appendix C

R coding

library(ggplot2)

library(dplyr)

library(tidyverse)

require(maptools)

library(mapdata)

library(maps)

library(mapproj)

library(gridExtra)

library(grid)

library(caret)

library(TMB)

library(INLA)

library(raster)

library(sf)

library(sdmTMB)

library(rgdal)

library(ggpubr)

library(ggmap)

# HMC

# clean the SHF data

heightdata=read.csv("bof.shf.unlined.gear.2012to2019.csv")

heightdata=na.omit(heightdata) # remove RF

heightdata$year=NA

heightdata$ID_TOW=NA

for(i in 1:length(heightdata[,1]))

{

if(grepl((heightdata$CRUISE[i]), "BF2012")==T )

{

heightdata$year[i]=2012

}
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if(grepl((heightdata$CRUISE[i]), "BF2013")==T )

{

heightdata$year[i]=2013

}

if(grepl((heightdata$CRUISE[i]), "BF2014")==T )

{

heightdata$year[i]=2014

}

if(grepl((heightdata$CRUISE[i]), "BF2015")==T )

{

heightdata$year[i]=2015

}

if(grepl((heightdata$CRUISE[i]), "BF2016")==T )

{

heightdata$year[i]=2016

}

if(grepl((heightdata$CRUISE[i]), "BF2017")==T )

{

heightdata$year[i]=2017

}

if(grepl((heightdata$CRUISE[i]), "BF2018")==T )

{

heightdata$year[i]=2018

}

if(grepl((heightdata$CRUISE[i]), "BF2019")==T )

{

heightdata$year[i]=2019

}

}

heightdata$year = as.factor(heightdata$year)

heightdata$ID_TOW =as.factor(paste(heightdata$year,heightdata$TOW_NO,sep = ’_’))

# create the SH dataset

set.seed(1)

test=c()

binocoun=matrix(0,length(heightdata[,1]),40)

for(i in 1: length(heightdata[,1]))
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{

for(k in 1:40)

{

binocoun[i,k]=floor(heightdata[i,k+5])

+ rbinom(1,1,((heightdata[i,k+5])%% 1))

new_value =runif( binocoun[i,k],min=(k-1)*5,max=((k-1)*5)+4.99)

test=c(test,new_value)

}

}

for(i in 1: length(heightdata[,1]))

{

heightdata$bcoun[i]=sum(binocoun[i,seq(from=1,to=40, by=1)])

}

fullset <- as.data.frame(lapply(heightdata, rep, heightdata$bcoun ))

fullset$gheight=test

Julyfullset=fullset[fullset$month==7,]

draster=raster("BathyCHS_GEBCO_SEAM_mixedData_BOF_ExtentClip_100m_LatLong.asc")

r2012=raster("BtmTemp_Jul_2012.asc")

r2013=raster("BtmTemp_Jul_2013.asc")

r2014=raster("BtmTemp_Jul_2014.asc")

r2015=raster("BtmTemp_Jul_2015.asc")

r2016=raster("BtmTemp_Jul_2016.asc")

r2017=raster("BtmTemp_Jul_2017.asc")

r2018=raster("BtmTemp_Jul_2018.asc")

r2019=raster("BtmTemp_Jul_2019.asc")

s2012=raster("BtmStress_Jul_2012.asc")

s2013=raster("BtmStress_Jul_2013.asc")

s2014=raster("BtmStress_Jul_2014.asc")

s2015=raster("BtmStress_Jul_2015.asc")

s2016=raster("BtmStress_Jul_2016.asc")

s2017=raster("BtmStress_Jul_2017.asc")

s2018=raster("BtmStress_Jul_2018.asc")

s2019=raster("BtmStress_Jul_2019.asc")

a2012=raster("BtmSalinity_Jul_2012.asc")

a2013=raster("BtmSalinity_Jul_2013.asc")

a2014=raster("BtmSalinity_Jul_2014.asc")
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a2015=raster("BtmSalinity_Jul_2015.asc")

a2016=raster("BtmSalinity_Jul_2016.asc")

a2017=raster("BtmSalinity_Jul_2017.asc")

a2018=raster("BtmSalinity_Jul_2018.asc")

a2019=raster("BtmSalinity_Jul_2019.asc")

# assign environmental values for every observation

Julyfullset$temperature=NA

Julyfullset$salinity=NA

Julyfullset$stress=NA

# spatially extract the depth values

Julyfullset$depth=raster::extract(draster, y = cbind(Julyfullset$mid.lon,

Julyfullset$mid.lat))

# spatiotemporally extract the other environmental variable values

h1=Julyfullset[Julyfullset$year==2012,]

h2=Julyfullset[Julyfullset$year==2013,]

h3=Julyfullset[Julyfullset$year==2014,]

h4=Julyfullset[Julyfullset$year==2015,]

h5=Julyfullset[Julyfullset$year==2016,]

h6=Julyfullset[Julyfullset$year==2017,]

h7=Julyfullset[Julyfullset$year==2018,]

h8=Julyfullset[Julyfullset$year==2019,]

h1$temperature=raster::extract(r2012, y = cbind(h1$mid.lon , h1$mid.lat))

h2$temperature=raster::extract(r2013, y = cbind(h2$mid.lon , h2$mid.lat))

h3$temperature=raster::extract(r2014, y = cbind(h3$mid.lon , h3$mid.lat))

h4$temperature=raster::extract(r2015, y = cbind(h4$mid.lon , h4$mid.lat))

h5$temperature=raster::extract(r2016, y = cbind(h5$mid.lon , h5$mid.lat))

h6$temperature=raster::extract(r2017, y = cbind(h6$mid.lon , h6$mid.lat))

h7$temperature=raster::extract(r2018, y = cbind(h7$mid.lon , h7$mid.lat))

h8$temperature=raster::extract(r2019, y = cbind(h8$mid.lon , h8$mid.lat))

h1$stress=raster::extract(s2012, y = cbind(h1$mid.lon,h1$mid.lat))

h2$stress=raster::extract(s2013, y = cbind(h2$mid.lon, h2$mid.lat))

h3$stress=raster::extract(s2014, y = cbind(h3$mid.lon, h3$mid.lat))

h4$stress=raster::extract(s2015, y = cbind(h4$mid.lon, h4$mid.lat))

h5$stress=raster::extract(s2016, y = cbind(h5$mid.lon, h5$mid.lat))

h6$stress=raster::extract(s2017, y = cbind(h6$mid.lon, h6$mid.lat))

h7$stress=raster::extract(s2018, y = cbind(h7$mid.lon, h7$mid.lat))

h8$stress=raster::extract(s2019, y = cbind(h8$mid.lon, h8$mid.lat))
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h1$salinity=raster::extract(a2012, y = cbind(h1$mid.lon, h1$mid.lat))

h2$salinity=raster::extract(a2013, y = cbind(h2$mid.lon, h2$mid.lat))

h3$salinity=raster::extract(a2014, y = cbind(h3$mid.lon, h3$mid.lat))

h4$salinity=raster::extract(a2015, y = cbind(h4$mid.lon, h4$mid.lat))

h5$salinity=raster::extract(a2016, y = cbind(h5$mid.lon, h5$mid.lat))

h6$salinity=raster::extract(a2017, y = cbind(h6$mid.lon, h6$mid.lat))

h7$salinity=raster::extract(a2018, y = cbind(h7$mid.lon, h7$mid.lat))

h8$salinity=raster::extract(a2019, y = cbind(h8$mid.lon, h8$mid.lat))

Julyfullset$temperature=c(h1$temperature,h2$temperature,h3$temperature,

h4$temperature,h5$temperature,h6$temperature,

h7$temperature,h8$temperature)

Julyfullset$stress=c(h1$stress,h2$stress,h3$stress,h4$stress,

h5$stress,h6$stress,h7$stress,h8$stress)

Julyfullset$salinity=c(h1$salinity,h2$salinity,h3$salinity,h4$salinity,

h5$salinity,h6$salinity,h7$salinity,h8$salinity)

# SH dataset

myheight= Julyfullset%>%filter(

!is.na(temperature),

!is.na(depth),

!is.na(stress),

!is.na(salinity)

) %>% transmute(

height = gheight,

year = as.factor(year),

lon= mid.lon, lat= mid.lat ,

TOW_NO=TOW_NO,

ID_TOW = as.factor(paste(year,TOW_NO,sep = ’_’)),

depth = -depth ,

temperature = temperature,

salinity=salinity,

stress=stress) # make sure no NA, all values should be positive

write.csv(myheight,"myheight.csv")

myheight=read.csv("myheight.csv")

# create a UTM dataset for the SH dataset

hall_set <- myheight %>%

mutate(

depth = depth,

temperature = temperature,
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salinity=salinity,

stress=stress) %>%

mutate(X=lon, Y=lat) %>%

‘attr<-‘("projection", "LL") %>%

‘attr<-‘("zone", "20") %>%

PBSmapping::convUL()

# always check if the year is a factor

# create GPS map for the SH dataset

bbox <- c(left = min(myheight$lon)-1, bottom = min(myheight$lat)-1,

right = max(myheight$lon)+1, top = max((myheight$lat)+1))

latitude = myheight$lat

longitude = myheight$lon

year=as.factor(myheight$year)

site_df = as.data.frame(cbind(latitude,longitude,year))

site_map = ggmap(get_stamenmap(bbox, maptype = "terrain-background"))+

geom_point(data = site_df, aes(x = longitude, y = latitude),

size = 0.1, color = "red")+

geom_point(data = site_df, aes(x = longitude, y = latitude),

pch= 21, size = 0.1, color = "red")+

facet_wrap(year ~ ., ncol = 4)+

theme_bw() +

labs(x = "Lon", y = "Lat")

# create base map used for ggplot

base_map <- ggplot() +

borders("world", colour="gray50", fill = "gray90",

xlim = c(-66.24-1 ,-64.49+1), ylim = c(44.42-1,45.52+1 )) +

coord_map(xlim = c(-66.24-1 ,-64.49+1), ylim = c(44.42-1,45.52 +1 )) +

theme_bw() +

scale_color_continuous(low = "white", high = "red") +

scale_size_continuous(guide = FALSE) +

theme(axis.title = element_blank(),

axis.text = element_blank(),

axis.ticks = element_blank(),

legend.position = "bottom")

# graphs for predictor Variables vs the response

h3<-ggplot(myheight, aes(x =( temperature) , y = height )) +

geom_point() +labs(x = "Temperature ", y = "Height" )+

geom_smooth(method=’lm’, formula= y~x)
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h4<-ggplot(myheight, aes(x = depth , y = height )) +

geom_point() +labs(x = "Depth ", y = "Height")+

geom_smooth(method=’lm’, formula= y~x)

h5<-ggplot(myheight, aes(x = stress , y = height )) +

geom_point() +labs(x = "Stress ", y = "Height")+

geom_smooth(method=’lm’, formula= y~x)

h6<-ggplot(myheight, aes(x = salinity , y = height )) +

geom_point() +labs(x = "Salinity ", y = "Height")+

geom_smooth(method=’lm’, formula= y~x)

grid.arrange(h3,h4,h5,h6, nrow = 2, ncol=2)

# graph for explanatory variable correlation in the SH dataset

corr_matrix <- myheight[,c(7,8,10,9)] %>%

cor(method="pearson", use="pairwise.complete.obs")

mtext("Explanatory variable correlations", at=2.5, line=-0.5, cex=1)

# graph for mean heights in each tow location

myheight=myheight%>%

group_by(ID_TOW) %>%

mutate(mean_height=mean(height,na.rm=T))

base_map +

geom_point(data = myheight, aes(x=lon, y=lat, color = mean_height),

shape = 20,size=0.05) +

scale_color_gradientn(colours = rainbow(7), limits=c(30,160),

oob=scales::squish) +

labs(colour = "The mean shell height (mm) in each tow location")+

facet_grid(~year)

# graph for the height distribution

ggplot(myheight, aes(x=height)) +

geom_histogram(aes(y=..density..),

binwidth=.5,

color="black", fill="white") +

geom_density(alpha=.2,color="black", fill="#FF6666")
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#SPDE mesh of the HMC

mesh1 = inla.mesh.create(hall_set[,c("X","Y")], refine = F, extend = F)

mesh <- make_mesh(hall_set, xy_cols = c("X", "Y"),mesh=mesh1) # SPDE

plot(mesh1, family = "serif", cex.main = 2, main = "")

points(cbind(hall_set$X, hall_set$Y), col = "orange", cex = 0.4)

# Normal vs t_2

fit_sdm<- sdmTMB(

height ~ year,

family = gaussian(link = "identity"), data = hall_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

saveRDS(fit_sdm,"fit_sdm.rds")

fit_sdmt <- sdmTMB(

weight ~ year,

family = student(link = "identity",df=2), data = hall_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

saveRDS(fit_sdmt,"fit_sdmt.rds")

# RQR plot for the HMC

rq_res1 <- residuals(fit_sdmt)

rq_res1 <- rq_res1[is.finite(rq_res1)]

qqnorm(rq_res1,xlab="Theoretical df=2")

qqline(rq_res1)

rq_res2 <- residuals(fit_sdmt)

rq_res2 <- rq_res2[is.finite(rq_res2)]

qqnorm(rq_res2)

qqline(rq_res2)

# stratified sampling for the SH dataset

set.seed(111)

list_tow <- unique(hall_set$ID_TOW)

folds_tow <- caret::createFolds(list_tow, k = 10, list = T, returnTrain = F)

folds <- lapply(folds_tow, function(x) which(hall_set$ID_TOW %in% list_tow[x]))
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hall_set$foldID=NA

hall_set$obs=c(1:length(hall_set[,1]))

hall_set$foldID[which(hall_set$obs %in% folds$Fold01)]=1

hall_set$foldID[which(hall_set$obs %in% folds$Fold02)]=2

hall_set$foldID[which(hall_set$obs %in% folds$Fold03)]=3

hall_set$foldID[which(hall_set$obs %in% folds$Fold04)]=4

hall_set$foldID[which(hall_set$obs %in% folds$Fold05)]=5

hall_set$foldID[which(hall_set$obs %in% folds$Fold06)]=6

hall_set$foldID[which(hall_set$obs %in% folds$Fold07)]=7

hall_set$foldID[which(hall_set$obs %in% folds$Fold08)]=8

hall_set$foldID[which(hall_set$obs %in% folds$Fold09)]=9

hall_set$foldID[which(hall_set$obs %in% folds$Fold10)]=10

hall_set$foldID=as.factor(hall_set$foldID)

# spatial distributions of observations from the SH dataset across 10 folds

heightcluter=ggscatter(

hall_set, x = "lon", y = "lat",

color = "foldID", ellipse = TRUE, ellipse.type = "convex", shape="year",

size = 1.5, legend = "right", ggtheme = theme_bw(),

xlab = paste0("lon" ),

ylab = paste0("lat" )

) +facet_grid(~foldID)

# backward variable selection for the HMC

fit_sdmtDTSS<- sdmTMB(

height ~ year+depth+temperature+stress+salinity,

family = student(link = "identity", df = 2), data = hall_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

summary(fit_sdmtDTSS$sd_report, select = "fixed", p.value = TRUE)

fit_sdmtDTSa<- sdmTMB(

height ~ year+depth+temperature+salinity,

family = student(link = "identity", df = 2), data = hall_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

summary(fit_sdmtDTSa$sd_report, select = "fixed", p.value = TRUE)

fit_sdmtDT<- sdmTMB(
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height ~ year+depth+temperature,

family = student(link = "identity", df = 2), data = hall_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

summary(fit_sdmtDT$sd_report, select = "fixed", p.value = TRUE)

fit_sdmtD<- sdmTMB(

height ~ year+depth,

family = student(link = "identity", df = 2), data = hall_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

summary(fit_sdmtD$sd_report, select = "fixed", p.value = TRUE)

saveRDS(fit_sdmtD,"fit_sdmtD.rds")

# CV for potential models of HMC

hspm_cv <- sdmTMB_cv(

height ~ year,

family = student(link = "identity",df=2), data = hall_set,

time = "year", spatial = "on", spatiotemporal = "off",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(hstm_cv$data,"hspm_cvdata")

h0=read.csv("hspm_cvdata.csv")

hstm_cv <- sdmTMB_cv(

height ~ year,

family = student(link = "identity",df=2), data = hall_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE
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)

write.csv(hstm_cv$data,"hstm_cvdata")

h1=read.csv("hstm_cvdata.csv")

hstmD_cv <- sdmTMB_cv(

height ~ year+depth,

family = student(link = "identity",df=2), data = hall_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(hstmD_cv$data,"hstmD_cvdata")

h2=read.csv("hstmD_cvdata.csv")

hstmT_cv <- sdmTMB_cv(

height ~ year+temperature,

family = student(link = "identity",df=2), data = hall_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(hstmT_cv$data,"hstmT_cvdata")

h3=read.csv("hstmT_cvdata.csv")

hstmT_cv <- sdmTMB_cv(

height ~ year+temperature,

family = student(link = "identity",df=2), data = hall_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,
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use_initial_fit = FALSE

)

write.csv(hstmT_cv$data,"hstmT_cvdata")

h4=read.csv("hstmT_cvdata.csv")

hstmDT_cv <- sdmTMB_cv(

height ~ year+temperature+depth,

family = student(link = "identity",df=2), data = hall_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(hstmDT_cv$data,"hstmT_cvdata")

h5=read.csv("hstmDT_cvdata.csv")

hstmDTSS_cv <- sdmTMB_cv(

height ~ year+temperature+depth+stress+salinity,

family = student(link = "identity",df=2), data = hall_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(hstmDTSS_cv$data,"hstmTSS_cvdata")

h6=read.csv("hstmDTSS_cvdata.csv")

# create a table for all potential model MSPEs of the HMC

h0=read.csv("hspm_cvdata.csv")

h1=read.csv("hstm_cvdata.csv")

h2=read.csv("hstmD_cvdata.csv")

h3=read.csv("hstmT_cvdata.csv")

h4=read.csv("hstmDT_cvdata.csv")

h5=read.csv("hstmDTSS_cvdata.csv")
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hres <- data.frame(

"lon"=h1$lon,

"lat"=h1$lat,

"Year"=as.factor(h1$year),

"STM"=h1$ height-h1$cv_predicted,

"STM-D"=h2$ height-h2$cv_predicted,

"STM-T"=h3$ height-h3$cv_predicted,

"STM-DT"=h4$ height-h4$cv_predicted,

"STM-DTSS"=h5$ height-h5$cv_predicted

) %>%

tidyr::gather(model,resid,-lon,-lat,-Year) %>%

mutate(model = factor(model, ordered = T))

hres.sp <- hres %>%

group_by(Year, lon, lat, model) %>%

summarise(m.resid = mean(resid), sd.resid = sd(resid),

m.abs.resid = mean(abs(resid)),m.sq.resid = mean((resid)^2)) %>%

ungroup()

bind_rows(

res %>%

group_by(Year, model) %>%

summarise(indiv.resid.mean = paste0(format(round(mean((resid^2)),4),

nsmall=4, scientific=F))) %>%

spread(model, indiv.resid.mean),

hres %>%

group_by(model) %>%

summarise(indiv.resid.mean = paste0(format(round(mean((resid^2)),4),

nsmall=4, scientific=F))) %>%

spread(model, indiv.resid.mean) %>% mutate(Year = "2012-2019")

) %>%

xtable::xtable() %>%

print(include.rownames=F)

# create shape files for the study area and the Bay of Fundy

studyarea =readOGR(dsn = path.expand("BoF_Strata_extent4Joy.shp"),

layer = "BoF_Strata_extent4Joy")

shape1 <- readOGR(dsn = path.expand("SPA1A_polygon_NAD83.shp"),

layer = "SPA1A_polygon_NAD83")

shape2 <- readOGR(dsn = path.expand("SPA1B_polygon_NAD83.shp"),

layer = "SPA1B_polygon_NAD83")

shape3 <- readOGR(dsn = path.expand("SPA4_polygon_NAD83.shp"),
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layer = "SPA4_polygon_NAD83")

shape4 <- readOGR(dsn = path.expand("SPA5_polygon_NAD83.shp"),

layer = "SPA5_polygon_NAD83")

studyarea <- union(studyarea,shape4)

writeSpatialShape(studyarea, "studyarea.ship")

studyarea =st_read("studyarea.shp")

subs_union1 <- union(shape1,shape2)

subs_union2 <- union(shape3,shape4)

BayofFundy=union(subs_union1,subs_union2)

writeSpatialShape(BayofFundy, "Bay of Fundy.ship")

# generate point locations for the shape file

sf_use_s2(FALSE)

set.seed(100)

times = 8

N=100000

nc_point <- st_sample(x = studyarea, size = N)

nc_point=as.matrix(nc_point)

nc_point <- do.call(rbind, st_geometry(nc_point)) %>%

as_tibble() %>% setNames(c("lon","lat"))

points=as.data.frame(nc_point)%>%

mutate(X=lon, Y=lat) %>%

‘attr<-‘("projection", "LL") %>%

‘attr<-‘("zone", "20") %>%

PBSmapping::convUL()

points=as.matrix(points)

# assign environmental values to all generated locations

mg=as.data.frame(nc_point)

mg$temperature=NA

mg$salinity=NA

mg$stress=NA

mg1=mg # for all environmental data in 2012

mg2=mg # for all environmental data in 2013

mg3=mg # for all environmental data in 2014

mg4=mg # for all environmental data in 2015

mg5=mg # for all environmental data in 2016

mg6=mg # for all environmental data in 2017

mg7=mg # for all environmental data in 2018

mg8=mg # for all environmental data in 2019
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mg1$temperature=raster::extract(r2012, y = cbind(mg1$lon, mg1$lat))

mg2$temperature=raster::extract(r2013, y = cbind(mg2$lon, mg2$lat))

mg3$temperature=raster::extract(r2014, y = cbind(mg3$lon, mg3$lat))

mg4$temperature=raster::extract(r2015, y = cbind(mg4$lon, mg4$lat))

mg5$temperature=raster::extract(r2016, y = cbind(mg5$lon, mg5$lat))

mg6$temperature=raster::extract(r2017, y = cbind(mg6$lon, mg6$lat))

mg7$temperature=raster::extract(r2018, y = cbind(mg7$lon, mg7$lat))

mg8$temperature=raster::extract(r2019, y = cbind(mg8$lon, mg8$lat))

mg1$stress=raster::extract(s2012, y = cbind(mg1$lon, mg1$lat))

mg2$stress=raster::extract(s2013, y = cbind(mg2$lon, mg2$lat))

mg3$stress=raster::extract(s2014, y = cbind(mg3$lon, mg3$lat))

mg4$stress=raster::extract(s2015, y = cbind(mg4$lon, mg4$lat))

mg5$stress=raster::extract(s2016, y = cbind(mg5$lon, mg5$lat))

mg6$stress=raster::extract(s2017, y = cbind(mg6$lon, mg6$lat))

mg7$stress=raster::extract(s2018, y = cbind(mg7$lon, mg7$lat))

mg8$stress=raster::extract(s2019, y = cbind(mg8$lon, mg8$lat))

mg1$salinity=raster::extract(a2012, y = cbind(mg1$lon, mg1$lat))

mg2$salinity=raster::extract(a2013, y = cbind(mg2$lon, mg2$lat))

mg3$salinity=raster::extract(a2014, y = cbind(mg3$lon, mg3$lat))

mg4$salinity=raster::extract(a2015, y = cbind(mg4$lon, mg4$lat))

mg5$salinity=raster::extract(a2016, y = cbind(mg5$lon, mg5$lat))

mg6$salinity=raster::extract(a2017, y = cbind(mg6$lon, mg6$lat))

mg7$salinity=raster::extract(a2018, y = cbind(mg7$lon, mg7$lat))

mg8$salinity=raster::extract(a2019, y = cbind(mg8$lon, mg8$lat))

# expand mg to store environmental data across all years

rows= c(1:nrow(mg))

mg=mg[rep(rows, times),]

mg$year=c(rep(2012,N),rep(2013,N),rep(2014,N),rep(2015,N),

rep(2016,N),rep(2017,N),rep(2018,N),rep(2019,N))

mg$temperature=c(mg1$temperature,mg2$temperature,mg3$temperature,

mg4$temperature,mg5$temperature,mg6$temperature,

mg7$temperature,mg8$temperature)

mg$salinity=c(mg1$salinity,mg2$salinity,mg3$salinity,mg4$salinity,

mg5$salinity,mg6$salinity,mg7$salinity,mg8$salinity)

mg$stress=c(mg1$stress,mg2$stress,mg3$stress,mg4$stress,

mg5$stress,mg6$stress,mg7$stress,mg8$stress)

mg$depth=raster::extract(draster, y = cbind(mg$lon, mg$lat))

mg= mg%>%filter(
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!is.na(depth),

!is.na(temperature),

!is.na(stress),

!is.na(salinity)

) %>% transmute(

year = as.factor(year),

lon= lon, lat= lat ,

depth = -depth ,

temperature = temperature,

stress=stress,

salinity=salinity)

mg=mg[mg$depth>0,]

# make a study set with year and environmental information for all locations

hstudy_set <- mg %>%

mutate(

depth = as.numeric(((depth))),

temperature = as.numeric(((temperature))),

stress = as.numeric(((stress))),

salinity = as.numeric(((salinity)))) %>%

mutate(X=lon, Y=lat) %>%

‘attr<-‘("projection", "LL") %>%

‘attr<-‘("zone", "20") %>%

PBSmapping::convUL()

# graph for the SPAs

BayofFundy =st_read("BayofFundy.shp")

bbox1 <- c(left = min(myheight$lon)-1.5, bottom = min(myheight$lat)-1.5,

right = max(myheight$lon)+1.5, top = max((myheight$lat)+1.5))

BD2=BayofFundy%>% dplyr::select(SP_ID, geometry)

ggmap(get_stamenmap(bbox1, maptype = "terrain-background")) +

coord_sf(crs = hst_crs(3857)) +

geom_point(data = hstudy_set, aes(x = lon, y = lat),

size = 0.5, color = "pink")+

geom_sf(data = BD2, fill = NA,inherit.aes = FALSE)+

theme_bw() +

labs(x = "Lon", y = "Lat")

# graphs for environmental variable

base_map +

geom_point(data = study_set, aes(x=lon, y=lat, color = depth),shape = 20,

size=0.5) +
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scale_color_gradientn(colours = rainbow(7),oob=scales::squish)+

labs(colour = "Depth (m)")

base_map +

geom_point(data = study_set, aes(x=lon, y=lat, color = temperature),

shape = 20,size=0.1) +

scale_color_gradientn(colours = rainbow(7),oob=scales::squish)+

facet_grid(~year) + labs(colour = "Bottom temperature (°C)")

base_map +

geom_point(data = study_set, aes(x=lon, y=lat, color = stress),

shape = 20,size=0.1) +

scale_color_gradientn(colours = rainbow(7),oob=scales::squish)+

facet_grid(~year) +

labs(colour = expression("Bottom stress"* " (kg."*"m"^-1*".s"^-2*")"))

base_map +

geom_point(data = study_set, aes(x=lon, y=lat, color = salinity),

shape = 20,size=0.1) +

scale_color_gradientn(colours = rainbow(7),oob=scales::squish) +

facet_grid(~year) + labs(colour = "Bottom salinity (psu)")

# use STM-D for HMC to predict shell height in the study area

Studyheightt2STMD<- predict(fit_sdmtD,hstudy_set,

type = "response",re_form = NULL)

write.csv(Studyheightt2STMD,"Studyheightt2STMD.csv")

Studyheightt2STMD=read.csv("Studyheightt2STMD.csv")

# graphs for random effects in the HMC

base_map +facet_wrap(year ~ ., ncol = 8) +

geom_point(aes(x = lon , y = lat ,colour =(epsilon_st )),size = 0.1,

data =Studyheightt2STMD , alpha =.5) + scale_color_continuous()+

theme(text=element_text(size=11, family="serif"))+

scale_color_gradient2(low = "blue", high = "red", mid = "white")+

ggtitle("Spatiotemporal effect")

base_map +

geom_point(aes(x = lon , y = lat ,colour =(omega_s )),size = 0.1,

data =Studyheightt2STMD, alpha =.5) + scale_color_continuous()+

theme(text=element_text(size=11, family="serif"))+

scale_color_gradient2(low = "blue", high = "red", mid = "white") +

ggtitle("Spatial effect")
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base_map + facet_wrap(year ~ ., ncol = 8) +

geom_point(aes(x = lon , y = lat ,colour =( est_rf )),size = 0.1,

data =Studyheightt2STMD, alpha =.5) + scale_color_continuous()+

theme(text=element_text(size=11, family="serif"))+

scale_color_gradient2(low = "blue", high = "red", mid = "white")+

ggtitle("Spatial + Spatiotemporal effect")

# make a dataset for shell height prediction

pred.interpolation <- data.frame(

"lon"=Studyheightt2STMD$lon,

"lat"=Studyheightt2STMD$lat,

"Year"=Studyheightt2STMD$year,

"STMD"=Studyheightt2STMD$est

)

pred.interpolation=na.omit(pred.interpolation)

# graph for shell height prediction

base_map +

geom_point(data = pred.interpolation, aes(x=lon, y=lat, color =STMD),

shape=20, size =0.05, alpha=0.5) +

scale_color_gradientn(colours = rainbow(7),oob=scales::squish)+

facet_grid(~Year)+

labs(colour = "Predicted shell heights (mm) from the HMC")

# graph for shell height sd errors

p <-predict(fit_sdmtD,type = "response",re_form = NULL,

newdata=hstudy_set, nsim = 500)

predictor_dat=hstudy_set

predictor_dat$se<- apply(p, 1, sd)

base_map +

geom_point(data = predictor_dat, aes(x=lon, y=lat, color =se),

shape = 20,size=0.5) +

scale_color_gradientn(colours = rainbow(7),oob=scales::squish)+

facet_grid(~year) +

labs(colour = "Standard errors of the predicted shell heights from the HMC")
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################################################################################

# WMC and JWHM

# clean the MWSH dataset

scallops=read.csv("bof.mwsh.JuneJuly.2012to2019.clean.csv")

scallops=scallops%>% filter(month ==7)

scallops = scallops[!scallops$CRUISE == "RF2012",]

mydata= scallops%>% transmute(weight = WET_MEAT_WGT,

height = HEIGHT,

year = as.factor(year),

TOW_NO =TOW_NO ,

lon= mid.lon, lat= mid.lat

)

mydata$depth=raster::extract(draster, y = cbind(mydata$lon , mydata$lat))

obs1=mydata%>% filter(year ==2012)

obs2=mydata%>% filter(year ==2013)

obs3=mydata%>% filter(year ==2014)

obs4=mydata%>% filter(year ==2015)

obs5=mydata%>% filter(year ==2016)

obs6=mydata%>% filter(year ==2017)

obs7=mydata%>% filter(year ==2018)

obs8=mydata%>% filter(year ==2019)

obs1$salinity=raster::extract(a2012, y = cbind(obs1$lon, obs1$lat))

obs2$salinity=raster::extract(a2013, y = cbind(obs2$lon, obs2$lat))

obs3$salinity=raster::extract(a2014, y = cbind(obs3$lon, obs3$lat))

obs4$salinity=raster::extract(a2015, y = cbind(obs4$lon, obs4$lat))

obs5$salinity=raster::extract(a2016, y = cbind(obs5$lon, obs5$lat))

obs6$salinity=raster::extract(a2017, y = cbind(obs6$lon, obs6$lat))

obs7$salinity=raster::extract(a2018, y = cbind(obs7$lon, obs7$lat))

obs8$salinity=raster::extract(a2019, y = cbind(obs8$lon, obs8$lat))

mydata$salinity=c(obs1$salinity,obs2$salinity,obs3$salinity,obs4$salinity,

obs5$salinity,obs6$salinity,obs7$salinity,obs8$salinity)

obs1$temperature=raster::extract(r2012, y = cbind(obs1$lon, obs1$lat))

obs2$temperature=raster::extract(r2013, y = cbind(obs2$lon, obs2$lat))

obs3$temperature=raster::extract(r2014, y = cbind(obs3$lon, obs3$lat))

obs4$temperature=raster::extract(r2015, y = cbind(obs4$lon, obs4$lat))

obs5$temperature=raster::extract(r2016, y = cbind(obs5$lon, obs5$lat))

obs6$temperature=raster::extract(r2017, y = cbind(obs6$lon, obs6$lat))

obs7$temperature=raster::extract(r2018, y = cbind(obs7$lon, obs7$lat))

obs8$temperature=raster::extract(r2019, y = cbind(obs8$lon, obs8$lat))
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mydata$temperature=c(obs1$temperature,obs2$temperature,obs3$temperature,

obs4$temperature,obs5$temperature,obs6$temperature,

obs7$temperature,

obs8$temperature)

obs1$stress=raster::extract(s2012, y = cbind(obs1$lon, obs1$lat))

obs2$stress=raster::extract(s2013, y = cbind(obs2$lon, obs2$lat))

obs3$stress=raster::extract(s2014, y = cbind(obs3$lon, obs3$lat))

obs4$stress=raster::extract(s2015, y = cbind(obs4$lon, obs4$lat))

obs5$stress=raster::extract(s2016, y = cbind(obs5$lon, obs5$lat))

obs6$stress=raster::extract(s2017, y = cbind(obs6$lon, obs6$lat))

obs7$stress=raster::extract(s2018, y = cbind(obs7$lon, obs7$lat))

obs8$stress=raster::extract(s2019, y = cbind(obs8$lon, obs8$lat))

mydata$stress=c(obs1$stress,obs2$stress,obs3$stress,obs4$stress,

obs5$stress,obs6$stress,obs7$stress,obs8$stress)

mydata= mydata%>%filter(

!is.na(depth),

!is.na(temperature),

!is.na(stress),

!is.na(salinity)

) %>% transmute(weight = weight,

height = height,

depth=-depth,

year = as.factor(year),

lon= lon, lat= lat ,

ID_TOW = as.factor(paste(year,TOW_NO,sep = ’_’)),

depth = depth ,

temperature = temperature,

stress=stress,

salinity=salinity)

# make sure no NA, all values should be positive

# make a UTM dataset for the MWSH dataset

all_set <- mydata %>%

mutate(height = as.numeric((log(height))),

depth = as.numeric((log(depth))),

temperature = as.numeric((log(temperature))),

stress = as.numeric((log(stress))),

salinity = as.numeric((log(salinity)))) %>%

mutate(X=lon, Y=lat) %>%

‘attr<-‘("projection", "LL") %>%

‘attr<-‘("zone", "20") %>%
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PBSmapping::convUL()

# graph for height vs weight

h1<-ggplot(mydata, aes(x =height , y = weight)) +

geom_point() +labs(x = "Height ", y = "Weight") +

geom_smooth(method = "lm")

h2<-ggplot(mydata, aes(x =log(height) , y = log(weight))) +

geom_point() +labs(x = "log Height ", y = "log Weight") +

geom_smooth(method = "lm")

grid.arrange(h1,h2, nrow = , ncol=2)

# graph for environmental variables vs weight

h3<-ggplot(mydata, aes(x =( temperature) , y = weight)) +

geom_point() +labs(x = "Temperature ", y = "Weight" )

h4<-ggplot(mydata, aes(x = depth , y = weight)) +

geom_point() +labs(x = "Depth ", y = "Weight")

h5<-ggplot(mydata, aes(x = stress , y = weight)) +

geom_point() +labs(x = "Stress ", y = "Weight")

h6<-ggplot(mydata, aes(x = salinity , y = weight)) +

geom_point() +labs(x = "Salinity ", y = "Weight")

grid.arrange(h3,h4,h5,h6, nrow = 2, ncol=2)

# graph for log environmental variables vs log weight

h3<-ggplot(mydata, aes(x =log( temperature) , y = log(weight))) +

geom_point() +labs(x = "log Temperature ", y = "log Weight ")

h4<-ggplot(mydata, aes(x = log(depth) , y = log(weight))) +

geom_point() +labs(x = "log Depth ", y = "log Weight")

h5<-ggplot(mydata, aes(x = log(stress) , y = log(weight))) +

geom_point() +labs(x = "log Stress ", y = "log Weight")
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h6<-ggplot(mydata, aes(x = log(salinity) , y = log(weight))) +

geom_point() +labs(x = "log Salinity ", y = "log Weight")

grid.arrange(h3,h4,h5,h6, nrow = 2, ncol=2)

# graph for environmental variable correlation in the MWSH dataset

par(mfrow=c(1,2))

corr_matrix <- mydata[,c(7,8,9,10)] %>%

cor(method="pearson", use="pairwise.complete.obs")

corrplot(corr_matrix ,method="color", addCoef.col = "black",

mar=c(0,0,5,0), tl.offset = 1)

mtext("Environmental variable correlations", at=2.5, line=-0.5, cex=0.8)

corr_matrix <- all_set[,c(7,8,9,10)] %>%

cor(method="pearson", use="pairwise.complete.obs")

corrplot(corr_matrix ,method="color", addCoef.col = "black",

mar=c(0,0,5,0), tl.offset = 1)

mtext("Environmental variable correlations after transformations",

at=2.5, line=-0.5, cex=0.8)

# graph for mean weights in each tow location

mydata=mydata%>%

group_by( ID_TOW ) %>%

mutate(mean_weight=mean(weight,na.rm=T))

base_map +

geom_point(data = mydata, aes(x=lon, y=lat, color = mean_weight),

shape = 20,size=0.05) +

scale_color_gradientn(colours = rainbow(7), limits=c(3,50),

oob=scales::squish) +

labs(colour = "The mean meat weight (g) in each tow location")+

facet_grid(~year)

# graph for weight distributions

w1=ggplot(mydata, aes(x=weight)) +

geom_histogram(aes(y=..density..),

binwidth=.5,

colour="black", fill="white") +

geom_density(alpha=.2, fill="#FF6666")
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w2=ggplot(mydata, aes(x=log(weight))) +

geom_histogram(aes(y=..density..),

binwidth=.05,

color="black", fill="white") +

geom_density(alpha=.2,color="black", fill="#FF6666")

grid.arrange(w1,w2, nrow = 1, ncol=2)

# SPDE mesh of the WMC

mesh1 = inla.mesh.create(all_set[,c("X","Y")], refine = F, extend = F)

plot(mesh1, family = "serif", cex.main = 2, main = "")

points(cbind(all_set$X, all_set$Y), col = "orange", cex = 0.4)

mesh <- make_mesh(all_set, xy_cols = c("X", "Y"),mesh=mesh1)

# Normal vs t_2

weight_sdm <- sdmTMB(

weight ~ year+height,

family = gaussian(link = "log"), data = all_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

saveRDS(weight_sdm,"weight_sdm.rds")

weight_sdmt <- sdmTMB(

weight ~ year+height,

family = student(link = "log",df=2), data = all_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

saveRDS(weight_sdmt,"weight_sdmt.rds")

#WMC RQR plot

rq_res1 <- residuals(weight_sdmt)

rq_res1 <- rq_res1[is.finite(rq_res1)]

qqnorm(rq_res1,xlab="Theoretical df=2")

qqline(rq_res1)

rq_res2 <- residuals(weight_sdm)

rq_res2 <- rq_res2[is.finite(rq_res2)]
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qqnorm(rq_res2)

qqline(rq_res2)

# stratified sampling for the MWSH dataset

set.seed(111)

list_tow <- unique(all_set$ID_TOW)

folds_tow <- caret::createFolds(list_tow, k = 10, list = T, returnTrain = F)

folds <- lapply(folds_tow, function(x) which(all_set$ID_TOW %in% list_tow[x]))

all_set$foldID=NA

all_set$obs=c(1:length(all_set[,1]))

all_set$foldID[which(all_set$obs %in% folds$Fold01)]=1

all_set$foldID[which(all_set$obs %in% folds$Fold02)]=2

all_set$foldID[which(all_set$obs %in% folds$Fold03)]=3

all_set$foldID[which(all_set$obs %in% folds$Fold04)]=4

all_set$foldID[which(all_set$obs %in% folds$Fold05)]=5

all_set$foldID[which(all_set$obs %in% folds$Fold06)]=6

all_set$foldID[which(all_set$obs %in% folds$Fold07)]=7

all_set$foldID[which(all_set$obs %in% folds$Fold08)]=8

all_set$foldID[which(all_set$obs %in% folds$Fold09)]=9

all_set$foldID[which(all_set$obs %in% folds$Fold10)]=10

all_set$foldID=as.factor(all_set$foldID)

# spatial distributions of observations from the MWSH dataset across 10 folds

weightcluter=ggscatter(

all_set, x = "lon", y = "lat",

color = "foldID", ellipse = TRUE, ellipse.type = "convex", shape="year",

size = 1.5, legend = "right", ggtheme = theme_bw(),

xlab = paste0("lon" ),

ylab = paste0("lat" )

) +facet_grid(~foldID)

# backward variable selection for the WMC

weight_sdmtDTSS<- sdmTMB(

weight ~ year+ height+depth+temperature+stress+salinity,

family = student(link = "log", df = 2), data = all_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

summary(weight_sdmtDTSS$sd_report, select = "fixed", p.value = TRUE)
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weight_sdmtDTSt<- sdmTMB(

weight ~ year+ height+depth+temperature+stress,

family = student(link = "log", df = 2), data = all_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

summary(weight_sdmtDTSt$sd_report, select = "fixed", p.value = TRUE)

weight_sdmtDT<- sdmTMB(

weight ~ year+ height+depth+temperature,

family = student(link = "log", df = 2), data = all_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

summary(weight_sdmtDT$sd_report, select = "fixed", p.value = TRUE)

weight_sdmtD<- sdmTMB(

weight ~ year+ height+depth,

family = student(link = "log", df = 2), data = all_set, mesh = mesh,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE

)

summary(weight_sdmtD$sd_report, select = "fixed", p.value = TRUE)

saveRDS(weight_sdmtD,"weight_sdmtD.rds")

# CV for potential models of WMC

spm_cv <- sdmTMB_cv(

weight ~ year+height,

family = student(link = "log",df=2), data = all_set,

time = "year", spatial = "on", spatiotemporal = "off",

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(spm_cv$data,"spm_cvdata.csv")

w0=read.csv("spm_cvdata.csv")

r0=mean((w0$weight-w0$cv_predicted)^2)
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stm_cv <- sdmTMB_cv(

weight ~ year+height,

family = student(link = "log",df=2), data = all_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(stm_cv$data,"stm_cvdata")

w1=read.csv("stm_cvdata.csv")

r1=mean((w1$weight-w1$cv_predicted)^2)

stmD_cv <- sdmTMB_cv(

weight ~ year+height+depth,

family = student(link = "log",df=2), data = all_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(stmD_cv$data,"stmD_cvdata")

w2=read.csv("stmD_cvdata.csv")

stmT_cv <- sdmTMB_cv(

weight ~ year+height+temperature,

family = student(link = "log",df=2), data = all_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(stmT_cv$data,"stmT_cvdata")

w3=read.csv("stmT_cvdata.csv")
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stmDT_cv <- sdmTMB_cv(

weight ~ year+height+depth+temperature,

family = student(link = "log",df=2), data = all_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(stmDT_cv$data,"stmDT_cvdata")

w4=read.csv("stmDT_cvdata.csv")

stmDTSS_cv <- sdmTMB_cv(

weight ~ year+height+depth+temperature+salinity+stress,

family = student(link = "log",df=2), data = all_set,

time = "year", spatial = "on", spatiotemporal = "iid",

share_range=FALSE,

mesh = mesh,

fold_ids = "foldID",

k_folds = 10,

parallel = TRUE,

use_initial_fit = FALSE

)

write.csv(stmDTSS_cv$data,"stmDTSS_cvdata")

w5=read.csv("stmDTSS_cvdata.csv")

# MSPE for all potential model of the WMC

w0=read.csv("spm_cvdata.csv")

w1=read.csv("stm_cvdata.csv")

w2=read.csv("stmD_cvdata.csv")

w3=read.csv("stmT_cvdata.csv")

w4=read.csv("stmDT_cvdata.csv")

w5=read.csv("stmDTSS_cvdata.csv")

res <- data.frame(

"lon"=w1$lon,

"lat"=w1$lat,

"Year"=as.factor(w1$year),
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"SM"=w0$ weight-w0$cv_predicted,

"STM"=w1$ weight-w1$cv_predicted,

"STM-D"=w2$ weight-w2$cv_predicted,

"STM-T"=w3$ weight-w3$cv_predicted,

"STM-DT"=w4$ weight-w4$cv_predicted,

"STM-DTSS"=w5$ weight-w5$cv_predicted

) %>%

tidyr::gather(model,resid,-lon,-lat,-Year) %>%

mutate(model = factor(model, ordered = T))

# WMC MSPE table

res.sq <- res %>%

dplyr::group_by(Year, lon, lat, model) %>%

dplyr::summarise(m.resid = mean(resid), m.abs.resid = mean(abs(resid)),

m.sq.resid = mean((resid)^2)) %>%

ungroup()

bind_rows(

res %>%

dplyr::group_by(Year, model) %>%

dplyr::summarise(indiv.resid.mean = paste0(format(round(mean((resid^2)),4),

nsmall=4, scientific=F))) %>%

spread(model, indiv.resid.mean),

res %>%

group_by(model) %>%

dplyr::summarise(indiv.resid.mean = paste0(format(round(mean((resid^2)),4),

nsmall=4, scientific=F))) %>%

spread(model, indiv.resid.mean) %>% mutate(Year = "2012-2019")

) %>%

xtable::xtable() %>%

print(include.rownames=F)

# make a study set with a fixed shell height

mg$height=c(rep((mean(mydata$height) )))

study_set <- mg %>%

mutate(height = as.numeric((log(height))),

depth = as.numeric((log(depth))),

temperature = as.numeric((log(temperature))),

stress = as.numeric((log(stress))),

salinity = as.numeric((log(salinity)))) %>%

mutate(X=lon, Y=lat) %>%

‘attr<-‘("projection", "LL") %>%
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‘attr<-‘("zone", "20") %>%

PBSmapping::convUL()

# use STM-D for both the WMC and the JWHM

weight_sdmtD=readRDS("weight_sdmtD.rds")

# meat weight predictions by the WMC using the fixed height

Studyweightt2STMD<- predict(weight_sdmtD,study_set,type = "response",

re_form = NULL)

write.csv(Studyweightt2STMD,"Studyweightt2STMD.csv")

# graphs for random effects in the WMC

base_map +facet_wrap(year ~ ., ncol = 8)+

geom_point(aes(x = lon , y = lat ,colour =(epsilon_st)),

size = 0.1, data =Studyweightt2STMD , alpha =.5)+

scale_color_continuous()+

theme(text=element_text(size=11, family="serif"))+

scale_color_gradient2(low = "blue", high = "red", mid = "white")+

ggtitle("Spatiotemporal effect")

base_map +

geom_point(aes(x = lon , y = lat ,colour =(omega_s)),

size = 0.1, data =Studyweightt2STMD , alpha =.5)+

scale_color_continuous()+

theme(text=element_text(size=11, family="serif"))+

scale_color_gradient2(low = "blue", high = "red", mid = "white")+

ggtitle("Spatial effect")

base_map + facet_wrap(year ~ ., ncol = 8)+

geom_point(aes(x = lon , y = lat ,colour =(est_rf)),

size = 0.1, data =Studyweightt2STMD , alpha =.5)+

scale_color_continuous()+

theme(text=element_text(size=11, family="serif"))+

scale_color_gradient2(low = "blue", high = "red", mid = "white")+

ggtitle("Spatial + Spatiotemporal effect")

#make a study set with predicted shell heights from the HMC

Studyheightt2STMD=read.csv("Studyheightt2STMD.csv")

colnames(Studyheightt2STMD)[colnames(Studyheightt2STMD) == ’est’] <- ’height’
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Studyheightt2STMD=Studyheightt2STMD[,c(2:11)]

Studyheightt2STMD$year=as.factor(Studyheightt2STMD$year)

Studyheightt2STMD=Studyheightt2STMD%>%

mutate(height = as.numeric((log(height))),

depth = as.numeric((log(depth))),

temperature = as.numeric((log(temperature))),

stress = as.numeric((log(stress))),

salinity = as.numeric((log(salinity)))) %>%

mutate(X=lon, Y=lat) %>%

‘attr<-‘("projection", "LL") %>%

‘attr<-‘("zone", "20") %>%

PBSmapping::convUL()

# meat weight prediction by the JWHM using predicted shell heights from the HMC

Studywh2STMD<- predict(weight_sdmtD,Studyheightt2STMD,

type = "response",re_form = NULL)

write.csv(Studywh2STMD,"Studywh2STMD.csv")

# make a set for meat weight prediction comparison between the WMC and the JWHM

pred.interpolation.comp <- data.frame(

"lon"=pred.interpolation$lon,

"lat"= pred.interpolation$lat,

"Year"=pred.interpolation$Year,

"WMC"=pred.interpolation$weightSTMD ,

"JWHM"=whpred.interpolation$STMD

) %>%

gather(model,pmw,-lon,-lat,-Year) %>%

mutate(model = factor(model,

levels = c("WMC", "JWHM")))

# graph for meat weight prediction comparison between the WMC and the JWHM

base_map +

geom_point(data = pred.interpolation.comp, aes(x=lon, y=lat, color = pmw),

shape=20, size =0.05, alpha=0.5) +

scale_color_gradientn(colours = rainbow(7),oob=scales::squish)+

facet_grid(model~Year) +

labs(colour = "Predicted meat weights (g)")

# sd errors for the WMC and the JWHM

pw <-predict(weight_sdmtD,type = "response",re_form = NULL,
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newdata = study_set, nsim = 500)

wpredictor_dat=study_set

wpredictor_dat$se<- apply(pw, 1, sd)

colnames(wpredictor_dat)[11] <- "WMC"

pwh <-predict(weight_sdmtD,type = "response",re_form = NULL,

newdata = Studyheightt2STMD, nsim = 500)

whpredictor_dat=Studyheightt2STMD

whpredictor_dat$se<- apply(pwh, 1, sd)

colnames(whpredictor_dat)[11] <- "JWHM"

# make a set for sd error comparison between the WMC and the JWHM

sedata <- data.frame(

"lon"=whpredictor_dat$lon,

"lat"=whpredictor_dat$lat,

"Year"=whpredictor_dat$year,

"WMC"=wpredictor_dat$WMC ,

"JWHM"=whpredictor_dat$JWHM

) %>%

gather(model,se,-lon,-lat,-Year) %>%

mutate(model = factor(model,

levels = c("WMC", "JWHM")))

# graph for sd comparison between the WMC and the JWHM

base_map +

geom_point(data = sedata, aes(x=lon, y=lat, color = se),

shape=20, size =0.05, alpha=0.5) +

scale_color_gradientn(colours = rainbow(7),oob=scales::squish) +

facet_grid(model~Year) +

labs(colour = "Standard errors of the predicted meat weight")


