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Abstract

Avoiding overexploitation of marine resources requires being able to accurately esti-

mate the size and health of a population. This thesis presents methods that improve

upon existing fisheries stock assessment methods. Having an estimate of the ages of

fish in a sample can simplify stock assessment model development and allow more

insight into stock structure. We first present a spatial Age Length Key (ALK) model

that accommodates physical barriers to fish movement such as islands or bays. By

incorporating spatial information and accounting for barriers in the construction of

ALKs more accurate estimates of age can be obtained. We then turn our attention to

effective population size, a concept used by conservationists and geneticists to sum-

marize the overall genetic health of a population by giving the size of the population

under the "ideal" Wright-Fisher model. We show how using CKMR alone it is pos-

sible to estimate the effective population size as well as the variance in number of

offspring enabling new insights into the population. Finally, we examine the applica-

bility of CKMR to a population similar to the Sable Island grey seal colony through

individual based simulation.
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Chapter 1

Introduction

In the inaugural address of the 1883 Fisheries Exhibition in London the English

biologist Thomas Huxley said "I believe, then, that the cod fishery, the herring fishery,

the pilchard fishery, the mackerel fishery, and probably all the great sea fisheries, are

inexhaustible; that is to say, that nothing we do seriously affects the number of the

fish. And any attempt to regulate these fisheries seems consequently, from the nature

of the case, to be useless" (Huxley 1883). Time of course proved Huxley wrong, in the

early 1990s most of the cod fisheries off the coast of Newfoundland collapsed in part

due to overfishing, and remain closed to fishing to this day over thirty years on (Myers

et al. 1997; Verma 2022). More recently the stock of Atlantic mackerel off the coast of

Nova Scotia was closed due to concerns it was depleted (Atlantic Mackerel Commercial

Fishery and Bait Closure 2022). To maintain fishery populations in a sustainable way

it is crucial that we understand their key aspects such as total abundance, growth rate,

recruitment (number of new individuals entering the fishery), and age composition.

Fisheries science combines elements of ecology, mathematics, statistics, and ma-

rine biology in an attempt to paint an accurate picture of the health of fish stocks

and avoid their over-harvesting. Fisheries science began to develop over the course

of the late 19th and 20th centuries as governments around the world started tak-

ing notice of declining fish populations. This led to the foundation of societies like

the U.S Fish Commission and the International Council for the Exploration of the

Sea (ICES) with the purposes of managing and investigating fisheries. Over time re-

searchers began to develop tools to answer key questions such as the work of Hoffbauer

1
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in the 1890s who noticed that rings develop annually on pond carp scales providing

a proficient aging tool, or Reibisch who noted that the bones of some fish are laid

down in layers, again enabling estimates of age to be found (T. D. Smith 1994).

Over the course of the 20th century mathematical modelling and statistics started to

play a larger role in helping to answer some of the questions posed by fisheries sci-

entists. This research led to growth models as developed by Von Bertalanffy (1938),

tools for estimating abundance like virtual population analysis developed by Gulland

(1965), further development on Mark-Recapture (MR) by Chapman (1951), stock-

recruitment relationships as suggested by Beverton and Holt (2012), among others.

These methods tended to be deterministic in nature rather than statistical and gave

no consideration to observational error present in the data. As the course of the

20th century progressed stochastic elements were introduced into the methods used

by fishery scientists thanks to work by individuals like Ricker and Doubleday (Quinn

2003). Fournier and Archibald (1982) started the modern practice of integrated anal-

ysis for fisheries stock assessment modelling, where data in the model are kept as raw

as possible to try and let the model capture as much uncertainty as possible through

the use of joint likelihood functions. State space stock assessment models started

to appear in the early 1990s through the works of Sullivan (1992) and Gudmunds-

son (1994) allowing for better capture of unobserved processes like fishing selectivity

through the use of random effects. New tools like AD Model Builder (ADMB) and

Template Model Builder (TMB) have simplified the process of developing state space

stock assessment models and have led to an increasing number being in use (Nielsen

and Berg 2014; Miller and Stock 2020; Cadigan 2015).

A contributing factor to the collapse of the cod stocks off the coast of Newfound-

land was that the stock assessment methods in use at the time were overestimating

abundance while underestimating fishing mortality (Myers et al. 1997). Had more ac-

curate methods been available then perhaps it could have been avoided. There have



3

been calls for advancements in stock assessment models and methods to incorporate

new sources of information with the hope of uncovering new insights and resolving

potential biases (Quinn 2003; Punt, Dunn, et al. 2020). It has been recognized that

stocks may not be spatially homogeneous across their management area and it may

be necessary and worth the increased complexity of incorporating spatial information

to account for this variability (Punt, Dunn, et al. 2020). Genetic data are another

new potential source of information for stock assessment that could allow for insights

into things like the familial structure of the population (Quinn 2003) and enable new

techniques (Bravington et al. 2016). This thesis develops stock assessment methods

that incorporate data from both spatial and genetic sources to glean new insights into

populations, test new approaches and improve their accuracy.

1.1 Age Structured Population Dynamics

Age structured population dynamics models provide a compromise between the over-

simplicity of models that do not differentiate between individuals and more complex

length or stage based ones (Quinn 2003). Age-structured methods require an estimate

of age to be known. For fish this is often done by taking a subsample and examining

a hard part such as a scale or otolith (ear bone) in a lab and then using an ALK

or some other method (Aanes and Vølstad 2015). While the concepts reviewed here

are for age structured populations they can easily be extended to length, two sex or

stage-based ones.

The numbers of individuals at age in population at time t, or numbers at age at
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time t can be represented as the vector,

Nt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1,t

N2,t

N3,t

...

NA−1,t

NA,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Ni,t is the number of individuals in the ith age class at time t. In a discrete

time setting the numbers at age in time t+ 1 can be found through

Nt+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 β2 β3 . . . βA−1 βA

ϕ1 0 0 . . . 0 0

0 ϕ2 0 . . . 0 0

0 0 ϕ3 . . . 0 0

...
... . . . ...

...

0 0 . . . ϕA−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1,t

N2,t

N3,t

...

NA−1,t

NA,t .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The leading matrix here is referred to as the Leslie matrix, the top row βis being

the average per captia fecundity produced by individuals aged i and the off diagonal

ϕi terms represents the proportion of individuals aged i surviving to i + 1 (Caswell

2000). In fish populations fecundity can often increase with size (thus indirectly with

age ) and capturing this can better reflect the population (Quinn 2003). The Leslie

matrix can also be turned into a stochastic matrix by having the terms inside be

represented by random functions that could potentially vary in time (Caswell 2000).

The above representation is essentially a discrete time matrix version of the cohort

equations commonly used in stock assessment models (Miller and Stock 2020; Nielsen
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and Berg 2014; Cadigan 2015),

Na,t+1 = Na,te
−Za,t (1.1)

where Za,t is the total mortality rate of individuals aged a in time t. This can easily be

seen by realizing that e−Za,t is just the proportion of individuals aged a that survive

to the next time step. However, rather than directly get the numbers of individuals

in the youngest age class represented (recruits) from fecundity directly a recruitment

process or function may be used (Miller and Stock 2020; Nielsen and Berg 2014;

Cadigan 2015).

1.2 Close-kin Mark-Recapture

This thesis relies heavily on the work of Julius Skaug (2001) which introduced the

concepts behind CKMR. Replacing the physical tags or marks of MR with the kinship

relationship between pairs of individuals such whether they are a Parent-Offspring

Pair (POP), HSP, unrelated or some other relationship status allowing for estimates of

adult abundance, survival and fecundity (Bravington et al. 2016). As developments in

genotyping have driven down prices the technique has started to see more traction and

use across a range of species ranging from mosquitoes, bats, southern bluefin tuna and

more (Bravington et al. 2016; Sharma et al. 2022; Lloyd-Jones et al. 2023). While

the work presented here assumes that kinship status individuals is known exactly

we review some concepts and terminology to understand how they may be found

in practice. MR has been used for decades by fisheries scientists and biologists to

estimate values like abundance and survival. At it’s simplest, MR involves sampling

individuals from a closed population (no deaths or immigration) and marking them

in some way, e.g., with a tag or brand, releasing them back into the population

then after sufficient time for the marked individuals to mix back into the population,
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taking a second independent sample of the population. By counting the the number

of marked individuals found in the second sample an estimate of the total population

abundance, N̂ , can be found using the Lincoln-Petersen estimator,

N̂ =
n1n2

m

where n1 and n2 are the number of individuals sampled in the first and second sample

respectively and m is the number of marked individuals found in the second sample

(Lohr 2009). MR has been extended to work in scenarios where there are more than

two samples (Darroch 1958), the population is no longer closed (Darroch 1959; Jolly

1965; Seber 1965), unequal capture probabilities (Pollock 1982), among others which

have allowed for terms such as survival to be estimated alongside abundance.

As previously mentioned above, CKMR replaces the physical tags in MR with the

kinship relationship between individuals. The CKMR analogue to the MR Lincoln-

Petersen estimator given above would be to take a sample of adults, na, and juveniles,

nj, and count how many POPs are found between the two samples as H then the

adult abundance in the population is

N̂a =
2njna

H

where the two is an adjustment for the fact each juvenile has two parents (Bravington

et al. 2016).

In wildlife populations determining the kinship relationship requires using the

properties of genetics and we review some of the terminology here. Most animals are

diploids and receive one copy of each gene from their mother and another copy of each

gene from their father. The location of a gene is called the locus. Within a population

there can be multiple different variants of any given gene, referred to as alleles. The
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pair of alleles that individuals inherit at each locus make up that individuals genotype.

In practice the entire genome of an individual is not typically sampled but instead

select loci of interest called markers. Determining what genotypes an individual has

at the sampled markers is the process of genotyping.

Most implementations of CKMR have taken a pairwise approach to kinship find-

ing (Bravington et al. 2016; Thomson et al. 2020; Lloyd-Jones et al. 2023) which while

potentially less accurate than methods that consider all sampled individuals simulta-

neously (Wang 2004) is considerably more performant especially on the sample sizes

necessary for CKMR (Bravington et al. 2016). To keep things relatively simple we

will ignore issues like genotyping errors, mutations and assume genes are unlinked.

Following Thompson (1975), suppose we have two individuals A and B and we

wish to know their relationship ℵ(A,B). Each pair of individuals can have either

zero, one or two genes be shared at each locus, we use κ0, κ1 and κ2 to represent the

probability of sharing zero, one or two genes respectively. Table 1.1 gives the values

of κ0, κ1 and κ2 for some common kinship relationships. Note that the relationships

between individuals are reciprocal and that it’s not possible for instance to deter-

mine based on genetics alone which individual in a POP is the parent and which is

the offspring. The table also illustrates that some relationships like uncle/niece and

grandparent/grandchild can have the same values of κ0, κ1 and κ2 meaning it’s not

possible to distinguish between the two solely using genetics, and in certain scenarios

may not be possible to distinguish at all.

If A and B have genotypes G1 and G2 at Locus j respectively and r(A,B) is the

number of genes shared by A and B then the likelihood of relationship ℵ between A

and B is

Lj(ℵ) = P [G(A) = G1, G(B) = G2|ℵ(A,B) = ℵ]
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Table 1.1: Different possible relationships of A and B. κ0,κ1 and κ2 are the probabil-
ities of sharing 0, 1 or two genes (Thompson 1975).

Relationship of A to B (ℵ) Code Letter κ0 κ1 κ2

Unrelated U 1 0 0
Offspring, parent Q 0 1 0
Full Sibling B 1

4
1
2

1
4

Self, Identical twin R 0 0 1
Niece,Nephew, Uncle N 1

2
1
2

0
Grandparent, grandchild N 1

2
1
2

0
Half-sib N 1

2
1
2

0
First Cousin, Parent’s Half-sib, Half-sib’s Child C 3

4
1
4

0
Double First Cousin D 9

16
6
16

1
16

Half-sibs whose parents are sibs or PO NB,NQ 3
8

1
2

1
8

Half-sibs whose parents are half-sibs NN 7
16

1
2

1
16

=
2∑︂

i=0

P [G(A) = G1, G(B) = G2|r(A,B) = i]P [r(A,B) = i|ℵ(A,B) = ℵ]

=
2∑︂

i=0

κiPi(G1, G2)

where

Pi(G1, G2) = P [G(A) = G1, G(B) = G2|r(A,B) = i]

Then since we have assumed that the markers are unlinked, the likelihood of being

relationship ℵ over all s loci is just

Ls(ℵ) =
s∏︂

j=1

(Lj(ℵ))

We can then use the likelihood-ratio test to determine the likelihood of a pair

of individuals being one kinship relationship versus another. For instance if we are

interested in comparing if a pair of individuals are kinship relationship ℵ1 versus ℵ2

using

Λ(r(A,B) = i) =
Ls(ℵ1)

Ls(ℵ2)
.
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We can then apply the above process or similar to individuals that we have sampled

in a pairwise fashion to determine the kinship relationships that we are interested in.

These then form our observed kinship pairs which can be used in a CKMR estimator

or model to estimate terms like adult abundance, survival and fecundity (Bravington

et al. 2016). Most applications of CKMR have taken a pseudo-likelihood (also known

as composite or quasi-likelihood) approach to estimating the parameters due to the

complexity of considering the joint distribution for the kinship relationships among

all sampled individuals (Bravington et al. 2016; Lloyd-Jones et al. 2023; Thomson

et al. 2020; Sharma et al. 2022). Instead, only the kinship relationships between pairs

of individuals are considered. Further details on the pseudo-likelihood and how the

observed kinship pairs are used to estimate parameters are given in Chapters 3 and

4.

The above has focused on estimating the abundance or population size of the

population, that is how many individuals are there in the population. Chapter 4

of this thesis deals with the concept of effective population size often denoted as

Ne. Effective population size is the size of the population if it were to follow a

Wright-Fisher model, which is how big the population would be if there were discrete

generations, random mating and Poisson distributed numbers of offspring. Effective

population size can be defined in terms of the rate of inbreeding or genetic drift

occurring in the population and because of this Ne can help serve as an indication

of how they might be impacting the population. For some populations Ne calculated

from the perspective of inbreeding or genetic drift will be the same but this is not

always the case and how to find Ne will depend on the population in question (Crow,

Kimura, et al. 1970; Felsenstein 2005).
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1.3 Overview

Chapter 2 presents a model for spatial ALKs that supports physical barriers using

an approximation to a GF. By incorporating catch locations, and accounting for the

movement of fish caused by barriers such as islands or bays, we demonstrate a way

to improve the accuracy of age estimation. Chapter 3 demonstrates the link between

Ne and CKMR using sibling comparisons from the same cohort. There we show how

to estimate Ne and the variance in number of offspring using CKMR. Chapter 4 is a

simulation based evaluation of how well CKMR might fare on a grey seal population

similar to the one present on Sable Island with particular emphasis on a juvenile only

sampling scheme. Chapter 5 reports our conclusions.



Chapter 2

A Gaussian Field Approach to Generating Spatial Age Length

Keys

2.1 Introduction

Stock assessments are tools that can allow us to understand the overall health of a fish

stock. They enable quantifying the abundance, age and length compositions of the

population and determine indications of whether the stock is facing overexploitation

(Worm et al. 2009). They play a key part in helping to rebuild and maintain fisheries

around the world (Worm et al. 2009; Hilborn and Ovando 2014). Stock assessment

methods have evolved from simple methods based only on catch data to models that

integrate additional sources of data, to modern state-space approaches (Aeberhard

et al. 2018) that allow for increasing levels of inference and precision.

Age structured methods can greatly simplify stock assessment models as ages

link directly to the numbers of survivors in each year. However, for most species

accurately and easily determining the age of a fish can be a time consuming and

expensive process that often requires an expert counting the number of growth rings

on an otolith or similar procedure. Measuring the length of a fish is much easier,

less lethal and it can be done on site for low cost. In order to take advantage of

the benefits of age structured methods, approaches for estimating the age of a fish

from its cheaply measured length are commonly used, like Age Length Keys (ALKs)

(Aanes and Vølstad 2015).

ALKs have been used to estimate the age of fish for over 80 years (Fridriksson

11
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1934). They are based on the idea that the proportion of fish at age a, pa is equal to

pa =
K∑︂
i=1

kipa|i (2.1)

where i indexes discrete length bins i = 1 to K and ki is the proportion of fish in

length bin i, pa|i is the observed conditional probability (or proportion) of being age

a given membership in length bin i. An ALK is then simply a matrix of proportions

of fish at age a given length i. To convert the sampled length frequencies to estimates

at age, the length frequencies are multiplied by the ALK to get the numbers at age.

An example of a traditional ALK along with an example of a smooth model based

ALK is shown in Table 2.1.

ALKs are often constructed separately for different covariates such as sex, time of

year and gear type depending on the species and application. Traditional ALKs can

easily suffer from data gaps resulting in some fish not being assigned an age estimate.

ALKs also suffer from low sample numbers particularly for rarer older age classes.

An example of such a sampling artifact can be seen in Table 2.1a where any fish

assigned to the 49 cm length bin will automatically be assumed to be age 9 despite

the existence of shorter older fish.

Smooth ALKs have non-zero proportions at every possible length bin ensuring

that all fish are assigned an age estimate. Kvist et al. (2000) suggested the possibility

of generating smooth ALKs using a Continuation Ratio Logit (CRL) model. Smooth

ALKs have been applied before to lesser sandeel, (Rindorf and Lewy 2001) North

Sea haddock, (Stari et al. 2010; Berg and Kristensen 2012) cod, herring and whiting

(Berg and Kristensen 2012) . They can also mitigate the effects of the sampling

artifacts mentioned above, demonstrated in Table 2.1b where the probability of being

a particular age given a length of 49cm is more suitably spread across nearby age
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classes and not just associated with age nine.

Many fish species are known to aggregate in different locations and may be in

different spots at different stages of their lifecycles (Parrish 1999). They may also

have differing levels of growth depending on location (Punt, Haddon, et al. 2015).

Incorporating spatial information into traditional ALKs requires dividing the study

area into subareas. The greater the number of subareas the sparser the data, the

more likely gaps and other issues are to arise in the ALK resulting in more missed

or incorrectly aged fish. Berg and Kristensen 2012 presented a way of constructing

ALKs for point referenced data using a Generalized Additive Model (GAM) and thin-

plate regression splines. They found better internal and external consistencies for age

based survey indices when using spatial ALKs, in addition to observing differences in

ALKs constructed in different areas.

However, the method of Berg and Kristensen (2012) does not account for bound-

aries posed by physical barriers such as landmasses that may be present in the study

area. These oversimplifications result in predictions that smooth under landmasses.

That is, the spatial part of the model will ignore any landmasses and predicted prob-

abilities will ignore marine distance which may result in poor estimates for samples

on opposite sides of a large landmass for instance. This could be a problem if for

example a large group of young fish inhabits a bay as smoothing under landmasses

may artificially increase the probability of young fish living on the other side of the

bay.

The spatial ALK approach presented here addresses the problem of smoothing

over landmasses by using an approximation of a Gaussian Random Field (GF) that

has support for physical barriers (Bakka, Vanhatalo, J. B. Illian, et al. 2019) . De-

sirably it still allows ALKs to be constructed at any location within the study area.

Approximations of GFs have previously been proposed to help model spatial indices
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of abundance (Thorson, Shelton, et al. 2015; Thorson and Barnett 2017), species dis-

tribution (Bakka, Vanhatalo, J. Illian, et al. 2016) along with other non-marine uses

such as global temperature data (Lindgren and Rue 2011).

In Section 2.2 our spatial ALK is fully described and all necessary background

knowledge provided. In Section 2.3.1 the proposed Gaussian field model with barrier

support (GFB) is tested using simulated survey data to determine the benefit of

using a spatial ALK instead of one that ignores all spatial structure. It is tested

alongside a traditional ALK, a non-spatial CRL model and a spatial GAM ALK

implementation. Finally in Section 2.3.2, the four methods are applied to two real

datasets (Cod and American Plaice) from Fisheries and Oceans Canada (DFO) ’s

multi-species bottom trawl Research Vessel (RV) survey. The method proposed is

implemented as an R package called barrierALK and is available on Github https:

//github.com/jgbabyn/barrierALK.

https://github.com/jgbabyn/barrierALK
https://github.com/jgbabyn/barrierALK
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Table 2.1: Examples of traditional and smoothed ALKs. Columns represent ages and
rows define three centimetre length bins. Zeros are omitted for readability.

1 2 3 4 5 6 7 8 9 10
1
4
7 1.000

10 0.933 0.067
13 0.200 0.767 0.033
16 0.567 0.433
19 0.100 0.700 0.200
22 0.333 0.533 0.133
25 0.033 0.433 0.467 0.067
28 0.200 0.400 0.367 0.033
31 0.033 0.167 0.467 0.333
34 0.033 0.367 0.433 0.100 0.067
37 0.067 0.100 0.400 0.267 0.167
40 0.036 0.107 0.393 0.357 0.107
43 0.071 0.357 0.500 0.071
46 0.286 0.429 0.286
49 1.000
52
55

(a) A traditional ALK. Any fish measured to be less than 4cm or greater than 52cm
would by missed by this ALK.

1 2 3 4 5 6 7 8 9 10
1 1.000
4 1.000
7 1.000

10 0.990 0.010
13 0.064 0.918 0.018
16 0.612 0.382 0.006
19 0.047 0.798 0.150 0.004
22 0.002 0.290 0.602 0.101 0.005
25 0.031 0.473 0.408 0.083 0.005
28 0.003 0.139 0.455 0.337 0.065 0.001
31 0.027 0.209 0.476 0.273 0.010 0.005
34 0.005 0.062 0.326 0.475 0.081 0.048 0.003
37 0.001 0.016 0.146 0.346 0.265 0.203 0.023
40 0.004 0.053 0.115 0.383 0.378 0.067
43 0.001 0.018 0.026 0.370 0.458 0.127
46 0.006 0.005 0.314 0.471 0.203
49 0.002 0.001 0.255 0.443 0.299
52 0.001 0.201 0.389 0.409
55 0.157 0.319 0.524

(b) An example of a smooth ALK. This ALK was constructed from a CRL model with
length as the sole covariate using the same age-growth data as was used to construct
the ALK in Table 1a. All lengths are represented and there is no longer any possibility
of missing fish at the more extreme length bins. Effects of sampling artifacts like all
49cm fish being considered age 9 despite shorter fish being age 10 are reduced. Zeros
are again omitted for readability.
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2.2 Methods

2.2.1 Ordinal Regression and Continuation Ratio Logits

An ALK can be constructed using any classifier capable of handling multiple age

classes and returning probabilities of a fish with a particular set of covariates (e.g.,

male, caught using gillnet, etc.) belonging to each age class. The ALK is simply those

probabilities for every set of observed covariates. Ages naturally have an ordering

associated with them, a seven-year-old fish must have first been a six year old fish

and before that a five-year-old fish and so on. Ordinal regression can handle ordered

categorical data and return class probabilities (Agresti 2003). It is also possible to

incorporate spatial structure directly into ordinal regression models through the use

of splines or random fields. This is not the case for some alternative multi-class

classifiers like Classification and Regression Trees (CARTs). A number of different

ordinal regression methods exist such as cumulative logits, adjacent-category logits,

etc. Continuation Ratio Logits (CRLs) are one method that offers a few advantages

(Agresti 2003) (Harrell 2014).

CRLs models have the advantage over other ordinal regression methods in that it

is very easy to remove or loosen the proportional odds assumption. This allows for

all covariates or some subset of covariates to be able to freely vary with every level of

a category (Harrell 2014). In addition CRL models can be represented using A − 1

binomial models which allows their fitting using any software capable of performing

logistic regression (Agresti 2003).

Suppose the ith aged fish is observed to be age a, and there are A total ages. The

CRL for the ith observation with the corresponding vector of covariates, Xi, that

must of course include length along with others (e.g. sex, gear type, etc.), is

logit(πa[Xi]) = P (xi = a|xi ≥ a) (2.2)
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where

πa[Xi] =
pa[Xi]

pa[Xi] + ...+ pA[Xi]
(2.3)

and pa is the proportion of fish at age a . In other words, the CRL for the ith

observation is the probability of being age a given it is at least age a or greater

(Agresti 2003).

The unconditional probabilities P (xi = a) can be found by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
πa[Xi], a = R

πa[Xi]
∑︁a−1

R (1− πi[Xi]) R < a < A

1−
∑︁A−1

R (1− πi[Xi]) a = A

(2.4)

where R is the first age in the model, and A is the last. In aging data R can refer to

the age of recruitment to the survey or fishery, A identifies a plus group or the final

age involved (Berg and Kristensen 2012). In the models presented here, length has

an individual parameter for each age group which allows for greater flexibility. This

is known as relaxing the proportional odds assumption.

2.2.2 Random Fields

Random fields are collections of random variables, {X(s), s ∈ S}. S is the set of

indices and s is the index (Ross 2014). Typically, a set of indices is a set of locations,

but could also incorporate time. The index set S can be a discrete set, continuous,

finite or infinite. The random variables in random fields can follow any of the typical

distributions used such as Gaussian, Student’s t, Gamma, etc. Gaussian Random

Fields (GFs) are those in which all the X(s) are normally or Gaussian distributed

(Rue and Held 2005). A GF can be specified by its mean function µ(s) and covariance

function Cov(s, t), s, t ∈ S. A popular choice of covariance function for spatial data
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is the Matérn covariance function,

c(s, t) = σ2
u

21−ν

Γ(ν)

(︃√
8ν

||s− t||
r

)︃
Kν

(︃√
8ν

||s− t||
r

)︃
(2.5)

where Γ is the Gamma function, ν is a smoothness parameter, Kν is the modified

Bessel function of the second kind with order ν, r is the range parameter which is the

spatial distance when the correlation is ≈ 0.13, σu is the marginal standard deviation

(Bakka, Rue, et al. 2018) and ||s− t|| is the distance between two points.

Using a GF directly is not computationally tractable for large problems. The cost

to factorize the resulting dense covariance matrix is cubic in time. As a result, a

number of alternative approaches to try and get around the high computational cost

have been proposed. Gaussian Markov Random Fields (GMRFs) are GFs with the

Markov property, that is

P (si|{sj : j ̸= i}) = P (si|xj : j ∈ Ni) (2.6)

where the neighbours Ni to the location si are the points {sj, j ∈ Ni} that are

close or connected to si. Conditional on its neighbours the mean at a location is

independent of all other locations. The Markov property ensures that the precision

matrix (inverse of the covariance matrix) is sparse. The sparsity of the precision

matrix reduces the memory needed and overall computational time required (Rue and

Held 2005). However GMRFs have traditionally been limited for spatial applications

as they require that areas be broken into predefined regions beforehand. This may

be difficult to do in practice and it also limits the spatial resolution available.
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2.2.2.1 Gaussian Random Field Approximation using Stochastic Partial

Differential Equations

Lindgren et al. (2011) found an explicit link between GFs and GMRFs when using

a Matérn covariance function. A valid positive semi-definite covariance matrix is the

result of the solution of a set of Stochastic Partial Differential Equations (SPDEs),

which creates an approximation of a GF using a GMRF. This allows the benefits of

modelling as a GF with the computational speed of a GMRF.

The SPDE method requires creating a Delaunay triangulation or mesh of the

study area such as through R-INLA’s inla.mesh.2d function, which can then be used

to generate the matrices that are used for the Finite Element Method (FEM) solution

to the SPDE. The Matérn field is the solution u(s) to the SPDE

u(s)−∇ · r
2

8
∇u(s) = r

√︃
π

2
σuW(s) (2.7)

assuming that the smoothness parameter ν = 1, where ∇ is defined as
(︃

δ
δx

)︃
, r is the

range parameter, σu is the marginal standard deviation of the model component u,

W(s) refers to white noise. The approximation to the spatial GF ũ(s) is distributed

N (0,Q(σu, r)
−1) with Q(σu, r) is the precision matrix that results from the FEM

solution to the SPDE with hyperparameters σu and r.

The mesh helps ensure that the resulting precision matrix is sparse as well. Every

node in the mesh is an element in the resulting covariance matrix. The more nodes

in the mesh, the denser it is and the better the approximation to the GF. This comes

as a tradeoff, as computational time increases non-linearly with the addition of more

nodes.

Recently Bakka et. al (2019) extended the SPDE GF approximation method of

Lindgren et. al (2011) to support physical barriers in a spatial GF such as the problem
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presented by coastlines. Their method has several advantages over other proposed

methods of incorporating boundary information into a spatial model like the soap film

smoother proposed by Wood et al. (2008). It is robust to the selection of boundary

polygons, takes similar amounts of computational time and is not particularly hard for

the applied practitioner to use beyond defining the mesh and barrier polygons (Bakka,

Vanhatalo, J. B. Illian, et al. 2019). Under the assumption that the smoothness

parameter ν = 1, the barrier Matérn field is the solution u(s) to the SPDE

u(s)−∇ · r
2

8
∇u(s) = r

√︃
π

2
σuW(s) for s ∈ Ωn (2.8)

u(s)−∇ · r
2
b

8
∇u(s) = rb

√︃
π

2
σuW(s) for s ∈ Ωb (2.9)

where Ωn is the set of nodes outside the boundary, Ωb is the set of nodes inside the

boundary, and rb is not a new range parameter but instead a predetermined fraction

of r. In this case rb =
1
10
r. This has the effect of essentially making the decorrelation

range close to zero for points that fall within the barrier creating the desired boundary

properties. Other parameters are the same as described above. Further details on

solving the SPDE for the GF approximation can be found in Lindgren and Rue (2011),

Bakka, Vanhatalo, J. B. Illian, et al. (2019) and Bakka (2018).

Prediction and fitting of points that do not fall exactly on mesh node are handled

by projector matrix A. A is also a sparse matrix that has the same number of rows

as data being predicted or fit and a column for every node in the mesh. Every row of

A has either one or three non-zero entries. If the data point falls exactly at a mesh

node then the non-zero entry will be 1 at that node’s column. For points not at a

mesh node, the three non-zero entries are the distances from the three vertices of the

triangle in the mesh that the point lies in. The A matrix is multiplied against the

observed random effects for nodes in the mesh and estimates of the random effects at



21

each point are found and usable in the model (Bakka, Vanhatalo, J. B. Illian, et al.

2019).

2.2.3 GF Spatial Age-Length Key

The GFB model presented here and implemented in barrierALK combines the CRL

and barrier approach together. This GFB model is

logit(πa[Xi]) = αa + βali + ξa,s (2.10)

where αa is the intercept for age a, βa is the length parameter for age a and ξa,s is

the spatial intercept resulting from the GF at location s:

ξa,s =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
MVN

(︃
0, σ2

u

(1−φ2
a)
c(s, 0)

)︃
a = 1

MVN
(︃
φaξa−1,s, σ

2
uc(s, 0)

)︃
a > 1.

(2.11)

The φa allows for spatial correlation between age classes, if it exists. What this

means in practical terms is that if age structure varies in space, φa can measure how

correlated that relationship may be.

2.2.4 Estimation

Estimation is performed using the R package TMB. TMB uses the Laplace approxi-

mation to approximate the integrals in the log likelihood resulting from the random

effects that need to be integrated out. TMB uses Automatic Differention (AD) to

generate the derivatives for a given objective function which can result in a speed up

when paired with an optimizer capable of utilizing derivative information (Kristensen

et al. 2016).

When fitting ordinal regression models via Maximum Likelihood Estimation (MLE),
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optimization algorithms will often fall into local minima resulting in unrealistic pa-

rameter estimates which also has the effect of reducing the predictive accuracy of

the model. Penalizing the log likelihood can improve parameter estimates for classes

with low numbers of observations (Harrell 2014, p. 323, 209–213). The penalized log

likelihood is written as

logL− 1

2
λβ′Pβ (2.12)

where L is the likelihood from an unpenalized model, β being the vector of the fixed

effects coefficients, λ the penalty factor chosen by cross validation and P the penalty

matrix. Parameters relating to continuous variables are scaled in P by their stan-

dard deviation, parameters relating to categorical variables use the penalty function∑︁c
i(βfi − βf̄ )

2 where f is a categorical variable in the model with c levels, βf̄ is the

mean of all c βfi. This shrinks parameters towards the mean parameter value which

avoids biasing towards a specific level (Harrell 2014, p. 209-213) (Verweij and Van

Houwelingen 1994).

The optimal value of λ can be chosen by k-fold cross validation (CV). This can be

quite time intensive for large spatial models. Due to the presence of random effects in

the spatial ALK model, an approach like Generalized Cross Validation (GCV) which

would avoid the time consuming k-fold CV can also not be used due to the difficulty

in finding an influence matrix if it even exists at all. Instead a modified Akaike

Information Criterion (AIC) is proposed here in place of k-fold CV. The modified

AIC used here is defined to be

LR χ2 − effective degrees of freedom (2.13)

where LR χ2 is the likelihood ratio value comparing the null model containing only

an intercept to the model with the final penalized parameters ignoring the penalty

function and the effective degrees of freedom that result from taking the penalization
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into account that are found by

trace(I(βP )V (βP )) (2.14)

where βP is the vector of penalized fixed effects parameters resulting from MLE,

I(βP ) is the information matrix resulting from the model using the penalized pa-

rameters but ignoring the penalty function and V (βP ) is the covariance matrix for

the penalized parameters of the model when taking the penalty function into ac-

count (Gray 1992; Verweij and Van Houwelingen 1994). The model that maximizes

the modified AIC over the selection of possible λ values is the version of the model

most likely to result in the best predictive accuracy for a new data set. This method

has been shown to be asymptotically equivalent to CV approaches for selecting the

penalty factor (Harrell 2014, p. 209-213). While the modified AIC approach does

not explicitly account for random effects in the model, comparisons are only made

between models based on the same data and with the same number of random ef-

fects, only the value of λ changes. The values of λ considered for penalization for the

non-spatial CRL and the proposed GFB model are 0, 0.001, 0.01, 0.1, 0.25, 0.5, 1, 2,

5 and 10.

2.2.5 Simulation Study

Survey data was simulated using a modified version of the SimSurvey R package

available on GitHub. SimSurvey was originally designed with the purpose of testing

different stratified random sampling survey designs for a research vessel survey aimed

at estimating abundance. SimSurvey is capable of generating data quite similar to

those resulting from a stratified random survey design like the multi-species bottom

trawl research vessel survey that DFO performs annually in the Newfoundland region

and elsewhere. With simulated data it’s possible to know the true age structure and
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the abundance numbers for the population. Further details on the simulation study

are provided in Appendix A (Regular et al. 2020).

The population simulated with SimSurvey is similar to the cod population living

in Northwest Atlantic Fisheries Organization (NAFO) subdivision 3Ps. The fish were

set to grow according to a Von Bertalanffy growth curve with an asymptotic length

(L∞) of 120 cm and K parameter of 0.5. The population is spatially distributed

within grid cells grouped into strata based on depth and a stratified random survey

is taken by sampling random cells. A subsample of fish from sampled locations is

obtained based on length stratified sampling and considered to have been "aged".

This subsample of fish is what is used to construct the four different ALKs described

below.

Spatial methods have an opportunity to improve the estimate of age structure by

being better able to discriminate between age classes with overlapping length distri-

butions by taking into account the location where sampling occurred. The simulated

population does not let length at age vary from location to location rather the distri-

bution of age classes varies spatially.

The four different aging methods applied to the simulated survey data are the

traditional ALK, a smooth ALK made from a CRL model involving only length as a

covariate,

logit(πa[Xi]) = αa + βali (2.15)

a GAM based model similar to the one presented in Berg and Kristensen (2012),

logit(πa[Xi]) = αa + βali + f(s) (2.16)

where f is a function of location s using thin-plate regression splines and finally the

model proposed here as described in Equation 2.10. An automatic selection of the

maximum basis dimension (k) is used for the thin-plate regression splines with AIC
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smoothness selection. The automatic selection is based on the method used by the

DATRAS package discussed in Berg and Kristensen (2012) where the maximum basis

dimension is the number of unique observations of the covariates appearing in the

smooth terms minus one (i.e the number of unique (non-zero) tow locations minus

one) unless there are less than 10 unique locations for which then it falls back to a

GLM. If including spatial information increases the accuracy of predicting what age

class a fish belongs to, then the stratified survey estimates of abundance at age should

also be closer to true abundance numbers at age. For all of the approaches age 10

was taken to be a plus group.

The data were simulated in a simplified area with a large peninsula-like landmass

represented by rectangles. A plot of the landmass and an example simulation mesh

can be found in Appendix A. In practice any physical boundary can be defined with

the only caveat being that more detailed boundaries require more nodes in the mesh

and increase the computational time required. A simplified boundary was chosen

for computational convenience to reduce the required time needed to run the model

hundreds of times. 500 simulated surveys were performed, and stratified survey es-

timates of abundance were created for each survey using the same methods outlined

in S. Smith and Somerton 1981 and the same method applied to DFO ’s bottom

trawl multi-species survey conducted in the Newfoundland region annually (Ings et

al. 2019). The simulation does not account for observation error and each simulation

has a new realization of the true abundance in each run. The Root Mean Squared

Error (RMSE) is calculated on the true total population at age available to the survey

(adjusting for selectivity) and the stratified survey estimates resulting from the age

frequencies made from each of the four methods, the GFB, GAM, non-spatial CRL

and traditional ALK.

For the simulated survey 96 tows were conducted per survey in 48 strata based on

depth. A mean of 2774.26 simulated fish were caught and measured in each survey
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with a mean of 454.38 of those being “aged" and used for constructing the ALKs.

Length stratified sampling was used in selecting the subsamples to be aged. Out of

500 simulations, 73 failed to due to too low sampling numbers. Specifically in those

simulations, zero catches of older age classes occurred which prevents the models from

being used as estimates of coefficients for those age classes can not be obtained. In

practice this could be avoided by reducing the number of age groups below where the

low sampling numbers occur.

For each simulation the total stratified abundance at age is calculated. This follows

the methods outlined in S. Smith and Somerton 1981 that developed from stratified

random sampling techniques described in greater detail in books like Cochran (1977)

and Lohr (2009). The survey area is divided into N trawlable units and H strata,

where Nh is the number of trawlable units in strata h. The true mean catch at age a

(Yah) in survey in stratum h is found by

Ȳ ah =

∑︁Nh

i=1 yahi
Nh

, (2.17)

where yahi is the survey catch at age in the ith unit. The total population estimate

at age a is then

Ŷ a = N

H∑︂
h=1

Nh

N
Ȳ ah (2.18)

(Cochran 1977; Lohr 2009; S. Smith and Somerton 1981).

2.2.6 Application

Atlantic cod and American Plaice are distributed throughout NAFO subdivision 3Ps,

but during most years abundances is highest at particular locations such as the Hal-

ibut Channel (Cod) or the southeast slope of St. Pierre Bank (Plaice). The ALK

methods discussed above were applied to both Cod and American Plaice data from

DFO ’s multi-species bottom trawl RV survey of NAFO subdivision 3Ps (Ings et al.
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2019; M. J. Morgan et al. 2020). For the model based methods, the same model

formulations given in Equations 2.10, 2.15 & 2.16 were applied to both datasets along

with the empirical ALK. Cod data are from the start of DFO ’s inshore/offshore

survey in 1996 to 2018. American Plaice data are limited until 2013 due to the lack

of aged otoliths (M. J. Morgan et al. 2020). Samples for otolith collection for both

species were subject to length-stratified sampling and the number of otoliths collected

varies from year to year (Ings et al. 2019). Cod otolith collection uses a sampling

scheme requiring otoliths to be collected from five different areas around NAFO sub-

division 3Ps Ings et al. (2019). However American Plaice collection simply requires

otoliths to be collected from the entire area. In 2006 the survey was unsuccessfully

completed (Ings et al. 2019). The survey areas for the two species are similar but

not the same since the survey area for cod does not include all of strata (Ings et al.

2019; M. J. Morgan et al. 2020). Since the study areas differ in size, two different

meshes were required for each of the applications. For cod a more detailed boundary

and higher density mesh for a more exact approximation was used, while the Plaice

analysis was performed using a less dense mesh with a less detailed boundary. All

methods were applied to each year of data independently of one another.

The mesh design can have an impact on the performance of the model. If a

mesh is not dense enough, the approximation may not work well. Mesh designs can

sometimes also impact the convergence of the model. Care should also be taken to

ensure that all points that should be outside the boundary, are in fact. Further details

on how to create a mesh for a barrier model can be seen in the referenced tutorial

(Bakka no date). As with the simulation in the previous section, age frequencies were

generated using the same four methods and then stratified estimates of abundance

were obtained.
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2.3 Results

2.3.1 Simulation Study

The two spatial models performed similarly with the GFB model having a lower

RMSE (between the true abundance at age and the estimated abundance at age

across the same survey) than the traditional ALK in 76.9% of simulations and the

GAM model 67.8% of simulations. Overall, 40.5% of the time the GFB model had

the lowest error across all models and the GAM model 36.8% of the time. The

upper part of Figure 2.1 is a pairs plot of RMSE comparing each method against one

another, while the diagonal elements are density plots of the RMSE of each model.

The bottom of Figure 2.1 is a boxplot of the RMSE for each method. Overall the two

spatial models yield tighter bounds than the non-spatial models.

The bottom row of Figure 2.2 is the true simulated spatial distribution for fish

aged 4,5 & 6 for one simulation. The ages are somewhat overlapping in their spatial

distribution but are centred in different areas. The spatial ALKs are better able to

discriminate between ages by considering the location of the samples. This is evident

in the top row of Figure 2.2 which shows the probability of being a fish being age 4, 5

or 6 given a length of 40 cm across the simulated study area as obtained by the GFB

model. The probability of being in that age class increases when predicting over the

main bulk of that age class. The overall trend of the GAM approach is very similar

to that of the GFB model while also displaying evidence of undesired smoothing

underneath landmasses. Both the GFB and GAM yield a higher probability for 5-

year-olds south of the peninsula than might be expected by the true proportions.

This is due to the fact that the survey caught a larger share of age 5s than for other

age classes.

Each fish’s length in the population is simulated when the population is generated

and then distributed spatially into the simulation grid cells such that the age and
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length for every fish in the simulation is known. The true proportion at age in each

of the 4833 simulation grid cells was compared to the predicted proportion at age

for each of the four methods. Figure 2.3a captures the difference between the true

proportion of an age and the predicted proportion from the GFB model in each of

the simulation grid cells for the same simulation used in Figure 2.2. If the model was

perfect then the entire map would be a single solid color representing zero difference.

Figure 2.3b is the same style of plot, except the predicted proportions come from

the traditional ALK. Results are very similar to those for the non-spatial CRL model.

Compared to the GFB method it has larger differences in proportion for the older

ages. Younger ages have more of the difference in age proportion spread out across

the space than concentrated in a single region than the GFB model.

Table 2.2: The percentage of the 160 grid cells surrounding the simulation bay where
the median RMSE in each cell from all simulations is lower for either the GAM or
GFB models by age. For ages four and up the GFB model outperforms the GAM
which is the majority of biomass available to the survey.

1 2 3 4 5 6 7 8 9 10
GAM 100.000 100.000 92.500 38.125 28.750 28.750 31.875 10.000 1.875 41.250
GFB 0.000 0.000 7.500 61.875 71.250 71.250 68.125 90.000 98.125 58.750

To assess how well the GFB model improves performance near a landmass the

RMSE for the 160 simulation grid cells surrounding the bay was calculated. Figure

2.4 shows the median RMSE across all simulations in each of those grid cells by age

from each of the four methods. The median RMSE is typically much lower in the two

spatial methods than the two non-spatial ones. Table 2.2 shows the percentage of the

160 cells where either the GFB model or GAM model has a lower median RMSE. For

ages 3 and below the GAM model has a lower median RMSE for most cells but for

ages 4 and up the GFB model outperforms it. On average ages 4 and up make up

over 74% of the biomass available to the survey in those 160 grid cell suggesting the

GFB model represents an improvement on the majority of fish.

Overall the simulation showed that both spatial ALKs methods are capable of
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improving estimates of abundance at age from a stratified random survey. This

suggests that the age frequencies created by the spatial ALKs are more accurate. For

ages that make up a larger share of the abundance like ages 4 through 7 the reduction

in error is very noticeable as can be seen in the example between the GFB model and

traditional ALK in Figure 2.3 and around the landmass for all methods in Figure 2.4.

However for other age classes like one and two the differences can be minor.

2.3.2 Application

2.3.2.1 American Plaice

American Plaice are associated with fine substrates and both juveniles and adults

frequently occur in the same habitats (M. Morgan 2000; Johnson 2004). They do not

conduct extensive annual migrations (Johnson 2004). The model based methods were

fit from ages one to thirteen except for a handful of years where no age one Plaice

otoliths sampled. In those cases the models were run on ages two through thirteen.

Estimates of total abundance at age for American Plaice for the four different method

are shown in Figure 2.5. With the exception of age one plaice, the four methods result

in very similar estimates for the majority of the time series of total abundance at age

(obtained by aggregating across space using the Stratified Mean Method (SMM)).

Closer to the end of the time series there is a divergence for some age groups like 7

and 8 due to data sparsity.

Despite the similarity in aggregated abundance metrics across methods, when

looking at the spatial GAM and GFB results there are differences in the predicted

probabilities. For example in Figure 2.6 , the 2003 survey year the unconditional

probabilities of an American Plaice being age 8 with a length of 35 cm were predicted

across the space for both the GFB and GAM models. There does appear to be

evidence of the probabilities being smoothed underneath the peninsula and into the
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bay in the GAM version that does not occur with the GFB models due to its support

for physical barriers. Both models make it clear that the probabilities are spatially

varying and there is a dependence on location. When looking at other ages not shown

here, the two spatial methods do not always agree, the GAM method will sometimes

predict almost flat gradients across space while the GFB for the same year will vary

more across space. Figure 2.6 also showcases examples of spatial ALK constructed

from the GFB and GAM models at two different points. One at the tip of Placentia

Bay, and one in Fortune Bay. Each curve represents the proportion at each length

taken up by that age (like the columns of an ALK) while each vertical slice at a length

must sum to one (like the rows of an ALK). Since age 13 was used as a plus group as

fish get longer they end up more likely to land there. The two ALKs are different at

each of the two points. For instance, the ALKs estimated by the GFB model shows

more overlap between ages 1 and 2 in Placentia Bay than Fortune Bay while still

having more overlap between the first two ages when compared against the ALKs at

the same points from the GAM model.

2.3.2.2 Cod

In contrast to American Plaice, Atlantic Cod occur over a broader range of substrates

with juveniles and adults overlapping in some broad areas whereas only juveniles may

be more frequently sampled at some locations closer to the coast (Dalley and Anderson

1997; Fahay et al. 1999). Adult Atlantic Cod conduct extensive migrations from areas

offshore to shallow coastal locations and there is evidence to suggest some alongshore

movements as well (Fahay et al. 1999; Brattey et al. 2002).

For the Cod data, age eleven was taken to be the plus group for every year and the

models were fit to ages one through eleven for all years. As for the American Plaice

data the stratified estimates of abundance were generated using all four methods and

are shown in Figure 2.7. Each of the four aging methods result in similar trends.
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The two non-spatial methods both show very similar trends with almost completely

overlapping lines in most years. The spatial methods, GAM and GFB are largely

similar in trend but differ occasionally from the non-spatial methods in (e.g., age 10

and 11 in 2004).

ALKs were generated at two different locations within 3Ps. Figure 2.8 displays the

locations used to create these ALKs using 3 cm length bins along with corresponding

visual representations. ALKs constructed at each of the two areas are different from

one another. The GAM model finds proportion of fish being age 10 and 11 in Fortune

Bay to be essentially zero and a similar situation occurs in Placentia Bay except for

the last few age groups.

The unconditional probabilities of Cod being a certain age given various lengths

were examined spatially for both the GFB and GAM methods. Both of the spatial

methods suggest that there is a difference spatially in age for Cod of a given length.

An example of this for the probabilities of being age 5 for 50 cm Cod can be seen

in the left hand side of Figure 2.8 for both the GAM and GFB models. The GFB

finds a lower probability of Cod being age 5 in the tip of Fortune Bay, the GAM

model however shows evidence of smoothing underneath the landmass. Using the

GFB model it can be seen that Cod on the northwestern portion of the survey area

also have a much lower probability of being age 5 at 50 cm than those that live in

the rest of survey area.

The simulation study presented in Section 2.2.5 was designed to have an age and

length structure that mimics the 3Ps cod population with a stratified survey design

similar to the one used in the region. Based on the results of the simulation study it is

expected that for most years the GFB model should provide more accurate estimates

of the abundance at age for ages 4 and up.
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Figure 2.1: The RMSE of the stratified survey estimate of abundance at age versus
the true total abundance at age in the simulation. The top figure compares the
RMSE of each of the methods against one another with a diagonal line illustrates
where points would lie if the two methods were identical. The percentages are the
percent of simulations where the RMSE of the model on the x-axis is less than or
equal to the RMSE of the model on the y-axis. Plots along the diagonal of the top
figure are density plots of the RMSE for each method. The bottom part of the figure
is a boxplot of the RMSE for each method.
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Figure 2.2: Top row is predicted probabilities in each grid cell of fish being aged
4,5, and 6 in one simulation with a length of 40 cm as predicted by the GFB model.
Middle is the predicted probabilities for the same as predicted by the GAM model and
the bottom row is the true simulated proportion of fish aged 4,5 and 6 in each grid
cell as distributed by SimSurvey . The non-spatial CRL model found the probability
of 23.1%, 10.9% and 18.6% for fish being aged 4, 5 and 6 respectively having a length
of 40 cm. The traditional ALK method found the probability of 27.8%, 5.6% and
22.2% for fish being aged 4,5 and 6 respectively.

.
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(b) Estimation error (true minus predicted) from the traditional
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ulation grid cell. The non-spatial CRL model results in a very
similar plot to the traditional ALK. The traditional ALK strug-
gles more with older ages than the GFB model.

Figure 2.3: The difference between the true proportion for each age in every grid
cell and the proportion predicted by GFB model and traditional ALK for the same
simulation as in Figure 2.2 for fish available to the survey. A perfect model would be
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(b) GAM
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Figure 2.4: The median RMSE across all the simulations for the 160 grid cells sur-
rounding the bay for each of the four methods by age. Both spatial models perform
considerably better in each cell than the non-spatial methods. The x and y are the
spatial coordinates used in the simulation and grey is the landmass.
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Figure 2.5: Total abundance estimates by age for American Plaice within NAFO
division 3P for the years from 1996 to 2013, not including 2006. Abundance estimates
at age are largely similar across all four methods and follow the same general trends.
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Figure 2.6: A visual representation of three ALKs generated using the GF and GAM
methods at the two locations shown (P-Placentia Bay, F-Fortune Bay) for the 2003
survey year. Each vertical slice of the graphs in columns 2 and 3 must sum to 1 and is
like a row in an ALK. The maps are also surfaces showing the predicted probabilities
of American Plaice being 8 years old with a length of 35 cm. ALKs constructed at
different locations result in different glspl:alk with either model. Points represent
sampling locations from which otoliths were collected during that year.
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Figure 2.7: Total abundance estimates by age for the cod dataset for the years from
1996 to 2018, not including 2006. Trends across years are broadly similar between
methods.
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Figure 2.8: A visual representation of three ALKs generated using the GF and GAM
methods at the two locations shown (P-Placentia Bay, F-Fortune Bay) for the 2011
survey year. Each vertical slice of the graphs in columns 2 and 3 must sum to 1 and is
like a row in an ALK. The maps are also surfaces showing the predicted probabilities of
cod being 5 years old with a length of 50 cm. ALKs constructed at different locations
result in different ALKs with either model. Points represent sampling locations from
which otoliths were collected during that year.
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2.4 Discussion

Errors related to the process of obtaining age estimates are often ignored in age

structured stock assessment models. Model based approaches offer an avenue for

incorporating such errors even when a non-spatial method of aging is used. If errors

in the aging process are ignored estimates obtained from the stock assessment model

provide a false sense of precision and may impact derived quantities (e.g., spawning

stock biomass). The simulation study here also suggests that spatial methods have

the potential to further reduce errors resulting from applying an ALK. Future work

includes incorporating a spatial ALK model into a stock assessment model directly

to see exactly how derived quantites and associated errors may be affected by the age

estimation process.

Incorporating more spatial information into the stock assessment process has the

potential to increase precision. It is still not uncommon for stock assessment models

to simply ignore or aggregate over space (Punt 2019), often taking an areal approach

instead of a pointwise one. Our GFB model offers another choice of spatial ALK

that could be integrated into stock assessment models particularly when there may

be landmasses present in the study area.

In addition, both the simulation study and the application suggest that even

in cases where it is not possible or desirable to fit a spatial ALK model due to

data limitations or other constraints it may still be worthwhile using a model based

approach to construct ALKs in order to gain the aforementioned benefits of smoothing

and bridging of gaps.

Spatial ALKs can provide improved estimates at age over non-spatial methods.

The simulation study showed that over three quarters of the time using a spatial

method to generate the ALK had a reduced RMSE for the true abundance numbers

at age as compared to traditional methods. It also suggested that spatial methods can
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reduce the error across all ages in both the entire study area, and in spatial pockets

for most ages. Examining the probabilities of a fish being a given length may indeed

give insight into where certain age classes may be distributed during the time of the

survey.

The GFB had the lowest RMSE more often than the other three models indicating

it led to abudance at age estimates closer to the true values. Since the simulations

distributed the fish randomly among the survey grid, in some simulations the majority

of fish may not have been close to the landmass limiting the performance benefits of

the GFB model to be similar to the GAM model. The GFB model also had the

lowest maximum RMSE among all models suggesting it will not perform worse in

most scenarios. The GFB model also provides more realistic plots of the probabilities

of age given length by preventing them from smoothing beneath landmasses.

When looking at the two applications presented, neither of the spatial methods

made obviously large changes to the abundance indices at age. However, when ex-

amining the predicted probabilities at age there is a clear indication that they do

vary spatially. While there are similarities between the two spatial methods for the

bulk of the probabilities predicted, the fact that the GFB model supports physical

barriers is evident in how the bay is treated as captured in Figures 2.6 & 2.8. ALKs

are demonstrated to vary with space.

This work makes evident that applying a non-spatial ALK may have ramifications

for calculating indices of abundance. Combined with the fact that errors from the

aging process are often ignored, there is a strong argument for integrating spatial

ALK models directly into stock assessment models.



Chapter 3

Estimating Effective Population Size Using Close Kin

Mark-Recapture

3.1 Introduction

Close-kin Mark-Recapture (CKMR), a method for estimating population abundance

as well other demographic parameters including fecundity and survival, is based on

the principle that every individual carries (i.e., tags) the genotype of each of its par-

ents. CKMR can be applied to populations with overlapping generations. Genomic

information is used to identify kin-pairs (e.g., Parent-Offspring Pairs (POPs), Half-

Sibling Pairs (HSPs)) and their number is interpreted in a Mark-Recapture (MR)

framework. CKMR thus replaces the physical tags or marks used in traditional MR

with the close-kin relationships between individuals, offspring "tag" their parents,

siblings "tag" each other, etc. In contrast to traditional MR, CKMR allows for ad-

vantages such as post-mortem sampling, lack of bias arising from misreporting or

discards, no chance of tag loss and reduced harm to animals by eliminating the need

for physical tags or branding (Bravington et al. 2016).

CKMR has been applied to a wide variety of organisms (mostly aquatic) includ-

ing Southern Bluefin Tuna (Bravington et al. 2016), White Sharks (Hillary et al.

2018), Antarctic Blue Whales, (Bravington et al. 2016), Atlantic Salmon (Wacker et

al. 2021), Brook Trout (Ruzzante, McCracken, Førland, et al. 2019), Artic Grayling

(Prystupa et al. 2021), Speartooth Shark (Patterson et al. 2022), Flying Foxes (Lloyd-

Jones et al. 2023) and Mosquitoes (Sharma et al. 2022). CKMR has been used to

41
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estimate demographic parameters including adult abundance, survival and fecundity

taking advantage of the role these parameters play in the probability of two individu-

als having a given kinship relationship (such as Parent-Offspring (PO) or Half-sibling

(HS)). In a maximum likelihood or Bayes framework, we can obtain parameter esti-

mates such that the expected number of kin pairs from the kinship probabilities best

match the observed numbers of kin pairs.

HSPs are the main driver behind CKMR models’ ability to estimate survival, an

important parameter in population abundance models. Detecting a HSP from two

different cohorts implies that the shared parent of the half-sibling individuals must

have been alive to breed in both birth years. So, the probability of all potential parents

surviving from the older sibling’s birth year to the younger sibling’s birth year must

factor into the probability of a pair of individuals from two different cohorts being

a HSP. As the age gap between siblings increases, the probability of the potential

parent surviving decreases which is reflected in the lower number of observed HSPs.

This provides insight into the adult survival rate.

HSPs from the same birth cohort (i.e., individuals born the same year) have

thus far been considered more of a nuisance than a help. The number of expected

sibling pairs from a within-cohort sample can result from non-independent sampling

of individuals from the same cohort (e.g., sampling multiple individuals from a school

of siblings travelling together) or from demographic reasons (e.g., lucky litter effect).

In the demographic case, the number of expected sibling pairs from a within-cohort

sample is related to the variance in number of offspring produced by parents, not

just the mean, and so typically will not correspond to the expected number found

using formulae derived for individuals from different cohorts (Bravington et al. 2016;

Waples and Feutry 2022). Naively using formulae designed for different cohorts

with comparisons for within-cohort individuals will result in incorrect or unavailable

estimates of model parameters. Bravington et al. (2016) and Waples and Feutry
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(2022) have suggested avoiding within-cohort comparisons entirely because of the

issues caused by this variance. However, this may not be possible in many scenarios,

e.g., when age is uncertain. Some CKMR models have taken the approach of using

additional parameters to account for the difference in observed numbers of sibling

pairs from the expected number using the formulae designed primarily for comparisons

from individuals of different cohorts (Thomson et al. 2020; Patterson et al. 2022;

Hillary et al. 2018).

Waples and Feutry (2022) discussed the link between within-cohort CKMR com-

parisons and effective population size Ne, the size of the population under an idealized

Wright-Fisher model (i.e., assumes a constant population size, random mating, Pois-

son distributed numbers of offspring, and non-overlapping generations) were it to

have the same rate of inbreeding or variance in allele frequency. Ne can serve as

an indication of the extent of genetic drift or inbreeding occurring in a population.

Estimates of Ne have been shown to be related to the total variance of reproductive

success of individuals in the population, σ2
tot (Hill 1979; Felsenstein 2005). This is the

variance in the total number of offspring produced by individuals over their repro-

ductive lifetimes (Hill 1979; Felsenstein 2005). Waples, Do, et al. (2011) developed a

method for calculating Ne given a set of life table parameters. Here we take a similar

tack but use CKMR to estimate the life table parameters at the same time.

In Section 3.2 we briefly discuss how σ2
tot can be used to find Ne and how it can

be decomposed in terms of the mean and variance of number of offspring at age

in a given year. In Section 3.3, we demonstrate how to find the expected number

of within-cohort comparisons and how they are linked to the mean and variance in

the number of offspring born from all breeding adults, as well as survival in a given

year. We show how, when combined with knowledge of survival and fecundity, we can

transform the mean and variance in number of offspring at age in a given year into

σ2
tot and use it to estimate Ne. In Section 3.4 we further demonstrate these methods
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using a more realistic age structured CKMR model implemented in Template Model

Builder (TMB) using data generated with an individual based simulation where every

member of the population is tracked from birth to death.

3.2 Decomposing Effective Population Size Ne

It has been shown that Ne can be written in terms of the mean and variance in number

of offspring produced during an individual’s lifetime, µtot and σ2
tot respectively, (Hill

1979; Crow, Kimura, et al. 1970; Waples, Do, et al. 2011) or in terms of the variance

in number number of offspring and fecundity at age (Felsenstein 1971; Engen et al.

2005a). Ne can be defined in terms of the rate of inbreeding or in terms of the

sampling variance of the allele frequency. Here we take the latter approach. Note

that under an ideal Wright-Fisher population the variance of the allele frequency is

V ar(p) =
p(1− p)

2NWF

where p is the allele frequency and NWF is the number of individuals in the idealized

population. The variance Ne is found by setting the true variance in allele frequency

equal to V ar(p) and solving for the value of NWF required for that to be true (Crow,

Kimura, et al. 1970). The method to calculate Ne will vary from population to

population as it can depend on factors like survival, fecundity, sex ratio and mating

structure, requiring some understanding of the target population. In Appendix C we

also provide an intuitive link between Ne and the allele frequency to µtot and σ2
tot.

For now, we will focus on a relatively simple case of a two sex age-structured

population with overlapping generations with equal numbers of males and females

and equal numbers of progeny from each sex. Then the variance Ne in year y can be
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written as

Ne,y ≈
(N1,y−1 − 1)µtotL

1 +
σ2
tot

µtot

(3.1)

where L is the generation length which is defined as

L =
A∑︂

a=1

a(
b−1∏︂
b=1

ϕb)βaλ
−a (3.2)

where A is oldest age class. It also represents the average age of parents at the stable

age distribution. βa is the average per capita fecundity of individuals aged a and ϕb is

the probability of an individual surviving from age b to b+ 1. L is an adjustment for

the fact that the population has overlapping generations and λ is the overall growth

rate of the population (Hill 1979; Crow, Kimura, et al. 1970). The growth rate λ is the

solution to the characteristic equation 1 =
∑︁

a(
∏︁a−1

b=1 ϕb)βaλ
−a since the population

is age-structured (Caswell 2000).

In order to estimate Ne we require estimates of µtot, σ2
tot, ϕa, βa as well as N1,y−1.

The latter two are achievable using CKMR without within-cohort comparisons. Sur-

vival at age, ϕa can be estimated using CKMR when using non-lethal sampling. This

is possible thanks to the survival terms present in the POP probabilities when the

sampling year of the potential parent is before the birth year of the potential offspring.

When combined with cases where the potential parent is sampled after the birth of

the potential offspring it becomes possible to identify survival at age. In many popu-

lations, using the aggregate adult survival found when using lethal CKMR may still

suffice for a suitable estimate of Ne. In the following two subsections we show how to

write σ2
tot and µtot in terms of the mean and variance of offspring produced by individ-

uals that die at age a assuming that survival and reproduction are independent. We

then further break it down in terms of the mean and variance in number of offspring

produced by each individual at age.



46

3.2.1 Mean and Variance of Total Lifetime Reproductive Success

Let X be the total number of offspring produced by an individual during their lifetime,

then V ar(X) = σ2
tot and E[X] = µtot. We can decompose V ar(X) in terms of the

number of offspring produced by individuals given the age at which they died using

the law of total variance. Let D be the random variable representing the age at which

an individual died then

V ar(X) = ED[V ar(X|D)] + V arD(E[X|D]). (3.3)

By noticing that the age at which an individual dies is a countable partition of X

we can rewrite the first term using the law of total expectation as

ED[V ar(X|D)] =
A∑︂

a=0

V ar(X|D = a)∆a (3.4)

where ∆a is the probability of an individual dying at age a defined as

∆a = Pr(D = a) = ϕ1ϕ2...ϕa−1(1− ϕa). (3.5)

The second term of Equation 3.3 can be expressed as

V arD(E[X|D]) = ED[E[X|D]2]− (ED[E[X|D]])2 (3.6)

=
A∑︂

a=0

E[X|D = a]2∆a −
(︃ A∑︂

a=0

E[X|D = a]∆a

)︃2

(3.7)

=
A∑︂

a=0

E[X|D = a]2∆a − E[X]2 (3.8)

=
A∑︂

a=0

E[X|D = a]2∆a − µ2
tot (3.9)
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again from the law of total expectation. Putting the two parts back together we get

σ2
tot =

A∑︂
a=0

V ar(X|D = a)∆a +
A∑︂

a=0

E[X|D = a]2∆a − µ2
tot. (3.10)

Equation 3.10 yields the variance in total reproductive success, σ2
tot, in terms of the

mean and variance in number of offspring produced by individuals over their lifetime

given the age at which they died (noting from Equation 3.7 that µtot can be expressed

that way) as well as the probability of them dying at that age.

We can write E[X|D = a] as a sum of the expected number of offspring produced

by individuals given age i each year up to the age that they died as

E[X|D = a] =
a∑︂

i=0

E[R|Pa = i]

where R is the reproductive output of an individual in a given year and Pa is the age

of the adult.

If each individual’s breeding events in a year are independent of their breeding

events in prior years then

V ar(X|D = a) =
a∑︂

i=0

V ar(R|Pa = i).

If breeding events are not independent (e.g., because of physiological constraints lead-

ing to skip breeding) then it would be necessary to consider the covariance of repro-

ductive output among the different age classes, see Waples and Feutry (2022) for

further discussion. By combining the preceding equations we can express σ2
tot and

µtot in terms of the number of offspring produced at age.

As is discussed in greater detail in Section 3.3.2 the probability of two individuals

sharing a parent from the same birth cohort is related to the variance in number of

offspring produced per year by individuals in the population, that is V ar(R). In order
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to estimate σ2
tot and µtot we need to decompose V ar(R) into terms of the mean and

variance in number of offspring produced by individuals in a single year at age. The

age of the parent in a given year also forms a countable partition of R. This allows

us to express V ar(R) in terms of the mean and variance in number of offspring given

the age of the parent similar to how it was done above as,

V ar(R) =
A∑︂

a=0

V ar(R|Pa = a)Pr(Pa = a) +
A∑︂

a=0

E[R|Pa = a]2Pr(Pa = a)− E[R]2.

(3.11)

Here Pr(Pa = a) is the probability of an adult belonging to the ath age class in year

y and can be found as

Pr(Pa = a) =
Na,y∑︁A
i=0Ni,y

.

We can also write E[R] in terms of E[R|Pa = a] and Pr(Pa = a),

E[R] =
A∑︂

a=0

E[R|Pa = a]Pr(Pa = a). (3.12)

3.3 Sibling Comparisons

We now explore how sibling comparisons between pairs of individuals born in different

cohorts vary from within-cohort comparisons and how the latter relate to V ar(R). We

first consider a simple scenario free from the effects of parental survival and varying

average fecundity. Suppose we have two individuals i and j born in years g and h

respectively where g ≤ h and we are interested in determining the probability that

i and j share a mother based only on their birth years. Let’s further suppose that

all of the potential mothers of i and j survive to g, that on average they all have the

same number of offspring each year and that the breeding events in years g and h are

independent if g ̸= h.
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3.3.1 Comparisons between different birth years

If Rk,g is the reproductive output of female k in year g the probability of individuals

i and j sharing a mother when g ̸= h is

Pr(i and j share a mother|g, h) =
Nf∑︂
k

(︃
Rk,g

TROg

× Rk,h

TROh

)︃
(3.13)

where Nf is the number of potential mothers and TROh =
∑︁Nf

l Rl, h is the Total

Reproductive Output (TRO) in year h. However, in practice the reproductive output

of each female is unknown.

Since we assume that the mean number of offspring among the potential mothers

are equal and that all mothers survive to the younger sibling’s birth year, for now the

probability of the two individuals sharing a mother can be written as

Pr(i and j share a mother|g, h) =
Nf∑︂
k=1

1

Nf

× 1

Nf

=
1

Nf

(3.14)

and only depends on the number of potential mothers. This is a result of the fact

that Rk,g and Rk,h are independent events.

In practice CKMR models operate on the number of observed kinship pairs. So

if we have two independent random samples of individuals born in years g and h

of sizes ng and nh respectively, then the expected number of pairs among the two

samples sharing a mother is just the probability of two individuals sharing a mother

multiplied by the number of pairwise comparisons,

E[Number of pairs sharing a mother|g, h] = ngnh

Nf

. (3.15)
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3.3.2 Within-cohort comparisons

For within-cohort comparisons (i.e., g = h) Equation 3.15 does not apply due to the

dependence between the births of individuals in the same cohort, since Rk,g = Rk,h.

The probability that a pair of individuals born in the same cohort share the same

mother is given by

Pr(i and j share a mother|h = g) =

Nf∑︂
k

(︃
Rk,h

TROh

× Rk,h − 1

TROh − 1

)︃
. (3.16)

It can be shown with some effort (see Appendix B) that it is possible to rewrite

the above probability in terms of the mean and variance in number of offspring from

all mothers born in year h surviving to an age of our choosing from all mothers which

we will term the reference age.

Pr(i and j share a mother|g = h) =
1

Nf

×
(︃
1 +

V ar[R]− E[R]

E[R]2

)︃
(3.17)

where R is the number of offspring born in h from all mothers that survive to the

chosen reference age. So long as survival is independent between individuals i and j

at or above our chosen reference age, then the ages at which they were sampled do

not matter (even if different). We can similarly find the expected number of sibling

pairs from those born in the same year by

E[Number of pairs sharing a mother|g = h] =

(︃
nh

2

)︃
× 1

Nf

×
(︃
1+

V ar(R)− E[R]

E[R]2

)︃
.

(3.18)

Equation 3.18 is what can provide a CKMR model insight into V ar(R). Note that

E[R] can be constructed using Equation 3.12 using terms found with between cohort

comparisons. Equation 3.18 only allows for estimation of a single parameter and so

an assumption must be made about the relationship of the V ar(R|Pa = a) terms in
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order to get an estimate of σ2
tot using the decomposition discussed in Section 3.2.1.

This could take the form of assuming that the variance in number of offspring at age

follows a negative binomial distribution with a common overdispersion parameter θ,

e.g.,

V ar(R|Pa = a) = E[R|Pa = a] +
E[R|Pa = a]2

θ

as is used in the age structured simulation of Section 3.4 or something like a mean-

variance power relationship such as

V ar(R|Pa = a) = cE[R|Pa = a]γ

where c is some constant and γ is an exponent shared among all terms. What re-

lationship is appropriate will depend on the species of interest, see Section 3.5 for

further details.

3.3.3 Simple Simulation: Impact of variance on number of HSPs

To illustrate the impact of the variance of the offspring distribution on the number of

sibling pairs sharing a parent we simulate parents having offspring according to the

Conway-Maxwell Poisson (CMP) distribution. The CMP distribution allows for both

over and under dispersion as compared to the standard Poisson distribution. The

CMP distribution has Probability Mass Function (PMF)

f(x;ω, ν) =
ωx

(x!)ν
1

W (ω, ν)
(3.19)

where ν is the dispersion parameter and W (ω, ν) is a normalizing constant to ensure

the PMF sums to one. When ν = 1 the CMP becomes the standard Poisson distri-

bution with the variance equal to the mean. When ν < 1 then the CMP distribution

is overdispersed compared to the Poisson distribution with the variance greater than
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the mean, and when ν > 1 then the distribution is underdispered. We simulate off-

spring from 5,000 potential parents using the CMP distribution with a fixed mean of

5 and and ν values ranging from log(−5) to log(5) representing severe overdispersion

to severe underdispersion.

Sets of within-cohort comparisons and between cohort comparisons are simulated

and the number of sibling pairs found are recorded, with 125 samples for the within-

cohort case in each simulation and 62 and 125 samples for the different cohort case

to ensure that both scenarios have the same 7,750 pairwise comparisons. For each

value of ν this is repeated 1,000 times. Figure 3.1 plots the mean number of pairs

sharing a parent from the simulations at each value of log(ν) against the theoretical

expectations given by Equations 3.15 and 3.18. This illustrates that the number of

expected pairs sharing a parent only depends on the number of potential parents

in the different cohort case (when average fecundity is equal for all individuals) but

depends also on the variance (or overdispersion) as well as the number of potential

parents in the within-cohort case. When the variance in number of offspring is equal

to its mean, then the expected number of within-cohort sibling pairs is the same as

if the between-cohort formula were applied: in this case, 1.55. When overdispersion

occurs the expected number of sibling pairs sharing a mother in the within-cohort

case will be greater than the expected number from the between cohort case tending

towards the number of pairwise comparisons as variance in number of offspring tends

towards infinity. When underdispersion occurs the expected number of pairs sharing

a mother in the within-cohort case will be less than the between cohort case tending

towards a lower limit when the variance in number of offspring is zero, in this case

1.24.
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Figure 3.1: Theoretical and simulated expected number of pairs sharing a mother
with a mean number of offspring of 5 and 7750 pairwise comparisons for a range of
dispersion parameters.
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3.4 Simulation

To test our methods on more realistic age structured populations we created an in-

dividual based simulation in R with similar life history characteristics to the Brook

Trout populations in Ruzzante, McCracken, Førland, et al. (2019). The simulated

fish are assumed to live up to three years becoming mature at age one with increas-

ing fecundity at age. The number of offspring produced by each fish is set to follow

a negative binomial distribution with a common overdispersion parameter θ for all

age classes. Twenty-four populations are simulated under varying growth rates and

overdispersion conditions. Ruzzante, McCracken, Parmelee, et al. (2016) estimated

that the ratio of the variance of total reproductive success to the total mean number

of offspring ranged from 5 to 200 in the Brook Trout populations suggesting overdis-

persion is a problem in the real populations used as a reference here. In our simulated

populations, this ratio ranges from approximately 5 to 37. Three deterministic growth

rate scenarios are targeted representing a declining, stable and growing population

respectively. For each scenario we used a variety of overdispersion parameters. θ

ranges between 0.1 and 5, see Table 3.1. Each population is simulated for 50 years,

the first 35 years are simulated at a stable growth rate and the final 15 years using

the population scenario values given in Table 3.1. The initial size for each population

is set to be 10,000.

Each of the 24 populations has 1,000 independent CKMR samples (24,000 total)

drawn from the final ten years of data. Sampling is simulated to be non-lethal, which

allows both for model fits on the same population from different samples to be directly

comparable and enables estimating survival at age. Approximately 2.5
√︁

Ny (where

Ny is the total number of individuals in the population in each year) are taken for

sampling to ensure adequate numbers of kin pairs. Age and kinship information are

assumed to be known exactly.
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We fit two models to each of the 24,000 samples. One model implements a ver-

sion of the method proposed here for within-cohort comparisons and the other omits

within-cohort comparisons as per Bravington et al. (2016) and serves as a baseline

for comparison. The code for the simulations and model are available on github

(https://github.com/jgbabyn/varCKMR).

We recorded the number of POPs and HSPs that were observed aggregated across

each unique set of covariates that could result in a valid kin pair as well as the total

number of pairwise comparisons used to find them. For POPs and HSPs from different

cohorts the covariates used are the birth years and sampling years for each pair of

individuals. For HSPs from the same cohort the sampling years are not used and

the number of HSPs are only aggregated by birth year. Table 3.3 summarizes the

covariates and data used by the model.

3.4.1 Age Structured Model

Both models discussed here are implemented identically except for their treatment of

comparisons of individuals from the same cohort. They are implemented using the R

package TMB which allows for automatic and accurate calculation of the derivatives

of the objective function. They treat the sex of individuals as unknown as was the

case in (Ruzzante, McCracken, Førland, et al. 2019), and set survival and fecundity

parameters equal for both sexes. A table of the parameters estimated in the model is

provided in Table 3.2. The model tracks fish aged one to three. The number of age

one fish in year y is given by the TROˆ in year y − 1

N1,y = TROˆ y−1 =
3∑︂

a=1

βaNa,y−1 (3.20)

where Na,y is the number of individuals aged a in the population in year y and βa is

the average fecundity at age a. Here the βa are measuring absolute fecundity. For

https://github.com/jgbabyn/varCKMR
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Table 3.1: True parameters used to simulate the last 15 years of data. θ is assumed
the same among all age classes. βi is the mean fecundity at age, ϕi is the probability
of an individual surviving from age i to i+ 1.

Growth Rate θ β1 β2 β3 ϕ1 ϕ2

0.95 0.10 0.380 1.518 3.416 0.215 0.280
0.95 0.25 0.442 1.767 3.975 0.197 0.164
0.95 0.50 0.388 1.551 3.490 0.228 0.217
0.95 0.75 0.569 2.276 5.122 0.105 0.324
0.95 1.00 0.523 2.093 4.709 0.107 0.346
0.95 1.25 0.510 2.038 4.586 0.117 0.317
0.95 2.00 0.441 1.763 3.966 0.221 0.101
0.95 5.00 0.375 1.502 3.379 0.211 0.305
1.00 0.10 0.476 1.903 4.281 0.196 0.179
1.00 0.25 0.439 1.755 3.948 0.176 0.362
1.00 0.50 0.374 1.497 3.368 0.275 0.230
1.00 0.75 0.539 2.156 4.851 0.167 0.125
1.00 1.00 0.518 2.071 4.661 0.124 0.387
1.00 1.25 0.527 2.109 4.745 0.123 0.366
1.00 2.00 0.593 2.374 5.341 0.105 0.336
1.00 5.00 0.523 2.094 4.710 0.143 0.262
1.01 0.10 0.376 1.504 3.384 0.226 0.395
1.01 0.25 0.521 2.084 4.689 0.130 0.372
1.01 0.50 0.569 2.274 5.117 0.105 0.388
1.01 0.75 0.419 1.677 3.773 0.207 0.322
1.01 1.00 0.395 1.579 3.552 0.318 0.108
1.01 1.25 0.414 1.655 3.724 0.270 0.156
1.01 2.00 0.598 2.393 5.385 0.120 0.200
1.01 5.00 0.546 2.185 4.916 0.155 0.174
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ages two and three it’s the proportion that survive from the previous year

Na,y = Na−1,y−1ϕa−1 a ̸= 1. (3.21)

Individuals aged 3 are assumed to die. For the initial year in the model the total

number of individuals in that year Ninit is treated as a parameter in the model and

the numbers at age assumed to correspond to the fraction expected by survival at

age. The ϕa terms in conjunction with the βa are what describe the overall population

trend.

The following kinship probabilities used in the model were tested against the age

structured simulation. With the population dynamics in place the model computes

the probability of a randomly selected potential parent that would be age a in poten-

tial offspring’s birth year g as

Pr[i is j’s parent|g, h, s] =

⎧⎪⎪⎨⎪⎪⎩
(︃∏︁h−g

k=s−g ϕk

)︃
2βa

TROˆ h
s < g

2βa

TROˆ h
otherwise

(3.22)

where s is the sample year of the potential parent. Here, the leading product is the

case when s < g is accounting for the probability of the potential parent surviving to

the birth year of the offspring. The remaining term is given by the average fecundity

of the parent in the year the potential offspring was born over the expected number

of offspring. Since the sex of the potential parents is unknown, the two is required

as they could be either the mother or the father. The probabilities are then used to

find the expected number of POPs by multiplying the probability with the number

of pairwise comparisons performed. The expected number of POPs is compared

against the observed number of POPs and they are assumed to follow a Poisson

distribution when added to the likelihood because it’s an accurate approximation to
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the pairwise Bernoulli kinship trials due to the large number of trials and the small

success probability.

For HSP kin pairs it is necessary to consider the reproductive output from all

the potential parents that could have resulted in half siblings with the same age gap.

Since we only consider differences between age classes here, rather than sum over all

potential parents, we sum over age classes and multiply by the number of parents in

that age class. It is also necessary to consider the survival of the potential parent

from the birth year of the older half sibling to the younger sibling’s which is given by

the product of the survival of potential parent during that period. Similarly to the

POP probability, since sex is unknown a two is required in the terms representing

the rate of drawing an offspring from a given birth year given the age of the parent.

Thus the probability that two individuals i and j where i is the older individual are

a HSP from different cohorts is given by

Pr[i and j share a parent|g, h] =
A−(h−g)∑︂

a=1

(︃ a+(h−g)∏︂
b=a

ϕb

)︃
×Na,g ×

2βa

TROg

×
2βa+(h−g)

TROh

.

(3.23)

For the model that implements within-cohort comparisons the probability is sim-

ilar to what is given in Equation 3.17 but with an adjustment for the fact that sex is

unknown and each individual has two parents,

Pr(i and j share a mother|g = h) =
1

N̂ y/2
×
(︃
1 +

σ̂2
g − µ̂g

µ̂2
g

)︃
(3.24)

where σ̂2
g is the variance in number of offspring produced by all adults relative to the

first age class in the model in year g and

µ̂g =

∑︁
a β

aNa,g∑︁
a Na,g

,
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is the mean number of offspring produced by all adults relative to the first age class.

Here, σ̂2
g can be constructed by using Equation 3.11 and the corresponding required

estimates.

As discussed in Section 3.3.2, σ̂2
g is written in terms of the variance in number of

offspring produced by individuals of each age class. σ̂2
g and µ̂g are constructed each

year in the model. The number of offspring produced by each age class is assumed

to follow a negative binomial distribution with a common overdispersion parameter

θ as was done in the simulation. θ is estimated by the model.

We take the same pseudo-likelihood approach used in Bravington et al. (2016)

where we only consider the kinship relationship between pairs of individuals. If kij is

the observed kinship between the pair of individuals i and j with the set of covariates

zi and zj respectively then the pseudo log-likelihood of the parameter vector α is

lPse(α) =
∑︂

1≤i<j<j≤n

logPr(Kij = kij|zi, zj;α). (3.25)

3.4.2 Effective Population Size

The model that performs within-cohort comparisons also estimates the variance Ne

using the same form presented in Equation 3.1. This requires an estimate of σ2
tot,

µtot, L and N1,y. N1,y follows from the abundance formulae given above and the

rest are derived from other parameters estimated by the model using the methods

described in Section 3.2. In the simulated populations presented here, breeding events

are independent. Thus the V ar(X|D = a) terms in Equation 3.10 are

V ar(X|D = a) =
a∑︂

i=1

2βi +
(2βi)

2

θ
(3.26)

or just the sum of the variances for number of offspring produced by each age class.

2βi is used since the model estimates the average per-capita fecundity and not the
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average individual fecundity (which is double the average per-capita since it takes

two parents to create one offspring). Similarly the (E[X|D = a]) terms are

E[X|D = a] =
a∑︂

i=1

2βi. (3.27)

Finally the required ∆a terms in Equation 3.10 are found using the estimate of survival

at age, ϕa, which is used to find the probability of death at age a via Equation 3.5.

Then all the pieces are assembled into σ̂2
tot as per Equation 3.10. µ̂tot is similarly

found by using E[X|D = a] and ∆a as seen in the latter half of Equation 3.7. The

growth rate λ is obtained from the estimates of βa and ϕa. Using the estimated values

of the growth rate, survival and fecundity allows finding an estimate of the generation

length, L̂. We then obtain an estimate of the effective population size using

N̂ e,y =
(N̂1,y−1 − 1)µ̂totL̂

1 + σ̂2
tot

µ̂tot

. (3.28)

Table 3.2: Parameters estimated by the models. The model that omits same cohort
comparisons does not include θ.

Parameter Description
Ninit The initial total number of individuals in the population
ϕ1 Survival of age ones
ϕ2 Survival of age twos
β1 Average per-capita fecundity for age ones
β2 Average per-capita fecundity for age twos
β3 Average per-capita fecundity for age threes
θ The overdispersion parameter in number of offspring

3.4.3 Results

Both models were fitted to all 1,000 samples from each of the 24 populations. All

24,000 model fits converged for both models.
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Table 3.3: The covariates and data input into the model

Data/Covariates Description
g The birth year of individual i in a pair
h The birth year of the individual j in a pair
si The sampling year of individual i in a pair
sj The sampling year of individual j in a pair
nPOPs,g,h,si,sj The number of observed parent-offspring pairs at each set of covariates
nHSPs,g,h,si,sj The number of observed half-sibling pairs from different cohorts at each set of covariates
nHSPsSC,g The number of observed half-sibling pairs from the same cohort in each possible birth year
ncomp The number of pairwise comparisons for each set of covariates

We compared the Root Mean Squared Error (RMSE) between the simulated abun-

dance at age and those estimated by both models as well as the model parameters

and growth rate. Table 3.5 shows the proportion of the 1000 model fits for each of the

24 populations where the RMSE was lower for the model that included within-cohort

comparisons. In the case of estimating the overall population abundance at age the

RMSE was lower in the majority of the model fits in all but one of the populations, the

RMSE for the growth rate and fecundity were lower for 22 and 19 of the populations,

respectively. For survival the RMSE for the model without within-cohort compar-

isons was lower for 15 populations. Table 3.4 shows the 5th, 50th and 95th percentiles

for the model estimates of fecundity at age, θ, survival as well as abundance at age

in sampling year 5 in the population where θ = 1 and the growth rate equal to 0.95

along with the true values. The percentiles are extremely similar for both models also

indicating that model performance for other quantities like abundance and fecundity

are not impacted when including within-cohort comparisons. Percentiles for the other

remaining 23 populations are similar with the two models’ performance being close.

For θ = 5 and θ = 2 the 95th percentile estimates for θ can be extremely large, over

100,000, since the difference in lower rates of overdispersion is harder to detect from

the data. While the estimate of θ may not be as accurate when θ is large, it does

not have much impact on the predicted variance and the resulting estimate of σ2
tot.
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WCM WCEM WCM Simulated Truth WCEM WCM WCEM
5% 5% 50% 50% 95% 95%

β1 0.454 0.455 0.497 0.523 0.500 0.542 0.550
β2 1.809 1.807 2.176 2.093 2.188 2.591 2.612
β3 3.518 3.554 4.721 4.709 4.749 6.156 6.207
ϕ1 0.082 0.083 0.104 0.106 0.104 0.128 0.128
ϕ2 0.293 0.292 0.385 0.346 0.385 0.513 0.511
N1,5 5050.045 5038.881 5573.535 5417 5562.997 6132.643 6123.710
N2,5 513.433 510.605 611.451 607 608.997 720.472 717.773
N3,5 190.309 188.230 247.159 233 243.658 331.235 326.946
θ 0.806 NA 1.123 1.000 NA 1.605 NA

Table 3.4: 5th, 50th and 95th percentiles for model parameters and the abundance at
age for sampling year 5 for the model with within-cohort comparisons (WCM) and
the model without (WCEM) for the population when θ = 1 and λ = 0.95.

However the 95th percentiles for other quantities of interest are still very close to

those from the model that omits within-cohort comparisons.

We also created density plots to examine the distribution of estimates for the

abundance at age, growth rate and model parameters and the variance of reproductive

success across the 1,000 model fits for each population. Estimates for both models

tended to be skewed for all populations. Figure 3.2 shows the density plots for the

population at age in sampling year 5 with a growth rate of 0.95 and θ = 1 for both

models. The dashed lines indicate the true simulated abundance that year. With

the combined within-cohort and between cohort comparisons the model is capable

of getting reasonable estimates of population abundance. The model that includes

within-cohort comparisons seems to result in narrower density plots.

Estimates of θ and σ2
tot are quite good for cases when the overdispersion is more

severe. Figure 3.3 shows the density plots for the population when the growth rate is

0.95 and θ = 1. Again, the dashed lines are the true values. The modes of the density

plots are close to the true values and show that reasonable results are achievable

from a practical CKMR study of 10 years. There is however still a tendency for the

estimates to be right skewed.

As mentioned above estimating the value of θ is more difficult when the amount of
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Figure 3.2: Density plots for the estimates of the numbers at age in sampling year
5 from both models for the population with a growth rate equal to 0.95 and θ = 1.
The dashed line indicates the true abundance.



64

0.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0 2.5 3.0
θ

de
ns

ity

Density of θ : θ=1 λ=0.95

0.0

0.1

0.2

12.5 15.0 17.5 20.0

σtot
2

de
ns

ity

Density of σtot
2  : θ=1 λ=0.95

Figure 3.3: Density plots for the estimated values of θ and σ2
tot for the population

when the growth rate is 0.95 and θ = 1.



65

overdispersion is low and estimates tend to be high but are not consistent. However,

a bad estimate of θ does not seem to significantly affect estimates of abundance.

Overall, the addition of our method of estimating the number of siblings that

share a parent in the same year does not have an adverse effect on estimating the

abundance of a population using CKMR methods. Our method yields estimates of

the variance of lifetime reproductive success and in scenarios where the overdispersion

is high enough, these estimates are good.

Table 3.5: The proportion of the 1000 model fits for each population where the RMSE
is lower for the model including within-cohort comparisons.

Population N Growth Rate ϕ β
Growth Rate: 0.95 θ: 0.1 0.54 0.44 0.44 0.47
Growth Rate: 0.95 θ: 0.25 0.60 0.52 0.61 0.52
Growth Rate: 0.95 θ: 0.5 0.64 0.60 0.47 0.52
Growth Rate: 0.95 θ: 0.75 0.65 0.65 0.28 0.50
Growth Rate: 0.95 θ: 1 0.54 0.59 0.46 0.50
Growth Rate: 0.95 θ: 1.25 0.60 0.62 0.47 0.50
Growth Rate: 0.95 θ: 2 0.66 0.65 0.41 0.52
Growth Rate: 0.95 θ: 5 0.67 0.68 0.55 0.54
Growth Rate: 1 θ: 0.1 0.74 0.75 0.52 0.52
Growth Rate: 1 θ: 0.25 0.76 0.75 0.40 0.55
Growth Rate: 1 θ: 0.5 0.60 0.58 0.43 0.48
Growth Rate: 1 θ: 0.75 0.68 0.67 0.50 0.52
Growth Rate: 1 θ: 1 0.66 0.67 0.50 0.53
Growth Rate: 1 θ: 1.25 0.55 0.50 0.51 0.48
Growth Rate: 1 θ: 2 0.64 0.64 0.51 0.52
Growth Rate: 1 θ: 5 0.64 0.63 0.48 0.53
Growth Rate: 1.01 θ: 0.1 0.51 0.51 0.49 0.50
Growth Rate: 1.01 θ: 0.25 0.36 0.36 0.39 0.45
Growth Rate: 1.01 θ: 0.5 0.64 0.67 0.44 0.50
Growth Rate: 1.01 θ: 0.75 0.66 0.68 0.41 0.51
Growth Rate: 1.01 θ: 1 0.65 0.66 0.52 0.53
Growth Rate: 1.01 θ: 1.25 0.67 0.66 0.42 0.48
Growth Rate: 1.01 θ: 2 0.61 0.69 0.49 0.50
Growth Rate: 1.01 θ: 5 0.68 0.67 0.45 0.54
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3.4.3.1 Effective Population Size

We also compared our estimate of effective population size against an empirical es-

timate of Ne using the adjusted Linkage Disequilibrium (LD) method outlined in

Waples, Antao, et al. (2014) using three known life history traits. Each individual

in our simulation was simulated with 100 unlinked genetic markers with two alleles

each. 24,000 samples (1,000 for each of 24 populations) containing 15% of the age

one individuals in every simulation year were used to estimate Ne using the adjusted

LD method. A larger sample was required than what was used for the CKMR model

to avoid infinite estimates of Ne. From these samples an estimate of raw number of

breeders N̂ b was calculated with the LD method using the R package strataG. The

adjusted N̂ b following Waples, Antao, et al. (2014) was calculated as

N̂ b(Adj3) =
rawN̂ b

0.991− 0.206 log10(AL) + 0.256 log10(α) + 0.137CV β
(3.29)

which was then used to get the adjusted estimate of Ne,

N̂ e(Adj3) =
N̂ b(adj3)

0.833 + 0.637 log10(AL)− 0.793 log10(α)− 0.423CV β
(3.30)

where α = 1 is the age of maturity, AL = max age−α+1 and CV β is the coefficient of

variation for the fecundity at age terms. These equations come from Waples, Antao,

et al. (2014) fitting regression models of the observed Ne against the expected Ne.

The median, 5th and 95th percentiles of the N̂ e(Adj3) were computed from each

of 1,000 samples for the 24 simulated populations. Figure 3.4 plots the value of

Ne using the true population values as given by Equation 3.1 as well the median,

5th and 95th percentiles from the estimates using CKMR across the 1,000 CKMR

samples and the median, 5th and 95th percentiles for the N̂ e(Adj3) on one of the 24

populations. As shown in Figure 3.4 Ne calculated using the true population values
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agrees extremely well with the median estimates from the CKMR model, across all

24 populations. In most of the populations N̂ e(Adj3) is similar to the value given by

the Ne formula in Equation 3.1 and the value estimated using the CKMR model, but

in a few populations it deviates from the other two methods. The N̂ e(Adj3) method

also seems to be more influenced by larger values of σ2
tot
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Figure 3.4: Ne computed from the true population values along with 5th, 50th and
95th percentiles for Ne estimated from the CKMR method presented here as well as
for the adjusted LD method for one of the 24 populations.
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3.4.4 Sensitivity Analysis of the Mean-Variance Assumption

So far, our model assumes that the mean-variance relationship of the reproductive

output for an individual of age a follows a negative binomial distribution as was used

in the simulation. That is

V ar(R|Pa = a) = E[R|Pa = a] +
E[R|Pa = a]2

θ
. (3.31)

In practice we do not know the true mean-variance relationship and so to test the

impact of this assumption we tested a modified version of the model where Equation

3.4.4 was replaced by a power law relationship where

V (R|Pa = a) = cE[R|Pa = a]γ. (3.32)

However, there is only enough information in within cohort HSPs to estimate either

the constant term c or the power term γ and not both simultaneously and so one of

them must be fixed. We tried two scenarios, when γ = 1 and γ = 2. When γ = 1

then the mean-variance relationship is quasi-Poisson and the variance is proportional

to the mean. This might occur if survival of offspring from a single individual in a

given year are independent of one another at birth. If γ = 2 then this is akin to the

case where some individuals are considerably more successful than others (i.e., the

variance in number of offspring is much larger than the mean). This could occur in

populations where the survival between offspring is highly correlated among siblings

during early life such as in a species where an entire clutch of eggs might be eaten by

a predator.

This assumption was tested on the 1,000 samples from the population where

θ = 0.1 and λ = 0.95. Figure 3.5 shows the 5th, 50th and 95th quantiles of Ne
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estimated across the 1,000 samples as well as Ne calculated directly from the simu-

lation parameters. The estimates from when the negative binomial is assumed and

when γ = 2 are quite similar to each other as is Ne derived from the simulation

parameters. In this population since θ is so small the impact of the E[R|a]2 term is

larger and so more akin to the power law scenario when γ = 2 than when γ = 1.

While the method presented here does not seem particularly sensitive to the exact

form of the mean-variance relationship, it needs to be capable of achieving similar

magnitudes of the V ar(R|Pa = a) terms in order to get accurate estimates.

When looking at the other non-variance related terms estimated by the model

the choice of the mean-variance relationship has very little impact. Table 3.6 shows

the 5th, 50th and 95th percentiles for the fecundity, mortality and abundance at age

estimates for sample year 5 of the simulation. Despite the gulf in Ne estimates when

γ = 1 and γ = 2, non-variance related quantities result in very similar estimates

suggesting that really only the variance and Ne estimates are impacted by the choice

of the mean-variance relationship. The results from the model when the negative

binomial variance relationship is assumed are extremely similar to when γ = 2 and

so are omitted from the table.

Some care is required when determining how to structure the mean-variance rela-

tionship. Getting the form of the mean-variance relationship perfectly correct is not

required, however it does need to get in the ballpark of where the true variance lies.

But an incorrect choice of the mean-variance relationship is not a huge detriment to

non-variance related parameters in the model.
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γ = 1 γ = 2 γ = 1 Simulated Truth γ = 2 γ = 1 γ = 2
5% 5% 50% 50% 95% 95%

β1 0.232 0.236 0.337 0.380 0.341 0.454 0.456
β2 1.01 1.04 1.62 1.52 1.66 2.54 2.58
β3 1.18 1.11 3.23 3.42 3.08 6.60 6.41
ϕ1 0.11 0.11 0.202 0.214 0.2 0.346 0.336
ϕ2 0.741 0.807 0.31 0.281 0.326 0.15 0.153
N1,5 3094.437 3092.366 4100.052 3951 4091.484 5615.102 5600.267
N2,5 631.901 627.369 905.28 917 892.626 1271.023 1246.604
N3,5 147.897 145.464 296.737 274 304.808 744.153 791.737

Table 3.6: The 5th, 50th and 95th percentiles for the model parameters (except θ) and
the abundance at age for sampling year 5 for the models assuming a power law mean-
variance relationship. Estimates for when the negative binomial variance relationship
is assumed are very similar to when γ = 2 and are omitted.

3.5 Discussion

We have shown here how to estimate Ne using CKMR. This was done by decompos-

ing the total reproductive variance into the mean and variance in number of offspring

produced by each age class. By leveraging within-cohort HSPs we estimate the vari-

ance in number of offspring produced by all breeding adults in a given birth year

which can be written in terms of the mean and variance in number of offspring from

each age class. With the estimate of total reproductive variance in hand an estimate

of Ne can be found. While we demonstrated this on a population where the fecun-

dity, survival and number of individuals in each sex are equal this method could be

extended to a population where this is not the case so long as sufficient information

from mitochondrial DNA is available to distinguish between maternal and paternal

HSPs from the same cohort.

In this paper we have demonstrated how the expected number of sibling pairs

from the same cohort are related to the mean and variance in number of offspring

produced by adults in a year. Previously it was suggested to exclude within-cohort

CKMR comparisons to avoid issues caused by the mismatch in the observed number

of sibling pairs versus the expected when not accounting for the variance in number
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of offspring. However, we have demonstrated with an age structured individual based

simulation that when within-cohort comparisons are specifically tailored to a CKMR

model it can perform just as well as when within-cohort comparisons are omitted

while also providing estimates of the variance in number of offspring suggesting there

is little statistical cost to including them. Even in cases where estimates of the

overdispersion parameters were quite far from the simulated value or when incorrect

assumptions about the mean-variance relationship were used, estimates of the other

quantities in the model were still similar to those obtained with the model with no

within-cohort comparisons. Within-cohort comparisons on their own are not sufficient

to estimate the variance in number of offspring in a given birth year. They must be

combined with a known estimate of adult abundance or an additional data source,

such as POPs, that allow for estimating adult abundance.

One of the necessary choices that must be made is the choice of the reference

age. This is the age to which the fecundity and variance in number of offspring refer.

Choosing a reference age where the survival between siblings is not independent will

result in incorrect estimates of the variance in number of offspring. It’s not too difficult

to see from their definitions that while µtot and L do not depend on the choice of the

reference age. As the unobserved survival of individuals below the reference age

will be accounted for by the reduced number offspring of offspring that survive to the

reference age. However, σ2
tot can vary depending on the chosen reference age leading to

different estimates of Ne. Obviously in order to fully capture the reproductive output

of the population the reference age must at least include age at first maturity. Fisher

(1939) recommended that the age before sexual maturity be used as the number of

offspring surviving to maturity is what is important for calculating σ2
tot. In order to

be able to estimate σ2
tot using within cohort HSP comparisons an assumption about

the mean-variance relationship among the V ar(R|Pa = a) must be made. While it

was shown in Section 3.4.4 that getting the form of the relationship exactly right
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is not required, it is necessary to pick a form that can reasonably mimic the true

V ar(R|Pa = a). In addition, using within cohort HSP comparisons on their own only

allows for a single parameter related to the V ar(R|Pa = a) to be estimated. If this is

the case, then it may be necessary to require some components to be fixed. A sensible

default for many species may be

V (R|Pa = a) = cE[R|Pa = a]2. (3.33)

Which can apply to many animals where the success of one nest or litter can be all

or nothing. A value of γ = 2 will also give a lower, more conservative estimate of Ne

than alternatives.

Here we demonstrated how to estimate Ne when supplied with survival at age, ϕa,

estimates of which are obtainable through non-lethal CKMR. In many populations it

may be sufficient to instead use an aggregate estimate of adult survival as is achievable

with lethal CKMR. If adult survival among age classes is thought to be very similar

and not particularly variable then it could be an adequate replacement.

We also assumed that survival and fecundity are not varying over time. It would

be possible to extend the ideas presented here to situations where this may not be

the case. This would require estimating terms like survival and fecundity on a yearly

basis, potentially with something like a random walk. This could also help account

for populations where cohorts in some years considerably outperform cohorts in other

years.

Full sibling kin pairs from the same cohort can also be used to inform the variance

in number of offspring produced by males and females if random mating still applies.

Even in species where parents breed with a single mate in a given year and all siblings

from the same cohort are full siblings Equation 3.18 can still be used to find the

variance in number of offspring among females (or males). Care must still be taken
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to avoid issues where full sibling pairs are not sampled independently.

While the populations presented here were relatively simple and allowed for niceties

not available in all populations (like the ability to estimate absolute fecundity), it has

been made abundantly clear that it is possible to estimate all the pieces required

for Ne using CKMR. Estimates of Ne that better account for fluctuating population

size and time-varying vital rates may still be possible using the methods outlined in

Engen et al. (2005b) combined with CKMR.



Chapter 4

Assessing the Feasibility of using CKMR on Sable Island Grey

Seals

4.1 Introduction

Sable Island is a small remote crescent shaped island approximately 175 kilometres

from mainland Nova Scotia. The island is home to the world’s largest grey seal

breeding colony (W. Bowen, McMillan, et al. 2007). The number of pups born on

the island every year has increased exponentially since monitoring first began with

a few hundred in the 1960’s expanding into the tens of thousands during the 1990s

with the last reported estimate of 2021 being over 80,000 pups and a total population

estimate of over 300,000 individuals (Hammill et al. 2023).

Female grey seals are known to live to approximately 45 years of age and males

to 35. Females start to have pups at 4 years or older with males reaching maturity

at 7 to 9 years (den Heyer and W. Bowen 2017). Grey seals are considered capital

breeders which means females spend stored reserves during lactation of pups. When

pups have been weaned, females will abandon their pups and go back to sea (W.

Bowen, Iverson, et al. 2006). Pups will remain on Sable Island for a few weeks after

their mother leaves before heading out to sea themselves (Noren et al. 2008).

Currently the grey seal population on Sable Island is assessed using an Integrated

Population Model (IPM) that combines estimates of pup production, survival, re-

movals and reproductive rates to capture the dynamics of the population and uncer-

tainty present (Hammill et al. 2023; Rossi et al. 2021). Prior to 1989 pup production

75
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was estimated based on tagging, from 1989 aerial surveys have been run every few

years (den Heyer, W. D. Bowen, et al. 2021). Tagging programs on Sable Island grey

seals have been conducted since the 1960’s and since 2002 over 6000 pups have been

marked using hot iron brands. Resightings involve conducting whole island censuses

searching for marked individuals multiple times in a breeding season (den Heyer and

W. Bowen 2017). This Mark-Recapture (MR) effort has served as the source of sur-

vival and reproductive rates used in assessments (Hammill et al. 2023; den Heyer and

W. Bowen 2017).

Conducting censuses of Sable Island for marked individuals is an expensive and

time-consuming operation due to the remote nature of Sable Island and large breeding

colony. Several weeks worth of supplies and fuel need to be transported to the island

by helicopter and ship and a small team of 4-10 researchers are needed to scour the

island (den Heyer 2023). Concerns have also been raised about the use of hot iron

branding on marine mammals (Dalton 2005).

Close-kin Mark-Recapture (CKMR) could offer a potentially cheaper replacement

for estimating abundance and survival that also reduces harm to grey seals. CKMR

replaces the physical tags used in MR with the kinship relationships between pairs

individuals detected through genetics (Bravington et al. 2016). Genetic samples can

be collected from pups with less potential impact to the animal than brands. It would

also be easier to collect these samples from weaned pups, after the mothers have left,

to dcrease the impact on maternal investment and pup survival. A few hundred or

thousand samples could be collected during this period over the course of a few days

instead of the 4-7 weeks required to check the whole island for marked individuals

during breeding season.

To assess how CKMR might work on the Sable Island grey seal colony we have

created an individual based simulation that reflects what is known about the pop-

ulation demographic rates. In Section 4.2 we outline how this simulation is setup
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and run and describe the sampling schemes under consideration. In Section 4.3 we

present our prototype two sex model and result of fitting this model to the simulated

data. Then in Section 4.4 we consider a model that only estimates female abundance.

Section 4.5 contains our conclusions.

4.2 Simulation

We used a custom individual based simulation written in R to try and assess how well

CKMR might perform for the Sable Island Grey Seal population. The simulation

aims to mimic the Sable Island colony in size and structure. The maximum lifetime

for a simulated seal is assumed to be 45 years old. Male adult survival is assumed to

be lower than female survival as indicated by MR studies (den Heyer and W. Bowen

2017) and the IPM (Rossi et al. 2021). Females are simulated to have at most one

pup in a given year as occurs in nature (W. Bowen, Iverson, et al. 2006). Males

can potentially sire more than one pup in a year with multiple females. Male grey

seals of an intermediate size are known to be more likely to sire pups than those

of smaller and larger sizes (Lidgard et al. 2005). Males in the simulation fall into

one of two size classes to account for this feature of the population. Males falling

in the "intermediate" size class have an increased chance of being selected as the

father of a pup. Males in the 20-24 age range also have an increased chance of siring

more offspring. 50 populations are simulated for 300 years with certain parameters

varying among them, discussed in Subsections 4.2.1 and 4.2.2. The first 200 years of

each simulated population were used as a burn in period to allow for mixing among

individuals. The burn in period keeps the population relatively low, around a few

thousand individuals. After the burn in period the population is allowed to grow to

be more reflective of the Sable Island grey seal colony. To simplify things removals

have not been considered. Figure 4.1 shows the 5th, 50th and 95th percentiles of

total abundance from the 50 simulated populations for the years following the burn
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in period against estimates of total abundance given in Figure 4 of Hammill et al.

(2023). The populations are a reasonable approximation to the size and dynamics of

the Sable Island grey seal colony as suggested by the IPM used in the stock assessment.
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Figure 4.1: The 5th, 50th and 95th percentiles of the total abundance from the 50
simulated populations versus the Sable Island colony abundance estimate from the
IPM (values taken from Figure 4 of Hammill et al. 2023).

4.2.1 Survival

Juvenile survival was split into a density dependent component (via an adjusted

Ricker curve) and a density independent component following Rossi et al. (2021).
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Age 0 1-9 10-14 15-19 20-24 25-29 30+
ϕa,m Unif(0.67,0.9)S(D)

t /2 0.99 0.99 0.96 Unif(0.92,0.95) Unif(0.76,0.82) Unif(0.5,0.65)
ϕa,f Unif(0.67,0.9)0.99S(D)

t /2 0.99 0.99 0.98 0.98 0.92 Unif(0.8,0.84)

Table 4.1: The survival parameters used for the simulations. Unif(a, b) indicates a
randomly selected value from the uniform distribution between a and b.

The density dependent recruit survival rate in year t is given by

S
(D)
t =

Dθ

Dθ +Rθ
t

(4.1)

where D is the density dependence half-saturation parameter, θ is the density de-

pendence shape and Rt is the number of of recruits in year t. The density dependence

shape parameter was randomly selected to lie between 0.90 and 1.05 and the half-

saturation parameter was randomly selected from values between 10,000 and 15,000.

The density independent component is a randomly selected value between 0.67 and

0.9. These values were chosen based on the parameters used in Rossi et al. (2021).

Survival for all other ages is set to follow a Bernoulli distribution with the prob-

ability of survival from one year to the next differing between males and females as

well as between age classes (ϕa,m and ϕa,f respectively). The values chosen for the

simulation were derived from Figure 7 of Rossi et al. (2021). When uncertainty in-

tervals were visibly present a random value between the upper and lower bounds was

chosen. Table 4.1 shows the breakdown of the probabilities among the sexes and age

classes.

4.2.2 Maturity and Reproduction

The probabilities of males and females being mature are configured to follow logistic

curves although with separate sets of parameters for each sex. The probability of an

individual that is aged a being mature is given by
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Pr[mature|a] = 1

1 + e−ks(a−a50,s)
(4.2)

where ks affects the steepness of the curve and a50,s is the age at which 50% of

individuals are mature for sex s. For both males and females km and kf are set to

one and a50,f = 5 and a50,m = 8. Individuals under the age of four for females and

seven for males are simulated to be immature.

To allow for skip breeding individuals in the population have a state marking them

as a breeder or non-breeder and have an associated probability of transitioning from

one state to another or staying in the same state. The probability of a female staying

a breeder given they were a breeder last year is set to 0.85, the probability of them

staying a non-breeder given they were a non-breeder is 0.30. For males these are set

to 0.95 and 0.20 respectively. These values were based on those given in Rossi et al.

(2021). Individuals have to be in a breeder state and mature to breed.

Breeding occurs once per year. The number of offspring had by females that are

in a breeder state and mature is Bernoulli distributed with the probability controlled

by the pregnancy rate which is randomly selected to be between 0.85 and 0.99. Males

are allowed to breed with multiple females in a year and are divided into two classes,

one representing the intermediate size class mentioned in Lidgard et al. 2005 that are

more likely to sire offspring, and a non-intermediate size class. Males are assigned

to the intermediate group with a thirty percent chance at birth. Ages 20 through 25

are considered ages of peak performance and greater weight is given to males within

that age range. For males at peak performance in the intermediate size class a weight

between 5 and 10 is randomly selected for the entire population, for those outside

peak performance a value of 5 is used for the entire population. For males not in

the intermediate size class in peak performance a weight randomly selected between

1 and 4 is selected for the entire population, and a value of 1 for those not at peak
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performance. The weights control how likely it is for a mature male in breeder status

to be selected as the father of the pup. Higher weights increase the chance of a male

being selected as the father of a pup and thus more likely to be the father.

4.2.3 Sampling

A core part of this feasibility study is examining the practicality of only sampling

juveniles and so all sampling presented here is juvenile only and non-lethal. Fisheries

and Oceans Canada (DFO) collected genetic samples from the juveniles that were

branded in the 1998-2002 and 2014-2016 cohorts (den Heyer 2023) which potentially

could be used to kick-start a CKMR program. A similar setup is reflected in the

sampling scheme presented below to see how the model might behave when confronted

with these gaps in sample coverage. We also test three different sampling schemes,

short, medium and long term. Short term examines what we might expect if we only

used the samples currently available (e.g., 1998-2002 and 2014-2016). Medium term

is the scenario when a few extra years are added to the samples used in the short

term. Finally, long term extends the sampling so that roughly one generation of time

has passed since the start of sampling. Table 4.2 shows the breakdown of which years

of the simulation were sampled and how many juveniles were sampled in a given year.

The observations in the long term extend those of the medium term and those in the

medium term extend the short term. Year 38 of the post burn-in period was chosen as

the start of sampling from the simulation as it roughly reflects the state of the Sable

Island grey seal colony in 1998 as suggested by the 2022 stock assessment. For each

of the 50 simulated populations, the sampling schemes were repeated 20 times giving

a total of 1000 samples. It was assumed that it is possible to distinguish between

relationships that are maternal and non-maternal. Size class was considered to be

unknown during sampling and sex was assumed to be known.

The main kin pairs of interest and the ones used in the model are POPs, HSPs
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Table 4.2: Years sampled and number of juveniles sampled for each of the three
sampling schemes. Years are relative to the post-burn in period (i.e., Year 1 is the
first year after the burn in period). Long and medium term extend the previous
terms.

Short Medium Long
Years 38-42,54-56 62-68 69-84
Annual Juveniles Sampled 500 700 700

and GPGCPs. Kinship between individuals was assumed to be known perfectly and

determined directly from the simulated pedigree graph. For simplicity kin pairs from

the same cohort were not used. Kinship detection was done by performing a breadth

first traversal on the node in the pedigree graph corresponding to each sampled indi-

vidual to a maximum of 3 relationships (edges) out. When other sampled individuals

were encountered during traversal the relationship (path) between them was recorded.

This allows for encountering kin pairs with the same degree of relatedness as POP,

HSP or GPGCP such as a full uncle/nephew relationship which could cause a prob-

lem if they occur with too high frequency and are unaccounted for in the model. Kin

pairs outside of POP, HSP and GPGCP are shown to be relatively rare. Across the

1,000 samples taken over the 50 populations two thirds of them did not find a kin

pair outside of POP, HSP and GPGCP. Of those that did it was usually one over

the entire 31 year sampling period, the highest being 4. The average number of kin

pairs found in each of the three sampling schemes across the 1,000 samples are given

in Table 4.3. One thing to note is that the number of kin pairs found does not scale

linearly with the number of sampling years.

Table 4.3: The average number of kin pairs found in each of the three sampling
schemes across the 1,000 samples taken.

Kin Pair Short Medium Long
POP 19.21 62.62 180.49
HSP 334.70 837.96 2880.61
GPGC 5.08 61.07 248.27
Other 0.13 0.21 0.37
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HSPs and GPGCPs can not be distinguished by genetics alone using pairwise

comparisons (as discussed in Section 1.2). In some scenarios simulated here it is

possible to distinguish between the two when the birth years of the two individuals

are known (e.g., if they are born one year apart they must be a HSP). However,

there are many scenarios where this is not the case and so the number of HSPs and

GPGCPs are aggregated together when supplied to the model.

4.3 The Two Sex CKMR Model

In this section we discuss the inner workings of the two sex CKMR model that was

fitted to 1,000 samples from each of 50 populations. This model is necessarily simpli-

fied from the simulation design presented in Section 4.2. For instance, early testing

of the model during development suggested that having multiple survival terms for

adults in the model could not be supported by the data necessitating the need for

one common term for each sex. It was also found that juvenile density dependent

and independent survival terms were not identifiable. The model is implemented in

RTMB, an R package that allows for writing the model in R while still enabling accurate

calculation of the first and second derivatives through AD (Kristensen 2023). Table

4.4 gives the parameters estimated by the model.

Table 4.4: The parameters estimated by the two sex model.

Parameter Description
Ninit The initial number of non-juveniles
ϕf Female survival of non-juveniles
ϕm Male survival of non-juveniles
prate The proportion of females that get pregnant
θ The density dependent shape parameter
D The density dependent half-saturation point
w1,2 The weight parameter for peak males (ages 20-25) of non-intermediate size class
w2,1 The weight parameter for non-peak males of intermediate size class
w2,2 The weight parameter for peak males (ages 20-25) of intermediate size class
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4.3.1 Population Dynamics

The model tracks the numbers of seals in a three-dimensional array N , indexed by

age, year and sex. The initial numbers at age a (excepting juveniles) for sex s are

given by

Na,1,s = Ninit

(︃ ∏︁a
i=1 ϕs∑︁45

j=1(
∏︁j

i=1 ϕf +
∏︁j

i=1 ϕm)

)︃
. (4.3)

The initial numbers of juveniles for all years is the Total Reproductive Output (TRO)

of the female seals in a given year, or the sum of all pups from all females in a given

year. The average number of pups from a female of age a is

βa,f =

⎧⎪⎪⎨⎪⎪⎩
pratePMa,f a ≥ 4

0 otherwise
, (4.4)

where PMa,f is the probability of a female seal being mature as described by Equation

4.2 and prate is the proportion of mature females that get pregnant in a year. The

median age of maturity, af , and rate of maturity kf are assumed to be known and

the same values as those used in the simulation. The number of juveniles of sex s in

year y is

N1,y,s =

∑︁45
a=1 βa,fNa,y,f

2
=

TROˆ y

2
. (4.5)

The number of individuals of age a, a ̸= 1 is

Na,y,s = Na−1,y−1,se
−Za−1,y−1,s (4.6)

where Za,y,s is the mortality rate of individuals of sex s and age a in year y. For

non-juvenile individuals

Za,y,s = −log(ϕs), a ̸= 1. (4.7)
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For juvenile individuals is based on a juvenile density Ricker curve similar to the one

used in the simulation,

Z1,y,s = −log(ϕ(D)
y /2) (4.8)

where

ϕ(D)
y =

Dθ

Dθ + TROˆ
θ

y

(4.9)

where D is the half-saturation point and θ is the shape parameter.

The TRO for males is constrained in the model to be equal to the TRO for females.

The average fecundity values for males of age a, βa,y,m,size, is calculated on a yearly

basis. Thirty percent of males are set to be in the intermediate size class, psize,2 = 0.3,

and the rest are in the non-intermediate class, psize,1 = 0.7. Let Wi,a be the weights

control what proportion of the male TRO corresponds to the size class as well as from

individuals that are of peak performance age. Here Wi,a = wi,2 if 20 ≥ a ≤ 25 and

wi,1 otherwise. w1,1 is fixed in the model to be equal to one, so the other weights are

relative to w1,1. The proportion of fecundity from male individuals of age a and size

i in year y is

pfeca,y,i =
PMa,mWi,apsize,iNa,y,m∑︁45

a=1(PMa,mW1,apsize,1Na,y,m + PMa,mW2,apsize,2Na,y,m)
(4.10)

where PMa,m is the proportion of males aged a that are mature and again follows

Equation 4.2 using the same values used in the simulation. This is then used to find

βa,y,m,i,

βa,y,m,i =
pfeca,y,iTROˆ y

psize,iNa,y,m

. (4.11)

This also allows finding the amount of TRO in a given year that corresponds to each

of the two size classes which is needed below.
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4.3.2 Kinship Probabilities

We only consider POPs, HSPs and GPGCPs, these are kinships that are one quarter

or more related and most likely to occur in sampling. While it is possible we may

observe other kinship pairs with the same degree of relatedness such as full sibling,

full aunt/niece, etc., with random mating and low numbers of sampling relative to

the overall population size these are relatively rare as shown in Section 4.2.3 and so

are not considered. The kinship probabilities outlined below are needed to find the

expected number of kin pairs.

4.3.3 Parent-Offspring Pairs

Suppose we have a pair of individuals, i of sexi and sizei and j that were born

and sampled in years yi and yj respectively and that yi < yj. Let ayj be the age of

individual i in the birth year of individual j. Then the probability that i is the parent

is

Pr[i is j’s parent|yi, yj, sexi, sizei] =
Nayi ,yj ,sexi

N1,yi,sexi

× βa,y,sexi,sizei

TROˆ
∗
yj

. (4.12)

Here TROˆ
∗
y depends on the size class of individual i. If individual i is female then size

class does not matter and TROˆ
∗
y is the overall TROˆ y. If i is male then TROˆ

∗
y is the

amount of TROˆ
∗
y that can be contributed to their corresponding size class. Since only

non-lethal juvenile sampling is under consideration; we must consider the probability

that individual i survived from birth to the birth year of individual j. This is given

by the leading fraction of the probability.

4.3.4 Half-Sibling Pairs

Suppose again we have two individuals i and j that are born in years yi and yj to a

potential unobserved parent of sex sexp and size sizep, where again yi < yj. Let d be

the age difference between i and j. Then the probability that i and j share a parent
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in common is

Pr[i and j share a parent|yi, yj, sexp, sizep] =
A−d∑︂
a=d

N∗
a,yi,sexp

×
(︃
βa,yi,sexp,sizep

TROˆ
∗
yi

)︃(︃
βa+d,yj ,sexp,sizep

TROˆ
∗
yj

)︃
.

(4.13)

With HSPs we have to sum over all of the possible parents of both individuals which

is why we multiply by N∗
a,yi,sexp

. If the sex of the potential parent is male then we

must take into account the differences caused by the two size classes, and so N∗ and

TRO∗ correspond to the values with relation to the size class of the potential parent.

Again, if potential parent is female then those are simply the overall values for all

females.

4.3.5 Grandparent-Grandchild Pairs

GPGCPs are similar to HSPs in concept where there is an unobserved parent that

needs to be considered. Again, assume we have a pair of individuals i and j and there

is a potential parent of j and potential child of i with sex sexp and size sizep. In

addition, assume we also know the sex and size class of i then the probability that i

and j are a GPGCP is

Pr[i is j’s grandparent|yi, yj, sexi, sizei, sexp, sizep] =

yj−1∑︂
k=yi+1

N∗
yj−k,yj ,sexp

×
N∗

yj−k,yj ,sexp

N∗
1,k,sexp

×

N∗
k−yi,k,sexi

N∗
1,yi,sexi

×
(︃
βk−yi,k,sexi,sizei

TROˆ
∗
k

)︃(︃
βyj−k,yj ,sexp,sizep

TROˆ
∗
yj

)︃
(4.14)

Like with HSPs it’s necessary to sum over all of the potential parents of j which is

reflected in the leading N∗
yj−k,yj ,sexp

term and survival from birth to the birth of their

child needs to be considered for both the possible parent and grandparent.
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4.3.6 Likelihood

Similar to Bravington et al. (2016) we take a pseudo-likelihood approach and only

consider pairwise comparisons between individuals given their set of covariates, C

and the set of parameters γ. The number of kin pairs for a relationship status k for

a set of covariates, XC , is assumed to follow a binomial distribution,

XC ∼ Binomial(nC , P r[K = k|C]) (4.15)

where nC is the number of pairwise comparisons for a set of covariates and Pr[K =

k|C] is the probability of relationship status k occurring as defined above. For cases

where the covariates can not distinguish between a pair of individuals being a HSP or

GPGCP then the two probabilities are added together to find the expected number.

The model is provided with whether or not a set of comparisons was looking for a

maternal or non-maternal relationship. In the latter case for GPGCPs it is then also

necessary to sum over both potential sexes for the unobserved parent. In addition

for the two size classes of males, size is considered unknown. It is assumed that the

fraction of observed kin pairs from each size class corresponds to the fraction of the

TRO from each size class. The pseudo-likelihood used is

lPse(γ) =
∑︂

1≤i<j<≤n

logPr(XC = x|C;γ). (4.16)

4.3.7 Results

The two sex model was fitted on each of the 1,000 long, medium and short term

samples from across the 50 simulated populations. All of the two sex models fitted on

the long term successfully reached model convergence, 0.6% of medium term model

fits led to false convergence and 56.7% of the short term model fits ran into issues like
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false convergence and in a few instances resulted in the optimizer completely failing.

Even among short term models that resulted in successful convergence there were still

issues using RTMB to estimate the standard errors of the parameters of the model with

over 80% of the short term model fits running into issues on at least one parameter.

This only occurred 3.6% of the time on the medium term samples and never in the

long term sample fits.

Overall the two sex model tends to underestimate the true total abundance of

the population across all the samples tested. On average the models fit to the long

and medium term samples underestimated the true abundance by 25% and the short

term models by 23%. Figure 4.2 gives a summary of the 20 model fits for the three

different sampling schemes by providing the median, 5th and 95th percentiles of

the model estimates from the second population simulated. One clear issue that is

present in the figure and in the other populations is that the models fit to the long

term samples tends to think the population has hit peak population and has already

started to trend downwards earlier than the true populations.

The non-juvenile survival for males was generally estimated to be lower than that

of females. The average male survival across all 1,000 long term samples were found

to be 0.926 and the average female survival was found to be 0.982. The true average

survival across the fifty populations ranged from 0.979 to 0.955 for males with a mean

of 0.971 and for females it ranged from 0.985 to 0.965 with a mean of 0.97. Only 27.1%

of the 95% confidence intervals from the long term models contained the true average

female survival and 0% of them for male survival. A similar story occurs for the

medium term sample fits where 32.8% of the 95% confidence intervals containing the

true average female survival and 0.5% of the time for male survival.

When looking at fecundity, models fit on the long term sample tended to estimate

the pregnancy rate, prate at around 0.5 with the average being 0.529. This is generally

much lower than the true average pregnancy rates for the simulated populations when



90

you factor in non-breeding females which varied between 0.713 to 0.827. Interestingly

the medium and short term model fits tended to find values close to or exactly one.

For male fecundity the model fits had issues distinguishing between the peak and

non-peak performance period and lowered the weight given to individuals from the

peak performance ages of 20-25 resulting in a lower mean fecundity from that age

class than others. For example, on the first simulated population the average number

of pups from males in the 20-25 age range is 0.435 and 0.556 for the non-intermediate

and intermediate size classes respectively and again 0.11 and 0.22 for mature males

outside those age ranges, yet on one of the long term model fits for this population

the means were 1.29 and 1.44 for peak ages for the non-intermediate and intermediate

size classes and 1.82 and 1.74 for non-peak ages. This occurred most often on the

medium term model fits, happening 79.5% of the time, then the long term 54% of the

time. Although it was not something that happened often on the short term model

fits, only happening 1.1% of the time. The model also typically estimated the weights

for the peak and non-peak age classes very similarly for both size classes under all

sampling schemes as seen in Table 4.5 despite in some of the populations they should

be twice as large or more.

Table 4.5: The difference in peak and non-peak performance estimated male fecundity
weights between size classes.

Sampling Scheme Peak Performance Non-peak
Short 0.0036 0.027
Medium -0.010 0.0055
Long -0.1614 0.074

Clearly the two sex model presented here has issues and would not make a good

replacement for the current assessment used. However, the model presented here

seems to be picking up some sort of signal reliably on the medium and long term

samples and perhaps with further refinement could be improved.
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Figure 4.2: The 5th, 50th and 95th percentile abundance estimates from the 20
samples for the second population simulated.
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4.4 Female Only Abundance Model

The difficulties of the two sex model in distinguishing the fecundity between males

of the two different size classes likely contributed to the clear negative bias present

when estimating abundance. We also considered a model which only tracks female

abundance as a way to try and steer clear of the problems associated with male

fecundity. The FOAM works in the same fashion as the two sex model described in

Section 4.3 but with the male and size components removed and so for brevity details

are omitted. It also only uses kin pair relationships that are maternal which does

have the impact of reducing the number of observations available to the model. The

parameters estimated by FOAM are given in Table 4.6.

Table 4.6: The parameters estimated by the female only model.

Parameter Description
Ninit The initial number of non-juvenile females
ϕf Female survival of non-juveniles
prate The proportion of females that get pregnant
θ The density dependent shape parameter
D The density dependent half-saturation point

4.4.1 Results

The FOAM was fitted to the same long, medium and short term samples as the two

sex model presented above. However, it only uses observations where the kinship

relationship is known to be maternally linked (i.e, the mother was a female or the

mother & grandparent are female). This results in about only 46% of the total

observations being used in comparison to the two sex model. As with the two sex

model the model convergence failure rates decreased as the sampling term increased,

from 33.5% with the short term sample to 4.1% in the medium term to 0.3% in the

long term. The FOAM also encountered similar rates of problems generating the

standard errors as with the two sex model.
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FOAM underestimates the true female total abundance. On average it underes-

timates total female abundance by 24.17%, 18.40% and 15.3% in the short, medium

and long term sampling schemes respectively. In Figure 4.3 we show the 5th, 50th and

95th percentiles from the model estimates on the samples from the second population

simulated which is representative of the other populations. It shows that the bias

tends to be relatively consistent across the entire sampling period tending to come

closer to the true values nearer to the edges. The overall shape of the trend tends to

be closer to the true female abundance than the two sex model.

FOAM always estimates the pregnancy rate to be one or extremely close to one on

all three of the different sampling lengths. The average of the estimates of non-juvenile

survival was 0.982, 0.980 and 0.963 from the short, medium and long term samples

respectively. The true mean female non-juvenile survival parameter was within the

95% confidence intervals 56.9% of the time for the long term samples, 95.6% of the

time for medium term samples and 90.2% of the time for model fits where confidence

intervals could be created.

We also compared the performance of the FOAM to the two sex model by compar-

ing the female abundance estimated from the two sex model to what was estimated

by FOAM. Comparing the Root Mean Squared Error (RMSE) of the total female

abundance between the two models found that 96.2%, 47.0% and 79.0% of the time

the RMSE was lower for the two sex model than the FOAM for the long, medium and

short term sampling schemes. Figure 4.4 shows an example of the estimated female

abundance as the median of the 20 samples for the second population for both models

and highlights the differences in overall trend that tends to occur between the two.

If potential GPGCP pairs are removed from the data set then the underestimate

of abundance appears to vanish in all fifty of the simulated populations. Figure 4.5

shows the 5th, 50th and 95th percentiles of female abundance estimates from the

FOAM applied to second population simulated when potential GPGCP pairs are
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removed giving a demonstration of this. When the potential GPGCP kin pairs are

removed the model still has tendency to estimate the fecundity as one.

While the FOAM avoids some of the issues present in the two sex model it still

has issues of its own. It may be easier to correct problems with the FOAM than the

two sex model. If this is the case then one avenue for using CKMR on the Sable

Island grey seals may be to adjust the population size by an external estimate of the

total population sex ratio.
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Figure 4.3: The 5th, 50th and 95th percentile female abundance estimates from the
20 samples for the second population simulated using FOAM.
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Figure 4.4: 50th percentiles of the female abundance estimates from the 20 samples
for the second population simulated from both the two sex model and FOAM.
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Figure 4.5: The 5th, 50th and 95th percentile female abundance estimates from the
20 samples for the second population simulated using FOAM when potential GPGCP
pairs are removed.
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4.5 Conclusion

In this chapter we constructed an individual based simulation that reflects our current

understanding of the Sable Island grey seal colony. We then considered three different

juvenile only sampling schemes varying in length (based on sampling effort already

conducted by DFO that could be repurposed for CKMR). By applying the sampling

schemes to the simulated populations we were able to see how many kin pairs we

might expect and how common kin pairs outside of POP, HSP and GPGCP might

be in the real population. We tested the sampling schemes on two models, a two sex

model that tracks both males and females and accounts for differences in survival and

fecundity between them, and a female only abundance model.

Both the two sex model and the FOAM result in estimates of abundance that

tends to underestimate the true population values by 10 to 30 percent. For the two

sex model a known source of bias is it’s difficulty in handling male fecundity due

to some males having increased probability of siring an offspring not being correctly

reflected. Estimates of abundance for males and females end up being reduced to

compensate. The model also had more trouble dealing with the short term sampling

scheme which resulted in issues with convergence and obtaining standard errors for

parameters. Fitting the CKMR model to data from the short term may require

more compromise and simplification. Both models could reasonably well estimate the

average survival values of non-juveniles. Some insight into juvenile survival could also

be obtained from the model.

If potential GPGCP kin pairs are removed from the FOAM then the bias issues

present in estimating abundance disappear. Since ages are known perfectly and there

is an understanding of when grey seals begin to mature, it would be feasible in practice

to omit any potential GPGCP kin pairs. Even if the problems the two sex model has

in estimating male fecundity can not be resolved, it should still be possible to get an
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estimate of the total abundance in the by scaling by the total sex ratio.

Further work could be done to try and find the source of the biases in the two

sex model. Effort could also be extended to determining the optimal number of

samples required for future sampling efforts. Here we only considered continuing

the amount of genetic sampling that had previously been done. Another possible

avenue to investigate is the addition of a small amount adult only sampling that could

potentially be performed when adult samples are needed for other reasons (e.g., diet

sampling). This should make it possible for the model to better distinguish between

survival rates for different age classes rather than having a single non-juvenile survival

term for each sex. The models presented here are also relatively simple and assume

that kin finding can be done perfectly and that all samples can be used. This may

not be the case in practice and it’s something that may need to be further tested.

While the models presented here can not perfectly capture the simulated pop-

ulations they were tested against, they at least identify the overall trend, general

magnitude of the population, and get in the ballpark of average survival of males

and females. With further refinement and investigation there is some hope of juve-

nile only CKMR being a viable replacement for the current MR and aerial surveying

based methods.



Chapter 5

Conclusion

This thesis worked towards the goal of furthering methods for fisheries science by

extending existing techniques and incorporating new ones. In Chapter 2, a spatial

ALK model is proposed with support for physical barriers through the use of an

approximation to a GF. Spatial ALKs yield better estimates of age distribution than

non-spatial ALKs and the added support for physical barriers was shown to improve

estimates when there is a large landmass present. In addition to the new method, an

R package was developed to make it easy to apply and compare a number of different

ALK models, including spatial and non-spatial approaches.

In Chapter 3, it was shown that CKMR can be used to estimate effective popu-

lation size through the relationship between the variance in number of offspring and

the number of observed sibling pairs born in the same cohort year. This enables not

only estimating the effective population size but also the variance in number of off-

spring born each year by age class. Chapter 4 presents a feasibility study of applying

CKMR to the grey seals colony of Sable Island with emphasis on a juvenile only based

sampling scheme. The two sex model presented highlights the importance of properly

dealing with varying fecundity among individuals and the bias it can cause. It re-

vealed limitations in terms of what parameters could be reliably estimated. Chapter

4 also demonstrated that it may be more worthwhile to omit potential GPGCP kin

pairs than to include them as doing so resulted in biased estimates of abundance.

The methods presented in this thesis relied heavily on simulation. Simulation

100
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methods allow for knowing the true parameters and values in the population. Know-

ing the truth allows us to easily check model performance and compare against alter-

native methods. We are also able to test what happens if our assumptions happen

to be wrong as was done in Chapter 3. Simulation has become a powerful and com-

mon tool in statistics, however often those presented in the literature are simulating

from the model proposed. This assumes that the model is truly representative of the

process under are study. If this is not the case then simulation may suggest better

performance than is the case. Many of the simulations performed in this thesis in-

stead worked from a different direction. Rather than simulating from the model being

presented the simulations were based on other processes. In Chapter 2 fish were given

lengths at age through a stochastic von Bertalanffy growth model instead of from the

CRL ordinal regression model. In Chapters 3 and 4 individual based simulations were

used rather than simulating directly from the models. This allowed for more easily

reflecting reality than may have been possible with a strictly model based approach.

For instance, in Chapter 4 it was possible to make it so some males in the simulation

had an increased chance of breeding. It also made it possible to see the impact of

kinship relationships outside of the considered POP, HSP and GPGCP which would

have been more difficult to model. Having separate implementations of the simula-

tions and models also helped to reveal issues during development. Simulations also

allowed for exploring ideas and scenarios such as assessing the feasibility of CKMR

on grey seals as was done in Chapter 4 that otherwise would have required years of

sampling work and very expensive lab work.

Chapters 3 and 4 were centred around CKMR. Originally the work described in

Chapter 3 was anticipated to be applied to the same set of data used in Ruzzante,

McCracken, Førland, et al. (2019). However, the existing microsatellite based geno-

typing does not provide enough information to reliably identify the HSPs required to

be able to estimate the variance in number of offspring. Ideally one outcome of this
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thesis would be to take what was developed in 3 and apply it to a real world dataset

to see how it performs and determine any potential limitations that might exist.

Another possible extension of Chapter 3 would be to investigate if it is possi-

ble to estimate the total variance in reproductive success directly by considering the

number of sibling pairs that occur over an individual’s entire lifetime rather than a

single year. This would avoid having to make an assumption about the mean-variance

relationship between age classes as well potentially avoid complications arising from

non-independence in reproduction between years. However, this method is compli-

cated by the fact that for sibling pairs the ages of parents is unknown and perhaps

this alone makes infeasible.

Currently there is an ongoing project between DFO and Dalhousie to apply CKMR

to the Atlantic halibut population managed by DFO. The lessons and experience

gained over the development of this thesis are useful to that project and future work

involves applying those lessons there. Similarly, the work presented in Chapter 4

could be extended to further investigate what the optimal sampling strategy and

further improvements to the model might be.

The most important contribution of this thesis is the work described in Chapter

3. We showed explicitly the link between Ne and CKMR by using within-cohort

comparisons. This link had previously been hinted at in Bravington et al. (2016) and

in Waples and Feutry (2022) but was not fully explored. Not only did we uncover

the link but we also showed that it was also possible to use just CKMR to estimate

Ne as well provide estimates of the variance in number of offspring. Something that

was not possible beforehand.

This thesis furthers the development of statistical methods and analysis for fish-

eries stock assessments. With climate change seemingly becoming a more visible

reality with each passing day and the consequences of its impact on ocean ecosystems

not fully realized there is more pressing need for more accurate and capable methods.
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To do so future stock assessment models will likely need to incorporate new sources

of data and techniques such as spatial data and CKMR as was discussed here. While

incorporating them may be a challenge hopefully the work presented here gives some

indication that it is worthwhile to do so.
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Appendix A

Simulation Code for Spatial ALKs

The simulation study uses largely the same process for SimSurvey as was outlined

and described in Regular et al. (2020). To assess the effectiveness of each aging

method spatially (as described in Figure 2.3) the lengths and ages of every single fish

needs to be simulated. SimSurvey only applies individual lengths as fish are sampled,

only storing the number of fish of each age in the simulation grid cells which greatly

reduces storage costs. To have the lengths available for every single fish SimSurvey

was modified to generate fish lengths from the growth curve at the same time as the

population is generated. These lengths are then kept as fish are distributed spatially

into the simulation grid cells. The modified functions allowing all individual fish

lengths to be known were created in a private fork of the SimSurvey package.

In addition, the Age-year-space covariance discussed in Appendix S3 of Regular

et al. (2020) was instead obtained using a GMRF approximation with support for

physical barriers as described in Section 2.2.2.1. A precision matrix Q is generated

from a mesh and a specified set of hyperparameters. This is then approximated for

each grid point in the SimSurvey simulation. This has the benefit over the default

SimSurvey method of constraining the simulation to also have to abide by any physical

barriers present and also provides a speed boost by using a GMRF approximation

when the mesh has less nodes than there are cells in the grid. An example of a mesh

used in the simulation is shown in Figure A.1 and example of the true abundance at

age for the simulation referred to in Figures 2.3a and 2.2 is shown in Figure A.2.
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Constrained refined Delaunay triangulation

Figure A.1: An example of a mesh of the simulated survey area for one simulation.
The coloured rectangles make up the boundary area, circles are sampled locations.
Triangles form the mesh and each vertex is an element in the covariance matrix.
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Figures 2.3 & 2.2.
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Figure A.3: The Probability of an American Plaice being each age class in the study
area given a length of 35 cm as predicted by the GAM model.
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Figure A.4: The Probability of an American Plaice being each age class in the study
area given a length of 35 cm as predicted by the GFB model.
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Figure A.5: The Probability of a Cod being each age class in the study area given a
length of 50 cm as predicted by the GAM model.
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Figure A.6: The Probability of a Cod being each age class in the study area given a
length of 50 cm as predicted by the GFB model.
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(a) Relative error (true minus predicted over true) for the GFB
model. A new spatial ALK is generated and applied to each
simulation grid cell.
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(b) Relative error (true minus predicted over true) from the tra-
ditional ALK. The same global traditional ALK was applied to
each simulation grid cell. The non-spatial CRL model results in
a very similar plot to the traditional ALK.

Figure A.7: The relative error between the predicted proportions and the true pro-
portions in each simulation cell. The median relative error for the GFB model is
-0.1334 and -0.4038 for the traditional ALK. Both methods have the smallest relative
error occur on the right-hand side for age 5 fish which is -467.9 for the GFB model
and -2443.91 for the traditional ALK.



Appendix B

Probability of within-cohort siblings

Suppose we have two individuals i and j born in the same cohort that are sampled

at ages x and y where y > x ≥ a with a being the age at which survival between

individuals become independent of one another. Let Rxm and Rym be the number

of individuals from mother m surviving to ages x and y, Rx+ and Ry+ be the total

size of the cohort at ages x and y. The probability of the two individuals sharing the

same mother is

Pr(i and j share a mother|g = h) =

Nf∑︂
m

Rym

Ry+

× Rxm − 1

Rx+ − 1
(B.1)

Since survival between individuals older than a are independent we can rewrite the

above solely in terms of Rxm and Rx+, if ϕy is the probability of an individual surviving

from age x to y then

Pr(i and j share a mother|g = h) =

Nf∑︂
m

ϕyRxm

ϕyRx+

×Rxm − 1

Rx+ − 1
=

1

Rx+(Rx+ − 1)

∑︂
m

(R2
xm−Rxm).

(B.2)

If abundance is large then Rx+(Rx+ − 1) ≈ (NfE[Rxm])
2 where Nf is the number of

mothers in that cohort year and we can use that to replace the denominator. Then

if we take expectations

Pr(i and j share a mother|g = h) ∝ E[R2
xm]−E[Rxm] = (Rxm)+E[Rxm](E[Rxm−1])

(B.3)
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Let ϕ be the probability of survival from age a to x. Since survival is independent

among ages greater than or equal to a then Rxm ∼ Bin(Ram, ϕ) and combined with

the law of total variance

V ar(Rxm) = ERam [V ar(Rxm|Ram)] + V arRam(E[Rxm|Ram]) (B.4)

= ERam [Ramϕ(1− ϕ)] + V arRam(Ramϕ) (B.5)

= µaϕ(1− ϕ) + σ2
aϕ

2 (B.6)

where µa and σ2
a are the mean and variance of the number of maternal offspring

surviving to age a. Then

Pr(i and j share a mother|g = h) =
µaϕ(1− ϕ) + σ2

aϕ
2 + ϕµa(ϕµa − 1)

Nfϕ2µ2
a

(B.7)

=
ϕ2σ2

a + ϕ2µa(µa − 1)

Nfϕ2µ2
a

(B.8)

=
1

Nf

×
(︃
1 +

σ2
a − µa

µ2
a

)︃
. (B.9)

The above does not depend on x or y so the probability that two individuals

are a sibling pair from the same cohort does not depend on their age at capture so

long as those ages are greater than or equal to the age at which survival becomes

independent between individuals. Thus we are free to select any suitable reference

age where survival between individuals is independent.



Appendix C

The link between reproductive success and Ne

Here we show an intuitive heuristic derivation of variance Ne to illustrate the link

between it and the mean and variance of lifetime reproductive success. Variance Ne

is typically defined as the number of individuals in an ideal population that would

generate the same variance for the change in allele frequency between two generations

as in the original population. Here we instead consider the number of individuals in an

ideal population with the same allele frequency in the next generation rather than the

variance in allele frequency. Measuring the average allele frequency in one generation

followed by the next still informs us about how the allele frequency changes from

generation to generation.

Suppose we have an ancestral cohort of C aged year olds and there are NC of them.

Further suppose there is a rare allele in the population with allele frequency p. This

results in there being pNC individuals with the rare allele and since the probability

two individuals with the rare allele breed together is negligible, we can ignore the

possibility of it occurring. Suppose that Xi is the lifetime reproductive output of C

year old individual i with mean µc and variance σ2
c . Since only heterozygotes exist

in the population with the rare allele the number of descendants that carry it from

individual i is given by a binomial random variable with probability of success 1/2

and size Xi, which we denote by Yi. Then the frequency of individuals with the rare

allele in the next generation is given by

P =

∑︁
pNc

Yi∑︁
Nc

Xi
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since individuals without the rare allele contribute nothing. Similar to Hill (1979) we

ignore terms of O(p2) and replace the denominator of P with it’s expectation Ncµc.

The variance of P is approximately,

V ar(P ) ≈ (Ncµc)
−2pNcV ar(Yi)

and the variance of Yi are

V ar(Yi) = EXi
[V ar(Yi|Xi)] + V arXi

(E[Yi|Xi])

= EXi

[︃
Xi

4

]︃
+ V arXi

(︃
Xi

2

)︃
=

µc

4
+

σ2
c

4

Then

V ar(P ) ≈ (Ncµc)
−2pNc

µc + σ2
c

4
=

p(µc + σ2
c )

4Ncµ2
c

Under the Wright-Fisher (WF) ideal case µc = σ2
c = 2 and

V arWF (P ) =
4p

16NWF

=
p

4NWF

and the effective population size ignoring overlapping generations is

Ne ≈
p

4V ar(P )
=

Ncµ
2
c

µc + σ2
c

=
Ncµc

1 + σ2
c

µc

.

We use the same logic as Hill (1979) to account for overlapping generations and

adjust by the generation length L to give

Ne ≈
NcµcL

1 + σ2
c

µc

(C.1)

which only differs from the form given in Equation 3.1 by 1− 1/Nc caused by terms

of O(p2).



Appendix D

Leslie Matrix Approach to Population Dynamics

One way of representing a population’s structure is to consider the demographics such

as fecundity and survival by age. We can represent the number of individuals at age

in year y by the vector Ny where each element is the number of individuals in each

of the age classes. Individuals born in the same year are said to belong to the same

cohort. In the deterministic case we can find the number of individuals at age in year

y + 1 using a Leslie matrix,

Ny+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 β2 β3 . . . βA−1 βA

ϕ1 0 0 . . . 0 0

0 ϕ2 0 . . . 0 0

0 0 ϕ3 . . . 0 0

...
... . . . ...

...

0 0 . . . ϕA−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1,y

N2,y

N3,y

...

NA−1,y

NA,y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the βi represent the per-captia fecundity of individuals in age class i and ϕi is

the proportion of individuals in the ith age class that survive to the i + 1 age class.

Here A represents the oldest possible age class in the population. The growth rate of

the population λ is the largest eigenvalue of the Leslie matrix (Caswell 2000).

Sometimes we may not be able to observe all of the age classes in a population or

we may not want to avoid problems like non-independence of sampling of age classes

or if survival of certain age classes are not independent. Instead of working with the

first age class we can instead choose another age to use as our reference age. Suppose
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we have a population where the age of maturity happens at the third age class (so

β1 = β2 = 0) and we only start observing the population at the third age class. This

means that we cannot find the values of ϕ1 and ϕ2 and the Leslie matrix of what we

can observe is equivalent to

Les3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 β′
1 = ϕ1ϕ2β3 . . . β′

A−1 = ϕ1ϕ2βA−1 β′
A = ϕ1ϕ2βA

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 ϕ3 . . . 0 0

...
... . . . ...

...

0 0 . . . ϕA−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
as we only observe the number of individuals that have survived to the third age class.

Here β′
a is the average number of offspring from individuals aged a that survive to

the chosen reference age of three.

Even though we can not estimate age-specific survival for ages before our chosen

reference age the two Leslie matrices here have identical Eigenvalues and hence growth

rates. For the ages equal to and beyond the reference age the two Leslie matrices

will result in the same numbers at age given the corresponding numbers in the year

before.
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