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Abstract

Optical flow represents motions for each pixel between two adjacent frames in a video

sequence. Deep learning-based estimation approaches for optical flow have overshad-

owed the variational approaches over the past few years, as they achieve real-time

estimation with reduced estimation error. The construction of deep learning-based

estimation models heavily relies on the cost volume which is constructed through

matrix multiplication and encodes the dense matching information between the given

inputs. Long-range correlation and occlusion, however, remain challenging as infor-

mation drawn from the cost volume is heavily weighted by the local correlation defined

over a fixed window size. In this thesis, we propose to enrich the information used

for the iterative residual flow decoding process with an Auxiliary Cost Aggregation

(ACA) unit that constructs an auxiliary cost volume based on the top-k matches from

the 4D cost volume and then augments it using Transformers. Additionally, a post-

refinement module is also proposed to refine the predicted residual flow at the end of

each iteration based on the feature’s local coherence. Extensive experiments indicate

that our model achieves better cross-dataset generalizability than two baseline mod-

els, RAFT and GMA. On the Sintel and KITTI benchmarks, our model outperforms

RAFT and has comparable performance with other state-of-the-art (SOTA) models.

vi



Chapter 1

Introduction

Optical flow is defined over 2D space and it represents the per-pixel motion within a

given consecutive image pair. The correspondence information it provides facilitates

many real-world applications, such as video frame interpolation [5, 54, 53], video

super-resolution [69, 14, 60], and video inpainting [77, 38, 88].

The era of deep learning-based optical flow estimation models started with the

work presented by FlowNet [18] that computes optical flow with stacks of end-to-end

trainable convolutional neural networks (CNNs) [40]. PWC-Net [62] then achieved

a notable performance increase compared to FlowNet by introducing an end-to-end

model equipped with cost volume and backward-warping operations which are then

applied by Zhao et al. [85], Hui et al. [28], and Jiang et al. [33]. The success of

PWC-Net shows that cost volume computed by matrix multiplication between CNNs

encoded feature maps is crucial to the architecture design for deep learning-based

approaches as it encodes the feature matching information which provides guidance

for the 2D motion estimation. Therefore, model design subsequent to PWC-Net all

includes cost volume as part of the computation process. Compared to the PWC-Net,

instead of using stacks of coarse-to-fine CNNs pyramid, a significant improvement was

made by RAFT [66] which uses a convolutional gated recurrent unit (ConvGRU) as

an iterative residual flow decoder and adopted table lookups through the cumulative

residual flow at each iteration on the 4D cost volume of shape H × W × H × W ,

where H and W are the spatial dimensions of the encoded feature maps.

As the RAFT model revolutionized the field of optical flow estimation, it is

adopted as the baseline model for many of the following deep learning-based opti-

cal flow estimation models [61, 33, 86, 64, 34, 84, 27]. Works by Jiang et al. [33], Sun

et al. [64], Zheng et al. [87], and Bai et al. [3] mainly focus on the recurrent decoder

part of RAFT, whereas models proposed by Zhang et al. [84], Jiang et al. [34], Xu

et al. [74], and Xiao et al. [72] emphasize the cost volume construction which is also

1
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the direction we have taken when constructing our model.

The RAFT model does not handle occlusion which occurs when the pixels in the

first image do not have a matching target in the second image. Additionally, the

full 4D cost volume introduces unnecessary matching information. The GMA [33]

model augments RAFT by handling occlusion with information propagation based

on the feature’s intra-similarity, the proposed component is then applied by several

approaches [61, 64, 27]. Zhang et al. [84] break the per-pixel matching 4D cost volume

into two smaller 4D cost volumes of shape H ×W × U ×K and H ×W × V ×K,

where H and W are the spatial dimensions of the feature map, and U , V , and K are

hyperparameters, encoding horizontal correlation and vertical correlation respectively.

Cost aggregation is then performed on the two cost volumes. Xu et al. [74] reduces

the cost volume to two 3D tensors of shape H×W ×D, where one encodes horizontal

matching information and the other one encodes vertical matching information by

using 1D attentions and 1D correlation. Xiao et al. [72] keeps the full 4D cost

volume and introduces a Caylay representation to learn the cost volume. Recent

works demonstrated in SCV [34] and FlowFormer [27] reduce the size of the full 4D

cost volume from the shape of H ×W ×H ×W to a 3D shape of H ×W ×K using

k-nearest neighbor selection and a learnable latent tensor, respectively. SCV shows

that iterative optical flow estimation can be done by only using a sparse cost volume,

however, its performance is inferior to RAFT as the ambiguity caused by textureless

and motion-blurred regions requires dense matching to determine the pixels’ motion.

On the other hand, FlowFormer preserves the full 4D cost volume while using the

embedded 3D cost volume to provide extra information during the decoding process.

It greatly boosted the estimation performance but it is computationally heavy as the

3D cost volume is computed by applying dot-product attention between the latent

tensor and full cost volume.

As the cost volume is a crucial part of the deep learning-based approaches, the

information presented in it should be captured as much as possible during the optical

flow estimation process. Although current approaches have made efforts to enrich

the cost volume by decomposition to encoding horizontal information and vertical

information separately or through condensation which tries to capture only important

information and filter out noise, the resulting model is either computationally heavy or
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has reduced performance compared to the RAFT model. Therefore, in this thesis, we

propose an approach that preserves the benefits of SCV and FlowFormer. Inspired by

SCV, we take a subset of correspondences from the full 4D cost volume by applying the

topk operation which selects k most significant correlations, and linear self-attention

is applied on the embedded topk matches to aggregate information presented by each

of them. After the construction of the auxiliary cost volume, similar to FlowFormer,

both the full cost volume and the auxiliary cost volume are used together during the

residual optical flow prediction stage.

Compared to those two models, we preserve the full 4D cost volume computed

using dot-product between two encoded feature maps to provide the full matching

information between two images which benefits the prediction of textureless regions

as well as motion-blurred regions. The auxiliary cost volume that contains the top

matching candidate is used along with the full cost volume to enrich the information

provided to the decoding stage dynamically.

Local refinement is often applied in the depth estimation [80, 41, 20] as depth maps

are piecewise smooth. Additionally, based on the smoothness assumption widely made

in variational approaches regarding optical flow estimation [26, 8, 81], where motion

is shared within a local neighborhood, we also propose to propagate the hidden state

based on the feature’s local similarity at the end of each recurrent iteration.

We summarize our contributions and performance as follows:

• An auxiliary cost aggregation unit is introduced that efficiently constructs

an auxiliary cost volume using the top-k correlations from the full 4D cost

volume and dynamically integrates it into the residual optical flow decoding

process.

• A post-refinement process is proposed that propagates the information of

each updated hidden state based on the image’s local coherence.

• Compatible performance on cross-data generalization to SOTA models

which outperforms both RAFT [66] and GMA [33] on the KITTI [52] bench-

marks while having performance that is on par with SOTA models on the Sintel

[13] final benchmarks.



Chapter 2

Related Work

This chapter briefs the related approaches that have been applied to the optical flow

estimation task. The first section mentions some of the most significant work done

using variational approaches. Backward wrapping and hierarchical estimation ap-

proaches are detailed as these two techniques are still widely used since the early

80s. Then we move on to the deep learning approaches which have greatly boosted

the estimation accuracy over the variational approaches. Methods in both supervised

learning and unsupervised learning are described. Although supervised learning mod-

els perform better than unsupervised ones, unsupervised models provide insight into

how occluded pixels can be handled explicitly within a deep learning framework. We

also give a shallow description regarding attention models [68] for Natural Language

Processing (NLP) as well as its variations that are more suitable for vision tasks as

they achieve better performance on some tasks that were dominated by the convolu-

tional neural network (CNN) based deep learning models.

2.1 Variational Approaches

The seminal work presented by Horn and Schunck (HS) [26] with brightness constancy

and smoothness assumptions has built the foundation for the majority of non-deep

learning-based optical flow estimation models. Given a pixel located at position (x, y)

in an image I, the brightness constancy assumption states that optical flow does not

change the intensity of a pixel over a small time interval,

I(x + u, y + v, t + δt) = I(x, y, t), (2.1)

where u is the motion regarding x-axis (horizontal) and v is the motion regarding

y-axis (vertical). Using first-order Taylor expansion, the above equation becomes

I(x, y, t) + Ixu + Iyv + It = I(x, y, t)

Ixu + Iyv + It = 0
(2.2)

4
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u

v

f

Figure 2.1: An illustration of the aperture problem: The red object has a motion in
the direction of f over the grey background which can be decomposed to u in the
horizontal direction and v in the vertical direction. For a small time step dt, the
image gradient in the vertical direction changes along v and image gradient in the
horizontal direction is perpendicular to u which resulted in Iyv ̸= 0 and Ixu = 0.
Thus, the motion f having its horizontal component u unregistered under dt.

where Ix and Iyare the gradient over the horizontal and vertical directions on the im-

age I, respectively. It is the temporal gradient computed between the input sequence.

The model then tries to minimize the energy function below defined based on

Equation 2.2,

Eb(x, y) = ϕ(Ixu + Iyv + It) = (Ixu + Iyv + It)
2, (2.3)

where ϕ is the penalty function and chosen to be ϕ(x) = x2 in their setting.

The brightness constancy assumption provides a single equation with two un-

knowns, additionally, the aperture problem stated in Hutchinson et al. [29] and

illustrated in Figure 2.1 indicates that Ixu and Iyv may become invalid under cer-

tain conditions. Therefore, the local smoothness assumption Es which states that

neighboring points of (x, y) should possess similar motion is also added to the model,

Es = uxx + uyy + vxx + vyy, (2.4)

with the second-order horizontal and vertical motion gradients computed with the

standard five-point stencil. The minimization of the summation of Equation 2.3 and

Equation 2.4 is conducted in an iterative manner with u and v both initialized as 0s.

Before deep learning-based approaches, the basic formulation of optical flow es-

timation using variational approaches mostly follows the above two assumptions.

The penalty function ϕ(x) = x2 used in HS is further replaced with the L1 norm
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ϕ(x) = |x| [81], the Charbonnier penalty ϕ(x) =
√
x2 + ϵ2 [12], or the Lorentzian

ϕ(x) = log(1 + x2

2ϵ2
) [8]. In addition, the L1 norm is usually equipped with the total

variation [58] and minimizing the following energy function,

Eθ =
∑︂
d

|∇ud| +
∑︂
d

1

2θ
(ud − vd)

2 + λ|ρ(u)|, (2.5)

where d is the dimension of the flow vector, |∇ud| is the smoothness term, ρ(u) is the

brightness constancy term, and v is the introduced auxiliary variable that is a close

approximation of optical flow u [81]. The median filter can be applied to discard out-

liers after each incremental optical flow result [71]. Furthermore, to mitigate lighting

changes, Rudin-Osher-Fatemi (ROF) structure texture decomposition method [58] is

used to pre-process the input sequence [71].

Although most of the optimization techniques developed under the variational

approaches are not suitable for deep learning-based optical flow estimation models,

two common practices are widely applied in state-of-the-art (SOTA) works: warping

and iterative hierarchical (multi-resolution) structure.

(x, y) (x’, y’)

I (t) I (t+1)

Figure 2.2: Forward warping: Based on the estimated flow ft→t+1, pixel located at
(x, y) in I(t) is mapped to pixel located at (x′, y′) in I(t + 1) followed by bilinear
splatting.

A warping operation is adopted in the majority of optical flow estimation models.

Forward warping used by Bergen et al.[7] maps pixels located in I(t) to those located

in I(t + 1) based on the estimated flow as shown in Figure 2.2. For a given pixel

at position (x, y) in I(t), it is mapped to (x′, y′) in I(t + 1) according to flow vector

ft→t+1. Since ft→t+1 are not guaranteed to be integer values, bilinear interpolation

is used to divide the intensity of It(x, y) into four parts with weighting
∑︁4

i=1wi = 1,
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where each wi is calculated as,

x1 = ⌊x′⌋

x2 = x1 + 1

y1 = ⌊y′⌋

y2 = y1 + 1

w0 = (y2 − y′) ∗ (x2 − x′)

w1 = (y′ − y1) ∗ (x2 − x′)

w2 = (y2 − y′) ∗ (x′ − x1)

w3 = (y′ − y1) ∗ (x′ − x1),

(2.6)

with w0 corresponding to the coordinate at the southwest corner and the rest ar-

ranged clockwise, the larger the wi, the more contribution it will take from It(x, y)

(corresponding to darker color in Figure 2.2). Forward warping is having less impact

on optical flow estimation models as the warped image will contain holes if there are

multiple pixels mapped to the same location [65]. Additionally, the forward warping

operation is not easily differentiable as a z-buffer is usually required [53], where the

z-buffer stores all the contributing pixels and orders them based on their depth. Fully

differentiable forward warping is proposed by Niklaus et al. [54] for video frame in-

terpolation, but it is unclear how to apply this operation to optical flow estimation

tasks.

(x, y) (x’, y’)

I (t) I (t+1)

Figure 2.3: Backward warping: Based on the estimated flow ft→t+1, bilinear interpo-
lation is first performed at location (x′, y′) in I(t + 1), the interpolated value is then
mapped back to location (x, y) in I(t).

Backward warping or backward sampling as shown in Figure 2.3, on the other

hand, performs sampling in I(t + 1) based on ft→t+1, the resulting image represents
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pixels in I(t + 1) moved backward by ft→t+1. For a pixel located at (x, y) in I(t),

its intensity value is obtained by performing bilinear interpolation at location (x′, y′)

in I(t + 1) first and then this value is mapped back to I(t) [12]. Different from the

forward warping that splats the intensity of I(x, y), all four integer coordinates sur-

rounding (x′, y′) contribute to the intensity at (x, y), additionally, under the iterative

hierarchical flow estimation approach, only the flow between the original I(t) and the

warped I(t + 1) are estimated [11] at each iteration.

Large motions presented in an image sequence are captured by using a coarse-to-

fine (hierarchical) warping approach [51, 8]. Image pyramid with different resolution

is constructed first, starting from the level with the lowest resolution where optical

flow are initialized as 0s, the flow estimation at each level is computed between the

first image and the warped second image, where warping operation uses the flow

computed at the previous level (coarser level).

2.2 Deep Learning Approaches

Deep learning based per pixel prediction tasks gained attention since Convolutional

Neural Network (CNN) based segmentation network [46] had great performance gain

over previous works. In this section, a number of deep learning-based optical flow

estimation models will be introduced.

2.2.1 Supervised Approaches

Flownet proposed by Dosovitskiy et al. [18] uses a stack of convolutional layers, and

nonlinear activation functions to predict optical flow given two input images. Two

different models are proposed in this work. FlowNetSimple which concatenates the

two images in their channel dimension and then feeds to a sequence of CNNs for

optical flow prediction and FlowNetCorr which extracts features maps which are the

output of CNNs from two input images independently and then predicts optical flow

based on their correlations. Both of them are based on the encoding and decoding

design [57] where the spatial sizes on the xy-plane are reduced during the encoding

stage, the encoded feature map is then enlarged during the decoding stage.

The encoding stage for FlowNetSimple is designed with nine convolutional lay-

ers with kernel size of 7 × 7 for the first layer, 5 × 5 for the following two layers,
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and 3 × 3 for the rest of the layers. Feature maps that are the output of convo-

lutional layers are produced with reduced spatial dimensions and increased channel

dimensions after each layer. The output from FlowNetSimple’s encoding stage is a

feature map that encodes information with respect to the concatenated inputs. Com-

pared to FlowNetSimple, the number of encoding convolutional layers is the same

for FlowNetCorr architecture but the encoding architecture is different. Two feature

maps f1, f2 ∈ RCf×H×W with Cf , H, and W representing the number of encoded

channels, feature map’s height, and feature map’s width, separately, are extracted

by using the first three convolutional layers in a Siamese fashion [9] where the same

network is used on two different inputs for feature extraction. Given f1 and f2,

correlations between them are computed in patch-wise manner,

c(x1, x2) =
∑︂

o∈[−k,k]T×[−k,k]

⟨f1(x1 + o), f2(x2 + o)⟩, (2.7)

where x2 ∈ [x1−d, x1+d]T×[x1−d, x1+d] is defined to limit the search window size as

well as reduce the number of computations required. The resulting correlation Corr ∈
RH×W×(2d+1)2 is the input to the rest of the encoding layers. The resulting feature map

for the FlowNetCorr after the encoding stage represents the correlations between f1

and f2. In order to recover details from the reduced resolution, the decoding process

uses deconvolution [82] which gradually increases the spatial resolution of the output

feature map. Additionally, an intermediate optical flow estimation is produced at each

deconvolution step using the concatenation among feature map fi from the previous

deconvolution, coarser flow from the previous deconvolution, as well as the feature

map from the encoding stage whose resolution is the same as fi.

The training data scheduling approach proposed in FlowNet2 [30] is used by all

the SOTA optical flow approaches. The network trained on the easier Chairs dataset

first[18] and then trained on the harder dataset FlyingThing3D [49]. This type of

training where tasks become increasingly harder follows the curriculum learning ap-

proach [6]. To integrate the successful iterative estimation approach from variational

approaches into their network, multiple networks are stacked together. FlowNetCorr

is used as the start of the stack where it takes in two images as the input and then

predicts optical flow f c
i where i is the network stack index. FlowNetSimple follows

the FlowNetCorr but instead of taking stacked images as the input, it takes the stack
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of first image I1, second image I2, back-warped second image I2̂, optical flow f c
i ,

and the difference ∆I between I1 and I2̂ as the input which then outputs optical

flow f s
i . Additionally, the network stack for estimating large motion displacement

fl consists of one FlowNetCorr followed by two FlowNetSimples. To produce more

crisp motion boundaries, a deeper FlowNetSimple is applied as an additional branch,

and it produces smaller motion displacement fs. The final optical flow is produced

with a shallow fusion network that takes the magnitude of fl, the magnitude of fs,

optical flow fl, optical flow fs, the brightness difference between I1 and I2̂ which is

the backwarpped I2 using fl, and brightness difference between I1 and I2̂ which is the

backwarpped I2 using fs.

FlowNet shows that real-time optical flow estimation can be approached using

deep learning models but their performance was inferior to the best variational ap-

proaches. FlowNet2 has better performance but it requires a large memory footprint

as it requires five networks in total. PWC-Net [62] gained accuracy and reduced

memory consumption by applying an end-to-end differentiable iterative hierarchical

warping technique. The feature pyramid which contains feature maps of different res-

olutions is constructed with a stack of six convolutional layers that reduce the spatial

dimension of the input by a factor of 2 at each layer. The warping operation is con-

ducted among feature maps. Starting from the coarse level i (low resolution), optical

flow fi−1 from the previous level is upsampled by a factor of 2 to f̂ i−1, and f̂ i−1 is

used to warp feature map f i
2 produced by the second image at the level i to f i

2
ˆ using

the bilinear interpolation operation provided in the spatial transformer network [31].

Cost volume cvi that encodes correlation information between feature maps f i
1 and f i

2
ˆ

is constructed the same way as the Equation 2.7 which outputs a 3D tensor of shape

Hi×Wi× (2d+1)2. The optical flow estimator is implemented as a multi-layer CNN.

At each level, it takes the first feature map f i
1, the upsampled flow from the previous

level f̂ i−1, and the cost volume cvi as input and output optical flow fi at the current

scale. Additionally, to refine the estimated flow, a separate network is constructed

using a sequence of dilated convolutional layers [78] which takes in the output from

the last convolutional layer of the optical flow estimator and outputs refined optical

flow. The refined optical flow is then summed with the optical flow with the highest

resolution obtained through the optical flow estimator as the final result. Compared
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to FlowNet2 which has 162M parameters, PWC-Net has only 8.75M parameters and

outperformed all the other models when it was released.

Since cost volume is constructed by matrix multiplication between two feature

maps and it encodes the per feature matching information. This is essentially a

search space defined between each pixel in the first image and every pixel in the

second image. Xu et al. [76] restricted the search field in the feature map produced

by the second image to a window of size (2 ∗ d + 1)2 for each feature in the feature

map produced by the first image and then output optical flow by using semi-global

matching (SGM) algorithm [25] on the cost volume of size H×W ×(2∗d+1)2, where

H and W are the spatial resolution of the first feature map. To obtain a cost volume

with less noise, Hui et al. [28] applied affine transformation on the cost volume to

filter outliers,

cvm = α⊗ cv ⊕ β, (2.8)

where all operations are performed element-wise and cvm is the modulated cost volume

which is used for optical flow estimation. α and β in the equation above are generated

by passing the cost volume cv, confidence map, and the feature map of the first image

to several layers of CNNs. Although all the aforementioned models require the use of

cost volume to provide correlation information for the network to produce reasonable

optical flow estimation, computing a matrix multiplication at each layer is a costly

operation. The RAFT [66] optical flow estimation model which only computes the

cost volume once and decodes it using Recurrent Neural Networks (RNN) [59] gained

30% error reduction on Sintel dataset compared to the best-published result at its

publication.

RAFT model extracts feature maps {f1, f2, fc} ∈ RH×W×Cf which are 1/8 of the

size of the input images using residual convolutional layers with skip connections[24],

where f1 is the feature map for the first image, f2 is the feature map for the second

image, and fc is the context feature extracted from I1 that will be used in the flow

decoding stage, moreover, all the three features are the output of a sequence of CNNs.

Cost volume is then computed as the matrix multiplication cv = fT
1 f2 which is a 4D

tensor of shape H×W×H×W , the multiplication is performed by first shaping both

f1 and f2 to 2D tensors of size HW ×Cf , then producing a tensor of size HW ×HW

through matrix multiplication, and reshaping the multiplication result to a 4D tensor
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of shape H × W × H × W which encodes the matching information between every

feature in f1 and every feature in f2. The RNN then iteratively decodes residual flow

f i
1→2 at each time step i using motion feature fm which is computed by taking samples

from cv, and the final optical flow is computed as f1→2 =
∑︁T

i=0 f
i
1→2, where T is the

number of recurrent steps. Sampling locations from cv are determined based on the

current optical flow f t
1→2 =

∑︁t
i=0 f

i
1→2 with t ≤ T , given the sampling location, the

cost volume is then reshaped to a size of HW ×H×W and the sampling is performed

among the last two dimensions of the cost volume. The entire sampling process for

each feature in f1 can be considered as taking that single feature and move it around

in the entire feature space of f2, and the moving direction is based on f t
1→2. At each

time step, samples of size H × W × (2d + 1) are drawn from the cost volume, so

that the cost volume only needs to be computed once during the estimation pipeline,

additionally, since parameters in RNN are shared across all time steps, the model

only requires 5.5M number of parameters. The boosted estimation performance and

reduced model size make RAFT the baseline model for many of the following works.

To improve the matching accuracy regarding the cost volume, Luo et al. [47]

proposed to fuse information between fc and fm. Given {fc, fm} ∈ RH×W×C , context

node vc and motion node vm are created by projecting {fc, fm} to a shape of C ×K

with K representing the number of nodes, the projection step is done by passing

both of them a shallow neural network. The node adjacency matrix A between vc

and vm allows image context information to be propagated to the motion nodes with

the assumption that predicted flows can be constrained by the image structure, A is

computed as,

A = Project(vm,Θ(vc)), (2.9)

where Θ computes the matrix multiplication vTc vc followed by softmax activation

function and results in a tensor of shape K ×K, the project function here is also a

shallow neural network. Then the refined motion node v′m is obtained by passing vm

and A to adaptive graph convolutional network [42]. The enhanced context node is

computed following Kipf et al. [39],

v′c = ϕ(A′vTc wG)

A′ = vTc vc,
(2.10)

where wG are learnable graph convolution parameters and ϕ is again a projection
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layer implemented using a linear neural network. Both v′m and v′c are projected back

to the original feature space of shape H × W × C and used for the iterative flow

decoding stage.

Cost Volume Reduction for Iterative Optical Flow Decoding Approach

To reduce the size of the cost volume and allow non-local information to be learned

during the recurrent decoding stage, SCV [84] proposed to separate the cost volume

construction. Instead of constructing a cost volume cv of size H × W × H × W

as in RAFT [66], a cost volume cv̂ of size H × W × U × V is constructed where

U is the range of horizontal motion and V is the range of vertical motion, both of

them are the hyperparameters representing the range of motion determined before

the training. Two smaller cost volumes cvu ∈ RH×W×U×K for horizontal motion and

cvv ∈ RH×W×V×K for vertical motion are extracted from cv̂, with K ≪ U, V . The

first two channels of K are computed as,

cv1u =
1

V

∑︂
v∈V

cv̂(i, j, u, v), (2.11)

cv2u = max
v∈V

cv̂(i, j, u, v). (2.12)

The first channel for cvu is computed as the average over all values in the vertical

dimension and the second channel is computed as the max element from the vertical

dimension, the same computation is done on cvv to compute cv1v and cv2v . For the con-

struction of the rest of K − 2 channels in cvu, a weighting term Au ∈ RH×W×V×(K−2)

is obtained by passing [cv1u, cv
2
v ] to a 3D convolutional layer followed by a softmax

operation over the third dimension V , then a matrix multiplication between re-

shaped Au ∈ RH×W×(K−2)×V and cv̂ ∈ RH×W×V×U resulting in a tensor of shape

H ×W × (K − 2) × U which contains information for the K − 2 channels, and the

above processes are repeated again for the construction of the vertical cost volume.

A stack of differentiable SGM layers [83] and 3D convolutional layers are applied to

cvu and cvv which allows them to contain non-local information and reducing their

size by removing the K channels which results in shapes H×W ×U and H×W ×V ,

respectively. The recurrent optical flow decoding process is then applied on cvu and

cvv to produce the flow estimation.
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The cost volume constructed as a matrix multiplication between two feature maps

requires storing a tensor of size H×W×H×W , but only a few matching information

in the second feature map are crucial to a single feature from the first feature map.

Although the separable cost volume proposed by Zhang et al. [84] uses two smaller

cost volumes, they still try to cover as much matching information as possible. Cost

volume construction based on k-nearest neighbors (kNN) is then proposed by Jiang et

al. [34] to only focus on matching a few points for each point in the first image. After

feature extraction, kNN [35] is used to compute k points in the second feature map

for each point in the first feature map. The cost volume then contains H × W × k

elements where k ≪ H × W with k = 8. Thanks to the reduced size of the cost

volume, this model can increase the size of the feature maps to 1/4 of the input

image under the same computational power as RAFT. The approach taken by this

work shows that optical flow estimation could be done with only k matches from the

cost volume but the sparsity of the constructed cost volume failed to provide accurate

correlation information when the input images contain noisy textures such as motion

blur and shadow. This has inspired us to design a model that considers both the

dense cost volume as well as the sparse but significant correlation pairs.

Query Key

Value
Attention

matrix

Weighted
value

Figure 2.4: Basic attention model: Attention matrix is computed by performing
matrix multiplication between the query and the key tensors followed by softmax
operation and the output is computed by performing another matrix multiplication
between the attention matrix and the value tensor.
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Attention-based Iterative Optical Flow Decoding Models

The multi-head attention model proposed by Vaswani et al. [68] and shown in Figure

3.5 where each head is a portion of the feature map in its channel dimension was

designed for NLP that allows information to be propagated to different locations

based on their similarities. The attention computation takes in a sequence of encoded

tokens of shape N × K, where N is the number of tokens and K is the size of the

hidden dimension, the encoded tokens are usually the output of a sequence of linear

projection layers with learnable parameters. Moreover, the attention computation

can be categorized as self-attention and cross-attention. In self-attention, query, key,

and value all come from the same input source, whereas in cross-attention, these three

values may come from different inputs. The attention matrix has the shape of N ×N

which is the result of matrix multiplication between query tokens of shape N×K and

key tokens of shape K×N . The attention matrix encodes the matching score between

each query token and each key token, and it is used to augment the value tokens. In

the field of NLP, the token refers to each word in the input sequence, whereas in the

field of computer vision, the token refers to each patch within the input image.

In recent years, there has been a surge in using transformers designed for image

processing as the backbone model for vision-related tasks as they are able to capture

long-range dependencies. ViT proposed by Dosovitskiy et al. [17] breaks the image

into a sequence of patches xp ∈ RN×(P 2·C), where N is the number of patches, P is

the patch size, and C is the channel dimension for the input image. Then all the

patches are projected to a high dimension using Multiple Layer Perceptron (MLP)

and passed to a position-embedded multi-head self-attention model (MSA). A single

head xi
p is computed as

xi
p = MLP (xi

p) + PE(xi
p)

MSA(X) = MLP (softmax(XTX)X)

xi
p

ˆ = MSA(xi
p) + xi

p

xi
p

ˆ = MLP (xi
p

ˆ ) + xi
p

ˆ

(2.13)

where PE is the position embedding to encode position information for each patch

and the final result after MSA is the concatenated xi
p

ˆ , i ∈ [0, ..., N ] with N as the

number of heads.
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To reduce the amount of computation during self-attention, Swin-transformer[45]

divides the projected image to non-overlapping windows and computes attention

within each local window, then a shift operation is performed that shifts pixel po-

sitions by half of the window size to achieve cross-window information propagation.

Twins [15] reduces the self-attention computation by first computing attention within

each windowed feature which is referred to as locally-grouped self-attention (LSA).

LSA is then followed by global sub-sampled attention (GSA) which uses CNN to

summarize each feature window of size P × P × C to a shape of 1 × 1 × C and then

using the summarized feature as key in the self-attention computation. The ability

to encode long-range dependency information makes the attention module a widely

used component during the design of optical flow estimation models.

Based on the iterative optimization step used in RAFT [66], Xu et al. [74] uses 1D

attention to reduce the size of the cost volume over its last two channels. Regarding

1D attention in the vertical direction, the attention matrix is generated between the

first feature map F1 with respect to the first image and the second feature map F2 with

respect to the second image which resulted in a tensor of shape W ×H×H, where H

and W are the spatial dimensions of the feature maps which are the same for both of

them. Using F2 as value, the final tensor from 1D vertical attention has the shape of

H×W ×Cf , where Cf is the number of features, 1D horizontal attention is computed

in the same manner except the resulted attention matrix has the shape of H×W×W .

Then correlation is computed between F1 and the vertically attended F2 as well as

the horizontally attended F2, two cost volumes of the same size H ×W × (2R + 1),

where R is the correlation radius, are concatenated over the last dimension for the

iterative optical flow optimization stage. Although memory consumption can be

reduced greatly when the image resolution increases, the performance is inferior to

that of RAFT.

Since the cost volume construction proposed in RAFT [66] is performed in the

same manner as the computation for the attention matrix in the Attention model

[68], relative position embedding is added to the cost volume in CRAFT model [61].

The relative position bias [19] B ∈ R(2r+1)×(2r+1) is a learnable tensor that is added

to the cost volume cv with r being the lookup radius, for each pixel (i, j) in the first
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two dimensions of cv,

cv′(i, j, i + x, j + y) =

⎧⎨⎩cv(i, j, i + x, j + y) + B(x, y) if |x| ≤ r, |y| ≤ r

cv(i, j, i + x, j + y) otherwise
(2.14)

where cv′ is the cost volume encoded with relative position embedding. They also

applied Expanded Attention from Li et al. [43] to further encode the second feature

map F2 before passing it to the cost volume computation.

GMflowNet proposed by Zhao et al. [86] uses patch-based overlapping attention

to diversify the encoded information in both feature maps after features extracted by

convolutional layers to reduce the estimation error regarding large motions. Each of

those feature maps is divided into M×M non-overlapping patches, multi-head atten-

tion is performed between patch A ∈ RM2×Cf and the 3×3 patches B ∈ R9M2×Cf that

are centered by it, using A as query and B as both key and value and output refined

patch A′ ∈ RM2×Cf . Then the refined patches are merged back to the shape of

the original feature map for cost volume construction and recurrent flow prediction.

To provide better starting sampling positions, they used the dual-softmax opera-

tion [63, 56, 67] to compute matching probability from the cost volume and use the

matched position as the starting point for cost volume sampling.

A transformer-based model is proposed by Huang et al. [27] which encodes the

cost volume to a more compact representation and then iteratively decodes resid-

ual flow from the original cost volume and the compressed one. A convolution layer

with a stride of 2 is applied on the last two dimensions of the cost volume to pro-

duce an embedding for each 2 × 2 patch which resulted in a cost volume of size

cvp ∈ RH×W×H/8×W/8×D with D being the embedding dimension. Based on the same

argument made by Jiang et al. [34] where cost volume contains redundant informa-

tion, a latent tensor of size C ∈ RK×D, where K is a hyperparameter determined

based on trail-and-error, is used to compress the information contained in the cost

volume,

Key = Linear(cvp)

V al = Linear(cvp)

T = Attention(C,Key, V al),

(2.15)

where Key and V al are computed by applying linear projection on the position

embedded cvp, and T has a shape of H ×W ×K ×D. To reduce the computation
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complexity of the Attention operation, two self-attentions are applied. The first one

computes the intra-self-attention on the reshaped tensor of H × W × (K × D) and

the result is reshaped to K × (H ×W ×D) for the inter-self-attention computation.

During the decoding operation, cross-attention is then applied between the sampled

cost volume and T with samples being query and T being both key and value. To

further push the performance of the model, CNN is changed to pretrained Twins

[15] for better feature extraction. Although their approach provides a great way to

enhance the correlation information, their attention model is computationally heavy

and cannot be easily applied to a single GPU machine, we share a similar cost volume

information propagation approach but using a lighter attention model. Additionally,

since none of the above deep learning approaches considers the post-refinement after

each recurrent iteration, we propose a local coherent post-refinement process in our

model with the aim of a more accurate residual flow estimation.

2.2.2 Unsupervised Approaches

Large datasets with annotated ground truth labels are not easily acquirable which

makes unsupervised learning of optical flow a prominent research direction. Super-

vised learning is constrained by a loss function that directly compares the difference

between the predicted result and the ground truth, without the ground truth labels,

loss functions used to constrain the unsupervised models are significantly different

than the supervised ones.

The approach taken by Yu et al. [79] uses the FlowNetSimple [18] architecture

and trains the network using the photometric loss as well as the smoothness loss to

constrain the network, both loss functions are almost identical to the energy function

used in HS approach [26],

L = Lpho + Lsmo

Lpho = ((I1 −W (I2))
2 + ϵ2)α

Lsmo = uxx + uxy + vxx + vxy,

(2.16)

where {ϵ, α} are hyperparameters, L is the final loss function, {uxx, uxy, vxx, vxy} are

gradients from the predicted flow, and W is the the backwarping operation. The

loss function is applied on every intermediate flow during the decoding part of the

FlowNetSimple to provide tight constraints on the predicted flow.
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The design flaw of the above approach is obvious as the brightness constraint can

easily fail at occluded regions. The unsupervised learning approach taken by Wang

et al. [70] explicitly models the occluded region by considering forward and backward

flow consistency. The underlying model is a modified FlowNetSimple architecture

with a warped image I ′1 at a particular scale and its photometric error as additional

inputs to each decoding stage. Two modified FlowNetSimple are placed side by side.

One takes in images in the sequence {I1, I2} and outputs forward flow f1→2 while the

other one takes in {I2, I1} and outputs backward flow f2→1. Given f2→1, the occluded

map is generated by,

V (x, y) =
W∑︂
i=1

H∑︂
j=1

max(0, 1 − |x− (i + fx
2→1(i, j))|) ·max(0, 1 − |y − (j + f y

2→1(i, j))|)

O(x, y) = min(1, V (x, y)),

(2.17)

where V is the range map [1] computed by backwarping f2→1, and O is the occlusion

map for I1. Loss functions for brightness and smoothness are computed in the same

manner as Equation 2.16 and both of them are multiplied with the occlusion map O

and then divided by its sum for normalization. Beside the photometric loss and the

smoothness loss, edge-ware loss [22] is also added,

L1 = Ψ(|∂f1→2|e−α|∂I1|)

L2 = Ψ(|∂2f1→2|e−α|∂I1|),
(2.18)

with Ψ being the Charbonnier penalty function.

To learn optical flow without applying a loss function only in the non-occluded

regions, Liu et al. [44] proposed to guide the flow estimation for the occluded re-

gions using flow estimated from non-occluded regions. The network architecture is

similar to PWC-net [62] and multiple consecutive images are given as the input to

two network branches with the same architecture. Taking in the image sequence

of [It−1, It, It+1], the first branch warps the feature map Ft−1 towards Ft using the

backward flow ft→t−1, and the second branch warps the feature map Ft+1 towards Ft

using the forward flow ft→t+1. Then both warped results are used to compute the cost

volumes with Ft and produce forward and backward flow for the next scale. Although
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the work done by Janai et al. [32] also uses multiple frames as the input, and con-

structs two cost volumes in the same manner, they predict occlusion maps by having

an additional occlusion decoder branch. Whereas the Occlusion maps from the work

done by Liu et al. [44] are produced after flow estimation by using forward-backward

consistency check [50],

f ′
x→y = fy→x(p + fx→y(p))

|fx→y + f ′
x→y|2 < a1(|fx→y|2 + |f ′

x→y|2) + a2,
(2.19)

where f ′
x→y is the reverse of fx→y, and {x, y} ∈ [t− 1, t, t+ 1]. To produce reasonable

estimation regarding occluded regions, two same models are trained with the first

generating occlusion map and optical flow in a self-supervised way and the second

model taking in noised inputs where pixels become synthetically occluded with the

added noise. The training for the second model uses the optical flow predicted from

the first model as supervision and only the second model is used during the testing

phase. This approach produced the SOTA result among unsupervised models, addi-

tionally, when the trained second model is fine-tuned with the ground truth label in

a supervised manner, it also produced the SOTA result among supervised models by

the time it was published.

Investigation regarding the important components in unsupervised optical flow

estimation models was done by Jonschkowski et al. [36]. They stated that convergence

and performance can be improved by computing the cost volume between normalized

feature maps for PWC-net [62] based unsupervised optical flow estimation models.

They found occlusion estimation using a range map as Equation 2.17 performs better

than the consistency checking as in Equation 2.19, additionally, stopping the gradient

backpropagation at the occlusion mask reduces the divergence.

Unsupervised occlusion estimation in supervised models

Occlusion poses a significant problem regarding optical flow estimation. Occlusion

regions refer to those pixels in the first image that do not have matching pixels in the

second image as shown in Figure 2.5. This can be due to object motion or the change

of depth. Back when the variational method was popular for optical flow estimation,
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I1 I2 Ioccf

Figure 2.5: Example of occlusion: the occlusion mask is shown in Iocc with white pixels
being the occluded ones. The yellow region in I1 becomes occluded as it moves out
of the scope of the image in the direction of f which resulted in having no matching
pixels in I2.

occlusion became a major problem for the underlying brightness consistency assump-

tion, therefore the earlier works often model occlusion explicitly as outliers[10]. This

approach is also applied when estimating optical flow with self-supervised neural net-

works, since the loss function for self-supervised models compares the photometric

difference between the warped I2 using the predicted optical flow with I1 as shown in

Equation 2.16.

Regarding supervised optical flow estimation, not many works have estimated oc-

clusion without ground truth masks. The model proposed by Zhao et al. [85] learns

I1 I2 Iwarp

Figure 2.6: The repeated pattern occurs in Iwarp as I2 is backwarped to I1 following
the optical flow f1→2

the occlusion mask without ground truth occlusion labels and the model structure fol-

lows the pyramidal structure proposed by PWC-net [62]. Due to the repeated pattern

shown in Figure 2.6 when warping is applied, they argue that the cost volume may

fail to provide accurate matching information. To remove the redundant information

presented in the second feature map after warping, the cost volume at each level is
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constructed as,

c(x1, x2) =
∑︂

o∈[−k,k]×[−k,k]

⟨f1(x1 + o), D(f2(x2 + o)) · θ + µ⟩, (2.20)

where D is the deformable convolution operation [16], θ and µ are both learnable

parameters, with θ ∈ [0, 1] representing occlusion mask and µ providing extra infor-

mation at the occluded areas.

More recent work done by Jiang et al. [33] models occlusion implicitly based on

the fact that image regions with similar structures are more likely to have similar

motion. Their model design follows that of the RAFT model [66]. Since samples

drawn from the cost volume cannot provide matching information for the occluded

regions, they propagate motion information within similar regions. Self-attention is

applied to the model with features extracted from the first image as both query and

key, and using motion features based on the samples as value. Then the propagated

motion feature and the original motion feature are concatenated together for the

iterative decoding process.
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Method

This section covers the approach we are taken for the optical flow estimation, the

overall model architecture is shown in Figure 3.1. The entire model is built upon the

RAFT model [66] as well as the GMA model [33]. The first three subsections cover the

detailed implementation of the two base models. The last subsection describes two

contributions we made, one is the auxiliary correlation aggregation (ACA) unit which

uses linear attention model [37] to augment the sampled correlation information,

and the other one is the post-refinement process that aggregates local hidden state

information based on the local structure coherence.

It

It+1

Feature
Encoder

Context
Encoder

f1

f2

fc

Cost Volume

Sample Correlation
ACA
Unit

Recurrent
Decoder

Post
Refinement

Correlation lookup

Residual
Flow

Figure 3.1: Architecture of the proposed model. We built our model upon the
RAFT [66] model. The proposed model follows the feature extraction, cost volume
construction, and the recurrent decoder from the prior work and added the auxiliary
correlation aggregation (ACA) unit and post refinement to improve the performance
of optical flow estimation. The ACA unit provides more diversified correlation infor-
mation to the recurrent decoder layer using the linear attention model [37] without
causing significant computational overhead and the post-refinement process propa-
gates the hidden state information within a local window to predict a more local
coherent residual flow.

3.1 Feature Extraction

Following the seminal work by Teed et al. [66], ResNet [23] is used for feature extrac-

tion as shown in Figure 3.2. The encoder is composed of three ResNet blocks and

23
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In
Feature

Conv1 Conv2 Conv3 f

Skip Connection

Figure 3.2: Architecture of the ResNet. Given the input feature map generated
by passing the input image to a single convolutional layer with 7 × 7 kernel, the
ResNet is composed of three convolutional layers. Conv1 has a kernel size of 1 × 1,
Conv2 has a kernel size of 3 × 3, and Conv3 has a kernel size of 1 × 1. The output
of each convolutional layer is passed to a normalization layer followed by a ReLU
activation function. The final output is the summation between the output from the
convolutional layers and the input feature, the result of which is followed by a ReLU
activation again.

each of them contains three CNN layers interleaved with activation and normalization

functions. Two encoders with the same architecture are used, feature encoder Ec pro-

duces feature maps for cost volume computation, and context encoder Er produces

feature maps for iterative flow prediction. Given two normalized consecutive images

I1 and I2, the encoder Ec outputs two feature maps {f1, f2} ∈ RH×W×Cf for I1 and I2

respectively. Both of them are 1/8 of the input resolution with Cc = 256. The context

encoder Er takes only I1 as the input and outputs feature maps {fc, f 0
h} ∈ RH×W×Cc

with Cc = Cf/2. Fc is the context feature that only needs to be computed at the

beginning and used through the iterative flow decoding process. F 0
h is the initial hid-

den state for the RNN. Huang et al. [27] shows pretrained transformer-based image

feature encoders such as Twins [15] produce more accurate optical flow estimation as

the extracted features are more comprehensive. Since we have limited GPU memory,

ResNet is used as the feature encoder in this work.

3.2 Cost Volume Construction

4D cost volume defines the matching similarity between f1 and f2 by computing their

dot product cv =
fT
1 f2√
Cf

∈ RH×W×H×W , the denominator was introduced by Vaswani

et al. [68] to avoid extremely small gradient. The cost volume cv is then reshaped to

a 3D tensor cv̂ of shape HW×H×W for the following sampling process, where a slice

at the location i over the first dimension represents the correlation between the ith

pixel in f1 and every pixel in f2. Since the samples drawn from the cost volume are
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Figure 3.3: An illustration of the cost volume computation. From left to right,
the spatial dimensions of cv̂k are in decreasing resolution which is the result of the
average pooling operation. Given the cost volume of shape H × W × H × W , the
cost volume is first reshaped to a size of HW ×H ×W , then the pooling operation
with a window size of 2× 2 and stride 2 is applied over the last two dimensions. Four
pooling operations are applied iteratively which resulted in four cost volumes with
decreasing scales as shown above.

limited to a relatively small 9× 9 local window with radius 4 compared to the size of

the feature map, to cooperate with motions that are larger than a range of 32 pixels

in the input image, a hierarchical structure is proposed by Sui et al. [61]. 2D average

pooling operation shifted with 2×2 non-overlapping window is used repetitively over

the last two dimensions of the 3D cost volume which resulted in four cost volumes

cv̂k with the decreasing scale of HW × H/2k × W/2k, k ∈ 0, 1, 2, 3, as an example

shown in Figure 3.3. Given the 9×9 sampling window, the correlation tensor used at

each decoding iteration has a shape of H ×W × 324, which could potentially capture

motions within a range of 256 pixels in the input image. Although the correlation

contributed by distant pixels may be diminished by the average pooling operation,

compared to the warping operation the above approach is still advantageous.

Warping operation handles long-range motion by continuously warping the image

in high resolution with flow predicted from a lower resolution, but it creates structure

duplication as shown in Figure 2.6. Since methods that use warping operation only

perform cost-volume construction within a small window [30], this doubling effect

would create ambiguous matching which could potentially hinder the optical flow

decoding process. On the other hand, taking samples from the full cost volume

constructed by matrix multiplication essentially moves each pixel in the first image

within the second image based on the current cumulative residual flow f t
1→2 which

generates more explicit matching between corresponding pixels.
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3.3 Iterative Residual Flow Estimation

S(xi)

cv̂k(xi)

fcorr

Motion
Encoder

Conv
GRU

Context
Feature

GMA
Module

f i
h

Figure 3.4: Architecture of the iterative residual flow decoding module.
Given the sampling location obtained by the cumulative residual flow f t

1→2 at the
time step t, we take samples from the cost volume cv̂k for each pixel xi in the first
feature map. The obtained correlation feature fcorr is passed to the motion encoder
to produce motion feature fm which is augmented with GMA module that takes both
the context feature fc as well as fm as the input. The result of GMA module is then
concatenated with fm and used as the input to the Convolutional GRU model that
updates the hidden state which is used to predict the residual flow.

The pipeline for the iterative residual flow decoding module is depicted in Figure

3.4. Given the cumulative residual flow f t
1→2 estimated at time step t, for pixel xi

located at position i in the first feature map f1, the correlation sampling location is

drawn at f t
1→2(xi) as,

S(xi) = cv′(xx
i + f t

1→2(xi)x + ∆r, xy
i + f t

1→2(xi)y + ∆r) with ∆r ∈ [−4, 4] × [−4, 4],

(3.1)

where S(xi) are the samples drawn from the last two dimensions of cv̂k. Over the

hierarchical structure of the cost volume mentioned in the last section, the correlation

feature fcorr is then a tensor of shape H×W ×324. A sequence of CNNs is then used

to extract motion feature fm from the correlation feature fcorr and the cumulative

residual flow f t
1→2. Two layers of CNNs are applied on fcorr to encode channel dimen-

sion from 324 to 192, f t
1→2 is also encoded by two layers of CNNs from H ×W × 2 to

H×W ×64. Two encoded features are then concatenated over the channel dimension

and reduced to a tensor with a channel dimension of 126 which is then concatenated

with f t
1→2 to form the motion feature fm.
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In this work, the global motion aggregation component proposed by the GMA

model [33] is also applied after the motion feature computation. To aggregate motion

features among similar image regions, attention is applied between the context feature

fc and the motion feature fm,

f ′
m = Attention(fc, fc, fm), (3.2)

with fc being both the query and the key and fm being the value. The aggregated

motion feature f ′
m is then concatenated with fm as the input to the recurrent neural

network.

Motion feature fm is mainly constructed from the samples drawn from the cost

volume where the occlusion information is not encoded. Since the occluded pixels

do not have any matching pixel in the second image, to estimate the optical flow for

those pixels, one way is to infer the motion from those pixels that are similar to those

occluded pixels within the first image. This is achieved by the GMA model where

the self-attention matrix is computed on the context feature map fc which encodes

the correlation information between all the pixel pairs within the first image. Then

the motion feature for each pixel is aggregated by the feature similarity. With this

approach, we can potentially recover the motion for those occluded pixels.

The iterative residual flow decoding process is then done with a ConvGRU unit[4]

by taking the context feature fc, the concatenated motion feature f i
m at the time step

i, and the hidden state f
(i−1)
h from the previous time step,

zi = σ(Convz(f
(i−1)
h , [f i

m, fc])),

ri = σ(Convr(f
(i−1)
h , [f i

m, fc])),

qi = tanh(Convq(r ∗ f (i−1)
h , [f i

m, fc])),

f i
h = (1 − zi) ∗ f (i−1)

h + zi ∗ qi,

(3.3)

where σ is the sigmoid activation function. To increase the receptive field without

having too many parameters added to the model, ConvGRU is performed by two

sets of convolutional kernels. The first set uses a kernel size of 1 × 5 which encodes

the information over the horizontal direction, and the second set uses a kernel size

of 5 × 1 which encodes the information over the vertical direction. All the learnable

parameters within the ConvGRU are shared, thus the number of iterations used

during the training and testing can be different.
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Given the hidden state f i
h at the time step i, the residual flow f i

1→2 is obtained by

passing f i
h through a two-layer CNNs interleaved with ReLU activation function.

3.4 Contribution

The predicted residual flow at each time step directly depends on the concatenated

motion feature fm, which then depends on the samples from the cost volume cv̂k. In

their paper [66], the ablation study shows that although increasing the sampling ra-

dius from 2 to 4 reduces the estimation error by 8% when the image sequence presents

no motion blur and atmosphere effects, the performance of the model even decreased

slightly by 0.3% when the above noise are included as they are the main source of

occlusion. Increasing the size of the sampling window could be beneficial when large

motions are presented in the input sequence, but it may provide unnecessary matching

information regarding pixels that are occluded. Therefore, to provide more compre-

hensive correlation information during the iterative decoding process without simply

increasing the size of the sampling window, we introduce an auxiliary cost volume

cva alongside the cost volume cv to provide additional matching information during

the iterative decoding process.

As the sampling position depends on the cumulative residual flow, which is ob-

tained through the hidden state, we also proposed a pose-refinement process that

operates on the hidden state to generate a better sampling position for those oc-

cluded pixels.

3.4.1 Auxiliary Cost Aggregation Unit

The auxiliary cost volume cva of shape HW × k is obtained through the last two

dimensions of the cv̂0. For each xi ∈ f1, a set Sxi
of length k is realized by,

Sxi
= max

A∈cv′(xi),|A|=k

∑︂
a∈A

a, (3.4)

where Sx contains k elements that have the highest correlation value.

Since k ≪ HW , self-attention can be efficiently applied on cva to propagate non-

local information.

The attention model [68] propagates information by computing a matrix multipli-

cation between the value V and the attention matrix obtained using query Q and key
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Figure 3.5: Architecture of the proposed ACA unit. The ACA unit constructs
the auxiliary cost volume by selecting top-k correlations for each pixel in f1, then
self-attention is used to propagate information within the auxiliary cost volume. The
sampled correlation from the full cost volume based on the sampling location f i

1→2 is
used as query to compute cross attention with the self-attention result which is used
as both key and value. The result of the cross-attention is then concatenated with
the sampled correlation for the recurrent flow decoding process.

K with the space and time complexity both being O(N2), where N is H ×W in our

case. Due to the limited GPU memory we have, if we directly apply the self-attention

operation on cva using the dot product attention, the storage overhead would not

allow us to increase the depth of the attention layers which could reduce the amount

of information presented in the attention result. Linear attention [37] on the other

hand, has reduced space and time complexity of O(N) which is achieved through a

low-rank kernel approximation. The formulation for the linear attention operation is

defined as,

ϕ(x) = elu(x) + 1,

V ′ =
ϕ(Q)(ϕ(K)TV )

ϕ(Q)(
∑︁N

i=1 ϕ(Ki))T
, with Q,K, V ∈ RN×D

(3.5)

where D is the hidden dimension and ϕ(x) is a non-negative feature mapping kernel

that approximates the exponential kernel used in the dot product attention. By

computing the matrix multiplication between ϕ(K)T ∈ RD×N and V ∈ RN×D first,

the number of multiplication and summation operations is then reduced from O(N2D)

to O(ND2), as D ≪ N , the attention layers becomes more time efficient and memory

friendly. The denominator is used as a normalization term with a shape of N×1 that

computes the matrix multiplication between ϕ(Q) ∈ RN×D and
∑︁N

i=1 ϕ(Ki) ∈ R1×D.

We embed cva to reduce the channel dimension from k to 128 before passing it



30

ϕ(x) = elu(x) + 1

cv′a

ϕ(Q)
ϕ(K)

KTV

cv̂a

cv′a

Normalization Layer

Q = WQX K = WKX V = W VX

MatMul

MatMul

Projection Layer

Norm Layer

Concat

MLP

Addition

Figure 3.6: Network structure for self-attention computation. The linearized
self-attention network takes in the embedded top-k elements cv′a from cv̂0 as query,
key and value. Layer normalization is applied to cv′a before passing it to the query and
key projectors, feature mapping is then applied on the resulting Q and K. Matrix
multiplication is performed between K and V and then performed again between
ϕ(Q) and KTV , the result of which is passed to a linear projection layer. The result
of the layer projection is normalized again and the result is concatenated with Q.
The concatenation result is then passed to a multiple-layer perceptron (MLP), skip
connection is applied between the result of MLP and cv′a to produce the attention
result cv̂a

through two layers of linear attention to compute the self-attention cv̂a. As the sam-

pling position changes at each recurrent iteration, to cooperate with the information

embedded in cv̂a dynamically, we compute cross-attention between the correlation

feature fcorr and cvaˆ ,

f̂ corr = CrossAttn(fcorr, cv̂a, cv̂a), (3.6)

two-layer linear attention is used for cross-attention computation that takes fcorr as
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query, and cv̂a as both key and value, fcorr is then concatenated with f̂ corr over the

channel dimension for the recurrent flow prediction. Additionally, layer normaliza-

tion [2] is applied in two places, one before the linear projection and one after the

attention computation [73] to stabilize the training, skip connection is also applied

where the summation between query and the attention result is used in the following

computation. The entire self-attention computation diagram is shown in Figure 3.6

Compared to the sparse cost volume used in the work done by Jiang et al. [34], we

sample from the full cost volume cv̂ and using cv̂a to provide additional information

with can provide more diversified correlation information to the iterative decoding

stage. Different than the cost memory encoding proposed by Huang et al. [27] where

a latent token of shape D×K is used to encode the patchified cv̂0 to Tx ∈ RH×W×D×K

and then apply self-attention on Tx, the result of which is further used to compute

cross-attention between fcorr. We directly take top-k samples from cv̂0 to obtain cva

which is then used for a sequence of attention operations with linear attention to

reduce the computation burden.

3.4.2 Post Refinement

Patchified fc

f i
h f̂

i

h

Value
Projection

Query
Projection

Key
Projection

Local Attention

Figure 3.7: Computation diagram for f̂
i

h. fc are first broken into non-overlapping
patches, then the local attention matrix is computed for each patch, the result of
which is then multiplied with the hidden state f i

h to propagate information within
each local patch for generating more local coherent residual flow.

Sampled correlations are a crucial factor for accurate residual flow prediction,

regarding the occluded pixel, their sampling locations maybe failed to provide useful
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correlation information as they do not have any matching pixels. Since sampling

locations are determined by the hidden state f i
h which is directly used to predict

residual flow, we proposed a post-refinement model as shown in Figure 3.7 that is

directly applied on f i
h with the aim to produce local coherent optical flow which is

formulated as,

fc(i, j) = Linear(fc(i, j))

f ′
c(i, j) = softmax(fc(i, j)

Tfc(i, j))

f̂
i

h(i, j) = f ′
c(i, j) × f i

h(i, j)

f i
1→2 = Conv([f i

h, f̂
i

h])

(3.7)

Specifically, we first break the context feature fc into 5×5 non-overlapping patches,

then the attention matrix within each local patch at location (i, j) is computed by

linearly project fc(i, j), the result of which is followed by a softmax operation over

matrix multiplication between the same local patch. The computed hidden state f i
h is

also broken into 5×5 non-overlapping patches and matrix multiplication between the

local attention matrix and the local hidden state patch is performed to propagate the

information among each 5×5 local window. The residual flow fi is then computed by

passing the concatenated tensor between the hidden state f i
h and the local augmented

hidden state f̂
i

h through a two-layer CNNs.



Chapter 4

Results

This chapter starts by detailing the loss function used to train the model and speci-

fying hyperparameter settings. All the datasets used for training and evaluation are

also presented. Evaluations are carried out on two aspects: inter-dataset generaliza-

tion and intra-dataset generalization. The model’s inter-dataset generalizability is

obtained by training the model on less challenging datasets first and then testing the

model on the training set of datasets that contain more complex scenes. To test the

model’s intra-dataset generalizability, the experiments are conducted by training and

testing the model on datasets with diverse pixel motions. Ablation studies are also

performed where all the proposed components from the previous chapter are tested.

Visualization of failure cases and the model’s limitations are also stated.

4.1 Loss Function

Following the work by Teed et al. [66], we use an l1 function to supervise the net-

work’s training with ground truth optical flow. The loss function is applied to all the

predicted residual flow sequences since residual flow at the earlier iterations is less

accurate, and a weighting term with exponential decay is applied, and

l =
N∑︂
t=0

γN−t|f t
1→2 − fgt|, (4.1)

where γ is set to be 0.8.

4.2 Implementation Detail

The model is implemented in PyTorch [55] with mixed precision to reduce memory

consumption. We follow the standard training schedule where the model is pre-trained

on the FlyingChairs dataset for 240k iterations with a batch size of 4 and then trained

on the FlyingThings dataset for 900k iterations with a batch size of 2 while testing

33
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the model’s generalizability on the Sintel dataset. The model is then fine-tuned with

a batch size of 2 on the Sintel dataset as well as the Kitti dataset for 540k and 300k

iterations, respectively. All the training and testing are done on a single NVIDIA

3060 GPU. We train the model with one-cycle learning rate policy to achieve faster

convergency where the learning rate gradually increases to the maximum learning rate

and then decreases to 0. The maximum learning rate for the FlyingChair dataset is

set to 2.5 × 10−4 and 1.25 × 10−4 for the rest of the training. The weight decay

coefficient for the AdamW optimizer is set to 1 × 10−4 for both FlyingChair dataset

and FlyingThings dataset, and 1 × 10−5 is applied for the rest of the training. The

number of recurrent iterations is set to 12 during all four training stages. Both

sampled top-k elements and sampled correlations are embedded to a dimension of

128 for the attention computation and the number of heads is set to be 4. Since all

learnable parameters are shared across the recurrent iterations, following the RAFT

model [66], we increase the number of recurrent iterations to 32 during testing for

better performance.

4.3 Dataset Descriptions

As optical flow is defined over the 2D space with horizontal motion and vertical

motion, to have a better visualization of the pixel’s motion, optical flow images below

are obtained through color mapping from 2D motion to RBG values.

4.3.1 FlyingChair Dataset

Each image in the synthetic FlyingChair dataset is composed of a background and

several foreground objects as shown in Figure 4.1. The background is chosen to be

one of three types: city, landscape, and mountain. Foreground chairs are added to the

background image. To generate motion, affine transformations are randomly applied

to both background and foreground to render the second image for each image pair.

Each image has a resolution of 512 × 384. Among 22,872 image pairs, 640 of them

are used for validation and the rest are used for training.
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I1 I2 Iflow

Figure 4.1: Sample training images from the FlyingChair dataset. Samples
with different backgrounds are listed with their ground truth optical flow.

4.3.2 FlyingThings Dataset

The FlyingThings dataset contains a large set of training data that are generated us-

ing random objects as background chosen from cuboids and deformed cylinders while

using 3D models from Stanford’s ShapeNet with randomly textured material to pop-

ulate the scene as shown in Figure 4.2. The motions are generated randomly for the

background and each of the 3D models in the scene. The dataset has two versions, the

final pass contains the simulated motion blur, depth-of-field blur, sunlight glare, and

gamma curve manipulation, while the clean pass contains no image degradations.

Both of them are used during the training process. Additionally, both the forward

and the backward ground truth optical flow are generated for each pair of images

which means a single pair of images can be used twice during the training. The entire
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I1 I2

Final Pass

Clean Pass

Optical Flow

Forward Optical Flow Backward Optical Flow

Figure 4.2: Sample training image pairs from the FlyingThings dataset.
The first row shows the image pair from the final pass where the image degradation
is applied. The second row shows the same set of image pair from the clean pass
without any image degradation. The third row shows the corresponding optical flow
of this image pair, since two ground truth labels exist each image pair can be used
twice during the training.

training set for the FlyingThings dataset contains 80,604 image pairs with the ground

truth optical flow at a resolution of 540 × 960. Following the standard practice, we

only perform the training on this dataset while testing the model’s generalizability

on the Sintel dataset.

4.3.3 Sintel Dataset

The Sintel dataset is rendered from a real movie with a resolution of 1024 × 436 for

each training image. The entire dataset contains 1,628 frames with 1,064 frames used
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I1 I2 Optical Flow & Occlusion Map

Figure 4.3: Sample training images from the Sintel dataset. The first raw of
the first two columes are the Albedo images, the second raw are Clean ones, and
the last raw are Final images. The last column shows the optical flow between the
two images as well as the occluded pixels in the first image I1.

for training and 564 frames used for testing. The dataset contains three versions.

The Albedo version contains images with piecewise constant color without any illu-

mination effects, the Clean version adds various illumination to the images without

introducing any image degradation, and the Final version adds atmosphere effects,

depth-of-field blur, motion blur, and other noise to the images as shown in Figure 4.3.

The dataset also contains large motions with over 100 pixels per frame. Although all

the image sequences are available to the public, the testing images are provided with

no ground truth optical flow. To determine the model’s performance, the predicted

optical flows on the testing set are sent for online evaluation.

4.3.4 KITTI Dataset

The KITTI dataset contains 200 training image pairs and 200 testing image pairs with

sample images shown in Figure 4.4. The static background is obtained by removing

all dynamic objects from the KITTI raw dataset [21], while the moving objects are

generated by adding 3D CAD models from Google 3D Warehouse to the scene. As this

dataset is relatively small, it is employed as the last fine-tuning step in the training

pipeline. Similar to the Sintel dataset, the ground truth labels are only available

for the training image sequences while the predicted results on the test dataset are



38

I1 I2 Optical Flow

Figure 4.4: Samples training images from the KITTI dataset. The first column
contains the first image from a training sequence and the second column contains
the second training image. The last column contains the provided visualization of
the ground truth optical flow labels with black indicating occluded regions. For
all sequences, pixels above a certain level are not considered during the evaluation
process.

submitted for online evaluation.

4.3.5 HD1K Dataset

I1 I2 Optical Flow

Figure 4.5: Sample training images from the HD1K dataset. The first row
contain training images under normal weather condition and road condition, the
second row shows sample sequences under light rain condition, and the last raw
displays training sequence under wet road condition.
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Similar to the KITTI dataset, the HD1K dataset also generates training sequences

based on urban autonomous driving scenarios as shown in Figure 4.5. Compared to

the KITTI, the HD1K dataset contains more diverse weather conditions such as day

and night, light rain, as well as wet and dry road conditions. The dataset contains

a total of 1,082 image pairs for training with ground truth labels. Following the

SOTA models where the benchmark evaluation is only done on the Sintel and KITTI

datasets, the HD1K dataset is only included during the training process when the

model is fine-tuned for the Sintel dataset.

4.4 Augmentation on Training Inputs

Following RAFT [66], the same augmentation is done across all the training datasets.

The training image’s brightness, contrast, saturation, and hue are changed based

on random selection. Based on the random probability, for a given training image

sequence, a bounded region inside the second image will be filled with the average

pixel intensity value obtained from the second image to provide occlusion augmenta-

tion. Random scaling, random flipping, and random cropping are also applied to the

training inputs.

4.5 Evaluation

Evaluation Metrics

Average end-point error (EPE) computes the sum of the squared difference between

the predicted flow and the ground truth flow which is calculated for both the Sintel

and the KITTI datasets. Additionally, F1-All is only applied for the KITTI dataset

which computes the percentage of predictions with EPE greater than 3 pixels and the

ratio between EPE and the sum of square of the ground truth is greater than 5%.

4.6 Comparisons with the State-of-the-Art Models

Cross Dataset Generalization. Table 4.1 contains our model’s performance on

Sintal and KITTI compared to other SOTA models. Our model’s generalization

performance is obtained by training it on “C+T” and then performing the evaluation
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Training Data Method
Sintel(train) KITTI(train) Sintel(test) KITTI(test)

Clean Final AEPE F1-all(%) Clean Final F1-all(%)

C+T

PWC-Net[62] 2.55 3.93 10.35 33.7 - - -
AGFlow[47] 1.31 2.69 4.82 17.0 - - -
SCV[34] 1.29 2.95 6.80 19.3 - - -
GMFlowNet[86] 1.14 2.71 4.24 15.4 - - -
GMFlow[75] 1.08 2.48 7.77 23.40 - - -
CRAFT[61] 1.27 2.79 4.88 17.5 - - -
SeparableFlow[84] 1.30 2.59 4.60 15.9 - - -
KPAFlow[48] 1.28 2.68 4.46 15.9 - - -
DIP[87] 1.30 2.82 4.29 13.7 - - -
FlowFormer(small)[27] 1.20 2.64 4.57 16.62 - - -
FlowFormer[27] 1.01 2.40 4.09 14.7 - - -
SKFlow[64] 1.22 2.46 4.27 15.5 - - -

RAFT[66] 1.43 2.71 5.04 17.4 - - -
GMA[33] 1.30 2.74 4.69 17.1 - - -
Ours 1.18 2.51 4.58 17.2 - - -

C+T+S+K+H

PWC-Net[62] (1.71) (2.34) (1.50) (5.3) 3.45 4.60 7.72
AGFlow[47] (0.65) (1.07) (0.58) (1.2) 1.43 2.47 4.89
SCV[34] (0.79) (1.70) (0.75) (2.1) 1.72 3.60 6.17
GMFlowNet[86] (0.59) (0.91) (0.64) (1.51) 1.39 2.65 4.79
GMFlow[75] - - - - 1.74 2.90 9.32
CRAFT[61] (0.60) (1.06) (0.58) (1.34) 1.45 2.42 4.79
SeparableFlow[84] (0.69) (1.10) (0.69) (1.60) 1.50 2.67 4.64
KPAFlow[48] (0.60) (1.02) (0.52) (1.1) 1.35 2.36 4.60
DIP[87] - - - - 1.44 2.83 4.21
FlowFormer[27] (0.48) (0.74) (0.53) (1.11) 1.20 2.12 4.68
SKFlow[64] (0.52) (0.81) (0.51) (0.94) 1.28 2.23 4.84

RAFT(warm start)[66] (0.76) (1.22) (0.63) (1.5) 1.61 2.86 5.10
GMA[33] (0.62) (1.06) (0.57) (1.2) 1.39 2.47 5.15
Ours (0.51) (0.90) (0.56) (1.24) 1.58 2.57 4.85

Table 4.1: Quantitative results on Sintel and KITTI 2015 datasets. “C+T”
indicates the models are pre-trained on the FlyingChairs and FlyingThings3D dataset
and then cross-data generalization performance is evaluated on Sintel and KITTI
where results are shown by average end point error (AEPE) and F1-all(only on
KITTI). “C+T+S+K+H” presents models that are fine-tuned on a combination of T,
S, K, and H after the “C+T” stage. Results inside parentheses are obtained by eval-
uating the model on the training set after fine-tuning. Following RAFT, we also use
the “warm start” approach during the evaluation. The cross-dataset generalization
result indicates that our model surpasses both RAFT and GMA by a large margin
achieving performance that is on par with the state of the art approaches.
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EPE:2.538 EPE:2.283 EPE:1.740

EPE:0.259EPE:0.292EPE:0.303

Testing Sequences RAFT GMA Ours

Figure 4.6: Visualization on results from Sintel benchmark. Images with
only black and white color are the error images obtained from the Sintel benchmark,
regions with darker color indicate more accurate optical flow estimation, and regions
with lighter color indicate prediction errors. Testing sequence from the top two rows
shows that our model is able to capture more fine-detailed motion on small occluded
regions which occurs on the bowl that is moving in between the fingers. The bottom
two rows indicate that our model is able to capture motions for pixels that completely
disappear in the second image which can be seen as the stick on the bottom right
corner disappears from the second image.

on Sintel’s training data as well as the KITTI’s training data, Sintel provides their

data in clean and final version. The final version is more challenging compared to

the clean as it contains noise such as motion blur and atmosphere effects.

The proposed model achieves an AEPE of 1.18 on the clean pass which surpasses

SeparableFlow [84], SCV [34], both of which emphasize cost volume manipulation.

We improve the estimation performance by 17.5% from 1.43 to 1.18 compared to

RAFT [66] and by 9.2% from 1.30 to 1.28 compared to GMA [33] where both of

them are widely applied models by state-of-the-art approaches. On the final pass we

have a generalization performance of 2.51 which reduces errors by 3% compared to

SeparableFlow, 14.9% compared to SCV, 7% compared to RAFT, and 8% compared

to GMA. Regarding the generalization test on the KITTI dataset, we obtain AEPE of

4.58 which has a 9% improvement compared to RAFT and F1-all(%) are compatible

to both RAFT and GMA.

Our model is inferior to the state-of-the-art model FlowFormer [27] as their model
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Testing Images RAFT GMA Ours

Figure 4.7: Sample predictions from KITTI dataset. The first row shows that
RAFT and GMA treating the light reflected from the windshield preserves motion.
The second row shows that our model can generate a better contour on the motion
boundary. Please zoom-in for a more detailed view.

has 18.2M parameters whereas we only have 7.5M parameters. Additionally, they use

Twins-Transformer as the encoder model and CNNs are used for feature encoding

in our approach. However, when compared to the smaller version of FlowFormer

which also uses CNNs for feature encoding, we have similar performance on the clean

split and better performance on the final split regarding Sintel. Therefore, we think

that given sufficient computational power, our model’s performance can be increased

further when Transformers are used for feature extraction.

Benchmarks Evaluations. We submitted the generated optical flow on testing

images for both Sintel and KITTI-2015 for online evaluation. We outperform the

RAFT model on both benchmarks, but the performance is inferior to GMA on Sintel

and better than it on KITTI-2015. The Sintel benchmark provides a diverse list

of metrics as shown in Table 4.2, the EPE matched indicates the endpoint error

over the regions that are visible in both frames, the EPE unmatched computes

the endpoint error over the regions that are visible only in one image, the d0-10,

d10-60, and d60-140 compute endpoint error for regions closer than 10 pixels, in

between 10 to 60 pixels, and in between 60 to 140 pixels from the nearest occlusion

boundary, respectively. Endpoint error for regions with movement less than 10 pixels,

in between 10 to 40 pixels, and more than 40 pixels are represented by s0-10, s10-40,

and s40+, separately.

On the Final version of the Sintel benchmark, our model outperforms the RAFT

model [66] on all the above metrics, and we also outperform the GMA model [33] on

the majority of metrics but our performance is worse than the GMA model regarding

EPE unmatched and s40+. Regarding the Clean version of the Sintel benchmark,
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our model still outperforms the RAFT model, but the result on these metrics are not

comparable with the GMA model except for s0-10 and s10-40. Possible reasons for

the performance drop are analyzed in Section 4.6.3.

Sintel
Metric RAFT GMA Ours

Dataset

Final(test)

EPE matched 1.405 1.241 1.228
EPE unmatched 14.680 12.501 13.543

d0-10 3.112 2.863 2.718
d10-60 1.133 1.057 0.958
d60-140 0.770 0.653 0.646
s0-10 0.634 0.566 0.488
s10-40 1.823 1.817 1.627
s40+ 16.371 13.492 15.203

Clean(test)

EPE matched 0.623 0.582 0.668
EPE unmatched 9.647 7.963 9.035

d0-10 1.621 1.537 1.572
d10-60 0.518 0.461 0.624
d60-140 0.301 0.278 0.313
s0-10 0.341 0.331 0.292
s10-40 1.036 0.963 0.880
s40+ 9.288 7.662 9.680

Table 4.2: Quantative comparison between our approach with baseline models under
different matrices from the Sintel benchmark.

4.6.1 Occlusion Analysis

After finetuning the model on the clean and final versions of Sintel datasets, following

GMA [33], we tested our model’s performance against occlusion on the Albedo version

which contains images with piecewise constant color without any illumination effects.

As the brightness constancy is an inherent property in the albedo version, the error

caused by occlusion becomes more dominant. Evaluation is carried out by splitting

pixels to ‘Noc’ (non-occluded) and ‘Occ’ (occluded) based on the provided occlusion

map and computing the AEPE on different schemes. Our model shows superior

performance compared to RAFT [66] and GMA, results are illustrated in Table 4.4.
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Experiment Method
Sintel(train) KITTI(train)

Parameters
Clean Final F1-epe F1-all

Baseline GMA 1.27 2.75 4.68 17.21 5.9M

Number of Self and Cross Attention Layers
0-self, 0-cross 1.29 2.67 5.59 18.55 6.0M
1-self, 1-cross 1.31 2.60 5.00 17.94 6.4M
2-self, 2-cross 1.28 2.65 4.82 17.85 6.7M

Number of Topk Samples
k = 512 1.28 2.64 4.82 17.85 6.7M
k=1024 1.25 2.61 4.77 17.32 6.8M

Post Refinement
No 1.25 2.61 4.77 17.32 6.8M
Yes 1.27 2.54 4.79 17.28 7.5M

Number of Training Iterations
300k 1.27 2.54 4.79 17.28 7.5M
450k 1.21 2.54 4.70 17.54 7.5M
900k 1.18 2.51 4.58 17.22 7.5M

Table 4.3: Ablation studies, where the configurations applied in the final model are
highlighted.

Sintel
Type

RAFT GMA Ours
Dataset (AEPE) (AEPE) (AEPE)

Clean(train)

Noc 0.32 0.29 0.24
Occ 5.36 4.25 4.24

Occ-in 4.45 3.81 3.38
Occ-out 7.01 5.03 4.48

All 0.74 0.62 0.53

Final(train)

Noc 0.66 0.59 0.50
Occ 7.09 6.22 6.38

Occ-in 6.21 5.30 4.81
Occ-out 8.71 7.90 7.26

All 1.19 1.06 0.93

Albedo(test)

Noc 0.34 0.32 0.28
Occ 6.35 5.58 5.50

Occ-in 5.83 5.23 4.57
Occ-out 7.29 6.20 5.45

All 0.84 0.76 0.66

Table 4.4: Performance on different versions of Sintel datasets with evaluation done
using the provided occlusion map.

4.6.2 Ablation Studies

We also performed a sequence of ablation studies on ACVFlow. We first trained

on FlyingChairs for 240k iterations and then on FlyingThings3D for 300k iterations
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while testing the generalization performance on Sintel and KITTI datasets to find the

best configuration on the proposed model. The results are shown in Table 4.3. For a

fair comparison, we also trained GMA [33] using the setting with reduced batch size

and an increased number of training iterations on our machine.

Number of Self and Cross Attention Layers. We experimented with different

settings for the number of attention layers used to generate long-range dependencies

within the auxiliary cost volume as well as the number of attention layers used to

query information from the auxiliary cost volume. When no attention is applied and

the embedded auxiliary cost volume is statically concatenated to the sampled corre-

lations at each iteration, the performance on KITTI dataset drops significantly while

the performance on Sintel final increases compared to GMA. This finding is in line

with other models that leverage transformers [27, 75] where the model’s performance

benefits from the increasing depth of the attention layers.

Number of Top-k Samples. Our model resulted in a lower error by increasing

the number of topk samples with a slight increase in the number of learnable param-

eters. By increasing the number of correlations encoded in the auxiliary cost volume,

information can be shared in a wider image region which benefits the estimation of

regions with long-range motion and occlusion.

Post Refinement. On the Sintel dataset, the use of the post-refinement process

causes the performance on the clean version to drop negligibly, but it sets a new high

on the final version. We argue that due to the amount of noisy information presented

in the final version, the piece-wise smoothness encoded in the post-refinement module

captures the matching information on motion-blurred regions by sharing hidden state

among similar local features, but it may become over-smooth on the clean version.

This finding is consistent with the failure case provided in Section 4.6.3.

Number of Training Iterations As the result shows, increasing the number

of training iterations on FlyingThing3D gradually reduces the prediction error on

cross-dataset generalization and the reduction magnitude decreases as more training

iterations are applied.
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EPE:15.053 EPE:8.061

EPE:6.865 EPE:5.489

Ours GMA

Figure 4.8: Failure cases on Sintel benchmark. Failure cases are obtained
through the Sintel benchmark, with colorized images being the optical flow estimation
while black and white images indicate error mapping. Our model fails to generate
accurate optical flow on large textureless regions that also present with occlusion.

4.6.3 Limitations

Despite our model achieving excellent cross-data generalization performance and out-

performing both RAFT and GMA on the KITTI benchmark, it can be trapped by

textureless regions that are occluded as shown in Figure 4.8. For the first testing

sequence, large areas on the right arm are wrongly predicted, for the second test-

ing sequence, our model failed to generate accurate flow prediction for regions under

the dragon’s body. We suspect that this is caused by the pose-refinement process
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that over-smoothing the textureless region as the colorized optical flow map shows

that color is more uniform on the right arm than the GMA’s prediction. We argue

that this phenomenon can be mitigated if a more dynamic version of the proposed

post-refinement module can be implemented.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

We have proposed an ACA unit that constructs an auxiliary cost volume by simply

extracting the top-k matches from the full 4D cost volume computed from the fea-

ture dot product. Linear attention is then applied to the auxiliary cost volume to

create long-range intra-feature dependencies, compared to the dot product attention,

linear attention has lower space and time complexity. The aggregated correlation

result between the sampled correlation and auxiliary cost volume is then dynamically

integrated into the recurrent residual flow decoding stage. Based on the local piece-

wise smoothness assumption, a post-refinement module is proposed to aggregate the

hidden state based on the local contextural feature similarity. The ablation study

performed on the model structure shows that the performance on cross-dataset gen-

eralization can be increased by stacking multiple attention layers, having larger top-k

selections, including the post-refinement process, and increasing the number of train-

ing iterations. The occlusion analysis also shows that our model handles unmatched

regions better than the baseline models. Based on the extensive experiments our

model shows compatible cross-data generalization performance with SOTA methods

while outperforming the baseline models by a large margin.

5.2 Future Work

As transformers have been widely adopted in the field of computer vision, one po-

tential research direction is to change the recurrent residual flow decoder with a

transformer-based module. Work by Xu et al. [75] have the decoding part of their

model implemented using dot product attention but their model’s performance is in-

ferior to recurrent decoder based models as shown in Table 4.1. Transformer-based

48
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encoders can also be applied to our model and it can potentially boost the perfor-

mance as shown in FlowFormer [27] where a transformer-based encoder outperforms

a CNN-based encoder. One additional research direction is to change the pooling

operation used in cost volume construction to an adaptive pooling operation which

could be transformer-based.
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[1] Luis Alvarez, Rachid Deriche, Théo Papadopoulo, and Javier Sánchez. Sym-
metrical dense optical flow estimation with occlusions detection. International
Journal of Computer Vision, 75:371–385, 2007.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[3] Shaojie Bai, Zhengyang Geng, Yash Savani, and J Zico Kolter. Deep equilib-
rium optical flow estimation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 620–630, 2022.

[4] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper
into convolutional networks for learning video representations. arXiv preprint
arXiv:1511.06432, 2015.

[5] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-
Hsuan Yang. Depth-aware video frame interpolation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 3703–
3712, 2019.
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