
ME-IDS: AN ENSEMBLE TRANSFER LEARNING FRAMEWORK
BASED ON MISCLASSIFIED SAMPLES FOR INTRUSION

DETECTION SYSTEMS

by

Arka Ghosh

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

November 2023

© Copyright by Arka Ghosh, 2023



To my beloved parents,

this thesis is dedicated to your unwavering support and encouragement

throughout my educational journey. Your firm belief in my decisions,

even when I may have doubts, has always been a tremendous source of

motivation to pursue my goals with determination.

ii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Machine Learning Based Intrusion Detection Systems . . . . . . . . . 7

2.2 Deep Learning Frameworks in Intrusion Detection Systems . . . . . . 10

2.3 Pre-trained Transfer Learning Models for Intrusion Detection . . . . . 14

Chapter 3 ME-IDS: A Novel Framework For Intrusion Detection 18

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Dataset Description: UNSW-NB15 . . . . . . . . . . . . . . . . . . . 21
3.2.1 Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Dataset Composition . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Categorical Feature Encoding . . . . . . . . . . . . . . . . . . 23
3.3.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Tabular Data to Image Transformation . . . . . . . . . . . . . . . . . 26

3.5 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Hyper-Parameter Optimization . . . . . . . . . . . . . . . . . . . . . 29

iii



3.6.1 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.2 Tree Parzen Estimator . . . . . . . . . . . . . . . . . . . . . . 30
3.6.3 Random Search . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Weighted Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4 Performance Evaluation . . . . . . . . . . . . . . . . . . . 35

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Performance of Traditional ML-based IDS . . . . . . . . . . . . . . . 37

4.4 Performance of ME-IDS and Other Benchmark IDS Frameworks . . . 41

Chapter 5 Conclusion and Future Work . . . . . . . . . . . . . . . . 47

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 Other Tabular Data to Image Conversion Methods . . . . . . 47
5.2.2 GAN-based Synthetic Data Generation for IDS . . . . . . . . 49
5.2.3 Integration of eXplainable AI in IDS . . . . . . . . . . . . . . 51

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iv



List of Tables

3.1 Data Distribution of UNSW-NB15 Dataset . . . . . . . . . . . 22

3.2 Hyper-parameter configuration space for VGG16 on image dataset
generated using 39 features . . . . . . . . . . . . . . . . . . . . 31

3.3 Hyper-parameter configuration space for VGG16 on image dataset
generated using 42 features . . . . . . . . . . . . . . . . . . . . 32

4.1 Performance of Traditional ML-based IDS with All Features
from UNSW-NB15 Dataset . . . . . . . . . . . . . . . . . . . . 39

4.2 Performance of Traditional ML-based IDS with Selected Fea-
tures from UNSW-NB15 Dataset . . . . . . . . . . . . . . . . . 40

4.3 Performance and Comparison of ME-IDS with Three Other Bench-
mark Ensemble Learning Approaches for IDS and Base Classi-
fiers on Image Data Generated from All Features of UNSW-
NB15 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Performance and Comparison of ME-IDS with Three Other Bench-
mark Ensemble Learning Approaches for IDS and Base Clas-
sifiers on Image Dataset Generated using Selected Features of
UNSW-NB15 Dataset . . . . . . . . . . . . . . . . . . . . . . . 45

v



List of Figures

1.1 Taxonomy Chart of IDS Detection Methodology. . . . . . . . . 2

2.1 Fundamental Learning Process of Machine Learning Algorithms 8

2.2 Illustration of Generic Deep Neural Network Architecture . . . 11

2.3 Process of Transfer Learning. . . . . . . . . . . . . . . . . . . 15

3.1 System Overview of Proposed ME-IDS Framework. . . . . . . 19

3.2 Testbed Architecture for Generating UNSW-NB15 Dataset [52]. 21

3.3 Illustration of Frequency Encoding for Categorical Feature. . . 24

3.4 Feature Significance Analysis Using Chi-Square p-Value. . . . 25

3.5 Generated image samples from tabular data: (a) Normal Flow;
(b) Attack Flow. . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Proposed VGG16 Architecture adapting to the UNSW-NB15
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Performance Improvement of Traditional ML-based IDS with
Selected Features from UNSW-NB15 Dataset . . . . . . . . . 41

4.2 Performance improvement of ME-IDS compared to base clas-
sifiers used in ensemble approach and three other benchmark
ensemble methods, evaluated on RGB images generated using
All features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Performance improvement of ME-IDS compared to base clas-
sifiers used in ensemble approach and three other benchmark
ensemble methods, evaluated on RGB images generated using
All features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Process of Transforming Tabular Data to Images using Su-
perTML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Generated Images using SuperTML: (a) Image Generated using
SuperTML EF on Iris data with equal importance given to each
feature; (b) Image Generated using SuperTML VF on Wine
data with varied font size based on feature importance. . . . . 49

vi



5.3 Model Structure of Generative Adversarial Networks (GAN) . 51

vii



Abstract

In our digitally interconnected world, the demand for robust security measures has

become increasingly apparent, given the escalating threat of cyberattacks on the Inter-

net. Intrusion Detection Systems (IDS) have emerged as vital safeguards for Internet

network infrastructure. Despite the significant advancements in IDS over the past

decades, there remains much room for improvement, especially with recent advances

in machine learning and deep learning. In this paper, we propose a Misclassified sam-

ple based Ensemble transfer learning framework for IDS (ME-IDS) in order to effec-

tively detect malicious intrusions. Technically, ME-IDS employs frequency encoding

to handle categorical features and utilizes a feature selection method to mitigate the

curse of dimensionality. In addition, it leverages three hyper-parameter-tuned vari-

ants of a transfer learning model in its ensemble learning stage, ultimately resulting

in high detection accuracy. Our experimental results based on a publicly available

IDS dataset, UNSW-NB15, indicate that ME-IDS leads to an impressive accuracy of

99.72%, significantly outperforming the state-of-the-art detection systems.
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Chapter 1

Introduction

The emergence of the Internet has facilitated extensive connectivity among a myr-

iad of conventional computing devices, spanning from servers to clients. However, in

recent years, the landscape has evolved with the widespread integration of Internet-

of-Things (IoT) devices, ranging from gaming consoles to smartwatches. This influx

of IoT devices has notably escalated both the quantity and variety of traffic traversing

over the Internet, posing challenges to the security paradigm for IoT devices. De-

spite the security breaches associated with IoT, it has gained widespread acceptance

and integration across a multitude of sectors, encompassing critical domains such as

healthcare, agriculture, transportation, energy grids, and many more, signifying its

profound impact on diverse industries. IoT is composed of numerous devices, which

have limited storage, computing capabilities, and communication abilities [2]. These

devices are equipped with a wide array of sensors and actuators to collect and share

sensitive data over the traditional internet [4]. Projections indicate that the IoT

market is poised to generate substantial revenue, starting at $2 billion in 2020 and

expected to reach $8.131 trillion by 2030 [10]. This exponential potential for growth

has attracted the attention of various stakeholders including suppliers, corporations,

manufacturers, to invest in this revolutionary technology [2, 15].

The interconnection of devices and the rapid transmission of sensitive data across

IoT devices have elevated security to a paramount concern, primarily due to the con-

tinuously growing number of diverse network anomalies over the internet [3]. In the

realm of computer security, a variety of methods, including firewalls, access control,

antivirus software and network segmentation, are previously used to enhance the se-

curity and control cyber-attacks over internet due to their ability to filter content,

prevent data leakage, and raise alerts to thwart malicious activities [41]. However, a

limitation of these techniques is their occasional inability to identify novel and intri-

cate types of attacks, as well as their incapacity to distinguish between legitimate and

1
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harmful network traffic. To address this, Intrusion Detection Systems (IDS) can offer

an effective security solution by continuously monitoring traffic and identifying novel

anomalies at the entry points of IoT devices. IDS is designed to scrutinize network

flows, utilizing features to distinguish between legitimate and malicious traffic flows

with a strong emphasis on high accuracy and minimal false positive rate. While the

concept of IDS was first coined in 1980 [21], many IDS frameworks have continuously

evolved to meet the demands of ever-changing threats over the internet. Nevertheless,

the substantial technological advancements have led to an increase in network scale,

interconnect devices and data volume which creates the ever-growing necessity of the

developing existing IDS systems to cope with these advancements. The detection

methodology of IDS can be categorized into three sections, as illustrated in Figure

1.1.

IDS
Detection Method

Signature-based
IDS

Anomaly-based 
IDS

Hybrid
IDS

Figure 1.1: Taxonomy Chart of IDS Detection Methodology.

The first generation IDS are mostly signature-based [50]. Signature-based IDS in-

volves searching for pre-defined patterns or signature associated with known attacks.

These patterns may encompass packet content, source IP addresses, or distinct head-

ers. When the IDS identifies an attack with a matching signature from its repository,

it raises an alert. However, signature based IDSs necessitate regular updates to ad-

dress the newly arisen threats since it rely on pre-existing signature of the attack pat-

terns [81]. Any outdated information can hinder these IDSs from detecting emerging

attacking, including zero-day attacks. However, anomaly-based IDS has gained the

attention of numerous researchers because of their potential to overcome the limita-

tions of signature-based IDS [36]. Anomaly-based IDS creates a reference model for
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a computer system’s typical operations using machine learning, statistical analysis or

knowledge-based approaches [14]. Whenever there is a substantial deviation between

the observed behavior and this model, the flow is marked as an anomaly, potentially

indicating an intrusion. A key advantage of anomaly-based IDS is its capability to

identify zero-day attacks, as it is not dependent on a signature database to spot un-

usual user actions [8]. On the other hand, hybrid IDS is designed by combining both

signature-based and anomaly-based IDS to detect both known and unknown attacks

[37]. In such scenario, two IDSs operate concurrently, and the ultimate decision of

the hybrid system is determined by assigning a weight to each IDS’s output [17].

While hybrid IDSs offer clear benefits over signature-based and anomaly-based IDSs,

their construction demands substantial computation resource and effort as ensuring

efficient interoperability between two IDS setups is comparatively a challenging task.

As a result, within the research community, there is still a predominant emphasis on

the study of anomaly based IDS.

The rapid and notable progress and expansion of various Machine Learning (ML)

and Deep Learning (DL) frameworks have ushered in a multitude of different ML

and DL-based IDS, effectively showing impressive results in different classification

tasks. This transformative wave has extended its reach into the realm of cyber-

security as well, encompassing fields like intrusion and malware detection. Notably,

in the context of IDS, various ML and DL based IDS have become an integral part

in the establishment of anomaly-based IDS due to their inherent simplicity, straight-

forwardness, efficiency and impressive performance. As these frameworks continue to

advance, they bring new possibilities and capabilities by enhancing and opening new

innovative doors to further innovations in cyber-security.

1.1 Motivation

Many prior researches on IDS have predominantly focused on utilizing machine learn-

ing (ML) techniques. Due to the considerable diversity in normal network traffic,

ML-based IDS face challenges in establishing consistent definitions of normal flows,

resulting into lower accuracy on unforeseen network flows [84]. Moreover, ML-based

IDS require manual feature engineering and extraction, which can be challenging

in terms of both time and expertise required to identify relevant features for the
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different kinds of network flows. Deep Learning (DL) methods have addressed the

limitations of ML by identifying unusual patterns, thus resulting in better detection

accuracy [24]. DL-based IDS excel when a significant amount of training dataset is

available. However, within IoT environments, there is a notable lack of substantial

labeled datasets, particularly when it comes to the discovering unknown attack types,

i.e., zero day attacks [66]. Acquiring new data in such situation can be a both time-

consuming and resource-intensive process, and it may not be accessible at all in some

cases. Furthermore, if a new intrusion is discovered, the process of re-training a DL

model from scratch involves a significant investment in both computational resources

and time. As a consequent, DL-based IDSs face tremendous hurdles in IoT networks,

where datasets are limited, often imbalanced, and the devices possess constrained

computational capabilities.

The emergence of Transfer Learning (TL) addresses the problem of DL, provid-

ing a powerful solution for some of the potential challenges involved in training deep

neural networks from scratch [66]. Fundamentally, TL enables the utilization of lever-

aging the knowledge and expertise gained from previously trained models to improve

performance on novel and varied tasks. This approach has shown significant poten-

tial in alleviating the resource intensive and data-hungry nature of deep learning,

making it more accessible and efficient for a wide range of applications in real world.

Some of the famous pre-trained models like VGG16, VGG19, InceptionV3, Resnet,

and Xception have consistently produced remarkable results in the area of computer

vision (CV) over the years. Another notable technique in classification tasks is the

ensemble of classifiers, referred to as an ensemble learning, which has gathered sig-

nificant attention in cyber-security domain, and the field of IDS is no different [76].

Ensemble learning utilizes the strength of several classifiers to make a more robust

classifier, which often outperforms a single classifier in terms of predictive accuracy.

In the purview of IDS, ensemble of multiple classifiers has demonstrated superior

performance compared to individual classifiers due to statistical, computational and

representational considerations [60].

Although transfer learning from pre-trained Convolutional Neural Network (CNN)
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based models is a well-established approach, its application in network intrusion de-

tection, especially when incorporated with ensemble learning, remains largely un-

explored. Inspired by these findings, the objective of this paper is to establish a

framework for IDS that combines the principles of transfer learning and weighted

ensemble learning to create a robust IDS system capable of effectively differentiating

attack flows from normal flows. The weight of the ensemble stage within the proposed

framework is dependent on the performance of the base classifiers, particularly the

total number of samples misclassified by each base classifier.

1.2 Thesis Contribution

In this thesis, we proposed a Misclassified sample based Ensemble transfer learning

framework for IDS (ME-IDS), designed to detect attack and normal network flows.

It leverages a lightweight pre-trained transfer learning model in combination with

a weighted ensemble learning approach. The issue of the curse of dimensionality is

also addressed through the use of a validated categorical feature encoding technique

and a feature selection method. Additionally, unlike other methods that rely on

tabular datasets, this research utilizes an image transformation approach to make

the dataset compatible with the requirements of CNN-based pre-trained models. The

major contributions of this paper are as follows:

• ME-IDS employs frequency encoding to encode categorical features and incor-

porates random noise with a minimal mean and standard deviation to mitigate

the tied frequency counts among categories.

• ME-IDS utilizes a filter-based feature selection method, using a p-value thresh-

old, to select critical features to enhance model efficiency, and bolster the IDS’s

resilience to noise and irrelevant data.

• ME-IDS adopts a novel ensemble scheme that is based on three hyper-tuned

variants of a lightweight pre-trained TL model. It utilizes misclassified samples

to assign appropriate weights to base classifiers.

• Extensive experiments based on the widely adopted dataset, UNSW-NB15 [52],

are carried out in our research. Our experimental results indicate that ME-IDS
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outperforms the state-of-the-art schemes.

1.3 Thesis Outline

The rest of the paper is organized into four sections. Chapter II offers an exploration

of prior notable researches in the fields of ML, DL, and TL as applied to IDS. Moving

on to Chapter III, it provides a comprehensive overview of the ME-IDS framework.

This includes a detailed description of the dataset used and data pre-processing, the

architecture of the pre-trained Convolutional Neural Network (CNN) model, and the

precise configurations of hyper-parameters for three optimization techniques. Ad-

ditionally, this chapter explains the fundamental concepts underpinning the weight

assignment process in the weighted ensemble learning approach. Chapter IV con-

ducts an in-depth analysis of the ME-IDS’s performance. It employs four distinct

evaluation metrics to assess its effectiveness and also presents a comparative analysis,

allowing for a comparison with three other benchmark ensemble learning approaches.

Lastly, Chapter V serves as the conclusion, summarizing the research and outlining

potential directions for future work.



Chapter 2

Related Work

In this chapter, we first explore the utilization of traditional ML-based IDS, including

the methods and models employed to detect and mitigate security threats across

various IDS dataset. Following this, we shift our focus towards the integration of

Neural Networks and other DL frameworks that have shown promising improvement

within the IDS domain. In the final section, we discuss several recently published

works on TL strategies such as domain adaption and pre-trained models in the context

of IDS, offering insights into their performance and potential to improve the accuracy

and efficiency of IDS. Due to the fact that ML/DL based IDS are well-established

research topics, a large number of research papers have been published over the

years. As a result, it is impractical to conduct an extensive review of each and every

published work. Instead, we will highlight a number of noteworthy and exemplary

works in this discipline.

2.1 Machine Learning Based Intrusion Detection Systems

By employing statistical principles as the underlying framework for constructing

mathematical models, machine learning algorithms are primarily designed to extract

meaningful insights from provided data samples. This process typically involves two

key phases: a training phase and a testing phase, as depicted in Figure 2.1. Over the

last two decades, the field of machine learning-based IDS has experienced significant

growth in response to the continually evolving nature of various cyber-attacks [33].

In order to address the dynamic landscape of cyber threats, numerous enhancements

have been introduced to assist machine learning-based IDS models in adapting to

changing attack patterns while minimizing computational complexity. While the

long-term goal remains the development of a fully automated and highly intelligent

cyber defense system, network and security operators can already derive substantial

benefits from the utilization of machine learning-based IDS [62]. While ML-based

7
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IDS come with inherent drawbacks and limitations, they have nonetheless paved the

way for numerous innovative research opportunities in the field of intrusion detection

over the years. The recognition of these limitations has, in fact, served as a catalyst,

motivating researchers to explore and contribute to the improvement of different IDS

infrastructures.

Training
Dataset

Learning
Algorithm Classifier Testing

Dataset
Evaluation

Training Phase Testing Phase 

Figure 2.1: Fundamental Learning Process of Machine Learning Algorithms

Moutafa et al. [51] introduced an IDS framework to classify attack families within

the UNSW-NB15 dataset. In their initial work, the authors employed Association

Rule Mining for feature selection and utilized both Expectation Maximization (EM)

and the Näıve Bayes Algorithm for classification. However, the performance of these

classifiers was not particularly notable, with Näıve Bayes achieving an accuracy of

78.06% and EM achieving 58.88%. Building upon their earlier research [53], the

authors extended their approach by incorporating feature selection techniques based

on correlation coefficient and gain ratio. Additionally, they experimented with five

different classification algorithms applied to the UNSW-NB15 dataset. Among these

classifiers, the Decision Tree (DT) algorithm yielded the most promising results. It

achieved an accuracy score of 85%, accompanied by a False Alarm Rate (FAR) of

15.75%. Othman et al. [56] proposed Spark-Chi-SVM model for IDS, involving Chi-

square for feature selection and building an IDS using the Support Vector Machine

(SVM) on the Apache Spark Big Data platform. They carried out their experiment

with KDD99 dataset, and compared their results with two other ML classifier without

feature selection. The results indicated that the Spark-Chi-SVMmodel excels in terms

of performance and reduces training time.

Tree-based ML classifiers, particularly Decision Tree and Random Forest, have

undergone extensive investigation in the realm of IDS research [6]. Within these
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classifiers, the process of partitioning the tree divides the training data into multiple

subsets, with each subsequent split progressively augmenting the model’s complex-

ity to perform the designated task better [31]. In this context, Al-Omari et al. [6]

introduced a tree-based IDS approach based on Decision Tree, with Gini Index to

select the important features from the UNSW-NB15 Dataset. During the testing

phase, their proposed method attained an overall binary classification accuracy of

96.72%. Another Decision Tree based binary classifier model was proposed in [26],

which utilized entropy for feature selection. The authors trained and tested their

approach on both the NSL-KDD and CICIDS2017 datasets, where their approach

yielded impressive results, achieving an overall accuracy of 99.42% for NSL-KDD

and 98.80% for the CICIDS2017 dataset. In addition to that, Chen et al. [16] pro-

posed a method by utilizing Adaptive Synthetic Sampling (ADASYN) to handle the

data imbalance problem, coupled with training the IDS using Random Forest. The

study, conducted on the CICIDS2017 dataset, demonstrated superior performance of

the ADASYN with Random Forest approach compared to Random-Under Sampling

(RUS) with Random Forest and Synthetic Oversampling Technique (SMOTE) with

Random Forest, achieving the highest precision score of 98.505% and an f1 score of

95.303%. Moreover, another approach is proposed in [87] to address the problem of

data imbalance in IDS dataset by combining an enhanced random forest model and

synthetic oversampling technique (SMOTE) algorithm. The authors initially augment

the minor samples using a hybrid K-means clustering along with SMOTE approach,

followed by an enhanced random forest and similarity matrix to refine the prediction

results. Their proposed approach achieved a high training accuracy of 99.72%, with

78.47% accuracy on the testing dataset while evaluated on the NSL-KDD dataset.

Several other notable ML-based IDS have been proposed over the years, including IDS

based on semi-supervised learning utilizing k-Nearest Neighbors (kNN) with hyper-

parameter optimization [85], a two-phase IDS employing Näıve Bayes with elliptic

envelop method [83], an IDS utilizing the Nesterov-Accelerated Adaptive Moment

Estimation–Stochastic Gradient Descent (HNADAM-SGD) algorithm [69], and an

IDS based on LightGBM with the ADASYN technique [44].

In recent years, ensemble learning is extensively applied in the field of IDS, com-

bining multiple ML models to create a more resilient and effective IDS. Tama et
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al. [75] proposed a two stage IDS framework, named TSE-IDS, where the authors

employed a hybrid feature selection technique using three methods, namely particle

swarm optimization, ant colony algorithm, and genetic algorithm to reduce the fea-

ture dimension of training datasets UNSW-NB15 and NSL-KDD. Next, the authors

introduced a two-level classifier ensemble utilizing two meta-learners, Rotation For-

est and Bagging, which demonstrated an accuracy of 91.27% on the UNSW-NB15

dataset and 85.8% accuracy on the NSL-KDD dataset. Another dual ensemble ap-

proach, titled Dual-IDS, is proposed in [46], where the authors combined two existing

ensemble learning techniques, namely bagging and gradient boosting decision tree.

When evaluating the approach on three datasets, namely NSL-KDD, UNSW-NB15,

and HIKARI2021, the proposed method attained an accuracy score of 94.66% and a

precision score of 92.21% on the UNSW-NB15 dataset. Thockchom et al. [78] pro-

posed a stacked ensemble learning-based IDS using lightweight ML models, such as

Gaussian Näıve Bayes, Logistic Regression, and Decision Tree as the base classifiers,

with Stochastic Gradient Descent serving as the meta-classifier. The performance of

this proposed ensemble learning approach is trained and evaluated across three IDS

datasets, namely KDD Cup 1999, UNSW-NB15, and CICIDS2017. This proposed

stacked ensemble learning framework achieved an overall accuracy score of 93.88%

for binary classification and 80.96% for multi-class classification on the UNSW-NB15

dataset.

2.2 Deep Learning Frameworks in Intrusion Detection Systems

DL based frameworks have shown notable performance enhancements compared to

certain ML algorithms, which is why these frameworks are increasingly applied in dif-

ferent domains including safeguarding IoT infrastructure [29]. In many scenarios, DL

frameworks has demonstrated significant improvements by outperforming ML-based

frameworks, particularly with extensive labelled data [57]. Furthermore, DL-based

algorithm can effectively handle new features, offering enhancing solutions that do

not require extensive human intervention. Typically, DL architectures are charac-

terized by their intricate network structures, where numerous hidden layers connect

input layer to the final output layer. The hidden layers play a crucial part in extract-

ing features and representing data by enabling the network to extract complicated
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patterns and hierarchical features from the input data. Based on the feature learnt

and processed by the hidden layers, the final output layer makes the final prediction

of outcome of the network. Figure 2.2 depicts a Deep Neural Network architecture

that establishes connections from the input layer to the output layer through the

integration of multiple hidden layers.

Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Output Layer

Figure 2.2: Illustration of Generic Deep Neural Network Architecture

Norouzian et al. [54] employed a standard neural network, comprising of a two-

layer multi-layer perceptron model with back propagation learning method. Their

proposed approach was evaluated on categorizing six different types of attacks us-

ing the KDDCUP99 dataset. Another DL-based distributed threat detection system

for IoT networks was proposed in [20] where the authors conducted a comparative

analysis between their proposed DL model and a shallow model. During performance

evaluation, they utilized the NSL-KDD dataset and obtained a precision score of

99.20% and 98.27% for binary and multiclass classification, respectively. Otoum et

al. [57] proposed a DL-IDS framework integrating spider money optimization (SMO)

algorithm and the stacked-deep polynomial network (SDPN), where SMO being re-

sponsible for selecting the most relevant features and SDPN being responsible for

categorizing the data into normal or malicious instances. Their approach, when eval-

uated on NSL-KDD dataset for optimal feature selection of classification of various

attack classes, achieved an accuracy of 99.02%. Ravi et al. [63] introduced a method,
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which utilized hidden layer features from recurrent models, applied Kernel-based Prin-

cipal Component Analysis (KPCA) for feature selection, and employed an ensemble

meta-classifier for prediction. This approach achieved a remarkable 99% accuracy in

detecting network attacks and 97% accuracy in classifying them using the SDN-IoT

dataset.

Within the domain of IDS, there is a growing trend of DL-based hybrid frame-

works utilizing the fusion of Convolutional Neural Network and Recurrent Neural

Network (RNN). These integrated architectures leverage the strengths of CNNs for

extracting spatial features and RNNs for sequential information analysis [1]. Hal-

bouni et al. [28] proposed a hybrid CNN-LSTM based IDS that is established

around three blocks for feature extraction, with each block consisting of a sequence

of CNN layer, Maxpooling, Batch Normalization, followed by LSTM layer and con-

cluded with dropout regularization to reduce overfitting. Following the three feature

extraction blocks, their architecture is followed by a fully connected layer employ-

ing softmax activation function to make the final prediction. In their evaluation,

the authors trained and tested their hybrid architecture on three different dataset,

namely CIC-IDS2017, UNSW-NB15, and WSN-DS, and achieved the highest accu-

racy of 94.53% and 82.41% for binary and multi-class classification, respectively, on

the UNSW-NB15 dataset. Another hybrid DL-based IDS named DCNNBiLSTM was

proposed in [29], combining 1D CNN and Bidirectional Long Short-Term Memory

(BiLSTM). The proposed architecture was investigated for multi-class classification

on CICIDS2018 and Edge IIOT datsets, achieving an impressive accuracy of 100%

and 99.64% respectively on both the datasets. Yao et al. [90] introduced an in-

novative hybrid IDS framework, combining CNN and LSTM architectures through

cross-layer feature fusion. In this proposed framework, the CNN component is dedi-

cated to identifying regional features, contributing to the derivation of comprehensive

global features. Simultaneously, the LSTM component focuses on capturing periodic

features through its memory function. In essence, the proposed hybrid architecture

leverages the strengths of CNN for spatial feature extraction and LSTM for capturing

temporal dependencies. The CNN-LSTM-based Cross-Layer Feature Fusion approach

was evaluated on two benchmark datasets: KDDCup99 and NSL-KDD. Remarkably,

the results demonstrated impressive performance with an accuracy score of 99.95%
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for the KDDCup99 dataset and 99.75% for the NSL-KDD dataset.

Several of the IDS research studies have incorporated image-based approaches,

utilizing the power of CNN for its exceptional feature extraction capabilities, spatial

hierarchies, and robust pattern recognition. Al-Turaiki et al. [7] employed a two-step

preprocessing step to generate 2D grayscale images from tabular data, which involves

Principal Component Analysis (PCA) with feature engineering using Deep Feature

Synthesis (DFS). They introduced two CNN models, namely BCNN and MCNN, for

binary and multi-class classification, respectively, using five CNN layers followed by

four fully connected layers. When evaluated on two IDS datasets including UNSW-

NB15, their proposed approach achieved the highest accuracy score of 95.71% and

80.51% for binary and multiclass classification, respectively, on UNSW-NB15 dataset.

Several other research studies on image-based IDS utilizing Deep CNNs, as proposed

in [35] and [3], have been conducted where the authors utilize network spectrogram

images generated from tabular dataset using short-time Fourier transformation. Both

of these approaches, when evaluated on two different IDS datasets, demonstrated

improved accuracy and reduced false alarm rates compared to other traditional DL-

based IDS frameworks. Kim et al. [38] proposed a DL-based IDS framework using

multiple image transformer methods that involves several dimensionality reduction

algorithms, namely t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform

Manifold Approximation and Projection (UMAP), Principal Component Analysis

(PCA), Kernal Principal Component Analysis (kPCA) with Radial Basis Function

(RBF), and Kernal Principal Component Analysis (kPCA) with sigmoid to transform

the normalized pre-processed tabular data to a 120x120x1 grayscale image first. The

proposed scheme creates grayscale images for different algorithms, trains a CNN,

and computes the F1-score for training data. The top three algorithms with the

highest F1-scores are chosen. Their grayscale images are then mapped to the RGB

channels, forming a three-channel RGB image. The authors generated RGB images

from ISCXIDS2012 and CSE-CIC-IDS2018 datasets and employed a four-layer dual

concatenated CNN model for training and classification with the generated 2D RGB

images. Upon evaluation on the testing samples, the proposed IDS framework was

able to achieve an overall accuracy of 95.60% on ISCXIDS2012 dataset and an overall

accuracy of 95.50% on CSE-CIC-IDS2018 dataset.
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2.3 Pre-trained Transfer Learning Models for Intrusion Detection

In transfer learning, when a given source domain DS and learning task TS, along with

a target domain DT and learning task TT, the objective is to enhance the learning

of the target predictive function yT in DT by utilizing the knowledge of DS and TS,

where DS �= DT or T S �= TT [58]. In various practical scenario, the dimension of

DS is significantly larger than DT. Transfer learning serves as a strategic approach to

enhance the performance of a classification model in specific domains by leveraging

knowledge extracted from related yet distinct source domains. The primary goal is

to reduce the reliance on extensive amounts of data from the target domain during

model development, thereby facilitating learning in new and task-specific contexts.

As emphasized in the comprehensive study by Zhuang et al. [93], this strategy proves

particularly advantageous when addressing novel tasks or domains where collecting

substantial data is challenging. The transfer learning process typically involves mi-

grating a model’s architecture and learned weights from a source domain, which

boasts a large dataset and ample computational resources, to a target domain char-

acterized by a smaller dataset and limited computational capabilities. Figure 2.3

illustrates the procedure of transferring of knowledge from a resource-rich source do-

main to a resource-constrained target domain. By leveraging insights gained from the

source domain, transfer learning aims to improve the generalization and effectiveness

of models, especially in situations where collecting abundant target domain data is

impractical or resource-intensive.

Considering the efficiency of DL-based frameworks in precisely addressing secu-

rity issues in IoT, some researchers have suggested the use of Deep Transfer Learning

methods to create an IDS framework leveraging the knowledge of pre-trained model

on a source dataset to a target dataset. CNN based pre-trained models have gained

recognition for their efficiency in image processing tasks, and to accelerate the perfor-

mance of these models, network traffic data, which are generally available in numeric

and categorical form need, to be transformed into image format. In this regard, Hus-

sain et al. [30] proposed a chunk based methodology to convert network traffic flows

into RGB images with the remaining 60 features out of 80 features after data cleaning

from the CICDDoS2019 dataset. The authors iteratively utilized 180 data samples

from the tabular dataset to form a square shaped RGB image with dimensions of
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Figure 2.3: Process of Transfer Learning.

60x60x3, with each channel of the image comprising 60 network flow data. They

trained a state-of-the-art pre-trained CNN based model named ResNet18 with their

converted data, achieving an average precision score of 87% in detection of eleven

types of different DoS and DDoS attacks. Masum et al. [48] proposed TL-NID

framework based on VGG16 architecture, in which the authors presented an alterna-

tive technique for transforming tabular data to image using the NSL-KDD dataset.

Upon encoding the categorical features, the number of the feature attributes expanded

from 41 to 121. The authors then transformed these attributes into a grayscale image

with a 2D array size of 11x11 first. Given that greyscale images consist of just one

color channel, a channel augmentation was carried out during the conversion process

by replicating the grayscale images to create three-channel RGB images. The TL-

NID framework was assessed on the KDDtest+ and KDDTest-21 datasets, resulting

in an overall accuracy of 89.30% and 70.97%, respectively.

Haddaji et al. [27] proposed a deep transfer learning based intrusion detection in-

vehicle model named TRLID using CAN Bus Protocol for Internet of Vehicle where

the authors utilized a data preparation stage to clean the CAN bus dataset and

adopted a similar approach as proposed in [30] to transform the network flows of

CAN bus dataset into RGB images to meet the data input requirement of the transfer

learning model. In this approach, a six layer CNN based model followed by a flattening
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and two dense layers was utilized as a source domain for training. In the target

domain, the weights of the CNN base layers trained in the source domain were kept

frozen, followed by a flattening and four dense layers, among which the last dense layer

being responsible for the final classification tasks of the network flows. The authors

reported a validation accuracy of 99.97% in the validation phase in the source domain,

with a slightly lower validation accuracy of 99.87% in the target domain. Dhillon et

al. [19] utilized deep TL techniques where the authors transferred the knowledge

gained from a well-sourced source domain to a less-resourced target domain. The

authors also integrated tree-based extra-trees classifier into their approach to assess

the importance of features, determining a scoring value for each feature to evaluate the

signifiance of the feature in the classification of traffic flows. The proposed approach

utilized a CNN-LSTM architecture in both the source and target domain, achieving

98.30% accuracy in the source domain and an improved score of 98.43% in the target

domain, using the UNSW-NB15 dataset.

Yang et al. [89] introduced IDS framework Internet of Vehicle (IoV) systems, em-

ploting transfer learning and ensemble learning IDS using five different pre-trained

CNN-based TL models, including VGG16, VGG19, Xception, Inception, Inception

Resnet in conjunction with hyper-parameter optimization techniques. The authors

utilized a chunk based approach, similar to the one proposed in [30], to generate the

RGB images from the tabular data. Notably, they opted for quantile transformation

to normalize the network flow before converting them into RGB images instead of

min-max normalization due to its greater resilience to outliers. They proposed two

ensemble learning methods, namely Confidence Averaging and Concatenation Ensem-

ble, utilizing the top three best models out of five pre-trained transfer learning models.

These approaches achieved high accuracy on both the Car-Hacking and CICIDS2017

datasets. In a related approach outlined in [89], an IDS framework, titled Efficient-

Lightweight Ensemble Transfer Learning (ELETL-IDS), is introduced in [55]. In

this framework, the authors choose and utilize the top three best-performing models

from a selection of five pre-trained CNN-based transfer learning models during the

ensemble stage. These models are trained on generated 2D RGB images derived from

the tabular form of two IDS datasets. They utilized a confidence averaging ensemble

learning method. When evaluating their proposed ensemble transfer learning based
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IDS framework on the CIC-IDS2017 and CSE-CIC-IDS-2018 datasets, the ELETL-

IDS framework achieved an overall accuracy of 100% on the CIC-IDS-2017 dataset

and 99% on the CSE-CIC-IDS2018 dataset.

Although substantial research has been conducted in the field of Intrusion Detec-

tion Systems utilizing ML and DL frameworks, there remains significant untapped

potential for enhancement. A specific area of opportunity lies in the integration of the

principles of transfer learning and ensemble learning. The proposed framework aims

to fill this gap by integrating a lightweight, pre-trained transfer learning model with

weighted ensemble learning. The weights are optimized based on the performance of

each base classifier, enhancing the framework’s ability to discriminate between normal

and malicious network traffic flows, ultimately creating a more robust and intelligent

IDS framework.



Chapter 3

ME-IDS: A Novel Framework For Intrusion Detection

We begin this chapter by providing a comprehensive system overview of the proposed

ME-IDS framework, accompanied by a schematic block diagram for clarity of the

steps involved in the framework. Subsequently, we dive into the dataset employed

within this framework, discussing the process of its generation and summarizing the

distribution of data across both the training and testing subset. Our exploration

continues with a detailed examination of the data pre-processing techniques applied.

We then shift out focus towards the transformation of tabular data into RGB images

using a chunk-based method, followed by an in-depth explanation of the pre-trained

transfer learning model, discussing its architecture and how its different layers are

tailored to align with our specific dataset requirements, supported by a corresponding

schematic diagram. We further delve into the three hyper-parameter optimization

techniques utilized in the ME-IDS framework, providing comprehensive tables for

more detailed presentation of the optimal values for parameters derived from each of

hyper-parameter optimization technique. Finally, we explore the weighted ensemble

learning approach, shedding light on the methodology behind assigning weights to

each base classifier utilized in the framework.

3.1 System Overview

The purpose of this thesis is to provide a comprehensive framework for the develop-

ment of an intelligent IDS capable of effectively and precisely detecting both normal

and malicious network flows. Ensuring the security of network infrastructure is of

paramount importance in today’s digital age due to ever increasing interconnected

devices, and this framework is designed to enhance the accuracy and efficiency of the

detection process. The system overview for the proposed ME-IDS framework is illus-

trated in Figure 3.1, providing a visual representation of the sequential steps involved

in building this framework.

18
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Figure 3.1: System Overview of Proposed ME-IDS Framework.
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Following the collection of a real-world IDS dataset, ME-IDS enters a critical data

pre-processing phase, which serves three major objectives. This data pre-processing

phase commences by eliminating redundant data to streamline the dataset. It then

proceeds to encode categorical features to prepare the data in suitable way to be

fed into the classifier model. Additionally, the pre-processing stage concludes with

a feature selection step, employing a filter-based method to identify and retain the

most important and relevant attributes for further analysis. This final step of the pre-

processing stage effectively and strategically reduces the dimensionality of the feature

set. Considering the well-established proficiency of CNN-based Transfer Learning

models in handling image data, ME-IDS undergoes a transformation phase at the

next stage to transform the pre-processed tabular dataset into squared shape RGB

images. This RGB image transformation from tabular data is executed through a

chunk-based method, involving the segmentation of the tabular data into distinct

chunks that are subsequently converted into corresponding image segments. Addi-

tionally, the transformation incorporates a quantile transformation, adding a layer

of refinement to the dataset representation. At the next stage, a lightweight CNN

based TL model is fine-tuned using three different hyper-parameter optimization tech-

niques, resulting in three model variants. These three fine-tuned variants are then

trained using the transformed images from the previous stage and subsequently used

to make predictions on the testing dataset after the training phase. Following this,

a weighted ensemble learning approach is constructed, bringing together the predic-

tions of the three fine-tuned versions of the CNN-based TL models. The structure

of this ensemble model is designed in such a way that the classifier with the superior

performance, in terms of minimizing misclassifications during the testing phase, is

given greater significance by assigning more weight. Upon the establishment of the

ensemble, the ultimate prediction is executed using these optimized weights. This

weighted ensemble learning stage of the proposed ME-IDS framework leverages the

combined knowledge and predictive capabilities of the individual based classifiers to

detect both malicious and normal network flows with an elevated level of precision,

reliability, and intricate understanding.
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3.2 Dataset Description: UNSW-NB15

3.2.1 Dataset Generation

In this work, we used a publicly available dataset named UNSW-NB15, curated

through a combination of live network traffic, encompassing both regular and at-

tack patterns at Cyber Range Lab of Australian Centre for Cyber Security (ACCS).

This dataset was generated utilizing the IXIA Perfect Storm tool, which includes a

collection of both new attack types and publicly known security patterns and expo-

sures listed in the Common Vulnerabilities and Exposure (CVE) database. Three

virtual servers were configured with IXIA traffic generator, with servers 1 and 3 for

normal traffic distribution and server 2 designed for generating abnormal or malicious

network activities, as shown in Figure 3.2. Tcpdump tool was employed to capture

network packet traces, involving hours of compilation for 100 GB of data divided into

1000 MB pcap files, from which features were extracted using Argus and Bro-IDS on

a Linux system.

IXIA
Traffic Generator

I1 I2

59.166.0.0 175.45.176.0 149.171.126.0

Router 1
x
xTcpdump

Pcap
Files

I1: 10.40.85.1
I2: 10.40.182.1

Clients

Router 2

Clients

Firewall

I1: 10.40.184.1
I2: 10.40.183.1

I1: 10.40.182.3
I2: 10.40.183.3

10.40.85.30 10.40.184.30

Server 1 Server 2
(Malware)

Server 3

Figure 3.2: Testbed Architecture for Generating UNSW-NB15 Dataset [52].
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3.2.2 Dataset Composition

The UNSW-NB15 dataset contains modern network traffic compared to other publicly

available IDS dataset, encompassing both normal and malicious attack flows, which

also include present-day low footprint attacks [40]. The creation of this dataset is

driven by the shortcomings of the KDDCUP 99 [77] and NSLKDD [77] datasets, in-

cluding the issues of significant presence of redundant records in training set, existence

of numerous missing records, and the dataset’s inadequacy in offering a comprehensive

representation of modern low foot print attack environment [52,82].

The UNSW-NB15 dataset, comprising of 2,57,673 records, has been partitioned

into a training and testing set, with 1,75,341 records in the training set and 82,332

records in the testing set. Each individual record within the UNSW-NB15 dataset

is characterized by a total of 43 features, including 40 numeric and 3 categorical

features. Additionally, the dataset includes two distinct labels as feature attribute

for classification purpose. The first label comprises 9 distinct types of attack classes,

each class representing a specific type of modern day malicious attack, alongside a

class for normal network flow. The other label feature is binary, ‘0’ denotes instances

classified as normal, while ‘1’ signifies instances identified as the malicious network

flow. As the major purpose of IDS is to differentiate attack flows from normal flows,

we have restricted our work to binary classification only. Additionally, the distribution

records between the attack and normal classes in UNSW-NB15 dataset is relatively

more balanced compared to other NIDS datasets such as KDD99, NSL-KDD [5].

The distribution of the normal and attack flows in the training and testing subset of

UNSW-NB15 dataset has been illustrated in Table 3.1.

Table 3.1: Data Distribution of UNSW-NB15 Dataset

Network
Type

Training Set Testing Set
Number of
Records

Percentage
(%)

Number of
Records

Percentage
(%)

Normal
Flow

56,000 31.94 37,000 44.94

Attack
Flow

119,341 68.06 45,332 55.06
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3.3 Data Pre-Processing

3.3.1 Data Cleaning

The data cleaning phase commenced with a comprehensive analysis of both the train-

ing and testing subset to identify and address data instances of missing or malformed

data. In this initial step, we systemically examined which samples contained missing

values or inadequate entries such as NaN. It is important to analyze the presence

and handle missing or ‘nan’ values within a dataset as these values don’t provide

any meaningful contribution to the prediction process. Notably, in contrast to other

intrusion detection datasets, it is observed that there are no such instances of miss-

ing or ‘nan’ values present both in the training and testing subset of UNSW NB15

dataset.

3.3.2 Categorical Feature Encoding

In almost all the real-time datasets, categorical attributes are often prevalent which

generally exhibit high cardinality [18]. Since many machine learning and deep learn-

ing algorithms necessitate features in numerical form, it is crucial to convert the

categorical features into numerical form before feeding these features into any classi-

fication algorithm. Among various categorical feature encoding techniques, one-hot

encoding and label encoding are widely employed, although both of the methods

come with their associated drawbacks. One-hot encoding represents each category

with a binary vector indicating presence (1) or absence (0) of the feature’s value

[80], while label encoding assigns an arbitrary numeric integer to each categorical

feature categories [39]. One-hot encoding tends to lead to high dimensionality and

increased computational complexity, while label encoding introduces unintended or-

dinal relationships among categories, potentially impacting the model’s performance

[39]. This is why we have adapted the concept of frequency encoding that is used to

replace each attribute of the categorical features with the total frequency or count

[59] within the dataset. Figure 3.3 illustrates an example of a categorical feature

encoding where each category is replaced by the number of times it occurs in that

feature column. The main problem with frequency encoding arises when there exists

two or more categories with the same frequency as this leads to no distinction between
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those categories. To address this issue, a random noise using a normal distribution

with mean 0 and standard deviation of 0.01 is added to the categorical features to

mitigate the issues arising from tied frequency counts between two or more categories.

Protocol
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TCP
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Figure 3.3: Illustration of Frequency Encoding for Categorical Feature.

3.3.3 Feature Selection

Tackling the challenge of high-dimensional data in most of the real-world IDS datasets,

often associated with curse of dimensionality, is crucial task in developing a precise

predictive model [61]. Effective feature selection methods can enhance the efficiency

of learning models, improve predictive accuracy and simultaneously reduce the com-

plexity of both high-dimensionality and training complexity. The feature selection

techniques commonly used in classification tasks can be categorized into three groups,

namely filters, wrappers and embedded methods. Among these, wrapper and embed-

ded methods are classifier dependent and are relatively slower, making them more

susceptible to overfitting compared to filer methods [61], which is why filter-based

method is employed to eliminate the redundant features. Before applying the feature

selection methods on UNSW-NB15 dataset, we have dropped one feature “id” which

represents the unique identifier for each record in the dataset and does not provide

any meaningful insight. In filter based methods, features are evaluated through sta-

tistical tests assess their correlation with the class, and those score below a specific

threshold are subsequently eliminated. Among the filter based methods, we have se-

lected chi-square test that quantifies the disparity between the observed frequency in
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each category and the anticipated frequency as per the null hypothesis, which posits

no association between the variables. The chi-square statistic can be calculated by:

x2 =
∑ (Oi − E i)

2

E i

(3.1)

where Oi is the number of observed value of a class and Ei in the number of expected

values. After computing the chi-square statistic for each feature, the p-value can be

determined by employing the chi-square distribution with degrees of freedom which

signifies the likelihood the encountering a chi-sqaure statistic as extreme as the com-

puted one, assuming no association between the variables. Features characterized by

lower p-values are deemed to exhibit a strong association with the target variable and

are chosen for modeling. In this method, we have a chosen a significance threshold

of p-value ≤ 0.05. The p-value threshold of 0.05 serves as a benchmark and has been

incorporated into diverse scientific disciplines, thus motivating its selection within

the proposed framework. Among the computed p-values for the features of UNSW-

NB15 dataset illustrated in Figure 3.4, three features, namely ‘ackdat’, ‘trans depth’

and’sloss’, exceeded this threshold, resulting in their exclusion from the feature set.

Consequently, the remaining 39 features are retained for further analysis.

Figure 3.4: Feature Significance Analysis Using Chi-Square p-Value.
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3.4 Tabular Data to Image Transformation

The process of transforming tabular data into images is a crucial step in adapting

the network traffic data to the requirements of pre-trained TL model which begins

with the separation of normal and attack flows into two distinct data frames. To keep

the data features on a consistent scale, enabling the fair comparison and meaningful

interpretation of data, feature scaling is required. Min-max and standardization are

two of most common scaling methods used to normalize the features. While both

min-max normalization and standardization are sensitive to the presence of outliers

[45], and standardization may transform negative pixel values that are typically not

suitable for image representation, quantile transformation is employed in this research

which is used to transform the feature’s distribution into a specific uniform distribu-

tion. This transformation involves remapping the original data values to new feature

values that align with specific quantiles within the desired uniform distribution. No-

tably, quantile transformation is also considered to be an effective transformation

strategy that enhances robustness against outliers [64].

As 39 important features has been determined through chi-square p value, a chunk

of 39 x 3 = 117 rows from the tabular data has been selected iteratively to form a

square image after data normalization. The transformation process involves arrang-

ing the first 39 feature rows of each chunk into an image matrix for channel 1, the

next 39 feature rows into an image matrix for channel 2, and the final 39 samples

into an image matrix for channel 3. These channel-specific matrices are then com-

bined and converted into a 39x39x3 RGB image using the OpenCV library which is a

well-known python library for handling and manipulating image dataset. Afterwards,

labels are assigned for each RGB images to specify whether they belong to the nor-

mal class or malicious/attack class. This process is adhered to for both training and

testing dataset until all the data samples are transformed into images. In Figure 3.5,

a singular representation from both the normal and attack classes is depicted, reveal-

ing pronounced disparities in the feature patterns distinguishing the normal from the

malicious class. The visual illustration underscores substantial variations, highlight-

ing the noticeable differences between the two classes in terms of their characteristic

feature patterns.
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(a) (b)

Figure 3.5: Generated image samples from tabular data: (a) Normal Flow; (b) Attack
Flow.

3.5 Transfer Learning

CNN-based transfer learning architecture has become intensively used in image classi-

fication tasks [72] that involves the method of adapting a pre-trained model, originally

trained on a large dataset, to a new task by utilizing the model’s learned knowledge

and features instead of training the neural network from scratch [91]. The lower

layers of a CNN based pre-trained models typically capture general patterns appli-

cable across various tasks enabling the lower layers to be readily applied to different

tasks, while the upper layers specialize in dataset-specific features. To enhance the

performance of CNN based transfer learning approaches, most of the lower layers are

kept fixed with unchanged weights, but a subset of the top layers is adjusted using

hyper parameter tuning to help in adapting the model to a new dataset [43].

Within the ME-IDS framework, VGG16 [70] is used as base architecture, chosen

for its advantageous blend of relative lightweight characteristics compared to other

CNN-based transfer learning architectures. This choice is underpinned by the com-

pelling feature of VGG16, which not only exhibits a streamlined design but also show-

cases remarkable accuracy across diverse image classification tasks. The architectural

composition of VGG16 comprises a comprehensive total of 16 layers, encompassing 13

convolutional layers seamlessly followed by 3 additional fully connected layers. The

convolutional layers are organized into five blocks, with the first two blocks having

two convolution layers each with 64 filters of size 3x3 in the first block and 128 filters

of size 3x3 in the second block. Both of these blocks concluded with a max pooling
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layer of size 2x2. In the third CNN block, there are three convolutional layers with

256 filters of size 3x3 in each layer, followed by a max-pooling layer of size 2x2. The

fourth and fifth CNN blocks are similar, with each having a number of three convo-

lutional layers in each block with 512 filters of size 3x3. Both blocks conclude with a

max-pooling layer of size 2x2. The initial evaluation of the VGG16 dataset has been

performed on the ImageNet dataset which is a large-scale image dataset consisting of

millions of labelled image data. This large-scale imagery dataset serves as a robust

benchmark for assessing the capabilities of the VGG16 architecture, allowing for a

comprehensive examination of its proficiency in handling diverse and intricate visual

information. In our proposed methodology, we have used the five initial feature ex-

tractor CNN blocks of VGG16 architecture. Following these CNN blocks, we have

integrated a flattening layer, followed by a fully connected layer with dropout regu-

larization technique. The final layer in our architecture is a sigmoid activation layer

with single neuron, tailored specially for the binary classification task. As VGG16

has an input dimension of 224x224x3, the RGB images generated in Section III-C are

resized to 224x224x3 from 39x39x3 to match the model’s requirement. To enhance

adaptability for the UNSW-NB15 dataset, the weights of the fifth CNN block are kept

unfroze and three different hyper-parameter tuning techniques are employed to find

the optimal number of frozen layer, fully connected layer’s filter size, and dropout

percentage.
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Figure 3.6: Proposed VGG16 Architecture adapting to the UNSW-NB15 dataset.
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3.6 Hyper-Parameter Optimization

Hyper-parameter optimization in DL aims to determine the optimal combination of

parameters for a neural network to increase its predictive performance on a particular

task. Hyper-parameters are parameters that are not learnt during the training pro-

cess but are set with specific search space prior to the training [9]. Hyperparameter

optimization involves discovering a set of hyperparameters that leads to an optimal

model, minimizing a predetermined loss function and consequently enhancing accu-

racy on independent datasets. It is a crucial phase in both the model development

and training, as the selection of hyperparameters can have a direct influence on the

performance of the model. The optimization of hyperparameters can be denoted in

equation form as:

x∗ = argmin
x∈X

f(x) (3.2)

The objective function, denoted as f(x) represents a measure to minimize, such as the

error rate assessed on the validation dataset. x∗ signifies the set of hyper-parameters

that leads to the lowest score and x can be any value within a specific search range

within this domain. In simpler terms, the goal is to find the optimal values of the

hyperp-parameters that result in the highest performance score on the validation

dataset.

For CNN-based transfer learning models, hyper-parameter tuning is critical as it

enables the optimization of the key parameters by finding the right combination that

ensures the model’s adaptability to specific task and dataset, thus maximizing its

predictive capabilities. The hyper-parameter chosen for fine-tuning in our framework

can be divided into two major categories. The first category encompasses parameters

related to the model’s architecture, which includes number of frozen layers, filter num-

bers in fully connected layers, and the dropout rate. The second category pertains to

parameters involved in the training process, such as learning rate, patience for early

stopping, and the number of epochs for training. In the ME-IDS framework, three dif-

ferent hyper-parameter optimization techniques, namely Simulated Annealing, Tree

Parzen Estimator (TPE), and Random Search, are utilized to find the optimal values

for the above-mentioned hyper-parameters used in building and training the VGG16

model.
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3.6.1 Simulated Annealing

Simulated Annealing (SA) is built on the principles of metallurgical annealing [65],

adapting the process to optimize complex systems by employing a probabilistic explo-

ration of solution spaces to escape local optima. The algorithm initiates by randomly

selecting a set of hyper-parameters within the specified range of values provided by the

user. The quantitative key of this optimization method is Boltzamann distribution

that gives the probability of any actual state of x

p(x) = e
−Δf(x)

kT (3.3)

where f(x) represents the energy configuration, while k stands for Boltzmann’s con-

stant and T denotes temperature. SA optimization starts with a randomly chosen

initial solution, x0, and assesses its objective function. The algorithm then sets the

temperature parameter, T , which influences convergence speed. It iteratively ex-

plores neighboring solutions, accepting them probabilistically based on temperature

and gradually reduces the temperature to consider deteriorating moves when it is

high.

3.6.2 Tree Parzen Estimator

Tree Parzen Estimator (TPE) employs a tree-structured technique that uses Bayes’

rule to handle hyper-parameters, modeling p(x|y) (x represents the suggested hyper-

parameter set, while y corresponds to the actual value of the objective functions using

hyper-parameters x ) and p(y) instead of directly representing p(y|x) [11]. TPE does

not specify a predictive distribution but sets up two hierarchical processes, l(x) and

g(x), which act as generative models for all domain variables, characterizing their

performance when the objective function is either below or above a specified quantile

y∗ which can be denoted by:

p(x|y) =
⎧⎨
⎩
l(x) if y < y∗

g(x) if y ≥ y∗
(3.4)

Thus, it selects a quantile γ of observed y values, where γ is larger than the best

observed f(x), to determine y∗, enabling the algorithm to scale linearly in the size of

observed variables and the number of dimensions being optimized without requiring a
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specific model for p(y). As TPE is structured in a tree-like arrangement, this enables

to preserve the specified conditional dependencies by accommodating the specified

conditional hyper-parameters, leading to a time complexity of O(n logn) [88].

3.6.3 Random Search

Random Search (RS), introduced in [12], was proposed as an improvement over Grid

Search. Unlike Grid Search, which evaluates all values within a search space, RS takes

a different approach. It randomly picks a predetermined number of samples from the

range defined by upper and lower bounds to serve as potential hyper-parameter values.

Subsequently, it trains these selected candidates until the allocated budget is used

up. The underlying concept of RS relies on the idea that when the configuration

space is sufficiently extensive, it becomes possible to identify global optima, or at

least close approximations to them. Even with a constrained budget, RS manages

to explore a more extensive search space compared to Grid Search [12]. Given that

the total number of evaluations in RS is predetermined as n prior to commencing the

optimization process, the computational complexity of RS is expressed as O(n) [86].

Tables 3.2 and 3.3 provide a concise overview of hyperparameter configurations

for VGG16 on image datasets generated from 39 and 42 features, respectively. These

tables encompass parameters, their search spaces with step sizes, and the optimal

values achieved through the application of three optimization methods: Simulated

Annealing (SA), Tree-structured Parzen Estimators (TPE), and Random Search (RS).

Table 3.2: Hyper-parameter configuration space for VGG16 on image dataset gener-
ated using 39 features

Hyper-Parameter Search Space Step Size
Optimal Value
SA TPE RS

Frozen Layer 15 - 18 1 17 16 16
Filter 128 - 512 128 256 384 256

Dropout Rate 0.1 - 0.5 0.1 0.2 0.5 0.2
Learning Rate 0.001 - 0.005 0.001 0.004 0.003 0.002

Epoch 10 - 30 5 15 10 20
Patience 2 - 10 1 7 8 8
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Table 3.3: Hyper-parameter configuration space for VGG16 on image dataset gener-
ated using 42 features

Hyper-Parameter Search Space Step Size
Optimal Value
SA TPE RS

Frozen Layer 15 - 18 1 15 16 17
Filter 128 - 512 128 128 128 384

Dropout Rate 0.1 - 0.5 0.1 0.5 0.2 0.4
Learning Rate 0.001 - 0.005 0.001 0.001 0.001 0.002

Epoch 10 - 30 5 15 20 30
Patience 2 - 10 1 3 10 6

3.7 Weighted Ensemble Learning

A weighted ensemble learning approach is utilized in this framework where the three

fine-tuned variants of VGG16 are treated as base classifiers and the predictions of

these three base classifiers are combined together with specific optimized weight to

make the final prediction. The weighted ensemble approach can be denoted by the

following formula:

yensemble =
n∑

i=1

W iF i(x) (3.5)

where Fi(x) represents the prediction made by ith base classifier for input x, Wi be the

weight assigned to ith classifier and yensemble represents the final ensemble prediction for

input x. The weight to each base classifier’s prediction is assigned based on the number

of misclassified samples it incurred during its testing phase. The rationale behind this

weight assignment is that the higher the number of misclassification incurred by a base

classifier, the lower the importance that it should receive in the ensemble approach.

In essence, the weights are inversely proportioned to the number of the misclassified

samples, aimed to capture and prioritize the contributions of base classifiers based on

their individual performance in minimizing misclassifications. This relationship can

be denoted by the following formula:

wi =
1

mi + ε
(3.6)

The weights for each base classifier’s prediction are calculated using the (5) first

where mi represents the total number of misclassification made by ith classifier and to

handle rare cases when mi is equal to 0, we have incorporated a very small constant
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value of 0.001 for ε. Before assigning the weight to each base classifier’s prediction,

each weight is normalized within the range of 0 to 1. This normalization process is

implemented to ensure that the contribution of each base classifier is aligned within

the same scale. The goal of this normalization step is to mitigate the sensitivity to

the magnitude of weights, fostering a more balanced and effective weighted ensemble

stage. This normalization process is ensured by dividing the weight of ith classifier

by the total sums of weights which can be represented by:

W i =
wi∑n
i=1 wi

(3.7)

Algorithm 1 outlines the step-by-step procedure of our weighted ensemble learning

approach. The process initiates by undertaking the training of three discrete VGG16

base models on the designated training dataset. Subsequent to this training phase,

predictions are systematically generated on the testing dataset by each base classifier,

enabling a comprehensive assessment of each classifier’s predictive capability. Next,

by evaluating the performance and considering the number of misclassified samples

incurred by each base classifier, weights for each base classifier’s prediction are cal-

culated using 3.6. Ultimately, we leverage the optimized weights within our weighted

ensemble learning approach to make the final prediction.

The weighting mechanism in our proposed ensemble approach is inspired by the

algorithm of adjusting weights proposed in [13]. However, in our scheme, the use of

mean square error has been departed from, and instead, misclassification samples have

been employed as the key criterion for weight determination for each base classifier.

In the ensemble learning stage, the assignment of weight to the base classifier is based

on the total number of misclassified samples. This approach offers various advantages

over other static or extensively fine-tuned weight assignment processes. Not only does

this dynamic adaptation enhance the ensemble’s flexibility across diverse datasets, but

it also simplifies the conceptual understanding of weight assignment. Importantly,

this approach maintains robustness without necessitating extensive tuning efforts,

thereby circumventing the time and resource consumption typically associated with

such tuning processes.
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Algorithm 1 Weighted Ensemble Learning with Optimized Weight

Require: Training Data DTrain = (XTrain, YTrain), Testing Data DTest = (XTest, YTest),

Base Models, M = M1 (VGG16-SA), M2 (VGG16-TPE), M3 (VGG16-RS)

1: for i = 1 to 3 do

2: Train M [i] on DTrain

3: end for

4: for i = 1 to 3 do

5: Predictions[i] = M [i].predict(XTest)

6: end for

7: TotalMisclassified = 0

8: for j = 1 to length(DTest) do

9: Misclassified = 0

10: for i = 1 to 3 do

11: if Predictions[i][j] �= TrueClass[j] then

12: Misclassified = Misclassified + 1

13: end if

14: end for

15: TotalMisclassified = TotalMisclassified + Misclassified

16: end for

17: for i = 1 to 3 do

18: W [i] = 1/(MisclassifiedSamples[i] + ε)

19: end for

20: Normalize W such that
∑

W = 1

21: for i = 1 to 3 do

22: W [i] = W [i]/
∑

W

23: end for

24: for i = 1 to length(DTest) do

25: WeightedSum = 0

26: for j = 1 to 3 do

27: WeightedSum += (W [j] * Predictions[j][i])

28: end for

29: FinalPrediction[i] = WeightedSum

30: end for



Chapter 4

Performance Evaluation

In this chapter, we begin by delving into the experimental setup that underpinned the

implementation of our framework, providing details about the hardware and software

configuration. We then discuss about the evaluation metrics used to gauge the perfor-

mance of different IDS schemes. Subsequently, we conduct a comprehensive perfor-

mance analysis of traditional ML-based IDS applied to the selected dataset. Finally,

we present the outcomes of ME-IDS and undertake a comparative performance anal-

ysis against the base classifiers utilized in our framework and extend the comparison

to three other benchmark ensemble methods, namely Stacked Ensemble [78], Confi-

dence Averaging [89], and Concatenation Ensemble [89]. This thorough comparative

assessment allows us to gauge the efficacy and superiority of our proposed framework

in relation to existing methodologies.

4.1 Experimental Setup

All the IDS schemes under investigation were implemented using Python 3.8, and

further enhanced through the integration of widely used libraries for machine learning

and deep learning framework, including Scikit-Learn and TensorFlow 2.8. To leverage

significantly faster training for this undertaking, a high-performance server, equipped

with an Nvidia Quadro RTX 8000 GPU and 32 GB of memory, is utilized specifically

tailored to boast significant processing capabilities and efficiently handle large-scale

datasets. To put it to the test, one of the renowned and widely accepted real-world

network intrusion detection datasets is utilized, namely UNSW-NB15, as extensively

described in Chapter 3 of our work.

35
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4.2 Evaluation Metrics

The performance of our proposed ME-IDS framework is evaluated through four uni-

versally recognized performance metrics: accuracy, precision, recall and f1-score.

These metrics collectively can offer a thorough evaluation different IDS’s ability to rec-

ognize and categorize network intrusion. Notably, most real-world IDS datasets reveal

a considerable imbalance, with varied frequencies between normal and attack flows.

Acknowledging this inherent challenge, these four evaluation metrics are selected to

obtain a more comprehensive view of the performance of different IDS schemes, which

emphasizes its ability to maintain a balanced trade-off between true positives (TP),

true negatives (TN), false positives (FP) and false negative (FN). For the binary clas-

sification scenario, each of these metrics is computed using the average value of both

classes.

• Accuracy: Accuracy is used to determine the percentage of the right predic-

tions the model makes out of all the predictions. It is computed as the ratio

of the total number of correct predictions to the total number of predictions.

The formula of accuracy can be denoted as follows, that transforms a model’s

accuracy into a percentile value which serves as a mean to assess the model’s

overall performance.

Accuracy =
TP+ TN

TP + TN + FP + FN
× 100 (4.1)

• Precision: Precision is another evaluation metric that measures the accuracy

of positive predictions made by a model. It quantifies how good the model is at

correctly identifying true positive instances out of all the positive predictions

it generates. In other words, it is used to determine a model’s ability to avoid

false positive predictions, which can be mathematically represented using the

following formula.

Precision =
TP

TP + FP
(4.2)

• Recall: Recall, also known as sensitivity, indicates the model’s capability to

accurately identify the positive instances out of all the actual positive instances.
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It is considered as one of the effective evaluation metrics in case of data imbal-

ance. It assesses a model’s effectiveness in capturing all the real positives within

a dataset. Recall is computed by taking the ratio of true positive predictions

to the total number of positive instances in the dataset, which can be denoted

by the following formula.

Recall =
TP

TP + FN
(4.3)

• F1-Score: The F1-Score is a single evaluation metric that combines both the

precision and recall into a single value. It is the harmonic mean of precision

and recall, and is calculated using the following mathematical formula:

F1-Score = 2× Precision × Recall

Precision + Recall
(4.4)

F1-Score is also a useful evaluation metric when there is an uneven class dis-

tribution among target classes or when it’s crucial to minimize both the false

positives and false negatives.

4.3 Performance of Traditional ML-based IDS

During the progression of the thesis, the initial architecture of the IDS is formulated

using ML and explored using a range of ML-based IDS approaches. This section will

provide an overview of our experiments and results we achieved during the testing

phase of the traditional ML-based IDS. The practical application of ML involves

making predictions about the characteristics of data based on prior analysis conducted

during a training phase. In context of the IDS, the primary goal is to determine the

nature of the network packets, determining whether it falls into a normal traffic flow

or a malicious one. The primary method for building such a system is supervised

learning, in which the ML models are trained using a set of training samples, including

normal and malicious flow. Based on the learning of signatures and patterns of

network flows from the training set, the ML-based IDS is used to classify unseen

network flows as normal or attack. In this perspective, the IDS will consistently

perceive attack packets as deviation from the norm, and from a statistical perspective,
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the characteristics of such flow’s data will always appear as outliers when contrasted

with the standard baseline.

In this thesis, we have implemented six different ML-based IDS with their default

parameters to build the initial architecture for IDS, namely Decision Tree (DT),

Random Forest (RF), Gaussian Näıve Bayes (GNB), Logistic Regression (LR), k-

Near Neighbors (kNN), and Stochastic Gradient Descent (SGD). These particular

classifiers are selected due to their robust effectiveness and versatility in a wide range

of classification tasks, making them ideal candidates for the tasks at hand. Moreover,

these classifiers encompass a wide array of algorithmic techniques [68], covering

tree-based methods (DT and RF), probabilistic models (GNB), linear models (LR),

instance-based learning (kNN), and optimization based approaches (SGD) which help

in exploring a varied range of modeling strategies and preventing from limiting to the

constraints of a single classifier. As stated earlier, the UNSW-NB15 dataset comprises

a total of 42 features, out of which 39 features were identified significant through chi-

squared p-value in Chapter 3. As a matter of fact, all the six ML-based IDS are

trained and evaluated using both the selected 39 features and the complete set of

42 features from the UNSW-NB15 dataset. This approach enables to showcase the

importance of the feature selection methods chosen in the proposed framework within

the realm of IDS.

RF and DT, both the tree-based IDS, worked well in identifying the network

flows compared to other ML-based IDS when trained and tested with all the features

from UNSW-NB15 dataset, with RF exhibiting the highest accuracy of 87.03% and

DT following closely at 85.96%. RF also yielded strong precision and recall score of

89.64% and 85.74%, respectively, resulting in a commendable F1-Score of 86.41%.

On the other hand, DT maintained a balanced trade-off between precision and recall

score, yielding an F1-score of 85.41%. However, GNB lagged behind in accuracy at

75.20%, with precision and recall scores that are not as competitive, leading to a

relatively lower F1-score of 73.83%. LR, kNN, and SGD fell in between in terms of

performance, with RF demonstrating the best overall performance with all the fea-

tures from UNSW-NB15 dataset. The performance evaluation of the above mentioned

ML-based IDS with all the 42 features from UNSW-NB15 dataset is summarized in

Table 4.1.
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Table 4.1: Performance of Traditional ML-based IDS with All Features from UNSW-
NB15 Dataset

Classifier
Accuracy Precision Recall F1-Score

(%) (%) (%) (%)
DT 85.96 87.57 84.87 85.41

RF 87.03 89.64 85.74 86.41

GNB 75.20 76.79 73.64 73.83

LR 80.40 84.91 78.47 78.86

kNN 84.78 87.12 83.46 84.04

SGD 80.93 87.05 78.80 79.17

The classification results, outlined in Table 4.3, offer the significance of the se-

lected features by providing an insight into the performance of various ML-based

IDS. These results are particularly noteworthy as they are based on the utilization

of 39 out of the 42 available features. The deliberate selection of these features has

evidently contributed to an enhancement in performance metrics such as accuracy,

precision, recall, and F1-score. The analysis of these outcomes provides a nuanced

understanding of the impact of specific features on the overall detection capabilities,

thus aiding in the refinement and optimization of intrusion detection methodologies.

Notably, RF stands out as the top performer is case of 39 features as well, achieving

an increased accuracy of 87.18%. RF also exhibits the highest precision and recall

score of 89.79% and 85.89% in the 39-feature scenario, respectively, which results in a

commendable F1-score of 86.56%. DT also showed a performance improvement, with

slight increase of accuracy score from 85.96% to 86.06% when trained the classifier

with 39 features instead of all the features. DT also showed a balanced trade-off

between precision (87.65%) and recall (84.91%) score. On the other hand, GNB lags

behind the tree-based classifiers in terms of 39 features as well, with an accuracy of

75.99%, suggesting that it may not be the best ideal choice for the particular dataset.

Logistic Regression (LR) delivered moderate performance with an accuracy of 80.40%,

accompanied by balanced precision (84.92%) and recall (78.47%), resulting in an F1-

score of 78.86%. k-Nearest Neighbors (kNN) exhibited slightly better accuracy at
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84.87%, with precision (87.20%) and recall (83.56%) figures, resulting in an F1-score

of 84.14%, showcasing a trade-off between precision and recall. Stochastic Gradient

Descent (SGD) posted similar results to kNN, with an accuracy of 80.93% and an

F1-score of 79.17%, implying a fair balance between precision and recall.

Table 4.2: Performance of Traditional ML-based IDS with Selected Features from
UNSW-NB15 Dataset

Classifier
Accuracy Precision Recall F1-Score

(%) (%) (%) (%)
DT 86.01 87.67 84.91 85.46

RF 87.18 89.79 85.89 86.56

GNB 75.99 78.81 74.15 74.29

LR 80.40 84.92 78.47 78.86

kNN 84.87 87.20 83.56 84.14

SGD 80.93 87.05 78.80 79.17

It is noticeable from Table 4.1 and 4.2 that both the tree-based IDS, RF and

DT, displayed consistent high performance in both scenarios. The accuracy of RF

increase from 87.03% with all features to 87.18% with selected feature set, showing a

slight improvement of 0.15%. In case of DT, the accuracy also improved from 85.96%

with all features to 86.01% with reduced feature set, indicating a 0.05% improve-

ment. While both LR and SGD based IDS demonstrated consistent performance

across all performance metrics when evaluated with both the reduced feature set and

the complete set of features, it is noteworthy that the GNB-based IDS exhibited a

notable and substantial improvement specifically in precision. GNB’s precision in-

creased from 76.79% when using all features to 78.81% with the reduced feature set,

marking a notable 2.02% improvement. The improvement in precision underscores

the effectiveness of feature selection in enhancing the GNB’s capacity to accurately

classify instances within the positive class. This refinement is particularly noteworthy

in scenarios where minimizing false positives is crucial, emphasizing the significance

of thoughtful feature selection strategies in optimizing model performance for specific

classification objectives. Additionally, the performance of kNN remained consistent
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in both the scenario across all the evaluation metrics, showing minimal improvement

when using fewer features. The performance improvement of all the metrics for the

six traditional ML-based IDS when utilizing 39 features instead of 42 features has

been visually represented in Figure 4.1. This illustration provides a clear overview

of how the selection of the important features positively impacted classification by

making slight increase in all the evaluation metrics.

Figure 4.1: Performance Improvement of Traditional ML-based IDS with Selected
Features from UNSW-NB15 Dataset

4.4 Performance of ME-IDS and Other Benchmark IDS Frameworks

In our proposed ME-IDS framework, three different hyper-tuned variants of VGG16,

namely VGG-SA, VGG-TPE, and VGG16-RS, are utilized in our approach using SA,

TPE, and RS hyper-parameter optimization techniques, respectively. The prediction

of these three variants of VGG16 classifier are combined together with an optimized

weight assigned to each classifier based on the performance of each variant, as men-

tioned in Chapter 3. The effectiveness of our proposed ME-IDS framework is assessed

using four above-mentioned four performance evaluation metrics as well: accuracy,

precision, recall and f1-score.

In order to assess the performance of ME-IDS, we conducted a comparative anal-

ysis with three other benchmark ensemble-based methods, namely Stacked Ensemble
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[78], Concatenation Ensemble [89], and Confidence Averaging [89]. Stacked Ensem-

ble learning is constructed as a two-layer classifier, with DT, LR, and GNB serving as

the level 0 or base classifiers, while SGD is employed as the level 1 or meta classifier,

as mention in [78]. On the other hand, five different pre-trained transfer learning

models, namely VGG16, VGG19, Xception, ResNet50, and InceptionV3, are primar-

ily utilized to train and test the images generated from the image data extracted from

the UNSW-NB15 dataset. Among the five pre-trained models employed, the top three

performing models on our dataset are selected to build the Confidence Averaging and

Concatenation Ensemble. The evaluation of Stacked Ensemble is assessed using the

tabular representation of the UNSW-NB15 dataset, while the remaining two methods,

Concatenation Ensemble and Confidence Averaging, are evaluated based on the im-

ages generated from the same UNSW-NB15 dataset. To ensure a fair and meaningful

comparison between our approach and other benchmark methods, we have conducted

evaluations under consistent conditions including using the same simulation settings

as solely comparing performance metrics mentioned in the respective original publica-

tions without its implementation can be deceptive when determining the superiority

of one method over another.

Initially, we conducted an evaluation of the proposed ME-IDS framework, compar-

ing its performance to base classifiers and benchmark ensemble learning approaches

using images generated from all 42 features of the UNSW NB15 Dataset. Starting

with the stacked ensemble, implemented using the tabular data, demonstrated an

overall accuracy score of 85.89%, showing strong precision but slightly lower recall

and F1-Score. Moving on to the concatenation ensemble and confidence averag-

ing, both implemented using the generated RGB images, showed significant improve-

ments with accuracies of 95.71% and 97.39%, respectively, demonstrating a better

balance between precision and recall. The significant leap in the evaluation met-

rics unquestionably underscores the superiority of the image-based approach over the

tabular data. The subsequent three hyper-tuned variants of VGG16 utilized in ME-

IDS framework, namely VGG16-SA, VGG16-TPE and VGG16-RS, exhibited much

higher accuracy, with VGG16-TPE being the top performer, achieving 98.31% ac-

curacy, 98.34% precision, 98.24% recall, and a F1-score of 98.29%. The proposed
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framework, ME-IDS, combining the predictions of all three VGG16 hypertuned vari-

ants with optimized weights, outperforms all other methods, boasting an impressive

accuracy score of 98.77%, along with high precision, recall, and F1-score, making it

the most robust among those evaluated. Table 4.3 summarizes the evaluation metric

scores of our proposed ensemble framework, as well as the scores of three different

hyper-tuned variants of VGG16, namely VGG-SA, VGG-TPE, and VGG16-RS, uti-

lized in our approach respectively, on the RGB images generated from all the features

of the UNSW-NB15 dataset, alongside three other mentioned benchmark ensemble

methods.

Table 4.3: Performance and Comparison of ME-IDS with Three Other Benchmark
Ensemble Learning Approaches for IDS and Base Classifiers on Image Data Generated
from All Features of UNSW-NB15 Dataset

Method
Accuracy Precision Recall F1-Score

(%) (%) (%) (%)
Stacked

85.89 87.45 84.81 85.34
Ensemble [78]

Concatenation
95.71 96.38 95.22 95.61

Ensemble [89]

Confidence
97.39 97.73 97.09 97.34

Averaging [89]

VGG16-SA 98.16 98.33 97.98 98.13

VGG16-TPE 98.31 98.34 98.24 98.29

VGG16-RS 97.69 97.99 97.44 97.66

ME-IDS 98.77 98.87 98.67 98.76

The performance analysis, summarized in Table 4.3, reveals its substantial perfor-

mance over base classifiers and other benchmark ensemble learning approaches, when

evaluated on the RGB images generated from all features. Compared to stacked en-

semble, the proposed approach exhibited an increase of 12.88%, 11.42%, 13.86% and

13.42% in accuracy, precision, recall, and F1-score. Similarly, when contrasted with

Concatenation ensemble and confidence averaging, the proposed approach showcased

a significant gain of 3.06% and 1.38% in accuracy, respectively as well. The proposed



44

framework also outperformed the base classifiers, with improvements observed across

all four evaluation metrics. Figure 4.2 illustrates the performance improvement across

different evaluation metrics of ME-IDS, evaluated on the RGB images generated us-

ing all features, in compared to the three individual classifiers employed within the

framework, and three other mentioned benchmark ensemble methods.

Figure 4.2: Performance improvement of ME-IDS compared to base classifiers used
in ensemble approach and three other benchmark ensemble methods, evaluated on
RGB images generated using All features.

The evaluation scores presented in Table 4.4 for the ME-IDS, as well as the base

classifiers and other benchmark ensemble learning methods applied to the images

generated from 39 features out of 42 features offer a significant insights into the im-

pact of the feature selection on performance metrics. Except for the stacked ensemble

and concatenation ensemble, the other methods demonstrated substantial improve-

ments across all evaluation metrics with reduced number of features. Namely, Con-

fidence Averaging achieved an accuracy score of 97.72%, showing a slight increase

from 97.39% in the previous metrics. In case of base classifiers, VGG16-RS experi-

enced a substantial improvement performance when trained and evaluated with the

RGB images generated using selected features. It achieved an impressive accuracy

score of 99.43%, a notable increase from its previous accuracy of 97.69%. VGG16-RS

demonstrated notable improvements across other evaluation metrics as well, showcas-

ing enhanced precision, recall, and F1-score. This signifies that the positive impact



45

of the feature selection, contributing to a more nuanced and refined performance in

terms of the model’s performance. VGG16-TPE also showed a significant improve-

ment with reduced number of features, achieving an accuracy score of 99.15% from

98.31%. Additionally, this improvement extended to other evaluation metrics, with

VGG16-TPE’s precision, recall, and F1-score also improving to 99.17%, 99.11%, and

99.14%, respectively. When the predictions of the base classifiers were combined with

optimized weights in the proposed framework ME-IDS, a notable improvement was

observed. ME-IDS, with the reduced number of features, saw its performance elevate

from an initial accuracy of 98.77%, 98.87% precision, 98.67% recall, and a 98.76%

F1-score to an impressive 99.72% accuracy, 99.74% precision, 99.68% recall, and a

99.71% F1-score. This outcome underscores the significant enhancement achieved

through the feature selection strategy, making ME-IDS a highly effective intrusion

detection system.

Table 4.4: Performance and Comparison of ME-IDS with Three Other Benchmark
Ensemble Learning Approaches for IDS and Base Classifiers on Image Dataset Gen-
erated using Selected Features of UNSW-NB15 Dataset

Method
Accuracy Precision Recall F1-Score

(%) (%) (%) (%)
Stacked

85.85 87.47 84.75 85.29
Ensemble [78]

Concatenation
95.31 96.07 94.78 95.20

Ensemble [89]

Confidence
97.72 97.96 97.50 97.69

Averaging [89]

VGG16-SA 98.72 98.79 98.63 98.70

VGG16-TPE 99.15 99.17 99.11 99.14

VGG16-RS 99.43 99.43 99.43 99.43

ME-IDS 99.72 99.74 99.68 99.71

The ME-IDS framework stands out prominently with reduced set of features as

well, exhibiting substantial improvements across all evaluation metrics when com-

pared to base classifiers and benchmark ensemble methods. When compared to
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stacked ensemble, ME-IDS outperformed it significantly, with an accuracy increase

of 13.87%, precision improvement of 12.27%, recall enhancement of 14.93%, and an

F1-socre boost of 14.42%. Concatenation ensemble lags behind ME-IDS with an

accuracy different of 4.41%, while confidence averaging also falls short, showing an

accuracy difference of 2.00%. Notably, it showcased substantial improvement in recall

score as well, by surpassing concatenation ensemble by 4.9% in recall score, indicating

its effectiveness in capturing a higher proportion of actual positive instances. More-

over, ME-IDS also outperformed the base classifiers in terms of accuracy by margins

of 1.00%, 0.57%, and 0.29% compared to VGG16-SA, VGG16-TPE, and VGG16-RS,

respectively. Additionally, ME-IDS demonstrated significant performance improve-

ment across the other evaluation metrics as well under investigation, as illustrated in

Figure 4.3.

Figure 4.3: Performance improvement of ME-IDS compared to base classifiers used
in ensemble approach and three other benchmark ensemble methods, evaluated on
RGB images generated using All features.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

The substantial volume of data transmitted over the internet presents unique chal-

lenges for the traditional IDS. Recently, new IDS solutions have harnessed the ad-

vantages of DL, which has helped address many traditional problems. However, DL

based IDS still encounters various constraints, including a scarcity of training data

and the substantial computation resources required for training models from scratch.

To address these challenges, this paper proposed a novel framework that combines

the principles of transfer learning and ensemble learning, where transfer learning mit-

igates the issue of computational complexity by eliminating the need to train a model

from scratch, and ensemble learning merges the results of multiple classifiers with op-

timized weights to create a more robust IDS. Furthermore, to address the challenges

of complex model training and curse of feature dimensionality, one of the filter-based

feature selection methods has been employed with specific threshold within the pro-

posed framework. The experimental results demonstrate that the proposed ensemble

transfer learning-based IDS framework effectively distinguishes between normal and

attack flows, achieving superior performance with accuracy, precision, recall, and F1-

score scores of 99.72%, 99.74%, 99.68%, and 99.71% with reduced set of features,

respectively, when compared to other state-of-the-art ensemble methods on a real-

world IDS dataset.

5.2 Future Work

5.2.1 Other Tabular Data to Image Conversion Methods

CNNs have been widely applied in various field, especially in the speech [67] and

image processing [79], where the arrangement of features contains crucial information

for modelling. Nonetheless, CNN are generally not suitable for modelling tabular

47
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data since such data typically lack any spatial relationships among their features [92].

To meet this challenge, in our proposed work, we utilized a chunk based method to

transform tabular data to RGB images to make it suitable for feeding into pre-trained

CNN model. There are some other methods proposed in recent years to transfer non-

image tabular data to images. Zhu et al. [92] proposed an algorithm called image

generated for tabular data (IGTD), where each feature of the tabular data is mapped

to a specific pixel location in a way that places similar features near one another

in the transformed image. The algorithm optimizes this mapping by minimizing the

disparity between the order of the feature distances and the order of distances between

their corresponding pixels within the image. Inspired by their own work of Super

Characters [73], Sun et al. [74] proposed superTML method which combines both the

idea of Super Characters and two-dimensional embedding to transform tabular data

into 2D images. The SuperTML method suggested deals with categorical data and

missing values in tabular data seamlessly, eliminating the necessity to convert them

into numerical values beforehand. The generation of images with two-dimensional

embedding utilizing SuperTML method is illustrated in Figure 5.1.

Figure 5.1: Process of Transforming Tabular Data to Images using SuperTML.

In the context of a classification task, where some features are more important

than others, SuperTML VF is employed to allocate more space and increase the font

size for the significant features. Conversely, SuperTML EF maintains the same font

size for all features. An example of generated images from the Iris and Wine Datasets

using SuperTML EF and SuperTML VF is shown in Figure 5.2. In future research,
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(a) (b)

Figure 5.2: Generated Images using SuperTML: (a) Image Generated using Su-
perTML EF on Iris data with equal importance given to each feature; (b) Image
Generated using SuperTML VF on Wine data with varied font size based on feature
importance.

both of these image transformation methods will be used with the UNSW-NB15

dataset, and a comparison will be made between the chunk-based approach applied

in the ME-IDS framework and these two alternative methods.

5.2.2 GAN-based Synthetic Data Generation for IDS

Within the domain of IDS, the imbalanced dataset issue is a pervasive challenge,

where the number of normal traffic samples significantly surpasses the instances of

attack traffic samples. This substantial class imbalance can impede the efficacy of

both ML and DL based IDS in accurately identifying and categorizing the samples

that belong to the minority class. The primary concern is that this imbalance may

lead the classifier to exhibit a bias, favoring the majority class and consequently

compromising its ability to detect and correctly classify instances from the minority

class [49].

To tackle the challenge of imbalanced datasets, the Synthetic Minority Oversam-

pling Technique (SMOTE) has become a widely embraced approach across different

domains, including the research domain of IDS. SMOTE is valued for its simple de-

sign and established effectiveness in improving the performance of classifiers dealing

with imbalanced data [22]. Nevertheless, despite its widespread use, SMOTE comes
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with its own set of limitations. One notable limitation of SMOTE lies in the poten-

tial for over-generalization due to oversampling noisy and uninformative data [71].

When the minority class is over-sampled, including instances that may not be gen-

uinely informative, the classifier might learn patterns that do not accurately represent

the underlying distribution of the data. Moreover, SMOTE can increase overlap be-

tween classes near their boundaries [71], introducing complexities in classifier decision

boundaries and possibly causing misclassifications or reduced precision in distinguish-

ing between majority and minority classes.

In recent years, different variants of Generative Adversarial Networks (GAN) are

extensively employed for generating synthetic data. The architecture of GANs, pro-

posed in 2014 [25], consists of two neural network designed to imitate a data dis-

tribution in a unsupervised way, which function as a two-player zero-sum game: a

Generator (G) creates new data samples resembling the original distribution without

copying it, while a Discriminator (D) aims to differentiate between real and generated

data in a zero-sum game scenario. From a formal perspective, D is used to estimate

the p(y|x), which is, the probability of a label y based on a given sample x, while G

creates a samples from hidden space z, expressed as G(z). These networks engage

in a competitive process where G aims to produce increasingly realistic output as

the learning progresses, while D strives to enhance its ability to distinguish between

real and synthesized samples. Both networks are in a continual cycle of improvement,

where if G generates better outputs, D faces a tougher challenge in telling them apart.

Conversely, if D becomes more accurate, G encounters increased difficulty in fooling

D. The process of GAN is based on a min-max game [32] in which D aims to maximize

its accuracy while G aims to minimize it, which can be represented as:

min
G

max
D

L(D,G) = Ex∼pr [logD(x)] + Ez∼pz [log(1−D(G(x))] (5.1)

where x ∼ pr represents the distribution of the real data, while z ∼ pz signifies

the probability distribution in the latent space of the generator (G), typically im-

plemented as Gaussian or uniform noise. G utilizes the noise to generate new data

samples denoted as G(z). The role of the discriminator (D) is to distinguish between

real data distribution D(x) and the synthesized distribution D(G(x)). As the training

of GAN progresses, the discriminator model gains resilience to data transformations
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as it continually generates synthetic data. Figure 5.3 illustrates an abstract overview

of the sturcture of a GAN model.

Z G G(z)

x

D

Latent
Space Synthesized 

Samples

Real
Samples

Real

Fake

Figure 5.3: Model Structure of Generative Adversarial Networks (GAN)

While GANs showed its significance in data synthesizing, only a few of these meth-

ods specifically concentrate on synthesizing data to improve the training of IDS. Lee

et al. [42] employed a standard GAN to produce synthetic data resembling the exiting

dataset in order to address the data imbalance problem of CICIDS2017 dataset. The

resulting oversampled dataset was then fed as an input to Random Forest model,

which indicate notable enhancement in the classification of minority attack classes.

Although the UNSW-NB15 dataset is acknowledged for having a relatively more

balanced class distribution compared to some other IDS datasets, the issue of class

imbalance persists in nearly all other IDS datasets. As a matter of fact, the data syn-

thesis through GAN is a promising research area that should be investigated as the

newly synthesized data has little to no substantial effect on the statistical distribution

of the input data.

5.2.3 Integration of eXplainable AI in IDS

The pursuit of adaptable and efficient anomaly-based IDS has led researchers to

assess numerous ML/DL/TL algorithms with the goal of achieving high classification

accuracy and minimizing flase alarms. Additionally, there remains a growing need for

explaining the predictions made by these classfiers, as various user groups, specially
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the cyber-security specialists can benefit from understanding the reasons behind these

intrusions and working mechanism of detecting these intrusion [34]. This has given

rise to the field of explainable artificial intelligence (XAI), which aims to shed light on

the inner workings and predictions of the IDS models. While XAI is currently been

applied to different domain due to its superiority, its application in IDS still requires

further exploration to determine its effectiveness in identifying attack surfaces and

vectors.

There are two promising model-agnostic visualization-based XAI methods, namely

Shapley Additive Explanations (SHAP) [47] and Partial Dependence Plot (PDP) [23]

which can be used in explaining the functioning of a utilized classifier as a whole.

SHAP was initially introduced in 2017 as a comprehensive method for explaining the

predictions of black box model. SHAP employs a game theoretic strategy to provide

explanations for the outcomes of any classification model. This approach establishes a

link between optimal credit assignment and local explanations by leveraging Shapley

values, a concept from game theory, and their associated extensions. SHAP operates

on the principles of assessing the significance of each feature by quantifying their

contributions to the classifier’s decision in classifying a class. The SHAP value is

computable by considering individual data instances. An explanation for a given

instance x can be approximated using this formula:

g(z′) = φ0 +
m∑
i=1

φiz
′
i, z′ ∈ {0, 1}m (5.2)

One notable benefit of SHAP over Local Interpretable Model-agnostic Explana-

tions (LIME) is that SHAP distributes effects more uniformly, while LIME assumes

the model’s behavior to be locally linear. In particular, LIME evaluates instances by

their proximity to the original instance, whereas in SHAP, instances are weighted to

form a coalition in the Shapley value estimation. Another visualization-based XAI

method, Partial Dependence Plot (PDP), is widely utilized to illustrate the connection

feature values and the predictions of a black-box model through visual representa-

tion. PDP serves as a universal and model-agnostic method that takes into account

all data points to depict the extensive connection between a particular feature and the

model’s predictions. Through visual representation, PDP showcases how alterations

in the selected feature impact the overall predictions of the model. This relationship
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can be expressed using the following formula.

PD(xs) = E(xc)[f(xs, xc)] =

∫
f(xs, xc)dP (xc) (5.3)

where f represents the classifiers, xs ∈ S corresponds to the set of input features

for which PDP is generated, xc ∈ C determines the set of remaining input features,

and dP (xc) indicates the marginal distribution of xc. the PDP function integrates the

model’s outcomes across the distribution of set C to illustrate the connection between

the features within set S and the model’s output. The incorporation of these XAI

methods in IDS can effectively instill trust in the mind of cyber-security analysts, as

it enables them to get a better view and understanding of the system’s decisions and

in turn, gain confidence in its effectiveness. As a result, our forthcoming stages of

research and development will prioritize the integration and refinement of XAI meth-

ods within the IDS framework. This strategic focus aims to empower cybersecurity

analysts with a more comprehensive and interpretable understanding of the IDS’s be-

havior, fostering trust and confidence in its ability to accurately identify and respond

to security threats.
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