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Abstract 

There are a variety of motion capture methods available; however, many of them 

are not well suited for collections outside a laboratory setting.  AI markerless motion 

capture may fit this need, but its implementation and accuracy need to be better 

understood. Therefore, the purpose of this research was to evaluate the tracking 

capabilities of DeepLabCut and conditions (complexity of the feature set and camera 

setup) that can affect its performance.  Two markerless networks, a common joint center 

tracking set and a complex feature set, were trained using 40 participants completing 6 

movements that were recorded by 8 cameras. Network retraining and performance 

evaluation (tested with 10 participants) occurred 3 times for each network.  The results 

from this markerless motion capture research highlight the importance of choosing 

minimally occluded features of interest and camera positions that maximize the number 

of frames where the full feature set is visible.  
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Chapter 1: Introduction 

Motion capture, the process of quantifying human body movement and its 

characteristics, is a critical component for disciplines, such as rehabilitation science, sport 

science, and ergonomics (1). The use of motion capture technology to quantify human 

movement is also an intrinsic component of biomechanics research (1). There are 

multiple motion capture methods: inertial measurement units, electromagnetic tracking, 

image processing, and active or passive optical motion tracking systems. Each can be 

used to quantify human body motion, but have strengths and limitations based on the 

system. As technology continues to evolve there are new motion capture methods 

available which can then open new avenues for research. For example, almost all major 

sports now benefit from kinematic data collected using motion capture to determine sport 

specific performance metrics (2).  

In the 19th century the newly developed technology of high-speed photography 

provided the ability to distinguish characteristics of movements and lead to new 

discoveries in the fields of movement analysis (3). Using still images taken by a sequence 

of cameras, photographer Eadweard Muybridge helped pioneer manual digitization, 

where features of interest in the photograph could be identified over multiple sequential 

images and their locations used to identify change in joint position (Figure 1). 

Muybridge used these techniques to identify novel characteristics of movements and 

developed new understandings of human and animal gait kinematics. A contemporary of 

Muybridge, Etienne-Jules Marey, who had already published the seminal work on 

displaying data in graphical form (4), saw the research potential in sequential 
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photography. He developed the first high-speed camera that took images at regular 

intervals and thus could be of direct use in kinematic experiments of the day.  

Techniques that can be considered under the umbrella of image processing 

continued to evolve and in the early 20th century; the process of rotoscoping was 

developed by animators (5). By tracing over frames of film they were able to represent 

human motion more accurately in animated films. While this was not of immediate 

applicability to biomechanics research, these developments led directly to early optical 

motion capture technologies used by the film industry in the 1960’s and 70’s (5). 

Manual digitization progressed alongside video technology and the ability to 

capture images. As a motion capture modality manual digitization requires that the 

features of interest are present in sequential images and when a calibration is available 

with objects of known length the position of those features can be reconstructed into 

spatial coordinates (6). This method is still used in some modern data collection 

processes as it does not require the attachment of markers, making it a valuable tool in 

sport biomechanics where the analysis of movement during training and competition is 

important (6). However, manual digitization is time consuming; making it impractical 

when video acquisition uses high sampling frame rates because the number of video 

frames that would have to be analyzed could number in the thousands and would 

overwhelm the manual process (7). There are additional concerns of subjective user error 

with manual digitization because of the necessity of having a human identify the points of 

interest.  This questions the method’s accuracy and the need for interrater reliability 

assessments. These challenges have led to the development of the various motion capture 

systems with improved tracking capabilities.  
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Figure 1 “Animal Locomotion” (Muybridge Plate 626) Sequence with jockey on 
horseback by Eadweard Muybridge (1830 - 1904). Images depicting high-speed 
photography of a running horse and providing the opportunity to study gait. 

 

Most modern motion capture applications are optoelectronic systems, which 

involve active (light-emitting), or passive (light-reflecting; Figure 2) markers placed on 

the participant that are tracked by a series of cameras. These motion capture systems are 

highly accurate (8) and reliable (9). These systems drastically reduce the human-hour 

investment when quantifying movement data compared to manual digitization; however, 

they are often limited to a laboratory setting because of the specialized equipment and the 

participant markers sometimes impede movement (10). Unfortunately for movement 

research, a laboratory setting may not have the same ecological validity as collecting the 

data in the field.  
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Figure 2 Example of a 16-camera prime-13 passive motion capture system (OptiTrack 
Inc. USA) with a series of cameras set up around the participant. 

 

A possible solution to the motion capture ecological validity problem is to use 

inertial measurement units (IMUs), which are a wearable technology that consist of an 

accelerometer, a magnetometer, and a gyroscope. These devices are effective at capturing 

kinematic data in the field, but they also possess some limitations such as accuracy, being 

affected by drift error and magnetic fields (11,12). Therefore, there remains a need to 

have a data collection tool that can quantifying human movement outside of the 

laboratory environment (e.g., Sport arenas, factories, etc.) without the use of markers or 

the need for lengthy digitization processes. 

Recent technologies such as AI-driven markerless motion capture have the 

potential to perform field-based data collection with laboratory precision (13). Markerless 

motion capture techniques represent the newest development in motion analysis and 

present significant potential benefits relative to previous methods. Movement can be 

analyzed during a wide range of activities and settings without participant preparation 

and laborious manual digitization processing (6). Such systems may address the 

previously required trade-off between accuracy and ecological validity. Recently, a few 

markerless motion capture systems such as the Kinect (14) have become publicly 
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available; however, most such systems have been developed for the entertainment 

industry (14–16) and use widely different methods for recording movement. While new 

research continues to explore the accuracy of entertainment-driven markerless systems 

(17) not all such systems are suitable for biomechanics research (5). The challenges in 

using these entertainment-based systems can be attributed to the different accuracy 

requirements between the entertainment industry and biomechanical research where 

small movements must be tracked accurately (6). In summary, markerless motion capture 

systems are highly variable and; 

“There is no general consensus regarding the minimum accuracy requirement of 

[markerless] motion analysis systems and the magnitudes of the inevitable 

measurement errors will vary depending on the context (laboratory vs. field), the 

characteristics of the movement and the participant, the experimental setup and 

how the human body is modelled.” (6) 

The world of markerless motion capture underwent a significant shift with the 

increased access to machine learning programs which can automate the process of 

accurately identifying features on an image or still frame from a video. The recent 

advances in the field of machine learning have provided a novel approach to the earlier 

motion capture technique of manual digitization and may offer the accuracy required in 

research settings (18–20). Machine learning is not a recent development; algorithms 

related to the field began appearing in the 1970’s (18). The changes in computing power 

have allowed this resource to be applied to larger and more complex problems. For 

example, machine learning’s ability to leverage feature identification in the analysis of 

images can be used for motion analysis. Supervised machine learning, a subset of 
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machine learning applications, uses algorithms that are trained by providing both the data 

set to be analyzed (such as a series of video frames) and the correct output (the location 

of each feature of interest in the frame). The algorithm modifies itself to best process the 

data and arrive at the correct output (21). Network training is an iterative process that 

improves feature detection accuracy with each repetition of self-modification. The 

capacity for large-scale rapid data analysis can then be applied to video files. A network 

trained to identify user-defined features can process still images at a rate that keeps pace 

with larger modern data volumes and, in theory, can even match the live production of 

the videos (allowing for real-time motion capture) (13).  

DeepLabCut (DLC), an open-sourced supervised machine learning program, was 

produced as a tool for harnessing the existing power of feature identification within 

images and to automate the manual digitization process of videos, frame by frame. 

Although it was designed primarily for animal motion capture where the features being 

tracked may vary wildly between applications, its adaptability may make it useful for 

human motion capture in diverse settings. As with other supervised machine learning 

programs DLC’s network ‘learns’ marker locations by being trained first on user-labelled 

data (13). Additional programs like Anipose have been suggested by the DLC authors as 

add-ons that can leverage the ability of DLC to identify locations in 2D space and 

triangulate those locations using multiple cameras to transition to a three-dimensional 

data collection (22). However, studies into various markerless applications have yet to 

examine the effect of camera positioning and complexity of the set of features being 

tracked on network performance (23,24). Additionally, the open-source, trainable options 

such as DLC have yet to be validated against gold standards for 3D data collection.  
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The purpose of this research is to explore the tracking capabilities of DLC and the 

various conditions that can affect its performance with the goal of evaluating the 3D 

outputs against traditional marker-based motion capture. Within that goal are three sub-

objectives. First to examine the effects that tracking a complex set of features, such as 

those typically used in optical motion capture (25), has on the performance of DLC 

compared to a more commonly used (simplified) marker set (26). Second to examine the 

effects of varied camera angles, and the resulting feature occlusion, on tracking 

success/network performance. Third to compare the Anipose-derived 3D hip and knee 

joint position and angle data from DLC to traditional marker-based motion capture. 
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Chapter 2: Literature Review 

2.1 Overview of motion capture 

Motion capture is an integral part of biomechanics (27,28), both in research and in 

practical applications such as computer animation (29). From the earliest applications 

using Muybridge’s photographic analysis (1) to Marey’s invention of high-speed 

photography (30) and then to modern camera and marker-based systems (31), the ability 

to identify the positions of anatomical landmarks that can be used to estimate joint 

centers, or other features of interest is imperative to biomechanical human motion 

analysis. Kinematic analysis is commonly performed by measuring the spatiotemporal 

characteristics of rigid bodies (32). However, the systems and models used to gather and 

quantify 3D positional data can be quite different.  Since Muybridge’s early work, a 

variety of motion capture techniques have been developed that include electromagnetic 

systems, IMUs, and optical motion capture. 

2.1.1 Electromagnetic: 
 

Electromagnetic motion analysis systems (EMSs) measure the time taken for 

electromagnetic waves to travel from the device to base stations (33). EMSs can 

determine the position of an object(s) in large capture volumes without requiring that the 

sensor remain in view of a detecting device (ie. a camera) (33). These devices are used in 

scenarios where the capture volume area precludes other techniques from determining 

position, such as satellite position sensors when there is a roof (27). EMSs have greater 

accuracy limitations compared to optical motion capture systems (27) and can suffer from 

magnetic materials interference (34). Additionally, these systems tend to have low 
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sampling frequencies which limit their usefulness when analyzing higher frequency 

movements (27). Common EMS systems include the WASP which uses tags on the 

participant and fixed anchor nodes to determine 2D position (27). Accuracy of this 

system varies with studies showing errors of between 0.48m and 0.7m during an indoor 

basketball game (35). A more accurate form of EMS is the Radio Frequency 

Identification Device which uses an electromagnetic field to transfer the data from an 

active or passive tag to the base station. Researchers using a passive tag system found 

accuracies of 0.17m within a 5.4m2 volume (36). 

2.1.2 Inertial Measurement Units: 
 

 Inertial measurement unit systems (IMUs; Figure 3) are a popular method for 

collecting movement data that combine an accelerometer, gyroscope, and in some cases a 

magnetometer. They are capable of quantifying rapid motion and for that reason can be 

useful in sports science (37,38). The current best option for many field collection 

scenarios, multiple highly capable commercial products such as Notch and ActivPal are 

available that use this technology (39–41);  however, their ability to determine precise 

joint-center locations and three-dimensional joint angles can be limited by the effect of 

the participant’s acceleration on the device with both rapid acceleration causing errors 

and low accelerations causing increased drift error (27). The current gold standard of 

multi-IMU systems which are able to determine joint angles by comparing outputs of 

adjacent IMU devices is the Xsens. Validation studies have shown is is capable of 

producing movement waveforms that match optical motion capture outputs, however 

during high levels of acceleration the joint angle error can increase up to 15.9º (42). 
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Figure 3 Placements of a 3 IMU set for lower limb kinematic data collection. 
 

2.1.3 Optical Motion Capture: 
 

Optical motion capture systems are the gold standard for motion capture, both in 

terms of reliability and accuracy (10). These systems identify specific body segments by 

tracking markers located on anatomical landmarks/features. These camera systems detect 

light, typically infrared, either produced by light-emitting active markers such as with the 

Optotrack system, or reflected off passive retroreflective markers from cameras like with 

Optitrack and Vicon (Figure 4) (27).  
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Figure 4 Retroreflective passive marker-based motion capture system used to track 
movement during a filming process. 
 

Accuracy of these systems is dependent on the number of cameras and the size of 

the capture volume, with a high number of cameras and smaller volumes typically 

resulting in the greatest accuracy (43). Typically considered the gold-standard within the 

OMS group, Vicon, has been shown to possess millimetre (< 0.007m) accuracy when 

measuring fixed objects (44–46). While these systems are accurate, they bring with them 

numerous practical difficulties. The capture volume is determined by the number of 

cameras; therefore, if a large collection space is required, then there is an increased need 

for more cameras set up around the participant. Also, movement interference may occur 

from the presence of markers, especially after markers that are typically wired to a 

control unit. Constant line-of-sight between the marker and a minimum of three cameras 

is necessary to track 3D positions; however, marker occlusion happens frequently 

depending on the movement, participant clothing or equipment. Therefore, data 
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collection protocols typically must limit certain clothing, equipment, or movements 

which then decreases the ecological validity of the motion capture data. 

2.1.3.1 Marker placement: 
 

The choice of where to place optical motion capture markers is an important 

consideration that can influence the kind of data that can be collected as well as its 

accuracy. Sufficient markers on each body segment are required to calculate relative 

segment position (47). Marker placement standards, using various boney landmarks on 

each body segment, have been established to estimate joint centers and segment 

orientations (23,47). Marker clusters are multiple markers attached to a rigid surface 

which is then attached to a body segment. They provide a potentially more accurate 

method for calculating joint movement but still require calibration with markers placed 

on boney landmarks to identify the distance and orientation from joint centers. Landmark 

identification, although requiring training, can be a potential source of error because of its 

subjectivity and dependence on researcher’s experience (48).  

2.1.3.2 Camera Placement: 
 

Camera placement is crucial for accurate motion capture as it directly affects the 

quality and reliability of the captured data. The positioning and configuration of cameras 

determine their field of view, depth perception, and ability to track markers or features on 

the subject (49). Placing cameras strategically around the collection space ensures 

maximum coverage of the capture area. Cameras should be positioned and angled to 

cover the entire capture volume, ensuring motions or actions are not missed during the 

capture process. Camera placement should consider the distance between the subject and 
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the cameras, as well as the inter-camera spacing, to enable accurate depth perception and 

triangulation. This allows the system to reconstruct the subject's movement accurately in 

3D space (49).  

2.1.3.3 Optical Motion Capture limitations: 
 

Marker-based motion capture systems, while more reliable than many other forms 

of motion capture, have limitations. The sometimes-expensive costs, combined with 

complex camera and computer equipment required for data collections make them an 

unrealistic and cumbersome choice for many data collection environments outside of a 

laboratory (50). The reliance of these optical motion capture systems on markers presents 

additional challenges, such as bony landmark identification and marker placement errors 

from researchers (13,51). Improper marker locations and inconsistency in marker 

placements creates inter-operator and inter-session data variability, impacting the 

accuracy of the results (52,53). Attaching markers to non-rigid structures, like skin and 

clothing, results in tracking errors because of motion artifact between the marker and the 

item being tracked (54–56). These errors may compound potentially decreasing the 

accuracy of the optical motion capture system, which would be a problem if the tracked 

movements were small or complex. 

2.1.4 Image Processing Systems: 
 

Image processing systems (IPS) use still images, typically taken from video , to 

locate features and then track those features across subsequent video frames. The original 

Muybridge photography could be classified in this way, but most modern systems use 

some form of computer vision to automatically perform the segment orientations (27). 
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Early computer IPS used model-based tracking where the computer system had a 

predetermined 3D model of the tracked object, but this required extensive environmental 

information, making these systems challenging to use (57). Another form of IPSs are 

feature-based systems which focus on tracking elements of an image; for example, 

markers or other identifiable features, like printed targets (58).  

Historically IPS are limited in their accuracy; therefore, they often require 

restricted conditions such as very specific camera angles during data collection and/or 

long post-processing times (14,59). An example of a more modern IPS software that is 

commonly used in biomechanical research is Kinovea (60–62). This software has been 

shown to produce accurate results (63); however, the accuracy is conditional to the 

camera view being orthogonal to the plane of the movement of interest (63), identifiable 

markers need to be applied to the participant, and the program has no capacity for 3D 

data collection. These limitations decrease the utility of Kinovea for researchers without 

the ability to create their own calibration/triangulation code.  

Recent advances in the field of machine learning have made image processing 

more efficient, accurate and, accessible to researchers by limiting the computation 

demands (22). One such system, Theia3D Markerless, uses an adaptable deep-learning 

method at its core; however, it is limited to tracking a pre-determined set of joint 

coordinates (64). Theia3D has been shown to be an accurate alternative in situations 

where optical motion capture is not feasible (64–66); however, validations suggest 

caution in its use for clinical situations where accuracy thresholds may be smaller 

(67,68). Furthermore, its fixed set of tracked locations mean that any research question 

including non-standard features, or objects that need to also be tracked (e.g. PPE) cannot 
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use the program.  Therefore, researchers tracking more than 3D human body movements 

require a more adaptable form of 3D markerless motion capture that is as accurate as 

marker-bases system. 
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2.1.5 Summary Table of Motion Capture Modalities 

 

Mocap Modality Description Strengths Weaknesses Accuracy Field applicability 

Electromagnetic 
motion analysis 
(EMS) 

-Finds position of 
transponders 
- Measures flight time 
of EM waves  

- Line of sight not 
required 
- Large capture volume 

- Sensitive to magnetic 
interference 
- Increased noise at greater 
distances  
- Limited to 2D 

- Varies greatly between 
systems 
- 10.18m – 20.7m 

- Useful for tracking participant 
position within large spaces 
- Cannot produce joint angle 
data 

Inertial 
measurement unit 
(IMU) 

- Accelerometer and 
gyroscope 
- Multiple IMUs can 
track body position 

- Least intrusive of all 
wearable systems 
- Can detect rapid 
accelerations for a single 
unit 
- No limit on capture 
volume 

- Subject to drift over time 
- Error can compound with 
multiple units3 

- Multi-IMU compared 
with OMS3 
- Comparable mvmt 
waveforms 
- RMSD 5.2° - 15.9° 
- > error with > 
acceleration 

- Useful for collecting kinematic 
data in field when precision 
accuracy is not required 

Optical Motion 
Capture (OMS) 

- Reflected or emitted 
light detected by 
cameras 

- Able to track large 
number of points 
- Highest accuracy of 
common systems 

- Limited to fixed locations 
- Sensitive to light 
contamination  
- Line of sight 
- Accuracy can be affected by 
marker movement 

- High accuracy when 
tracking fixed objects 
- 40.0067m – 50.0003m 
- Dependent on camera 
position 

- Complex setup for outdoor 
data collection 
- Costly infrastructure  
- Sensitive to light interference 
- Challenging system type for 
field conditions 

Image Processing 
System (IPS) 

- Computer vision 
used to track humans 
or markers 

- More accurate than 
EMS 
- Larger possible 
collection volume than 
OMS 

- Limited advantages over 
other systems. 
- Insufficient accuracy for 
precise joint angles 

- Significant variability 
across different systems 
- 60.04m – 70.22m  

- Useful in large volume 
outdoor spaces 
-When high accuracy is not 
required 

AI-based Image 
Processing 
System (AI-IPS) 

- Computer neural 
networks trained to 
track sets of features  

- Adaptable to 
experimental needs 
-  

- requires calibrated cameras 
for 3D – limits capture 
volume 
- Only track pre-set features 

- Limited research 
comparing raw 
coordinate locations 
- errors < 8° for joint 
angles8 

- High accuracy 
- Can track large numbers of 
people quickly 
- Less accurate than marker-
based systems 

Table 1: Summary of motion capture modalities. 1Shirehjini & Shirmohammadi, 2012 (36), 2Sathyan et al., 2012 (35), 3Nijmeijer et 
al., 2023 (42), 4Spörri, Schiefermüller, & Müller, 2016 (45), 5Maletsky, Sun, & Morton, 2007 (43), 6Corazza et al., 2010 (69), 7Liu et 
al., 2009 (70), 8Wren, Isakov, & Rethlefsen, 2023 (67) 
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2.2 DeepLabCut: 

 
DeepLabCut, is an adaptable machine learning application designed for 

markerless motion capture. First published in Nature, it uses pose estimation and feature 

identification to processes video files and track features with minimal training data (13). 

DLC is an open-source project that uses a trained network that learns which features to 

track by being trained on user-labelled data.  

 
Figure 5  Examples of DeepLabCut applications in research (13) 

The program arose out of a need to track movements on animals where markers 

would not be possible. DLC uses a robust deep-learning framework to decrease the 

number of trained frames required for a network to accurately identify points. By 

decreasing the required workload for training, it became possible for labs to train their 

own network; resulting in DLC being used across a wide range of applications (Mathis, 

2020). DLC has the potential to bring the versatility and unencumbered data acquisition 

of image processing up to the accuracy and utility of optical motion capture. 

 For DLC to be usable for research, its validity and accuracy must be quantified 
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(71). DLC has been validated in multiple studies (26,71–75) but they share a common 

limitation of only being validated in two dimensions (72), which is of limited use for 

most biomechanical kinematic research applications. Also, DLC’s accuracy has been 

commonly compared to that of human labellers rather than against a gold standard like 

optical motion capture (26,74). In the studies that have compared DLC directly to 

marker-based optical systems, researchers have used training images with markers 

present (72). This raises the strong probability that the network will have learned to rely 

on the presence of those markers, and so the results can only be extended to other 

situations where the person tracked also has markers applied (72). This creates a research 

need to move toward validating DLC in a 3D human environment. 

2.2.1 DeepLabCut commonly tracked features 
 

DLC was written with the intention of tracking simplified sets of features. In 

contrast with optical motion capture systems where upwards of 11 markers could be used 

to track specific features around a single limb (76), DLC typically aims to track/estimate 

joint centers. Therefore, when it was validated against marker-based systems, the DLC 

network was trained to track different points (joint centers and segment ends) than the 

system it is compared to (72). Joint angle outcomes were compared rather than raw 

coordinate locations. Unlike marker-based systems where the marker can be place on any 

location that a researcher wishes to track, features tracked by DLC tend to be visually 

distinct from surrounding tissue, such as visible bony landmarks, or points of connection 

between two segments. 3D position tracking requires multiple points on each segment 

(76) and so there is need to explore DLC’s performance with tracking complex sets of 

features. 
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2.2.2 DeepLabCut Camera position 
 

 DLC was designed to solve challenges in animal research and as such involved 

relatively simple camera setups (13); for example, sagittal views while recording gait, 

and overhead views tracking movement through a confined space. Therefore, research 

validating DLC output has been constrained to these simplified viewing angles, with both 

studies validating its application on humans using sagittal views only (26,72). The 

sagittal view has the advantage of maintaining all features of interest within view for the 

duration of data collection, except for very occasional marker occlusion during a gait 

cycle (26). Further research is required to determine if the sagittal view validations 

extend to the oblique views found in three-dimensional motion capture.  

2.2.3 Anipose 

 Programs like DLC that track in two dimensions are useful for specific cases, 

such as within animal research where behaviours are being tracked; however, complex 

whole-body movements, in both animals and humans, often require three dimensions to 

be fully assessed (23,77). Therefore, DLC has included an inbuilt 2-camera triangulation 

package that permits a 3D data acquisition, but this portion of DLC has not been studied 

to determine the accuracy of movements that include changes of depth (towards or away 

from the field of view), Instead, the DLC authors recommend the use of Anipose (7). 

Anipose is a separate (from DLC), open-sourced, software toolkit designed to 

leverage DLC’s ability to track movements from 2D video and collect multiple video 

angles to produce 3D joint angles and segment position outputs. Anipose should resolve 

some of the challenges faced by DLC (77) because the additional cameras may improve 

movement capture and occlusion issues (23,77). Anipose takes each camera’s DLC 
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output and combines them together to then extract 3D kinematic data. This process is 

performed in three steps: calibration, refinement of 2D keypoints, and then determination 

of 3D position.  

Calibration: 

Calibration is accomplished by recording video of a ChArUco board (Figure 6), 

a version of a checkerboard with unique combinations of pixels placed in the white 

squares (78). The board is moved through the motion capture space ensuring that at least 

two cameras can always see the board. The unique images inserted into the white 

checkerboard space reduce the potential of occlusion error that occur in some camera 

frames because the calibration program infers locations for the occluded parts of the 

board. The calibration videos are then provided to Anipose where pre-trained neural 

networks are used for edge detection of the ChArUco board (79). When using this 

method more than 90% of frames had an error of less than 20 μm and 1° in angle. This is 

an improvement even over human manual detection of edges in an image. 

 

Figure 6 ChArUco is the combination of the chessboard-style calibration image 
and the ArUco image which is more robust to occlusions. 
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Refinement: 

Anipose uses the feature identification network that a researcher has trained on 

DLC and then applies a series of three filters to improve the tracking results provided 

(77). A median filter removes outlier data that deviates outside a user defined window 

and then uses an interpolation algorithm to replace the removed data. A Viterbi filter 

refines joint position by comparing movement from frame to frame and removes frames 

where the position jumps for small incorrect periods. Lastly, Anipose uses an 

autoencoder filter to modify the confidence score of the identified joint, decreasing it 

based on the scores of the other joints. As a final step in the refining process, frames with 

poor tracking, typically when the feature is not visible, are removed altogether so that 

other camera views during that frame can be relied upon (77). 

3D position: 

Videos from each calibrated camera are loaded by Anipose and then run through 

the DCL network to identify 2D positions from that camera’s viewing angle. 3D positions 

are calculated with the triangulation matrix established during calibration, filtered using 

the various layers of Anipose filtering, and then refined with the limb and joint prediction 

model. The estimated positions are smoothed to ensure consistent limb length (77).  

Anipose calculates 3D joint flexion angles using the inverse cosine of the dot 

product of the two adjacent segments such as the thigh and shank. To estimate abduction 

and rotation angles, Anipose assumes that abduction only happens at the most proximal 

joint (eg hip), and that rotation cannot happen at the most distal (eg ankle). The Anipose 
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authors solve the remaining joint angles by first estimating the rotation of each joint 

based on the proximal segments coordinate system (77).  

2.3 Prior research validating markerless motion capture 

Markerless motion capture may eliminate the need to manually identify bony 

landmarks on participants and utilizes a less complex equipment set-up (13). However, 

until recently, markerless motion capture systems had limitations in both accuracy and 

optical range, which limited their adoption. For example, markerless motion capture 

systems were sensitive to changes in lighting conditions, required a simplified 

background free of objects and, systems that tracked the outlines of humans were 

sensitive to even small changes of shape caused by clothing (7,13,22,80,81). Newer and 

more robust markerless motion capture systems are becoming as accurate as optical 

motion capture and may replace other forms of motion capture (26,32,65,66,82), but the 

popular markerless systems all use pre-trained networks that limit the researcher to 

tracking only the features the program was designed/trained to track. Should a researcher 

wish to track additional points, a different method of motion capture would have to be 

used. 

In an early example of the work done to validate markerless motion capture 

methods, Ceseracciu, Sawacha, & Cobelli (2011) developed a method to automate the 

manual digitization of swimming kinematics. This scenario represented an ideal 

application of markerless motion capture as the water refraction would distort any optical 

motion capture attempt. When tracking the wrist, a maximum root mean square distance 

(RMSD) of 56mm was reported compared to manual digitization. While this error is 
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significantly larger than those between comparable optical motion capture (31) it 

demonstrated that markerless systems could be used to track human movement. 

The methods used by Ceseracciu, Sawacha, & Cobelli involved a silhouette 

markerless motion capture system. It did, however, require the additional step of 

background subtraction which would not be required by later systems. The results of their 

case study found an average (RMSD) of 11.75 deg in knee flexion-extension which 

accounted for 18% of the range of motion in their study. This was better than the results 

for the ankle and hip which showed an error comprising 45% range of motion and 33% of 

their range of motion, respectively. These results were not accurate enough to support the 

use of this markerless motion capture approach in research.  

KinaTrax (KinaTrax Inc., Boca Raton, FL), a markerless motion capture system 

more closely resembling DLC (i.e., use of deep learning), was validated against both 

force plate data (gait spatiotemporal parameters) and a marker-based system (50). The 

marker system used eight infrared cameras (SMART-DX; BTS Bioengineering, Milan, 

Italy), while the markerless motion capture system used 8 video cameras. Twenty-two 

participants completed three walking trials and 9 parameters were compared between the 

systems. In order to compare all three systems only the gait and timing results were 

compared and so the 3D position and joint angle data was not directly compared between 

the markerless and marker-based systems. Between-system absolute agreements and 

relative consistencies were assessed using ICCs (Intraclass correlations) and Bland-

Altman plots. The authors reported overall excellent agreement between methods, with 

stride length having the strongest agreement of R = 0.710 but reported poor agreement 

with swing time. The authors suggest that this poor result was due to the simplicity of the 
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foot model in the KineTrax system and indicated that additional tracking of the heel 

should be implemented in future work.  

This further highlights the weakness that many currently available markerless 

systems have; pre-trained networks cannot track new objects or body landmarks that were 

not included in the network development/training. This makes the current systems 

unusable for any scenario where atypical features or items beyond typical human 

features, are to be tracked (eg. protective equipment). It also emphasized the potential 

challenges with extracting 3D joint angle data from a small number of tracked features, 

commonplace in markerless systems. 

Theia3D is a commercial deep learning markerless motion capture system based 

on an architecture similar to DLC (65). Whereas DLC trains a new network for each 

unique laboratory setup, Theia3D uses a pre-trained network to track over 51 human 

features. This trade-off means that Theia is useful for human data but cannot track 

beyond the pre-determined feature set. Kanko et al. (32) validated Theia3D by collecting 

gait data on two systems simultaneously, marker-based seven camera Qualisys 3+ 

(Qualisys AB, Gothenburg, Sweden) system, and eight additional Qualisys video cameras 

to record video. Thirty participants conducted ten consecutive trials of four second 

treadmill walking. Knee and hip joint angles and global segment angles were produced 

for each system. The average RMS difference range in hip and knee angles for flexion 

and abduction was 1 – 2.2° for both joints, in both planes of motion. The hip internal-

external rotation differences were greater, 8.5 – 13°. Joint centers were also calculated, 

and the two systems differed by less than 3cm in absolute position. The authors noted that 
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occlusion by the treadmill bar and blurry video caused by the speed of distal limb 

movement had a negative effect on the markerless motion capture accuracy. 

While recent validation work into markerless motion capture has displayed 

promise there remain pertinent areas that have not been examined. For example, as 

markerless systems become capable of 3D data collection and increasingly used for 

research, it will be important to understand the effect of various setup conditions have on 

the systems accuracy. Currently there is a lack of evidence understanding the effects of 

increasingly complex features of interest (eg. higher number of features and/or boney 

landmarks), and the effect of camera angle have on the accuracy of the system. 

2.3.1 Feature sets. 
 

 Previous applications of DLC on human movement have focused on simple sets 

of features tracked, typically lower-limb joint centers from a sagittal view (26,72). These 

features are sufficient for 2D collection and tracking movement along a single plane, but 

to track and compute 3D motion/orientations like a marker-based system, the position of 

additional features (boney landmarks) must be known (47). To the best of the authors 

knowledge, no studies have examined the effect of increased complexity of marker sets 

(features of interest) on the accuracy of a DLC trained network. A notable difference 

between markerless and marker-based tracking targets is that the markerless systems will 

attempt to track the same joints center point regardless of viewing angle, whereas marker-

based systems will track fixed points placed on the skins surface. Applying commonly 

used marker set locations to DLC training will facilitate direct comparisons between the 

systems but may reduce DLC network performance. 
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2.3.2 Camera angle 
 

The viewing angle of a camera changes the visibility of features on a participant 

and can decrease occlusion. In traditional marker-based 3D motion capture researchers 

need to track features that may be regularly out of view from a single camera, so multiple 

cameras with different views are required.  Currently, there is little evidence identifying 

the effects of alternative/multiple camera angles on the accuracy of a DLC trained 

network. Following traditional marker-based tracking theory, multiple and varied camera 

views will be required for accurate 3D markerless motion tracking (77). However, it 

remains unknown how the system will learn to identify a feature if it is rarely visible to 

specific cameras. Therefore, the effect of various camera angles on network performance 

should be explored. 

2.4 Research Problem 

Markerless motion capture is a captivating solution to the ecological validity 

concerns of traditional marker-based 3D motion capture systems (83). However, typical 

experimental setups (complex feature or object tracking) make most commercial 

markerless programs unsuitable. This highlights the usefulness of open-sourced 

markerless tracking programs like, DLC, because they provide a possible solution to 

tracking more complex features.   

Unfortunately, previous research on DLC has been limited to tracking features 

that remain visible to the camera either constantly or with only occasional occlusion. 

Studies have yet to attempt to use the more robust set of features/markers commonly seen 

in optical motion capture. Of interest are the capabilities of DLC to track the more 

complex sets of features consistent with current marker-based motion capture protocols 
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which have known results when calculating joint angles (47). While authors have 

reported success at producing 3-dimensional joint kinematics on humans from tracking 

only joint centers (77) rather than the more complex sets, these results were not validated 

against a gold standard. 

Past DLC research has also only used only single cameras collecting data from 

the angle most appropriate for the movement being tracked, i.e., sagittal view for gait 

studies, overhead view for behaviour tracking. Motion capture of complex features often 

requires cameras placed at multiple viewing angles but the effect that sub-optimal camera 

views with high occlusion percentage have on DLC’s performance has not been 

quantified. Lastly, most DLC validation studies have been in two dimensions, but most 

applications of motion capture require 3D positions to determine joint angles. Therefore, 

DLC recommends a multi-camera 3D software package Anipose (77), which has yet to 

be validated in the literature. 

AI markerless motion capture faces common challenges, some shared with other 

modalities, others unique to AI. The robustness of the network is dependent on its ability 

to learn to track the features of interest. The visual distinctiveness of the feature matters, 

so features like the mid-point along a person’s thigh would be difficult to track, while a 

feature like the lateral knee, which is visually distinct from the surrounding tissue is less 

difficult. The amount of ‘noise’ in the background can affect network robustness, with 

simple backgrounds facilitating feature identification and complex backgrounds with 

other untracked people present is much more difficult. The number of features tracked is 

another factor that can influence the performance of a network. Marker-based systems 

track large numbers of points to quantify joint position and angle, but trainable AI 
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systems like DLC typically only track joint centers or other large identifiable features. A 

final common problem is feature occlusion, when the feature being identified is not in 

view. DLC and other similar programs can handle small numbers of occlusions, but when 

a large number of features is being tracked, an individual camera might never see a 

particular feature. It is unclear how DLC will respond in such a scenario, but it would 

likely result in poor performance. 

Of particular importance to the successful implementation of DLC as a 3D motion 

capture tool are clear understanding of its practical implementation. Specifically what 

effect a feature set resembling ones commonly used in motion capture (CFS) will have on 

DLC’s ability to track as compared to the more common SFS. Additionally, while camera 

position and its effect on accuracy are known for optical motion capture, this has not been 

addressed in any literature for DLC.  

2.5 Purpose 

The purpose of this research is to explore the tracking capabilities of DeepLabCut 

and some of the various conditions that can affect its performance with the goal of 

evaluating the 3D outputs against traditional marker-based motion capture. Three sub-

objectives were set to achieve this research goal.  

Sub-objective 1:  

Evaluate the effects of a complex 18 feature set, then comparing it to a 

simplified 10 feature set in line with common DLC targets. Performance differences 

between the networks will demonstrate the performance effect of increased numbers 

of tracked features on DLC. 
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Sub-objective 2:  

Examine the network performance effects of varied camera angles, and the 

resulting feature occlusion, on tracking success/network performance. 

Sub-objective 3: 

Evaluate the Anipose-derived 3D outputs from DLC processed video using 

both the complex and simplified feature sets trained networks. Then compare the 3D 

hip and knee joint positions and angle data from each network to traditional marker-

based motion capture and identify if 3D joint angle data accuracy is compromised 

when only using a 3 or 5-camera verses an 8-camera setup. 
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Chapter 3: Methodology 

3.1 Participants 

50 participants were recruited for the study in accordance with a sample size 

calculation (84) identifying the need for eight testing participants. This calculation was 

based on previous ICC results comparing DeepLabCut (DLC) to optical motion capture 

(72). The sample calculation was conducted by custom R code using the 

calculateIccSampleSize() function within the ‘ICC.Sample.Size’ package based on the 

work of Zou et al. (84). Inputs included a predicted ICC output of 0.8, which was based 

on conservative predictions from previous DLC validation work (72) and the number of 

comparisons for each participant (6). Default values were accepted for desired alpha 

(0.05) and power (0.8) Previous research into DLC using human participants suggest 

training the network with four participants for each novel testing participant (26,72). To 

account for attrition and this 4:1 ratio of training to testing data, 50 participants in total 

were recruited for this project, with 40 participant’s data used for network training and 10 

for validation testing purposes. Participant homogeneity can lead to a lack of robustness 

in the trained network (22,85); therefore, deliberate effort was made to ensure the 

diversity of the participant group. Subjective visual assessment was used to identify 

perceived gender presentation and to estimate the inclusion of persons of visible 

minorities.  

Participants were excluded if they expressed any difficulty performing the 

required movements or if they disclosed any musculoskeletal conditions that would 

preclude any of the movements. Participants provided written informed consent to 

participate in the study (Appendix A). The experimental design and protocols were 
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approved by the Dalhousie Health Sciences Research Ethics Board (REB file#: 2022-

5974; Appendix B). 

3.2 Hardware  

3.2.1 Markerless Motion Capture 
 

Video recordings of all participants conducting movements for DLC processing, 

either to train networks or to test them, were gathered using seven GoPro Hero8 cameras 

and one GoPro Hero9 camera recording at 1080p-60fps. All videos of the training group 

participants were recorded in separate files for each participant in each of the six 

movement conditions. Testing group participant video was recorded continuously for all 

movement conditions to facilitate synchronization between the GoPro camera videos and 

the marker-based Optitrack output.  
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Figure 7 Camera position during data collection. (A) Training group collection position 
shown with cameras placed equidistant around the participant. (B) Testing group 
collection positions shown with cameras placed such that five cameras have a view of 
one side of the participant and the remaining three are equidistant in the remaining space. 
Numbers indicate the identification number assigned to each camera for comparison of 
performance. 

 

During all training group data collections, the cameras were placed equidistant 

around the participant to get a diverse collection of movement images (Figure 7A). 

During all testing group data collections, the cameras were placed such that a subset of 

five cameras were located in a semicircular shape forming a sagittal total view angle of 

approximately 150° (Figure 7B). This alteration in camera angles, for the testing group, 

was to ensure that the right side of the participant features remained in the field of view 

of 5 cameras. By grouping the 5 sagittal viewing cameras the intent was to provide the 

opportunity to calibrate a 3-camera, 5-camera, and 8-camera calibration for anipose so 

that number of cameras could be explored as a factor in anipose accuracy.  This would 

also improve the Anipose calibration ensuring that at minimum 5 cameras could see the 
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ChArUco board simultaneously (Figure 6). The final three cameras were placed 

equidistant in the remaining volume. GoPro camera control was achieved via Bluetooth 

using the “Camera tools for Heros” app. Prior to each data collection session, camera 

calibration video was recorded using a 0.91m by 0.61m ChArUco (78) board with 8x12 

squares and a 4x4 ArUco dictionary (86).  

3.2.2 Optical Motion Capture 
 

A 14-camera OptiTrack passive motion capture (Prime 13 OptiTrack Cameras; 

Natural Point, Oregon, USA) configuration and associated reflective markers were used 

to obtain kinematic data of the 10 testing participants. Markers were placed on the 

anterior superior iliac spine (ASIS), posterior superior iliac spine (PSIS), greater 

trochanter, medial & lateral epicondyles, medial and lateral malleoli, calcaneus, and the 

base of the 3rd metatarsal for both legs. Locations were selected to satisfy ISB guidelines 

regarding lower-limb data collection with the minimal number of markers (47). Data 

were collected in a single continuous collection for each participant at 60Hz using Motive 

2.1.1 (Optitrack, Natural Point, Oregon, USA) to match the DLC camera settings.  

3.3 Software 

3.2.1 Markerless Motion Capture 
 

GoPro videos for markerless motion capture were processed to a compatible 

codex (H.264) using ffmpeg (87), then edited and synchronized using DaVinci Resolve 

18. DeepLabCut 2.1 was then used to train the markerless motion capture networks with 

the 40 training group participants and to analyze the performance of networks on the 

training group participants. These steps were completed for both the simplified (joint 

center) and complex feature networks (complex feature set). All videos for the testing 
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group participants were selected for the analyze_videos function within the DLC GUI. 

Options to produce .csv output files along with tracked videos were selected. 

3.2.2 Optical Motion Capture 
 

Optical motion capture data collected for the 10 testing group participants was 

accomplished using Motive motion analysis software. Post-processing of the lower limb 

marker data for each testing participant was completed using this software, then exported 

to Excel (Microsoft. Washington, USA) for analysis.  
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3.4 Experimental protocol 

 

Figure 8 Project workflow. Green indicates start of workflow. Orange indicates data 
collected for sub-objectives. 150 total participants. 240 participants assigned to the 
training group. 36 videos recorded by 8 cameras for each participant. 4Jumping jack 
videos removed. 5Videos from 4 cameras provided to DCL for initial training of two 
networks. 65 frames from each video selected by DLC. 7Networks trained. 810 
participants from training group selected and 9combined videos used to assess network 
performance. 10Videos used to retrain network. 11Average number of error-containing 
frames recorded for sub-objective 1. 12Two final networks created. 1310 participants 
assigned to training group. 14Training group has single video recorded by 8 cameras of 6 
movements while simultaneously recorded by OptiTrack. 15Videos of testing group are 
16provided to the two networks for 2D analysis. 172D outputs including confidence scores 
are used for sub-objective 2. 182D outputs are used by Anipose to calculate 3D position 
for each feature. 19Anipose and OptiTrack outputs are compared for sub-objective 3. 

 

Upon arrival at Dalhousie University’s Biodynamics Ergonomics and 

Neuroscience Laboratory (BENlab) (2661 South St. Halifax, NS. Canada), participants 

were given time read and ask questions about the experimental protocol then provide 

consent in accordance with the Dalhousie Health Sciences Research Ethics Board. 
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Anthropometric data was then collected (Height and segment lengths for foot, shank, and 

thigh) using a stadiometer and anthropometers.  

Training group: 

The training group performed six (6) movements in a pseudo-randomised block 

design order at the instruction of the researcher: vertical jump, walking through the 

capture area, rotating in a circle, leg swings in a sagittal plane, sit-to-stand, & jumping 

jacks. For a randomly determined 6 participants, passive motion caption markers were 

placed on the participant to decrease the likelihood of error when the network encounters 

the testing videos with markers. In these special participant cases, the markers were 

placed bilaterally on the 3rd distal metatarsal, on the calcaneus, on the medial and lateral 

malleoli, on the medial and lateral epicondyles, on the greater trochanter, on the ASIS, 

and on the PSIS (47).  

Testing Group: 

Participants were asked in advanced to arrive at the lab in snug-fitting clothing to 

facilitate marker placement. Prior to recording any data reflective markers were placed on 

the participant (3rd distal metatarsal, calcaneus, medial and lateral malleoli, medial and 

lateral epicondyles, greater trochanter, ASIS, and PSIS). With reflective markers on, each 

testing group participant performed the same 6 movements in a randomized order. 

Participants from this group were recorded simultaneously by the GoPro cameras for 

markerless motion capture and the marker-based OptiTrack system. Synchronization of 

the GoPro video and the Optitrack system was accomplished by dropping a ball prior to 
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any participant movements. The ball drop created a common fixed time-point for later 

cropping and synchronization. 

3.5 Data Analysis 

3.5.1 DeepLabCut 
 

 

 

Figure 9. Chart of DeepLabCut workflow from project creation to the analysis of novel 
videos (7).  
 

Training Group: 

The current study differed, in several aspects, from previous human DLC 

validation research (72). For example, the network was not primarily trained on images 

which included passive optical motion capture markers, which eliminated the likelihood 

that the network learned to identify the reflective markers, rather than the desired body 

feature/landmark. Of interest is the DLC network’s ability to track movements that have 

not been explicitly included in the training data. To test this, one of the six movements, 
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jumping jacks, was randomly selected and removed from the training dataset. This would 

allow later testing of DLC’s joint center tracking performance during a movement that 

was absent from training data. A total of 800 videos remained available for training (40 

participants x 5 included movements x 4 cardinally opposed cameras). DLC’s inbuilt 

algorithm (7,13) identified 5 frames that were representative of the range of positions 

present in each video, and trained labelers identified the 18 features of interest (complex 

feature set) corresponding with the OptiTrack marker positions.  Then, a second 

(simplified) network consistent with previous DLC tracking (7,26,72,77) was trained 

tracking joint centers of the ankle, knee, and hip, along with the ASISs and PSISs. The 

two networks will allow for assessment of DLC’s ability to track a set of features 

consistent with current marker-based motion capture protocols (sub-objective 1) as well 

as assessment of the simplified feature set’s ability to produce accurate 3D joint angles 

(sub-objective 3). 

Training Group – Initial network training 

To train the networks, separate projects within DLC were created for each 

network. Config.yaml files were edited to include a list of the features to be tracked for 

that network along with the number of frames to be selected from each training video 

(five).  Plotting configuration was set to connect tracked features in the eventual output. 

While this is a cosmetic step for DLC, later processing by Anipose will treat these 

connections as fixed lengths. The DLC graphical user interface (GUI) was used 

exclusively during this project. Videos of the training group were loaded within the 

‘Manage Project’ tab. When extracting frames, default DLC settings were chosen such 

that an automatic extraction method used a kmeans algorithm to identify frames with 
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varied content. This algorithm was chosen for its stated ability to detect novel movements 

which when used in training lead to a more robust network (7). When creating the 

network, the default ResNet-50 was used as the base network. While Mathis et al. found 

that networks with deeper layers had a small reduction in error (RMSE of 3.09 ± 0.04 vs. 

2.90 ± 0.09 with ResNet-101) it was decided that the default setting were most 

appropriate for an initial validation study. 

The networks were each trained on a computer with an Intel i9-9900K processor 

running at 3.6GHz using 32 GB of RAM with a NVIDA RTX 2080Ti, running Windows 

version 10.0.19045 Pro. Training was capped at a maximum of 1030000 iterations (the 

default for DLC). A total of 4,000 frames were used, 5 from each video, 5 videos from 

each camera, 4 cameras for each participant for the 40 training group participants. 

Training Group - Retraining 

Network performance, for both the simplified and complex feature set, was 

evaluated as per DLC workflow (Figure 8) by subjective examination of the tracking 

results. 10 participants were selected from the training group, two of which had markers 

present, and their videos spliced together such that each camera angle had a separate 

video that included all five training movements. This was done as the initial training 

process had shown difficulty with large numbers of videos. The ‘Analyze videos’ tab on 

the DLC GUI was used to select those 80 videos and track the features across the entirety 

of the video. When participant video showed multiple tracking errors, the researcher 

initiated the retraining process.  
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During the retraining process the ‘Extract outlier frames’ tab of the GUI was used 

and the 80 videos showing tracking errors were provided to the program. Multiple 

algorithms exist to detect outlier frames; however, the default option of ‘jump’ was used 

which looks for frames where the feature detected moves more than a set distance from 

its location in a previous frame. These ‘jumps’ of feature location were identified in 

earlier piloting as a common error and so the default was chosen. Given that large 

numbers of errors were found, it was a satisfactory choice. During the extract outlier 

frames process DLC identified the number of outlier frames (misidentified features) in 

these reanalyzed videos and reported to the user. This metric was then used as a proxy for 

network performance; however, its initial intent was as a feedback tool to guide the user 

through improving the network.  

In the next step of the retraining process, DLC selected a representative sample of 

those outlier frames using a kmeans algorithm for the user to correct. 18 frames were 

chosen from 4 camera views of each of the subset of 10 participants to ensure a robust 

sample.  The ‘Refine labels’ tab then opens a graphical interface where 720 video frames 

were presented to the labelers who corrected any misidentified features. This new 

training data was added to the initial network training data and a new round of training 

using the same settings was initiated. This retraining process was repeated three times for 

each network leading to a final tally of 6,160 frames used per network. The number of 

outlier frames was obtained and recorded from each retraining iteration for both the 

simplified and complex feature set (used for sub-objective one analysis).  Outlier frame 

counts were then compiled in excel and analyzed using custom R code.  
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Testing Group: 

The videos of the 10 participants of the testing group who were recorded both by 

video and Optitrack were processed by both the simplified and complex feature networks. 

Two-dimensional feature coordinates from each camera view were exported as a .csv file 

by DLC for analysis along with a confidence score for each feature in each frame (used 

for sub-objective two analysis). As a machine learning algorithm develops during the 

training process and, in the case of DLC, learns to identify the features of interest, it 

compares its results against the user-annotated images. With each training iteration, of 

which there are hundreds of thousands, the algorithm improves and can identify how 

confident it is with each prediction(88). It outputs this confidence level as a confidence 

score. 

Confidence scores are a common output in machine learning, typically expressed 

as a number between 0 and 1 which indicates how confident the network is in the output 

it provided with 0 indicating low or no confidence and 1 indicating high confidence. 

While the exact methodology used by DLC to calculate confidence are not published, the 

industry approach to their application is understood (89) and they are often used as 

threshold values when interpreting machine learning outputs (88).  Individual confidence 

scores can be problematic as a network can be confidently incorrect in identifying a 

feature (false positive) or not confident in a correct identification (false negative) (89); 

therefore, as an aggregate of all features across all frames the values are potentially more 

robust.  
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Both DLC and Anipose use confidence values to identify outlier frames and so 

the author was comfortable in their application within this study. The raw files were 

processed by custom MATLAB code which extracted the confidence scores from the .csv 

file and exported to R for statistical analysis. 

3.5.2 Optical Motion Capture 
 

The 14 OptiTrack passive motion capture Prime-13 cameras were set up around 

the capture space and controlled by the Motive 2.1.1 Motion analysis software (Natural 

Point, Oregon, USA). This software was used to trigger and collect all of the testing 

group participants, then used to post-process each participant’s movement trials to ensure 

all 18 markers were identified throughout the movements.  Cleaned Optitrack data was 

then exported to custom MATLAB code for joint angle and segments length calculations. 

This code used a cubic spline method to fill any missing data, then filtered it using a 2nd 

order 6Hz 2-pass Butterworth filter(1). 3D joint angles were calculated, and then average 

lengths calculated between segment endpoints. 

3.6 Statistics 

Sub-objective 1, network performance improvement and comparison between 

complex (CFS) and simple (SFS) feature sets, utilized the DLC “outlier frames found” 

data to identify network quality. Data for each feature set network and their respective 

retraining iterations were tested for normality with Shapiro-Wilk’s tests. The number of 

error frames was normally distributed at each retraining iteration (p > 0.05). QQ plots 

were constructed and as all points fall along the reference line, we can assume normality 

(Figure 9). A two-way repeated measures ANOVA was calculated to determine the 

effects of network type on frames containing outliers/errors over the three iterations of 
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retraining. Effect of network type at each iteration was determined using pairwise 

comparisons. Effect of retraining iterations, for both networks, were tested with one-way 

ANOVAs. 

 

Figure 10 Grid comparing Quantile-quantile plots showing the empirically observed 
quantiles of error-containing frames (y-axis) as a function of quantiles expected from a 
normal distribution with the same mean and variance as the empirical distribution (x-
axis). 

 

Sub-objective 2, camera angle performance (how well a particular camera view 

was able to track the features of interest), was determined by obtaining the average 

camera feature tracking confidence scores (obtained from DLC) for each testing 

participant.  Data across all cameras was tested for normality with a QQ plot of an 

ANOVA model’s residuals and with Shapiro-Wilk’s test (Figure 10). As not all points 

fall along the reference line normality was not assumed, which was also supported by a 
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significant (p < 0.05) Shapiro-Wilk test. Therefore, to compare camera angle 

performance, a Friedman test was chosen as a non-parametric alternative to a one-way 

repeated measures ANOVA test. In the case of a significant Friedman test, a post-hoc 

pairwise Wilcoxon signed-rank test using Bonferroni correction will be completed to 

identify which camera positions are different. Effect size was calculated using Kendall’s 

W (90). 

 

Figure 11 Quantile-quantile plot showing the empirically observed quantiles of mean 
network confidence residuals (y-axis) as a function of quantiles expected from a normal 
distribution with the same mean and variance as the empirical distribution (x-axis). Data 
following a normal distribution would be expected to fall along the prediction line. 

  

Sub-objective 3, had the data been available, would have been analyzed using 

interclass correlation coefficients to quantify agreement between raw coordinate position. 

Statistical parametric mapping would have been used to show differences in joint angle 

calculated between Anipose and Optitrack during movement cycles.  
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Chapter 4: Results 

4.1 Demographics 

 The training population was representative of the testing population with similar 

proportions in physical presentation of gender traits and inclusion of persons of visible 

minorities (Table 1). 

Table 2: Participant demographics for the training and testing groups. 

Group Mass Stature Gender 
Presentation 

 

Training n = 40 73.8 ± 17.40 
Kg 

1.72 ± 0.09 m 26 ♀ presenting  
14 ♂ presenting 

20% persons of 
visible 
minority 

Testing n = 10 75.4 ± 19.42 
Kg 

1.73 ± 0.08 m 4 ♀ presenting  
6 ♂ presenting 

20% persons of 
visible 
minority 

 

4.2 Sub Objective 1: Comparison of networks 

There is a statistically significant two-way interaction between network type and 

retraining iteration, F(2,36) = 57.6, p < 0.05. Pairwise comparisons show that the mean 

number of error-containing frames (outliers) was significantly different between CFS and 

SFS networks, with SFS outperforming the CFS at training iteration 1 (p = 0.005), 

retraining iteration 2 (p < 0.001), and retaining iteration 3 (p < 0.001). One-way ANOVA 

results showed a significant effect of iteration on error-containing frames in the CFS 
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network (F(2,18) = 234, p-adj < 0.001) and in the SFS network (F(2,18) = 689, p-adj < 

0.001). 

 

Figure 12. Error-containing frames (y-axis) over successive retraining iterations (x-axis). 
Complex feature set (CFS) network displayed in teal, simplified joint center network in 
yellow.  

4.3 Sub-objective 2: Comparison of cameras 

Feature identification confidence was significantly different between the different 

camera angles using Friedman test, χ2(7) = 54.1, p < 0.05, n = 10. 
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Figure 13 Image A shows Confidence scores (y-axis) between each camera position (x-
axis) showing effect of viewing angle. Points indicate mean confidence scores for each 
participant. Image B indicates the raw camera ID numbers associated with identification 
in Freidmans’s test. 
 

Pairwise Wilcoxon signed rank test using a Bonferroni correction between 

cameras revealed no statistically significant differences in confidence score (Table 2). 

Effect size was calculated as W = 0.77 which indicates a large effect. 
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Table 3. Results of pairwise Wilcoxon signed rank tests between camera positions. The 
statistic column represents the Wilcoxon signed rank test statistic. Each test had 10 
degrees of freedom. 

Group 1 Group 2 Statistic p p-adjusted 
Camera1 Camera2 1 0.021 0.602 
Camera1 Camera3 0 0.002 0.055 
Camera1 Camera4 1 0.021 0.602 
Camera1 Camera5 5 1.000 1.000 
Camera1 Camera6 5 1.000 1.000 
Camera1 Camera7 9 0.021 0.602 
Camera1 Camera8 10 0.002 0.055 
Camera2 Camera3 2 0.109 1.000 
Camera2 Camera4 4 0.754 1.000 
Camera2 Camera5 9 0.021 0.602 
Camera2 Camera6 7 0.344 1.000 
Camera2 Camera7 10 0.002 0.055 
Camera2 Camera8 10 0.002 0.055 
Camera3 Camera4 8 0.109 1.000 
Camera3 Camera5 9 0.021 0.602 
Camera3 Camera6 9 0.021 0.602 
Camera3 Camera7 10 0.002 0.055 
Camera3 Camera8 10 0.002 0.055 
Camera4 Camera5 8 0.109 1.000 
Camera4 Camera6 8 0.109 1.000 
Camera4 Camera7 10 0.002 0.055 
Camera4 Camera8 10 0.002 0.055 
Camera5 Camera6 4 0.754 1.000 
Camera5 Camera7 10 0.002 0.055 
Camera5 Camera8 10 0.002 0.055 
Camera6 Camera7 10 0.002 0.055 
Camera6 Camera8 10 0.002 0.055 
Camera7 Camera8 10 0.002 0.055 
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4.4 Sub-Objective 3: 3D joint angles and segment length comparison 

Technical difficulties with the Anipose software meant that no three-dimensional 

data was generated from either DeepLabCut feature set (simplified or complex). While 

initial pilot testing in 2020 produced positive results using the sample data provided by 

Anipose, recent attempts to use the program encountered difficulty. Unfortunately, while 

the program did create the desired sub-folders to store processed data, no data was 

created in the folder, and no error code was provided by the program. When the Anipose 

sample data was used again, a similar result was found. Re-installation of the program, 

the creation of new environments to run the program, and attempts to return the PC to the 

state it was in when the program ran in 2020, all produced the same results. Installation 

on other computers as well as a full format of an off-site computer all failed to change the 

Anipose outcomes. Without any identifiable error to troubleshoot and without 

successfully running the program on any location it was determined that Anipose could 

not be made to work in time for this project. As a result, no 3D joint angles or segment 

length comparisons to the optical motion capture outcomes were possible. 
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Chapter 5: Discussion 

Results showed that the simplified feature set (SFS) network had superior 

performance at each stage of the retraining process, and that both networks improved 

significantly as retraining occurred. Camera location was shown to have a large effect on 

the mean confidence levels of the identified points. Cameras with anterior/posterior views 

outperformed cameras with sagittal views. 

5.1 Comparing marker sets 

The number of error frames with misidentified features, although not its intended 

purpose, was a useful metric for measuring and comparing network performance.  

DeepLabCut (DLC) has a consistent methodology (e.g., DLC identifies features with low 

identification confidence and/or unexpected location jumps from frame to frame) for 

identifying these outlier frames.  Both network types improved after each retraining 

iteration, as demonstrated by the decreased number of misidentified frames (Figure 11). 

Specifically, each retraining for the SFS network decreased the misidentified frames by 

50%. However, in both the SFS and the CFS training networks there were features not 

visible from some camera angles for the entire data collection.   

Prolonged feature occlusions or complete absences of features from the entire 

video were much more common in the CFS which was trained to mimic the full set of 

markers used in optical motion capture. For example, within the CFS network, the 

sagittal viewing cameras on the right side of the participant may briefly glimpse the 

medial femoral condyle of the right leg during the rotating in a circle movement; 

however, for all other movements it is obscured entirely.  These occlusion problems 

persisted for this sagittal camera, not able to view the left side ASIS, PSIS, greater 
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trochanter, lateral femoral condyle, and lateral malleolus as well as the right medial 

malleolus. That means that of the 18 features, only 7 are in view of the sagittal camera 

and 4 are intermittently obstructed (left calcaneus, left 3rd metatarsal, left medial 

malleolus, and left medial epicondyle). Contrasting with the SFS network, the same view 

would have 5 locations always in view (right ankle, knee, hip, ASIS, and PSIS), 2 

intermittently obstructed (left ankle, and knee) and only 3 completely occluded (left hip, 

ASIS, and PSIS).  

Typically for DLC projects, the features tracked are estimated joint centers, rather 

than boney landmarks. The joint center can be identified from multiple angles which limit 

the chances for occlusion. The effect of the increased number of marker occlusions in 

CFS compared to SFS is apparent in the network performance improvements seen in 

Figure 12 as well as in the results of the pairwise t-tests which showed significant 

differences at each measured point. After the first round of retraining the number of 

frames with low confidence decreased by 50% in the SFS network and only by 20% in 

the CFS. The second round of retraining decreased the error further for both networks as 

shown by the one-way ANOVA tests, but the SFS network still significantly 

outperformed the CFS. These performance scores may have been further improved with 

an increased number of retraining iterations.  

The DLC retraining process is necessary to improve networks, and its importance 

is crucial when being trained on images/videos with significant rates of feature occlusion. 

However, network training guidelines, in situations of high feature occlusions, are not 

well documented or researched within the current literature.  It would be expected that 

continuing to retrain the networks would improve the networks until a performance 
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plateau was achieved, but the number of training iterations that would be necessary for a 

complex feature set to achieve high tracking performance is unclear and should be 

standardized. For example, for very simple feature sets (i.e., tracking only lateral hip, 

knee, ankle) a high-quality tracking network can be achieved when trained on 17 

participants, for 400 frames, with no retraining iterations (26). While these networks may 

be easy to train, the accuracy of the three-dimensional joint angle output that can be 

derived from a simplified feature set must be established to understand its role in field 

biomechanics research. 

5.1.1 Selecting features of interest  

The choice of features is one of the most impactful elements when training a 

network for markerless motion capture. The number of training images required will be 

directly dependent on the ease with which the network can learn to identify the features, 

and the number of required training images will affect the feasibility of DLC as a motion 

capture tool. Features with strong visual contrast to the surrounding area, or in areas 

where movement occurs, like joint centers, will be much easier to track than areas with 

no discernible distinction to their surrounding (7). Features that are the center of a 

particular body part rather than a superficial aspect of that body part will be easier to 

track, as we saw with the greater performance from the SFS tracking joint centers.  

DLC is designed to handle occlusions when features are momentarily blocked 

from view, for instance by another limb passing over the area. However, it was unclear 

how DLC would perform if the feature was totally absent from the analyzed video. This 

project identified that CFS and sagittal cameras angles often caused contralateral features 

to remain occluded for the entirety of the movement, resulting in poor network 
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performance scores and camera tracking confidence scores, respectively. Although the 

CFS was intended to match that of common optical motion capture marker sets (76), 

DLC may not be at a stage to track the many common boney features needed for accurate 

segment position and orientation tracking. The relative success of the SFS within this 

study is encouraging but their remains a need to validate whether these simplified feature 

sets can produce accurate 3D joint angle data.   

The ease with which some features can be tracked compared to others was 

apparent during the retraining process for both the SFS and CFS networks. In this project, 

the greatest difficulty for feature tracking was found for the medial malleoli and medial 

femoral condyles. They were both specific and small superficial features that were often 

occluded. The greater trochanter, despite being a feature without much visual distinction 

from surrounding tissue, was well tracked, potentially because it represented a mid-point 

for the pelvis and because it was a point where movement appeared to occur. 

Consideration should be given to the factors that effect how easily a feature can be 

tracked in future work, as the effect on network robustness is significant. 

5.2 Effect of camera angle on performance 

Camera angle confidence score results showed that there was a statistically 

significant difference in network tracking performance between the different camera 

angles. Cameras with oblique and sagittal views (Cameras 5 & 8) performed poorly 

compared to those with anterior/posterior views. This is most likely due to feature 

occlusion as the networks struggled to identify points that were not visible. As a result, 

the network would incorrectly locate them, causing decreased confidence scores.  For 

example, in both networks the cameras with purely sagittal views (5 and 8; Figure 12) 
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were consistently unable to see the contralateral greater trochanter, ASIS, and PSIS 

locations; resulting in mislabelled contralateral leg feature locations (Figure 13). This 

resulted in large performance differences, specifically between camera 8 and all other 

cameras, that were statistically significant until corrected for multiple comparisons. The 

anterior/posterior cameras (3 and 4: Figure 12) had unobstructed views of ankle, knee, 

hip locations, and would only have the opposite pelvis markers (ASIS or PSIS) hidden 

from the cameras.  

 

Figure 14 Image A showing the SFS network misidentifying left hip marker (orange) and 
left ASIS (yellow) when those features were not visible in camera 5.  are not visible from 
this angle (camera 5). Image B shows correctly identified features as viewed from camera 
3. 

The common practice, in optical motion capture, of surrounding the subject with 

cameras so that each marker is visible by at least two cameras (23) does not translate to 

AI image processing. Optical marker-based systems process all cameras simultaneously 

whereas in image processing each camera is treated, and processed, separately (7) then 

the triangulation process is performed later (7,77). Since, DLC trains the network with 
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single camera views, it becomes imperative that camera location and camera views are 

strategically considered for the object or participant being recorded. Recently reported 

(reported after data collection was complete for this study) camera location research 

identified that other AI systems recommend two to six front facing cameras (23).  Some 

of these other AI systems, such as openCap, also rely on human models to predict the 

location of occluded features, which improves the network’s quality (23).  

A predictive model is not available with DLC and may partially explain why 

cameras 7 and 8 performed worse than their camera counterparts (cameras 5 and 6). The 

potential reasons for these conflicting camera results are: 1) the sit-to-stand movement 

required a stool which may have obstructed camera 7’s view of specific features, 2) 

cameras were set at varying heights, with camera 8 set lower to the ground than camera 5, 

and  3)  camera 8 was the GoPro hero 9 rather than a GoPro hero 8 (all remaining 

cameras), which while set to the same collection parameters as the other cameras, may 

have had intrinsic qualities that differed from the other cameras.  

It is important to note that while we found that a frontal plane viewing camera 

performed better than the sagittal viewing cameras, to collect robust 3D data of 

movements that occur mostly in the sagittal plane a single frontal viewing camera would 

not perform well. Multiple cameras with oblique views to one another are needed for 3D 

data collection, at least three for Anipose (77). Networks based on fixed human models 

have however been shown to collect accurate data with two, if the angle between them is 

70° (23). 

 

 



56 
 

5.3 Challenges of Anipose 

Anipose is an add-on application for extending DLC’s data collection into multi-

camera 3D space. It takes a DLC trained network and uses it to identify features recoded 

by 3+ calibrated cameras. It then outputs 3D joint angles between tracked segments as 

well as feature position. However, despite following the guidelines for installation (77), 

Anipose did not function properly which resulted in no three-dimensional joint angle and 

segment length data from the markerless motion capture networks. Despite multiple 

attempts to get Anipose to function (described in Section 4.4), Anipose was unable to 

provide any 3D output. An alternative to Anipose could have potentially been achieved 

by writing custom triangulation code to obtain 3D joint positions from 3, 5, and 8 camera 

setups. Once camera parameters are found then the 2D output from DLC could be 

combined via custom MATLAB code. Subsequent joint angle calculation for the CFS 

would follow typical code for Optitrack outputs but for the SFS this would not be 

possible. A novel approach using assumptions like the procedure used by Anipose and 

described in section 2.2.3: 3D position would be required to calculate joint angles.  

Packages exist that can perform camera calibration as well as the subsequent 

triangulation; however, Anipose was designed specifically for DLC output. The Anipose 

calibration functionality uses a neural network trained to identify the edges and vertices 

of a calibration board, and specifically a type of board that assists in managing occluded 

views (77). The algorithms used surpass the accuracy of any other commonly employed 

method. Its refinement filtering algorithms were designed specifically to manage the 

types of output and challenges found with DLC and its 3D joint calculations are based on 
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the kinds of networks commonly tracked by DLC. Despite the inability to apply the 

program to this work, it remains the best option for future 3D DLC applications. 

5.4 Limitations of DLC 

 DLC is designed to use a minimal number of training images so that it can be 

useful to researchers conducting smaller scale projects; however, this benefit also 

presents a limitation regarding the representativeness of the training videos compared to 

the videos being analyzed. Typical networks require thousands of training images to 

accomplish a human level of feature identification (72) accuracy (<5 pixels). While DLC 

reduces the number of training images to more manageable amounts, (300-500) (13), it 

introduces a potential for increased error if the analyzed images are too unlike the images 

used to train the model. Specifically, the program’s authors note that the random 

component of the method used to select training frames from provided videos increases 

the possibility both that a novel movement might not be included and that a feature being 

tracked is occluded during the selected frame (13). While increasing the number of 

images used in the training process could reduce the prevalence of these errors, this 

decreases the very strength that DLC was designed to have. The authors recommended 

using diverse environmental, demographics and movement training videos (7). Error rates 

would be expected to decrease if the selected training videos had more diverse 

parameters than the videos being analyzed.   

Another potential source of error was the small number of frames per video used 

in the initial round of network training (5 frames). This number was selected to keep the 

total number of training frames within a practical size while still using diverse camera 

views of all participants. This small number combined with the chosen kmeans selection 
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algorithm may have resulted in a less diverse training set. Uniform selection of frames, or 

larger numbers of initial frames (where there is little movement captured by the cameras) 

should be explored to identify changes in performance. 

A further potential limitation, that may be more pronounced in DLC compared to 

other reinforced learning AI applications is the random error associated with inaccurate 

feature identification within the training data. With the large training sets of conventional 

networks, individual errors occur in a randomly distributed manor around the mean 

feature location. With an application such as DLC where the number of training images 

can be small, a skew in the error distribution around feature identification can result in 

larger misidentifications/deviations from the intended feature. 

 Many markerless motion capture programs like, openCap and Theia3D, that are 

designed to track human movement use built-in human models to improve the 

performance of their network. DLC does not use a built-in model in this way, which may 

partially explain why it had difficulty with partially occluded features. Unfortunately, this 

reduces DLC’s robustness compared to other markerless applications. However, DLC’s 

authors intentionally did not incorporate a model because the program is intended to be 

applied to a large range of things (eg. Humans, animals, equipment, machines; (13)). 

Therefore, DLC excels in its versatility but may require further training iterations to 

successfully track the wide variety of objects. 

5.5 Future Directions 

The results of sub-objectives 1 and 2 indicate that future work with DLC may 

want to avoid complex feature sets that mirror that of typical optical motion capture 
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systems, rather focus on features that can be tracked from multiple viewing angles. 

Additionally, front facing cameras should be used so that features of interest are visible 

from the frontal plane and throughout the movement. It would be recommended that 5 

cameras are used in a 150° arc in front of the participant or object to be tracked. The 

between camera positions post-hoc analysis with Bonferroni correction may have been 

overly conservative; therefore, future work should consider grouping cameras with 

equivalent views to facilitate a smaller number of tests, ie sagittal and frontal views. 

Network performance improved with retraining, but an inflection point, where the 

gains at each step of retraining decrease, was not reached. Future work would benefit 

from examining at what point diminishing returns occur during the retraining process.  

Since Anipose was unable to be successfully implemented for this work, the next step 

will be to reach out to the program authors so that 3D movement data can be produced 

from DLC and then compared to marker-based systems. 

Without the 3D data from Anipose the researcher was unable to compare the 

results against the Optitrack data. Therefore, the next plan for this work is to directly 

contact the creators of Anipose to identify the rate limiting step that could not be solved 

prior to the completion of this work. 

5.6 Conclusion 

This research evaluated the tracking capabilities of DLC and how feature set 

complexity and camera locations may affect markerless motion capture network 

performance. The simplified feature set (SFS) had significantly better performance 

(fewer outlier frames) than the complex feature set (CFS), and the anterior/posterior 

facing cameras had significantly better feature identification confidence scores compared 
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to traditional sagittal plane camera views. The results from both sub-objectives 1 and 2 

highlight the importance of choosing an experimental setup that will support strong 

network performance. Networks may drastically improve their performance if the 

features of interest are infrequently occluded from view, as well as forward facing camera 

positions that maximize the visibility of features of interest. These findings will inform 

future markerless motion capture research design by minimizing the time required for 

data collection and network training.   
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Appendix A 

 
 

CONSENT FORM  
 
Project title: 3D Validation of DeepLabCut as a Markerless Motion Capture Tool 
 
Lead researcher  
Seth Daley, Health and Human Performance 
Email: s.daley@dal.ca 
(902) 456-7564 
 
Other researchers 
Ryan Frayne, PhD 
Email: ryan.frayne@dal.ca 
(902) 494-6499 
Assistant Professor: 
School of Health and Human Performance  
Dalhousie University 
Halifax, Nova Scotia, Canada 
 
 
Introduction 
We invite you to take part in this research study being conducted by myself, Seth Daley, 
and Dr. Ryan Frayne at Dalhousie University as part of my Master of Science 
(Kinesiology) degree. The choice to participate in this study is completely your decision. 
There will be no impact on your academic studies, athletic performance or services 
provided should you choose not to participate in this research. The information below 
explains to you what is involved in the research and what you will be expected to do, 
about any benefit, risk, inconvenience or discomfort you may experience.  
 
If you have any questions about the study please contact the lead researcher, Seth 
Daley or Dr. Ryan Frayne (Supervisor). Please ask as many questions as you like. 
  
Research Study Background and Purpose 
Motion capture is a commonly used tool in research but often requires the use of 
expensive systems as complicated marker sets placed on the participant. DeepLabCut is 
a machine learning application that can track movement from video files without the 
need for markers or laboratory setups. For scientists to be confident using the tool 
however, it needs to be shown to be as accurate as the current best systems by 
comparing the results against each other.  

mailto:s.daley@dal.ca
mailto:ryan.frayne@dal.ca
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Who Can Take Part in the Research Study 
Anyone between the ages of 18 and 65 who are comfortable preforming basic 
movements like standing jumps, bodyweight squats, walking, and reaching are able to 
participate. 
 
What You Will Be Asked to Do 
This study will consist of one session at the Dalplex, 6160 South Street, Halifax, NS. The 
lead researcher will meet you at the front door of the building and escort you to the 
biomechanics ergonomics neuroscience lab (BENlab) located inside the Kinesiology 
Department of the Dalplex. You will be asked to wear snug fitting comfortable clothing.  
 
You will have your height and the length of your arms and legs measured. You will then 
be randomly assigned to one of two groups. The first group will perform 5 separate 
movements, each recorded by a series of cameras, and then a 6th movement with a 
series of small markers placed at various parts of your legs, hips, and shoulders. The 
second group will perform all 6 movements with the markers applied and will be 
recorded both by cameras and by an optical motion capture system. The movements 
will include the following, in a randomized order: walking along a flat surface, jumping 
into the air, turning in a circle, three repetitions of a jumping jack, swinging a leg 
through the air, and standing up from a seated position. 
 
Possible Benefits, Risks and Discomforts 
As the movements performed will be simple ones without any notable effort there will 
be no anticipated benefits from participation beyond contributing to the understanding 
of markerless motion capture.  
 
There are no anticipated risks or discomforts from participation in this study.  
 
How your information will be protected: 
Confidentiality: Once you have enrolled in the study you will be assigned an anonymous 
study number to protect your confidentiality. All data collection forms and participant 
data will only use the study number to identify you. Only the investigators will have 
access to these numbers.  
 
Privacy: The lead researcher and supervisor may be present during the data collection to 
ensure protocols run smoothly. If a participant has a personal inquiry or question 
regarding the study they will be given an opportunity to speak directly to the lead 
researcher. 
 
Data retention: All paperwork will be stored in a locked cabinet owned by the lead 
researcher’s supervisor. Electronic materials (including data and images) will be stored 
on a secured, password-protected computer with images edited to remove identifying 
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features. Videos will be edited after analysis to remove any identifying features. Data 
will be retained for 5 years, with all data being destroyed after this time period by the 
lead researcher. 
 

 

If You Decide to Stop Participating 
You are free to leave the study at any time. If you decide to stop participating at any 
point in the study, you can also decide whether you want any of the information that 
you have contributed up to that point to be removed or if you will allow us to use that 
information. You can also decide for up to 1 month if you want us to remove your data. 
After that time, it will become impossible for us to remove it because it will already be 
analyzed. 
 
How to Obtain Results 
A summary report including graphical presentations will be prepared and made 
available to you and all participants if you wish to know the outcome of the study.  
 
Questions   
We are happy to talk with you about any questions or concerns you may have about 
your participation in this research study. Please contact Seth Daley (s.daley@dal.ca) or 
Ryan Frayne (ryan.frayne@dal.ca) at any time with questions, comments, or concerns 
about the research study.  
 
If you have any ethical concerns about your participation in this research, you may also 
contact Research Ethics, Dalhousie University at (902) 494-1462, or email: ethics@dal.ca 
(and reference REB file # 2022-5974). 
 
 

 
 
 
 
  

mailto:ethics@dal.ca
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Signature Page 
 
Project Title: 3D Validation of DeepLabCut as a Markerless Motion Capture Tool 
 
 
Lead Researcher  
Seth Daley, Health and Human Performance, Dalhousie University 
Email: s.daley@dal.ca 
 
I have read the explanation about this study. I have been given the opportunity to 
discuss it and my questions have been answered to my satisfaction. I understand that I 
have been asked to take part in one session that will occur at Dalplex and that 
physiological measures and video will be recorded during this session. I agree to take 
part in this study. My participation is voluntary, and I understand that I am free to 
withdraw from the study at any time and can ask for my results to be removed from the 
study up until 1 month after the session is completed. 
 
 
 
____________________________  __________________________ 
 ___________ 
Name         Signature  Date 
  
 

I wish to have the outcomes of the study sent to me. 

 

____________________________  __________________________ 
 ___________             
Email Address                                              Signature                                                         Date 
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