
DATA STRUCTURES FOR COLORED COUNTING IN GRIDS
AND TREES

by

Younan Gao

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

August 2023

© Copyright by Younan Gao, 2023



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Models of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The Ball Inheritance Problem . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Ordinal Trees and Labeled Trees . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Navigation in Colored Ordinal Trees . . . . . . . . . . . . . . 8
2.4.2 Colored Path Emptiness Queries . . . . . . . . . . . . . . . . 9
2.4.3 Centroid Decomposition . . . . . . . . . . . . . . . . . . . . . 9

Chapter 3 Colored 2D Orthogonal Range Counting . . . . . . . . . 11

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Colored 2D Orthogonal Range Emptiness . . . . . . . . . . . . 17
3.2.3 Segment Trees and Interval Trees . . . . . . . . . . . . . . . . 17
3.2.4 Orthogonal Stabbing Queries over 3D Canonical Boxes . . . . 18
3.2.5 Reducing Colored 2D 3-Sided Range Counting to 3D Stabbing

Counting over Canonical Boxes . . . . . . . . . . . . . . . . . 23

3.3 A New Framework of Achieving Time-Space Tradeoffs . . . . . . . . . 25
3.3.1 Overview of the Data Structure Framework . . . . . . . . . . 25
3.3.2 Computing Intersections between Color Sets . . . . . . . . . . 28

ii



3.4 Two More Solutions with Better Space Efficiency . . . . . . . . . . . 34
3.4.1 Achieving O(n lg2 n)-Word Space . . . . . . . . . . . . . . . . 34
3.4.2 Achieving O(n lg n)-Word Space . . . . . . . . . . . . . . . . . 40

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4 Faster Path Queries in Colored Trees . . . . . . . . . . . 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Counting Colors for All Root-to-node Paths . . . . . . . . . . 52
4.2.2 Node Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Rectangular Matrix Multiplication . . . . . . . . . . . . . . . 52
4.2.4 Min-Plus Product and Min-Plus-Query-Witness Problem . . . 53

4.3 Batched Colored Path Counting . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Color Counting over Paths Containing the Root . . . . . . . . 54
4.3.2 Faster Preprocessing via Sparse Matrix Multiplication . . . . . 56
4.3.3 Color Counting on an Arbitrary Path . . . . . . . . . . . . . . 60

4.4 Batched Path Mode Queries . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Queries for Infrequent Colors . . . . . . . . . . . . . . . . . . 66
4.4.2 Marking O(n1−t2) Nodes . . . . . . . . . . . . . . . . . . . . . 69
4.4.3 Queries for Frequent Colors over Predefined Paths . . . . . . . 70
4.4.4 Mode Queries on an Arbitrary Path . . . . . . . . . . . . . . . 87

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter 5 Approximate Colored Path Counting . . . . . . . . . . . 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.1 Partial Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Tree extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3 The k-nearest distinct ancestor queries. . . . . . . . . . . . . . 99
5.2.4 Colored Path Counting over All Paths . . . . . . . . . . . . . 99
5.2.5 The Chernoff Bound . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 2-Approximate Colored Path Counting . . . . . . . . . . . . . . . . . 99
5.3.1 Counting over a Path that Contains a Fixed Node . . . . . . . 100

iii



5.3.2 Counting over Arbitrary Paths . . . . . . . . . . . . . . . . . . 101
5.3.3 Speeding up the Query . . . . . . . . . . . . . . . . . . . . . . 105

5.4 (1 ± ϵ)-Approximate Colored Path Counting . . . . . . . . . . . . . 108
5.4.1 Colored Type-2 Path Counting in Optimal Time . . . . . . . . 109
5.4.2 Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.3 Approximate Colored Path Counting over Canonical Paths . . 114
5.4.4 Approximate Colored Path Counting over Arbitrary Paths . . 117

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 6 Conclusion and Future Work . . . . . . . . . . . . . . . . 120

6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

iv



List of Tables

3.1 Bounds of colored 2D orthogonal range counting structures. . 14

5.1 A summary of our results on approximate colored path counting
and colored type-2 path counting. . . . . . . . . . . . . . . . . 96

v



List of Figures

1.1 The examples of colored path counting and path mode queries. 2

2.1 An example of a wavelet tree constructed upon a set of 16 points
in 2D rank space. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 An example of finding and removing a centroid of a tree. . . . 9

2.3 An example of a centroid decomposition of a tree. . . . . . . . 10

3.1 An example of the two layers of segment trees. . . . . . . . . . 19

3.2 An example of a second-layer segment tree. . . . . . . . . . . . 21

3.3 An example of dividing region U(A). . . . . . . . . . . . . . . 24

3.4 An example of matrix M(v). . . . . . . . . . . . . . . . . . . . 30

3.5 An example of a binary range tree data structure that solves
2D dominance range reporting and counting. . . . . . . . . . . 35

3.6 An example of a second layer interval tree. . . . . . . . . . . . 37

3.7 Illustrating how the endpoints of a box projected on the yz-
plane are assigned into different sets Sℓ,ℓ, Sℓ,r, Su,ℓ and Su,r . . 42

4.1 An example of marking nodes using the method of Lemma 13
and its corresponding matrix M . . . . . . . . . . . . . . . . . 55

4.2 An example of computing matrix M using matrix A and AT . . 57
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Abstract

In this thesis, we design data structures for colored counting queries. Our goal is to

preprocess a set, P , of n colored objects into a data structure such that given a query

Q, the number of distinct colors in P ∩ Q can be computed efficiently. The prob-

lem settings studied primarily fall in two categories: colored two-dimensional (2D)

orthogonal range counting where the input is a set of n colored points on the plane

and the query is an axis-aligned rectangle, and colored path counting where the input

is an ordinal tree on n colored nodes and the query is an arbitrary path. First, we

consider the colored 2D orthogonal range counting problem. We design three new

data structures, and the bounds of each can be expressed in some form of time-space

tradeoff. By setting appropriate parameter values for these solutions, we achieve four

time-space tradeoffs, which are O(n lg3 n) space and O(
√
n lg5/2 n lg lg n) query time,

O(n lg2 n) space and O(
√
n lg4+λ n) query time, O(n lg2 n

lg lgn
) space and O(

√
n lg5+λ n)

query time and O(n lg n) space and O(n1/2+λ) query time, respectively, for any con-

stant 0 < λ < 1. Second, we consider the batched colored path counting problem, in

which the interest lies in the overall running time for n query paths, including the pre-

processing time. By reducing the problem to sparse matrix multiplication, we design

a solution that answers n colored path counting queries in O(n1.4071) time. Another

related problem, batched path mode queries, is also considered, in which given n query

paths and we are asked to find a color of maximum multiplicity in each path. We

present a solution that answers n queries in O(n1.483814) time using the fast compu-

tation of min-plus products over structured matrices. Third, we extend the study to

approximate colored path counting. We design data structures for 2-approximate col-

ored path counting with O(n) space and O(lgλ n) query time, O(n lg lg n) space and

O(lg lg n) time and O(n lgλ n) space and O(1) time, respectively, for any constant

0 < λ < 1. We also present a linear space data structure that supports (1 ± ϵ)-

approximate colored path counting in O(ϵ−2 lg n) time, for any 0 < ϵ < 1.
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Chapter 1

Introduction

The number of distinct elements in a multiset is one of the most fundamental statistics

that arise in many applications, such as data mining, databases and information

retrieval. Let A denote an array of n elements, i.e, {a1, a2, · · · , an}. Any sub-array,

{ai, ai+1, · · · , aj}, can be seen as a typical example of a multiset. The problem of

preprocessing A into a data structure, such that the number of distinct elements

in any sub-array can be computed efficiently, has been well studied [63, 27]. Data

elements can be organized in more complicated structures than arrays, such as points

in multi-dimensional space and nodes on trees, and the problem, counting the number

of distinct elements, emerges therein. If each distinct element in the data set is

assigned a unique color, then counting the number of distinct elements is generalized

to counting the number of distinct colors.

In the colored orthogonal range counting problem, each point in a dataset is as-

signed a color that represents the data it stores and a multiset contains the points in

a multi-dimensional axis-aligned rectangle. Accordingly, colored counting in a multi-

set is of interest, since the problem has applications in databases. For example, the

information of an athlete, including his/her country, age and weight, might be stored

as a record in the database, e.g., (country=Canada, age=18, weight=85kg). And a

typical query could be as follows: How many different countries are there represented

by the athletes with an age between 18 and 25 and a weight between 80kg and 90kg?

To answer the query, we represent each athlete by a point such that the age and

the weight of the athlete are stored as x- and y-coordinates of the point, and the

country that the athlete is from is encoded as the point color. Then the query is

two-dimensional axis-aligned rectangle, i.e., [18, 25] × [80, 90]. Thereby, the number

of distinct colors assigned to the points in the query range is the number of countries

that one is looking for. Henceforth, we focus on the two-dimensional space where the

input points reside on the grid.
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Figure 1.1: The examples of colored path counting and path mode queries. The input
is a tree T on 16 nodes, each assigned a color drawn from {0, 1, 2, 3, 4, 5}. Let Px,y be
the query path. There are 5 distinct colors and a unique mode, labeled by 1, in Px,y.

Trees, as a versatile structure, can store data information on their nodes. In the

colored path counting problem [44], each tree node stores a color (or a label) as a data

element and a multiset contains the nodes in an arbitrary path. Given a query path,

this problem asks to count the number of distinct colors that are assigned to the

nodes in the path. Another fundamental statistic in paths is called path mode, which

is a node label that appears at least as frequently as other labels in a query path. See

Figure 1.1 for the examples of both path queries. Both of them have applications in

Extensible Markup Language (XML). In XML documents, the hierarchical structure

of the texts can be modeled as ordinal trees. An ordinal tree is a rooted tree in which

the children of a node are ordered. Each tag in an XML text carries a name and

attributes, and both can be regarded as node labels. The problems, colored path

counting and path mode queries, can be used to count the number of the distinct tag

names and find a most frequent tag name in the paths from a tag to its ancestors.

The common difficulty in solving colored counting in grids or trees, as well as path

mode queries is that the query is not decomposable. In grids, query ranges are of

the form [a, b] × [c, d]. After dividing a query range into disjoint subranges, simply

adding up the number of distinct colors in each subrange might not give the correct

answer to the query range. Similarly, suppose that query path Px,y is partitioned into

two subpaths Px,v and Pv,y by a node v in Px,y. Being aware of the answers to Px,v

and Pv,y does not give much help in finding the answer to Px,y. Especially, the sets

of modes in Px,v, Pv,y and Px,y, respectively, could be pair-wise disjoint.

Interestingly, both colored counting queries in grids or trees, as well as path mode

queries share the same conditional lower bound: For any of these three problems, i.e.,

colored path counting, colored 2D orthogonal range counting and path mode queries,
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with current knowledge, one might not be able to obtain a data structure that can

be built in o(nω/2) time and meanwhile support each query in o(nω/2−1) time, save

for polylogarithmic speedups, where ω < 2.37286 is the exponent of matrix multipli-

cation [1]. When only pure combinatorial approaches are allowed in solving any of

these three problems, it might be infeasible to design a data structure that can be

built in o(n3/2) time and meanwhile support each query in o(
√
n) time, save for poly-

logarithmic speedup, following from the bounds on the best combinatorial approach

for Boolean matrix multiplication [70]. Due to the difficulty of all three problems,

their approximate versions have been brought to attention [25, 66, 44], in which the

requirement that finds the precise number of distinct colors or a mode in a multiset

is relaxed and instead, a query asks for a value that is within a predefined factor of

the precise number of distinct colors in a multiset or a color whose frequency in a

multiset is at most a predefined factor smaller than a true mode’s. These problems

are of interest in theoretical computer science, as the design and analysis of these

approximate algorithms always involves mathematical proof, which helps us compre-

hend with provable guarantees how closely we are able to approximate the optimal

answers in polylogarithmic time and near linear working space.

In this thesis, we study three aspects of colored counting queries. First, we re-

visit the colored two-dimensional orthogonal range counting problem and design data

structures that improve the query times and space costs asymptotically. Second, we

study the problem of answering n colored path counting queries, in which the pre-

processing time matters, since it is included in the overall query time. In addition,

we also consider its relevant problem, batched path mode queries. Third, we study

the approximate version of the colored path counting problem. We aim at main-

taining the linear space cost of the data structure, while improving the query time

asymptotically.

1.1 Organization of the Thesis

The rest of this thesis is structured as follows.

Chapter 2 describes the notation and the preliminary knowledge that is commonly

used throughout this thesis. The model of computation that is applied can be found

there as well.
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In Chapter 3, we conduct a study on colored two-dimensional orthogonal range

counting. Obviously, a 4-sided query range can be decomposed into two subranges,

each of which is bounded by 3 sides. We propose a new framework that computes

the number of distinct colors that exist in both 3-sided subranges. Based on the new

framework, we design three data structures for the problem. The attention is given

to two important metrics of a data structure: query time and the space cost. We

achieve three different data structure solutions. This chapter is based on the joint

work with Meng He [34].

In Chapter 4, we consider batched colored path counting and batched path mode

queries. We concentrate on the efficient preprocessing and query time of the data

structures. We show that by applying the centroid decomposition of trees, an ar-

bitrary path can be dealt with as a path that contains a centroid of some subtree.

This technique is used to solve both path query problems. Given that query paths

are through a fixed node of the input tree, say, a centroid, we design for colored path

counting a data structure whose construction can be facilitated by sparse matrix

multiplication and for path mode queries a data structure whose construction can

be facilitated by a min-plus product. Not only can our data structures be built in

o(n1.5) time, but they also support each query in o(n0.5) time, faster than any existing

combinatorial method. The results of Chapter 4 have been published in [35].

In Chapter 5, we design data structures for approximate colored path counting.

We consider this problem under two different approximate measures, i.e., 2- and

(1 ± ϵ)-approximate. By applying the technique, random sampling, we present a

reduction from the latter to the prior. For the prior, we present a data structure

with different time-space tradeoffs. To this end, we revisit the technique, centroid

decomposition, and design a space-efficient data structure such that the preorder

rank of a tree node in any recursive level can be computed efficiently. This chapter

is based on the joint work with Meng He [36].

In Chapter 6, we conclude this thesis by summarizing the technical details used

in different chapters, as well as the results we have achieved, and pointing out the

future research directions, including relevant open problems.



Chapter 2

Preliminaries

In this chapter, we introduce the preliminary knowledge and notation used throughout

this thesis.

2.1 Notation

We use lg n to represent log2 n for short, i.e., the base-2 logarithm of n, and we denote

by [n] the set {0, 1, 2, · · · , n − 1}, for any integer n > 0. The Õ notation hides the

polylog(n) factors, e.g., O(n lg2 n) = Õ(n), and we write down iff as a shortened form

of if and only if.

2.2 Models of Computation

Unless otherwise specified, all results presented throughout this thesis are valid under

the word random-access machine (word RAM) model [28]. In this model, each cell

in the memory is a word of w bits. We usually assume that w = Θ(lg n), where n

denotes the input size, e.g., n elements in an array, so that the address of any cell

in the memory can be encoded and stored in a constant number of memory cells.

Hence, if a data structure occupies s cells, then its space cost can also be stated as

s · w = Θ(s lg n) bits.

Operations that are performed on a constant number of memory cells are called

word operations. The basic instruction set supported in word RAM consists of reading

(i.e., random access to a memory cell), writing (i.e., writing data into a memory cell),

arithmetic operations (including addition, subtraction, multiplication, and division),

and bitwise logical operations (including AND, OR, SHIFT, XOR, and NEGATION).

Each word operation in the basic instruction set takes constant time. Any other word

operation can be simulated by the technique, table lookup, taking constant time as

well. The running time of an algorithm is measured by the number of word operations

5
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performed, and the space cost is measured by the number of memory cells used by

the algorithm.

2.3 The Ball Inheritance Problem

In two-dimensional rank space [29], the point coordinates are drawn from the universe

{0, 1, · · · , n− 1}2, and no two points have the same x- or y-coordinates. The wavelet

tree [37] constructed over the y-coordinates of n points in 2D rank space is a binary

balanced tree with lg n levels. Without loss of generality, we assume that n is a power

of 2. Each node of the tree represents a range of y-coordinates as follows: The i-th

leaf from the left represents the y-range [i, i] for each i ∈ [0..n − 1]; and the range

represented by an internal node is the union of the ranges represented by its children.

Hence, the root represents y-range [0..n−1]. Each node v is associated with a sequence

of points, P (v), that includes all the input points whose y-coordinates are in the y-

range of node v, and points in P (v) are sorted by their x-coordinates. For example,

the root node is associated with n points increasingly sorted by x-coordinates. Each

internal node v explicitly stores a bit vector, B(v), such that if the point P (v)[i] is a

leaf descendant of the left child of v, then B(v)[i] is set to 0; otherwise B(v)[i] is set
to 1. All the B(v)’s built for internal nodes occupy O(n lg n) bits of space in total.

An example of a wavelet tree is shown in Figure 2.1.

The ball inheritance problem [14] can be defined over a binary wavelet tree. In

this problem, given an arbitrary internal node v and an integer 0 ≤ i < |P (v)|, we
are asked to find the coordinates of P (v)[i]. Henceforth, we denote this query by

point(v, i) for simplicity. This problem was formally defined by Chan et al. and was

used in solving orthogonal range searching [14]. We will see its applications on colored

counting in Chapters 3 and 5. If sequence P (v) is explicitly stored at each internal

node v, then operation point(v, i) can be answered trivially in constant time. However,

storing all P (v)’s for internal nodes overall requires O(n lg n) words of space, which

is not affordable sometimes in our linear space data structure. Instead, the support

for point(v, i) addressed in Lemma 1 provides a space-efficient solution:

Lemma 1 [14, Lemma 2.3] Let 0 < λ < 1 be any small positive constant. A binary

wavelet tree over n points in 2D rank space can be augmented with a data structure

in O(nf(n) lg n) bits of space to support point(v, i) in g(n) time, where
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(10, 0) (8, 1) (5, 2) (6, 3) (12, 4) (11, 5) (1, 6) (3, 7) (7, 8) (13, 9) (0, 10)(14, 11)(15, 12) (12, 13)(4, 14) (9, 15)

x 8 10
y 1 0
B 1 0

x 5 6
y 2 3
B 0 1

x 11 12
y 5 4
B 1 0

x 1 3
y 6 7
B 0 1

x 7 13
y 8 9
B 0 1

x 0 14
y 10 11
B 0 1

x 2 15
y 13 12
B 1 0

x 4 9
y 14 15
B 0 1

x 5 6 8 10
y 2 3 1 0
B 1 1 0 0

x 1 3 11 12
y 6 7 5 4
B 1 1 0 0

x 0 7 13 14
y 10 8 9 11
B 1 0 0 1

x 2 4 9 15
y 13 14 15 12
B 0 1 1 0

x 1 3 5 6 8 10 11 12
y 6 7 2 3 1 0 5 4
B 1 1 0 0 0 0 1 1

x 0 2 4 7 9 13 14 15
y 10 13 14 8 15 9 11 12
B 0 1 1 0 1 0 0 1

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
y 10 6 13 7 14 2 3 8 1 15 0 5 4 9 11 12
B 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1 1

v

Figure 2.1: An example of a wavelet tree constructed upon a set of 16 points in 2D
rank space. The sequence P (v) that associates with node v in the figure stores points
(7, 8) and (13, 9), sorted by their x-coordinates. Function point(v, 0) returns point
(7, 8), following its definition. Given that points (7, 8) and (13, 9) are stored at the
left and right child of v, respectively, B(v) stores 0 and 1 from left to right.

a) f(n) = O(1) and g(n) = O(lgλ n),

b) f(n) = O(lg lg n) and g(n) = O(lg lg n) or

c) f(n) = O(lgλ n) and g(n) = O(1/λ).

2.4 Ordinal Trees and Labeled Trees

Regarding each tree node color as an integer label, the input tree studied in this thesis

is both an ordinal tree1 and a labeled tree.

Let |T | denote the number of nodes in the input tree T . The topmost node of

the tree is called the root, denoted by ⊥. For any two nodes x, y ∈ T , we use Px,y to

represent the path whose endpoints are x and y. Thus, Px,⊥ is a root-to-node path.

Each non-root node x has a single parent, denoted by parent(x), which is the node

incident to x in path Px,⊥. Symmetrically, node x is a child of parent(x). A leaf in

the tree is a node that has no children. The ancestors of a node can be defined in

1The path query problems studied in this thesis can also be defined over free trees. However, we
follow the definitions given in previous work [23, 44] and assume that the input tree is ordinal, as
this allows us to directly apply previous solutions to the problems defined over ordinal trees.
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an inductive way: Node x is an ancestor of itself; and the ancestors of parent(x) are

ancestors of x as well. If node y is an ancestor of x and y is different from x, then we

call y a proper ancestor of x. The descendants or the proper descendants of a node

can be defined symmetrically. Given that y is an ancestor of x, we define P′
x,y to

be the path whose endpoints are x and the child of y that is an ancestor of x, i.e.,

P′
x,y = Px,y \{y}. We denote by Tx the subtree of T rooted at node x. We define the

depth or level of a node x to be the number of edges in path Px,⊥. Hence, the depth

of ⊥ is always 0. To identify each node in the tree, we refer to the i-th node visited

in a preorder traversal as the i-th node for short, where i starts from 0. We define

the degree of a tree node to be the number of edges incident to this node.

As a labeled ordinal tree, each node is labeled by a color that is encoded by an

integer. For a node x, its color is indicated by c(x), where c(x) ∈ [C] and C ≤ n

denotes the total number of distinct colors in the tree. And we use C(Px,y) to represent

the set of distinct colors that appear in Px,y.

2.4.1 Navigation in Colored Ordinal Trees

To support the basic navigational operations over the input tree, we apply the succinct

representation of ordinal trees by [45] and the result of He et al. [47] on labeled

tree representations. The following lemma summarizes the operations used in our

solution and their respective complexity. Following their notation, we call a node

(resp. ancestor) assigned color α an α-node (resp. α-ancestor).

Lemma 2 ([45, 47]) Let T be an ordinal tree on n nodes with each node assigned a

color from [C], where C ≤ n. A data structure occupying n lgC + 2n+ o(n lgC) bits

can be built over T in O(n) time to support

• counting the number, depthα(x), of α-ancestors of node x in O(lg lgC) time2,

• counting the number, depth(x), of ancestors of x in O(1) time,

• finding the lowest common ancestor, LCA(x, y), of nodes x and y in O(1) time,

2Note that the structure of He et al. [47] can support depthα(x, i) in O(lg lgC
lgw ) time, faster than

what is stated in Lemma 2. However, this requires a string representation with support for rank and
select [5] which uses perfect hashing, and it is not known how to construct this structure in O(n)
deterministic time. Therefore, we swap it with the string representation of Belazzougui et al. [4]
which can be constructed in linear deterministic time and achieve the bounds in Lemma 2.
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u u

Delete u

Figure 2.2: An example of finding and removing a centroid of a tree. In this figure,
the centroid, denoted by u, of the tree happens to be the root. After removing u,
each connected component contains at most n/2 nodes.

• counting the number, nbdesc(x), of descendants of node x in O(1) time,

• finding the parent node, parent(x), of non-root node x in O(1) time and

• finding the ancestor, level anc(v, d), of v at depth depth(v)− d in O(1) time.

2.4.2 Colored Path Emptiness Queries

Given a query path Px,y in a tree and a color α, a colored path emptiness query

determines whether color α appears in Px,y. He and Kazi [44] showed how to use

depthα and LCA to compute the number of appearances of α in Px,y in O(lg lgC)

time. Via counting the number of appearances of color α in Px,y, one can figure out

whether or not α appears in Px,y. Therefore,

Lemma 3 Let T denote a labeled ordinal tree on n nodes, each of which is labeled

by a color drawn from [C], where C ≤ n. A data structure occupying O(n lgC) bits

can be built over T in O(n) time to support the colored path emptiness queries in

O(lg lgC) time.

Especially, when C is a constant, so is the bound of the running time.

2.4.3 Centroid Decomposition

A centroid of an n-node tree is a node whose removal splits the tree into connected

components each containing at most ⌊n/2⌋ nodes. See Figure 2.2 for an example.

As proved by Jordan in 1869 [54], any tree of n nodes has at least one centroid. A

centroid can be found in O(n) time.
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Figure 2.3: An example of a centroid decomposition of a tree. In the figure, the
splinegons represent the connected components after removing centroids at different
recursive levels. The gray node within each component indicates the centroid to be
removed. In the last recursive level, each component to be generated contains one
node of the tree.

Centroid decomposition is a technique applied on trees, and it works in a recursive

way. A tree itself can be regarded as a connected component. In the first recursive

level, we identify a centroid of the input tree, and by removing it, the tree is divided

into connected components. Then we recursively apply this procedure on each of

these connected components and finally obtain a centroid decomposition of the input

tree. Given that the input tree contains n nodes, the recursion contains O(lg n) levels.

See Figure 2.3 for an example. The centroid decomposition of any n-node tree can

be computed in O(n) time [21].



Chapter 3

Colored 2D Orthogonal Range Counting

3.1 Introduction

In computational geometry, there have been extensive studies on problems over points

associated with information represented as colors [40, 42, 57, 55, 59, 38, 63, 27, 41, 15,

13, 44, 66]. Among them, the colored 2D orthogonal range counting query problem

is one of the most fundamental. In this problem, we preprocess a set, P , of n points

on the plane, each colored in one of C different colors such that given an orthogonal

query rectangle, the number of distinct colors of the points contained in this rectangle

can be computed efficiently.

This problem is important in both theory and practice. Theoretically, it has

connections to matrix multiplication: The ability to answer m colored range counting

queries offline over n points on the plane in o(min{n,m}ω/2) time, where ω is the

best current exponent of the running time of matrix multiplication, would yield a

faster algorithm for Boolean matrix multiplication [55]. In practice, the records in

database systems and many other applications are often associated with categorical

information which can be modeled as colors. For example, in the Structured Query

Language (SQL), keyword DISTINCT is used for computing information about the

distinct categories of the records within a query range, which can be modeled using

colored range query problems, and these queries have also been used in database

query optimization [16].

One challenge in solving the colored 2D orthogonal range counting problem is that

the queries are not easily decomposable: If we partition the query range into two or

more subranges, we cannot simply obtain the number of distinct colors in the query

range by adding up the number of distinct colors in each subrange. Furthermore,

the conditional lower bound based on matrix multiplication as described above gives

theoretical evidence on the hardness of this problem. Indeed, if polylogarithmic query

times are desired, the solution with the best space efficiency [61] usesO(n2 lg n/ lg lg n)

11
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words of space and answers queries in O((lg n/ lg lg n)2) time. There is a big gap

between the complexities of this solution and those of the optimal solution to 2D

orthogonal range counting for which we do not have color information and are only

interested in computing the number of points in a 2D orthogonal query range. The

latter can be solved in merely linear space and O(lg n/ lg lg n) query time [51].

Applications that process a significant amount of data would typically require

structures whose space costs are much lower than quadratic. As the running time of

the best known combinatorial algorithm of multiplying two n × n Boolean matrices

is Θ(n3/ polylog(n)) [3, 9, 70], the conditional lower bound of colored 2D orthogonal

range counting implies that no solution can simultaneously have preprocessing time

better than Ω(n3/2) and query time better than Ω(
√
n), by purely combinatorial meth-

ods with current knowledge, save for polylogarithmic speed-ups. To match this query

time within polylogarithmic factors, the most space-efficient solution uses O(n lg4 n)

words of space to answer queries in O(
√
n lg8 n) time [55]. Despite this breakthrough,

the exponents in the polylogarithmic factors in the time and space bounds leave much

room for potential improvements. Hence, in this chapter, we aim at decreasing these

polylogarithmic factors in both space and time costs and designing solutions that are

more desirable for applications that manage large data sets.

3.1.1 Previous Work

Gupta et al. [40] showed how to reduce the colored orthogonal range searching problem

in 1D to orthogonal range searching over uncolored points in 2D, thus achieving a

linear-space solution with O(lg n/ lg lg n) query time. Later, the query time was

improved to O(lg k/ lg lg n) by Nekrich [63] with an adaptive data structure, where k

is the number of distinct colors of the points in the query range.

To solve 2D colored orthogonal range counting, Gupta et al. [40] used persistent

data structures to extend their 1D solution to 2D and designed a data structure of

O(n2 lg2 n) words that supports queries in O(lg2 n) time. Kaplan et al. [55] achieved

the same bounds by decomposing the input points into disjoint boxes in 3D and

reducing the problem to 3D stabbing counting queries. Recently, Munro et al. [61]

showed that colored 3D 3-sided range counting can be answered in O((lg n/ lg lg n)2)

time using a data structure of O(n(lg n/ lg lg n)) words of space, which implies a
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solution to colored 2D 3-sided range counting with the same time and space bounds.

For each distinct x-coordinate xi of the points in the point set, if we use the strategy

of Gupta et al. [40] and Kaplan et al. [55] to build a data structure supporting

2D 3-sided queries upon the points whose x-coordinates are greater than or equal

to xi, then this set of data structures constructed can be used to answer a 4-sided

query. This yields a solution to the colored 2D orthogonal range counting problem

with O(n2 lg n/ lg lg n) words of space and O((lg n/ lg lg n)2) query time. Kaplan et

al. [55] further showed how to achieve time-space tradeoffs by designing a solution

with O(X lg7 n) query time that uses O(( n
X
)2 lg6 n+ n lg4 n) words of space. Setting

X = ⌈
√
n lg n⌉ minimizes space usage, achieving an O(n lg4 n)-word solution with

O(
√
n lg8 n) query time. When only linear space is allowed, Grossi and Vind [38]

showed how to answer a query in O(n/ polylog(n)) time. Though not explicitly

stated anywhere, by combining an approach that Kaplan et al. [55] presented for

dimensions of 3 or higher (which also works for 2D) and a linear space solution to

2D orthogonal range emptiness [14], the query time can be improved to O(n3/4 lgλ n)

for any constant 0 < λ < 1 using a linear space structure. Finally, Kaplan et al.

also considered the offline version of this problem and showed that n colored 2D

orthogonal range counting queries can be answered in O(n1.4071) time.

Researchers have also studied the approximate colored range counting problem.

In the (1+ ϵ)-approximate colored range counting problem, instead of computing the

exact number, k, of distinct colors in the query range, the solution returns a value k′,

such that k ≤ k′ ≤ (1 + ϵ) · k, where 0 < ϵ < 1 is a pre-specified parameter. El-Zein

et al. [27] considered this problem in 1D space, and they designed a succinct data

structure to answer a (1 + ϵ)-approximate colored counting query in constant time.

Another relaxed version, called (1± ϵ)-approximate colored range counting, has also

been studied, in which the answer returned is in the range [(1−ϵ) ·k, (1+ϵ) ·k]. In 2D,

Rahul [66] provided a reduction from (1 ± ϵ)-approximate colored orthogonal range

counting to 2D colored orthogonal range reporting (which reports each distinct color

in a 2D orthogonal query range). Based on this reduction, Rahul gave an O(n lg n)-

word data structure supporting (1±ϵ)-approximate colored orthogonal range counting

in O(ϵ−2 lg n) time.
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Table 3.1: Bounds of colored 2D orthogonal range counting structures. The results
in the form of time-space tradeoffs are listed in the top portion, in which X and γ
are integer parameters in [1, n] and [2, n], respectively. The bottom portion presents
results with specific bounds, among which marked with a † are those obtained from
the top portion by setting appropriate parameter values.

Source Model Query Time Space Usage in Words

[55] PM O(X lg7 n) O(( n
X
)2 lg6 n+ n lg4 n)

Cor. 1 PM O(lg5 n+X lg3 n) O(( n
X
)2 lg4 n+ n lg3 n)

Thm. 1 RAM O(lg4 n+X lg2 n lg lg n) O(( n
X
)2 lg4 n+ n lg3 n)

Thm. 2 RAM O(lg6 n+X lg3+λ n) O(( n
X
)2 lg4 n+ n lg2 n)

Thm. 3 RAM O(γ2 lg6 n log2γ n+X lg3+λ nγ logγ n)
O(( n

X
)2 lg2 n log2γ n

+n lg n logγ n)

[40, 55] PM O(lg2 n) O(n2 lg2 n)
[61] RAM O((lg n/ lg lg n)2) O(n2 lg n/ lg lg n)

[55]† PM O(
√
n lg8 n) O(n lg4 n)

Cor. 1† PM O(
√
n lg7/2 n) O(n lg3 n)

Thm. 1† RAM O(
√
n lg5/2 n lg lg n) O(n lg3 n)

Thm. 2† RAM O(
√
n lg4+λ n) O(n lg2 n)

Thm. 3† RAM O(
√
n lg5+λ n) O(n lg2 n

lg lgn
)

Thm. 3† RAM O(n1/2+λ) O(n lg n)

[55] PM O(n3/4 lg n) O(n lg n)
[38] RAM O(n/ polylog(n)) O(n)

[55, 14] RAM O(n3/4 lgλ n) O(n)

The colored orthogonal range counting problem has also been studied in higher di-

mensions [59, 55, 66, 44]. Furthermore, He and Kazi [44] generalized it to colored path

counting by replacing the first dimension with a tree topology. One of their solutions

to a path query problem generalized from colored 2D orthogonal range counting also

uses linear space and provides O(n3/4 lgλ n) query time. We end this brief survey by

commenting that after a series of work [52, 40, 55, 63, 38, 41], Chan and Nekrich [15]

solved the related 2D orthogonal range reporting problem in O(n lg3/4+λ n) words of

space and O(lg lg n + k) query time for points in rank space, where k is the output

size. This almost matches the bounds of the optimal solution to (uncolored) 2D or-

thogonal range reporting over points in rank space, which uses O(n lgλ n) words to

answer queries in O(lg lg n+ k) time [14].
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3.1.2 Our Results

Under the word RAM model, we present three results, all in the form of time-space

tradeoffs, for colored two-dimensional orthogonal range counting. Specifically, for an

integer parameter X ∈ [1, n], we propose solutions (all space costs are in words),

• withO(( n
X
)2 lg4 n+n lg3 n) space andO(lg4 n+X lg2 n lg lg n) query time; setting

X = ⌈
√
n lg n⌉ achieves O(n lg3 n) space and O(

√
n lg5/2 lg lg n) query time;

• with O(( n
X
)2 lg4 n + n lg2 n) space and O(lg6 n +X lg3+λ n) query time for any

constant λ ∈ (0, 1); setting X = ⌈
√
n lg n⌉ achieves O(n lg2 n) space and

O(
√
n lg4+λ) query time;

• with O(( n
X
)2 lg2 n · log2γ n + n lg n · logγ n) space and O(γ2 · lg6 n · log2γ n + X ·

lg3+λ n · γ logγ n) query time for an integer parameter γ ∈ [2, n]; setting X =

⌈
√︁
n lg n logγ n⌉ and γ = ⌈lgλ n⌉ achieves O(n lg2 n

lg lgn
) space and O(

√
n lg5+λ

′
n)

query time for any λ′ > 2λ, while settingX = ⌈
√
n lg n⌉ and γ = ⌈nλ/5⌉ achieves

O(n lg n) space and O(n1/2+λ) query time.

When presenting each result, we also gave the bounds of the most space-efficient

tradeoff that can be achieved by setting appropriate parameter values. The condi-

tional lower bound based on Boolean matrix multiplication that we discussed before

gives some evidence on the difficulty of achieving query time better than
√
n by more

than a polylogarithmic factor using combinatorial approaches without increasing these

space costs polynomially.

Prior to our work, only the time-space tradeoff presented by Kaplan et al. [55] can

achieve near-linear space and O(
√
n polylog(n)) query time. More specifically, their

solution uses O(( n
X
)2 lg6 n + n lg4 n) words of space and achieves O(X lg7 n) query

time. The most space-efficient tradeoff that can be obtained from it is an O(n lg4 n)-

word structure with O(
√
n lg8 n) query time. Thus we indeed achieve the goal of

improving significantly the polylogarithmic factors in both the query time and the

space cost.

It is worthwhile to mention that the result of Kaplan et al. works under the

pointer machine (PM) model. Thus, for an absolutely fair comparison, we show

how our first result can be adapted to the same model of computation to achieve
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O(( n
X
)2 lg4 n+ n lg3 n) space and O(lg5 n+X lg3 n) query time. Thus under PM, we

have an O(n lg3 n)-word structure with O(
√
n lg7/2 n) query time. This still improves

the query time and the space bounds of previous work. In the rest of this chapter,

however, we assume the word RAM model of computation unless otherwise specified,

since most of our results are designed under it. See Table 3.1 for a comparison of our

results to all previous results.

To achieve these results, we use the standard technique of decomposing a 4-sided

query range to two 3-sided subranges with a range tree. Then the answer can be

obtained by adding up the numbers of distinct colors assigned to points in each

subrange and then subtracting the number of distinct colors that exist in both. We

still use an approach of Kaplan et al. to reduce colored 2D 3-sided range counting to

3D stabbing queries over a set of boxes. What is new is our scheme of achieving time-

space tradeoffs when computing the number of colors that exist in both subranges.

Compared to the original scheme designed by Kaplan et al. for the same purpose,

ours gives more flexibility in the design of the 3D stabbing query structures that can

work with the new scheme. This extra flexibility further allows us to use and design

different stabbing query structures to achieve new results.

3.2 Preliminaries

In this section, we introduce some notation and previous results used in this chapter.

3.2.1 Notation

Throughout this chapter, we assume points are in general positions unless otherwise

specified. In three-dimensional space, we call a box B canonical if it is of the form

[x1,+∞) × [y1, y2) × [z1, z2), where x1, y1, z1 ∈ IR and y2, z2 ∈ IR ∪ {+∞}. We use

B.x1 to refer to the lower bound of the x-range of B, B.y1 and B.y2 to respectively

refer to the lower and upper bounds of the y-range of B, and so on. Let (p.x, p.y, p.z)

denote the coordinates of a point P . We say a point q ∈ IR3 dominates another point

p ∈ IR3 if q.x ≥ p.x, q.y ≥ p.y and q.z ≥ p.z hold simultaneously.
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3.2.2 Colored 2D Orthogonal Range Emptiness

An orthogonal range emptiness query determines whether an axis-aligned query rect-

angle contains at least one point in the point set P . Observe that a solution to

this query problem directly leads to a solution to the colored version of this problem

called colored orthogonal range emptiness, in which each point in P is colored in one

of C different colors, and given a color c and an axis-aligned rectangle, the query asks

whether the query range contains at least one point colored in c. The reduction works

as follows: For each color 1 ≤ c ≤ C, let Pc denote the subset of P containing all

points colored in c. If we construct an orthogonal range emptiness structure over Pc

for each color c, then we can answer a colored orthogonal range emptiness query by

querying the structure constructed over the points with the query color. The follow-

ing lemma thus directly follows from the work of Chan et al. [14] on 2D orthogonal

range emptiness queries:

Lemma 4 Let 0 < λ < 1 be any small constant. Given n colored points in 2-

dimensional rank space, there is a data structure occupying n·f(n) words that answers
colored 2D orthogonal range emptiness queries in g(n) time, where

a) f(n) = O(1) and g(n) = O(lgλ n) or

b) f(n) = O(lg lg n) and g(n) = O(lg lg n).

3.2.3 Segment Trees and Interval Trees

The segment tree [6] employed in this chapter is a balanced binary tree. Given a set

S of n segments on the real line, the segment tree T constructed over these segments

has O(n) leaves. Let {p0, p1, p2, ..., pm, pm+1} be the increasingly sorted list of distinct

endpoints of the segments in S, where m ≤ 2n, and let p0 and pm+1 denote −∞
and +∞, respectively. The real line is then partitioned into elementary intervals,

(p0, p1), [p1, p1], (p1, p2), [p2, p2], · · · , (pm−1, pm), [pm, pm], and (pm, pm+1), in the order

from left to right. The segment tree, as a balanced binary tree, has the same number

of leaves as the number of elementary intervals. Each node v of T corresponds to an

interval I(v): The i-th leaf of T from left corresponds to the i-th elementary interval

listed before, and the interval I(v) corresponding to an internal node v is the union
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of the elementary intervals corresponding to the leaves in the subtree rooted at v. A

segment [l, r] spans a node v ∈ T if interval I(v) ⊆ [l, r], and for each segment s ∈ S,

we say that s is relevant to node v if s spans node v but does not span the parent

of v. In this way, any segment is relevant to at most two nodes of T at the same

tree level. We store segments in S at the nodes that they are relevant to. Given that

the height of T is O(lg n), each segment can be stored at O(lg n) different nodes of

the tree, and thus the segment tree constructed over S uses O(n lg n) words of space.

The examples in Figures 3.1 and 3.2 use segment trees to organize data.

An interval tree, as a binary tree, can be defined in a recursive way. Let S denote

a set of n intervals that the interval tree is constructed upon. If S has merely a single

interval, then the interval tree is a leaf storing S. Otherwise, let v denote the root

node and let m(v) be the median of the 2n endpoints of the intervals from S. We

store a set, I(v), of intervals at node v such that I(v) consists of all the intervals from

S that cover median m(v). Let Iℓ(v) and Ir(v) denote the sets of intervals from S

that stay completely to the left and the right of m(v), respectively. The left (resp.

right) subtree of v is an interval tree for the set Iℓ(v) (resp. Ir(v)). Note that given

that m(v) is the median, we have |Iℓ(v)| ≤ |S|/2 and |Ir(v)| ≤ |S|/2. After at most

lg n recursive levels, both sets Iℓ(v) and Ir(v) are empty. Hence, the interval tree for

the interval set S has at most lg n tree levels. Since each interval from S is stored

in exactly one node of the tree, the interval tree is a linear space data structure.

Figure 3.6 gives an example. In this example, the median of all interval endpoints is

7. Since only intervals [3, 13) and [2, 12) contain the median, they are assigned to the

set I(v′), where v′ is the root node. The set Iℓ(v
′) contains intervals [1, 4) and [5, 7),

as they completely stay on the left side of median. Symmetrically, the remaining

intervals [8, 15) and [10, 14) are on the right side of the median, so we put them into

the set Ir(v
′). Then constructing the subtrees rooted at the left and right children of

v′ recursively upon interval sets Iℓ(v
′) and Ir(v

′) results in the interval tree shown in

the figure.

3.2.4 Orthogonal Stabbing Queries over 3D Canonical Boxes

In the 3D stabbing counting problem, we preprocess a set of 3D boxes, such that given

a query point q, we can compute the number of boxes containing q efficiently, while in



19

1 4 6 11 13 15 18

{B1, B3, B7} {B3, B7}

{B2, B4, B6, B8, B9}

{B5} {B5}

{B8, B9}

{B7}

B1 : [1,+∞)× [1, 2)× [1,4)
B2 : [2,+∞)× [3, 13)× [4,13)
B3 : [3,+∞)× [3, 4)× [1,6)
B4 : [4,+∞)× [2, 12)× [4,12)
B5 : [5,+∞)× [4, 8)× [6,11)
B6 : [6,+∞)× [1, 4)× [4,13)
B7 : [7,+∞)× [5, 7)× [1,18)
B8 : [8,+∞)× [8, 15)× [4,14)
B9 : [9,+∞)× [10, 14)× [4,15)

z

B1

B3

B2

B9

B5

B6

B7

B8

{B2, B4, B6, B7, B8, B9}

(−∞, 1) (4, 6) (6, 11) (15,18) (18,+∞)

v

12 14

B4

{B1} {B3}

{B7}

{B2, B6} {B9}

(1, 4)

e

u

ℓ

w

Tv

Figure 3.1: An example of the two layers of segment trees constructed upon a set of 9
canonical boxes, B1, B2, · · · , B9. All the empty elementary intervals, such as (11, 12)
and (12, 13), are omitted. The path colored in red shows the query procedure for the
query point (q.x = 5, q.y = 10, q.z = 7). The second-layer segment tree Tv stored at
node v is shown in Figure 3.2.

the 3D stabbing reporting query problem, we report these boxes. In both our solution

and the solution of Kaplan et al. [55], a special case of the 3D stabbing searching

problem is considered, in which each box is a canonical box.

Here we introduce the data structure of Kaplan et al. [55] that solves the stabbing

query problems over a set of n canonical boxes in 3D, as our first solution to the colored

range counting problem augments this data structure and uses it as a component.
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The data structure consists of two layers of segment trees. The structure at the top-

layer is a segment tree constructed over the z-segments of the boxes. More precisely,

we project each box onto the z-axis to obtain a segment, which we refer to as the z-

segment of this box, and the top-layer segment tree is constructed over the z-segments

of all the boxes1. A box is assigned to a node v in the segment tree if the z-segment

of the box is relevant to v. Let B(v) denote the set of boxes that are assigned to

each node v in the top-layer segment tree. Then we construct a segment tree over

the y-segments of the boxes in B(v), and refer to the newly constructed tree as the

bottom-layer segment tree. Again, to each node v′ of this bottom-layer segment tree,

we assign a subset of boxes in B(v) in which the y-segment of each box contains

interval I(v′) (corresponding to node v′). Specifically, we sort these boxes assigned to

v′ by their x1-coordinates, i.e., the left endpoints of their projections on the x-axis,

and store them in a list, denoted by sList(v′). All the bottom-layer segment trees

with a list sList(v′) of boxes being stored at each node together form the bottom-

layer structure. Observe that in the bottom-layer, each internal node has at most two

children, and the boxes stored there are sorted by their x1-coordinates. So we can

use the fractional cascading [19] data structure to link together the box lists stored

at each non-root node and its parent to speed up the query time by a logarithmic

factor.

Figures 3.1 and 3.2 together give an example of the two layers of segment trees

constructed upon 9 canonical boxes, B1, B2, · · · , B9. In particular, the segment tree

in Figure 3.1 shows the top-layer segment tree constructed upon the z-segments of

the boxes. The segments immediately below z-axis indicate these z-segments. The

real line along the z-axis is divided into 15 elementary intervals by the segment

endpoints. In the tree, leaves in white correspond to segment endpoints, while each

black leaf represents a non-empty interval between two consecutive endpoints. All

the empty elementary intervals are omitted due to space limitation. For example, the

interval I(v) of node v in the top-layer tree is set to be (4, 11], which is the union

of the elementary intervals corresponding to the leaf descendants of node v, and set

B(v) contains boxes B2, B4, B6, B7, B8, and B9, as the z-segments of these boxes are

relevant to node v. Note that all the boxes that are assigned to the nodes along a path

1Later, we also use y-segments of the boxes to refer to the segments obtained by projecting these
boxes onto the y-axis.



21

2 (5, 7) (10, 12)

B1: [1,+∞)× [1, 2)× [1, 4)
B2 : [2,+∞)× [3,13)× [4, 13)
B3: [3,+∞)× [3, 4)× [1, 6)
B4 : [4,+∞)× [2,12)× [4, 12)
B5: [5,+∞)× [4, 8)× [6, 11)
B6 : [6,+∞)× [1,4)× [4, 13)
B7 : [7,+∞)× [5,7)× [1, 18)
B8 : [8,+∞)× [8,15)× [4, 14)
B9 : [9,+∞)× [10,14)× [4, 15)

y

B2

B6

B7

B8

B9

(15,+∞)(8, 10)(−∞, 1) 1 3 4 5 7 8 10 12 13 14 15

B4

{B2, B4, B8}

{B4, B6}

{B2, B4}

{B8, B9}{B9}

{B2} {B8}{B7}

{B7}

{B2}{B6}

v′

e′

f ′

k′

Tv

Figure 3.2: An example of a second-layer segment tree constructed over y-segments of
the boxes B2, B4, B6, B7, B8 and B9 given in Figure 3.1. All the empty elementary
intervals are omitted. The path colored in red shows the query procedure for the
query point (q.x = 5, q.y = 10, q.z = 7).

from the root to a leaf are pairwise distinct. The segment tree in Figure 3.2 represents

the bottom-layer segment tree constructed upon the y-segments of the boxes in B(v).

The boxes stored at each node of the bottom-layer segment tree are sorted by their

x-coordinates. In the figure, sList(v′) stores boxes B2, B4 and B8 in the order.

Let (q.x, q.y, q.z) be the query point. The query algorithm first performs a search

in the top-layer segment tree to locate the O(lg n) nodes such that the z-segments

of the boxes stored on these nodes contain q.z (the z-segments of a canonical box,

[x1,+∞) × [y1, y2) × [z1, z2), contains q.z if z1 ≤ q.z < z2). Among these boxes, we

need to identify the ones whose projections on the xy-plane contain point (q.x, q.y).

To achieve that, we query the bottom-layer segment tree constructed for each of the

O(lg n) nodes returned before. The searches within the bottom-layer structures end

at O(lg2 n) nodes of the bottom-layer trees, and each of these nodes stores a box list
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sList, in which these boxes are unbounded in the positive x direction and sorted by

their x1-coordinates. As a result, in the same sList, the boxes that contain the query

point forms a prefix of that sList. Observe that in the same bottom-layer segment

tree, i) the nodes visited by a query lie in a path from the root of the bottom-layer

segment tree to a leaf, ii) and we always search for q.x at these nodes. So we apply

a binary search over the sList stored at the root of the bottom-layer segment tree to

find the prefix size and then apply the fractional cascading data structure to find the

prefix sizes for other nodes in the root-to-leaf path. In a bottom-layer segment tree,

we spend O(lg n+lg n) time instead of O(lg n· lg n) time, thereby saving a logarithmic

factor, due to the factional cascading data structure.

For example, let (5, 10, 7) be the query point. First, the search is performed in the

top-layer segment tree. As shown in Figure 3.1, the element interval of the leaf w,

which is (6, 11), in the top-layer tree contains q.z, and thus the query visits O(lg n)

nodes in the path from the root e to the leaf w. The boxes stored in these nodes consist

of B2, B4, B6, B7, B8, B9 and B5, and the z-segment of each box contains q.z. Then,

the query proceeds over the bottom-layer segment trees that are constructed over the

y-segments of the boxes in the sets, B(e), B(u), B(v), B(ℓ) and B(w). Especially, the

segment tree in Figure 3.2 shows the bottom-layer segment tree that is constructed

for the boxes in B(v). Similarly, the query visits O(lg n) nodes in the path from the

root e′ to the leaf k′ in the bottom-layer tree, since the y-segments of the boxes stored

in the non-empty sList’s of these nodes all contain q.y. Those non-empty lists include

sList(v′) and sList(f ′). As mentioned before, the boxes in sList(v′) and sList(f ′) are

disjoint. In each sList, the boxes that contains the query point, if there are any, form

a prefix of sList, as all the boxes in the same list are sorted by their x1-coordinates.

For instance, the boxes that contain the query point in sList(v′) are B2 and B4, and

both boxes together form a prefix of sList(v′). Identifying the prefix, as the last step

of the query, can be achieved by a binary search over the x1-coordinates of the boxes.

Lemma 5 ([55]) Given a set of n canonical boxes in three dimensions, the above

data structure occupies O(n lg2 n) words and answers stabbing counting queries in

O(lg2 n) time and stabbing reporting queries in O(lg2 n+k) time, where k denotes the

number of boxes reported. Furthermore, the output of the reporting query is the union

of O(lg2 n) disjoint subsets, each containing the boxes stored in a nonempty prefix of



23

a bottom-layer sorted list. The preprocessing time is O(n lg2 n).

3.2.5 Reducing Colored 2D 3-Sided Range Counting to 3D Stabbing

Counting over Canonical Boxes

A key technique used in both the solutions of Kaplan et al. [55] and ours is a reduction

from colored 2D 3-sided range counting queries, in which each query range is of

the form [a, b] × [c,+∞) for some a, b, c ∈ IR, to 3D orthogonal stabbing queries

over canonical boxes2. The reduction is performed in two steps. First we reduce

the colored 2D 3-sided range counting query problem to the 3D colored dominance

counting problem, in which we preprocess a set, P , of colored points in IR3 such

that given a query point q in IR3, one can report the number of distinct colors in

P ∩ (−∞, q.x] × (−∞, q.y] × (−∞, q.z] efficiently. This reduction works as follows:

For each point, p = (p.x, p.y), we create a point, p′ = (−p.x, p.x,−p.y), in IR3,

and assign to it the color of P . Then a colored 2D 3-sided range counting query

over the original points in which the query range is [a, b]× [c,+∞) can be answered

by performing a 3D colored dominance query over the newly created points, using

(−∞,−a]× (−∞, b]× (−∞,−c] as the query range.

To further reduce the 3D colored dominance counting problem to 3D orthogonal

stabbing counting over canonical boxes, we need some additional notation: Given a

point P in 3D, let Q+
p denote region [p.x,+∞) × [p.y,+∞) × [p.z,+∞), and given

a point set A, let U(A) denote the region of
⋃︁
p∈AQ

+
p . Then the following lemma is

crucial:

Lemma 6 ([55]) Given a set, A, of n points in three-dimensional space, a set of

O(n) pairwise disjoint 3D canonical boxes can be computed in O(n lg2 n) time such

that the union of these boxes is the region U(A).

Originally Kaplan et al. [55, Theorem 2.1] proved Lemma 6 for d-dimensional

space, where d ≥ 1; for a general d, the number of boxes required to cover U(A)

is O(n⌊d/2⌋). To help readers understand this decomposition, Figure 3.3 shows an

example in 3D space.

2Later, we deal with query ranges of the form [a, b]× (−∞, d] for some a, b, d ∈ IR, and a similar
reduction also works.
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(a) Boxes and points in 3D

x

z

s2.z

s1.z

s3.z

s1.xs2.xs3.x
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s2

(b) The xz-projection
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z

s1.y s2.y s3.y
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s2

s1

(c) The yz-projection
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y
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s1.y

s2.y

s3.y
s3

s2

s1

3

(d) The xy-projection

Figure 3.3: An example of dividing U(A), where A = {s1, s2, s3, a, b, c, d} is a set
of points in 3D, into 4 canonical disjoint boxes, including [s1.x,+∞)× [s1.y, s2.y)×
[s1.z,+∞) in orange (encoded by 3), [s2.x,+∞) × [s2.y,+∞) × [s2.z, s3.z) in red
(encoded by 2), [s2.x,+∞) × [s2.y, s3.y) × [s3.z,+∞) in green (encoded by 1), and
[s3.x,+∞)× [s3.y,+∞)× [s3.z,+∞) in gray (encoded by 0). Figures 2(b), 2(c) and
2(d) show the projections of the boxes on xy-, xz-, and yz-planes, respectively. Points
a, b, c and d are in the interior of the boxes, while points s1, s2 and s3 are on the box
boundaries.

With this lemma, the reduction works as follows. Let P denote the input colored

point set of the 3D colored dominance counting problem, and let C denote the number

of colors. Then for each color c ∈ [C], we apply Lemma 6 to partition U(Pc), where

Pc is the set of all the points in P that are colored c, into a set, Bc, of O(|U(Pc)|)
disjoint 3D canonical boxes. We then construct a 3D stabbing counting structure



25

over B =
⋃︁C−1
c=0 Bc. Note that this data structure is constructed over O(|P |) canonical

boxes, as
∑︁C−1

c=0 |Bc| =
∑︁C−1

c=0 O(|Pc|) = O(|P |). To answer a 3D colored dominance

counting query over P , for which the query range is the region dominated by a point

q, observe that if q dominates at least one point in Pc, then it must be located within

U(Pc). Since U(Pc) is partitioned into the boxes in Bc, we conclude that q dominates

at least one point in Pc iff q is contained in a box in Bc. Furthermore, since the boxes

in Bc are pairwise disjoint, q is either contained in exactly one box in Bc or outside

U(Pc). Hence, the number of distinct colors in the region dominated by q is equal to

the number of boxes in B that contains q, which can be computed by performing a

stabbing counting query in B using q as the query point.

3.3 A New Framework of Achieving Time-Space Tradeoffs

We present three new solutions to colored 2D orthogonal range counting in this section

and Section 3.4. They follow the same framework, of which we give an overview in

Section 3.3.1. One key component of this framework is a novel scheme of computing

the sizes of the intersections between the color sets assigned to different subsets of

points that lie within the query range; Section 3.3.2 describes this scheme and shows

how to combine it with Lemma 5 to immediately achieve a new time-space tradeoff

for colored 2D orthogonal range counting.

3.3.1 Overview of the Data Structure Framework

Let P denote a set of n points on the plane, each assigned a color identified by an

integer in [C]. To support colored orthogonal range counting over P , we construct

a binary range tree T over the y-coordinates of the points in P such that each leaf

of T stores a point of P , and from left to right, the points stored in the leaves are

increasingly sorted by their y-coordinates. For each internal node v of T , we construct

the following data structures:

• P (v), a list that contains the points stored at the leaf descendants of v, sorted

by x-coordinate;

• Py(v), a sorted list that contains the y-coordinates of the points in P (v);



26

• S(vl) (resp. S(vr)), the data structure for colored 2D 3-sided range counting

that is constructed over P (vl) (resp. P (vr)), where vl (resp. vr) is the left (resp.

right) child of v; S(vl) (resp. S(vr)) requires query ranges to be open at the top

(resp. bottom), e.g., [a, b] × [c,+∞) (resp. [a, b] × (−∞, d]); the specific data

structures to be adopted will be decided later for different tradeoffs; and

• E(vl) (resp. E(vr)), the data structure for colored 2D orthogonal range empti-

ness query that is constructed by the data structure of Lemma 4 over the point

set in rank space converted from P (vl)(resp. P (vr)).

Let Q = [a, b]× [c, d] be the query rectangle. Given an internal node v, let CQ(v)

denote the set of distinct colors assigned to points in P (v) ∩ Q. We first find the

leftmost and rightmost leaves in which the y-coordinate of the point stored is no

less than c and no more than d, respectively. Then we locate the lowest common

ancestor, u, of both leaves on T . As all the points from P that are in the query range

Q must be in P (u), |CQ(u)| is the answer to the query. To compute |CQ(u)|, let ul
and ur denote the left and right children of u, respectively. By the inclusion-exclusion

principle, we know that |CQ(u)| = |CQ(ul)|+|CQ(ur)|−|CQ(ul)∩CQ(ur)|. Among the

terms on the right hand side of this equation, |CQ(ul)| and |CQ(ur)| can be computed

by performing colored 2D 3-sided range counting queries over S(vl) and S(vr), using

[a, b]× [c,+∞) and [a, b]× (−∞, d] as query ranges, respectively. What remains is to

compute |CQ(ul) ∩ CQ(ur)|.

This idea of decomposing a 4-sided query range into two 3-sided query ranges

has been used before for both colored 2D orthogonal range reporting [41] and count-

ing [55]. Furthermore, to support colored 2D 3-sided range counting, we reduce it

to 3D stabbing queries over canonical boxes, applying the reduction of Kaplan et

al. [55] (summarized in Section 3.2). Thus, the techniques summarized so far have

been used in previous work (without the construction of range emptiness structures).

Our main contribution is a new scheme that computes |CQ(ul)∩CQ(ur)| and achieves

time-space tradeoffs. This new scheme gives us more flexibility in the design of 3D

stabbing query structures, thus allowing us to achieve new results.

Next we describe the conditions that a 3D stabbing query structure must meet

so that we can combine it with our scheme of computing |CQ(ul) ∩ CQ(ur)|, while
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deferring the details of our scheme to Section 3.3.2. The stabbing query structure

consists of multiple layers of trees of some kind: The top-layer tree is constructed

over the entire set of canonical boxes, and each of its nodes is assigned a subset of

boxes; the second layer consists of a set of trees, each constructed over the boxes

assigned to a node in the top-layer tree, and so on; in the end, each bottom-layer

tree node is assigned a list of boxes in a certain order as well. Henceforth, we refer

to the complete box list assigned to a node of the bottom-layer tree as a bottom list

for convenience, e.g., the sList in the data structure for Lemma 5. We require that

the query algorithm locates a set S of bottom-layer tree nodes: For each node v ∈ S,

there exists a nonempty prefix of the bottom list assigned to v such that these prefixes

over all the nodes in S form a partition of the set of boxes containing the query point

q; furthermore, the size of each of these prefixes can be computed efficiently and that

each box in a prefix can also be reported efficiently.

For example, Lemma 5 satisfies these conditions and can be used in our framework.

In Lemma 5, the data structure contains two layers of segment trees. In the top-layer

tree, a set, B(u), of boxes is assigned to each node u, and we construct a new segment

tree upon B(u) at the bottom-layer. As a result, the bottom-layer consists of O(n)

segment trees. At each bottom-layer tree node v, we explicitly store the boxes in

a bottom list, sList(v), sorted by their single x1-coordinates. Due to this, if there

are boxes in sList(v) that contain the query point, then these boxes form a prefix

of sList(v), and the size of the prefix can be identified by a predecessor search, and

once the prefix is identified, each box that contains the query point can be reported

in constant time.

Even though Kaplan et al. proved Lemma 5 and used it successfully in their

O(n2 lg2 n) space solution, they cannot directly use it with their scheme of achieving

time-space tradeoffs. Indeed, in the scheme designed by Kaplan et al., the list of

boxes containing the query point are also decomposed into a bounded number of sub-

lists. However, their scheme requires each of the decomposed sub-list to be equal to a

bottom list stored at a bottom-layer tree node. With respect to Lemma 5, one must

makes sure that in each nonempty sList in the bottom-layer segment trees, either

all boxes contain the query point or there is no box that contains the query point.

Obviously, the data structure, two layers of segment trees, fails the requirement of
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their scheme: As shown in Figure 3.1, only the first two boxes of sList(v′) in the

bottom-layer segment tree contain the query point (5, 10, 7), while the third box does

not. Instead, Kaplan et al. expand this structure with a third layer which is a

segment tree constructed over x-coordinates of the boxes, increasing both time and

space costs. On the other hand, our scheme relaxes this restriction. More specifically,

if a sList has some boxes that contain the query point, instead of requiring that the

query point must be contained by all the boxes in the list, we only need to make sure

that the query point is contained in the boxes in a prefix of that sList. For example,

as mentioned before, although not all the boxes in sList(v′) contain the query point,

the boxes that do contain the query point, B2 and B4, form a prefix of sList(v′).

This extra flexibility allows us to use Lemma 5 and alternative 3D stabbing query

structures (to be shown later in Section 3.4) in our framework.

3.3.2 Computing Intersections between Color Sets

We now introduce our new scheme of computing |CQ(ul)∩CQ(ur)| and then combine

it with the stabbing query structure from Lemma 5 to achieve a new time-space

tradeoff for colored 2D orthogonal range counting. Since our scheme works with some

other stabbing query structures, we describe it assuming a stabbing query structure

satisfying the conditions described in Section 3.3.1 is used. To understand this scheme

more easily, it may be advisable for readers to think about how it applies to the

stabbing query structure of Lemma 5.

Recall that the problems of computing |CQ(ul)| and |CQ(ur)| have each been

reduced to a 3D stabbing query. Furthermore, for each stabbing query, all reported

boxes are distributed into a number of disjoint bottom lists, and the boxes in the

same bottom list stored at a bottom-layer tree node form a nonempty prefix. For

the stabbing query that is performed to compute |CQ(ul)|, we define DQ to be a list

in which each element is one of the non-empty disjoint prefixes, and the union of all

these prefixes forms the list of reported boxes. UQ is defined in a similar way for

|CQ(ur)|. For instance, if we use the data structure for Lemma 5 to answer these

stabbing queries, DQ and UQ therein each contain O(lg2 n) prefixes, and thus both

|DQ| and |UQ| are upper bounded by O(lg2 n). As shown in Section 3.2.5, when

reducing 2D 3-sided colored counting to 3D stabbing queries over canonical boxes,
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we decompose the region U(Pc) constructed by the points colored by c into pairwise

disjoint canonical boxes. For convenience, we assign to each canonical box color c,

if the box is part of U(Pc), for each c ∈ [C]. Note that at most one canonical box

colored in c contains the query point, which implies that each box in
⋃︁
s∈DQ

s (resp.⋃︁
t∈UQ

t) has a distinct color. For each set s ∈ DQ and t ∈ UQ, let C(s) and C(t)

denote the set of colors associated with the boxes in s and t, respectively. Then we

have |CQ(ul)| =
∑︁

s∈DQ
|C(s)|, |CQ(ur)| =

∑︁
t∈UQ

|C(t)|, and |CQ(ul) ∩ CQ(ur)| =∑︁
s∈DQ,t∈UQ

|C(s) ∩ C(t)|.

To compute
∑︁

s∈DQ,t∈UQ
|C(s)∩C(t)|, extra preprocessing steps are required. For

each node v in the binary range tree T , we construct a matrix M(v) as follows: Let

X ∈ [1, n] be an integer parameter to be chosen later. If the length, m, of a bottom

list in the stabbing query structure S(vl) or S(vr) is greater than X, we divide the list

into ⌈m/X⌉ blocks such that each block is of length X, with the possible exception

of the last block. If m ≤ X, then the entire bottom list is seen as a single block.

If a block is of length X, we call it a full block. Let bl(v) and br(v) denote the

total numbers of full blocks over all bottom lists in S(vl) and S(vr), respectively.

Then M(v) is a bl(v)× br(v) matrix, in which each row (or column) corresponds to a

nonempty prefix of a bottom list in S(vl) (or S(vr)) that ends with the last entry of

a full block, and each entry M(v)[i, j] stores the number of colors that exist in both

the set of colors assigned to the boxes in the prefix corresponding to row i and the set

of colors assigned to the boxes in the prefix corresponding to column j. See Figure

3.4 for an example.

To bound the size of M(v), we define the duplication factor, δ(n), of a stabbing

query structure that satisfies the conditions in Section 3.3.1 to be the maximum

number of bottom lists that any canonical box can be contained in. For example, the

duplication factor of the structure for Lemma 5 is O(lg2 n). (To see this, observe that

in a segment tree constructed over n segments, each segment is stored in O(lg n) tree

nodes. Since segment trees are used in both layers of the data structure for Lemma 5,

each box can be stored in O(lg2 n) different bottom lists.) As each full block contains

X boxes, the numbers of full blocks in the bottom lists of S(vl) and S(vr) are at

most ⌊δ(n)|P (vl)|/X⌋ and ⌊δ(n)|P (vr)|/X⌋, respectively. Therefore, M(v) occupies

O(δ(n)2|P (vl)||P (vr)|/X2) = O((δ(n)|P (v)|/X)2) words.
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Figure 3.4: An example of matrix M(v). Matrix M(v) is an O( |P (vl)|δ(n)
X

) ×
O( |P (vr)|δ(n)

X
) matrix. The integers in the left and right rectangles represent the colors

of boxes in the sList’s that are stored at some bottom-layer nodes of S(vl) and S(vr),
respectively. The box colors that are in the same sList are distinct, and they are
divided into blocks. Especially, in this example, the block size is 4. Each row (resp.
column) of M(v) corresponds to a nonempty prefix of a bottom list in S(vl) (resp.
S(vr)) that ends with the last entry of a full block. In the figure, the i-th row and the
j-th column of M(v) correspond to the prefix of S(vl) marked by number-i and the
prefix of S(vr) marked by number-j on the top, respectively. In particular, the prefix
marked by i + 1 in S(vl) and the prefix marked by j + 1 in S(vr) share 6 distinct
colors, which are {31, 25, 23, 24, 32, 26}; hence, M(v)[i+ 1, j + 1] is set to 6.

With these matrices, the computation of
∑︁

s∈DQ,t∈UQ
|C(s) ∩ C(t)| can proceed

as follows. Given that each s ∈ DQ is a prefix of a bottom list, s can be split into

two parts: sh which is the (possibly empty) prefix of s that consists of all the full

blocks entirely contained in s, and sl which contains the remaining (less than X)

boxes of s. For each t ∈ UQ, we split t into th and tl in a similar way. Thus we have

C(sh) ∪ C(sl) = C(s) and C(th) ∪ C(tl) = C(t). Since no two boxes in s have the

same color and the same applies to the boxes in t, C(sh)∩C(sl) = C(th)∩C(tl) = ∅
also holds. Thus, we have

∑︂
s∈DQ,t∈UQ

|C(s) ∩ C(t)|

=
∑︂

s∈DQ,t∈UQ

(|C(sh) ∩ C(th)|+ |C(sh) ∩ C(tl)|+ |C(sl) ∩ C(t)|)

=
∑︂

s∈DQ,t∈UQ

|C(sh) ∩ C(th)|+
∑︂

s∈DQ,t∈UQ

|C(sh) ∩ C(tl)|

+ |(
⋃︂
s∈DQ

C(sl)) ∩
⋃︂
t∈UQ

C(t)|.

(3.1)
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For the first term in the last line of Equation 3.1, we can retrieve |C(sh)∩C(th)| from
the matrix M(v) for each possible pair of sh and th and sum them up. Therefore,

the first term can be computed in O(|DQ| · |UQ|) time. For the third term, observe

that
⋃︁
t∈UQ

C(t) = CQ(ur); thus, the third term can be computed by performing a

colored 2D orthogonal range emptiness query over P (ur) with c as the query color

for each color c ∈
⋃︁
s∈DQ

C(sl) and with Q as the query range. Note that the range

emptiness query data structure E(vr) defined in Section 3.3.1 is built upon the points

P̂ (vr) in rank space. We need to reduce Q into rank space with respect to P̂ (vr)

before performing colored range emptiness queries. Note that all these queries share

the same query range, and thus we need only convert Q into rank space once. This

can be done by performing binary searches in P (v) and Py(v) in O(lg n) time. As

|
⋃︁
s∈DQ

C(sl)| = |
⋃︁
s∈DQ

sl| = O(|DQ| ·X), it requires O(lg n+X|DQ| · (g(n)+ τ(n)))
time to compute these colors and then answer all these queries, where g(n) denotes

the query time of each range emptiness query in Lemma 4 and τ(n) denotes the query

time of reporting a box and its color in the query range.

Finally, to compute the second term in the last line of Equation 3.1, observe that,∑︂
s∈DQ,t∈UQ

|C(sh) ∩ C(tl)| =

|(
⋃︂
s∈DQ

C(s)) ∩ (
⋃︂
t∈UQ

C(tl))| − |(
⋃︂
s∈DQ

C(sl)) ∩ (
⋃︂
t∈UQ

C(tl))|.
(3.2)

The first term of the right hand side of Equation 3.2 can be computed in O(lg n +

X|UQ| · (g(n) + τ(n))) time, again by performing range emptiness queries, but this

time we use data structure E(vl). For the second term, we retrieve and sort the colors

in
⋃︁
s∈DQ

C(sl) and those in
⋃︁
t∈UQ

C(tl), and by scanning colors in both sorted lists

we can compute the intersection of the color sets. Given that |(
⋃︁
s∈DQ

C(sl))| (resp.
|(
⋃︁
t∈UQ

C(tl))|) are bounded by O(X|DQ|) (resp. O(X|UQ|)), the two sets of colors

can be retrieved in O(X|DQ|τ(n)) and O(X|UQ|τ(n)) time and then sorted using

Han’s sorting algorithm [43] in O(X|DQ| lg lg n) and O(X|UQ| lg lg n) time. Thus

the second term in the last line of Equation 3.1 can be computed in O(X(|UQ| +
|DQ|)(lg lg n + τ(n))) time. Overall, computing |CQ(ul) ∩ CQ(ur)| requires O(lg n +

|DQ| · |UQ|+X(|UQ|+ |DQ|)(lg lg n+ g(n) + τ(n))) time. Lemma 7 summarizes the

complexities of our framework.
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Lemma 7 Suppose that the 3D stabbing query structure of S(vl) (or S(vr)) for each

node v ∈ T has duplication factor δ(n), occupies O(|P (v)|h(n)) words, and, given a

query point q, it can compute ϕ(n) disjoint sets of boxes whose union is the set of

boxes containing q in O(ϕ(n)) time. Furthermore, each subset is a nonempty prefix

of a bottom list, and after this prefix is located, its length can be computed in O(1)

time and each box in it can be reported in O(τ(n)) time. Let f(n) and g(n) be the

functions set in Lemma 4 to implement E(vl) and E(vr). Then the structures in our

framework occupy O((nδ(n)/X)2 + n lg n(f(n) + h(n))) words and answer a colored

2D orthogonal range counting query in O(ϕ2(n)+Xϕ(n)(lg lg n+ g(n)+ τ(n))+ lg n)

time, where X is an integer parameter in [1, n].

Proof. At each node v of T , we store

i) a pair of point lists P (v) and Py(v),

ii) the colored range emptiness query structures E(vl) and E(vr),

iii) the stabbing query data structures S(vl) and S(vr),

iv) and the matrix M(v).

Among them, both P (v) and Py(v) use |P (v)| words of space; E(vl) and E(vr) use

O(|P (v)|f(n)) words of space by Lemma 4; S(vl) and S(vr) use O(|P (v)|h(n)) words
of space; and the matrix M(v) uses O((δ(n)|P (v)|/X)2) words of space. Summing

the space costs over all internal nodes of the range tree T , the overall space cost is at

most
∑︁

v∈T O((δ(n)|P (v)|/X)2+|P (v)|(f(n)+h(n))). To simplify this expression, first

observe that
∑︁

v∈T |P (v)| = O(n lg n). Furthermore, we can calculate
∑︁

v∈T |P (v)|2

as follows: At the i-th level of T , there are 2i nodes, and each node stores a point

list of length n/2i. Therefore, the sum of the squares of the lengths of the point lists

at the ith level is n2/2i. Summing up over all levels, we have
∑︁

v∈T |P (v)|2 = O(n2).

Therefore, the overall space cost simplifies to O((nδ(n)/X)2 + n lg n(f(n) + h(n))).

Given a query range Q, both |CQ(ul)| and |CQ(ur)| can be computed in O(ϕ(n))

time, as both CQ(ul) and CQ(ur) are partitioned into ϕ(n) disjoint sets of boxes and

the number of boxes in each set can be computed in constant time. As shown before,

computing |CQ(ul)∩CQ(ur)| can be reduced to computing
∑︁

s∈DQ,t∈UQ
|C(s)∩C(t)|,
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which requires O(lg n + |DQ| · |UQ| + X(|UQ| + |DQ|)(lg lg n + g(n) + τ(n))) time.

Since both |DQ| and |UQ| are upper bounded by ϕ(n), the overall query time is

O(lg n+ ϕ2(n) +Xϕ(n)(lg lg n+ g(n) + τ(n))).

Now, we are ready to present a new time-space tradeoff by combining the stabbing

query data structure from Lemma 5 and our framework summarized by Lemma 7.

Following both lemmas, we have h(n) = O(lg2 n), ϕ(n) = O(lg2 n), τ(n) = O(1),

and δ(n) = O(lg2 n). To implement E(vl) and E(vr), we use part b) of Lemma 4, so

f(n) = O(lg lg n) and g(n) = O(lg lg n). Hence:

Theorem 1 There is a data structure of O(( n
X
)2 lg4 n + n lg3 n) words of space that

answers colored 2D orthogonal range counting queries in O(lg4 n+X lg2 n lg lg n) time,

where X is an integer parameter in [1, n]. In particular, setting X = ⌈
√
n lg n⌉ yields

an O(n lg3 n)-word structure with O(
√
n lg5/2 n · lg lg n) query time.

Unlike our result in Theorem 1, the solution of Kaplan et al. with O(( n
X
)2 lg6 n+

n lg4 n) words of space and O(X lg7 n) query time works under the pointer machine

model. Nevertheless, with some modifications, our solution can also be made to

work under this same model. First, Lemma 4 requires the word RAM model, we

can replace it by the optimal solution to the 2D orthogonal range emptiness query

problem by Chazelle [17] with O(n lg n/ lg lg n) words of space and O(lg n) query

time. Thus, g(n) = O(lg n), while the overall space cost of the data structure remains

unchanged. Second, when computing |(
⋃︁
s∈DQ

C(sl)) ∩ (
⋃︁
t∈UQ

C(tl))|, we cannot use

Han’s sorting algorithm [43] which requires the word RAM. Instead, using mergesort,

we can compute this value in O(X(|UQ| + |DQ|) · lg n) time. Finally, to simulate a

matrix M(v), we can use lists indexed by binary search trees, so that we can retrieve

each entry in O(lg n) time. Thus, we achieve the following result:

Corollary 1 Under the arithmetic pointer machine model, given n colored points

on the plane, there is a data structure of O(( n
X
)2 lg4 n + n lg3 n) words of space that

answers colored orthogonal range counting queries in O(lg5 n +X lg3 n) time, where

X is an integer parameter in [1, n]. In particular, setting X = ⌈
√
n lg n⌉ yields an

O(n lg3 n)-word structure with O(
√
n lg7/2 n) query time.
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3.4 Two More Solutions with Better Space Efficiency

In the previous section, we show a solution whose space cost is O(n lg3 n) for colored

2D orthogonal range counting. In this section, we design another two data structures

with potentially better space efficiency.

3.4.1 Achieving O(n lg2 n)-Word Space

We design an alternative solution for 3D stabbing queries over canonical boxes whose

space cost is a logarithmic factor less than that in Lemma 5, and it also satisfies the

conditions described in Section 3.3.1 and can thus be applied in our framework. This

leads to another time-space tradeoff for colored 2D orthogonal range counting, whose

space cost can be as little as O(n lg2 n) by setting appropriate parameter values.

This new 3D stabbing query solution requires a data structure for 2D dominance

counting and reporting. To achieve that, we augment a binary range tree, T̂ , which

is constructed over the y-coordinates of the input points, and each node v of T̂

is conceptually associated with a list, P (v), of points that are leaf descendants of

v, sorted by x-coordinate, but the coordinates of points in P (v) are not explicitly

stored. Lemma 8 presents this data structure. We are aware of other solutions better

than the result shown in Lemma 8 for 2D dominance counting and reporting [51, 14].

However, Lemma 8 gives us additional range tree functionalities that are required for

our next two solutions to colored 2D orthogonal range counting.

Lemma 8 Consider a binary range tree T̂ constructed over a set P of n points on

the plane as described above. The binary tree can be augmented using O(n) additional

words to support 2D dominance range reporting and counting queries. Specifically,

given a query range Q, which is the region dominated by a point q, a set S of O(lg n)

nodes can be located in O(lg n) time such that

• a nonempty prefix L(v) of P (v) contains a subset of points in P ∩ Q for each

node v ∈ S,

• these |S| prefixes are pairwise disjoint,

• the union of these |S| prefixes contains all the points in P ∩Q,
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(10, 0) (8, 1) (5, 2) (6, 3) (12, 4) (11, 5) (1, 6) (3, 7) (7, 8) (13, 9) (0, 10)(14, 11)(15, 12) (12, 13)(4, 14) (9, 15)

x 8 10
y 1 0
B 1 0

x 5 6
y 2 3
B 0 1

x 11 12
y 5 4
B 1 0

x 1 3
y 6 7
B 0 1

x 7 13
y 8 9
B 0 1

x 0 14
y 10 11
B 0 1

x 2 15
y 13 12
B 1 0

x 4 9
y 14 15
B 0 1

x 5 6 8 10
y 2 3 1 0
B 1 1 0 0

x 1 3 11 12
y 6 7 5 4
B 1 1 0 0

x 0 7 13 14
y 10 8 9 11
B 1 0 0 1

x 2 4 9 15
y 13 14 15 12
B 0 1 1 0

x 1 3 5 6 8 10 11 12
y 6 7 2 3 1 0 5 4
B 1 1 0 0 0 0 1 1

x 0 2 4 7 9 13 14 15
y 10 13 14 8 15 9 11 12
B 0 1 1 0 1 0 0 1

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
y 10 6 13 7 14 2 3 8 1 15 0 5 4 9 11 12
B 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1 1

u

Figure 3.5: An example of a binary range tree data structure that solves 2D dom-
inance range reporting and counting. In the query range (−∞, 10] × (−∞, 11], we
find points (1, 6), (3, 7), (5, 2), (6, 3), (8, 1), (10, 0), (7, 8) and (0, 10).

• the individual sizes of these |S| prefixes can be computed in O(lg n) time and

• each point in a prefix can be reported in O(lgλ n) additional time for any constant

0 < λ < 1.

Proof. For simplicity, we assume that point coordinates are in rank space3. Then

the i-th leaf from the left represents the range [i, i] for each i ∈ [0..n− 1]. The range

represented by an internal node v is [i, j] if the leftmost leaf descendant and the

rightmost descendant of v is the i- and j-th leaf, respectively.

At each internal node v of T̂ , we store a bit vector, B(v), such that if the point

P (v)[i] is a leaf descendant of the left child of v, then B(v)[i] is set to 0; otherwise

B(v)[i] is set to 1. Obviously, |B(v)| equals to |P (v)|. We construct an O(|P (v)|)-
bit space data structure, shown in [20], upon B(v) to support rank(v, k) queries in

constant time, for any 0 ≤ k < |B(v)|, such that rank(v, k) =
∑︁

i≤k B(v)[i]. These

bit vectors over all internal nodes v of T̂ use
∑︁

v O(|B(v)|) = O(n lg n) bits, which is

O(n) words of space. An example of the data structure is shown in Figure 3.5. The

x- and y-coordinates of the points in P (v) and the bit vector B(v) are all presented

3By duplicating points in P and storing them in two sorted sequences, one ordered by x-coordinate
and the other by y-coordinate, the time required to perform the conversion between original coor-
dinates and coordinates in rank space does not affect the claimed query time.
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at each node v of the tree. The point coordinates are in gray color, indicating that

they are not explicitly stored in the data structure.

Given a query range Q = (−∞, q.x] × (−∞, q.y], we find the path, π, from the

root node of T̂ to the q.y-th leaf. The node set S can be constructed as follows: For

each node u in π, if it is the right child of its parent, we add its left sibling into S;

otherwise, we skip u. The q.y-th leaf is added into S as well. As a result, the ranges

represented by the nodes in S form a partition of the query y-range (−∞, q.y]. In

addition, for each node u of T̂ , all points in P (u) are increasingly sorted by their

x-coordinates. Thus, a prefix, L(u), of P (u) contains points in the query x-range

(−∞, q.x]. Precisely, the size of prefix is exactly the same as the index, i, of the

leftmost point of P (u) whose x-coordinate is more than q.x, i.e., L(u) = P (u)[0..i−1].

To compute |L(v)| for all v ∈ S, the following observation is crucial: Given that s

and t are two nodes of T̂ , where s is the parent of t, if t is the left child of s, then

|L(t)| is |L(s)| − rank(B(s), |L(s)|); otherwise, it is rank(B(s), |L(s)|). Clearly, |L(r)|
is q.x+1 at the root node r. By traversing the nodes of π downwards and performing

one rank operation at each level, we can compute |L(v)| for each v ∈ S. The total

running time is O(lg n).

To support reporting, if the points in P (v) were explicitly stored at each node v,

then P (v)[i] can be trivially answered in constant time. However, storing the point

lists for all the nodes of T̂ would require O(n lg n) words, which is not affordable.

Instead, we augment T̂ with the data structure that solves the ball inheritance prob-

lem, as stated as part a) of Lemma 1. This costs us O(n) additional words of space

and allows us to find the coordinates of P (v)[i] in O(lgλ n) time. As a result, a point

of P (v) in the query range can be reported in O(lgλ n) time provided that |L(v)| is
known.

Figure 3.5 gives an example to show how the query proceeds in a binary range tree.

As shown in the figure, the query range is (−∞, 10]× (−∞, 11], and the query path π

starts from the root and ends at the leaf that stores the point (14, 11). The four nodes

highlighted with bold blue borders in the figure, including two internal nodes and two

leaves, form the set S; each of them except the leaf representing point (14, 11) is the

left child of some node in π. At each node v of these four nodes, the y-coordinates of

the points are in the range (−∞, 11], and the points whose x-coordinates are in the
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y

B2

B6

B7

B8

B9

1 3 4 5 7 8 10 12 13 14 15

B4

0 6 9 11

I(s′) : {[1,4)}

B(s′) : {B6}

Slower(s′) : {(6, 1)}

Supper(s′) : {(6, 4)}

I(t′) : {[5,7)}

B(t′) : {B7}

Slower(t′) : {(7, 5)}

Supper(t′) : {(7, 7)}

I(u′) : {[8,15), [10, 14)}

B(u′) : {B8, B9}

Slower(u′) : {(8, 8), (9, 10)}

Supper(u′) : {(8, 15), (9, 14)}

B2 : [2,+∞) × [3,13) × [4, 13)
B4 : [4,+∞) × [2,12) × [4, 12)
B6 : [6,+∞) × [1,4) × [4, 13)
B7 : [7,+∞) × [5,7) × [1, 18)
B8 : [8,+∞) × [8,15) × [4, 14)
B9 : [9,+∞) × [10,14) × [4, 15)

I(v′) : {[3,13), [2, 12)}

B(v′) : {B2, B4}

Slower(v′) : {(2, 3), (4, 2)}

Supper(v′) : {(2, 13), (4, 12)}

v
′

u
′

e
′

t
′

s
′

I(e′) : ∅

B(e′) : ∅

Slower(e′) : ∅

Supper(e′) : ∅

Figure 3.6: The interval tree in the second layer constructed over the y-segments of
the boxes in B(v) (where B(v) represents the set of boxes that are assigned to node v
in the top-layer segment tree shown in Figure 3.1). All the boxes in B(v) are listed in
the bottom-left corner of the figure and their y-segments are highlighted in bold and
also drawn below the y-axis; the vertical dotted lines indicate the medians in different
recursive levels. Given that the y-segments of boxes B2 and B4 contain the median,
which is 7, of the endpoints of all y-segments in B(v), both boxes are assigned to set
B(v′), where v′ is the root of the interval tree. Following our definitions, the lower
points of B2 and B4 are (2, 3) and (4, 2), and the upper points are (2, 13) and (4, 12).

range (−∞, 10] form a prefix of P (v). To compute the size of each prefix, we take

node u as an example. We can tell from Figure 3.5 that u is the left child of the root

node r and the first 11 nodes in P (r) are in the range (−∞, 10] along the x-axis. As

argued before, the number of 0-bits in B[0..10] is the same as the size of the prefix

L(u). Therefore, by calling 11 − rank(B(r), 10), we find the size of L(u), which is

6. The prefixes of the other nodes in S can be computed in a similar way, and we

highlight these prefixes using dark rectangles in the figure.

Now we are ready to show the second stabbing query data structure. To answer

stabbing queries over a set of n canonical boxes in three-dimensional space, we con-

struct a data structure consisting of three layers of trees, but a different tree structure

is adopted in each layer. The top-layer tree, denoted by T1, is a segment tree built
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upon the z-segments of the boxes4. A box is assigned to a node in T1 if its z-segment

is relevant to this node. Henceforth, let B(v) denote the set of boxes that are assigned

to node v of T1. Then, we construct an interval tree, T2(v), over the y-segments of the

boxes in B(v). The interval trees constructed for all the nodes of the top-layer tree

form the middle-layer structure. Recall that T2(v), as an interval tree, stores a list,

I(v′) of intervals at each tree node v′. To each node v′ of T2(v), we assign a set B(v′)

of boxes as a subset of B(v) as follows: For each box b in B(v), b is assigned to B(v′)

iff the y-segment of b is contained in I(v′). Furthermore, we use the boxes in B(v′) to

define two point sets, Slower(v
′) and Supper(v

′), on the plane as follows: By projecting

all the boxes in B(v′) onto the xy-plane, we get a set of right-open rectangles, each

of the form [x1,+∞]× [y1, y2]. Then, Slower(v
′) is the set of the lower left vertices of

these rectangles (henceforth called lower points), i.e., {(B.x1, B.y1)|B ∈ B(v′)}, and
Supper(v

′) is the set of the upper left vertices (henceforth called upper points), i.e.,

{(B.x1, B.y2)|B ∈ B(v′)}. See Figure 3.6 for an illustration. Next, we build binary

range trees, Tlower(v
′) and Tupper(v

′), over Slower(v
′) and Supper(v

′), respectively, ap-

plying Lemma 8. These range trees constructed for all the interval tree nodes form

the bottom-layer structure.

Following Lemma 8, each node v′′ of a binary range tree in the bottom-layer is

conceptually associated with a list, P (v′′), of lower or upper points, which are the

points stored in the leaf descendants of v′′, sorted by x-coordinate. Each point of

P (v′′) represents a box. Since there is a one-to-one correspondence between a point

in P (v′′) and the box it represents, we may abuse notation and use P (v′′) to refer to

the list of boxes that these points represent when the context is clear. Hence P (v′′)

is regarded as the bottom list when applying the new stabbing query data structure

in our framework. Lemma 9 summarizes the solution.

Lemma 9 Given a set of n canonical boxes in three dimension, the data structure

above occupies O(n lg n) words and answers stabbing counting queries in O(lg3 n) time

and stabbing reporting queries in O(lg3 n+k · lgλ n) time, where k denotes the number

of boxes reported. Furthermore, the set of reported boxes is the union of O(lg3 n)

different disjoint sets, each of which is a nonempty prefix of some bottom list in the

4More precisely, the segment tree is constructed over the segments that are generated by project-
ing each box onto the z-axis.
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data structure.

Proof. The top-layer segment tree occupies O(n lg n) words, while both interval

trees and binary range trees from Lemma 8 are linear-space data structures. There-

fore, the overall space cost is O(n lg n) words.

To show how to answer a query, let q be the query point. Our query algorithm

first searches for q.z in the top-layer segment tree. This locates O(lg n) nodes of the

top-layer tree. Each node v located in this phase stores a list, B(v), of boxes whose

z-segments contain q.z. It now suffices to show how to count and report the boxes in

B(v) whose projections on the xy-plane contain point (q.x, q.y). To do this, we use

the interval tree in the middle-layer that is constructed over B(v).

Recall that at each node v′ of an interval tree, we keep the median m(v′) of the

endpoints of the y-segments of the boxes that are stored at the descendants of v′

(including itself), and we also store a list, B(v′), of boxes whose y-segments contain

median m(v′). Furthermore, the lower endpoint of a y-segment corresponds to the y-

coordinate of a point in Slower(v
′), and the upper endpoint of a y-segment corresponds

to the y-coordinate of a point in Supper(v
′).

The next phase of our algorithm starts from the root, r′, of this interval tree. We

consider two cases: either q.y ≤ m(r′) or q.y > m(r′). If q.y ≤ m(r′), a y-segment

of a box in B(r′) contains q.y iff its lower endpoint is less than or equal to q.y. This

means, among the points in Slower(r
′), those lying in the range (−∞, q.x]× (−∞, q.y]

correspond to the boxes of B(r′) whose projections on the xy-plane contain point

(q.x, q.y). Since the z-segment of each of these boxes already contains q.z, these

boxes contain q in the three-dimensional space. Hence, by performing a dominance

query over Tlower(r
′) using (−∞, q.x]×(−∞, q.y] as the query range, we can find these

boxes. The lower endpoints of the y-segments of the boxes stored in the right subtree

of r′ are all higher than m(r′), and thus none of these boxes can possibly contain

the point (q.x, q.y, q.z). As a result, we descend to the left child of r afterwards and

repeat this process. Otherwise, if q.y > m(r′) instead, then we perform a dominance

query over Tupper(r
′) using (−∞, q.x]×(q.y,+∞) as the query range to find the boxes

of B(r′) that contain q, descend to the right child of r, and then repeat.

To analyze the running time, observe that this algorithm locates O(lg n) nodes
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in the top-layer segment tree, and for each of these nodes, it further locates O(lg n)

nodes in the middle-layer interval trees. Hence, we perform a 2D dominance counting

and reporting query using Lemma 8 for each of these O(lg2 n) interval tree nodes,

and the proof completes.

In an interval tree, each segment is stored at exactly one node, while in a segment

tree or a binary range tree, each segment or point can be stored at O(lg n) nodes.

Therefore, this data structure has duplication factor δ = O(lg2 n). By combining

Lemmas 5 and 7, we have h(n) = O(lg n), ϕ(n) = O(lg3 n) and τ(n) = O(lgλ n). We

again use part b) of Lemma 4 to implement E(vl) and E(vr), so f(n) = O(lg lg n)

and g(n) = O(lg lg n). Hence:

Theorem 2 There is a data structure of O(( n
X
)2 lg4 n + n lg2 n) words of space that

answers colored 2D orthogonal range counting queries in O(lg6 n + X lg3+λ n) time,

where X is an integer parameter in [1, n] and 0 < λ < 1 is an arbitrary con-

stant. In particular, setting X = ⌈
√
n lg n⌉ yields an O(n lg2 n)-word structure with

O(
√
n lg4+λ n) query time.

3.4.2 Achieving O(n lg n)-Word Space

In this section, we further improve the space cost of the data structure for 3D stabbing

queries over canonical boxes. The new solution also satisfies the conditions described

in Section 3.3.1 and can thus be applied in our framework. This leads to our third

time-space tradeoff for colored 2D orthogonal range counting, whose space cost can

be as efficient as O(n lg n) words by setting appropriate parameter values.

Our solution will adopt a space-efficient data structure for 3D orthogonal dom-

inance range searching. Using a range tree with node degree γ ∈ [2, n], we can

transform a linear space data structure for 2D dominance range counting and report-

ing shown in Lemma 8 into a new data structure that supports dominance range

queries in 3D and uses O(n logγ n) words.

Lemma 10 There is a data structure of O(n logγ n) words of space that answers 3D

dominance counting queries in O(γ lg n · logγ n) time and 3D dominance reporting

queries in O(γ lg n · logγ n + k lgλ n) time, where k is the number of reported points

and γ is an integer parameter in [2, n].
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Proof. The data structure is a balanced γ-ary range tree, T̃ , constructed upon z-

coordinates of the points. Each leaf of T̃ stores an input point, and all leaves from left

to right are increasingly sorted by the z-coordinates of the points. At each internal

node v, we explicitly store a list, P (v), of points that are leaf descendants of v. Given

P (v), we construct a 2D dominance range searching data structure upon the x- and

y-coordinates of the points by applying Lemma 8. Since T̃ has O(logγ n) tree levels

and each level stores a linear space data structure, the overall space cost is O(n logγ n)

words.

Given a query range Q = (−∞, q.x] × (−∞, q.y] × (−∞, q.z], we find the path,

π, from the root node of T̃ to the leaf that stores the point whose z-coordinate is

a predecessor of q.z. Path π contains O(logγ n) nodes, and the leaf it contains can

be found in O(lg n) time by a binary search over all the leaf points. We construct

a node set S such that for each node u ∈ π, we append all u’s siblings on its left

into S, and finally the leaf node in π is appended into S as well. As a result, the

z-coordinates of points in P (v) for each v ∈ S are within (−∞, q.z], i.e., the query

range along z-axis. Thus, we can find the points P (v)∩Q and compute |P (v)∩Q| by
2D dominance searching upon P (v) by applying Lemma 8. As π has O(logγ n) nodes

and each node v of π has O(γ) siblings, a 3D dominance counting (resp. reporting)

query takes O(γ lg n · logγ n) (resp. O(γ lg n · logγ n+ k lgλ n)) time.

Now we are ready to show the third data structure for stabbing queries over 3D

canonical boxes. It again consists of three layers of trees, with interval trees in the

top- and middle- layers, plus the data structures for 3D dominance range searching

implemented by the data structure of Lemma 10 in the bottom-layer. More precisely,

the structure at the top layer is an interval tree, T1, constructed over the z-segments

of the boxes. To each node v in the top-layer tree, we assign a list, B(v) of boxes,

whose z-segments are contained in the segment set I(v) (See Section 3.2.3 for the def-

inition of I(v)), and we further construct an interval tree, T2(v), over the y-segments

of the boxes in B(v). These interval trees constructed for all the nodes of the top-

layer tree form the middle-layer structure. At each node v′ of an interval tree in

the middle-layer, we store a list, B(v′), of boxes whose y-segments are contained in

the segment set I(v′). Given the box list, B(v′), we define four point sets, Sℓ,ℓ(v
′),

Sℓ,r(v
′), Su,ℓ(v

′) and Su,r(v
′) in 3D such that Sℓ,ℓ(v

′) = {(B.x1, B.y1, B.z1)|B ∈ B(v′)},
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Figure 3.7: Illustrating how the endpoints of a box projected on the yz-plane are
assigned into different sets Sℓ,ℓ, Sℓ,r, Su,ℓ and Su,r

Sℓ,r(v
′) = {(B.x1, B.y1, B.z2)|B ∈ B(v′)}, Su,ℓ(v′) = {(B.x1, B.y2, B.z1)|B ∈ B(v′)},

and Su,r(v
′) = {(B.x1, B.y2, B.z2)|B ∈ B(v′)}. Then, we build a set of 3D dominance

range searching structures Tℓ,ℓ(v
′), Tℓ,r(v

′), Tu,ℓ(v
′) and Tu,r(v

′) over Sℓ,ℓ(v
′), Sℓ,r(v

′),

Su,ℓ(v
′) and Su,r(v

′), respectively, applying Lemma 10. See Figure 3.7 for an illustra-

tion. The 3D dominance range searching structures constructed for the nodes of all

middle-layer interval trees form the bottom-layer structure.

As shown in the previous section, we need to identify the bottom lists from the

data structure described above, which are crucial when applying the data structure in

our framework. Without loss of generality, we take the 3D dominance range searching

structure Tℓ,ℓ(v
′) built in the bottom-layer as an example. Observe that Tℓ,ℓ(v

′) is a

γ-ary range tree, of which each internal node, v′′, stores a binary range tree T̂ (v′′)

implemented by the data structure of Lemma 8 for 2D dominance range searching.

Recall that each node v̂ of a binary range tree T̂ (v′′) is conceptually associated with

a list, P (v̂), of points from the set Sℓ,ℓ(v
′), which are the points stored in the leaf

descendants of v̂, sorted by x-coordinate. Each point of P (v̂) represents a box. Since

there is a one-to-one correspondence between a point in P (v̂) and the box it represents,

we again use P (v̂) to refer to the list of boxes that these points represent. Hence, P (v̂)

is regarded as the bottom list when applying the data structure in our framework. The

following lemma summarizes our third solution to stabbing queries over 3D canonical

boxes:

Lemma 11 Given a set of n canonical boxes in three dimension, the data structure
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described above occupies O(n logγ n) words of space and answers stabbing counting

queries in O(lg2 n · γ lg n · logγ n) time and stabbing reporting queries in O(lg2 n ·
γ lg n · logγ n+ k · lgλ n) time, where k denotes the number of boxes reported and γ is

an integer parameter in [2, n]. Furthermore, the set of reported boxes is the union of

O(lg2 n · γ lg n · logγ n) different disjoint sets, each of which is a nonempty prefix of

some bottom list in the data structure.

Proof. Both the top- and middle- layer interval trees are linear-space data struc-

tures, while the 3D dominance range searching structures from Lemma 10 occupy

O(n logγ n) words of space in total. Therefore, the overall space cost is O(n logγ n)

words.

Before showing the query algorithm, we review the data structure of an interval

tree. At each node v of the top-layer interval tree T1, we keep i) the median, mz(v),

of the endpoints of the segments that are stored at v’s descendants (including itself),

ii) a list, Iz(v), of the segments that contain mz(v) and iii) a middle-layer interval

tree, T2(v), that is constructed over the y-segments of the boxes in B(v). And we

use my(v
′) and Iy(v

′) to represent the median and the segment list that are stored

at tree node v′ of T2(v), respectively. Note that a segment in Iz(v) (resp. Iy(v
′))

corresponds to the z-segment (resp. y-segment) of a box in B(v) (resp. B(v′)), and

thus if a segment in Iz(v) (resp. Iy(v
′)) does not contain the projection of the query

point onto the z-axis (resp. y-axis), then it means that the box that this segment

corresponds to cannot contain the query point.

Let q = (q.x, q.y, q.z) be the query point. The query visits O(lg n) nodes v of

the interval tree in the top-layer and O(lg2 n) nodes v′ of the interval trees in the

middle-layer. By comparing q.z and mz(v) (resp. q.y and my(v
′)), one can decide

which child of v (resp. v′) to be visited next. For example, let r denote the root of

T1 and assume that q.z ≤ mz(r). Since the nodes in the subtree rooted at the right

child of r stores the z-segments of the boxes whose minimum endpoints are greater

than mz(r), none of these segments could possibly contain q.z. As a result, after

traversing the middle-layer interval tree T2(r) that is constructed over the y-segments

of the boxes in B(r), we descend to the left child of r. The procedure of traversing

T2(r) is the same as we have seen in the proof of Lemma 9.
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The comparison between q.z and mz(v) in the top-layer and the comparison be-

tween q.y and my(v
′) in the middle-layer result in four different cases. To find the

boxes that contain the query point under each different case, we apply the correspond-

ing 3D dominance range searching data structure that is built in the bottom-layer:

• When q.z ≤ mz(v) and q.y ≤ my(v
′), we search Tℓ,ℓ(v

′) for the points of Sℓ,ℓ(v
′)

in the query range (−∞, q.x]× (−∞, q.y]× (−∞, q.z].

• When q.z ≤ mz(v) and q.y > my(v
′), we search Tu,ℓ(v

′) for the points of Su,ℓ(v
′)

in the query range (−∞, q.x]× (q.y,+∞)× (−∞, q.z].

• When q.z > mz(v) and q.y ≤ my(v
′), we search Tℓ,r(v

′) for the points of Sℓ,r(v
′)

in the query range (−∞, q.x]× (−∞, q.y]× (q.z,+∞).

• When q.z > mz(v) and q.y > my(v
′), we search Tu,r(v

′) for the points of Su,r(v
′)

in the query range (−∞, q.x]× (q.y,+∞)× (q.z,+∞).

We give the reasoning of the first case, and similar arguments apply to the other

three cases. Given that q.z ≤ mz(v), a segment in Iz(v) contains q.z iff its minimum

endpoint is less than or equal to q.z. Given that q.y ≤ my(v
′), a segment in Iy(v

′)

contains q.y iff its lower endpoint is less than or equal to q.y. Therefore, among the

points in Sℓ,ℓ(v
′), those lie in (−∞, q.x] × (−∞, q.y] × (−∞, q.z] correspond to the

boxes containing (q.x, q.y, q.z). Hence, by performing a dominance query over Tℓ,ℓ(v
′)

using (−∞, q.x]× (−∞, q.y]× (−∞, q.z] as the query range, we find these boxes.

To analyze the running time, observe that this algorithm locates O(lg n) nodes

in the top-layer interval tree, and for each of these nodes, it further locates O(lg n)

nodes in the middle-layer interval trees. Hence, we perform a 3D dominance counting

and reporting query using Lemma 10 for each of these O(lg2 n) interval tree nodes,

and the proof completes.

In an interval tree, each interval is stored in exactly one node, while in a 3D

dominance range searching structure as shown in Lemma 10, each point can be asso-

ciated with O(lg n·logγ n) nodes. Therefore, this data structure has duplication factor

δ(n) = O(lg n · logγ n). By combining Lemmas 11 and 7, we have h(n) = O(logγ n),

ϕ(n) = O(lg2 n · γ lg n · logγ n) and τ(n) = O(lgλ n). This time, we use part a) of

Lemma 4 to implement E(vl) and E(vr), so f(n) = O(1) and g(n) = O(lgλ n). Hence:
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Theorem 3 There is a data structure of O(( n
X
)2 lg2 n · log2γ n+n lg n · logγ n) words of

space that answers colored 2D orthogonal range counting queries in O(γ2·lg6 n·log2γ n+
X · lg3+λ n · γ logγ n) time, where X is an integer parameter in [1, n], γ is an integer

parameter in [2, n], and λ is any constant in (0, 1). Setting X = ⌈
√︁
n lg n logγ n⌉ and

γ = ⌈lgλ n⌉ yields an O(n lg2 n
lg lgn

)-word structure with O(
√
n lg5+λ

′
n) query time for

any constant λ′ > 2λ. Alternatively, setting X = ⌈
√
n lg n⌉ and γ = ⌈nλ/5⌉ yields an

O(n lg n)-word structure with O(n1/2+λ) query time.

3.5 Conclusion

In this chapter, we design space-efficient data structures to solve colored 2D orthogo-

nal range counting. We apply the standard technique of decomposing a 4-sided query

range to two 3-sided subranges using a binary range tree. To compute the number of

colors in each subrange, we apply the same reduction from colored 2D 3-sided range

counting to stabbing queries over a set of 3D 5-sided boxes, developed by Kaplan

et al. [57], but we use three different data structures for solving the latter problem:

The first one consists of two layers of segment tree, occupying O(n lg2 n) words of

space and supporting stabbing queries in O(lg2 n + k) time and stabbing counting

in O(lg2 n) time. The second one contains a segment tree, an interval tree and a bi-

nary range tree at different layers, occupying O(n lg n) words of space and supporting

stabbing queries in O(lg3 n + k lgλ n) time and stabbing counting in O(lg3 n) time.

The third one is formed by a two layers of interval trees plus a linear space data

structure for 3D dominance range queries, occupying O(n) words of space and sup-

porting stabbing queries in O(nλ+k lgλ n) time and stabbing counting in O(nλ) time.

To compute the number of colors that appear in both subranges, we design a novel

scheme. Combining our scheme and the different data structures for 3D stabbing

queries, we achieve three new solutions to colored 2D orthogonal range counting such

that each of them can be expressed in the form of time-space tradeoff. Comparing

to the tradeoff solution given by Kaplan et al. [55], each of our solutions improves

the space usage by polylog(n) factors. Specially, by setting the parameters in the

tradeoff solutions to be appropriate values, our data structures only use O(n lg3 n),

O(n lg2 n), O(n lg2 n
lg lgn

), and O(n lg n) words, and support colored 2D orthogonal range
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counting in O(
√
n lg5/2 n lg lg n), O(

√
n lg4+λ n), O(

√
n lg5+λ n), and O(n1/2+λ) time,

respectively.

Finally, we conclude this chapter with one open problem. As mentioned in Section

3.1.1, one of the data structures by Kaplan et al. can be modified to achieve a

linear space solution, but its query time is ω(n3/4). However, the most space efficient

data structure we achieved uses O(n lg n) words of space and supports each query in

O(n1/2+λ) time. There is a gap in the query time between our solution and the linear

space solution. The open problem is whether there is a linear space data structure

that supports colored 2D orthogonal range counting in o(n3/4) time.



Chapter 4

Faster Path Queries in Colored Trees

4.1 Introduction

Trees are used to represent information in many areas of computer science. In tree-

structured data, additional properties, such as categorical information, are often en-

coded as colors of tree nodes. To facilitate the retrieval of color information, re-

searchers have defined the following queries over an ordinal tree T on n nodes with

each node assigned a color from {0, 1, . . . , C− 1}, where C ≤ n: Given a path in T , a

colored path counting query returns the number of distinct colors assigned to the nodes

in this path, while a path mode query returns a mode of the path, i.e, a most frequent

color among the multiset of colors assigned to nodes in this path. These queries can

be used to compute fundamental statistic information over tree-structured data.

Researchers have studied these query problems and designed data structure so-

lutions [58, 23, 44]. Different time-space tradeoffs have been achieved, and among

the best linear-space solutions under word RAM, the structure of He and Kazi [44]

can answer a colored path counting query in O(
√
n lg lgC) time, and the solution of

Durocher et al. [23] can answer a path mode query in O(
√︁
n/w lg lg n) time, where

w denotes the number of bits stored in a word. The support for these queries is

thus much slower than the support for many other path queries in trees, such as

path minimum [18, 2, 56, 22, 8, 12], path medium [58, 64, 48, 49], path counting

[18, 58, 64, 48, 49] and path majority [23, 30], for which linear-space solutions with

sublogarithmic or even constant query times exist.

However, researchers have given evidence to show that these solutions to col-

ored path counting and path mode queries are efficient, by proving conditional lower

bounds. It has been shown that the multiplication of two
√
n ×

√
n Boolean matri-

ces can be performed by answering n colored path counting queries or n path mode

queries. This reduction was explicitly given for colored path counting [44], while

for path mode queries, it follows from the same conditional lower bound on range

47
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mode queries [10] in arrays, for which we preprocessing an array A such that given

a range [i, j], we can find a most frequent element in A[i, j] efficiently. Note that

when the input tree has a single path only, path mode queries becomes range mode

queries. This reduction means, with current knowledge, the total running time of

answering n of these paths or range queries, including preprocessing, cannot be faster

than nω/2, save for polylogarithmic speedups, where ω < 2.37286 denotes the expo-

nent of matrix multiplication [1]. Furthermore, since the best known combinatorial

approach of multiplying two n × n Boolean matrices under the word RAM model

requires Θ(n3/ polylog(n)) time [70], the total time of answering n of these queries

cannot be faster than n1.5, save for polylogarithmic speedups, using pure combinato-

rial methods with current knowledge. Since the structures of He and Kazi [44] and

Durocher et al. [23] can be built in Õ(n1.5) time, they can be used to answer n colored

path counting or path mode queries in Õ(n1.5) time, matching this conditional lower

bound on pure combinatorial methods within polylogarithmic factors.

The problem of answering n queries given offline is the batched version of these

query problems. To achieve O(n1.5−ϵ)-time solutions for some positive constant ϵ,

Williams and Xu [69] reduced batched range mode to the min-plus product of a

pair of matrices of special structures, which makes it possible to answer a batch of

n range mode queries over an array of length n in O(n1.4854) time. Gu et al. [39]

further improved the running time to O(n1.4805). Similar ideas have also yielded

dynamic range mode structures with O(n0.655994) query and update times [39]. This

is surprising as Jin and Xu [53] showed that dynamic range mode structure cannot

simultaneously support update and query in O(n2/3−ϵ) time for any positive constant

ϵ using purely combinatorial method with current knowledge. Even before that,

Kaplan et al. [57] used sparse matrix multiplication to answer n colored orthogonal

range counting queries over n colored points on the plane in O(n1.4071) total time. This

query counts the number of distinct colors assigned to points in each of n axis-aligned

query rectangles and is related to colored path counting in the sense that they both

generalize colored 1D range counting [31, 63] and have the same conditional lower

bound.

Despite all these exciting works which beat the conditional lower bounds for com-

binatorial methods, no previous work was done to solve batched colored path counting
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or batched path mode queries in O(n1.5−ϵ)-time. In this chapter, we use matrix mul-

tiplication and min-plus product to solve these problems.

4.1.1 Previous Work

The study on colored range counting started in the 1D case, for which Gupta et al. [42]

showed a reduction to 2D orthogonal range counting over uncolored points, hence

achieving a linear space solution with O(lg n/ lg lg n) query time. This problem has

been studied extensively in 2D [40, 57, 38, 61, 34], for which Kaplan et al. [55]

proved the conditional lower bound based on Boolean matrix multiplication which we

discussed previously. They further designed a data structure occupying O((n
t
)2 lg6 n+

n lg4 n) words that supports colored 2D range counting in O(t lg7 n) time for any

0 < t ≤ n, which was later improved by Gao and He [34] by shaving off several log n-

factors in time/space bounds. See also Chapter 3 for the details of the improvements.

Kaplan et al. also showed how to solve batched colored 2D orthogonal range counting

in Õ(n
2ω
ω+1 ) = O(n1.4071) time by reducing it to sparse matrix multiplication. Colored

range counting has also been studied in high dimensions [40, 57, 38]. Finally, He

and Kazi [44] considered colored path counting in trees and proved a conditional

lower bound which is also based on Boolean matrix multiplication. They designed an

O(n + n2

t2
)-word structure that answers queries in O(t lg lgC) time for any t ∈ [1, n],

and it can be constructed in O(n
2

t
lg lgC) time. Hence it implies an O(n3/2 lg lgC)-

time solution to batched colored path counting.

Since Krizanc et al. [58] proposed range and path mode query problems, a long

series of papers have been published on these and related problems [58, 10, 11, 26, 69,

68, 39, 53]. The best linear-space solutions include the structure of Chan et al. [10]

that answers range mode queries in arrays in O(
√︁
n/w) time and the structure of

Durocher et al. [23] that answers path mode queries in trees in O(
√︁
n/w lg lg n) time.

Chan et al. [10] also studied dynamic range mode queries in arrays, and their solution

was later improved by El-Zein et al. [26], whose linear-space structure supports both

queries and updates in O(n2/3) time. It is worth mentioning that all the results

summarized in this paragraph use purely combinatorial approaches. They match the

conditional lower bounds [10, 11, 53] within polylogarithmic factors.

Recently, more efficient solutions to the batched range mode problem in arrays [68,
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69, 39] have been found. Williams and Xu [69] reduced this problem to the min-plus

product of a pair of matrices. The second matrix has the property that the entries at

each row are non-decreasing, which allows designing a truly subcubic time algorithm

for the min-plus product of two n × n matrices. With it, they can solve batched

range mode in O(n1.4854) time. Later, the query time was improved by Gu et al. [39]

to O(n1.4805). Sandlund and Xu [68] broke the O(n2/3) per-operation time barrier

for dynamic range mode in arrays; they reduced the problem to the min-plus-query-

witness problem, and achieved a dynamic data structure that supports both queries

and updates in O(n0.655994) time. Later, Gu et al. [39] further improved the time for

each operation to O(n0.6524).

4.1.2 Our Contributions

In this section, we summarize our results and give a brief overview of our methods.

Our Results. We have achieved the following results:

• an Õ(n
2ω
ω+1 ) = O(n1.4071)-time algorithm for batched colored path counting in

trees, improving the previous best approach which solves this problem in Õ(n1.5)

time [44];

• an Õ(n
24+2ω
17+ω ) = O(n1.483814)-time algorithm for batched path mode queries in

trees, improving the previous best result with Õ(n1.5) running time [23].

Overview of Our Approach. To achieve these results, we develop new algo-

rithmic ideas to address the challenges we encounter due to the tree topology. The

first challenge is how to apply a divide-and-conquer approach to batched path queries.

The solution of Williams and Xu [69] to batched range mode recursively divides the

input array into halves, and at each level of recursion, they build data structures

that answer queries whose ranges straddle the midpoint. This ensures that the set

of possible queries considered share subranges instead of being disjoint, facilitating

preprocessing. The solution of Kaplan et al. [57] to batched colored 2D orthogonal

range counting is based on a similar idea in 2D. To adapt to tree topology, we apply

the centroid decomposition of trees instead. Then, in each component obtained as a



51

result of the decomposition, we preprocess for queries whose paths cross the centroid.

This decomposition scheme helps us solve batched path queries.

When preprocessing for query paths that contain the centroid in a component,

we mark a subset of nodes and attempt to use either sparse matrix multiplication or

min-plus product as in previous work. However, more twists to previous approaches

are needed. In the solution of Kaplan et al. [57] to batched colored 2D orthogonal

counting, the matrices that they need to multiply during preprocessing are already

sparse. This is however not the case in our solution to batched colored path counting.

To resolve this, we use the properties of our node marking scheme to carefully reduce

the problem of multiplying these matrices to the multiplication of two different but

related matrices that are sparse. There is a similar challenge for batched path mode.

Previous solutions to batched range mode in [68, 39] reduce the preprocessing for each

set of query ranges to the min-plus-query-witness problem over two matrices of which

the second matrix is monotone, i.e., entries in the same row are non-decreasing. This

allows applying strategies such as dividing each entry by a carefully chosen integer

and rounding down the result to decrease the total number of different entries in the

matrix. Note that this measure, i.e., the total number of different entries, plays an

important role in the fast three-phase algorithm presented by Gu et al. [39]. Inspired

by previous work [68, 39], we find a reduction from the preprocessing for each set

of query paths to the min-plus-query-witness problem as well. However, due to the

tree topology, the second matrix in our case is not monotone, so this way of applying

integer division does not apply. To overcome this difficulty, we propose a two-level

marking scheme. By applying it, we manage to create a related matrix in which

the total number of different entries between consecutive columns can be smaller by

a polynomial factor, comparing to the original matrix generated directly from the

tree using the one-level marking scheme, so that we are able to adopt the fast three-

phase algorithm presented by Gu et al. [39] mentioned earlier and achieve the fast

preprocessing time.

4.2 Preliminaries

This section introduces the previous results used in this chapter, including basic path

queries, tree node sampling technique and sparse rectangular matrix multiplication.
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4.2.1 Counting Colors for All Root-to-node Paths

Lemma 3 in Section 2.4.2 shows a data structure that supports each colored path

emptiness queries in O(lg lgC) time. We can further use it to compute {|C(Px,⊥)| :
x ∈ T )}, i.e., the numbers of distinct colors on all root-to-node paths. To do this, per-

form a preorder traversal of T , and each time we visit a node x, we compute |C(Px,⊥)|
as follows: If x is the root, then |C(Px,⊥)| is 1. Otherwise, locate x′ = parent(x), and

answer a colored path emptiness query to find out whether c(x) appears in Px′,⊥. If

it does, set |C(Px,⊥)| = |C(Px′,⊥)|; otherwise, |C(Px,⊥)| = |C(Px′,⊥)| + 1. Overall, n

emptiness queries are called. Hence, this process uses O(n lg lgC) time.

Lemma 12 Let T be a colored ordinal tree on n nodes with each node assigned a

color drawn from [C], where C ≤ n. The numbers of distinct colors on all root-to-

node paths on T can be computed in overall O(n lg lgC) time using O(n) words of

working space.

4.2.2 Node Sampling

In our solutions, we use the following lemma based on the pigeonhole principle to

select a subset of tree nodes and precompute information for them.

Lemma 13 ([50]) Let T be a tree on n nodes. Given an integer t ∈ [1, n], an integer

ℓ ∈ [0, t) can be found in O(n) time such that, if one marks nodes at every t levels of

T starting from level ℓ, at most n/t nodes will be marked.

Throughout this chapter, we call the nodes selected by the method of Lemma 13

marked nodes, and we refer to the i-th marked node visited in a preorder traversal as

the i-th marked node for short, where i starts from 0, and this node is denoted by xi.

4.2.3 Rectangular Matrix Multiplication

Matrix multiplication is one of the most important problems in theoretical computer

science. It can be defined as follows: Given an m× n matrix A and an n× p matrix

B, the product of A and B, denoted by AB, is an m × p matrix in which entry

(AB)i,j =
∑︁n−1

k=0 Ai,k × Bk,j for each i ∈ [m] and j ∈ [p]. Throughout this chapter,

the row or column indexes of a matrix always start from 0.
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Let β ≥ 1 be a constant. Following [39], we use ω(1, β, 1) to denote the minimum

value such that the product of an n×nβ matrix and an nβ×n matrix can be computed

in O(nω(1,β,1)+λ) time for any small constant λ > 0. Occasionally, we write down in

this chapter ω to represent ω(1, 1, 1) for short. The best bounds of ω(1, β, 1) to date

for different β are given by Le Gall and Urrutia [32], e.g., ω(1, 2, 1) ∈ [2, 3.251640),

and the current best bound on ω is [2, 2.37286), given by Alman and Williams [1].

All bounds mentioned above apply to general matrices. In this chapter, we are

interested in sparse matrices in which the numbers of non-zero entries are bounded.

Kaplan et al. [57] design a fast algorithm for sparse matrix multiplication. Their

result is shown as follows:

Lemma 14 ([57, Theorem 2.5]) Let A be an m× n matrix having at most t non-

zero entries, where t ≥ m
ω+1
2 . Then, given the list of non-zero entries of A as the

input without storing A verbatim, the product of A and the transpose of A can be

computed in O(tm
ω−1
2 ) time.

4.2.4 Min-Plus Product and Min-Plus-Query-Witness Problem

Given an m× n matrix A and an n× p matrix B, the min-plus product of A and B,

denoted by A ⋆ B, is an m× p matrix in which entry (A ⋆ B)i,j = mink{Ai,k +Bk,j}.
Following [68], we define Min-Plus-Query-Witness problem as Problem 1.

Problem 1 (Min-Plus-Query-Witness problem [68]) Build a data structure upon a

pair of input matrices A and B such that given two integers i and j as a query, an

index k∗ with Ai,k∗ +Bk∗,j = mink{Ai,k +Bk,j} can be found efficiently.

The following result that solves the min-plus-query-witness query problem when

the entries of the first matrix are bounded will be used in our solution.

Lemma 15 [68, Lemma 9] Let β ≥ 1 be a constant and let A be an m × mβ in-

teger matrix, in which each entry is drawn from {−M, · · · ,M} ∪ {∞} for some

M ≥ 1; let B be an mβ × m matrix, in which each entry is a number encoded by

polylog m bits. Given matrices A and B as the input, there is a data structure of

Õ(Mm2+β−σ+m1+2β−σ) words of space that can be constructed in Õ(Mmω(1,β,1)+β−σ)

time and support finding an index k∗ such that Ai,k∗ + Bk∗,j = mink{Ai,k + Bk,j} in

Õ(mσ) time, where σ denotes any constant such that 0 ≤ σ ≤ β.
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4.3 Batched Colored Path Counting

We first show, in Section 4.3.1, a data structure to answer a restricted version of

colored path counting which requires the query path to contain the root, and we

defer the analysis of its preprocessing time to Section 4.3.2, in which we present a

reduction from colored path counting to sparse matrix multiplication. Finally, in

Section 4.3.3, we generalize this solution to be workable for arbitrary paths, which

yields a new result for batched colored path counting.

4.3.1 Color Counting over Paths Containing the Root

We represent the tree T using the data structure of Lemma 2. As discussed in

Section 2.4.2, this structure supports colored path emptiness. Then, for an integer

parameter 0 < X ≤ n to be chosen later, we select at most n/X nodes of T using the

method of Lemma 13 and mark them. This means we mark nodes at every X levels

of T , starting from some level ℓ ∈ [0, X − 1] determined by the method of Lemma 13.

In addition, we mark the root node as well and denote it by x0. The number, m, of

nodes that we mark satisfies m ≤ n/X + 1. Recall that for each i ∈ [m], xi denotes

the i-th marked node visited in a preorder traversal as described in Section 4.2.2. For

each marked node x, we precompute r(x) which is the rank of x among marked nodes

defined this way, where r(x) ∈ [m], as well as the value |C(Px,⊥)|. Furthermore, each

node in the tree stores a flag indicating whether it is marked, as well as a pointer to

the lowest marked proper ancestor. See Figure 4.1 for an example.

Next, we construct an m × m matrix M . For every pair of integers i and j in

[0,m − 1], Mi,j stores |C(Pxi,⊥) ∩ C(Pxj ,⊥)|, i.e., the number of distinct colors that

appear in both the path between the i-marked node and the root and the path between

j-th marked node and the root. As shown in Figure 4.1, Path Px′,⊥ and Path Py′,⊥

together share a single common color, which is color 1; therefore, entry M1,3 is set to

be 1. It is worth mentioning that our query algorithm to be described later only uses

entries of M that correspond to two marked nodes whose lowest common ancestor

is the root. The other entries are never used, but we precompute them regardless.

Indeed, both paths Pz′,⊥ and Py′,⊥ contain colors, 1, 3, and 5, and thus entry M3,3 is

set to be 3; however, since LCA(z′, y′) is different from ⊥, entry M3,3 will never be
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Figure 4.1: An example of marking nodes using the method of Lemma 13 and its
corresponding matrix M . Apart from the root, the other marked nodes are at levels
ℓ+X×i and represented by squares, where ℓ and X are set to be 2 and 3, respectively.
Each node is labeled by an integer representing the node color. Since the input tree
contains 6 different colors, the integers used for the colors are drawn from [6], i.e.,
{0, 1, 2, 3, 4, 5}. The query path is Px,y, through the root of the tree. And nodes
labeled by x′ and y′ are the lowest marked proper ancestors of x and y, respectively.

used in our algorithm.

Overall, our data structures use O(n+ ( n
X
)2) words.

To describe the query algorithm, let Px,y denote a query path containing the root.

Since ⊥∈ Px,y, we always have LCA(x, y) =⊥. W.l.o.g., we assume that neither x

nor y is the root node. Let x′ and y′ denote the lowest marked ancestors of x and

y, respectively, and we divide the query path Px,y into three disjoint subpaths: P′
x,x′ ,

Px′,y′ and P′
y,y′ . Following the inclusion-exclusion principle, we have that |C(Px′,y′)| =

|C(Px′,⊥)| + |C(P⊥,y′)| −Mr(x′),r(y′). Since the three terms on the right-hand side of

this formula have all been precomputed, |C(Px′,y′)| can be computed in constant time.

Next, we count the number of distinct colors that appear in P′
x,x′ but not in Px′,y′ .

This can be done by iterating through each node z in P′
x,x′ in the direction towards x

and check whether c(z) appears in Pparent(z),y′ by performing a path emptiness query.

The number of distinct colors that are in P′
y,y′ but not in Px,y′ can be counted in a

similar way. Adding these two counts to |C(Px′,y′)| yields the answer. Since x (resp.

y) and x′ (resp. y′) are at most X − 1 levels apart, the query time is O(X lg lgC).

This query algorithm is adapted from an algorithm of He and Kazi [44] for arbitrary

query paths, though we use a different matrix. As a result, we achieve Lemma 16

that supports queries over any path that contains the root.

Lemma 16 Let 0 < X ≤ n be an arbitrary integer. Given that matrixM is available,

in which Mr(x′),r(y′) stores |C(Px′,⊥)∩C(Py′,⊥)| for each pair of O(n/X) marked nodes
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x′ and y′ selected by the method of Lemma 13, an additional O(n)-word space data

structure can be constructed in O(n lg lgC) time to support finding in O(X lg lgC)

time |C(Px,⊥) ∩ C(Py,⊥)| for any pair of nodes x and y.

Proof. To see the preprocessing, apart from the matrix M , our data structure

consists of three components:

i) an O(n)-word data structure for colored path emptiness queries, which can

be built in O(n) time, applying Lemma 3,

ii) the numbers of distinct colors on all root-to-node paths, which can be com-

puted in O(n lg lgC) time, applying Lemma 12 and

iii) the O(n/X) marked nodes found in O(n) time, applying the method of

Lemma 13.

All these data structure components, other than matrix M , can be constructed in

overall O(n lg lgC) time. Both the space cost of the data structure and its query

algorithm have been given, so Lemma 16 follows.

4.3.2 Faster Preprocessing via Sparse Matrix Multiplication

To compute matrixM , one way is to define an m×C matrix A, in which entry Ai,α is

set to 1 if color α ∈ C(Pxi,⊥), and it is set to 0 otherwise. Then, we have M = AAT ,

where AT denotes the transpose of A. Note that matrix A could have as many as

Ω( n
X
× C) non-zero entries, where C can be as large as n. In the example shown in

Figure 4.2, more than half of entries in matrix A are non-zero. As a result, computing

M directly by multiplying A and AT can be costly.

Matrix A might store more non-zero entries than necessary: Given any pair of

marked nodes a and b such that b is the lowest marked proper ancestor of a, any color

α that appears in C(Pb,⊥) appears in C(Pa,⊥) as well, so α is recorded multiple times

in A. Intuitively, if we only record colors in C(P′
a,b) in the matrix row corresponding

to node a, then the number of non-zero entries in that row is at most X, and if

each row stores no more than X non-zero entries, the new matrix would have O(n)

non-zero entries overall, as only m rows exist, where m ≤ n/X + 1. However, this
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Figure 4.2: An example of computing matrixM using matrix A and AT . The columns
of matrix A (or the rows of matrix AT ) correspond to different node colors, and each
different color is encoded by a distinct integer. Note that in this specific example,
more than half of the entries in matrix A are non-zero.

leads to a new problem: We cannot compute |C(Pa,⊥)| by simply adding up |C(Pb,⊥)|
and |C(P′

a,b)|, as C(Pb,⊥) ∩ C(P′
a,b) might be non-empty. Instead, we propose a new

definition, Ĉ(a), such that Ĉ(a) = C(P′
a,b)\C(Pb,⊥). For example, as shown in Figure

4.1, the lowest marked proper ancestor of marked node x2 is x′, and there are two

colors that appear in P′
x2,x′ but not appear in Px′,⊥, which are orange (encoded by 3)

and red (encoded by 5). The new definition brings us two properties, i.e., |Ĉ(a)| ≤ X

and |C(Pa,⊥)∩C(Pc,⊥)| = |C(Pb,⊥)∩C(Pc,⊥)|+ |Ĉ(a)∩C(Pc,⊥)|, for any node c, and

both of them play an important role in our faster preprocessing method. To achieve

faster preprocessing time, we use the computation of two related but different m×m

matrices, M̂ and M ′, as stepping stones, whose definitions will be given later. Due

to the first property, matrix M̂ can be computed more efficiently using sparse matrix

multiplication; due to the second property, turning M̂ into M ′, as well as M ′ into M ,

only requires processing m × m entries in the matrices, and thus the running time

can be bounded by O(n+m2), which could be far less than O(m · C).

Now we are ready to present the faster preprocessing method. We define M̂

as an m ×m matrix, in which for each pair of integers i, j ∈ [0,m − 1], M̂ i,j stores

|Ĉ(xi)∩Ĉ(xj)|. For example, from Figure 4.1, we know that Ĉ(x′) = {blue:2, pink:4}
and Ĉ(y′) = {orange:3, red:5}, and the intersection of both color sets is empty. Hence,

the entry M̂1,3 corresponding to the pair of nodes x′ and y′ is set to be 0. To compute
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Â

0

0

0

1

0

0

0

0

0 1

1

0

0

1

1

1

0

0 0 0 0

0

0

0

0

1

2

3

4

×

=

0 0 1 0 1 0

0

0

0

0

1

0

1

0

0

0

0

0

0 1 2 3 4 5

0

1

2

3

4

5

Figure 4.3: An example of matrices M̂ and Â. In matrix Â, each row contains at
most 2 non-zero entries, less than X. As a result, there are O(n) non-zero entries in
matrix Â.

M̂ i,j, we define an m×C matrix Â, and for each integer i ∈ [0,m− 1] and each color

α ∈ [0, C − 1], Âi,α is set to be 1 if α ∈ Ĉ(xi) and 0 otherwise. Then M̂ = ÂÂ
T
. See

Figure 4.3 for an example. Each row of Â indicates whether each color appears in

the set Ĉ(a) for some marked node a and each row has at most X non-zero entries.

Since Â has m rows and m ≤ n/X + 1, overall Â has at most n +X ≤ 2n non-zero

entries only.

To compute the non-zero entries in Â, initialize a bit vector V of C 0 bits. We

then perform a preorder traversal of T , and for each marked node x encountered, we

compute the non-zero entries in the r(x)-th row by iterating over the ancestors of x

upward starting from x until we reach the lowest marked proper ancestor, y, of x.

Before reaching y, for each color c encountered, if V [c] = 0, we set V [c] = 1. During

this process, we also chain the 1 bits in V using a doubly linked list L. Upon reaching

y, L and the positions of the corresponding 1 bits in V give us the non-zero entries

in the r(x)-th row of A. We then iterate through L to set the corresponding entries

of V back to 0 and deallocate L before we continue the traversal of T to locate the

next marked node. Since x and y are at most X levels apart, L has at most X items

at all times, and hence the non-zero entries at each row of A can be located in O(X)

time. Therefore, across all m rows, the non-zero entries of A can be reported in O(n)

time. With these non-zero entries as input, we can apply Lemma 14 to compute M̂

in O(n(ω+1)/2/X(ω−1)/2) time for any X ∈ [n(ω−1)/(ω+1), n].
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Figure 4.4: Illustrating the construction of matrix M ′ provided that matrix M̂ is
available as shown in Figure 4.3. In the figure, node y represents the lowest marked
proper ancestor of node xj, and we use M ′

j to represent the j-th column of matrix
M ′. The figure shows that Matrix M ′ is constructed from the 0-th column to the
(m− 1)-st column.

The other m × m matrix that is used to help us compute M is called M ′. For

each pair of integers i, j ∈ [0,m−1], entryM ′
i,j stores |Ĉ(xi)∩C(Pxj ,⊥)|. To compute

M ′, we perform a preorder traversal of T . Each time we visit a marked node xj,

we compute the j-th column of M ′ as follows: If xj =⊥, then j = 0 and, for each

i ∈ [0,m − 1], we set entry M ′
i,0 to be 0, since c(⊥) /∈ Ĉ(xi). If xj is not the

root, we locate the lowest marked proper ancestor, y, of xj. Since y is visited before

xj, M
′
i,r(y) has already been computed, and we set M ′

i,j = M ′
i,r(y) + M̂ i,j. To see the

correctness, observe thatM ′
i,j = |Ĉ(xi)∩C(Pxj ,⊥)| = |Ĉ(xi)∩(C(Py,⊥)∪Ĉ(xj))|; since

C(Py,⊥)∩Ĉ(xj) = ∅, this is equal to |Ĉ(xi)∩C(Py,⊥)|+|Ĉ(xi)∩Ĉ(xj)| =M ′
i,r(y)+M̂ i,j.

This way we can compute M ′ in O(n+ ( n
X
)2) time provided that M̂ is available. See

Figure 4.4 for an example of constructing matrix M ′.

After computing M̂ and M ′, we can compute M by performing another preorder

traversal of T. Each time we visit a marked node xi, we compute the i-th row of M

as follows: If xi =⊥, then Mi,j = 1 for any j ∈ [m]. Otherwise, we locate the lowest

marked proper ancestor, y, of xi. Since y is visited before xi, Mr(y),j has already

been computed, and we setMi,j =Mr(y),j+M
′
i,j. To see the correctness, observe that

Mi,j = |C(Pxi,⊥)∩C(Pxj ,⊥)| = |(C(Py,⊥)∪Ĉ(xi))∩C(Pxj ,⊥)|; since C(Py,⊥)∩Ĉ(xi) =
∅, this is equal to |C(Py,⊥) ∩ C(Pxj ,⊥)|+ |Ĉ(xi) ∩ C(Pxj ,⊥)| = Mr(y),j +M ′

i,j. In this
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Figure 4.5: Illustrating the construction of matrix M provided that matrix M ′ is
available as shown in Figure 4.4. In the figure, node y represents the lowest marked
proper ancestor of node xj, and we use Mi to represent the i-th row of matrix M .
The figure shows that Matrix M is constructed from the 0-th row to the (m − 1)-st
row. After all, one can verify that the matrix M computed in this new method is
exactly the same as the one shown in Figure 4.2.

way, we can compute M in O(n+( n
X
)2) time after computing M̂ and M ′. See Figure

4.5 for an example. The total preprocessing time is hence O(n lg lgC+( n
X
)2+ n(ω+1)/2

X(ω−1)/2 )

for any integer X ∈ [n
ω−1
ω+1 , n]. Our result can be summarized as Lemma 17.

Lemma 17 Let X ∈ [n
ω−1
ω+1 , n] be an arbitrary integer. The matrix M , in which

Mr(x′),r(y′) stores |C(Px′,⊥)∩C(Py′,⊥)| for each pair of O(n/X) marked nodes x′ and y′

selected by the method of Lemma 13, can be constructed in O(n lg lgC+( n
X
)2+ n(ω+1)/2

X(ω−1)/2 )

time.

4.3.3 Color Counting on an Arbitrary Path

We now generalize the structure in the previous section to support queries over arbi-

trary paths. Our strategy is to decompose T using centroid decomposition.

At level 0 of the recursion, the given tree T is a connected component by itself

and we call it the level-0 component. We find a centroid, u, of T , and define a new

rooted tree T u by designating u as the root of T , reorienting edges when necessary.

Then we build the query structure in Section 4.3.1 over T u. Afterwards, we remove

u from T , and build our data structure recursively over each connected component

that has more than X nodes. In general, at the i-th level of the recursion, we have a
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Figure 4.6: Illustrating the recursive data structure using the centroid decomposition.
The components in different recursive levels are in different colors. And the centroid
in each component that contains more than one node is highlighted in gray color.
Each leaf component represents a base component, in which there are at most X
nodes, where X is set to be 3 in this particular example.

set of connected components called level-i components obtained by removing from T

the centroids computed in previous levels of the recursion. For each component, we

find its centroid and designate the centroid as the root of this component to build the

query structure of Section 4.3.1. One minor detail is that, before building the query

structure over a component of size n′, we need to ensure that colors are encoded as

nonnegative integers less than n′. Thus, when n′ ≤ C, we sort the colors that appear

in this component using integer sorting in O(n′ lg lg n′) = O(n′ lg lgC) time [43] and

re-encode these colors using their ranks. Then we remove the centroid of each level-i

component to split it into a set of level-(i + 1) components and recurse. When a

component has at most X nodes, we no longer apply this recursive procedure to it,

and we call it a base component. Thus, we have O(lg(n/X)) recursion levels. See

Figure 4.6 for an example of the recursive data structure.

In addition, for each node x ∈ T , we store a list of O(lg(n/X)) pointers, and

the i-th pointer maps x to its copy in a level-i component; this pointer is null if

x is removed as a centroid node found in a previous level. Furthermore, we build

a weighted tree T ′ by assigning weights to the nodes of T as follows: If a node x is

chosen as the centroid node of a level-i component, its weight is i. If x is never chosen
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Figure 4.7: An example of the weighted tree T ′.

as a centroid, then its weight is ∞. See Figure 4.7 for an example of T ′. Then we

construct the linear-space data structure of Chan et al. [12, Theorem 1.1] to support

path minimum queries over T ′ in constant time; a path minimum query returns the

node with minimum weight in a given query path.

Since we have O(lg(n/X)) recursion levels, both the space costs and construc-

tion time of this new structure is a factor of O(lg(n/X)) more than those of the

structure in Section 4.3.1. Obviously, the space cost is dominated by the storage

of the query structures in Section 4.3.1 constructed over the components at all lev-

els. To bound this cost, consider level i of the recursion. Let ci denote the num-

ber of level-i components. We order these components arbitrarily, and let nj de-

note the number of nodes in the j-th level-i component. Then
∑︁ci

j=1 nj ≤ n. The

space cost of the query structures constructed over all level-i components is then

O(
∑︁ci

j=1(nj +
n2
j

X2 )) ≤ O(n+(
∑︁ci

j=1 n
2
j)/X

2) ≤ O(n+(
∑︁ci

j=1 nj · n)/X2) ≤ O(n+ n2

X2 ).

Summing up over all O(lg n
X
), the total space cost is O((lg n

X
)(n+ n2

X2 )) words.

Similar to the space cost analysis, it suffices to show that the total time required

to construct the query structures in Section 4.3.1 over all the components at any

level of recursion is O(n lg lgC + ( n
X
)2 + n(ω+1)/2

X(ω−1)/2 ). To show this, we again use ci to

represent the number of level-i components, and nj denotes the number of nodes in

the j-th level-i component. Then the time needed to construct the query structures

over these components is O(
∑︁ci

j=1(nj lg lgC+(
nj

X
)2+

n
(ω+1)/2
j

X(ω−1)/2 )) ≤ O(
∑︁ci

j=1(nj lg lgC+
nj ·n
X2 +

nj ·n(ω−1)/2

X(ω−1)/2 )) = O(n lg lgC + ( n
X
)2 + n(ω+1)/2

X(ω−1)/2 ). Note that the above calculation

already includes the time needed to re-encode colors when a component has fewer

than C nodes.

To answer a query with Px,y as the query path, query T ′ to find the smallest
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Figure 4.8: An example of identifying the component in the recursive data structure
through the path minimum queries. The query path in T ′ is as shown in the left
figure, on which the minimum weight is 1. Therefore, the query proceeds over a
level-1 component as shown in the right figure. In this component, the query path
contains its centroid.

weight, s, assigned to nodes in Px,y. If s = ∞, then x and y are in the same base

component, and thus Px,y has at most X vertices. We can traverse Px,y in T to

count the number of distinct colors; each time we visit a new node, we perform a

path emptiness query to determine whether we have already encountered this color.

This way we can answer the query in O(X lg lgC) time. Otherwise, observe that no

nodes in Px,y are chosen as centroids for recursion level s − 1 or smaller. Therefore,

x and y must reside in a same level-s component S, and Px,y contains the centroid

of S. Since this centroid is designated as the root of S before building the query

structure of Section 4.3.1 over S, we can use this query structure to answer the query

in O(X lg lgC) time. See Figure 4.8 for an example. Thus we have:

Lemma 18 Let T be a colored ordinal tree on n nodes with each node assigned a color

from {0, 1, . . . , C−1}, where C ≤ n, and let X be an arbitrary integer in [n
ω−1
ω+1 , n]. A

data structure of O((lg n
X
)(n+ n2

X2 )) words can be constructed in O((lg n
X
)(n lg lgC +

( n
X
)2 + n(ω+1)/2

X(ω−1)/2 )) time to support colored path counting query in O(X lg lgC) time.

Proof. Combining Lemmas 16 and 17, we achieve an O(n+( n
X
)2)-word data struc-

ture that only supports queries for the paths containing the root. The construction
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time is bounded by O((n lg lgC + ( n
X
)2 + n(ω+1)/2

X(ω−1)/2 )). To generalize this solution to

queries over arbitrary paths, we apply the centroid decomposition technique as de-

scribed in this section. As a result, both the bounds of the space cost and the

preprocessing time are increased by an O(lg n
X
) factor, while the query time bound is

maintained.

We finally solve the batched colored path counting problem by first building the

query structure of Lemma 18 and then using it to answer n queries. Theorem 4

presents our result:

Theorem 4 A batch of n colored path counting queries over a colored tree T on n

nodes can be answered in Õ(n
2ω
ω+1 ) = O(n1.4071) time in total.

Proof. Recall that the overall running time of batched colored path counting queries

includes two parts: the overall query time of n queries, bounded by O(n ·X lg lgC),

and the overall preprocessing time, bounded by O((lg n
X
)(n lg lgC+( n

X
)2+ n(ω+1)/2

X(ω−1)/2 )).

By setting the overall query time to be equal to the preprocessing time, we obtain

the proper value for X. The details can be found as follows:

Given that X ≥ n
ω−1
ω+1 and ω ≥ 2, we notice that

(
n

X
)2 ≤ n2(ω+1

ω+1
−ω−1

ω+1
)

= n
4

ω+1

≤ n
2ω
ω+1

= n
(ω+1)+(ω−1)

ω+1

= n · n
(ω−1)
ω+1

≤ n ·X.

And thus, the term ( n
X
)2 in the preprocessing time bound is absorbed by the relatively

bigger term n ·X in the query time bound, as long as X ≥ n
ω−1
ω+1 . Observe that the

bound of the overall running time is a polynomial of n. In the rest of the analysis,

we ignore for simplicity the polylog factors that appear in both the query time and

the preprocessing time. By setting the term n · X to be equal to the term n(ω+1)/2

X(ω−1)/2 ,
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we have

n ·X =
n(ω+1)/2

X(ω−1)/2

X(2+ω−1)/2 = n(ω+1−2)/2

X(1+ω)/2 = n(ω−1)/2

X = n
ω−1
ω+1 .

Therefore, by settingX to be ⌈n
ω−1
ω+1 ⌉, the overall running time of batched path colored

counting is bounded by Õ(n · n
ω−1
ω+1 ) = Õ(n

2ω
ω+1 ) = O(n1.4071) .

4.4 Batched Path Mode Queries

To solve batched path mode queries over tree T , let t1 and t2 be two constant param-

eters, such that 0 ≤ t2 ≤ t1 ≤ 1. We categorize node colors into two different types,

i.e., infrequent colors and frequent colors. A color α is an infrequent color if it is

assigned to at most n1−t1 nodes in T ; otherwise, we call it a frequent color. Thereby,

a mode of a query path could be either a frequent or an infrequent color.

In Section 4.4.1, we present a data structure for queries over infrequent colors. To

achieve that, we define a new problem in trees and name it path containment. Given

a set of paths as the input and an arbitrary path as the query, the path containment

problem is to find out whether any input path is contained by the query path. We will

see in Section 4.4.1 two reductions, from finding a most frequent color in the multiset

of infrequent colors assigned to the nodes in a query path to the path containment

problem and then from the latter to a classic computational geometry problem, five

dimensional dominance range searching.

To handle frequent colors, we introduce a two-level marking scheme in Section

4.4.2, via which we select O(n1−t2) nodes from the tree as marked nodes.

Let x′ and y′ be any pair of marked nodes. We prove that finding a most frequent

color in the multiset of frequent colors assigned to the nodes in Px′,⊥ ∪Py′,⊥ can be

reduced to min-plus products. In terms of computing the min-plus products, we

present a special structure shared by the matrices generated from colored trees, due

to which we manage to adjust the three-phase algorithm presented by Gu et al. [39]
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and achieve an efficient preprocessing time bound. All these details can be found in

Section 4.4.3.

In Section 4.4.4, we assemble all components mentioned above and solve path

mode queries for arbitrary paths.

4.4.1 Queries for Infrequent Colors

In this section, we first introduce and solve the path containment problem in trees.

Then we use the solution to this problem as a black box to find one of the most

frequent elements in the multiset of infrequent colors assigned to the nodes in the

query path.

In the path containment problem, we preprocess a set, S, of paths over an ordinal

tree T such that given a query path Ps,t, we can determine efficiently whether there

exists at least one path in S that is a subpath of Ps,t. To solve this problem, we give

a reduction from the path containment problem to five-dimensional dominance range

emptiness queries. In the latter problem, the dominance range with respect to a query

point (a, b, c, d, e) is defined to be (−∞, a]× (−∞, b]× (−∞, c]× (−∞, d]× (−∞, e].

Our result is summarized as Lemma 19.

Lemma 19 Let T denote an ordinal tree and S be a set of |S| paths in T . If T is rep-

resented by the data structure of Lemma 2, then a data structure of O(|S| lg4 |S|) extra
words of space can be constructed in O(|S| lg5 |S|) time to answer a path containment

query over S in O(lg4 |S|) time.

Proof. Let Ps,t denote the query path and Pu,v denote any path in S. Recall that

each node is identified by its preorder rank. W.l.o.g., assume that u ≤ v and s ≤ t.

Observe that Pu,v ⊆ Ps,t iff both nodes u and v are in Ps,t. To determine whether

both nodes u and v are in Ps,t, we can check the ancestor-descendant relationships

among nodes u, v, LCA(u, v), s, t and LCA(s, t). Especially, given a pair of nodes

x and y, node x is an ancestor of node y iff x ≤ y < x + |Tx|. Our strategy is to

map Pu,v to a point, (u,−u− |Tu|+ 1, v,−v − |Tv|+ 1,− depth(LCA(u, v))), in five-

dimensional space, so let S ′ denote the set containing all the points that the paths in

S are mapped to. Then, Pu,v ⊆ Ps,t holds in three different cases:
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Figure 4.9: Three different cases in which Pu,v ⊆ Ps,t. Note that Case 3 contains two
sub-cases.

Case 1: LCA(u, v) is neither u nor v, LCA(s, t) is neither s nor t, and Pu,v ⊆ Ps,t.

Observe that if u is an ancestor of s, v is an ancestor of t, and LCA(u, v) =

LCA(s, t), then Pu,v ⊆ Ps,t. See Figure 4.9(a) for an example. Given that u is an

ancestor of s and v is an ancestor of t, LCA(u, v) is a common ancestor of s and

t. If depth(LCA(u, v)) equals to depth(LCA(s, t)), then LCA(u, v) is the same

as LCA(s, t). The reason is that at a specific depth, the common ancestor of s

and t is unique. Hence, if u ≤ s, −u− |Tu|+1 ≤ −s, v ≤ t, −v− |Tv|+1 ≤ −t
and depth(LCA(u, v)) equals to depth(LCA(s, t)), then Pu,v ⊆ Ps,t. Finding out

whether Pu,v exits for the first case is equivalent to determining whether in S ′

there is at least one point dominated by point (s,−s, t,−t,− depth(LCA(s, t))).

A five-dimensional dominance range emptiness query is sufficient.

Case 2: Pu,v ⊆ PLCA(s,t),s. Observe that a path Pu,v exists such that Pu,v ⊆
PLCA(s,t),s iff u is an ancestor of s, v is an ancestor of s, and LCA(u, v) is

a descendant of LCA(s, t). See Figure 4.9(b) for an example. To find out

whether Pu,v exists, it is sufficient to perform a five-dimensional dominance

range emptiness query over S ′ using (s,−s, s,−s,− depth(LCA(s, t)) as the

query point.

Case 3: Pu,v ⊆ PLCA(s,t),t. Observe that a path Pu,v exists such that Pu,v ⊆
PLCA(s,t),t iff u is an ancestor of t, v is an ancestor of t, and LCA(u, v) is a

descendant of LCA(s, t). See Figures 4.9(c) and 4.9(d) for examples. This can

be determined by performing a five dimensional dominance range emptiness

query over S ′ with query point (t,−t, t,−t,− depth(LCA(s, t))).

Given a query path Ps,t, we map it into three query ranges shown in the three
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different cases mentioned earlier and perform 5D dominance range emptiness queries

to find out whether at least one of three query ranges contains at least a point. If

so, at least one path in S is contained in Ps,t; otherwise, no path in S is contained in

Ps,t.

Since T is represented by the data structure of Lemma 2, operations LCA, nbdesc

and depth can be supported in constant time. Therefore, a path from set S can be

mapped in constant time into a point in S ′, and the 5D dominance query range can

be computed in constant time as well. To answer a 5D dominance range emptiness

query over S ′, we construct a five-dimensional range tree [7, Section 5.4]. Since S ′

has |S| points, this data structure occupies O(|S| lg4 |S|) words of space, answers a

query in O(lg4 |S|) time, and can be built in O(|S| lg5 |S|) time. With it, a path

containment query can be answered in O(lg4 |S|) time.

The path containment problem described above can be regarded as a generalized

version of interval containment queries over intervals on a real line. As shown in [69,

Proof of Theorem 6.1], the latter problem can be used for finding a most frequent

element in the multi-set of infrequent colors within the sub-array. Similarly, we can

apply Lemma 19 to support queries over infrequent colors in trees.

Lemma 20 An O(n2−t1 lg4 n)-word structure can be constructed in O(n2−t1 lg5 n)

time such that given a query path Px,y, the most frequent element and its frequency

in the multiset of infrequent colors assigned to the nodes in Px,y can be computed in

O(n1−t1 lg4 n) time.

Proof. First, we represent T using the data structure of Lemma 2. Then, we

iterate through each infrequent color α′. For each pair of nodes, u and v, colored in

α′, such that u ≤ v, we create path Pu,v with assigned weight w, where w denotes the

number of nodes colored in α′ in Pu,v. We claim that in this way, the total number

of weighted paths to be created for all infrequent colors is at most n2−t1 . To see the

correctness of the claim, let Freq(α) denote the total number of tree nodes that are

colored in α. For any infrequent color α′, we have Freq(α′) ≤ n1−t1 ; hence, the total

number of paths created is at most
∑︁

α′

(︁
Freq(α′)

2

)︁
≤

∑︁
α′(Freq(α′) · n1−t1) ≤ n2−t1 ,

since
∑︁

α′ Freq(α′) ≤ n.
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We divide the weighted paths into n1−t1 groups, such that the paths that share the

same weight, w, are assigned to group w, for each 1 ≤ w ≤ n1−t1 . Then we construct

the data structure of Lemma 19 over the paths within each group. Since at most

n2−t1 paths are created, the overall space cost of the data structure for all groups is

O(n2−t1 lg4 n) words and constructing the data structure of Lemma 19 over O(n2−t1)

paths takes O(n2−t1 lg5 n) time.

Given a query path Px,y, the most frequent element (along with its frequency) in

the multiset of infrequent colors assigned to Px,y can be found as follows: Follow the

order from group n1−t1 to group 1 and perform a path containment query over paths

within each group until we find the first path, Pu,v, that is contained in Px,y. Finally,

return the color of the endpoints of Pu,v and the path weight (as its frequency). Since

there are n1−t1 groups and a path containment query for each group can be answered

in O(lg4 n) time, the overall query time is O(n1−t1 lg4 n).

In our solution to path mode queries, we divide in the preprocessing stage the color

set into two types, i.e., the set of infrequent colors and the set of frequent colors. A

mode of a path can be from either of both types. The data structure of Lemma 20

allows us to find a most frequent color in the multiset of the infrequent colors assigned

to the nodes in an arbitrary query path. We will see in Section 4.4.4 how the data

structure of Lemma 20 is being used in solving path mode queries.

4.4.2 Marking O(n1−t2) Nodes

To solve colored path counting, we apply the node-marking strategy following from

Lemma 13 once for each connected component. As a result, we select at most n′/X

nodes to be marked for a component with n′ nodes. As we have seen in Section 4.3.1,

this single-level marking scheme is sufficient for solving colored path counting. When

applying the same scheme in path mode queries, we found the matrix generated from

the marked nodes does not have the needed structure for faster computation of the

min-plus product. The detail of the structure will be explained later in Section 4.4.3.

Therefore, we introduce a two-level marking scheme as follows:

Let X be an integer parameter in [nt2 , n] to be determined later. We choose at

most n/X nodes of T using the method of Lemma 13, mark these nodes and the

root, and call them tier-1 marked nodes. Since the tier-1 marked nodes form a subset
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of levels of T , removing them splits T into a forest of subtrees. Then we use the

same lemma to mark nodes at every ⌈nt2⌉ levels of each subtree starting from some

level of the subtree, and these nodes are called tier-2 marked nodes. Since the total

number of nodes over all subtrees is less than n, there are O(n1−t2) tier-2 marked

nodes. We regard both tier-1 and tier-2 marked nodes as marked nodes, and there

are O(n/X + n1−t2) = O(n1−t2) marked nodes in total, as X ≥ nt2 . It follows that

a path that connects any non-root node to its lowest proper ancestor that is marked

contains no more than ⌈nt2⌉+ 1 nodes. As before, we refer to the i-th marked node,

xi, visited in a preorder traversal as the i-th marked node for short, starting from 0,

and r(xi) is the rank of the marked node xi, where r(xi) ∈ O(n1−t2).

4.4.3 Queries for Frequent Colors over Predefined Paths

We refer to a path that contains root⊥ and has a pair of marked nodes as its endpoints

as a predefined path. Given a predefined path Px′,y′ , we present in this section how

to find a most frequent element and its frequency in the multiset of frequent colors

assigned to nodes in Px′,y′ \{⊥} (or P′
x′,⊥ ∪P′

y′,⊥)
1. The techniques for computing

min-plus products are used in our solution.

Reducing Path Queries to Min-Plus-Query-Witness Problem

A frequent color appears more than n1−t1 times in T , so there are only O(nt1) distinct

frequent colors. Let µ denote the total number of marked nodes, and let κ denote

the total number of distinct frequent colors. Then µ = O(n1−t2) and κ = O(nt1). We

number the frequent colors incrementally starting from 0 in an arbitrary order, and

we refer to the frequent color numbered by k as color fk, where 0 ≤ k ≤ κ− 1. Next,

we construct a µ × κ matrix M . Corresponding to marked node xi and frequent

color fk, Mi,k stores the negation of the frequency of fk in path P′
xi,⊥. It follows

that the min-plus product of M and its transpose, denoted by M ⋆ MT , is a µ × µ

matrix, in which entry (M ⋆MT )i,j stores the negation of the maximum frequency of

a frequent color in P′
xi,⊥ ∪P′

xj ,⊥, provided ⊥∈ Pxi,xj . As before, some entries of this

matrix correspond to a pair of nodes whose lowest common ancestor is not the root

1For each color other than c(⊥), its frequencies in P′
x′,⊥ ∪P′

y′,⊥ and in Px′,y′ are exactly the
same, while later we consider c(⊥) separately.
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Figure 4.10: An example of finding maximum frequency of a frequent color in each
predefined path. The frequent colors, including 2, 3 and 4, each appear more than
5 times in the tree. The tier-1 marked nodes, represented by squares, are selected
by the method of Lemma 13, setting parameter t to be 5. Removing all the tier-1
nodes splits the tree into a forest of subtrees, and the tier-2 marked nodes, denoted
by triangles, are selected by the method of Lemma 13 to each subtree, setting t to be
3. The matricesM ,MT , andM⋆MT are defined as before. A mode of the predefined
path Px3,x7 is 4, whose frequency is 3, and entry (M ⋆MT )3,7 stores −3.

and are thus never used, but we compute these entries regardless. See Figure 4.10 for

an example. In this way, finding a most frequent element in the multiset of frequent

colors assigned to nodes in each predefined path is equivalent to solving Problem 1

using M and MT as input matrices. In other words, given k∗ as the answer for a

query (i, j), we know that color fk∗ appears at least as frequently as other frequent

colors in the predefined path P′
xi,⊥ ∪P′

xj ,⊥. Naively, computing the answers for all

pairs of (i, j) takes O(µ2κ) time. We describe a data structure solution, in which

both the preprocessing time and the overall running time for n queries are bounded

by o(µ2κ).

Solving Problem 1 with Three Preprocessing Steps

Henceforth, we use k∗ to denote an index such thatMi,k∗+M
T
k∗,j = mink{Mi,k+M

T
k,j}.

Gu et al. provided an efficient solution to Problem 1 when the second input matrix

is monotone, i.e., entries in the same row are non-decreasing. In our case, the second

matrix, MT , does not have such a property due to the tree topology. For example,
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matrix MT in Figure 4.10 is obviously not a monotone matrix.

The Total Difference of a Matrix. Our first step is to generalize their defi-

nition of total range over a monotone matrix to our notion of total difference, defined

over an arbitrary a× b matrix A as
∑︁b−1

j=1(
∑︁a−1

k=0JAk,j ̸= Ak,j−1K), in which the Iverson

notation JAk,j ̸= Ak,j−1K evaluates to 1 if Ak,j ̸= Ak,j−1 is true and 0 otherwise. We

will see that in our data structure solution, the total difference of MT decides the

preprocessing time. For now, we prove that the total difference of MT is bounded.

Lemma 21 The total difference of matrix MT is bounded by O(n).

Proof. Recall that we refer to the i-th node visited in a preorder traversal as the i-

th node for short, where i starts from 0. For each node x, we precompute r̂(x) which

is the rank of x among n nodes defined this way. We turn tree T into a directed

graph G by replacing each edge (u, v) of T with directed edges (u, v) and (v, u) and

construct an empty integer array E. Starting from the root node, for each node x

visited in Eulerian tour of G, append r̂(x) into E. Since G has 2(n − 1) edges, E

stores 2(n−1) entries in the end, and r̂(x) appears d times in E[0, 2n−3] if the degree

of x in T is d. Let F [0, n−1] denote an array such that F [i] stores the leftmost index

of integer i in E, and let xj denote the j-th marked node in a preorder traversal.

Observe that i) F [r̂(xj)]−F [r̂(xj−1)] equals to the number of nodes in the walk from

the marked node xj−1 (not included) to the marked node xj and ii) each node in

this walk contributes at most one value to
∑︁κ−1

k=0 |MT
k,j −MT

k,j−1|. Therefore, we have∑︁κ−1
k=0 |MT

k,j −MT
k,j−1| ≤ F [r̂(xj)]− F [r̂(xj−1)]. Hence,

∑︁µ−1
j=1

∑︁κ−1
k=0JM

T
k,j ̸=MT

k,j−1K ≤∑︁µ−1
j=1

∑︁κ−1
k=0 |MT

k,j −MT
k,j−1| ≤ F [r̂(xµ−1)] = O(n). This telescoping sum shows that

the total difference of matrix MT is always bounded by O(n).

To improve the preprocessing time to be o(µ2κ), the total difference of MT as

shown in Lemma 21 is still not small enough. Gu et al. decreased the total difference

of their second input matrix by simply dividing each matrix entry by a carefully

chosen integer and then rounding down each resulted quotient. However, the same

method would fail to decrease the total difference of MT in our case as dividing by

a nonzero integer won’t change equality;
∑︁κ−1

k=0JM
T
k,j ̸= MT

k,j−1K might be equal to
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Figure 4.11: Illustrating the proof of Lemma 21 with an example. On the left-hand
side, it shows the Euler Tour of a colored tree with 33 nodes. The tour starts with
the circle and ends with the cross, visiting 64 (= 2 × (33 − 1)) nodes in total. Each
node has an integer on it, representing its preorder rank. The arrays E[0, 63] and
F [0, 32] are presented in the right-hand side. Especially, the entries of array E are
in black color, and the entries of array F that correspond to the marked nodes are
in light color and highlighted by rectangles; namely, F [r̂(x0)] = 1, F [r̂(x1)] = 11,
F [r̂(x2)] = 33 and F [r̂(x3)] = 42.

∑︁κ−1
k=0J⌊

MT
k,j

c
⌋ ̸= ⌊M

T
k,j−1

c
⌋K for some integer c ̸= 0. So we design a new approach to

construct a matrix B̃ that has a smaller total difference.

Making the Total Difference Smaller. Henceforth, we define mparent1(v)

to be node v’s lowest proper ancestor that is tier-1 marked and mparent(v) to be

v’s lowest proper ancestor that is either tier-1 or tier-2 marked. For a tier-1 marked

node v̂1, let Rk(v̂1) denote the frequency of the frequent color fk in P′
v̂1,⊥, and for

a tier-2 marked node v̂2, let R
′
k(v̂2) denote the frequency of fk in P′

v̂2,mparent(v̂2)
and

Ψ(v̂2) denote the set of tier-2 marked nodes in P′
v̂2,mparent1(v̂2)

. We define parameter

W to be ⌊n(1−t2)θ⌋, where θ is a constant with 0 ≤ θ ≤ 1. With the above notation,

we construct matrix B̃ which has the same size as MT . For each pair (k, j), if

the j-th column of MT corresponds to a tier-1 marked node v̂1, then B̃k,j stores

⌊−Rk(v̂1)
W

⌋. Otherwise, this column must correspond to a tier-2 marked node v̂2; let v̂1

denote mparent1(v̂2) and we set B̃k,j = ⌊−Rk(v̂1)
W

⌋ +
∑︁

u∈ψ(v̂2)⌊
−R′

k(u)

W
⌋. Observe that
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MT
k,j = −Rk(v̂1) +

∑︁
u∈ψ(v̂2) (−R

′
k(u)). It follows that

B̃k,jW ≤MT
k,j ≤ B̃k,jW + (|ψ(v̂2)|+ 1)(W − 1). (4.1)

Furthermore, Lemma 22 shows that the total difference of B̃ is bounded.

Lemma 22 The total difference of B̃ is O( n
X
·nt1 + n

W
). Setting X to be ⌊Wnt1⌋, the

total difference of B̃ is O(n/W ).

Proof. Let v̂j be any marked node that corresponds to columnMT
j where j ≥ 1, and

let Diffj denote
∑︁κ−1

k=0JB̃k,j ̸= B̃k,j−1K. We prove that the total difference,
∑︁µ−1

j=1 Diffj,

is upper bounded by O( n
X
· nt1 + n

W
).

If v̂j is a tier-1 marked node, Diffj could be as large as κ = O(nt1), since matrix B̃

has κ rows and Diffj is no more than κ. All O(n/X) tier-1 marked nodes correspond to

O(n/X) columns in B̃, and these columns contribute a value of O(n/X)·κ = O( n
X
·nt1)

to the total difference of B̃. If v̂j is a not tier-1 marked node, then it must be a tier-2

marked node. Let ûj−1 denote the lowest ancestor2 of v̂j−1 that is a tier-1 marked

node. We consider two different cases: i) ûj−1 is different from mparent1(v̂j); and ii)

ûj−1 is the same as mparent1(v̂j).

We claim that the number of pairs of v̂j−1 and v̂j in the first case is bounded by

O(n/X). Since ûj−1 is different from mparent1(v̂j), ûj−1 must be in path P′
v̂j−1,ẑj

(not

including node ẑj), where ẑj denotes LCA(v̂j−1, v̂j). For each 1 ≤ j ≤ µ − 1, let S

denote the set of paths P′
v̂j−1,ẑj

such that v̂j is a tier-2 marked and ûj−1 is different

from mparent1(v̂j). Observe that each tier-1 marked node appears in at most one

path in S. Given that there are O(n/X) marked nodes, S stores at most O(n/X)

paths, so the claim has been proved. Although Diffj could be as large as κ, given the

limited number of pairs of v̂j−1 and v̂j in the first case, the total difference contributed

by the corresponding columns is bounded by O(n/X) · κ = O( n
X
· nt1).

If ûj−1 is the same as mparent1(v̂j), then both v̂j−1 and v̂j are in the subtree

rooted by ûj−1 (or mparent1(v̂j)). Consider the simplest case in which node v̂j−1

is mparent(v̂j). Following the strategy that is used to construct matrix B̃, for any

frequent color fk, entry B̃k,j−1 differs from B̃k,j iff color fk appears no less than W

times in P′
v̂j ,mparent(v̂j)

. Note that P′
v̂j ,mparent(v̂j)

contains at most ⌈nt2⌉ nodes following

2Note that ûj−1 could be the same as v̂j−1 in the case that v̂j−1 is a tier-1 marked node.
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from the method of Lemma 13; therefore, Diffj ≤ ⌈nt2⌉
W

. In general, if Pv̂j ,v̂j−1
\v̂j−1

contains ℓ marked nodes, then Diffj ≤ ℓ · ⌈n
t2⌉
W

. Although the value Diffj for a specific

j might vary according to the value of ℓ, which could be as large as κ, we aim at

bounding the sum of Diffj in Case-ii). We define S to be the set of paths Pv̂j−1,v̂j such

that ûj−1 is the same as mparent1(v̂j) and Tγ to be a tree extraction [48] from tree T of

the set of all marked nodes (including tier-1 and tier-2 marked nodes). With Eulerian

tour technique being applied to Tγ, similar to the proof of Lemma 21, one can prove

that all paths in S contains at most O(n/X + n1−t2) = O(n1−t2) marked nodes in

total; therefore, the sum of Diffj in Case-ii) is bounded by O(n1−t2) · ⌈n
t2⌉
W

= O(n/W ).

By summing up the total differences computed in each case above, we prove that

the total difference of B̃ is bounded by O( n
X
· nt1 + n

W
).

New Notations in Our Method. Gu et al. [39] solved Problem 1 with three

preprocessing steps. We generalize their solution by adjusting each step. After all,

our method is workable for matrices M and MT , where MT is even non-monotone

but has a bounded total difference. Before introducing the adjusted version of the

method by Gu et al., we introduce some notations used in this new method.

We define a matrix Ã, in which entry Ãi,k = ⌊Mi,k

W
⌋. Let’s compare the matrices

M and Ã as well as the matrices M and B̃.

Lemma 23 (i) Ãi,k ·W ≤ Mi,k; (ii) Mi,k ≤ WÃi,k +W − 1; (iii) B̃k,j ·W ≤ MT
k,j;

and (iv) MT
k,j ≤ W · B̃k,j + (W − 1) · (2 +W · n(t1−t2)).

Proof. Given that Ãi,k = ⌊Mi,k

W
⌋, statement (i) and statement (ii) immediately

follow, and statement (iii) holds following from Equation 4.1. Let v̂j be the marked

node that corresponds to column MT
j where j ≥ 1. As shown as Equation 4.1, if

P′
v̂j ,mparent1(v̂j)

contains ℓ marked nodes, then we haveMT
k,j ≤ B̃k,jW +(ℓ+1)(W −1).

By the method of Lemma 13, P′
v̂j ,mparent1(v̂j)

contains at most ⌈X/⌈nt2⌉⌉ nodes that

are tier-2 marked. Since X is set to ⌊Wnt1⌋, ℓ ≤ W ·n(t1−t2)+1; therefore, B̃k,j ·W ≤
MT

k,j ≤ W · B̃k,j + (W − 1) · (2 +W · n(t1−t2)).

Let matrix C ′˜ denote Ã ⋆ B̃. Following [39], we call a triple (i, k, j)

• almost relevant if 0 ≤ Ãi,k + B̃k,j − C ′˜
i,j ≤ (W−1)·(3+W ·n(t1−t2))

W
, and
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• weakly relevant if 0 ≤Mi,k +MT
k,j −W · C ′˜

i,j ≤ 2(W − 1) · (3 +W · n(t1−t2)).

It turns out that the set of almost relevant triples is a subset of the set of weakly

relevant triples.

Lemma 24 Every almost relevant triple is weakly relevant as well.

Proof. Following from statement (i) and statement (iii) of Lemma 23, we first prove

that Mi,k +MT
k,j −W · C ′˜

i,j is always no less than 0:

W · C ′˜
i,j ≤ W · Ãi,k +W · B̃k,j

≤Mi,k +MT
k,j.

It remains to show that if Ãi,k + B̃k,j −C ′˜
i,j ≤ (W−1)·(3+W ·n(t1−t2))

W
, then Mi,k +MT

k,j −
W ·C ′˜

i,j ≤ 2(W − 1) · (3 +W · n(t1−t2)). Following from statement (ii) and statement

(iv) of Lemma 23, one can deduce that

Mi,k +MT
k,j −WC ′˜

i,j ≤ (WÃi,k +W − 1)

+ (WB̃k,j + (W − 1)(2 +Wn(t1−t2)))−WC ′˜
i,j

= W (Ãi,k + B̃k,j − C ′˜
i,j) + 3(W − 1) + (W − 1)Wn(t1−t2)

≤ (W − 1)(3 +Wn(t1−t2)) + 3(W − 1) + (W − 1)Wn(t1−t2)

= 2(W − 1)(3 +Wn(t1−t2)).

Therefore, every almost relevant triple is weakly relevant as well.

Lemma 25 explains why we care about triples that are almost relevant.

Lemma 25 Ãi,k∗ + B̃k∗,j − C ′˜
i,j ≤ (W−1)(Wnt1−t2+3)

W
, where k∗ denotes an index such

that Mi,k∗ +MT
k∗,j = mink{Mi,k +MT

k,j}

Proof. Let k′ be the index such that Mi,k′ +MT
k′,j = mink∈K′{Mi,k +MT

k,j}, where
K ′ = {k : Ãi,k + B̃k,j − C ′˜

i,j >
(W−1)(Wnt1−t2+3)

W
}; let k′′ be the index such that

Mi,k′′ +MT
k′′,j = maxk∈K′′{Mi,k+MT

k,j}, where K ′′ = {k : Ãi,k+ B̃k,j −C ′˜
i,j ≤ 0}. We

claim that Mi,k′ +M
T
k′,j > Mi,k′′ +M

T
k′′,j always holds. The claim can be proved using
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Lemma 23 and the definitions of k′ and k′′:

Mi,k′ +MT
k′,j ≥ WÃi,k′ +WB̃k′,j

> WC ′˜
i,j + (W − 1)(Wn(t1−t2) + 3)

≥ WÃi,k′′ +WB̃k′′,j + (W − 1)(Wn(t1−t2) + 3)

= WÃi,k′′ + (W − 1) +WB̃k′′,j + (W − 1)(2 +Wn(t1−t2))

≥Mi,k′′ +MT
k′′,j.

As a result, we know that k∗ /∈ K ′. Let K∗ denote set {k : Ãi,k + B̃k,j − C ′˜
i,j ≤

(W−1)(Wnt1−t2+3)
W

}. Therefore, k∗ ∈ K∗.

Overview of Our Method. The method contains three preprocessing steps.

In the first preprocessing step, we introduce a fast algorithm that computes matrix

C̃
′
. Recall that C̃

′
= Ã ⋆ B̃. Matrix C̃

′
will be used in the second preprocessing step.

In the second preprocessing step, we construct (c + 2)µρ lnn different pairs of

matrices A(r) and B(r) using a randomized technique, where ρ ≥ 0 is a parameter.

All finite entries of A(r) are of small absolute values, so we can apply Lemma 15 to

compute the min-plus product of A(r) and B(r) efficiently. Especially, the non-infinity

entries of A(r) and entries of B(r) are linear combinations of matrices M , MT and

C̃
′
. Let C(r) = A(r) ⋆ B(r) for each r ∈ [(c + 2)µρ lnn]. Given a query (i, j), our

ultimate goal is to find k∗. We observe that if A
(r̂)
i,k∗ ̸= ∞ for some r̂ ∈ [(c+2)µρ lnn],

then Mi,k∗ +MT
k∗,j = C

(r̂)
i,j + W · C ′˜

i,j(r̂) and Mi,k∗ +MT
k∗,j ≤ C

(r)
i,j + W · C ′˜

i,j(r) for

all r ∈ [(c + 2)µρ lnn]. Of course, we don’t know what r̂ is beforehand, so we have

to iterate through each r ∈ [(c + 2)µρ lnn] to figure it out. It turns out that this

iteration is affordable.

However, there might be cases such that A
(r)
i,k∗ = ∞ for all r ∈ (c + 2)µρ. In the

third preprocessing step, we take care of those remaining cases. Especially, Lemma

25 will be used in this preprocessing step to help narrow down the searching scope

for k∗. We will see that the number of triples (i, k, j) such that A
(r)
i,k = ∞ for all

r ∈ (c + 2)µρ and Ãi,k + B̃k,j − C ′˜
i,j ≤ (W−1)(Wnt1−t2+3)

W
is bounded. By using this

property, we can bound the preprocessing time in this step.

The three-step solution is originally from Gu et al. [39] for computing the min-

plus product of matrices A and B, in which matrix B is monotone. For simplicity of
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presentation, Gu et al. first showed a randomized algorithm and then derandomized

it. For the same reason, we first present the adjusted version of their randomized

algorithm and defer the derandomization method to the end of this section. In the

end, the running time of the adjusted solution is deterministic as well.

Before, we have proved that the total difference of matrixMT is bounded by O(n),

and we made effort to construct a new matrix B̃ with smaller total difference. We

will see that matrix B̃ plays a crucial role in the first and the third preprocessing

steps, as well as the derandomization step. And due to its small total difference, we

can design efficient algorithms in those steps.

Preprocessing Step 1. In the first preprocessing step, the goal is to compute

matrix C ′˜ . We introduce a fast algorithm to achieve that.

Lemma 26 Computing C ′˜ takes O((n1−t2+t1 + n2−2t2 + n(2−t2)/W ) lg n) time.

Proof. A similar proof has been given in [39, Proof of Lemma 17]. Henceforth,

given any two entry-pairs (f1, k1) and (f2, k2), we regard that pair (f1, k1) is no more

than pair (f2, k2) iff f1 ≤ f2.

Fix i ∈ [µ]; we maintain a red-black tree, Ti, as follows: i) Add entry-pair (Ãi,k +

B̃k,0, k) into Ti for each k ∈ [κ]; ii) then find the minimum entry-pair, (fm, km), in Ti,

and set C ′˜
i,0 to be fm; iii) iterate through j ∈ [1, µ), and each time B̃k,j−1 ̸= B̃k,j,

replace (Ãi,k + B̃k,j−1, k) with (Ãi,k + B̃k,j, k) in Ti, and each time j increases, find

the new minimum entry-pair in Ti, and update entry C ′˜
i,j as in step (ii).

For each i ∈ [µ], we make O(κ+n/W ) updates on Ti and perform O(µ) queries for

minimum entry-pairs, given that the total difference of B̃ is bounded by O(n/W ). A

red-black tree supports each update and minimum query in O(lg n) time. The overall

computation time is bounded by O(µ(κ+n/W +µ) lg n) = O((n1−t2+t1 +n(2−t2)/W +

n2−2t2) lg n). Storing entries of C ′˜ uses O(n2−2t2) words.

Preprocessing Step 2. In this step, we take matrices M , MT and C ′˜ as input

and partially solve Problem 1 under certain conditions.

Let ρ ≥ 0 be a parameter to be chosen later; let c be any constant that is no less

than 1. For each r ∈ [(c + 2)µρ lnn], we sample j(r) uniformly at random from [µ]
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and construct matrices A(r) and B(r) as follows:

A
(r)
i,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Mi,k +MT
k,j(r)

−WC ′˜
i,j(r) if 0 ≤Mi,k +MT

k,j(r)
−WC ′˜

i,j(r)

≤ 2(W − 1)(3 +Wn(t1−t2))

and A
(r′)
i,k = ∞ ∀r′ < r,

∞ otherwise,

B
(r)
k,j =MT

k,j −MT
k,j(r) .

(4.2)

Following [39], for a pair (i, k), if A
(r̂)
i,k ̸= ∞ for some r̂ ∈ [(c + 2)µρ lnn], we call

(i, k) covered; otherwise it is uncovered. Similarly, we call a triple (i, k, j) covered iff

(i, k) is covered. Let C(r) = A(r) ⋆ B(r), for each r ∈ [(c + 2)µρ lnn]. Next we prove

Lemma 27, which will be used later for finding k∗, when (i, k∗) is covered.

Lemma 27 If (i, k∗) is covered, then

Mi,k∗ +MT
k∗,j = min

r∈[(c+2)µρ lnn]
{C(r)

i,j +W · C ′˜
i,j(r)}.

Proof. Given that (i, k∗) is covered, there exists an index r̂ ∈ [(c + 2)µρ lnn] such

that A
(r̂)
i,k∗ is set to beMi,k∗ +M

T
k∗,j(r̂)

−WC ′˜
i,j(r̂) and B

(r̂)
k∗,j is set to beMT

k∗,j−MT
k∗,j(r̂)

.

Thereby,

A
(r̂)
i,k∗ +B

(r̂)
k∗,j +WC ′˜

i,j(r̂) =Mi,k∗ +MT
k∗,j(r̂) −WC ′˜

i,j(r̂) +MT
k∗,j −MT

k∗,j(r̂) +WC ′˜
i,j(r̂)

=Mi,k∗ +MT
k∗,j.

We claim that C
(r̂)
i,j equals to A

(r̂)
i,k∗+B

(r̂)
k∗,j. Given that C

(r̂)
i,j ≤ A

(r̂)
i,k∗+B

(r̂)
k∗,j, it is sufficient

to prove that no k′ exists such that k′ ̸= k∗ and A
(r̂)
i,k′+B

(r̂)
k′,j < A

(r̂)
i,k∗+B

(r̂)
k∗,j. We give the

proof by contradiction. If k′ exists, then A
(r̂)

i,k′
cannot be ∞. Following from Equation

4.2, we know that A
(r̂)

i,k′
+B

(r̂)

k′ ,j
+WC̃

′
i,j(r̂) =Mi,k

′ +MT
k′ ,j

< A
(r̂)
i,k∗ +B

(r̂)
k∗,j +WC̃

′
i,j(r̂) =

Mi,k∗ +MT
k∗,j. This conflicts with the claim that Mi,k∗ +MT

k∗,j = mink{Mi,k +MT
k,j}.

Therefore, k′ does not exist, so C
(r̂)
i,j = A

(r̂)
i,k∗+B

(r̂)
k∗,j and C

(r̂)
i,j +WC ′˜

i,j(r̂) =Mi,k∗+M
T
k∗,j.

Next, we claim that C
(r)
i,j +W ·C ′˜

i,j(r) is no less than Mi,k∗ +M
T
k∗,j for all r ∈ [(c+

2)µρ lnn]. Again, we give the proof by contradiction. Assume that there is an index r′′

such that C
(r′′)
i,j +W ·C ′˜

i,j(r
′′) < Mi,k∗+M

T
k∗,j. Recall that C

(r′′)
i,j = mink{A(r′′)

i,k +B
(r′′)
k,j }.

Let k′′ denote any index such that A
(r′′)

i,k′′
+ B

(r′′)

k′′ ,j
= C

(r′′)
i,j . Obviously, A

(r′′)

i,k′′
̸= ∞, so
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A
(r′′)
i,k′′ = Mi,k′′ +MT

k′′,j(r′′)
−WC ′˜

i,j(r
′′) and B

(r′′)
k′′,j = MT

k′′,j −MT
k′′,j(r′′)

. As a result, we

would find that C
(r′′)
i,j +W · C ′˜

i,j(r
′′) = A

(r′′)
i,k′′ + B

(r′′)
k′′,j +W · C ′˜

i,j(r
′′) = Mi,k′′ +MT

k′′,j <

Mi,k∗ +MT
k∗,j, which is impossible.

Combining both claims, we prove that if (i, k∗) is covered, then Mi,k∗ +MT
k∗,j =

minr∈[(c+2)µρ lnn]{C(r)
i,j +W · C ′˜

i,j(r)}.

In the second preprocessing step, we build the data structures over all pairs of

matrices Ar and Br, such that if (i, k∗) happened to be covered, the answer k∗

would be found efficiently. Otherwise, we defer the solution to finding k∗ to the

third preprocessing step. Given that all non-infinity entries of Ar are bounded by

2(W − 1)(3 +Wn(t1−t2)), we can apply Lemma 15 so that all data structures can be

constructed efficiently. The result of the second preprocessing step can be summarized

as follows:

Lemma 28 Given (c+ 2)µρ lnn pairs of matrices A(r) and B(r), a data structure of

Õ(2(W − 1)(3 +Wn(t1−t2)) · n(1−t2)·(ρ+2+
t1

1−t2
−σ)

+ n
(1−t2)·(ρ+1+

2t1
1−t2

−σ)
)

words can be built in time

Õ(2(W − 1)(3 +Wn(t1−t2)) · n(1−t2)·(ρ+ω(1,t1/(1−t2),1)+ t1
1−t2

−σ)
)

to partially solve the min-plus-query-witness query problem upon matricesM andMT .

More precisely, given a query (i, j), if (i, k∗) has been covered, then k∗ can be found

in Õ(n(1−t2)·(ρ+σ)) time, where ρ denotes any constant such that ρ ≥ 0 and σ denotes

any constant such that 0 ≤ σ ≤ t1
1−t2 .

Proof. The data structure part is straightforward. Since the non-infinity entries in

A(r)’s are bounded, we can apply Lemma 15 to solve Problem 1 with each pair of

matrices A(r) and B(r) as the input.

We analyze the space cost and the preprocessing time of the data structure. We

substitute M , β, and m in Lemma 15 for the values as follows: M = 2(W − 1) · (3 +
W · n(t1−t2)), m = n1−t2 , and β = t1/(1 − t2). Then it follows that the space cost

for a single pair of matrices A(r) and B(r) is bounded by Õ(S(r)(M,m, β, σ)) words of
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space, where

S(r)(M,m, β, σ) =Mm2+β−σ +m1+2β−σ

= 2(W − 1)(3 +Wn(t1−t2)) · n(1−t2)(2+ t1
1−t2

−σ)
+ n

(1−t2)(1+ 2t1
1−t2

−σ)
.

Similarly, the time spent on building the data structure for A(r) and B(r) is bounded

by Õ(P (r)(M,m, β, σ)), where

P (r)(M,m, β, σ) =Mmω(1,β,1)+β−σ

= 2(W − 1)(3 +Wn(t1−t2)) · n(1−t2)(ω(1, t1
1−t2

,1)+
t1

1−t2
−σ)

.

In the second preprocessing step, we construct (c + 2)µρ lnn pairs of matrices A(r)

and B(r). Recall that µ is bounded by O(n1−t2). The overall space cost of the data

structure in words is

Õ(
∑︂
r

S(r)(M,m, β, σ) = Õ(n(1−t2)ρ · S(r)(M,m, β, σ)))

= Õ(2(W − 1)(3 +Wn(t1−t2)) · n(1−t2)·(ρ+2+
t1

1−t2
−σ)

+ n
(1−t2)·(ρ+1+

2t1
1−t2

−σ)
).

And the overall preprocessing time for all (c+ 2)µρ lnn pairs of matrices is

Õ(
∑︂
r

P (r)(M,m, β, σ) = Õ(n(1−t2)ρ · P (r)(M,m, β, σ)))

= Õ(2(W − 1)(3 +Wn(t1−t2)) · n(1−t2)·(ρ+ω(1, t1
1−t2

,1)+
t1

1−t2
−σ)

).

Note that the factor (c+ 2) lnn is hidden in the notation Õ.

Next, we give the query algorithm that finds k∗. For each r ∈ [(c+ 2)µρ lnn], we

query over the data structure built upon matrices A(r) and B(r) with (i, j) as the query

parameters. Let k(r) denote the index returned for each r. Then, we compute the

set {(A(r)

i,k(r)
+B

(r)

k(r),j
+W ·C ′˜

i,j(r) , k
(r)), for all r ∈ [(c+2)µρ lnn]}, find the minimum

entry-pair from the set, and return the index-entry as the answer. The correctness of

the algorithm is implied by Lemma 27.

Finally, we give the query time analysis. Substitute m in Lemma 15 for n1−t2 .

Then finding k(r) for each pair of A(r) and B(r) takes Õ(n(1−t2)σ) time. For all r ∈
[(c+ 2)µρ lnn], the overall query time is bounded by Õ(n(1−t2)·(ρ+σ)) time.
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Remarks after the Second Preprocessing Step. Before concluding the sec-

ond preprocessing step, we bound the number of triples that are almost relevant and

uncovered. Lemma 24 tells that the number of triples that are almost relevant is no

more than the the number of triples that are weakly relevant. Now it is sufficient to

give the upper bound of the number of triples that are weakly relevant and uncovered.

Lemma 29 ([69, Lemma 4.3],[39, Lemma 18]) With probability at least 1− n−c for

any constant c ≥ 1, the number of uncovered and weakly relevant triples (i, k, j)

is bounded by O(n
(1−t2)·(2+ t1

1−t2
−ρ)

); therefore, the number of triples that are almost

relevant and uncovered is bounded by O(n
(1−t2)·(2+ t1

1−t2
−ρ)

).

Proof. We call a pair (i, k) potentially covered if the number of triples (i, k, j) that

are weakly relevant is at least µ1−ρ. Note that as shown in the proof of Lemma 24,

Mi,k +MT
k,j −W · C ′˜

i,j is always no less than 0. To confirm whether a triple (i, k, j)

is weakly relevant or not, we can simply check whether Mi,k +MT
k,j − W · C ′˜

i,j ≤
2(W − 1) · (3 +W · n(t1−t2)).

Given a potentially covered pair (i, k), after (c+ 2)µρ lnn rounds, we will sample

a j(r), such that (i, k, j(r)) is weakly relevant with probability at least

1− (1− µ1−ρ

µ
)(c+2)µρ lnn = 1− (1− 1

µρ
)(c+2)µρ lnn

≥ 1− e−
1
µρ

(c+2)µρ lnn (Note that (1− 1

µρ
) ≤ e−

1
µρ ).

= 1− e− lnnc+2

= 1− 1

nc+2
.

As a result, (i, k, j) will be covered for all j. There are no more than nt1 · µ pairs

of (i, k). All potentially covered pairs (i, k) will be covered with probability at least

(1− n−(c+2))n
t1 ·µ ≥ 1− n−c, as nt1 · µ ≤ n2.

On the other hand, if a pair (i, k) is not potentially covered, then the number of

those triples (i, k, j) that are weakly relevant is less than µ1−ρ; we cannot guarantee

that those triples (i, k, j) are covered with high probability. Given that there are

only nt1 · µ pairs of (i, k) in total, the number of the triples (i, k, j) that are weakly

relevant and are contributed by all the non-potentially covered pairs (i, k) is less

than µ1−ρ · nt1 · µ = O(n
(1−t2)·(2+ t1

1−t2
−ρ)

); therefore, with probability no less than
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1− n−c, the number of triples that are weakly relevant and uncovered is bounded by

O(n
(1−t2)·(2+ t1

1−t2
−ρ)

).

As shown in [39, Section 3.1, Full Version], the randomized part in this prepro-

cessing step can be derandomized. We defer the details to the end of this section.

Preprocessing Step 3. For each pair (i, j), let (Fi,j, Vi,j) denote the minimum

entry-pair in set {(Mi,k + MT
k,j, k) : (i, k, j) is an uncovered and almost relevant},

keyed by the first item of each entry-pair. In this preprocessing step, we enumer-

ate the triples that are uncovered and almost relevant and compute (Fi,j, Vi,j) for all

pairs of (i, j).

Lemma 30 In O((n1−t2+t1 + n(2−t2)/W ) lg n + n
(1−t2)·(2+ t1

1−t2
−ρ)

+ n2−2t2) time, one

can find all almost relevant and uncovered triples and compute (Fi,j, Vi,j) for all µ2

pairs of (i, j), where i, j ∈ [µ]

Proof. In the third preprocessing step, we only need to consider the uncovered

triples. First, we filter out the triples that have been covered in the second prepro-

cessing step by constructing a matrix Ǎ, such that Ǎi,k is set to ∞ if (i, k) is covered;

otherwise, Ǎi,k is set to Ãi,k.

Next, we present in the following paragraph an algorithm that constructs a linked

list, Yi,j, for each pair of i and j, where i, j ∈ [µ]. In Yi,j, we store the entry-pairs

(Mi,k +MT
k,j, k) such that 0 ≤ Ǎi,k + B̃k,j − C ′˜

i,j ≤ (W−1)·(3+W ·n(t1−t2))
W

. As a result,

Yi,j stores a multiset, and by iterating through entry-pairs in Yi,j, we can find the the

minimum pair-entry (Fi,j, Vi,j).

Fix i ∈ [µ]. When j equals to 0, the algorithm can be described as follows: i)

Create a red-black tree, Ti, and add entry-pair (Ǎi,k+ B̃k,0, k) into Ti for each k ∈ [κ];

ii) construct a linked list Yi,0; iii) and list, in increasing order, the elements that are

being stored in Ti, meanwhile appending entry-pair (Mi,k+M
T
k,0, k) into Yi,0 as long as

0 ≤ Ǎi,k+ B̃k,0−C ′˜
i,0 ≤ (W−1)·(3+W ·n(t1−t2))

W
, and stop immediately after an entry-pair

(Ǎi,k+ B̃k,0, k) is spotted, such that Ǎi,k+ B̃k,0−C ′˜
i,0 >

(W−1)·(3+W ·n(t1−t2))
W

. Then we

iterate through j ∈ [1, µ). Each time j increases, we proceed as follows: i) Replace

(Ǎi,k + B̃k,j−1, k) with (Ǎi,k + B̃k,j, k) in Ti, as long as B̃k,j−1 ̸= B̃k,j; ii) construct

an empty linked list Yi,j; iii) list, in increasing order, the elements that are being
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stored in the Ti, meanwhile appending entry-pair (Mi,k +MT
k,j, k) into Yi,j as long as

0 ≤ Ǎi,k+ B̃k,j −C ′˜
i,j ≤ (W−1)·(3+W ·n(t1−t2))

W
, and stop immediately after an entry-pair

(Ǎi,k + B̃k,j, k) is spotted, such that Ǎi,k + B̃k,j − C ′˜
i,j >

(W−1)·(3+W ·n(t1−t2))
W

.

After performing the algorithm described above for each i ∈ [µ], we know that all

Yi,j’s store at most O(n
(1−t2)·(2+ t1

1−t2
−ρ)

) entry-pairs, following from Lemma 29. For

each pair (i, j), we iterate through elements in Yi,j to find the the minimum pair-entry

(Fi,j, Vi,j).

We conclude the proof by giving the analysis of the running time and the space

cost. For each i ∈ [µ], we make O(κ + n/W ) updates on Ti, and each update re-

quires O(lg n) time. Computing all pair-entries, (Fi,j, Vi,j), need O(n
(1−t2)·(2+ t1

1−t2
−ρ)

+

n2−2t2) time. The overall computation time is bounded by O(µ(κ + n/W ) lg n +

n
(1−t2)·(2+ t1

1−t2
−ρ)

+n2−2t2) = O((n1−t2+t1 +n(2−t2)/W ) lg n+n
(1−t2)·(2+ t1

1−t2
−ρ)

+n2−2t2).

Storing all Fi,j and Vi,j uses O(n
2−2t2) words of space.

The Querying Procedure. Let (i, j) be the query parameters. If (i, k∗) is

covered, then we use Lemma 28 to find k∗ in Õ(n(1−t2)(ρ+σ)) time. Otherwise, since

0 ≤ Ãi,k∗ + B̃k∗,j − C ′˜
i,j ≤ (W−1)(Wnt1−t2+3)

W
, following Lemma 25, k∗ must be stored

in Vi,j, which can be found in constant time.

As a result, we have solved the min-plus-query-witness problem over M and MT

and achieve Lemma 31. Recall that parameter W was set to be ⌊n(1−t2)θ⌋.

Lemma 31 A Õ(n2−2t2+n
2θ(1−t2)+(t1−t2)+(1−t2)(ρ+2+

t1
1−t2

−σ)
+n

(1−t2)(ρ+1+
2t1
1−t2

−σ)
)-word

data structure can be constructed upon matrices M and MT in Õ(n1−t2+t1 + n2−2t2 +

n1+(1−t2)(1−θ)+n
2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1

1−t2
,1)+

t1
1−t2

−σ)
+n

(1−t2)(2+ t1
1−t2

−ρ)
) time, such

that a query defined in Problem 1 can be answered in Õ(n(1−t2)(σ+ρ)) time, where ρ, σ,

and θ denote any constants such that ρ ≥ 0, 0 ≤ σ ≤ t1
1−t2 , and 0 ≤ θ ≤ 1.

Proof. In this proof, we analyze the overall space cost and the construction time

of the data structure. The preprocessing contains three steps.

In the first preprocessing step, we construct matrices C̃
′
taking O((n1−t2+t1 +

n2−2t2 + n(2−t2)/W ) lg n) time. Storing entries of C̃
′
occupies O(n2−2t2) words of

space. In the second preprocessing steps, we construct (c+2)µρ lnn pairs of matrices

A(r) and B(r) and build data structure applying Lemma 15 upon each pair of A(r) and
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B(r). As shown in Lemma 28, the overall space cost of the data structures built in this

step is Õ(2(W−1)(3+Wn(t1−t2))·n(1−t2)·(ρ+2+
t1

1−t2
−σ)

+n
(1−t2)·(ρ+1+

2t1
1−t2

−σ)
) words, and

the preprocessing time is Õ(2(W − 1)(3+Wn(t1−t2)) ·n(1−t2)·(ρ+ω(1,t1/(1−t2),1)+ t1
1−t2

−σ)
).

The third preprocessing step is to construct matrix Vi,j. Lemma 30 shows that this

step takes O((n1−t2+t1 + n(2−t2)/W ) lg n+ n
(1−t2)·(2+ t1

1−t2
−ρ)

+ n2−2t2) time.

Substitute the parameter W for ⌊n(1−t2)θ⌋. Summing up the space cost required

in each step, the total space cost is

O(n2−2t2) + Õ(2(W − 1)(3 +Wn(t1−t2)) · n(1−t2)·(ρ+2+
t1

1−t2
−σ)

+ n
(1−t2)·(ρ+1+

2t1
1−t2

−σ)
)

= O(n2−2t2) + Õ(n2θ(1−t2) · n(t1−t2) · n(1−t2)·(ρ+2+
t1

1−t2
−σ)

+ n
(1−t2)·(ρ+1+

2t1
1−t2

−σ)
)

= Õ(n2−2t2 + n
2θ(1−t2)+(t1−t2)+(1−t2)·(ρ+2+

t1
1−t2

−σ)
+ n

(1−t2)·(ρ+1+
2t1
1−t2

−σ)
).

And the overall preprocessing time is

O((n1−t2+t1 + n2−2t2 + n(2−t2)/W ) lg n)

+ Õ(2(W − 1)(3 +Wn(t1−t2)) · n(1−t2)·(ρ+ω(1,t1/(1−t2),1)+ t1
1−t2

−σ)
)

+O((n1−t2+t1 + n(2−t2)/W ) lg n+ n
(1−t2)·(2+ t1

1−t2
−ρ)

+ n2−2t2)

= Õ(n1−t2+t1 + n2−2t2 + n(2−t2)−θ(1−t2))

+ Õ(n
2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1

1−t2
,1)+

t1
1−t2

−σ)
)

+ Õ(n1−t2+t1 + n2−t2−θ(1−t2) + n
(1−t2)·(2+ t1

1−t2
−ρ)

+ n2−2t2)

= Õ(n1−t2+t1 + n2−2t2 + n1+(1−t2)(1−θ) + n
2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1

1−t2
,1)+

t1
1−t2

−σ)

+ n
(1−t2)(2+ t1

1−t2
−ρ)

).

The query time analysis has been given before.

We can apply Lemma 31 to find the most frequent element and its frequency in

the multiset of frequent colors assigned to the nodes in P′
x′,⊥ ∪P′

y′,⊥ provided that

Px′,y′ is a predefined path.

Derandomization. In the preprocessing step 2, we construct (c+2)µρ lnn pairs

of matrices A(r) and B(r), where µ = O(n1−t2). Recall that we call a pair (i, k) covered

if there is some r̂ ∈ [(c+2)µρ lnn] such that A
(r̂)
i,k ̸= ∞. In Lemma 29, we have proved

that after constructing (c + 2)µρ lnn pairs of matrices A(r) and B(r), the number of
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almost relevant and uncovered triples (i, k, j) is bounded by O(n
(1−t2)(2+ t1

1−t2
−ρ)

) with

high probability.

In the derandomized algorithm, we will construct at most n(1−t2)ρ pairs (less than

the number of pairs required by the randomized algorithm) of matrices A(r) and

B(r), where A(r) and B(r) are defined in the same way as Equation 4.2, while j(r)

will be chosen deterministically instead. Recall that a pair (i, k) is covered if there

exists a r̂ such that A
(r̂)
i,k ̸= ∞. Each matrix A(r) to be constructed covers at least

n
(1−t2)(1+ t1

1−t2
−ρ)

pairs of (i, k), so that there are at least n
(1−t2)(1+ t1

1−t2
−ρ)

non-infinity

entries in A(r). Furthermore, different matrices A(r) cover different pairs of (i, k).

The algorithm contains µ iterations for each j from 0 to µ− 1. In each iteration

j, we maintain a red-black tree, Ti, for each i ∈ [µ]. Fix i ∈ [µ]. If (i, k) has not

been covered yet, where k ∈ [κ], then we add entry-pair (Ãi,k + B̃k,j, k) into Ti.

Then, for each i ∈ [µ], we use Ti to compute the number of triples (i, k, j) such

that C ′˜
i,j ≤ Ãi,k + B̃k,j ≤ C ′˜

i,j +
(W−1)·(3+W ·n(t1−t2))

W
. That is the number of almost

relevant and uncovered triples (i, k, j). If the sum of these numbers is no more than

n
(1−t2)(1+ t1

1−t2
−ρ)

, we increment j by 1 and continue the next iteration, and in the

next iteration, we only update entries of Ti when (i, k) has not been covered yet

and B̃k,j ̸= B̃k,j−1. Otherwise, we remove all entry-pairs (Ãi,k + B̃k,j, k) such that

C ′˜
i,j ≤ Ãi,k + B̃k,j ≤ C ′˜

i,j +
(W−1)·(3+W ·n(t1−t2))

W
from Ti for each i ∈ [µ] and set their

corresponding (i, k) to be covered. Then we set j(r) to be j, construct matrices A(r)

and B(r) following from Equation 4.2, and continue the next iteration.

For each j ∈ [µ], each iteration j contributes at most n
(1−t2)(1+ t1

1−t2
−ρ)

triples

(i, k, j) that are uncovered and almost relevant. After performing the algorithm, the

total number of uncovered and almost relevant triples is at most µ ·n(1−t2)(1+ t1
1−t2

−ρ)
=

n
(1−t2)(2+ t1

1−t2
−ρ)

. Each time we construct matrices A(r) and B(r), we made at least

n
(1−t2)(1+ t1

1−t2
−ρ)

different pairs of (i, k) covered. Since there are only n1−t2+t1 pairs

of (i, k) in total, at most n(1−t2)ρ pairs of matrices A(r) and B(r) are constructed.

Especially, if triple (i, k, j(r)) is set to be covered and (i, k, j(r)) happens to be almost

relevant, then A
(r)
i,k ̸= ∞, following from Equation 4.2 and Lemma 24.

Finally, we give the running time analysis. Recall that the statement that C ′˜
i,j ≤

Ãi,k + B̃k,j is always true. For each i ∈ [µ] and each j ∈ [u], we simply perform one

predecessor query over Ti to find the number of triples (i, k, j) such that Ãi,k+ B̃k,j ≤
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C ′˜
i,j +

(W−1)·(3+W ·n(t1−t2))
W

, for a total of n2−2t2 queries. Given that the total difference

of matrix B̃ is bounded by O(n/W ), the total number of updates on all Ti’s is bounded

by O(n1−t2 ·(n/W+nt1)) = O(n1−t2+t1+n1+(1−t2)(1−θ)). Therefore, the overall running

time of this algorithm is bounded by Õ(n1−t2+t1 + n1+(1−t2)(1−θ) + n2−2t2).

4.4.4 Mode Queries on an Arbitrary Path

In the previous sections, we have seen a data structure that finds an infrequent color

that appears at least as frequently as other infrequent colors that are assigned to

nodes in an arbitrary path. We also described a data structure that finds a frequent

color that appears at least as frequently as other frequent colors assigned to the nodes

in P′
x′,⊥ ∪P′

y′,⊥ for any predefined path Px′,y′ . In this section, we present a solution

that finds a mode for an arbitrary path by combining both data structures mentioned

earlier.

We first represent tree T using the data structure of Lemma 2. As discussed in

Section 4.2, this structure supports finding the number of appearances of a color on

a path in O(lg lgC) time. Then we mark O(n1−t2) nodes of T as discussed in Section

4.4.2. We compute the number of appearances of each color on T to determine whether

it is frequent or infrequent. Then we construct the data structures of Lemmas 20 and

31 for queries over infrequent and frequent colors, respectively.

Let Px,y be a query path that contains the root ⊥. We consider two different

cases: Either Px,y contains only one marked node, i.e., ⊥, or Px,y contains more than

one marked nodes, including ⊥.

In the first case, it follows that |Px,y | = O(nt2), and a mode in Px,y can be

found in O(nt2) time. The query algorithm requires two variables: a potential mode,

and its frequency, as well as an array V [0..C − 1]. Initially, entries in V , as well as

the frequency of the potential mode, are all set to be 0. Note that array V can be

constructed once but shared by all queries. A query scans Px,y twice. In the first pass,

each time a node v is visited, we increment entry V [c(v)] by 1, where c(v) denotes

the color of node v. If V [c(v)] after being incremented happens to be more than the

frequency of the potential mode, we set the potential mode to be c(v) and update

its frequency by V [c(v)]. Obviously, after the first pass, the potential mode becomes

a mode in Px,y. Finally, we scan the nodes in Px,y the second time to reset all the
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non-zero entries in V back to 0 for future queries. Given that the number of nodes

in Px,y is bounded by O(nt2), so is the query time.

It remains to handle the second case. Let x′ and y′ denote the lowest marked

ancestors of x and y, respectively. Given that the root node is always marked in

the preprocessing stage, neither x′ nor y′ is a null. We divide Px,y into four disjoint

parts: P′
x,x′ , P

′
x′,⊥ ∪P′

y′,⊥, ⊥ and P′
y,y′ . Note that any of P′

x,x′ , P
′
x′,⊥ ∪P′

y′,⊥ and P′
y,y′

might be empty. Especially, there are O(nt2) nodes in P′
x,x′ ∪P′

y,y′ ∪ ⊥; for each

distinct color that appears in P′
x,x′ ∪P′

y,y′ ∪ ⊥, counting its occurrences in Px,y takes

O(lg lgC) time by the data structure of Lemma 3, for a total of O(nt2 lg lgC) time.

Let c1 be the color with maximum number of occurrences found this way. Then we

apply Lemma 20 to find the infrequent color, c2, with maximum frequency in Px′,y′

in Õ(n1−t1) time, and we query over the data structure of Lemma 31 to find the

frequent color, c3, with maximum frequency in P′
x′,⊥ ∪P′

y′,⊥ in Õ(n(1−t2)(σ+ρ)) time.

We also obtain the frequency of c2 in Px′,y′ and the frequency of c3 in P′
x′,⊥ ∪P′

y′,⊥

when finding c2 and c3. Note that, if the mode is not c1, then the mode does not

appear in P′
x,x′ ∪P′

y,y′ ∪ ⊥, so it must be either c2 or c3. Hence it suffices to compare

the frequency of c1 in Px,y, the frequency of c2 in Px′,y′ , and the frequency of c3 in

P′
x′,⊥ ∪P′

y′,⊥ to find the answer to the query.

Finally, we apply the technique in Section 4.3.3 to compute the mode in an arbi-

trary path:

Lemma 32 Let T be a colored ordinal tree on n nodes with each node assigned a

color from {0, 1, . . . , C − 1}, where C ≤ n. A data structure of Õ(n2−t1 + n2−2t2 +

n
(1−t2)(ρ+1+

2t1
1−t2

−σ)
+ n

2θ(1−t2)+(t1−t2)+(1−t2)(ρ+2+
t1

1−t2
−σ)

) words can be constructed in

Õ(n
2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1

1−t2
,1)+

t1
1−t2

−σ)
+n1+(1−t2)(1−θ)+n

(1−t2)(2+ t1
1−t2

−ρ)
+n2−t1+

n2−2t2+n1−t2+t1) time such that a path mode query can be answered in Õ(nt2+n1−t1+

n(1−t2)(σ+ρ)) time, where ρ, σ and θ denote any constants such that ρ ≥ 0, 0 ≤ σ ≤ t1
1−t2

and 0 ≤ θ ≤ 1.

Proof. It remains to present the analysis for the space cost and the construction

time. As shown in Lemma 20, the data structure for infrequent colors occupies

O(n2−t1 lg4 n) words of space and can be built in O(n2−t1 lg5 n) time. Lemma 31

shows that the data structure for frequent colors requires Õ(n
(1−t2)(ρ+1+

2t1
1−t2

−σ)
+
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n2−2t2 + n
2θ(1−t2)+(t1−t2)+(1−t2)(ρ+2+

t1
1−t2

−σ)
) words of space and Õ(n1−t2+t1 + n2−2t2 +

n1+(1−t2)(1−θ) + n
(1−t2)(2+ t1

1−t2
−ρ)

+ n
2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1

1−t2
,1)+

t1
1−t2

−σ)
) time to

construct. By combining data structures for infrequent colors and frequent colors,

we achieve the space cost and construction time as shown in Lemma 32. Note that

to support queries over arbitrary path, we apply the centroid decomposition shown

in Section 4.3.3. As a result, both the space cost and the preprocessing time will be

increased by an O(lg n) factor, while this extra lg n factor is hidden in Õ.

Lemma 32 shows a data structure solution, which means that being aware of

queries in the preprocessing stage is unnecessary. On the other hand, given the fast

preprocessing and query time of this data structure, it can be naturally transformed

into an efficient offline algorithm for batched path mode queries: We simply build the

data structure following Lemma 32 and then use it to answer n queries. Setting the

proper values for parameters in Lemma 32 yields Theorem 5.

Theorem 5 A batch of n path mode queries over a colored tree T on n nodes can be

answered in Õ(n
24+2ω
17+ω ) = O(n1.483814) time.

Proof. The running time of batched path mode queries includes two parts: the

overall query time of n queries and its preprocessing time. The prior one is bounded

by Õ(n · (nt2 + n1−t1 + n(1−t2)(σ+ρ))) = Õ(n1+t2 + n2−t1 + n1+(1−t2)(σ+ρ)), while the

latter one is given in Lemma 32. By setting the overall query time to be equal to

the preprocessing time, we obtain proper values for parameters, including t1, t2, ρ, σ,

and θ, thereby achieving the optimum running time, i.e., O(n1.483814), as promised.

To do that, we first express t2, ρ, σ and θ as functions of t1 and decide the value of

t1 in the end.

By setting the term n1+t2 from the total query time to be equal to the term n2−t1

from the preprocessing time, we have t2 = 1− t1. By comparing the term n2−t1 from

the total query time and the term n
(1−t2)(2+ t1

1−t2
−ρ)

from the preprocessing time, we
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find

n2−t1 = n
(1−t2)(2+ t1

1−t2
−ρ)

2− t1 = t1(3− ρ)

ρ =
4t1 − 2

t1
.

By comparing the term n1+(1−t2)(σ+ρ) from the total query time and the term n2−t1

from the preprocessing time, we find

n1+(1−t2)(σ+ρ) = n2−t1

(1− t2)(σ + ρ) = 1− t1

σ =
1− t1
1− t2

− ρ

=
1− t1
t1

− 4t1 − 2

t1

=
3− 5t1
t1

.

By comparing the term n1+(1−t2)(σ+ρ) from the total query time and the term

n1+(1−t2)(1−θ) from the preprocessing time, we find

n1+(1−t2)(σ+ρ) = n1+(1−t2)(1−θ)

(1− t2)(σ + ρ) = (1− t2)(1− θ)

(σ + ρ) = (1− θ)

θ = 1− (σ + ρ)

= 1− (
3− 5t1
t1

+
4t1 − 2

t1
)

= 1− 1− t1
t1

=
2t1 − 1

t1
.

Finally, by comparing the term n1+(1−t1) from the total query time and the term

n
2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1

1−t2
,1)+

t1
1−t2

−σ)
from the preprocessing time, we find the
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proper value of t1:

n1+(1−t1) = n
2θ(1−t2)+(t1−t2)+(1−t2)(ρ+ω(1, t1

1−t2
,1)+

t1
1−t2

−σ)

2− t1 = 2θ(1− t2) + (t1 − t2) + (1− t2)(ρ+ ω(1,
t1

1− t2
, 1) +

t1
1− t2

− σ)

2− t1 =
4t1 − 2

t1
· t1 + (2t1 − 1) + t1(

4t1 − 2

t1
+ ω(1, 1, 1) + 1− 3− 5t1

t1
)

2− t1 = 6t1 − 3 + 4t1 − 2 + t1ω(1, 1, 1) + t1 − (3− 5t1)

t1 =
10

17 + ω(1, 1, 1)
.

The values, chosen as shown above, for parameters t1, t2, ρ, σ and θ ensure

that the preprocessing time is proportional to the time of answering n path mode

queries, ignoring polylog(n) factors. To compute the time complexity of our solution

to batched path mode queries, it suffices to give the bound of the total running time

for n queries, which is

Õ(n1+t2 + n2−t1 + n1+(1−t2)(σ+ρ))

=Õ(n1+1−t1 + n2−t1 + n
1+t1(

3−5t1
t1

+
4t1−2

t1
)
)

=Õ(n2−t1) = Õ(n2− 10
17+ω(1,1,1) ) = Õ(n

24+2ω
17+ω ).

Observe that the function, 24+2x
17+x

, is monotonically increasing for positive x. As

ω(1, 1, 1) < 2.37286, n path mode queries can be answered in overall Õ(n1.48381395) =

O(n1.483814) time.

4.5 Conclusion

In this chapter, we saw efficient solutions to batched colored path counting queries

and batched path mode queries. The strategy used in both our solutions can be

summarized as follows: Consider a restricted case, in which all query paths contain a

pre-selected node; then apply centroid decomposition, relaxing the restriction. This

strategy induces a reduction from queries over arbitrary paths to queries over paths

that contain a pre-selected node. As we have seen, the latter problem is much easier

to cope with. We expect that this versatile strategy to find its application to other

path queries as well.
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In our solutions to batched path queries, we choose a set of nodes in the tree as

the marked nodes. Combining with the restriction mentioned before, we precompute

queries for the predefined paths, which contain the pre-selected node and have a pair

of pre-selected nodes as their endpoints. In this preprocessing phase, we manage to

reduce colored path counting to matrix multiplication and reduce path mode queries

to the min-plus product. For the former reduction, we show a non-trivial transfor-

mation that turns bit matrices created directly using the pre-selected nodes of the

input tree into sparse matrices, in which the number of non-zero bits are bounded.

Then we apply the efficient algorithm for sparse matrix multiplication, improving the

overall preprocessing time. As we have seen, the latter reduction is different from

the reduction [69, 68, 39] from range mode queries to the min-plus product, in which

matrices generated from arrays are monotone. To capture the special structure of

matrices generated from trees, we define a new notion, total difference, and we prove

that the total differences of the matrices for path mode queries are always bounded

by the number of nodes in the tree. Then, to further reduce the total difference of

the matrices from O(n) to O(n/W ), we design a more involved technique, two-level

marking scheme, due to which, we further improve the computation time of the min-

plus product. Our algorithm can be seen as a generalization of the method by Gu et

al. [39], given that a monotone matrix always has bounded total difference, while a

matrix with bounded total difference does not have to be monotone.

After all, we manage to design solutions that support n queries for colored path

counting and path mode in O(n1.4071) and O(n1.483814) time, respectively.

The problem, batched path mode queries, is a generalized version of the batched

mode query problem on 1D arrays, i.e., batched range mode queries. Recently, a new

improvement on the latter problem has been achieved: The algorithm that supports n

range mode queries is as fast as Õ(n
3+2ω
3+ω ) = O(n1.4416) time [24]. There is an obvious

gap in the running time between batched path mode queries and batched range mode

queries. We expect to see a faster algorithm for batched path mode queries than ours.



Chapter 5

Approximate Colored Path Counting

5.1 Introduction

In Chapter 4, we studied colored path counting queries, in which the precise number of

distinct colors in a query path is expected as an answer. We have seen a data structure

that occupies Ω(n1.1860) words of space and supports each query in O(n0.4071) time.

Given the conditional lower bound of this problem, this solution is efficient. As a

result of the rapid growth of large data sets, linear space data structures are favored

by applications that deal with massive amounts of data. The super-linear space used

by that data structure is not ideal for handling large data sets. The only known linear

space solution to this problem requires Ω(
√
n) time in the worst case [44]. For other

path queries, such as path minimum [18, 2, 56, 22, 8, 12], path medium [58, 64, 48, 49],

path counting [18, 58, 64, 48, 49] and path majority [23, 30], linear-space solutions

with sublogarithmic or even constant query times exist, which are much faster.

To achieve faster queries, approximate colored path counting problems have been

studied. Similar to Chapter 4, these problems are defined over an ordinal tree T on n

nodes, each assigned a color from {0, 1, . . . , C−1}, where C ≤ n. Two different ways

of bounding approximate ratios have been considered [44]: a 2-approximate colored

path counting query computes a number in [occ, 2 · occ], while a (1± ϵ)-approximate

query returns a number in [(1− ϵ) occ, (1 + ϵ) occ] for any ϵ ∈ (0, 1). In this chapter,

we study approximate colored path counting and aim at improving previous results

under both approximate measures.

We also note that 1D colored range counting is sometimes called 1D colored type-

1 range counting in the literature [40, 13], while 1D colored type-2 range counting

reports the number of occurrences of each distinct color in a query range. We can

also generalize the latter to consider tree topology by defining colored type-2 path

counting over a colored tree, which reports the number of occurrences of each distinct

color in a query path. See Figure 5.1 for an example. The O(n)-word data structures

93
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Figure 5.1: Examples of colored type-1 and type-2 path counting. The input is a
tree T on 16 nodes, each assigned a color drawn from {0, 1, 2, 3, 4, 5}. Let Px,y be
a query path. The answer to the colored type-1 path counting query over Px,y is
5, while the answer to the colored type-2 path counting query over Px,y is a set of
entries, {(5, 1), (2, 1), (4, 1), (3, 1), (1, 3)}, where each entry (e, f) indicates that color
e appears f times in Px,y.

of Durocher et al. [23] can be used to answer a colored type-2 path counting query

in O(occ lg lg n) time. This is slower than the O(occ+1)-time support for 1D colored

type-2 range counting over points in rank space [40, 33]. Thus we also investigate the

possibility of closing this gap.

5.1.1 Previous Work

By reducing colored path counting to path counting over weighted trees [48] using the

chaining approach [62], He and Kazi [44] designed a linear space data structure that

supports 2-approximate colored path counting in O(lg n/ lg lg n) time. For (1 ± ϵ)-

approximate colored path counting queries, they described a sketching data structure

that occupies O(n + n
ϵ2t

lg n) words and answers a query in O(ϵ−2t lg n) time with

success probability no less than 1 − δ, where t is an arbitrary integer in [1, n] and δ

is an arbitrary constant in (0, 1). 1 Setting t = ⌈ϵ−2 lg n⌉ makes the space cost linear

and the query time O(ϵ−4 lg2 n).

Similar approximate problems can also be defined for colored 1D range counting

and colored 2D orthogonal range counting which generalizes the former by preprocess-

ing colored points in 2D to efficiently compute the number of distinct colors assigned

to points in an axis-aligned query rectangle. The same conditional lower bound for

colored path counting also applies to the latter [55]. In the 1D case, given n colored

points in the rank space, El-Zein et al. [27] designed an index data structure that

1He and Kazi [44] originally stated their result for constant ϵ, but it is easy to generalize their
bounds when ϵ = o(1).
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uses O(n)-bits of space2 and supports c-approximate colored counting in constant

time for any constant c > 1. In higher dimensions, Rahul [66] showed that (1 ± ϵ)-

approximate colored range counting can be answered by combining a colored range

reporting structure and a c-approximate colored range counting structure. With it,

he designed an O(n lg n)-word structure to support (1 ± ϵ)-approximate colored 2D

orthogonal range counting in O(ϵ−2 lg n) time.

Regarding 1D colored type-2 range counting, Gupta et al. [40] designed an O(n)-

word structure with O(lg n+occ) query time, over a set of n colored points on a real

line. Ganguly et al. [33] stated that, by combining the approach of Gupta et al. and

some other results [62, 67], the query time can be further improved to O(1 + occ)

if all points are in rank space. This query problem can also be generalized to point

sets on the plane, and we refer to [15, 13] for recent work on 2D colored type-2 range

counting. For colored trees, the linear word structures designed by Durocher et al. [23]

can answer a colored type-2 path counting query in O(occ lg lg n) time. They did not

state this result explicitly, but it is implied by the algorithmic steps stated in the

proof of Theorem 6 in their paper.

5.1.2 Our Results

Under the word RAM model, we first design 2-approximate colored path counting

structures with i) O(n) words of space and O(lgλ n) query time for any constant

0 < λ < 1, ii) O(n lg lg n) words of space and O(lg lg n) query time and iii) O(n lgλ n)

words of space and O(1) query time. In all three cases, the preprocessing time is

O(n lg n). Hence the first trade-off beats the O(lg n/ lg lg n) query time of the linear-

word 2-approximate structure of He and Kazi [44].

We then design an O(n)-word (1±ϵ)-approximate colored path counting structure

with O( 1
ϵ2
lg n) deterministic query time and O(n2 lgC lg lgC) expected preprocessing

time. Compared to the sketching structure by He and Kazi [44] with O(n)-word space

and O(ϵ−4 lg2 n) query time, we not only achieve improvement for query time but also

guarantee that the query algorithm always returns a (1 ± ϵ)-approximation, though

the cost of preprocessing is higher.

2Note that storing the original data set would occupy Ω(n lgC) bits of space. The index data
structure given by El-Zein et al. [27] does not store the original data set.
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Table 5.1: A summary of our results on approximate colored path counting and
colored type-2 path counting, in which space costs are measured in words, ϵ is an
arbitrary parameter in (0, 1), λ is an arbitrary constant in (0, 1), † marks an expected
bound, and ‡ marks a solution that returns a correct answer with probability no less
than 1− δ for any constant δ ∈ (0, 1).

Space Query Preprocess Ref

2-appr.

O(n) O( lgn
lg lgn

) O(n lgn
lg lgn

) [44]

O(n) O(lgλ n)
O(n lg n)

Thm 6a)
O(n lg lg n) O(lg lg n) Thm 6b)

O(n lgλ n) O(1) Thm 6c)

(1± ϵ)-appr.
O(n+ n lgn

ϵ2t
) O(ϵ−2t lg n) O(ϵ−2n lg n) [44]‡

O(n) O(ϵ−2 lg n) O(n2 lgC lg lgC)† Thm 7

Type-2 O(n)
O(occ lg lg n)

O(n lg n)
[23]

O(occ) Lemma 41

When designing our (1 ± ϵ)-approximate solutions, our techniques also lead to a

linear-word data structure supporting colored type-2 path counting in O(occ) time.

This result improves the solution of Durocher et al. [23] which has O(occ lg lg n) query

time. See Table 5.1 for a comparison of our results to all previous results.

To achieve these results, we develop new techniques. For 2-approximate colored

path counting, note that no further improvement can be made using the strategy of He

and Kazi for this problem, due to the lower bound on (uncolored) 2D orthogonal range

counting [65] (which is a special case of path counting over weighted trees). Instead,

we adopt the strategy, presented in the previous chapter, for batched colored path

counting which applies centroid decomposition to decompose the tree into a hierarchy

of components. A query is answered by locating and querying the component that

satisfies these two conditions: This component contains the entire query path, and its

centroid is in the path. This means, within each component, we need only support

queries for the paths that pass through a fixed node, e.g, the selected centroid, given

during the construction. This strategy however incurs O(n lg n) words of space cost

in Chapter 4. To address this, we design a data structure of O(n) bits that answers 2-

approximate queries in constant time, provided that a query path must pass through

a certain node. To speed up the mapping of the endpoints of a query path to nodes in

a specific component in a space-efficient manner, we borrow ideas from the solutions

to the ball inheritance problem, introduced in Section 2.3, and design data structures



97

with different time-space trade-offs.

With regard to (1 ± ϵ)-approximate colored path counting queries, we provide a

completely different solution from the previous one by He and Kazi [44]. Previously,

He and Kazi selected O(n/t) nodes from the input tree as the marked nodes in the

preprocessing stage, where t is a parameter defined in the preprocessing stage. Then

they constructed and stored an O(ϵ−2 lg n)-word sketch at each marked node. Due

to the sketches used in their solution, their query algorithm might not always return

a (1 ± ϵ)-approximation. Unfortunately, we are unaware of any method that uses

these sketches and guarantees a (1± ϵ)-approximation is always returned. In the new

solution, we divide all query paths into O(lg n) tiers, depending on the number of

distinct colors in each path. For the paths of each tier, we design an efficient solution

to (1 ± ϵ)-approximate queries by combining the tree extraction and the random

sampling techniques. We also describe a linear space data structure for colored type-

2 path counting, which allows us to compute efficiently the number of distinct colors

in a query path by simply reporting all the distinct colors in it, whenever a query path

contains no more than O(ϵ−2 lg n) distinct colors. For the query paths that contains

Ω(ϵ−2 lg n) distinct colors, we use our solution to 2-approximate colored path counting

to decide which tier the query path belongs to and then use the corresponding data

structure for (1 ± ϵ)-approximate queries to find the answer. The idea that reduces

(1 ± ϵ)- to 2-approximate colored path counting queries is inspired by the work of

Rahul [66].

5.2 Preliminaries

This section introduces the previous results used in this chapter.

5.2.1 Partial Rank

Let A[0..n − 1] be a sequence of symbols drawn from alphabet [σ] = {1, 2, . . . , σ},
where σ ≤ n. The partial rank operation [4], rank′(A, i), counts the number of

elements equal to A[i] in A[0..i].

Lemma 33 [4, Lemma 3.5] Given a sequence A[0..n − 1] drawn from alphabet [σ],

where σ ≤ n, a data structure of O(n lg σ) bits can be constructed in O(n) time to
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(a) Tree T with Px,y

x′

y′
TX :

(b) Tree TX with Px′,y′

Figure 5.2: An example of tree extraction. The first figure shows path Px,y in the
original tree T and its corresponding path Px′,y′ in the extracted tree TX , where the
set, X, of extracted nodes are colored black in T . Since the root of T is not in X,
TX has a dummy root. The decompose(x, y) operation returns x′ and y′ in TX , which
correspond to nodes x̂ and ŷ in T , respectively.

support rank′(A, i) in constant time.

5.2.2 Tree extraction

Given a subset, X, of nodes of an ordinal tree T , the extracted tree, TX , can be

constructed by deleting each node v /∈ X using the following approach: If v is not

the root, let u = parent(v). We remove v and its incident edges from T and insert

its children into the list of children of u, replacing v in this list while preserving these

children’s original left-to-right order. This means that v’s left and right siblings before

the deletion will respectively become the left and right siblings of its children after

the deletion. If v is the root, then, before we apply the same procedure to delete v,

we add a dummy root to T and make it the parent of v, so that TX will remain a

tree. This technique first appears in [48].

To map a path Px,y in T to a path in TX , we use the operation, decompose(x, y),

defined in [44]: If Px,y ∩X = ∅, it returns null. Otherwise, let x̂ and ŷ denote the

nodes in Px,y ∩X that are closest to x and y, respectively (this can be the node x or

y itself if it is in X). Then decompose(x, y) returns the nodes x′ and y′ in TX that

correspond to (i.e., whose original copies are) nodes x̂ and ŷ in T , respectively. See

Figure 5.2 for examples.

Lemma 34 [44, Proposition 9] Given a tree T on n nodes and a tree extraction TX ,

an O(n)-bit structure on top of T and TX can be constructed in O(n) time to support

decompose in O(1) time.
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5.2.3 The k-nearest distinct ancestor queries.

Let T be a colored tree. In a k-nearest distinct ancestor query [23], we are given a

node v of T , and the goal is to find a sequence a1, a2, · · · of ancestors of v, in which

a1 is node v itself and ai is the lowest ancestor of i such that c(ai) does not appear

in Pv,ai \{ai} for any 1 < i ≤ k. We have the following lemma:

Lemma 35 [23, Lemma 13] Given a colored tree T on n nodes, an O(n)-word data

structure can be constructed in O(n lg n) time to support k-nearest distinct ancestor

queries over T in O(k) time. The ancestors are reported in the lowest-to-highest

order, and thus k need not be specified in a query.

5.2.4 Colored Path Counting over All Paths

A tree of n nodes can have Θ(n2) different query paths on it. He and Kazi [44]

described an efficient algorithm that answers colored path counting queries over all

different paths, summarized as Lemma 36.

Lemma 36 [44, Theorem 10] Let T denote a labeled ordinal tree on n nodes, each

of which is assigned a color from {0, 1, . . . , C − 1}, where C ≤ n. The colored path

counting queries over all possible query paths can be answered in O(n2lg lgC) time in

total.

5.2.5 The Chernoff Bound

The Chernoff Bound summarized as Lemma 37 will be later used in our solution to

(1± ϵ)-approximate colored path counting.

Lemma 37 (Chernoff Bound [60, Corollary 4.6]) Let X1 · · ·Xn′ be independent Pois-

son trials such that Pr[Xi = 1] = pi for each 1 ≤ i ≤ n′. Let X =
∑︁n′

i=1Xi and

µ = E[X]. For any 0 < ϵ < 1, Pr[|X − µ| ≥ ϵµ] ≤ 2e−µϵ
2/3.

5.3 2-Approximate Colored Path Counting

For 2-approximate colored path counting, we first consider a special case in which

query paths must contain a fixed tree node specified in the preprocessing step (Section

5.3.1). Then we generalize it for arbitrary paths (Sections 5.3.2-5.3.3).
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Figure 5.3: The data structure for 2-approximate queries. Given the input tree T
and the pre-selected node v, the binary label B(u) constructed for each node u of
T is shown on the right-hand side. The query path Px,y contains node v and has 5
distinct colors on it. Accordingly, we find 6 1-bits in Px,y in the 0/1-labeled tree, so
we return 6 as a 2-approximate of the exact answer.

5.3.1 Counting over a Path that Contains a Fixed Node

Fix a node v of T , and we design an O(n)-bit encoding data structure that supports

2-approximate colored path counting over any query path containing v. To answer

a query, our encoding data structure does not need to access T after preprocessing,

provided that the preorder ranks of the endpoints of the query path are known.

Lemma 38 Let T be a colored tree on n nodes and fix any node v in T . A data struc-

ture of O(n) bits can be constructed in O(n) time to support 2-approximate colored

path counting over any query path containing v in O(1) time.

Proof. We associate a Boolean label B(u) to each node u of T as follows: If u = v,

then B(u) = 1. Otherwise, locate the node, t, in Pu,v that is adjacent to u. If color

c(u) appears in Pt,v, then set B(u) = 0. If not, set B(u) = 1. See Figure 5.3 for an

example. We discard the original colors of T , treat these labels as node colors and

represent T with these labels using the data structure of Lemma 2. Since there are

only two possible labels, this uses 3n+ o(n) bits.

Let Px,y be a query path containing v. Consider the nodes in the subpath Px,v one

by one in the direction from v to x. Observe that, each time we see a node labeled

by 1, we encounter a color that has not been seen previously. Therefore, the number

of 1-bits assigned to nodes in Px,v is equal to |C(Px,v)|. Similarly, the number of

1-bits assigned to nodes in Py,v is equal to |C(Py,v)|. Therefore, the number of 1-

bits assigned to nodes in Px,y is a 2-approximate of the precise answer. Following

Lemma 3, this number can be computed in O(lg lgC) = O(1) time using operations



101

depth1 and LCA, as C ≤ 2.

To prove the bound on construction time, it suffices to show that these binary

labels can be assigned in O(n) time. This can be done by performing a depth-first

traversal of T using v as the starting node. During this traversal, we also update an

array A[0..C−1], and the invariant that we maintain is that, each time we visit a node

u, A[i] stores the number of nodes in Pv,u that are assigned color i in the original tree

T . The following are the steps: We start the traversal from vertex v, set A[c(v)] = 1

and initialize all other entries of A to 0. During the traversal, each time we follow an

edge (x, y) with x ∈ Pv,y, there are two cases. In the first case, we follow this edge

to visit node y. Then this is the first time we visit y. We check if A[c[y]] = 0. If it

is, then the color of y does not appeared in Pv,x, so we set B(y) = 1. Afterwards,

we increment A[c[y]] to maintain the invariant. Otherwise, we set B(y) = 0 and also

increment A[c[y]]. In the second case, we follow this edge to visit x. Since x is closer

to v than y is, we have visited x before, and we will not traverse any paths containing

y in the future. In this case, we decrement A[c[y]] to maintain the invariant.

5.3.2 Counting over Arbitrary Paths

To support 2-approximate colored path counting queries over arbitrary paths, we

transform the given ordinal tree T on n colored nodes into a binary tree T̃ . Our

transformation is similar to that used by Chan et al. [12], but some modifications

are necessary. Ultimately, this is because, unlike the queries considered by Chan et

al., to compute a 2-approximate answer for a query path Px,y, we cannot add up

2-approximate answers for query paths Px,z and Py,z where z = LCA(x, y).

Our transformation works as follows: For each node v with degree d, where d > 2,

we remove the edges between v and its children, v1, v2, . . . , vd, to detach the subtrees

rooted at these children from T . For the convenience of the description, let v0 denote

the node v. We then create d − 2 dummy nodes, ṽ1, ṽ2, . . . , ṽd−2, each assigned the

color of v0. Next we add edges to reconnect v0 and its d children with the newly

created dummy nodes as follows: For t = 1, 2, . . . , d− 2, make vt and ṽt the left and

right children of vt−1, respectively. Afterwards, make vd−1 and vd the left and right

children of ṽd−2, respectively. The resulting tree is T̃ which has at most 2n nodes. See

Figure 5.4 for an example. This transformation preserves preorder among the original
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Figure 5.4: The input tree T and its transformed binary tree T̃ . In T̃ , dummy
nodes are represented by squares. Query paths can be conceptually divided into two
categories, depending on whether or not the LCA of their endpoints in T̃ is a dummy
node. For example, Px,y and Px,z are in different categories, as LCA(x, y) of T̃ and
LCA(x, z) of T̃ are non-dummy and dummy nodes, respectively. In either category, a
query path in T and its corresponding path in T̃ always share the same set of colors.

nodes of T . More importantly, any path Px,y in T and its corresponding path, P̃ , in

T̃ share the same set of colors. To see this, observe that the lowest common ancestor,

z, of nodes x and y in T is the only original node that appears in Px,y but may not

necessarily appear in P̃ . If z does not appear in P̃ , then P̃ must contain a dummy

node created for z which is also colored in c(z). On the other hand, any original node

in P̃ must also be in Px,y in T , while any dummy node that appears in P̃ must satisfy

the condition that the original node it is created for must be in Px,y in T .

After this transformation, for each node in T , we store the preorder rank of its

corresponding node in T̃ . Then we follow the strategy, presented in the previous

chapter, to decompose T̃ recursively using centroid decomposition, but different data

structures will be constructed this time.

We now give the details of the recursion. At level 0 of the recursion, we call tree T̃

the level-0 component. We find a centroid, u, of T̃ and construct the data structure

in Lemma 38 supporting 2-approximate queries over paths containing u. Since T̃ is a

binary tree, after removing u, we are left with at most three connected components,

and we add u back into the smallest component. In this way, tree T̃ is partitioned

into at most three pairwise-disjoint connected components in the level-0 recursion,

each of which is a tree on no more than |T̃ |/2 nodes. We call each of these three

components a level-1 component and build the data structure recursively upon each
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of them. In general, at level i of the recursion, we compute a centroid, v, of each level-i

component γ. We then use Lemma 38 to construct a data structure D(γ) supporting

2-approximate colored path counting over paths that are entirely contained within γ

and also contain v. This component can be partitioned into up to three level-(i+ 1)

components using the approach described above. We call component γ the parent

of these up to three level-(i + 1) components, and each of these up to three level-

(i + 1) components is a child of γ. A component that has a single node is called a

base component and is not partitioned further. Hence, the recursion contains O(lg n)

levels in total.

Suppose that query path Px,y is contained entirely within a level-t component γ

but not in any level-(t+1) components. This means that Px,y contains the centroid of

γ. Therefore, we can find a 2-approximate of |C(Px,y)| using the data structure D(γ),

provided that the preorder ranks of x and y in γ are known. To locate component γ

and then to compute the preorder rank of x and y in it, we define a component tree

CT . A component tree is a 3-ary tree in which each node represents a component

and the edges represent the parent-child relationship between components. More

specifically, a node v at level l of CT represents a level-l component Cv, where l starts
from 0. A node v of CT is the parent of another node u iff component Cv is the parent
of component Cu. Among the nodes that share the same parent in CT , the relative

order between them does not matter, so we order them arbitrarily. The height of CT
is bounded by O(lg n), and each leaf in it represents a base component. Since each

internal node has at least two children, CT has O(n) nodes in total.

At each internal node v of CT , we build an array SP(v) of length |Cv|, in which

SP(v)[i] is set to be d if the i-th node (in preorder) in Cv is stored in the d-th child

component of v in the next level. Then we represent SP(v) using Lemma 33 to support

rank′. Since v can have at most 3 children, the alphabet size of SP(v) is constant.

Therefore, SP(v) is represented in O(| SP(v)|) bits. See Figures 5.5 and 5.6 for an

example. With these data structures, we can support queries over arbitrary paths

and achieve Lemma 39.

Lemma 39 Let T be an ordinal tree on n nodes in which each node is assigned a

color. A data structure of O(n) words can be constructed in O(n lg n) time to support

2-approximate colored path counting over T in O(lg n) time.
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Figure 5.5: An example of a component tree. The component tree in the figure repre-
sents a centroid decomposition of the binary tree T̃ presented in Figure 5.4(b). Each
node of the component tree represents a connected component of T̃ . For illustrative
purposes, we explicitly draw these components as well. Within each component, the
label on each node is its original preorder rank in T̃ , and the gray node represents
the selected centroid. Consider the query path between nodes labeled 8 and 12 in T̃ .
The component labeled e, as the LCA of the base components that represent nodes
labeled 8 and 12, contains the query path, and the pre-selected centroid of e is on the
query path.

Proof. Given a node i ∈ T̃ , let π denote the path from the root of CT to the leaf of

CT representing the base component that contains i, and let πl denote the node in π

whose depth is l. First, we show how to locate πl and to compute the preorder rank of

i in component Cπl for l = 0, 1, 2, . . .. The procedure proceeds as follows: We start at

the root π0 of CT . The preorder rank of i in Cπ0 is i, and π1 is the SP(π0)[i]-th child of

π0, following the definition of array SP(π0). In general, given that the preorder rank

of i in Cπl is j, one can find node πl+1, which is the SP(πl)[j]-th child of πl. Since tree

extraction preserves preorder, the preorder rank of i in Cπl+1
is rank′(SP(πl), j) − 1.

Each rank′ query takes constant time, so this procedure uses constant time per level

of CT .

Since each node of T stores the preorder rank of its corresponding node in T̃ , to
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Figure 5.6: The SP’s constructed for the component tree presented in Figure 5.5.
Consider the query path between the endpoints labeled 8 and 12 in T̃ . The entries
of the SP arrays at each level that we examine in a top-down traversal to reach the
base clusters for nodes 8 and 12 are highlighted in red.

answer a query, it is sufficient to compute a 2-approximate of |C(Px,y)| for a query

path Px,y in T̃ . This can be done by performing the top-down traversals of CT
described in the previous paragraph for x and for y simultaneously until we reach the

lowest level, l, of CT such that x and y are contained in the same level-l component

γ. This process also gives us the preorder ranks of x and y in γ, which allows us to

query D(γ) to find a 2-approximate answer. Since CT has O(lg n) levels, the query

algorithm uses O(lg n) time.

To analyze the space cost, observe that the total number of nodes in the com-

ponents at the same level is at most the number of nodes of T̃ , which is 2n. The

component tree contains O(lg n) levels, and all D(γ)’s and SP(v)’s at the same level

use O(n) bits, for a total of O(n lg n) bits, or O(n) words. The O(n)-node component

tree CT itself occupies another O(n) words of space. Therefore, the total space cost

is O(n) words. The data structure at each level can be constructed in linear time, so

the overall construction time is O(n lg n).

5.3.3 Speeding up the Query

To further improve the query efficiency in Lemma 39, observe that two procedures

introduced before require O(lg n) time for a query Px,y in T̃ : The first locates the

lowest component γ in CT that contains both nodes x and y, and the second computes

the preorder ranks of x and y in γ. Previously, both procedures proceed in the same

top-down traversal of CT . Now, we perform them separately. For the first procedure,
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observe that the node representing component γ in CT must be the lowest common

ancestor of the two leaves of CT representing the base components that contain nodes

x and y, respectively. To locate γ in constant time, we can represent CT using the

data structure of Lemma 2 to support LCA in O(1) time and store with each node

x of T̃ a pointer to the base component that contains x. This incurs O(n) words of

space and O(n) preprocessing time. To improve the second procedure, we model it

by defining an operation, preorder(v, x), as follows: Given a node v of CT and a tree

node x of T̃ that appears in component Cv, preorder(v, x) returns the preorder rank

of node x in Cv.

To support preorder(v, x), we borrow ideas from the solutions to the ball inheri-

tance problem, introduced in Section 2.3 and achieve various trade-offs. Let π denote

the path between the root of CT and the leaf representing the base component that

contains x, and let πl denote the node in π whose depth is l. Then each component Cπl
contains a copy of node x. Array SP’s in Section 5.3.2 work as pointers between these

copies in components at consecutive levels. The algorithm in the proof of Lemma 39

follows these pointers one by one till we locate x in Cv, which requires O(lg n) time.

To speed it up, we construct skipping pointers which allow us to jump over many

levels at one time: Suppose that we have computed the preorder rank, i, of node x in

component Cπl , and we need to locate x in Cπl+∆
for some positive integer ∆. What

we can do is to build an array SP∆(πl) with length |Cπl |, in which SP∆(πl)[k] is set to

d if the k-th node in preorder in Cπl appears in the component represented by the d-th

descendant of πl at depth l+∆ of CT . If this node is not stored in any level-(l+∆)

descendant component of πl (this may happen when CT is not a complete tree), then

SP∆(πl)[k] = −1. Since πl has up to 3∆ descendants at level l +∆, we can represent

SP∆(πl) in O(|Cπl |∆) bits by the data structure of Lemma 33 to support rank′. Then

rank′(SP∆(πl), i) − 1 is the preorder rank of node x in Cπl+∆
and can be computed

in O(1) time. We regard SP∆(πl) as an array of skipping pointers that connect the

nodes in component Cπl to the nodes in level-(l +∆) descendant components of πl.

If an array of skipping pointers map nodes in a level-l component to nodes in level-

(l +∆) descendants of this component, then we say that the length of each of these

skipping pointers is ∆. Furthermore, based on previous discussions, storing a skipping

pointer of length ∆ incurs a space cost of O(∆) bits. To achieve good time/space
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Level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5.7: An example of the first traversal strategy. In this example, the component
tree CT has 17 levels, and parameter B is set to be 4. The arrows represent the
skipping pointer. By following 6 skipping pointers, one can reach level-15 from the
root level.

trade-offs, we design two strategies to decide what skipping pointers to construct for

each level. Henceforth, let h = O(lg n) denote the height of CT . Let B ∈ [2, h] be an

integer parameter to be chosen later, and let τ = logB h; for simplicity, assume that

τ is an integer.

In the first strategy, consider level l of the component tree CT . For each integer

i ∈ [0, τ−1] such that l is a multiple of Bi but l+Bi is not a multiple of Bi+1, we build

an array of length Bi skipping pointers for each level-l component. See Figure 5.7

for an example. Since at most h
Bi levels of CT have skipping pointers of length Bi,

the total space cost of all the skipping pointers constructed using this strategy is∑︁τ−1
i=0 (

h
Bi ) ·O(nBi) = O(n lg n logB lg n) bits, which is O(n logB lg n) words of space.

To use these skipping pointers to compute preorder(v, x), let bτ−1bτ−2 · · · b0 denote
the base-B expression of the depth3, lv, of node v in CT . That is, each bi is in [0, B−1]

and lv =
∑︁τ−1

i=0 biB
i. We then compute preorder(v, x) in τ phases. In phase-1, we start

from the root of CT and follow length Bτ−1 skipping pointers bτ−1 times. Each time

after we follow a skipping pointer to reach a level of CT , we use level anc to locate the

ancestor, u, of v at that level. We then follow the skipping pointers in SPBτ−1(u) to

continue this phase. At the end of phase-1, we have located the ancestor of v at level

bτ−1B
τ−1 of CT and computed the preorder rank of node x in the component that

this ancestor represents. In phase-2, we start from this ancestor and follow length

Bτ−2 skipping pointers bτ−2 times, and so on. In general, in phase-p, we follow length

Bτ−p skipping pointers bτ−p times, reach the ancestor of v at level
∑︁p

j=1 bτ−pB
τ−p

of CT and compute the preorder rank of node x in the component represented by

this ancestor. Thus, we reach v and compute the answer after τ phases. Since

we follow at most B − 1 skipping pointers in each phase, the total running time is

3Note that a component tree has O(lg n) depths and the base-B expression of any depth can be
encoded in O(logB× logB lg n) = O(lg n) bits. Storing the base-B expression of each of the O(lg n)
depths uses O(lg n) words of space overall.
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Level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5.8: An example of the second traversal strategy. In this example, the com-
ponent tree CT has 17 levels, and parameter B is set to be 4. The arrows represent
the skipping pointer. By following 2 skipping pointers, one can reach level-15 from
the root level.

O(Bτ) = O(B logB lg n). Setting B = lgλ n for an arbitrary constant λ ∈ (0, 1) yields

a solution with O(n) space and O(lgλ n)-time support for preorder(v, x).

The second strategy improves the running time of the above process by con-

structing a different set of skipping pointers so that each phase can be completed by

following exactly one skipping pointer. Let l be an arbitrary level of CT . For each

integer i ∈ [0, τ − 1] such that l is a multiple of Bi, we construct for level-l clusters

skipping pointers of length Bi−1, 2Bi−1, . . . , (B−1)Bi−1. See Figure 5.8 for an exam-

ple. In the first strategy, in phrase-p, for each p ∈ [τ ], we proceed bτ−p hops. Now,

with these new skipping pointers, we need only one hop, following a skipping pointer

of length bτ−pB
τ−p. As a result, the total query time is improved from O(Bτ) to

O(τ) = O(logB lg n). The total space cost of these skipping pointers is then at most∑︁τ−1
i=0

h
Bi · (B− 1)O(nBi) = O(nB lg n logB lg n) bits, which is O(nB logB lg n) words.

Setting B = 2 bounds the space cost by O(n lg lg n) and query time by O(lg lg n),

while setting B = lgλ n bounds the space cost by O(n lgλ n) and query time by O(1).

With these three trade-offs for preorder, we have the following theorem:

Theorem 6 Let T be an ordinal tree on n nodes in which each node is assigned a

color. A data structure of s(n) words can be constructed in O(n lg n) time to support

2-approximate colored path counting over T in q(n) time, where a) s(n) = O(n) and

q(n) = O(lgλ n); b) s(n) = O(n lg lg n) and q(n) = O(lg lg n); or c) s(n) = O(n lgλ n)

and q(n) = O(1) for any constant 0 < λ < 1.

5.4 (1 ± ϵ)-Approximate Colored Path Counting

Our solution to (1± ϵ)-approximate colored path counting consists of three parts: a

structure for colored path reporting, which lists the set of distinct colors assigned to
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the nodes in a query path, a structure for 2-approximate colored path counting and

a refinement structure that reduces (1± ϵ)- to 2-approximate colored path counting.

We first present in Section 5.4.1 a linear space data structure that solves colored

type-2 path counting in optimal time, thereby solving the colored path reporting

problem. In the remaining sections, we show the new data structure solution to

(1± ϵ)-approximate colored path counting.

In Section 5.4.2, we describe a random sampling technique that applies to node

colors. Then we construct a tree extraction of the input tree based on the sampled

colors, which uses less space cost in the expected case, comparing to the original

input tree. More importantly, the tree extraction can be used for finding an (1± ϵ)-

approximate answer under certain conditions. The conditions will be specified in the

same section.

In Section 5.4.3, we will see a solution that is only applicable to canonical paths. A

canonical path is a path in which the number of distinct colors assigned to the nodes

in the path is [κ/2, 2κ], where κ is an integer parameter specified in the preprocessing

stage. The tree extraction constructed on the sampled color set is adopted. Recall

that a query path Px,y in the original input tree has a counterpart, Px′,y′ , in a tree

extraction. We will see how to use |C(Px′,y′)| to compute an (1 ± ϵ)-approximate

value of |C(Px,y)| with high probability. The probability is guaranteed by the Chernoff

bound stated as Lemma 37. To find |C(Px′,y′)|, we apply the solution to colored type-

2 path counting described in Section 5.4.1. We also provide a verifier, the algorithm

that computes the number of distinct colors for all paths, stated as Lemma 36, and

turn thisMonte Carlo data structure to a Las Vegas data structure, so that the results

returned by our data structure are always correct. Unfortunately, the preprocessing

time bound of our data structure is still non-deterministic.

In the last subsection, we generalize the data structure solution, described in

Section 5.4.3, for arbitrary query paths, and we will see a reduction from (1± ϵ)- to

2-approximate colored path counting.

5.4.1 Colored Type-2 Path Counting in Optimal Time

We describe a data structure for colored type-2 path counting, which implies the

support for colored path reporting. It turns out the colored type-2 path counting
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problem is decomposable as shown as Observation 1.

Observation 1 Let T denote a labeled ordinal tree on n nodes, each of which is

assigned a color from {0, 1, . . . , C − 1}. Consider a query path, P , of T . Suppose

that P is partitioned into a constant number of subpaths, and that the answer to the

colored type-2 path counting query over each subpath is known. Then the answer to

the colored type-2 path counting query over P can be computed in O(occ) time, where

occ denotes the number of distinct colors in P , with the help of an O(C)-word array

with all entries initially set to 0 during preprocessing.

Proof. During preprocessing, we construct an array, V , of C integers with each

entry set to 0. This is the array mentioned in the lemma. Note that array V is

constructed once and will be used by all the queries in the future.

Suppose that the answer to the colored type-2 path counting query over each

subpath is given as a list of pairs, in which each entry (c, fc) stores a color c that

occurs in this subpath as well as its frequency fc. For each entry, (c, fc), in this list,

we increase V [c] by fc. After scanning these pairs for all the subpaths, each non-zero

entry V [c] of V corresponds to a color c that appears in P and stores its frequency

in P . To find these non-zero entries of V , we iterate through the answers for each

subpath a second time. For each pair (c, fc) in the answer, if V [c] is non-zero, we

return (c, V [c]) and set V [c] to zero. All the pairs returned in this procedure form the

answer to the colored type-2 path counting query over P . Furthermore, it maintains

the invariant that all the entries of V are reset to 0 when the procedure ends.

For each color c ∈ C(P ), entry V [c] is updated a constant number of times, as

there are only a constant number of subpaths. Therefore, the overall running time is

O(occ).

Let Px,x′ denote any query path such that x′ is an ancestor of x. We first consider

colored type-2 path counting for Px,x′ . The following is our main strategy: For each

color c ∈ C(Px,x′), we locate the lowest node, ℓc, in Px,x′ whose color is c, as well as

the highest node, hc, in Px,x′ colored in c. Then the frequency of color c in Px,x′ is

depthc(ℓc)− depthc(hc) + 1. If we precompute the value of depthc(v)(v) for each node

v, then, after locating ℓc and hc, we can compute the frequency of color c in Px,x′
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immediately. Lemma 35 can locate ℓc’s for all c ∈ C(Px,x′) in O(|C(Px,x′)|) time.

Next, we discuss how to find all hc’s efficiently.

Lemma 40 Let T denote a labeled ordinal tree on n nodes, each of which is assigned

a color from [C]. A data structure of O(n) words of space can be constructed in

O(n lg lg n) time to support finding hc’s of any path Px,x′ in O(|C(Px,x′)|) time, where

x′ is an ancestor of x.

Proof. It turns out that the problem of finding all hc’s can be reduced to path

minimum queries, which ask for a node with the minimum weight in a query path.

The idea is borrowed from the chaining approach [62], which was also used for colored

path counting [44]. For this reduction, we assign a weight w(u) to each node u ∈ T

as follows: If c(u) does not appear in P⊥,parent(u), then w(u) is set to −1; otherwise,

w(u) is set to be depth(parentc(u)(u)), i.e., the depth of the lowest proper ancestor of

u that is colored in c(u). In addition, w(⊥) is set to be −1. Observe that for each

node v in Px,x′ , if its weight is less than depth(x′), then color c(v) does not appear in

Pparent(v),x′ , so v is hc(v). Therefore, finding all hc’s is equivalent to finding in Px,x′ all

nodes whose weight are less than depth(x′), for which we can use a path minimum

query structure. The algorithm proceeds as follows: We find the node, y, with the

smallest weight in Px,x′ . Due to the way that weights are assigned, the inequality

w(y) < depth(x′) always holds, and we report y. Next, consider the two disjoint

subpaths that Px,x′ \{y} consists of, i.e., Pparent(y),x′ and Px,y \{y}, and for either of

them, perform a path minimum query. If the minimum weight of a subpath, P, is no

less than depth(x′), then the weights of the nodes in this subpath are all greater than

or equal to depth(x′). In this case, we do not report any node in this subpath and

return. Otherwise, report the minimum-weight node z. Then perform this process

recursively over the two disjoint subpaths whose union is P \{z}. The total number

of path minimum queries we perform is O(|C(P(x, x′))|).
In the data structure part, we represent T inO(n lgC) bits using the data structure

of Lemma 2 for fast navigation. As a result, depthc(v)(v) can be computed inO(lg lgC)

time for any node v, so precomputing these values for all nodes uses O(n lg lgC) time

in total and storing these values requires O(n) words of space. It remains to assign

weights to the nodes of T and to build the data structure over the node weights for
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path minimum queries. To assign node weights, we perform a preorder traversal of

T . Each time a node v is visited, we locate v′ = parent(v) and perform a colored

path emptiness query to find out whether c(v) appears in Pv′,⊥. If it does not, set

w(v) = −1; otherwise, set w(v) = parentc(v)(v). Each colored path emptiness query

and each parentα(v) query takes O(lg lgC) time by the data structure of Lemma 2, so

assigning weights to all n nodes uses O(n lg lgC) time. To answer each path minimum

query in O(1) time, the linear data structure given in [12, Theorem 1.1(a)] is applied,

which can be constructed in o(n lg lg n) time. In the end, the overall preprocessing

time is bounded by O(n lg lgC)+o(n lg lg n) = O(n lg lg n), and the overall space cost

is O(n) words.

Note that the order in which we report the hc’s by the data structure of Lemma

40, differs from the order in which ℓc’s are reported by the data structure of Lemma

35. In the proof of Lemma 41, we show how to match hc to ℓc for the same color c

efficiently and also extend this method to general query paths.

Lemma 41 Let T be an ordinal tree on n nodes with each node assigned a color from

{0, 1, . . . , C − 1}, where C ≤ n. A data structure occupying O(n) words of space can

be constructed over T in O(n lg n) time to support colored type-2 path counting in

O(occ) time, where occ denotes the number of distinct colors in a query path.

Proof. The data structure part is straightforward. We apply the linear space data

structures shown in Lemmas 35 and 40, respectively. In addition, we construct an

array, V , of C integers with each entry set to 0. Overall, the space cost of our data

structures is O(n) words, and the construction requires O(n lg n) time, bounded by

building the data structure of Lemma 35.

Let Px,y denote an arbitrary query path. To answer the query, we first locate

u = LCA(x, y) in constant time. Nodes x, u and y together partition Px,y into three

pairwise disjoint subpaths, Px,x′ , Pu,u and Py,y′ , where x
′ and y′ denote the children

of u in Px,u and Py,u, respectively. Next, we show how to answer the colored type-2

path counting query over Px,x′ . As defined before, ℓc and hc denote the lowest and

highest nodes colored in c in Px,x′ for any color c ∈ C(Px,x′), and all ℓc’s and hc’s can

be computed in O(|C(Px,x′)|) time, but the order in which all ℓc’s are reported differs

from the order in which all hc’s are reported. To compute the answer in optimal time,
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each time we compute a ℓc, we retrieve the precomputed depthc(ℓc) and store it in

entry V [c]. Then, for each hc, we return (c, V [c]−depthc(hc)+1). The pairs returned

form the answer to the colored type-2 path counting query over Px,x′ , and this process

uses O(|C(Px,x′)|) time. The colored type-2 path counting query for subpath Py,y′

can be answered in a similar way, and it is trivial to answer the query over Pu,u.

Finally, to find the answer for Px,y, we merge the answers for all subpaths, which

uses O(occ) time by Observation 1. Therefore, the overall query time is bounded by

O(occ).

Remark. Our (1 ± ϵ)-approximate colored path counting structure only needs

a component that supports colored path reporting in O(occ) time. Thus, Lemma 35

is already sufficient. Here we prove Lemma 41 not only because it supports the

more powerful colored type-2 path counting queries, but also because our techniques

imply a simple optimal solution to path colored reporting: Given Px,x′ , we compute

all hc’s (without computing ℓc’s) and report their colors, and this solution can be

generalized to arbitrary query paths using the same approach we just described. Our

data structure is simpler than the structures of Lemma 35 which use hive graphs and

point location (to report ℓc’s in the order needed for other results in [23]). Henceforth,

when we apply Lemma 41 to support colored path reporting, we mean to construct

this simple solution only.

5.4.2 Random Sampling

Our solution, to be presented later, to (1 ± ϵ)-approximate queries, combines the

techniques, random sampling and tree extraction. The details can be found as follows:

Set θ = 6(c1+3) lgn
ϵ2 lg e

, where e denotes Euler’s number and c1 ≥ 1 is an arbitrary

positive constant. Let κ ∈ (θ, n] be an integer parameter to be chosen later, and

define M = θ/κ. We create a random color set C ′ by choosing each color that

appears in T independently at random with probability M. Then we construct a

tree extraction T ′ from T by removing nodes whose colors are not in C ′ using the

approach described in Section 5.2.2. All the nodes in T ′ are assigned their original

color in T except for the dummy root; if a dummy root is added, it is uncolored. For

each color c ∈ {0, · · · , C − 1}, let Xc denote a random variable indicating whether
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color c is sampled: Xc is set to 1 if c has been sampled and 0 otherwise. Thus,

Pr[Xc = 1] = M. Furthermore, for an arbitrary path Px,y in T , we define a random

variable Xx,y =
∑︁

c∈C(Px,y)
Xc. Lemma 42 states the conditions under which Xx,y/M

is a (1± ϵ)-approximate of |C(Px,y)| with high probability.

Lemma 42 Consider an arbitrary path Px,y in T . If occ ≥ κ /2, where occ denotes

|C(Px,y)|, then Pr[(1− ϵ) occ ≤ Xx,y

M
≤ (1 + ϵ) occ] > 1− 2

nc1+3 .

Proof. Let µ be E[Xx,y]. Following the Chernoff bound in Lemma 37, we observe

that Pr(|Xx,y − µ| > ϵµ) ≤ 2e−µϵ
2/3 for any 0 < ϵ < 1. Since µ = occ ·M and

κ /2 ≤ occ, we have

Pr[|Xx,y − occ ·M | > ϵ · occ ·M] ≤ 2e− occ ·M ϵ2/3

≤ 2e
−κ

2
· 6(c1+3) lgn

κ ϵ2 lg e
· ϵ

2

3

= 2elnn
−(c1+3)

= 2 · n
1

c1+3 .

Therefore, Pr[(1− ϵ) occ ≤ Xx,y

M
≤ (1 + ϵ) occ] > 1− 2

nc1+3 .

5.4.3 Approximate Colored Path Counting over Canonical Paths

Now, we are ready to present our data structure for (1± ϵ)-approximate colored path

counting queries. To use Lemma 42 and also due to other considerations, we call a

path in T canonical if the number of colors that appear in the path is in [κ /2, 2κ], for

an integer ⌈θ⌉ ≤ κ ≤ C/2 to be decided later. In this section, we solve the problem

for canonical paths, and then generalize our solution to be workable for arbitrary

paths in the next section.

Lemma 43 Let T be an ordinal tree on n nodes represented by the data structure

of Lemma 2. With success probability more than 1− 1
nc1+1 , one can construct a data

structure in O(n lg n) worst-case time to answer (1 ± ϵ)-approximate colored path

counting queries over canonical paths in O(ϵ−2 lg n) worst-case time. The space cost

is O(n ·M+n/ lg n) words in the expected case (and O(n) words in the worst case).
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Proof. First, we present the data structures. As described in Section 5.4.2, we

choose a random color set and construct a tree extraction T ′ consisting of nodes with

the sampled colors. Tree T ′ has O(n ·M) expected number of nodes but O(n) nodes

in the worst case. We represent T ′ by the data structure of Lemma 2 in O(|T ′| lgC)
bits to support fast navigation. We also construct the data structure of Lemma 34

over T and T ′ to support decompose(x, y) in constant time; the data structure uses

O(n) bits which is O(n/ lg n) words. Finally, we construct in O(n lg n) time in the

worst case the linear space data structure for colored path reporting queries over T ′

by applying Lemma 41. The overall space cost is O(n · M+n/ lg n) words in the

expected case and O(n) words in the worst case. The construction time is bounded

by O(n lg n).

To describe the query algorithm, let Px,y be a canonical query path. Since

|C(Px,y)| ≥ κ /2, Xx,y/M is a (1±ϵ)-approximate of |C(Px,y)| with probability greater

than 1− 2
nc1+3 following Lemma 42. Since M is given in preprocessing, we need only

compute Xx,y. Let x
′ and y′ be the nodes of T ′ returned by decompose(x, y) in O(1)

time. If x′ and y′ are null, no color in Px,y has been sampled, so we set Xx,y to

be 0. Otherwise, Xx,y is either |C(Px′,y′)| or |C(Px′,y′)| − 1, and we can determine

which case it is by performing these steps: If the color of z = LCA(x, y) in T is

sampled, then its corresponding node, z′, in T ′ belongs to Px′,y′ . In this case, there

is a one-to-one correspondence between the nodes in Px′,y′ and the nodes in Px,y

whose colors are sampled, so Xx,y = |C(Px′,y′)|. If the color of z is not sampled,

then the node z′′ = LCA(x′, y′) in T ′ does not correspond to z, but all other nodes

in Px′,y′ correspond to nodes with sampled colors in the query path. Then there are

two sub-cases to be considered, depending on whether the color of z′′ also happens

to appear in Px′,y′ \{z′′}. If it does, then we have Xx,y = |C(Px′,y′)|, and otherwise,

Xx,y = |C(Px′,y′)| − 1. Navigational operations such as LCA can be performed over

T and T ′ in constant time, and whether c(z′′) appears in Px′,y′ \{z′′} can be tested

by two path emptiness queries in O(lg lgC) time. Therefore, if we know the value of

|C(Px′,y′)|, we can compute Xx,y in O(lg lgC) extra time.

It remains to show how to compute |C(Px′,y′)|. To do it, observe that if Xx,y/M is

a (1± ϵ)-approximate, then Xx,y ≤ (1 + ϵ) ·M ·|C(Px,y)| ≤ (1 + ϵ) ·M ·2κ. Since Xx,y

is at least |C(Px′,y′)| − 1, we have |C(Px′,y′)| ≤ (1 + ϵ) ·M ·2κ+1. With this, we can
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apply Lemma 41 to report the distinct colors in C(Px′,y′), and instead of reporting all

these colors, we stop when the number of reported colors reaches (1+ ϵ) ·M ·2κ+2. If

this happens, we terminate our query algorithm with failure. Otherwise, the number

of colors reported is |C(Px′,y′)|. Since (1+ ϵ) ·M ·2κ+2 = O( 1
ϵ2
lg n), this process uses

O( 1
ϵ2
lg n) time.

By Lemma 42, for an arbitrary query path, our data structure fails to returns a

correct answer with probability Pr[|X
M
− occ | > ϵ · occ] < 2

nc1+3 . Since there are
(︁
n
2

)︁
different query paths, the probability of constructing a data structure that answers

all queries correctly is more than 1−
(︁
n
2

)︁
· 2
nc1+3 > 1− 1

nc1+1 .

Next, we consider finding a data structure that occupies O(n ·M+ n
lgn

) words in

the worst case and can always answer correctly for canonical paths. Our approach,

presented in the proof of Lemma 44, is to keep resampling colors and building the

data structure of Lemma 43 for the sample, until such a data structure is found.

Lemma 44 Let T be an ordinal tree on n nodes represented by the data structure

of Lemma 2. A data structure occupying O(n ·M+n/ lg n) extra words in the worst

case can be constructed in O(n2 lg lgC) expected time to support (1± ϵ)-approximate

colored path counting over canonical paths in O(ϵ−2 lg n) worst-case time.

Proof. We first analyze how many tries we need until such a data structure is built.

Each try could fail in two ways: Either the data structure constructed returns an

incorrect answer for at least one canonical query path, or it uses more than O(n ·
M+n/ lg n) words. By Lemma 43, the former happens with probability less than

1
nc1+1 . For the latter, we bound the probability that the extracted tree T ′ has more

than 3 · n · M nodes. Due to the possible addition of a dummy root, the expected

number of nodes in T ′ is at most n ·M+1. Then, by Markov’s inequality, Pr[|T ′| ≥
3 · n · M] ≤ n·M+1

3·n·M ≤ 2
3
. Therefore, the overall probability of failure for a single try

is less than 1
nc1+1 +

2
3
, where c1 ≥ 1. Hence, the expected number of tries is at most

1/(1− ( 1
nc1+1 +

2
3
)) = O(1) for sufficiently large n.

The time spent on each try is dominated by the time of verifying whether the

structure built in this try can answer queries over all possible canonical paths correctly.

This can be done inO((n2+|T ′|2)·lg lgC) = O(n2 lg lgC) time with the help of Lemma
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36. As discussed in the proof of Lemma 43, up to two colored path emptiness queries

may be performed for each path in T ′, and this cost is absorbed in the above bound.

Since the expected number of tries is O(1) and each tries uses O(n2 lg lgC) time, this

lemma follows.

5.4.4 Approximate Colored Path Counting over Arbitrary Paths

To solve queries over arbitrary paths, we first represent T by the data structure of

Lemma 2 to support navigational operations. We also construct the data structures

of part a) of Theorem 6 to support 2-approximate colored path counting over T . In

addition, we build the data structures of Lemma 41 to support colored path reporting.

These data structures use O(n) words and can be built in O(n lg n) time.

Then, for each i ∈ [⌈lg θ⌉, ⌈lgC⌉), let κi be 2i. We refer to a query path as a

tier-i canonical path if the number of distinct colors that appear in it is in [κi /2, 2κi].

For each possible value of i, we apply Lemma 44 to construct a data structure DSi
to support (1 ± ϵ)-approximate colored path counting over tier-i canonical paths.

Data structure DSi uses O(nθ/ κi+n/ lg n) = O(nθ/2i + n/ lg n) words in the worst

case and can be constructed in O(n2 lg lgC) expected time. Summing up over all

i ∈ [⌈lg θ⌉, ⌈lgC⌉), the overall space cost of these data structures is O(n) words in the

worst case, and they can be constructed in O(n2 lgC lg lgC) expected time. Theorem

7 summarizes our final result.

Theorem 7 Let T be an ordinal tree on n nodes with each node assigned a color

from [C], where C ≤ n. A data structure of O(n) words of space in the worst case

can be constructed in O(n2 lgC lg lgC) expected time to support (1 ± ϵ)-approximate

colored path counting in O(ϵ−2 lg n) worst-case time.

Proof. It remains to present the query algorithm. Let Px,y denote the query path.

We first use the colored path reporting structure to report up to θ distinct colors that

appear in Px,y. If this step reports less than θ colors, then we return the number

of colors reported, taking O(ϵ−2 lg n) time. Otherwise, occ > θ. In this case, we

compute a 2-approximate result, occa in O(lgλ n) time. Then, occ ≤ occa ≤ 2 occ.

Observe that, for any i ∈ [⌈lg θ⌉, ⌈lgC⌉), if κi ≤ occa ≤ 2κi, then κi /2 ≤ occ ≤ 2κi.
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This allows us to perform a binary search in O(lg lg n) time to find the value of i

such that Px,y is a tier-i canonical path. Finally, by querying DSi, we can find a

(1± ϵ)-approximate of occ in O(ϵ−2 lg n) worst-case time.

5.5 Conclusion

In this chapter, we saw data structures that solve approximate colored path counting

under two different approximate measures, i.e., 2- and (1±ϵ)-approximate. In terms of

2-approximate colored path counting, we achieve three different time-space tradeoffs,

which have O(n) words of space usage and O(lgλ n) query time, O(n lg lg n) words of

space usage and O(lg lg n) time and O(n lgλ n) words of space usage and O(1) time,

respectively. For (1± ϵ)-approximate colored path counting, we design a linear space

data structure that supports each counting query in O(ϵ−2 lg n) time.

For 2-approximate queries, our work has shown that the strategy of using cen-

troid decomposition for colored path counting not only works for exact queries as in

Chapter 4 but also works for approximate queries. We have also seen how to use

succinct data structures carefully to achieve better time-space tradeoffs. For (1± ϵ)-

approximate queries, we apply the technique, tree extraction, which has been shown

to be a powerful tool to answer various types of path queries exactly such as path

counting [48], path reporting [46], path medium [48] and colored path counting [44].

Our work has shown that it can be further combined with random sampling to design

approximate solutions.

However, there are several problems left to be solved in the future. When a

path contains ϵ−2 lg n distinct colors, answering the (1 ± ϵ)-approximate query for

this path requires Ω(ϵ−2 lg n) time in our solution. In this case, using colored type-

2 path counting queries, we find the exact number of distinct colors, instead of an

approximate number. Due to this, the overall query time of (1 ± ϵ)-approximate

colored path counting is bounded by Θ(ϵ−2 lg n) in the worst case, although each

2-approximate query used in our solution takes as little as O(lgλ n) time. It is worth

looking into a faster solution to (1± ϵ)-approximate colored path counting over paths

that contain no more than O(ϵ−2 lg n) distinct colors.

To guarantee that the query algorithm always returns a (1± ϵ)-approximation, we
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need spend O(n2 lgC lg lgC) time on the preprocessing. An open problem is whether

the overall preprocessing time can be further improved.



Chapter 6

Conclusion and Future Work

In this chapter, we conclude this thesis by discussing all the results achieved in the

previous three chapters and proposing open problems.

6.1 Results

In Chapter 3, we design three different data structures for solving the colored 2D or-

thogonal range counting problem, resulting in four time-space tradeoffs, which have

O(n lg3 n) words of space usage and O(
√
n lg5/2 n lg lg n) query time, O(n lg2 n) words

of space usage and O(
√
n lg4+λ n) query time, O(n lg2 n

lg lgn
) words of space usage and

O(
√
n lg5+λ n) query time, and O(n lg n) words of space usage and O(n1/2+λ) query

time. In Chapter 4, we present the data structures that solve the colored path count-

ing and path mode query problems. Our data structures are efficient in terms of query

time and the preprocessing time so that we are able to answer n colored path counting

queries in overall O(n1.4071) time and n path mode queries in overall O(n1.483814) time,

both including the preprocessing time. In Chapter 5, we consider the approximate

colored path counting problem. For 2-approximate colored path counting, we design

data structures with O(n) words of space and O(lgλ n) query time, O(n lg lg n) words

of space and O(lg lg n) time and O(n lgλ n) words of space and O(1) time, respectively.

We also present a linear space data structure that supports (1± ϵ)-approximate col-

ored path counting in O(ϵ−2 lg n) time.

As mentioned in the first chapter, the common difficulty in solving colored count-

ing is that the query is not decomposable. We manage to overcome this difficulty by

fulfilling the following principle: After dividing a query range or a query path into

subranges or subpaths, make sure that each color that appears in multiple subranges

or subpaths is counted only once. We design new techniques to guarantee this, and

by doing so, we add to the tool-set that can be used to answer colored queries.

120
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To solve the colored 2D orthogonal range counting problem, we partition the 4-

sided query range [x1, x2]× [y1, y2] into two subranges, each bounded by 3 sides, and

then we reduce colored 2D 3-sided range counting to stabbing queries over 3D canon-

ical boxes, so that the number of boxes that contain the query point, transformed by

a 2D 3-sided query range, equals to the number of distinct colors in this 2D 3-sided

query range. Using different combinations of the geometric data structures, includ-

ing segment trees, interval trees and wavelet trees, we design three different data

structures for stabbing queries. In each solution, we preprocess the input boxes and

assign them into bottom lists, and in the query procedure, we decompose the boxes

containing the query point into a bounded number of sub-lists. Unlike the solution

by Kaplan et al. [55], in which one has to make sure that each sub-list has to be

exactly the same as some bottom list predefined, ours only requires that each sub-list

is a prefix of some bottom list. This extra flexibility allows us to design a new scheme

that computes the number of distinct colors that appear in both 2D 3-sided query

ranges generated from a 2D 4-sided query range. Furthermore, this new scheme is

applicable to all our three different stabbing query data structures, resulting in three

different data structures for the colored 2D orthogonal range counting in the end.

As we have seen in Chapters 4 and 5, the technique, centroid decomposition, is

a cornerstone in our solutions to all path queries, apart from colored type-2 path

counting. Previously, He and Kazi [44] solved the colored path counting problem by

performing one-level partition of trees: One of their solutions uses an approach from

Durocher et al. [23] and the other one based on the pigeon hole principle. What’s

new in our work is that we put together two techniques, i.e., centroid decomposition

and node-marking with the pigeon hole principle. This combination appears in our

solutions to the colored path counting and the path mode query problems. By apply-

ing it, we manage to reduce the prior to the matrix multiplication and the latter to

the min-plus product. Unlike the previous solution by Kaplan et al. [56] to batched

colored 2D orthogonal range counting and the previous solution by Gu et al. [39] to

batched range mode queries, the matrices in our reductions are neither sparse nor

monotone. To resolve the difficulty in colored path counting, we use the properties

of our one-level node marking scheme to carefully reduce the problem of multiplying

these non-sparse matrices to the multiplication of two different but related matrices
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that are sparse, and to overcome the difficulty in path mode queries, we propose a

two-level marking scheme that reduces our non-monotone matrix to a related matrix

that has smaller number of different entries between each consecutive columns. As a

result, we are able to apply the sparse matrix multiplication and the three-phase algo-

rithm presented by Gu et al. [39] for the min-plus product and achieve the improved

the preprocessing time bounds in building both data structures.

In Chapter 5, we saw centroid decomposition adopted to solve approximate colored

path counting. As a recursive technique, it divides the input tree into connected

components of smaller sizes; as a result, a path Px,y is always contained within some

component and at the same time contains the pre-selected centroid of this component.

To find the preorder ranks of nodes x and y in the component, unlike the strategy

adopted in Chapter 4, in which we simply store at nodes x and y O(lg n) pointers

that point to their copies at O(lg n) recursive levels, we manage to design space-

efficient data structures that give three different time-space bounds. Namely, within

O(n), O(n lg lg n) and O(n lgλ n) words of space, we can find the preorder rank of

x in any component in O(lgλ n), O(lg lg n) and O(1) time, respectively. We believe

these data structures could find their applications in other path queries, as it can be

seen as a generalization of rank reduction on binary range trees, presented in Section

2.3. As we know, the latter has numerous applications in range searching and string

processing. Furthermore, with the restriction that all query paths contain the same

pre-selected node and are contained within a component of smaller size, path queries

can be always significantly simplified. For example, as we have seen in Lemma 38,

after adding the restriction, an index data structure that supports 2-approximate

colored path counting in optimal time only requires O(n) bits of space.

6.2 Future Work

Some open problems which aim at improving our results have been already proposed

at the end of each chapter. In this section, we discuss possible future work on closely

related problems.

In Chapter 4, we saw efficient algorithms that answer n colored path counting

queries in O(n1.4071) time and n path mode queries in O(n1.483814) time. However,

the working space of our algorithm for batched colored path counting is Ω(n1.1860)
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words. Currently, the only known solution in linear space supports each colored path

counting in O(
√
n lg lgC) time [44]. On the other hand, to path mode queries, a

linear space solution with O(
√︁
n/w lg lg n) = o(

√
n) query time has been achieved by

Durocher et al. [23]. An interesting open problem is whether we can achieve a similar

result for colored path counting, i.e., a linear space data structure that supports each

colored path counting query in O(n1/2−o(1)) time.

In Chapter 5, we described space-efficient data structures built for the components

generated after applying the centroid decomposition to a binary tree, which support

computing efficiently the preorder rank of any tree node in any component. Although

the data structure is only workable for a binary tree, it is sufficient for colored path

counting as we have seen after turning a labeled tree with unbounded degree into a

binary tree, the numbers of distinct colors in query paths remain unchanged. However,

after the transformation, we added extra colored nodes. As a result, the frequency of

a color in a path might change after the transformation. In terms of color-frequency

related problems, such as path mode queries, our solution only applies to binary

trees. We would like to see similar data structures that are workable for arbitrary-ary

labeled trees so that they could have a bigger scope of applications in path queries.

In Chapter 5, we saw a linear space data structure that supports colored type-2

path counting queries in optimal time, which can also be used for finding a α-minority

in a query path. Given a query path Px,y, a α-minority, for any α ∈ [0, 1], of Px,y is

a color that appears at least once and at most α|Px,y | times in Px,y, and a path α-

minority query returns one α-minority, if there are multiple of them. As observed by

Chan et al. [11], any set of α−1 distinct colors that appear in Px,y must has at least one

α-minority. Durocher et al. [23] described an O(n)-word space data structure that

supports path α-minority queries in O(α−1 lg lg n) time. In their solution, they report

α−1 distinct colors in Px,y. Each time a color is reported, they spend O(lg lg n) on

computing its frequency in the query path and check whether or not it is a α-minority.

Naturally, their solution supports colored type-2 path counting in O(occ lg lg n) time

by simply reporting all occ distinct colors and their respective frequencies. Although

we improve the query time for type-2 queries from O(occ lg lg n) to O(occ), our data

structure would take O(occ) time to find a α-minority, since our solution cannot

guarantee to find all the frequencies of α−1 distinct colors until it reports all occ
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distinct colors. So we would like to ask whether there is a linear space data structure

that supports path α-minority queries in O(α−1) time.
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