A CACHE-FRIENDLY BWT LAYOUT

Yansong Li

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia
July 2023

(© Copyright by Yansong Li, 2023

To my family, mentors, friends and everyone else who helped me

through all this.

i

Contents

List of Tables \%
List of Figures vi
Abstract viii
Acknowledgementso ix
Chapter 1 Introduction 1
Chapter 2 Literature Review 6
2.1 Succinct Data Structure and SDSLo 0L 6
2.2 Burrows-Wheeler Transform 7
2.3 Run Length Encoding 8
24 Suffix Array 9
2.5 Wavelet Tree 10
2.6 Block Partitioning of pBWT 11
2.7 A Lookup Table of RLBWT 12
2.8 Graph Clustering and METIS 14
2.9 Minimum Linear Arrangement 15
2.10 Linear Programming and Integer Linear Programming 16
2.11 Simulated Annealing Algorithm 16
2.12 FM-Index and Fixed Block Compression Boosting 17
2.13 A low Out-Degree Proof of the Graph Built from RLBWT Look-up
Table 18
Chapter 3 RLBWT Inversion 20
3.1 RLBWT Inversion Methodology 21
3.1.1 A Graph Building and Clustering Example 21
3.1.2 Clustering the RLBWT of Real Genome Data 23

1l

3.2 RLBWT Inversion Results 24

3.2.1 Salmonella Dataset 24
3.2.2 Human Chromosome 19 Dataset 25
3.2.3 Noisy String Dataset 28
3.3 Discussion of RLBWT Experiment 29
Chapter 4 BWT Inversion 31
4.1 BWT Inversion Methodology 31
4.1.1 Previous Approach Validation 32
4.1.2 Further Optimization of the Block Orders Inside Clusters . . . 36
4.1.3 Building the Data Structure 41
4.1.4 The Final BWT Inversion 42
4.2 BWT Inversion Results 48
4.2.1 BWT Substring Extraction with SSD 48
4.2.2 BWT Substring Extraction with HDD 51

4.2.3 BWT Substring Extraction Using Fixed Block Compression
Boosting 57
4.3 Discussion of BWT Experiment 62
Chapter 5 Conclusion 67
Bibliography 70

v

List of Tables

1.1

2.1

3.1
3.2
3.3

4.1
4.2

The blocks, BWT, LF and permuted LF of bananaband$
RLBWT Look-up table of “bananaband$”

Salmonella dataset clustering results
Human chromosome 19 dataset clustering results

The number of runs and average run lengths of noisy strings . .

New block sizes for the substring extractions

Block and superblock sizes of FBB substring extractions

14

24
26
28

23
60

List of Figures

1.1

2.1
2.2

2.3

3.1
3.2
3.3
3.4
3.5

3.6

3.7

4.1
4.2

4.3

4.4

4.5

4.6

The block partitioned graph, normal layout, and optimized lay-
out of the BWT of bananaband$
Rotations of “bananaband$”

Sorted rotations (i.e., BWM) of “bananaband$”

LF mapping of “bananaband$”

Preliminary graph clustering: step 1.
Preliminary graph clustering: step 2.
Preliminary graph clustering: step 3.
Salmonella weight change before and after METIS clustering. .

128 copies human chromosome 19 weight change before and
after METIS clustering.

256 copies human chromosome 19 weight change before and
after METIS clustering.

Noisy strings weight change with METIS clustering.

A flow chart of BWT inversion experiment.
The hierarchical clustering of Hamlet

Substring extraction using the single wavelet tree and block
wavelet trees with block size 1,500,000 bases.

Substring extraction using block wavelet trees of size 1.5 million
to 150 million with different cluster sizes (the x-axis is reversed
because it follows the number of clusters from small to big).

Substring extraction using block wavelet trees of size 5 million
and 10 million with different cluster sizes.

Substring extraction using block wavelet trees of size 1.5 million
and 15 million with different cluster sizes on HDD.

vi

21
22
23

25

26

27

29

33
35

47

49

4.7

4.8

4.9

4.10

4.11

4.12

Substring extraction using more different block sizes wavelet
trees between 1.5 million and 15 million. Notice that the right-
most 3 points in the last graph show speedups between 27%
and 29% with essentially equal block and cluster sizes.

The overall performances of substring extraction between 1.5
million to 15 million block sizes.

Comparing substring extraction with and without METIS clus-
tering.

Substring extractions using FBB wavelet trees and other wavelet
treeso

The time/space trade-off of substring extractions using FBB
wavelet trees and other wavelet trees

Substring extractions using FBB wavelet trees with different
block and superblock size combinations

vil

54

95

o6

58

59

Abstract

The Burrows-Wheeler Transform (BWT) is a widely used succinct data structure in
bioinformatics. However, one of the main concerns that researchers still face when
using BWT is its processing time due to the lack of access locality. The (Last to
First) LF mapping is derived from the BWT to facilitate backward searches, each
step of the LF mapping tends to jump to a completely different spot of the BWT,
resulting in at least one cache miss per step.

Our project endeavours to minimize the processing time of BWT through the
optimization of BWT layout. This objective is achieved by block partitioning and
rearranging the layout of the BWT. Two proxy measures were introduced to represent
the cache misses, but the reduced proxies did not correspond to an improved running
time. However, the blocked partitioned BWT representation still achieved a 50%
speedup with limited memory and a hard disk drive (HDD).

viil

Acknowledgements

First and foremost, I would like to express my sincerest appreciation to my supervisors
Dr. Travis Gagie and Dr. Norbert Zeh, for their invaluable and continuous guidance,
support, and inspiration during my master’s study. Thanks for allowing me to get
involved in the research. I would also like to extend my deepest gratitude to my
colleagues Nathaniel Brown, Sana Kashgouli, and Nicola Cotumaccio for their help
during the data generation of the experiments and companionship during research
and study.

Sincerely thanks to Dr. Benjamin Langmead, Dr. Christina Boucher and other
researchers in their groups for providing me with very valuable experiences and knowl-
edge from attending their presentations and talks. Special thanks to Dr. Dominik
Kempa and Dr. Jouni Sirén for pointing out the research directions.

Last but not least, the completion of my master’s degree would not have been
possible without the unconditional support and unparalleled love of my parents and

grandparents.

1X

Chapter 1

Introduction

Compressing large strings with small alphabets such as the human genome is an es-
sential aspect of research in the field of bioinformatics, where a string is a sequence of
characters, an alphabet is a set of distinct symbols or characters from which strings are
formed, and the human genome refers to the complete set of DNA (deoxyribonucleic
acid) in a human organism consists of A, T, C, G. According to the National Centre
of Biotechnology Information (NCBI), human chromosome 19 alone has almost 59
million bases [27]. Succinct data structures are one of the main approaches for com-
pressing large datasets while continuing to support access and other queries, and the
Burrows-Wheeler Transform (BWT) is one of the most popular techniques because
of its ability to exploit local redundancy, offer no information loss, handle repetitive
data well, allow for parallelism and random access, and remain simple and efficient in
implementation [24]. The BWT prepares an input string for lossless data compression
by restructuring it [3]. A string of characters is transformed to its BWT by listing
all the rotations in lexicographical order. This is called the Burrows-Wheeler Matrix
(BWM). The last column of the matrix is the BWT. The run length compressed
BWT (RLBWT) is a BWT that is compressed using run-length encoding, where a

“run” means a sequence of consecutive identical character [29].

Due to its satisfactory performance, different sequence aligners and data structures
were developed from BWT such as Burrows-Wheeler Aligner (BWA) [21], Bowtie [20]

and r-index [9], which index genome by employing read alignments approach.

The key primitive used in many queries on the BWT and in reconstructing a string
from its BWT is called Last-to-First (LF) Mapping. The i*" occurrence of a character
¢ in the last column of the BWM and the i** occurrence of the same character ¢ in
the first column correspond to the same occurrence in the input string [32]. The last
character of each BWM row is the character before the first character in the same

row. Thus, the text or any substring of it can be reconstructed by starting at the

2

position of its last characters in the BWT, and repeatedly jumping to the character
in the BWT that corresponds to the occurrence of the current characters in the first
column, which is called an LF step. Unfortunately, consecutive characters in the
original text tend to be stored far apart in the BWT. This causes at least one cache
miss per LF step for most LF steps [32] As a result, the inversion of the BWT and

substring extraction as part of other queries tend to be slow [7].

Our hypothesis in this thesis is to improve the access locality of LF steps through
the optimization of BWT layout using block partitioning and rearranging the blocks,
so the processing time of BWT would be minimized. This requires a data structure

to store the BWT that supports the LF steps cache efficiently.

Sirén et al. proposed a block partitioning approach to achieve better access locality
of graph operations on BWT-compressed graphs [36]. In this thesis, we investigate
whether this block partitioning approach combined with other techniques can also
speed up LF steps and, thus, pattern matching and other text-oriented operations on
the BWT. We will focus on BWT inversion as the operation whose performance to
improve. Since the bottleneck of BWT inversion is the (lack of) cache locality of LF
steps, we expect that other LF-based operations experience the same speed-up as we

observe for BWT inversion in our experiments.

During the development of our cache-efficient BWT data structure, we used two
measures of (cache) locality, the total distance of all LF steps between different clus-
ters and the total number of LF steps that cross different clusters, which are both
novel proxy measures of the number of cache misses. Our final experiments evaluate
the speed of BWT inversion using a full implementation of our data structure based

on the Succinct Data Structure Library (SDSL) [10].

A small string bananaband$ was used to demonstrate the feasibility of improving
the access locality through block partitioning and clustering. As shown in Table 1.1,
the BWT array BWT and LF steps array LE of bananaband$ were built. Then, LF
was block partitioned with a preset block size and the corresponding block numbers
(i.e., length of the LF steps array divided by the preset block size) of LF were recorded
in the permuted LF steps array P[LF|. Since the length of the string is 11, a block
size of 3 was chosen as a guess of the optimal block size. Suppose we draw a graph

whose vertices are the blocks 0 to 3 for our running example “bananaband$”, in which

blocks | i | BWT]i] | LF[i] | P[LF[i]]
0 0 d 7 2
0 1 n 8 2
0 2 n 9 3
1 3 b 5 1
1 4 b 6 2
1 5 $ 0 0
2 6 a 1 0
2 7 n 10 3
2 8 a 2 0
3 9 a 3 1
3 10 a 4 1

Table 1.1: The blocks, BWT, LF and permuted LF of bananaband$

inter-cluster edge weight=4

inter-cluster edge weight=7

Figure 1.1: The block partitioned graph, normal layout, and optimized layout of the
BWT of bananaband$

the edge (u,v) has weight equal to the total number of times LF (i) = j for ¢ in block
u and j in block v or vice versa. This graph is shown on the left of Figure 1.1 but
we omit O-weight edges for clarity. For example, edge (0,1) has weight 4 because
LF[0] =7, LF[1] = 8, LF[6] = 1 and LF[8] = 2 (see column LF[i] in Table 1.1). If we
lay the BWT out normally and consider clusters {0, 1} and {2, 3} of blocks, as shown
in the center of Figure 1.1, then the total weight of inter-cluster edges is 7, only two
LF steps are within the same cluster. On the other hand, if we permute the blocks
and consider clusters {0,2} and {1, 3} of blocks, as shown on the right of Figure 1.1,
then the total weight of inter-cluster edges is 4, then 5 LF steps are within the same
clusters, which presumably causes fewer cache misses. This suggests that permuting

BWT blocks may improve access locality.

4

Since the RLBWT provides the data compression necessary to store pangenomic
datasets [29], where a pangenomic dataset consists of a set of genome sequences that
provides a comprehensive view of the genetic diversity within a species, our primary
goal is to improve the cache efficiency of querying the RLBWT. Our experiments
revealed that, somewhat counterintuitively, the compression of the RLBW'T hurts the
cache locality of LF steps using our data structure. This makes our data structure
unsuitable for storing pangenomic datasets because pangenomic datasets take huge
amounts of space without run length compression. Therefore, the optimization target

shifted to uncompressed BWT.

We chose the 14.62 GB Douglas Fir genome as an experimental dataset for op-
timizing uncompressed BW'T, computed the improvement in the total weight of the
inter-cluster edges for block sizes between 1.5 and 15 million bases and cluster sizes
between 15 million and 1.5 billion, and tested the time to extract 5000-base substrings
on a virtual machine with 1 GB of memory on a Dell Inspiron 14-7472 with an Intel
i7-8550U processor, consisting of 8 cores running at 1.80 GHz and 16 MiB L3 cache,
1 TB ST1000LM035-1RK172 disk (hard disk drive), 8 GiB of DDR3 main memory
and a swap file of 8 GB. Comparisons of the extraction times between a single wavelet
tree of the entire Douglas Fir that represents the traditional layout of BWT and a set
of permuted block wavelet trees that represent the optimized layout were conducted.
We observed up to a 50% speedup with a block size of 9 million bases, but we also
observed up to a 30% speedup even when the block size and the cluster size were
both 15 million bases, when there should be no clustering and thus no speedup. (In
fact, the software we used still clustered even when it should not, so we re-ran the
experiment without clustering and observed the same speedup). Further experimen-
tation showed that blocking alone accounted for all or nearly all the speedups, with

clustering working in theory but not in practice.

Due to the inefficiency of clustering and the optimal block size being much larger
than we expected, another block partitioning representation of wavelet trees was
applied to substitute the block wavelet trees built by us, which was the Fixed block
compression boosting (FBB) wavelet tree by Gog et al. FBB wavelet trees employed
a two-fold block partitioning using block and superblock. Different size combinations

of block and superblock were tested and the best extraction speed was obtained with

5

blocks of 2'¢ bases and a superblock 2?* with a disparity of less than 4% compared
to the block wavelet trees. Furthermore, 2'¢ and 22* are the maximum limits of
the block and superblock sizes, the FBB wavelet trees can not outperform the block
wavelet trees with such size limits eventually. Hence, the optimal block partitioned
representation of BWT was still observed with the block wavelet trees using a block
size of 9 million bases.

The speedup that we gained from block wavelet trees is significant but under
very limited conditions. However, we still think the block partitioning approach and
the data structure that we developed could be useful when the available memory is
significantly smaller than the dataset that researchers are investigating. Furthermore,
it was unexpected that the rearrangement of BWT blocks was inefficient in practice
even though it decreased the number of inter-cluster LF steps and their distances,
but we still think that there exists a better BWT layout that offers better access
locality. Different approaches of layout optimization or different proxy measure of
cache misses could be the directions of further research of BWT layout optimization.

The structure of the rest of the thesis is as follows: Chapter 2 will provide a
review of relevant literature. In Chapter 3, we discuss our approach to (attempt
to) improve the cache efficiency of LF steps on the RLBWT including experimental
results. Chapter 4 focuses on improving the cache efficiency of LF steps on the BWT.
Finally, the thesis will conclude with a summary of the results from both experiments,

along with directions for future research in Chapter 5.

Chapter 2

Literature Review

2.1 Swuccinct Data Structure and SDSL

Succinct data structures are data structures that represent datasets efficiently while
minimizing storage space requirements, different types of succinct data structures
were used in the thesis. Jacobson et al. introduced these data structures in 1989.
They are especially beneficial for applications that require data to be processed in

real-time and stored in memory for faster access [15].

Various instances of succinct data structures have been developed. One of the
most widely used examples is the succinct trie. A trie is a tree-like data structure
used to hold a collection of strings, where each node in the tree represents the prefix
of a string within the collection, and each leaf represents the entire string [39]. The
succinct trie enables effective string searches, string insertion and deletion within
the collection. Moreover, succinct arrays and succinct bitvectors are also considered
popular succinct data structures. The succinct array is a compact variant of an array
that permits rapid access to individual array elements [10]. The succinct bitvector
permits rapid access to individual bits, as well as operations such as rank, which are
used to count the number of bits set to 1 within a given range of the vector [10]. Both

are commonly exploited in applications for data compression and retrieval.

The SDSL by Simon Gog et al. provides an assortment of succinct data struc-
tures, including succinct tries, succinct arrays, succinct bit vectors, and wavelet trees
among others [10]. The SDSL is designed for handling data structures that could be
represented succinctly or compactly, allowing for more effective memory utilization
and faster processing times. The SDSL applies to a variety of applications, including
text processing and data compression. For the majority of this project, the SDSL is
used to create wavelet trees, the BWT, and suffix arrays, which are discussed in the

following sections.

SEE=RECH =N RSN Rl R i E=A A k=
B | TN |B|Y|B|®|T| Rl

QB || T | BBl |T| R

DBV | TR B | |T|O B

B|I®| B || T| RSB || |T|®

TR BB || T RB |

DNITHO | BB | TR B

R || TN IR BT
T R LB || T BB
DI TR B |V TR B
B | TR B | |0 B

Figure 2.1: Rotations of “bananaband$”

2.2 Burrows-Wheeler Transform

The BWT is a well-known text compression and sequence analysis tool that has
become commonly recognized since Michael Burrows and David Wheeler initially in-
troduced it in 1994 [32]. The central concept of the BWT is to convert a given input
string into a new string that is more easily compressible. Specifically, it rearranges
the characters of the input string so that related characters are clustered together in
a circular manner [3]. Due to the high degree of character repeats in the rearranged
string, it may be efficiently compressed using techniques such as run-length encoding
or entropy encoding. These properties make the BWT particularly helpful for ma-
nipulating DNA or protein sequencing data in bioinformatics [3]. To compute the
BWT of the input string, all the rotations of the string are listed in a matrix form
and then sorted lexicographically to construct the Burrows-Wheeler Matrix (BWM).
Once the BWM is built, the BWT of the string can be obtained as the last column
of the BWM [32]. For instance, the rotations of “bananaband$” are listed in Figure
2.1. Next, the rotations are sorted lexicographically as shown in Figure 2.2 and the
last column is the BWT of it.

The BWT can be inverted to the original input string by using a technique known
as LF mapping [32]. The LF mapping of the previous example “bananaband$” is
shown in Figure 2.3. However, one of the disadvantages of BWT is the lack of
access locality of LF mapping completion, as each backward step tends to jump

to a completely new sector of the BWT [7]. Such a characteristic of LF mapping

F L

$ |blaln|la|ln|al|blal|n|d
ap |blaln|d|S$S|bla|n|al|m
as |mlalbla|ln|d|$|b|al|ns
as |nlalnlal|lblaln|d|$|b
as |n|d|$|bla|nlaln|alb
by lalnlaln|lal|blaln|d]|$

by |la|ln|d|$|bla|ln|a|n|a
di|$S|blaln|la|ln|lalb|alns
nlalbla|n|d|$|b|la|n]|as
nolalnlalblaln|d|$ | b|as
nyg|d|$|bla|ln|laln|al|bd]|as

Figure 2.2: Sorted rotations (i.e., BWM) of “bananaband$”

leads to poor access locality in BWT, which is one of the reasons BWT has a high
computational cost; hence, the BWT layout requires further improvement, which is

the goal of this thesis.

2.3 Run Length Encoding

Run length encoding (RLE) is an approach for lossless data compression [8]. The
input string is split into runs, which is a maximal subsequence of consecutive identical
characters. We use ¢; to represent a run, where c is a character from the alphabet of
the input string and [is the length of the run [8].

For instance, the DNA sequence “AAGGGGGGGTTTTCCC” can be encoded
as “AyG;T,Cy". The BWT of the previous example “dnnbb$anaaa” can be encoded
as “dingbo$iainias”. Every run ¢, is encoded using a fixed number of bits, d, to
represent ¢, and a fixed number of bits, e, to represent [[8]. Such a compression style
with fixed bits for the character and its length makes RLE effective for some of the
string datasets but not all of them [8]. When the input string has many long and
consecutive repetitions of characters such as “GGGGTTTT”, it will achieve a better
compression rate. For instance, if e = d = 8, storing “GGGGTTTT” would use 8
bytes, the run length compressed string “G4T,” would need only 4 bytes. However,
if the input string has little or no consecutive repetitions, then the RLE uses more
space than the uncompressed string. For example, “GTGTGTGT” shares the same
alphabet and length with the previous string but it takes 16 bytes to store its run

as b1
3

L a4 b2
(" by $ } 4

34 by 31}5
L d na}e

n4 az
4 nz as 7
n3 aa

Figure 2.3: LF mapping of “bananaband$”

length compressed form “G,T1G,T:G,T1G,T}” for e = d = 8 [§].

Since BWT tends to reorder the characters in the input string to create runs of
consecutive characters, combining RLE with BWT tends to result in a good com-
pression ratio. RLBWT was used as the first target of layout optimization in this

thesis.

2.4 Suffix Array

The suffix array is a data structure used to represent a string’s suffixes in compressed
form [23]. A suffix array of a string S is an array of integers containing the starting
positions of the suffixes of S in lexicographical order. The advantage of a suffix array
over other data structures supporting string searches, such as a suffix tree, is that it
is more space-efficient and easier to construct. Specifically, the suffix array can be
constructed in linear time O(n) and linear space O(n) [23].

Suffix arrays have been applied to support many types of string searches; one of
the primary applications of a suffix array is pattern matching. The pattern matching
problem for a string P is to identify every occurrence of P in a given text 7. Using
a suffix array over T', this can be achieved in time O(m + logn), in which m is the

length of P and n is the length of 7" [23]. This is accomplished by conducting a binary

10

search on the suffix array to find the range of suffixes containing P as a prefix [23].
The suffix array has also become a common bioinformatics tool, especially for DNA
or protein sequence alignment and pattern matching across numerous sequences [35].

In this thesis, the suffix arrays were used to build the BWT of a desired string.

2.5 Wavelet Tree

A wavelet tree is a tree-shaped succinct data structure that has been extensively
explored and employed for the effective processing and retrieval of vast quantities
of data [12]. It was first proposed and implemented by Grossi and Vitter in 2003,
and it has been intensively explored and modified since then [12]. Numerous efficient
techniques and data structures have been created for the construction and application
of the wavelet tree. The format of a wavelet tree is a binary tree that encodes a
sequence of values. Fach node of the tree divides the values into two groups and
maintains information about the size of each group. The wavelet tree provides range
searching, rank and select queries, and other data operations [12].

Wavelet tree leverages a binary tree structure to represent data, making it pos-
sible to produce condensed representations of vast datasets that can be processed
efficiently. Consequently, it facilitates the preservation of compact representations
while permitting a wide variety of operations [12]. The wavelet tree has also been
utilized in a variety of applications, including text processing, image compression, and
range searching. For this thesis, wavelet trees were used as the data structure to store
the BWT in the experiments because it offers fast access and rank queries for the
backward searches and a great compression ratio of the dataset; for example, the Dou-
glas Fir genome with 14.62 GB was compressed to 2.67 GB with a Huffman-shaped
wavelet tree using SDSL.

Despite its benefits, the wavelet tree has disadvantages. It is not always worthwhile
to build a wavelet tree of the dataset, especially for smaller ones, because it might be
complicated to construct [12]. In addition, a wavelet tree can demand a substantial
amount of memory because it saves data at each node. Hence, it could demand a
large number of disk accesses for devices when the size of the wavelet tree exceeds the
memory size. As a result, the wavelet tree is a robust and adaptable data structure;

yet, its compatibility with a particular situation is determined by its requirements.

11

2.6 Block Partitioning of pBWT

Sirén et al. improve the cache and access locality of the graph extension of the
positional BWT (pBWT) using a block partitioning approach, which they used to
efficiently index and query haplotype information [36]. According to Sirén et al.,
haplotype information is first transformed into a genome graph by dividing the hap-
lotype sequences into overlapping k-mers of length k, where k is usually within the
range of 31-63 [36]. Next, a de Bruijn graph was constructed from these k-mers.
Each node in the de Bruijn graph represented a (k — 1)-mer and edges connected
nodes that overlapped by k£ — 2 nucleotides. After that, the de Bruijn graph was sim-
plified by removing spurious nodes and edges, and by collapsing nodes with identical
sequences [36]. Such a process resulted in a genome graph, which represented the set
of possible paths through the haplotype information.

The construction of the pBW'T of the genome graph is similar to the construction
of the BWT of a string; However, instead of a single linear string, the pBWT repre-
sents the paths through the genome graph [36]. To build the pPBWT, starting from
the root of the genome graph and recursively traversing the graph in a depth-first
order. The pBWT is constructed from the beginning of the genome graph’s root
and recursively moves in a depth-first order. As each path is visited, the sequence of
symbols encountered at each position is recorded [36]. Next, the sub-pBWT of each
path is then computed, and the resulting sub-pBWT's are concatenated in the order of
the depth-first traversal to form the pPBWT [36]. However, the pPBWT of the genome
graph is computationally intensive, especially for large genomes with many complex
regions. Sirén et al. addressed this issue with the block partitioning technique.

The block partitioning approach divides the pPBW'T into fixed-size blocks, where
the block size is a parameter that can be altered based on the available memory and
the desired access locality [36]. Each block contains a contiguous range of positions in
the pBWT with no gaps between blocks. After the pPBWT is divided into blocks, the
blocks are reordered so that consecutive blocks are adjacent in memory [36]. This is
done using a permutation of the block indices that can be efficiently computed [36].

The result is a new ordering of the pBWT blocks that maximizes cache and
access locality and minimizes the number of cache misses and disk accesses during

query processing in theoretically optimal. More specifically, each block is stored in the

12

cache as a single contiguous region of memory; therefore, when querying the pBWT
for a specific region of the genome, only the block containing that region needs to be
loaded into the cache. The other blocks can be left in the main memory, reducing
the number of cache misses. In addition to reducing the number of cache misses, the
block partitioning method also reduces the memory usage of the pPBWT [36]. This
is because only the pBW'T for a single block needs to be loaded into memory at
any given time, rather than the entire pPBWT for the genome graph. This can be
especially important for large genomes, where the memory requirements for storing
the pBWT of the entire genome graph can be prohibitively high [36]. The success of
decreasing the number of cache misses of the pBWT inspired us to try the same idea
on the RLBWT and the BWT.

2.7 A Lookup Table of RLBWT

In the traditional approach of conducting backward searches a RLBW'T uses rank
queries and a sparse bit vector. This data structure can be constructed in O(loglogn)
time and O(r) space, where 7 is the number of runs in the BWT and n is the number
of character in the RLBWT [3]. Nishimoto’s lookup table improves the running time
of computing LF mapping from O(loglogn) to O(1) and keeps the same space cost
of O(r) [29].

The lookup table is derived from the RLBWT and its LF index, which is ¢; and
LF(b), where ¢ is the character of the run, [is the length of the run, and b is the
index of LF. Furthermore, LF(b) can be represented as a sequence of pairs (k|d), the
pair (k|d) indicates that LF(b) is the d*® character in the k™ run of the RLBWT,
where runs are counted starting from 1 and the characters in each run are numbered
starting from 0 [1]. For example, (2|1) in Figure 2.3 means the LF(9), which is the
second occurrence of a run of character ‘a’ at offset 1 in the L column. The lookup
table representation of the RLBWT is a table of tuples (¢, [, k, d), one tuple per run
¢;. The pair (k|d) represents the LF index of the first character = in ¢;. For instance,
the lookup table of bananaband$ is shown in Table 2.1.

The inversion of RLBWT starts with the last character of the RLBWT $, which is
the 0" character in the 4™ run. According to the lookup table, the character before

it is the O' character in the 1°* run, which is a ‘d’. Based on the entry in the 1% row

13

of the table, the character before it is the 0" character in the 6' run, which is an ‘n’.
Next, as reported in the table, the character before the entry in the 6% row is the 274
character in the 7*" run, which is an ‘a’. Now since the 7™ table entry stores LF(x)
for the O* character z in the 7' run, but the indicator currently at the 2°¢ character
in the 7*" run. We calculate the LF index of the 2"¢ character by adding 2 to the d
component of the 7*" table entry. This gets the indicator to the 3™ character in the
2" yyun. However, the second run only has a length 2. Thus, we need to cross the
boundary into the next run. The 3" character from the beginning of the 2°¢ run is
the same as the 1% character from the beginning of the 3’ run. In general, we may
be still looking at an index beyond the length of the current run. In this case, the
indicator continues skipping to the next run and decreasing the offset within the run
by the length of the current run until the offset is less than the length of the current
run. In this case, 1 < 2, so the character before ‘a’ is the first character in the 3
run, a ‘b’. According to the 3'® table row, the character before the 0" character in
the 3" run is the 0" character of the 4" run. The character before the 1% character
in the 3' run is thus the 1 character of the 4'® run. Since the 4'® run has length 1,
this is the same as the 0" character of the 5 run, an ‘a’. Its predecessor is the 0"
character of the second run, an ‘n’, and the predecessor that ‘n’ is the 0" character
of the 7*" run, an ‘a’. Then, what precedes the ‘a’ is the 1% character of the second
run, an ‘n’. What precedes that ‘n’ is the first character of the 7" run, and ‘a’. Its
predecessor is the 2" character of the second run. Since the second run has length
2, this is the same as the 0" character of the 3" run, a ‘b’. Finally, the predecessor
of ‘b’ is the 0'" character of the 4" run, which is our end of string character $. We

have successfully reconstructed the string ”bananaband$”.

Nishimoto’s lookup table improves the running time of LF mapping, but consid-
ering the common size of the input string for RLBWT, like a chromosome of the
human genome, O(r) space is still a huge number, which means it has to be stored
in memory or even in the disk. Therefore, using the lookup table to compute the LF

mapping of RLBWT will still cause a significant number of cache misses.

14

Index | Character(c) | Length(l) | Interval(k) | Offset(d)

| oo o | ol po| =
D IB || ATIBE |
w| | =] =] b po|
o ~I| M| = x| ~1| o
—lvololololo

Table 2.1: RLBWT Look-up table of “bananaband$”

2.8 Graph Clustering and METIS

Graph clustering is the technique of partitioning a graph into subgraphs or clusters
so that most edges connect vertices in the same cluster [18]. The objective of graph
clustering algorithms is to divide the graph into a set number of clusters, with a
high degree of similarity inside each cluster and a low degree of similarity between
clusters, where similarity means the communication cost between vertices. There
are a number of techniques for clustering graphs, including hierarchical clustering,

k-means clustering, and spectral clustering [16].

An algorithm of dividing irregular graphs into smaller sub-graphs that was pro-
posed by Karypis et al. in 1994 is widely used [18]. The approach is based on a mul-
tilevel system that employs coarsening, initial partitioning, and refining to generate
partitions of superior quality. The multilevel k-way partitioning has been demon-
strated to be effective in terms of both partition quality and execution time. Karypis
et al. reduce the size of the graph by compressing nodes and edges progressively.
This coarsening phase is performed until the graph is small enough to be partitioned
with an initial partitioning technique. The initial partitioning divides the coarsened
graph into a specified number of clusters. Then, Karypis et al. employ a refinement
approach to enhance the quality of the partition by locally altering the cluster bor-
ders. Moreover, it is shown experimentally that the technique outperforms various
well-known graph partitioning algorithms in terms of partition quality and execution
time [18].

METIS is a graph partitioning software package that employs Karypis et al.’s

algorithm [18]. The software has been continuously updated and enhanced over the

15

years, and it continues to be one of the most popular and commonly employed graph
partitioning tools available. This research uses METIS as its primary graph clustering

tool to enhance the BWT layout.

2.9 Minimum Linear Arrangement

The minimum linear arrangement (MLA) problem is an NP-hard problem in graph
theory. It is defined as finding a permutation of the vertices of a complete graph that
ensures that the total weight of the edges is minimized, where the weight of an edge
is defined as the distance between its end-points in the ordering [17].

Many techniques have been developed to address the problem including heuris-
tic algorithms, approximation algorithms, and exact algorithms [37]. With heuristic
methods such as the nearest neighbour algorithm and the farthest neighbour algo-
rithm, a solution is constructed by iteratively adding vertices to the ordering based on
certain criteria [4]. For instance, the nearest neighbour algorithm selects the closest
unordered vertex to the last ordered vertex as the next vertex in the ordering, which
is the one that is adjacent to the last ordered vertex and has the smallest weight of the
connecting edge [17]. With approximation methods such as Christofides’s algorithm,
they attempt to provide a solution that is within a specified ratio of the optimal
answer. Christofides’s algorithm provides a 3/2 approximation for the MLA prob-
lem [4]. Exact algorithms guarantee finding the optimal solution and include branch
and bound algorithms and branch and cut algorithms, [14]. These algorithms func-
tion by systematically examining the solution space and eliminating any branches
that cannot lead to a better solution [14].

Some of the approaches that have been mentioned were proposed a while ago,
such as the earliest exact algorithms [14], and subsequent studies have been based
on them. In recent years, several researchers have proposed novel solutions to the
MLA problem, such as the multilevel weighted edge contractions proposed by Safro
et al. [31]. The multilevel weighted edge contractions approach groups vertices with
high levels of connection into a single super vertex, which is then interpreted as a
single vertex at the following graph level. This procedure is repeated until the graph
is reduced to a single vertex [31]. The findings of this paper demonstrate that their

method for determining the ideal linear arrangement of vertices is highly effective.

16

As a result, the multilevel weighted edge contractions approach gives a more effective
and novel solution to the graph MLA problem and can be used to solve a variety of

graph theory and computer science problems.

2.10 Linear Programming and Integer Linear Programming

Linear programming (LP) and Integer Linear Programming (ILP) are mathematical
optimization approaches used to optimize a linear objective function subject to linear
constraints [5]. In several different areas, including manufacturing, banking, and
transportation, LP is applied to optimize the decision-making process. ILP, on the
other hand, is a particular example of LP in which all decision variables are limited
to integer values [38]. In contrast to LP, ILP is NP-complete [38].

The general form of an LP problem can be shown as the following:

Maximize/Minimize: Z = ¢121 + coxa + ... + Cpy,
Subject to: aj1x1 + a2 + ... + a1, < by

a91T1 + a22T9 + ... + QopTy, S b2
(2.1)

Am1Z1 + Apm2Z2 + ... + ATy S bm

€ 20,1)2 207"'7xn ZO

where Z is the objective function, x1, zs, ..., z, are the decision variables, ci, ca, ..., ¢,
are the coefficients of the objective function, a;;(i = 1,2,...,m;j = 1,2,...,n) are
the coefficients of the constraints and by, bs, ..., b,, are the right-hand side values of
the constraints [5]. In addition, if it is an ILP problem, then some or all decision
variables would be restricted to integer values. Both LP and ILP have been applied
across diverse fields. The applications of LP include resource allocation, portfolio

optimization, and transportation planning.

2.11 Simulated Annealing Algorithm

Simulated Annealing (SA) has been successfully applied to solve challenging com-
binatorial optimization problems [19]. It is a meta-heuristic approach that imitates

the cooling process of metals. Initially, SA starts with a predefined solution. By

17

randomly making alterations to the current solution, SA repeatedly generates new
solutions. If the new solution decreases the value of the objective function, it replaces
the current solution. However, there is still a possibility of acceptance, even if the
new solution increases the objective function’s value. As the algorithm progresses,
the likelihood of accepting such a solution decreases. Accepting a higher objective
function enables the algorithm to explore additional areas of the solution space and
escape local minima, possibly resulting in a global optimum [19]. SA has been applied

to various combinatorial optimization problems.

2.12 FM-Index and Fixed Block Compression Boosting

FM-Index is a popular data structure in bioinformatics and computational biology
for efficient encoding and querying of massive text datasets, such as genomic se-
quences [6]. The FM-Index leverages the features of the BWT and the suffix array
to facilitate fast pattern matching, substring search, and other text processing opera-
tions [6]. In particular, the FM-Index maintains the BWT, the suffix array, an array
C that records the cumulative count of each character in a text string 7', and a data
structure for quickly responding to range queries on C' [6]. Given a pattern P, the
FM-Index can be used to find all instances of P in T by conducting a backward search
on the BWT. This is accomplished by employing the cumulative count array C to
find the interval in the BWT that represents the set of suffixes beginning with P, and
then iteratively expanding the interval by following the corresponding characters in
the BWT. The reason it needs to expand the interval is that the backward search in
the BWT based on C' does not necessarily give all the suffixes that start with P. The
backward search only gives the range of positions in the BWT that correspond to the
characters in P when they are read in reverse order (i.e., from right to left). This
operation has a time complexity of O(mlogn), where m is the length of the pattern
and n represents the length of 7' [6]. In bioinformatics and computational biology, the
FM-Index has been extensively employed for tasks such as genome assembly. It has
been demonstrated that is highly efficient because of its capacity to manage enormous
volumes of data and perform rapid pattern matching and substring search [26].
FBB by Gog et al. is one of the most cutting-edge techniques for optimizing the
time and space efficiency of FM-Indexes further [11]. FBB is based on the principle

18

of dividing the BW'T of a text string into blocks and applying lossless compression
to each block. This reduces the size of the BWT, and consequently, the size of the
FM-Index while maintaining the index’s functionality. The most difficult aspect of
FBB is selecting a compression technique that strikes a balance between compression
ratio and decompression speed. Gog et al. investigated several popular compression
approaches, including RLE, Huffman coding, and Arithmetic coding, and demon-
strated that Arithmetic coding outperforms the others in terms of compression ratio
and decompression time [11]. Gog et al. showed that FBB can drastically reduce the
size of the FM-Index, often by more than 50%, while preserving the index’s rapid

search performance [11].

2.13 A low Out-Degree Proof of the Graph Built from RLBWT
Look-up Table

The feasibility of decreasing the number of cache misses of backward searches of
RLBWT is based on the assumption that the graph built from the RLBW'T look-up
table by Nishimoto et al. has a low out-degree. The graph built from the RLBWT
table is defined as the following: first, the RLBW'T table will be block partitioned
based on the size of the dataset and the cache size. Next, the blocks are used as
vertices v € V, and the jumps across different blocks are used as edges e € F to
build a graph G = (V, E). The weight w € W of each e in G is determined by the
cumulative length of the runs between two vertices (v,u) € V, and the loops from
each block to itself are ignored since they do not affect anything. In addition, the

following theorem was proven.

Theorem 1. Let d be the average number of runs in the L column spanned by a run
in the F' column. The average degree of a vertex v in the graph built from Nishimoto’s

look-up table is at most d + o, where o is the size of the alphabet.

Proof. Suppose we gather every b runs into a block. If we pick a character ¢ at random
then the expected number of runs of ¢’s in any block is b/o, where o is the size of the
alphabet. Suppose we also pick a block B at random. If p. is run to which the start
of the first run of ¢’s in B maps (according to the 3'% column of Nishimoto et al.’s

table i.e., the Intervals) and g, is the run to which the start of the last run of ¢’s in B

19

maps, then g. — p. <= db/o, where d is the average number of runs in the L column
spanned by each run in the /' column.

Since the starts of the runs of ¢’s in B map to an interval of runs of expected length
db/o, they map to an interval of blocks of expected length at most d/o + 1. Consider
the number of blocks to which B points in the graph. The expected number of edges
for the character ¢ is d/o + 1, so the total expected degree is at most o(d/o + 1) =
d+o. O

Chapter 3

RLBWT Inversion

The primary goal of the RLBWT inversion experiment was to optimize the process-
ing time of RLBWT by reducing the number of cache misses caused during backward
searches. To achieve such an objective, the rows of the RLBWT needed to be per-
muted so that the total distance of LF steps is minimized. However, it is irrational to
rearrange the RLBW'T by rows because it requires a table to record the destinations
of all the LF steps and the sizes of all the rows. Thus, block partitioning was applied
such that consecutive rows of the RLBWT were grouped into blocks with a specific
size. Then the RLBWT was rearranged by blocks using clustering. In that case,
it only demanded a smaller table that records where every block was stored. First,
this experiment converted the RLBW'T lookup table that was proposed by Nishi-
moto et al. [29] to an undirected weighted graph with block partitioning approach
by Sirén et al. [36]. Then the graph was input to METIS [18] for clustering. The
parameter used to estimate the number of cache misses is the sum of edge weight
after clustering. Three kinds of datasets were used for this experiment: the reference
genome of Salmonella, copies of human chromosome 19, and a set of noisy strings.
The salmonella genome was chosen because it is small and was studied recently in
parallel research in my group [2], the human chromosome 19 was chosen because it
offers a bigger average run length, and the noisy strings were applied to analyze the
relationship between inter-cluster edge weights and the average run length of input
genome sequence. The first two datasets’ block partitioning and clustering indeed re-
duced the sum of edge weights between clusters by a factor of 2 to 4 depending on the
number of clusters. On the other hand, for noisy strings, the run length compression

seemed to hinder decreasing the sum of weight via block partitioning and clustering.

20

21

Figure 3.1: Preliminary graph clustering: step 1.

3.1 RLBWT Inversion Methodology

The RLBWT experiment aimed to speed up the processing time of RLBWT by im-
proving its cache efficiency using block partitioning, building the graph of blocks, and
clustering the graph based on the RLBW'T tables that were proposed by Nishimoto
et al. [29].

3.1.1 A Graph Building and Clustering Example

Before conducting experiments on real genome datasets, a small string example was
used to demonstrate the feasibility of improving total edge weights by block parti-
tioning and clustering. A lookup table was derived from the string ”bananaband$”
as shown in Table 2.1.

The block partitioning approach was applied by dividing the table into four blocks,
each containing two rows; the fourth block contains one row. Next, the blocks were
used as vertices, and the weight of edges is defined as the sum of the lengths of the
rows that are the source of the jumps as shown in Figure 3.1. For example, the edge
between block 1 and block 4 is 5 because index 2 goes to interval 7 with a row length
2 and index 7 goes to interval 2 with a row length 3 and index 2 belongs to block 1
and index 7 belongs to block 4, the sum of the lengths is 5.

After building the graph, the loops from each block to itself are ignored as they do

not affect the number of cache misses during the backward searches. Next, the graph is

22

Figure 3.2: Preliminary graph clustering: step 2.

clustered using an algorithm that minimizes the sum of edge weight between clusters.
This is because the weight of the edges represents the number of backward steps
between two blocks and each step is assumed to cause at least one cache miss. The
process of clustering just mentioned is repeated until all the blocks are clustered, and
all the clusters are of similar size. The result of clustering the graph of ”bananaband$”

is shown in the Figure 3.2.

As can be observed in Figure 3.2, the edge with the highest weight, which connects
block 1 and block 4 has been included in the same cluster, while the other three edges
have been retained. Furthermore, block 1 and block 4 have been grouped, and blocks
2 and 3 have been clustered together in the same group. As a consequence, the total

weight of inter-cluster edges in this graph is 4.

As a baseline, we also constructed a clustering that groups consecutive blocks as
a simulation of the current LF mapping processing approach, and the total weight of
inter-cluster edges are computed, as illustrated in Figure 3.3. The sum of the inter-
cluster edges increases to 7. This small dataset suggests that the number of cache
misses during backward searches would decrease by rearranging the look-up table
because the sum of edge weights decreased. To further investigate the feasibility of
our idea, the same approach was applied to real genome datasets by building graphs

and clustering them with METIS.

23

Figure 3.3: Preliminary graph clustering: step 3.

3.1.2 Clustering the RLBWT of Real Genome Data

The previous example suggests that block partitioning and cluster should help to
improve the cache efficiency in LF steps; hence, the improvement of cache efficiency
using such an approach is evaluated with real genome datasets in this section. Due to
the size of the genome datasets, the clustering was conducted using METIS. RLBWT
look-up tables were built from real genomes. After reading the look-up table from a
binary file, the procedure mentioned in preliminary clustering was followed to cut the
look-up table into blocks based on the L1 cache size. For this particular experiment,
1024 rows were used, which is small enough to be stored in a common L1 cache of
64K. Then the graph was built using the procedure mentioned in Section 2.13. The
graph construction for genome datasets was implemented using C++.

By Theorem 1, the average degree of V; is at most d 4+ ;. Both d and ¢ can be
expected to be small. A low average out-degree indicates the graph is cache-friendly
and cluster-able. After building the graph using the block-partitioned RLBWT ta-
ble, it was clustered using METIS with different numbers of clusters to observe the
differences in the total weights of the remaining edges. The algorithm that was used
for METIS clustering was multilevel k-way partitioning [18].

As a comparison to the METIS clustering approach, the graph G was also clustered
sequentially, which means that the blocks are grouped into clusters of equal size such
that consecutive blocks in the RLBW'T look-up table end up in the same block. The

total weight of the remaining edges of sequential clustering is then calculated as W.

24

If W, < W significantly, then it indicates that the method proposed by Sirén et al.
can decrease the number of cache misses of the RLBWT table in Nishimoto et al.’s

construction.

3.2 RLBWT Inversion Results

3.2.1 Salmonella Dataset

The salmonella genome was chosen because it was relatively small compared to other
genome sequences such as the human reference genome and it is widely studied by
researchers who work on foodborne bacterial disease. Furthermore, there was an ex-
isting RLWBT look-up table built for the salmonella genome sequence from Brown [2],
which makes the salmonella genome sequence a good start for experiments on real
genome datasets. As a result, the RLBWT table was built from the Salmonella
genome sequence to verify if the block partitioning and clustering offer a lower sum
of edge weight like the short-string example that has been analyzed.

The sequence length is 145,595,456, and the number of runs is in the RLBWT
12,823,516, resulting in an average run length of 11. The graph built from this table
has 12,523 nodes and 62,556 edges, with a total edge weight of 145,589,783. The
results of METIS clustering and sequential clustering are presented in Table 3.1 The
inter-cluster edge weight of METIS is observed to reduce by a factor of 3 when the
cluster number is 10 compared to sequential clustering. However, the difference is

relatively small when the cluster number is 1000.

#Clusters 10 20 100 500 1000
W, | 41,393,086 | 56,002,575 | 62,137,611 | 103,647,402 | 128,998,476

Wy | 127,980,098 | 142,549,115 | 143,815,338 | 145,258,185 | 145,482,565

W /W, 3.09 2.55 2.31 1.4 1.13

Table 3.1: Salmonella dataset clustering results

As shown in Figure 3.4, until 100 clusters, there is a clear difference in weights
between METIS clustering and sequential clustering. The inter-cluster weights using
METIS are still 2 times smaller than when using sequential clustering when the cluster
number is 100. Once the cluster number is over 100, the weight difference shrinks

significantly.

25

—M— metis clustering
—M— sequential

[[
-
1.40E+08 /'
- o -

1.20E+08
=
R -
[0}
= 1.00E+08
)
()]
e}
(0]
“—
O 8.00E+07 -
€
>
n

6.00E+07 — ./'

4.00E+07 — n

T T T T T T
0 200 400 600 800 1000

Number of clusters

Figure 3.4: Salmonella weight change before and after METIS clustering.

As a result, the salmonella dataset demonstrated a decrease in edge weights by
a factor of 3 when the cluster number was 10. However, the average run length was
not very large in this dataset. Therefore, we also conducted experiments on human
chromosome 19 to determine if it provides better results since the human genome is

a primary research target in bioinformatics.

3.2.2 Human Chromosome 19 Dataset

In this section, the clustering results generated from the human chromosome 19
dataset are presented. The reason the dataset was switched to human chromosome
19 is that the decrease in the sum of inter-cluster edge weights was not significant.
A hypothesis was made that the limited decrease was due to the average run length
of the salmonella genome sequence being rather small, so it was expected the human
chromosome 19 sequences would provide a more significant decrease in terms of the
sum of edge weights with block partitioning and clustering because of its much big-
ger average run length. Moreover, the human reference genome is one of the most

studied genome sequences in practice. The optimized layout would be more valuable

Figure 3.5:
clustering.

Sum of edge weight

7.00E+09 o

6.00E+09 —

5.00E+09 —

4.00E+09 —

3.00E+09

2.00E+09 -

1.00E+09 —H

0.00E+00

—m— metis clustering
—@— sequential

o

I ! I
200 400

T T T
600

Number of clusters

800

1000

26

128 copies human chromosome 19 weight change before and after METIS

to real-world research, if the edge