
A CACHE-FRIENDLY BWT LAYOUT

by

Yansong Li

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

July 2023

© Copyright by Yansong Li, 2023

To my family, mentors, friends and everyone else who helped me

through all this.

ii

Contents

List of Tables . v

List of Figures . vi

Abstract . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

Chapter 2 Literature Review . 6

2.1 Succinct Data Structure and SDSL 6

2.2 Burrows-Wheeler Transform . 7

2.3 Run Length Encoding . 8

2.4 Suffix Array . 9

2.5 Wavelet Tree . 10

2.6 Block Partitioning of pBWT . 11

2.7 A Lookup Table of RLBWT . 12

2.8 Graph Clustering and METIS . 14

2.9 Minimum Linear Arrangement . 15

2.10 Linear Programming and Integer Linear Programming 16

2.11 Simulated Annealing Algorithm . 16

2.12 FM-Index and Fixed Block Compression Boosting 17

2.13 A low Out-Degree Proof of the Graph Built from RLBWT Look-up
Table . 18

Chapter 3 RLBWT Inversion . 20

3.1 RLBWT Inversion Methodology . 21
3.1.1 A Graph Building and Clustering Example 21
3.1.2 Clustering the RLBWT of Real Genome Data 23

iii

3.2 RLBWT Inversion Results . 24
3.2.1 Salmonella Dataset . 24
3.2.2 Human Chromosome 19 Dataset 25
3.2.3 Noisy String Dataset . 28

3.3 Discussion of RLBWT Experiment 29

Chapter 4 BWT Inversion . 31

4.1 BWT Inversion Methodology . 31
4.1.1 Previous Approach Validation 32
4.1.2 Further Optimization of the Block Orders Inside Clusters . . . 36
4.1.3 Building the Data Structure 41
4.1.4 The Final BWT Inversion . 42

4.2 BWT Inversion Results . 48
4.2.1 BWT Substring Extraction with SSD 48
4.2.2 BWT Substring Extraction with HDD 51
4.2.3 BWT Substring Extraction Using Fixed Block Compression

Boosting . 57

4.3 Discussion of BWT Experiment . 62

Chapter 5 Conclusion . 67

Bibliography . 70

iv

List of Tables

1.1 The blocks, BWT, LF and permuted LF of bananaband$. . . 3

2.1 RLBWT Look-up table of “bananaband$” 14

3.1 Salmonella dataset clustering results 24

3.2 Human chromosome 19 dataset clustering results 26

3.3 The number of runs and average run lengths of noisy strings . . 28

4.1 New block sizes for the substring extractions 53

4.2 Block and superblock sizes of FBB substring extractions 60

v

List of Figures

1.1 The block partitioned graph, normal layout, and optimized lay-
out of the BWT of bananaband$ 3

2.1 Rotations of “bananaband$” 7

2.2 Sorted rotations (i.e., BWM) of “bananaband$” 8

2.3 LF mapping of “bananaband$” 9

3.1 Preliminary graph clustering: step 1. 21

3.2 Preliminary graph clustering: step 2. 22

3.3 Preliminary graph clustering: step 3. 23

3.4 Salmonella weight change before and after METIS clustering. . 25

3.5 128 copies human chromosome 19 weight change before and
after METIS clustering. 26

3.6 256 copies human chromosome 19 weight change before and
after METIS clustering. 27

3.7 Noisy strings weight change with METIS clustering. 29

4.1 A flow chart of BWT inversion experiment. 33

4.2 The hierarchical clustering of Hamlet 35

4.3 Substring extraction using the single wavelet tree and block
wavelet trees with block size 1,500,000 bases. 47

4.4 Substring extraction using block wavelet trees of size 1.5 million
to 150 million with different cluster sizes (the x-axis is reversed
because it follows the number of clusters from small to big). . 49

4.5 Substring extraction using block wavelet trees of size 5 million
and 10 million with different cluster sizes. 51

4.6 Substring extraction using block wavelet trees of size 1.5 million
and 15 million with different cluster sizes on HDD. 52

vi

4.7 Substring extraction using more different block sizes wavelet
trees between 1.5 million and 15 million. Notice that the right-
most 3 points in the last graph show speedups between 27%
and 29% with essentially equal block and cluster sizes. 54

4.8 The overall performances of substring extraction between 1.5
million to 15 million block sizes. 55

4.9 Comparing substring extraction with and without METIS clus-
tering. 56

4.10 Substring extractions using FBB wavelet trees and other wavelet
trees . 58

4.11 The time/space trade-off of substring extractions using FBB
wavelet trees and other wavelet trees 59

4.12 Substring extractions using FBB wavelet trees with different
block and superblock size combinations 61

vii

Abstract

The Burrows-Wheeler Transform (BWT) is a widely used succinct data structure in

bioinformatics. However, one of the main concerns that researchers still face when

using BWT is its processing time due to the lack of access locality. The (Last to

First) LF mapping is derived from the BWT to facilitate backward searches, each

step of the LF mapping tends to jump to a completely different spot of the BWT,

resulting in at least one cache miss per step.

Our project endeavours to minimize the processing time of BWT through the

optimization of BWT layout. This objective is achieved by block partitioning and

rearranging the layout of the BWT. Two proxy measures were introduced to represent

the cache misses, but the reduced proxies did not correspond to an improved running

time. However, the blocked partitioned BWT representation still achieved a 50%

speedup with limited memory and a hard disk drive (HDD).

viii

Acknowledgements

First and foremost, I would like to express my sincerest appreciation to my supervisors

Dr. Travis Gagie and Dr. Norbert Zeh, for their invaluable and continuous guidance,

support, and inspiration during my master’s study. Thanks for allowing me to get

involved in the research. I would also like to extend my deepest gratitude to my

colleagues Nathaniel Brown, Sana Kashgouli, and Nicola Cotumaccio for their help

during the data generation of the experiments and companionship during research

and study.

Sincerely thanks to Dr. Benjamin Langmead, Dr. Christina Boucher and other

researchers in their groups for providing me with very valuable experiences and knowl-

edge from attending their presentations and talks. Special thanks to Dr. Dominik

Kempa and Dr. Jouni Sirén for pointing out the research directions.

Last but not least, the completion of my master’s degree would not have been

possible without the unconditional support and unparalleled love of my parents and

grandparents.

ix

Chapter 1

Introduction

Compressing large strings with small alphabets such as the human genome is an es-

sential aspect of research in the field of bioinformatics, where a string is a sequence of

characters, an alphabet is a set of distinct symbols or characters from which strings are

formed, and the human genome refers to the complete set of DNA (deoxyribonucleic

acid) in a human organism consists of A, T, C, G. According to the National Centre

of Biotechnology Information (NCBI), human chromosome 19 alone has almost 59

million bases [27]. Succinct data structures are one of the main approaches for com-

pressing large datasets while continuing to support access and other queries, and the

Burrows-Wheeler Transform (BWT) is one of the most popular techniques because

of its ability to exploit local redundancy, offer no information loss, handle repetitive

data well, allow for parallelism and random access, and remain simple and efficient in

implementation [24]. The BWT prepares an input string for lossless data compression

by restructuring it [3]. A string of characters is transformed to its BWT by listing

all the rotations in lexicographical order. This is called the Burrows-Wheeler Matrix

(BWM). The last column of the matrix is the BWT. The run length compressed

BWT (RLBWT) is a BWT that is compressed using run-length encoding, where a

“run” means a sequence of consecutive identical character [29].

Due to its satisfactory performance, different sequence aligners and data structures

were developed from BWT such as Burrows-Wheeler Aligner (BWA) [21], Bowtie [20]

and r-index [9], which index genome by employing read alignments approach.

The key primitive used in many queries on the BWT and in reconstructing a string

from its BWT is called Last-to-First (LF) Mapping. The ith occurrence of a character

c in the last column of the BWM and the ith occurrence of the same character c in

the first column correspond to the same occurrence in the input string [32]. The last

character of each BWM row is the character before the first character in the same

row. Thus, the text or any substring of it can be reconstructed by starting at the

1

2

position of its last characters in the BWT, and repeatedly jumping to the character

in the BWT that corresponds to the occurrence of the current characters in the first

column, which is called an LF step. Unfortunately, consecutive characters in the

original text tend to be stored far apart in the BWT. This causes at least one cache

miss per LF step for most LF steps [32] As a result, the inversion of the BWT and

substring extraction as part of other queries tend to be slow [7].

Our hypothesis in this thesis is to improve the access locality of LF steps through

the optimization of BWT layout using block partitioning and rearranging the blocks,

so the processing time of BWT would be minimized. This requires a data structure

to store the BWT that supports the LF steps cache efficiently.

Sirén et al. proposed a block partitioning approach to achieve better access locality

of graph operations on BWT-compressed graphs [36]. In this thesis, we investigate

whether this block partitioning approach combined with other techniques can also

speed up LF steps and, thus, pattern matching and other text-oriented operations on

the BWT. We will focus on BWT inversion as the operation whose performance to

improve. Since the bottleneck of BWT inversion is the (lack of) cache locality of LF

steps, we expect that other LF-based operations experience the same speed-up as we

observe for BWT inversion in our experiments.

During the development of our cache-efficient BWT data structure, we used two

measures of (cache) locality, the total distance of all LF steps between different clus-

ters and the total number of LF steps that cross different clusters, which are both

novel proxy measures of the number of cache misses. Our final experiments evaluate

the speed of BWT inversion using a full implementation of our data structure based

on the Succinct Data Structure Library (SDSL) [10].

A small string bananaband$ was used to demonstrate the feasibility of improving

the access locality through block partitioning and clustering. As shown in Table 1.1,

the BWT array BWT and LF steps array LF of bananaband$ were built. Then, LF

was block partitioned with a preset block size and the corresponding block numbers

(i.e., length of the LF steps array divided by the preset block size) of LF were recorded

in the permuted LF steps array P [LF]. Since the length of the string is 11, a block

size of 3 was chosen as a guess of the optimal block size. Suppose we draw a graph

whose vertices are the blocks 0 to 3 for our running example “bananaband$”, in which

4

Since the RLBWT provides the data compression necessary to store pangenomic

datasets [29], where a pangenomic dataset consists of a set of genome sequences that

provides a comprehensive view of the genetic diversity within a species, our primary

goal is to improve the cache efficiency of querying the RLBWT. Our experiments

revealed that, somewhat counterintuitively, the compression of the RLBWT hurts the

cache locality of LF steps using our data structure. This makes our data structure

unsuitable for storing pangenomic datasets because pangenomic datasets take huge

amounts of space without run length compression. Therefore, the optimization target

shifted to uncompressed BWT.

We chose the 14.62 GB Douglas Fir genome as an experimental dataset for op-

timizing uncompressed BWT, computed the improvement in the total weight of the

inter-cluster edges for block sizes between 1.5 and 15 million bases and cluster sizes

between 15 million and 1.5 billion, and tested the time to extract 5000-base substrings

on a virtual machine with 1 GB of memory on a Dell Inspiron 14-7472 with an Intel

i7-8550U processor, consisting of 8 cores running at 1.80 GHz and 16 MiB L3 cache,

1 TB ST1000LM035-1RK172 disk (hard disk drive), 8 GiB of DDR3 main memory

and a swap file of 8 GB. Comparisons of the extraction times between a single wavelet

tree of the entire Douglas Fir that represents the traditional layout of BWT and a set

of permuted block wavelet trees that represent the optimized layout were conducted.

We observed up to a 50% speedup with a block size of 9 million bases, but we also

observed up to a 30% speedup even when the block size and the cluster size were

both 15 million bases, when there should be no clustering and thus no speedup. (In

fact, the software we used still clustered even when it should not, so we re-ran the

experiment without clustering and observed the same speedup). Further experimen-

tation showed that blocking alone accounted for all or nearly all the speedups, with

clustering working in theory but not in practice.

Due to the inefficiency of clustering and the optimal block size being much larger

than we expected, another block partitioning representation of wavelet trees was

applied to substitute the block wavelet trees built by us, which was the Fixed block

compression boosting (FBB) wavelet tree by Gog et al. FBB wavelet trees employed

a two-fold block partitioning using block and superblock. Different size combinations

of block and superblock were tested and the best extraction speed was obtained with

5

blocks of 216 bases and a superblock 224 with a disparity of less than 4% compared

to the block wavelet trees. Furthermore, 216 and 224 are the maximum limits of

the block and superblock sizes, the FBB wavelet trees can not outperform the block

wavelet trees with such size limits eventually. Hence, the optimal block partitioned

representation of BWT was still observed with the block wavelet trees using a block

size of 9 million bases.

The speedup that we gained from block wavelet trees is significant but under

very limited conditions. However, we still think the block partitioning approach and

the data structure that we developed could be useful when the available memory is

significantly smaller than the dataset that researchers are investigating. Furthermore,

it was unexpected that the rearrangement of BWT blocks was inefficient in practice

even though it decreased the number of inter-cluster LF steps and their distances,

but we still think that there exists a better BWT layout that offers better access

locality. Different approaches of layout optimization or different proxy measure of

cache misses could be the directions of further research of BWT layout optimization.

The structure of the rest of the thesis is as follows: Chapter 2 will provide a

review of relevant literature. In Chapter 3, we discuss our approach to (attempt

to) improve the cache efficiency of LF steps on the RLBWT including experimental

results. Chapter 4 focuses on improving the cache efficiency of LF steps on the BWT.

Finally, the thesis will conclude with a summary of the results from both experiments,

along with directions for future research in Chapter 5.

Chapter 2

Literature Review

2.1 Succinct Data Structure and SDSL

Succinct data structures are data structures that represent datasets efficiently while

minimizing storage space requirements, different types of succinct data structures

were used in the thesis. Jacobson et al. introduced these data structures in 1989.

They are especially beneficial for applications that require data to be processed in

real-time and stored in memory for faster access [15].

Various instances of succinct data structures have been developed. One of the

most widely used examples is the succinct trie. A trie is a tree-like data structure

used to hold a collection of strings, where each node in the tree represents the prefix

of a string within the collection, and each leaf represents the entire string [39]. The

succinct trie enables effective string searches, string insertion and deletion within

the collection. Moreover, succinct arrays and succinct bitvectors are also considered

popular succinct data structures. The succinct array is a compact variant of an array

that permits rapid access to individual array elements [10]. The succinct bitvector

permits rapid access to individual bits, as well as operations such as rank, which are

used to count the number of bits set to 1 within a given range of the vector [10]. Both

are commonly exploited in applications for data compression and retrieval.

The SDSL by Simon Gog et al. provides an assortment of succinct data struc-

tures, including succinct tries, succinct arrays, succinct bit vectors, and wavelet trees

among others [10]. The SDSL is designed for handling data structures that could be

represented succinctly or compactly, allowing for more effective memory utilization

and faster processing times. The SDSL applies to a variety of applications, including

text processing and data compression. For the majority of this project, the SDSL is

used to create wavelet trees, the BWT, and suffix arrays, which are discussed in the

following sections.

6

10

search on the suffix array to find the range of suffixes containing P as a prefix [23].

The suffix array has also become a common bioinformatics tool, especially for DNA

or protein sequence alignment and pattern matching across numerous sequences [35].

In this thesis, the suffix arrays were used to build the BWT of a desired string.

2.5 Wavelet Tree

A wavelet tree is a tree-shaped succinct data structure that has been extensively

explored and employed for the effective processing and retrieval of vast quantities

of data [12]. It was first proposed and implemented by Grossi and Vitter in 2003,

and it has been intensively explored and modified since then [12]. Numerous efficient

techniques and data structures have been created for the construction and application

of the wavelet tree. The format of a wavelet tree is a binary tree that encodes a

sequence of values. Each node of the tree divides the values into two groups and

maintains information about the size of each group. The wavelet tree provides range

searching, rank and select queries, and other data operations [12].

Wavelet tree leverages a binary tree structure to represent data, making it pos-

sible to produce condensed representations of vast datasets that can be processed

efficiently. Consequently, it facilitates the preservation of compact representations

while permitting a wide variety of operations [12]. The wavelet tree has also been

utilized in a variety of applications, including text processing, image compression, and

range searching. For this thesis, wavelet trees were used as the data structure to store

the BWT in the experiments because it offers fast access and rank queries for the

backward searches and a great compression ratio of the dataset; for example, the Dou-

glas Fir genome with 14.62 GB was compressed to 2.67 GB with a Huffman-shaped

wavelet tree using SDSL.

Despite its benefits, the wavelet tree has disadvantages. It is not always worthwhile

to build a wavelet tree of the dataset, especially for smaller ones, because it might be

complicated to construct [12]. In addition, a wavelet tree can demand a substantial

amount of memory because it saves data at each node. Hence, it could demand a

large number of disk accesses for devices when the size of the wavelet tree exceeds the

memory size. As a result, the wavelet tree is a robust and adaptable data structure;

yet, its compatibility with a particular situation is determined by its requirements.

11

2.6 Block Partitioning of pBWT

Sirén et al. improve the cache and access locality of the graph extension of the

positional BWT (pBWT) using a block partitioning approach, which they used to

efficiently index and query haplotype information [36]. According to Sirén et al.,

haplotype information is first transformed into a genome graph by dividing the hap-

lotype sequences into overlapping k-mers of length k, where k is usually within the

range of 31-63 [36]. Next, a de Bruijn graph was constructed from these k-mers.

Each node in the de Bruijn graph represented a (k − 1)-mer and edges connected

nodes that overlapped by k− 2 nucleotides. After that, the de Bruijn graph was sim-

plified by removing spurious nodes and edges, and by collapsing nodes with identical

sequences [36]. Such a process resulted in a genome graph, which represented the set

of possible paths through the haplotype information.

The construction of the pBWT of the genome graph is similar to the construction

of the BWT of a string; However, instead of a single linear string, the pBWT repre-

sents the paths through the genome graph [36]. To build the pBWT, starting from

the root of the genome graph and recursively traversing the graph in a depth-first

order. The pBWT is constructed from the beginning of the genome graph’s root

and recursively moves in a depth-first order. As each path is visited, the sequence of

symbols encountered at each position is recorded [36]. Next, the sub-pBWT of each

path is then computed, and the resulting sub-pBWTs are concatenated in the order of

the depth-first traversal to form the pBWT [36]. However, the pBWT of the genome

graph is computationally intensive, especially for large genomes with many complex

regions. Sirén et al. addressed this issue with the block partitioning technique.

The block partitioning approach divides the pBWT into fixed-size blocks, where

the block size is a parameter that can be altered based on the available memory and

the desired access locality [36]. Each block contains a contiguous range of positions in

the pBWT with no gaps between blocks. After the pBWT is divided into blocks, the

blocks are reordered so that consecutive blocks are adjacent in memory [36]. This is

done using a permutation of the block indices that can be efficiently computed [36].

The result is a new ordering of the pBWT blocks that maximizes cache and

access locality and minimizes the number of cache misses and disk accesses during

query processing in theoretically optimal. More specifically, each block is stored in the

12

cache as a single contiguous region of memory; therefore, when querying the pBWT

for a specific region of the genome, only the block containing that region needs to be

loaded into the cache. The other blocks can be left in the main memory, reducing

the number of cache misses. In addition to reducing the number of cache misses, the

block partitioning method also reduces the memory usage of the pBWT [36]. This

is because only the pBWT for a single block needs to be loaded into memory at

any given time, rather than the entire pBWT for the genome graph. This can be

especially important for large genomes, where the memory requirements for storing

the pBWT of the entire genome graph can be prohibitively high [36]. The success of

decreasing the number of cache misses of the pBWT inspired us to try the same idea

on the RLBWT and the BWT.

2.7 A Lookup Table of RLBWT

In the traditional approach of conducting backward searches a RLBWT uses rank

queries and a sparse bit vector. This data structure can be constructed in O(log log n)

time and O(r) space, where r is the number of runs in the BWT and n is the number

of character in the RLBWT [3]. Nishimoto’s lookup table improves the running time

of computing LF mapping from O(log log n) to O(1) and keeps the same space cost

of O(r) [29].

The lookup table is derived from the RLBWT and its LF index, which is cl and

LF (b), where c is the character of the run, l is the length of the run, and b is the

index of LF. Furthermore, LF (b) can be represented as a sequence of pairs ⟨k|d⟩, the

pair ⟨k|d⟩ indicates that LF (b) is the dth character in the kth run of the RLBWT,

where runs are counted starting from 1 and the characters in each run are numbered

starting from 0 [1]. For example, ⟨2|1⟩ in Figure 2.3 means the LF (9), which is the

second occurrence of a run of character ‘a’ at offset 1 in the L column. The lookup

table representation of the RLBWT is a table of tuples (c, l, k, d), one tuple per run

cl. The pair ⟨k|d⟩ represents the LF index of the first character x in cl. For instance,

the lookup table of bananaband$ is shown in Table 2.1.

The inversion of RLBWT starts with the last character of the RLBWT $, which is

the 0th character in the 4th run. According to the lookup table, the character before

it is the 0th character in the 1st run, which is a ‘d’. Based on the entry in the 1st row

13

of the table, the character before it is the 0th character in the 6th run, which is an ‘n’.

Next, as reported in the table, the character before the entry in the 6th row is the 2nd

character in the 7th run, which is an ‘a’. Now since the 7th table entry stores LF (x)

for the 0th character x in the 7th run, but the indicator currently at the 2nd character

in the 7th run. We calculate the LF index of the 2nd character by adding 2 to the d

component of the 7th table entry. This gets the indicator to the 3rd character in the

2nd run. However, the second run only has a length 2. Thus, we need to cross the

boundary into the next run. The 3rd character from the beginning of the 2nd run is

the same as the 1st character from the beginning of the 3rd run. In general, we may

be still looking at an index beyond the length of the current run. In this case, the

indicator continues skipping to the next run and decreasing the offset within the run

by the length of the current run until the offset is less than the length of the current

run. In this case, 1 < 2, so the character before ‘a’ is the first character in the 3rd

run, a ‘b’. According to the 3rd table row, the character before the 0th character in

the 3rd run is the 0th character of the 4th run. The character before the 1st character

in the 3rd run is thus the 1st character of the 4th run. Since the 4th run has length 1,

this is the same as the 0th character of the 5th run, an ‘a’. Its predecessor is the 0th

character of the second run, an ‘n’, and the predecessor that ‘n’ is the 0th character

of the 7th run, an ‘a’. Then, what precedes the ‘a’ is the 1st character of the second

run, an ‘n’. What precedes that ‘n’ is the first character of the 7th run, and ‘a’. Its

predecessor is the 2nd character of the second run. Since the second run has length

2, this is the same as the 0th character of the 3rd run, a ‘b’. Finally, the predecessor

of ‘b’ is the 0th character of the 4th run, which is our end of string character $. We

have successfully reconstructed the string ”bananaband$”.

Nishimoto’s lookup table improves the running time of LF mapping, but consid-

ering the common size of the input string for RLBWT, like a chromosome of the

human genome, O(r) space is still a huge number, which means it has to be stored

in memory or even in the disk. Therefore, using the lookup table to compute the LF

mapping of RLBWT will still cause a significant number of cache misses.

14

Index Character(c) Length(l) Interval(k) Offset(d)
1 d 1 6 0
2 n 2 7 0
3 b 2 4 0
4 $ 1 1 0
5 a 1 2 0
6 n 1 7 2
7 a 3 2 1

Table 2.1: RLBWT Look-up table of “bananaband$”

2.8 Graph Clustering and METIS

Graph clustering is the technique of partitioning a graph into subgraphs or clusters

so that most edges connect vertices in the same cluster [18]. The objective of graph

clustering algorithms is to divide the graph into a set number of clusters, with a

high degree of similarity inside each cluster and a low degree of similarity between

clusters, where similarity means the communication cost between vertices. There

are a number of techniques for clustering graphs, including hierarchical clustering,

k-means clustering, and spectral clustering [16].

An algorithm of dividing irregular graphs into smaller sub-graphs that was pro-

posed by Karypis et al. in 1994 is widely used [18]. The approach is based on a mul-

tilevel system that employs coarsening, initial partitioning, and refining to generate

partitions of superior quality. The multilevel k-way partitioning has been demon-

strated to be effective in terms of both partition quality and execution time. Karypis

et al. reduce the size of the graph by compressing nodes and edges progressively.

This coarsening phase is performed until the graph is small enough to be partitioned

with an initial partitioning technique. The initial partitioning divides the coarsened

graph into a specified number of clusters. Then, Karypis et al. employ a refinement

approach to enhance the quality of the partition by locally altering the cluster bor-

ders. Moreover, it is shown experimentally that the technique outperforms various

well-known graph partitioning algorithms in terms of partition quality and execution

time [18].

METIS is a graph partitioning software package that employs Karypis et al.’s

algorithm [18]. The software has been continuously updated and enhanced over the

15

years, and it continues to be one of the most popular and commonly employed graph

partitioning tools available. This research uses METIS as its primary graph clustering

tool to enhance the BWT layout.

2.9 Minimum Linear Arrangement

The minimum linear arrangement (MLA) problem is an NP-hard problem in graph

theory. It is defined as finding a permutation of the vertices of a complete graph that

ensures that the total weight of the edges is minimized, where the weight of an edge

is defined as the distance between its end-points in the ordering [17].

Many techniques have been developed to address the problem including heuris-

tic algorithms, approximation algorithms, and exact algorithms [37]. With heuristic

methods such as the nearest neighbour algorithm and the farthest neighbour algo-

rithm, a solution is constructed by iteratively adding vertices to the ordering based on

certain criteria [4]. For instance, the nearest neighbour algorithm selects the closest

unordered vertex to the last ordered vertex as the next vertex in the ordering, which

is the one that is adjacent to the last ordered vertex and has the smallest weight of the

connecting edge [17]. With approximation methods such as Christofides’s algorithm,

they attempt to provide a solution that is within a specified ratio of the optimal

answer. Christofides’s algorithm provides a 3/2 approximation for the MLA prob-

lem [4]. Exact algorithms guarantee finding the optimal solution and include branch

and bound algorithms and branch and cut algorithms, [14]. These algorithms func-

tion by systematically examining the solution space and eliminating any branches

that cannot lead to a better solution [14].

Some of the approaches that have been mentioned were proposed a while ago,

such as the earliest exact algorithms [14], and subsequent studies have been based

on them. In recent years, several researchers have proposed novel solutions to the

MLA problem, such as the multilevel weighted edge contractions proposed by Safro

et al. [31]. The multilevel weighted edge contractions approach groups vertices with

high levels of connection into a single super vertex, which is then interpreted as a

single vertex at the following graph level. This procedure is repeated until the graph

is reduced to a single vertex [31]. The findings of this paper demonstrate that their

method for determining the ideal linear arrangement of vertices is highly effective.

16

As a result, the multilevel weighted edge contractions approach gives a more effective

and novel solution to the graph MLA problem and can be used to solve a variety of

graph theory and computer science problems.

2.10 Linear Programming and Integer Linear Programming

Linear programming (LP) and Integer Linear Programming (ILP) are mathematical

optimization approaches used to optimize a linear objective function subject to linear

constraints [5]. In several different areas, including manufacturing, banking, and

transportation, LP is applied to optimize the decision-making process. ILP, on the

other hand, is a particular example of LP in which all decision variables are limited

to integer values [38]. In contrast to LP, ILP is NP-complete [38].

The general form of an LP problem can be shown as the following:

Maximize/Minimize: Z = c1x1 + c2x2 + ...+ cnxn

Subject to: a11x1 + a12x2 + ...+ a1nxn ≤ b1

a21x1 + a22x2 + ...+ a2nxn ≤ b2

...

am1x1 + am2x2 + ...+ amnxn ≤ bm

x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0

(2.1)

where Z is the objective function, x1, x2, ..., xn are the decision variables, c1, c2, ..., cn

are the coefficients of the objective function, aij(i = 1, 2, ...,m; j = 1, 2, ..., n) are

the coefficients of the constraints and b1, b2, ..., bm are the right-hand side values of

the constraints [5]. In addition, if it is an ILP problem, then some or all decision

variables would be restricted to integer values. Both LP and ILP have been applied

across diverse fields. The applications of LP include resource allocation, portfolio

optimization, and transportation planning.

2.11 Simulated Annealing Algorithm

Simulated Annealing (SA) has been successfully applied to solve challenging com-

binatorial optimization problems [19]. It is a meta-heuristic approach that imitates

the cooling process of metals. Initially, SA starts with a predefined solution. By

17

randomly making alterations to the current solution, SA repeatedly generates new

solutions. If the new solution decreases the value of the objective function, it replaces

the current solution. However, there is still a possibility of acceptance, even if the

new solution increases the objective function’s value. As the algorithm progresses,

the likelihood of accepting such a solution decreases. Accepting a higher objective

function enables the algorithm to explore additional areas of the solution space and

escape local minima, possibly resulting in a global optimum [19]. SA has been applied

to various combinatorial optimization problems.

2.12 FM-Index and Fixed Block Compression Boosting

FM-Index is a popular data structure in bioinformatics and computational biology

for efficient encoding and querying of massive text datasets, such as genomic se-

quences [6]. The FM-Index leverages the features of the BWT and the suffix array

to facilitate fast pattern matching, substring search, and other text processing opera-

tions [6]. In particular, the FM-Index maintains the BWT, the suffix array, an array

C that records the cumulative count of each character in a text string T , and a data

structure for quickly responding to range queries on C [6]. Given a pattern P , the

FM-Index can be used to find all instances of P in T by conducting a backward search

on the BWT. This is accomplished by employing the cumulative count array C to

find the interval in the BWT that represents the set of suffixes beginning with P , and

then iteratively expanding the interval by following the corresponding characters in

the BWT. The reason it needs to expand the interval is that the backward search in

the BWT based on C does not necessarily give all the suffixes that start with P . The

backward search only gives the range of positions in the BWT that correspond to the

characters in P when they are read in reverse order (i.e., from right to left). This

operation has a time complexity of O(m log n), where m is the length of the pattern

and n represents the length of T [6]. In bioinformatics and computational biology, the

FM-Index has been extensively employed for tasks such as genome assembly. It has

been demonstrated that is highly efficient because of its capacity to manage enormous

volumes of data and perform rapid pattern matching and substring search [26].

FBB by Gog et al. is one of the most cutting-edge techniques for optimizing the

time and space efficiency of FM-Indexes further [11]. FBB is based on the principle

18

of dividing the BWT of a text string into blocks and applying lossless compression

to each block. This reduces the size of the BWT, and consequently, the size of the

FM-Index while maintaining the index’s functionality. The most difficult aspect of

FBB is selecting a compression technique that strikes a balance between compression

ratio and decompression speed. Gog et al. investigated several popular compression

approaches, including RLE, Huffman coding, and Arithmetic coding, and demon-

strated that Arithmetic coding outperforms the others in terms of compression ratio

and decompression time [11]. Gog et al. showed that FBB can drastically reduce the

size of the FM-Index, often by more than 50%, while preserving the index’s rapid

search performance [11].

2.13 A low Out-Degree Proof of the Graph Built from RLBWT

Look-up Table

The feasibility of decreasing the number of cache misses of backward searches of

RLBWT is based on the assumption that the graph built from the RLBWT look-up

table by Nishimoto et al. has a low out-degree. The graph built from the RLBWT

table is defined as the following: first, the RLBWT table will be block partitioned

based on the size of the dataset and the cache size. Next, the blocks are used as

vertices v ∈ V , and the jumps across different blocks are used as edges e ∈ E to

build a graph G = (V,E). The weight w ∈ W of each e in G is determined by the

cumulative length of the runs between two vertices (v, u) ∈ V , and the loops from

each block to itself are ignored since they do not affect anything. In addition, the

following theorem was proven.

Theorem 1. Let d be the average number of runs in the L column spanned by a run

in the F column. The average degree of a vertex v in the graph built from Nishimoto’s

look-up table is at most d+ σ, where σ is the size of the alphabet.

Proof. Suppose we gather every b runs into a block. If we pick a character c at random

then the expected number of runs of c’s in any block is b/σ, where σ is the size of the

alphabet. Suppose we also pick a block B at random. If pc is run to which the start

of the first run of c’s in B maps (according to the 3rd column of Nishimoto et al.’s

table i.e., the Intervals) and qc is the run to which the start of the last run of c’s in B

19

maps, then qc − pc <= db/σ, where d is the average number of runs in the L column

spanned by each run in the F column.

Since the starts of the runs of c’s in B map to an interval of runs of expected length

db/σ, they map to an interval of blocks of expected length at most d/σ+1. Consider

the number of blocks to which B points in the graph. The expected number of edges

for the character c is d/σ + 1, so the total expected degree is at most σ(d/σ + 1) =

d+ σ.

Chapter 3

RLBWT Inversion

The primary goal of the RLBWT inversion experiment was to optimize the process-

ing time of RLBWT by reducing the number of cache misses caused during backward

searches. To achieve such an objective, the rows of the RLBWT needed to be per-

muted so that the total distance of LF steps is minimized. However, it is irrational to

rearrange the RLBWT by rows because it requires a table to record the destinations

of all the LF steps and the sizes of all the rows. Thus, block partitioning was applied

such that consecutive rows of the RLBWT were grouped into blocks with a specific

size. Then the RLBWT was rearranged by blocks using clustering. In that case,

it only demanded a smaller table that records where every block was stored. First,

this experiment converted the RLBWT lookup table that was proposed by Nishi-

moto et al. [29] to an undirected weighted graph with block partitioning approach

by Sirén et al. [36]. Then the graph was input to METIS [18] for clustering. The

parameter used to estimate the number of cache misses is the sum of edge weight

after clustering. Three kinds of datasets were used for this experiment: the reference

genome of Salmonella, copies of human chromosome 19, and a set of noisy strings.

The salmonella genome was chosen because it is small and was studied recently in

parallel research in my group [2], the human chromosome 19 was chosen because it

offers a bigger average run length, and the noisy strings were applied to analyze the

relationship between inter-cluster edge weights and the average run length of input

genome sequence. The first two datasets’ block partitioning and clustering indeed re-

duced the sum of edge weights between clusters by a factor of 2 to 4 depending on the

number of clusters. On the other hand, for noisy strings, the run length compression

seemed to hinder decreasing the sum of weight via block partitioning and clustering.

20

24

If W r < W s significantly, then it indicates that the method proposed by Sirén et al.

can decrease the number of cache misses of the RLBWT table in Nishimoto et al.’s

construction.

3.2 RLBWT Inversion Results

3.2.1 Salmonella Dataset

The salmonella genome was chosen because it was relatively small compared to other

genome sequences such as the human reference genome and it is widely studied by

researchers who work on foodborne bacterial disease. Furthermore, there was an ex-

isting RLWBT look-up table built for the salmonella genome sequence from Brown [2],

which makes the salmonella genome sequence a good start for experiments on real

genome datasets. As a result, the RLBWT table was built from the Salmonella

genome sequence to verify if the block partitioning and clustering offer a lower sum

of edge weight like the short-string example that has been analyzed.

The sequence length is 145,595,456, and the number of runs is in the RLBWT

12,823,516, resulting in an average run length of 11. The graph built from this table

has 12,523 nodes and 62,556 edges, with a total edge weight of 145,589,783. The

results of METIS clustering and sequential clustering are presented in Table 3.1 The

inter-cluster edge weight of METIS is observed to reduce by a factor of 3 when the

cluster number is 10 compared to sequential clustering. However, the difference is

relatively small when the cluster number is 1000.

#Clusters 10 50 100 500 1000
Wm 41,393,086 56,002,575 62,137,611 103,647,402 128,998,476
Ws 127,980,098 142,549,115 143,815,338 145,258,185 145,482,565

Ws/Wm 3.09 2.55 2.31 1.4 1.13

Table 3.1: Salmonella dataset clustering results

As shown in Figure 3.4, until 100 clusters, there is a clear difference in weights

between METIS clustering and sequential clustering. The inter-cluster weights using

METIS are still 2 times smaller than when using sequential clustering when the cluster

number is 100. Once the cluster number is over 100, the weight difference shrinks

significantly.

28

run length remained undefined. The best result obtained from chromosome 19 was a

decrease in the sum of edge weights by a factor of 4 when the cluster number is 10;

however, a reduction of a factor of 2 to 3 would be much more realistic based on the

size of the caches.

3.2.3 Noisy String Dataset

To investigate the relationship between the decrease of the sum of edge weights and

the average run length of the input sequence further, an experiment was conducted

to cluster artificial sequences with different numbers of flipped characters (i.e., a

character can be substituted to any other character in the English alphabet). The

sequence alphabet remained [A, T, C,G], and it had a total length of 100,000,000

characters consisting of 100 copies of a subsequence of length 1,000,000 characters

that were randomly generated. The sequence noisy0 means that no characters were

flipped. As a result, the BWT consists of runs of a length of at least 100. noisy1 means

that every character was flipped, noisy10 means that every 10 characters were flipped,

and so on until noisy10000. The RLBWT of each noisy string and the RLBWT lookup

table were generated accordingly. Fewer flipped characters mean a higher average run

length in the RLBWT as shown in Table 3.3 because the character flipping tends to

break runs. Figure 3.7 shows the METIS clustering result of six input sequences. As

shown in the figure, bigger average runs indicate less significant edge weight decreases

when the dataset is run-length compressed. However, when the average run length

exceeds a certain threshold, the edge weights start to plateau.

1/X flipped #runs average run length
0 749369 133.446

10000 844614 118.397
1000 1728294 57.8605
100 9793615 10.2107
10 53620161 1.86492
1 75001430 1.33331

Table 3.3: The number of runs and average run lengths of noisy strings

The results of the noisy strings experiment showed the opposite of the expected

outcome that higher average run lengths of the RLBWT of the input sequence would

demonstrate a lower sum of edge weight. Such a scenario in theory indicates that

30

if the size of the caches was taken into consideration, a decrease of a factor of 2.31 was

obtained for the Salmonella dataset and a factor of 2.82 for the 128 copies of human

chromosome 19 with 100 clusters because the L1 and L3 cache size of the Waverley

server is 64KB and 16MB, respectively.

On the other hand, the noisy string experiment reveals that the run length com-

pression on BWT could cause more cache misses than uncompressed BWT when

optimizing the layout of RLBWT. The underlying reason is that each block contains

a fixed number of rows of the RLBWT, and the length of each row (i.e., the length

of a run) of the RLBWT varies. Hence, there would be blocks that contain huge

numbers of rows of BWT, which make them significantly larger than other blocks. In

that case, the majority of blocks are not rearranged and most of the edges would still

jump to greatly varying locations in the BWT, which make the clustering procedure

inefficient. The flipped characters in the sequences help to decrease edge weights

because what used to be a single run (i.e., a single row in the look-up table) now

becomes multiple shorter runs, which means compressing BWT into runs and then

using clustering to improve the access locality is inefficient, and abandon run length

compression would be the choice under such a scenario. Therefore, the run-length

compression may not be the best compression algorithm to apply on BWT because it

was expected that the run-length compression would help decrease inter-cluster edge

weight with block partitioning and clustering. Furthermore, the sum of inter-cluster

edge weights is just a proxy measure of the number of cache misses that occurred

during backward searches of RLBWT in theory. Running time experiments still need

to be conducted in the next stage of the research to see Whether the optimized layout

would decrease the processing time of BWT in practice.

Chapter 4

BWT Inversion

Based on the experiments conducted on RLBWT, we have learned the optimization

of BWT layout using block partitioning and clustering does not work with run-length

compression because different lengths among runs of RLBWT and a fixed number of

runs of blocking would cause inefficient clustering. Due to such circumstances, the

run-length compression was discarded and the focus of the experiment shifts to devel-

oping a cache-efficient layout using regular BWT instead of RLBWT. This experiment

was divided into two main parts: first, optimizing the layout of uncompressed BWT

to minimize the number of LF steps that cause cache misses and their distances with

block partitioning the BWT, building the graph of BWT blocks, and clustering it.

Also, the block order within each cluster is permuted using ILP or SA because the

blocks are still sequentially stored inside each cluster and the cluster size is still rela-

tively too big to fit in the cache that is built from real reference genomes, so some LF

steps within the cluster would still cause cache misses. Second, build a data structure

with this optimized layout of BWT to verify if it provides any improvement in terms

of access locality compared to the normal layout of the BWT. The results of this

experiment would be presented and discussed in this chapter too.

4.1 BWT Inversion Methodology

The methodology of this experiment was composed of six steps. First, the BWT

was block partitioned with a specified block size that depends on the size of the

dataset. Second, a graph of the BWT blocks was built based on the number of LF

jumps between blocks, which is the same type of graph that was used in the RLBWT

experiment. Third, the graph of BWT blocks was clustered using METIS to obtain a

lower sum of inter-cluster edge weights. Fourth, the order of the blocks in each cluster

was optimized using an ILP solver to solve the MLA problem; the goal was to obtain

a permutation of the blocks that further improves the cache efficiency of the layout by

31

32

bringing the sources and targets of LF steps in the same cluster closer to each other.

Fifth, a data structure was built for backward searches with the optimized layout of

BWT. Finally, the backward search of the BWT was performed on different datasets

to compare the performance with the sequential layout of BWT. Figure 4.1 is a flow

chart that helps to visualize the entire process of optimizing the layout of BWT and

comparing its performance with the sequential layout.

The methodology of the BWT experiments employed the same approach as the

RLBWT experiments to reduce the sum of inter-cluster edge weight because we ob-

tained meaningful decreases in the previous experiments using this approach. More-

over, it was expected the uncompressed BWT would provide more significant de-

creases since the run-length compression trended to make the clustering process inef-

ficient. In addition, since the lookup table of Nishimoto et al. only supports RLBWT,

we used the SDSL to represent the BWT and support LF steps [10].

4.1.1 Previous Approach Validation

The “bananaband$” example from the introduction showed a decrease of inter-cluster

edge weights using block partitioning and clustering, which indicated the approach

would also work on uncompressed BWT. However, the size of the dataset was lim-

ited, bigger datasets were needed to verify the efficiency of blocking and clustering.

Meanwhile, datasets like the human reference genome were too big to apply in the

current stage of the experiment because we were still verifying the correctness of the

graph-building code. Therefore, we needed a bigger dataset than “bananaband$”

but not too big, and the Hamlet from Shakespeare [33] with 162,850 characters was

chosen. The Hamlet dataset was processed as mentioned using block partitioning,

building a graph based on BWT blocks and clustering the graph. The clustered

graph of the BWT of Hamlet gives a sum of the edge weights of 75,116 with a block

size of 100 characters and a cluster size of 100 blocks. The unblocked and unclustered

arrangement gives 162,848. Thus, blocking and clustering reduces the total number

of inter-cluster edges by a factor of 2.17, similar to the decrease that was obtained

in the RLBWT experiment. In particular, using the uncompressed BWT did not

increase the effectiveness of blocking and clustering on this dataset, contrary to our

34

experiment. This result could be because Hamlet has a shorter length and larger al-

phabet compared to typical genome datasets, which means it is not repetitive enough

and the clustering would not give a decrease of the sum of edge weight as significant

as the genome dataset.

Another measure was introduced to represent the cache efficiency of BWT queries,

which is the jump distance of the inter-cluster LF-mapping steps (i.e., the difference

between the new position and the old position on the BWM of each LF step) to further

verify the improvement of cache efficiency. The reason was that the weights of the

edges represent how many times the LF steps jump outside of the current cluster

and cause cache misses; the jump distances represent how far the steps are going to

jump because longer jumps indicate cooperation with strategies such as read-ahead

is less effective, which means the cost of cache misses can not be hidden. Therefore,

both the number of jumps that would cause cache misses and their distances can

be used to model the anticipated improvement of cache efficiency. For the Hamlet

dataset, the sum of the jump distances of the LF steps before METIS clustering was

8,494,543,292, and after the METIS clustering, it was 4,271,734,940, which is about

1.99 times better. Therefore, based on the results from the Hamlet dataset, it can

be concluded that block partitioning and clustering indeed help to reduce the sum of

edge weights and the sum of jumping distances and imply a layout of the BWT that

provides more access locality with fewer cache misses.

Since the current clustering strategy directly clustered the blocks into a certain

number of groups, which raised a hypothesis that a better clustering strategy may offer

more significant decreases in inter-cluster edge weight. Hence, the clustering approach

was switched to hierarchical clustering. For Hamlet, it can be hierarchically clustered

7 times from 813 clusters (one cluster per block) to 10 clusters as shown in Figure 4.2.

Specifically, the new graph of each round is built from the clusters of the previous

round, where the clusters are treated as new vertices and the sum of edges between

clusters are treated as new edges. The total weight of inter-cluster edges decreases

to 58,866 after hierarchical clustering with a final cluster number of 10. Meanwhile,

the total weight of inter-cluster edges decreased to 72,127 using direct clustering with

10 clusters. Hierarchical clustering provides better results in terms of the sum of the

weights of inter-cluster edges by 22.5%. In order to double-check the effectiveness of

36

4.1.2 Further Optimization of the Block Orders Inside Clusters

The overall order of the blocks was permuted by clustering the blocks, but the blocks

inside each cluster and the order of clusters are still sequentially stored. The blocks

inside each cluster and the clusters themselves can also be further permuted to gain a

more cache-efficient BWT layout. However, since the size of each cluster is relatively

big compared to the total length of the dataset (e.g., 1/10 of the size of the dataset),

the expected improvement of cache efficiency from rearranging clusters is limited due

to the distance between the majority of clusters remaining the same. On the other

hand, big cluster sizes mean that a cluster is unlikely to fit into the cache; hence, some

relatively long jumps within the cluster would still cause cache misses. Therefore, the

focus is on optimizing the order of blocks within a cluster to see if they give better

cache efficiency.

Random permutation of the blocks within each cluster was the first approach ap-

plied because it can generate a new block layout inside each cluster rapidly and easily.

Random permutation means generating some random numbers according to the block

size and permuting the blocks in each cluster by either the same permutation or dif-

ferent permutations. Moreover, the predictor of cache efficiency was replaced by the

total jumping distance. Fifty different permutations were generated using C++ built-

in functions, and the performance of different block permutations was measured by

their sum of the jump distances of LF mapping. The original sum of jump distances

without any permutation of the long version of Hamlet with 228,320 characters was

417,406,828 after filtering out the inter-cluster jumps. When using the same random

permutation on all the clusters, the best result out of 50 random permutations was

417,327,446, which is just an improvement of 0.27%. To explore a better performance

using random permutation, the best-performing permutation was also found for each

individual cluster, and the sum of jump distances was calculated using these best-

performing permutations on the clusters. However, the sum of the jump distances

still only decreases by a very small amount. Therefore, it was concluded that ran-

dom permutation cannot significantly decrease the inter-cluster edge weights further

compared to directed clustering.

Due to the necessity of block permutation inside clusters and random permuta-

tion did not offer satisfactory results, a more effective solution was needed to address

37

the problem of permuting the blocks within clusters. Since our goal is to minimize

the total distance and total edge weight of LF steps, an ILP system with the ob-

jective function of minimizing the product of edge weights and edge distances was

constructed.

Minimize
∑

(u,v)∈E

wu,vdu,v

s.t. du,v ≥ pu − pv ∀(u, v) ∈ E

du,v ≥ pv − pu ∀(u, v) ∈ E

pv =
n∑

i=1

ixv,i ∀v ∈ V

n∑

i=1

xv,i = 1 ∀v ∈ V

∑

v∈V

xv,i = 1 ∀1 ≤ i ≤ n

xv,i ∈ {0, 1} ∀(v, i) ∈ V

For the objective function, w is the weight of an edge, d is the distance of an edge,

and u, v is a random edge between two blocks (i.e., vertices). For the constraints,

the first two calculate the distances between endpoints. The third one translates the

permutation points to vertices in the graph; the fourth and fifth ones limit the vertices

so they can only appear once in the permutation. Also, it is necessary to ensure that

x can only take integer values of either 0 or 1 since x represents the appearance of a

vertex, so the binary variable xv,i is defined as 1 if vertex v appears at position i of

the permutation and 0 otherwise.

This ILP was too complex to solve by hand, particularly when dealing with a

large genome dataset. Hence, a software called Gurobi was applied to help solve the

ILP [13]. A license was obtained for one year and the Gurobi optimizer was installed

on the school server, Waverley. After proper installation and testing, the ILP was

implemented in Python, we then conducted multiple weight-distance optimization

experiments, with different parameters, to determine the best BWT layout. The

dataset was changed to the HRG (GRCh38 version) [27] because Hamlet was not

repetitive enough, not long enough, and had a rather large alphabet compared to

genome datasets, and genomes of different species, especially the human genome,

38

which are the targeted dataset for this research. However, only snippets with different

lengths were used with Gurobi optimization because the number of variables in the

optimization matrix of Gurobi is the square of the number of blocks and too many

variables in the matrix slow down the optimization process dramatically.

The optimization strategy used by Gruobi explores the upper bounds and lower

bounds of the different solutions to narrow down the gap between the lower bound and

upper bound; when the lower bound meets the upper bound, the optimal solution

of the permutation of blocks is found. The first experiment was conducted with

a portion of the HRG with 248,000 bases, a block size of 100 bases and an average

cluster size of 99 blocks, resulting in 25 clusters in total and an optimization matrix of

9801 variables for each cluster, which was a challenge even for Gurobi. After running

the optimizer for over 48 hours on the block permutation of size 99, the gap still

remained over 90%. We decreased the cluster size to only 20 blocks, which generated

a matrix with only 400 variables. The optimizer was able to solve the ILP with 20

blocks in 90 minutes, resulting in a decrease of weight ∗ distance from 180288 to

53316 for that particular cluster. This indicated that Gurobi provides a better block

permutation of the cluster by decreasing the product of the weights and distances of

the edges by a factor of 3.4. If all clusters were optimized in this manner, it should be

possible to form a more cache-efficient layout of the BWT that can inverse the BWT

in a much shorter time compared to the original layout within clusters. However,

to obtain better performance of the inversions and meaningful clustering, block sizes

are typically small compared to the entire length of the BWT. Therefore, it would

result in a large number of clusters if the cluster size is limited to as small a number

of blocks as 20, and optimizing all of the clusters using Gurobi would be costly in

terms of time. Thus, reducing the running time of the optimization procedure with a

reasonable cluster size is necessary. Manipulating different parameters was attempted,

but only two of them actually helped to reduce the running time of the optimization,

which were MIPFocus and NoRelHeurTime.

According to Gurobi’s definition, the MIPFocus parameter “allows modification

of the high-level solution strategy, depending on the user’s goals” [13]. By default,

the Gurobi optimizer focuses on “finding new feasible solutions” while “proving the

current solution is optimal” [13]. However, users can customize the solver’s behaviour

39

by setting the MIPFocus parameter [13]. If MIPFocus = 1, the optimizer would

focus on finding new feasible solutions. Conversely, setting MIPFocus = 2 causes

the optimizer to prioritize providing the optimal solution to the problem [13]. In the

third case, if the best objective bounds of the ILP still have a large gap after running

for a long time, setting MIPFocus = 3 makes the optimizer prioritize reducing the

gap between the best objective bounds [13]. As this third scenario addresses the

issues encountered in this study, MIPFocus was set to 3, and the optimization of

the order of 20 blocks was re-conducted. This time, the optimizer finished in under

50 minutes, yielding the same block permutation result, which suggests that using

MIPFocus resulted in a meaningful improvement. Hence, MIPFocus = 3 was added

to the code of the ILP optimizer.

NoRelHeurTime “limits the amount of time (in seconds) spent in the NoRel heuris-

tic”, where NoRel stands for No Relaxation, and it “searches for high-quality feasible

solutions before solving the root relaxation” [13]. By setting NoRelHeurTime, the

optimizer prioritizes finding the optimal objective upper bounds first. For a cluster

size of 20 blocks, the optimizer can find the optimal objective upper bound in under 5

seconds. It has also come to our attention that the block permutation results were the

same as those obtained after running the optimizer for 50 minutes if the optimization

is stopped after 5 seconds. This suggested that finding the optimal objective lower

bounds can be deprioritized for this particular ILP problem. Therefore, the focus was

shifted to optimizing the upper bounds for larger cluster sizes. However, it still took

around 7,500 seconds to obtain the optimal objective upper bound for a cluster size of

100 blocks. After examining the changing trends of the objective upper bounds over

time, it was observed that the upper bounds decrease dramatically at the beginning

of the optimization and tend to drop very slowly after a few minutes. As a result,

the decision was made to find the best block permutation with a time constraint,

instead of attempting to find the ultimate optimal permutation, which would take

too long. By setting the T imeLimit parameter to 200 seconds, the optimization was

attempted on longer portions of the HRG with 1,000,000 bases and 10,000,000 bases,

with different combinations of block and cluster sizes. With a block size of 500 and a

cluster size of 100 blocks, the best result obtained was a decrease of the sum of W ∗D

by a factor of 3 for each cluster for the 1,000,000 base portions.

40

Since the goal of optimizing the block permutation has shifted from finding the

optimal solution to finding an acceptable solution, another optimization technique

that finds the global optimum was also applied, which was the SA algorithm. It

is a probabilistic method for finding the approximate global optimum of a given

function [25]. An SA algorithm was developed for optimizing the block permutation

of each cluster using Python. Following the general guideline of applying the SA

algorithm, the code consists of three aspects: the initialization function, the objective

function, and the optimization function. The initialization function creates a list of

integers from 0 to the size of the cluster, which serves as a starting point for the

optimization. The objective function calculates the cost by iterating over the list of

edges and adding the product of the weight and distance of that edge, returning the

cost. The optimization function takes the objective function, the starting points, the

number of iterations, the temperature, and two other lists that contain the edges and

their indices as inputs. It performs the swap operation on a random pair of edges

in the current permutation and calculates the new cost. If the new cost is better

than the current cost, it updates the current permutation and cost; otherwise, it does

not. Meanwhile, it uses a probability function to decide whether to accept the new

permutation or not. Finally, it returns the best permutation and cost found during

the optimization process and the list of costs at each iteration. After a few attempts

using different temperatures and numbers of iterations, the best result achieved in

a reasonable time frame was 20,000,000 iterations. However, the product of weight

and distance of the edges in the cluster only dropped from 176108 to 162746 for that

particular cluster, which is only 8%. This reduction was insignificant compared to

the result obtained using the Gurobi optimization. Therefore, the Gurobi optimizer

was chosen as the final block permutation optimizing strategy.

The blocks have been clustered and the order of blocks inside each cluster has

been optimized, the next step was to build a data structure to verify whether the

optimized layout of BWT actually provides a better cache efficiency compared to the

traditional layout.

41

4.1.3 Building the Data Structure

We have confirmed that the weights of inter-cluster edges and jump distances of the

LF steps can be decreased by rearranging the layout of BWT using clustering and

Gurobi optimizer, but they are just proxy measures for estimating the final cache

efficiency of the permuted BWT layout. In order to observe the real BWT inversion

performance after replacing the regular BWT layout with the optimized layout, a

data structure was built to test the speed of backward searches. The data structure

was built to support access and rank queries on any random string but mainly focuses

on the BWT of genomes. To compare the data structure, a wavelet tree of the BWT

of the input dataset was also built using SDSL, which also supports access and rank

queries of the BWT.

The data structure used a lookup table to conduct access and rank queries of

the BWT. The table was created where each entry of it corresponds to one BWT

block. For each BWT block, there is a rank header that identifies the rank of the first

index of this block concerning each character in the alphabet. All the BWT blocks

were permuted according to the optimized BWT layout and stored in the table. In

addition, the substring inside each BWT block was represented as a wavelet tree, in

order to support access and rank queries space-efficiently. With the help of the table

and the wavelet tree of the BWT blocks, access and rank queries on the BWT of the

dataset can now be supported.

For access queries, only one parameter is required, which is the position I. Using I

with the block table T , block size B, and the block permutation P , the ith character

of the BWT can be obtained using the following formula: T [P [I/B]].block[I%B],

where block is the BWT block entry of the table.

For rank queries, two parameters are required: the querying character C and the

querying position I. First, the BWT block in which C is located can be found by

CB = I/B, and the offset of C inside that BWT block is found by CO = I%B. If

C is located in the first block (CB = 0), then the rank of C at I can be found by

T [P [CB]].block.rank(CO, C), where rank is calling the rank query of the wavelet tree.

If C is located in the another block (CB ̸= 0), then the rank of C at I can be found

by T [P [CB]].headers[A[C]] + T [P [CB]].block.rank(CO, C), where A is the alphabet

of the BWT and headers is the rank headers of the current block.

42

After running some test cases, it was discovered that the running time of building

the data structure was much longer than expected. We determined the part of the

code that has been slowing down the process is the building of the block wavelet trees

because it was in integer sequence wavelet trees, which are just numbers separated

by white spaces that are intended to serve an educational purpose [10]. To improve

the performance, the integer sequence wavelet trees were replaced with byte sequence

wavelet trees because they are more space-efficient. Specifically, the byte sequence

wavelet trees use a sequence of 1-byte unsigned integers (i.e.,uint8 t), which means

they use 1 byte for each character in the string; whereas the integer sequence wavelet

trees use decimal numbers, which means they use 4 bytes per character in the string.

Moreover, balanced wavelet trees were transformed into Huffman-shaped trees to

reduce the size of the bit vectors because the total length of the bit vectors of the

balanced wavelet trees is between |X|⌊log |Σ|⌋ and |X|⌈log |Σ|⌉, but Huffman-shaped

wavelet trees use exactly |X|, where X is the string and Σ is the alphabet [11]. After

these modifications, the building time of the table was reduced. The next step is to

use this data structure to perform a BWT reverse search and compare its performance

with a single wavelet tree constructed from a traditional BWT layout to determine

whether the optimized layout has better cache efficiency compared to the traditional

layout.

4.1.4 The Final BWT Inversion

The purpose of the BWT inversions is to verify whether the two steps of block order

optimizations were actually decreasing the time of backward searches of the BWT

and improving the cache or memory efficiency of the BWT. The inversions were

first performed on the Waverley server. In order to verify the effectiveness of the

block order optimization within clustering using Gurobi, the inversion tests were first

conducted with a portion of 1,000,000 bases of the HRG, comparing the inversion

time with the BWT layout without Gurobi optimization. The results revealed that

the Gurobi optimizations on the block order within clusters were ineffective because

the inversion time remained the same; therefore, the block order optimization within

clusters was discarded. Next, the dataset expanded to the entire HRG since it was

no longer limited by the Gurobi optimizer and the inversion was conducted using the

43

layout with block partitioning and clustering optimization and the traditional layout.

The inversion results showed that the optimized layout was even slower than the

traditional layout. Such an unexpected result expressed that the optimized layout

did not offer better access locality compared to the traditional layout. However, it

could also be because the Waverley server has more than enough memory to store

the entire single wavelet tree of the BWT of HRG, which means the inversion using

the traditional layout would not cause more disk access and lead to a longer inversion

time. Meanwhile, the data structure that was built to invert the BWT was not as

optimized as the BWT inversion algorithm from the SDSL. In order to address the

problem of sufficient memory will not cause more disk access, the genome of Douglas

Fir of 14.62 GB was applied as the input dataset and virtual machines were built

on a laptop with limited memory from 8 GB to 1 GB. The Douglas Fire was chosen

because the predicted size of its single wavelet tree is about 4 GB based on the types

of bases of 4. Meanwhile, the backward searches were conducted on a virtual machine

rather than the university’s server because we have trouble limiting the memory on

the server, which could be because we did not have permission. The inversions using

an optimized layout started to outrun the inversions with the traditional layout when

the memory size is less than 3 GB. Hence, the optimized layout offered more cache

efficiency but only when the memory size is less than the size of the wavelet tree of

the BWT.

Human Reference Genome Inversion

The inversion performance test was first conducted on a portion of the HRG of

1,000,000 bases, due to the limited number of variables in the optimization matrix

that Gurobi could handle. The BWT layout of the portion was optimized, which

includes block partitioning, clustering using METIS, and optimizing the block orders

within clusters using Gurobi.

According to the previous result, the Gurobi optimizer reduced the product of

distances and weights of the edges by a factor of 3 for the 1,000,000 bases portion

with a block size of 500 and a cluster size of 100 blocks, so the expected inversion time

with the Gurobi optimized was supposed to be faster compared to the inversion using

the layout after clustering and without block order optimization inside the clusters.

44

However, the inversion running time remained the same. To ensure the reliability

of this observation, different block sizes and cluster sizes of the portion were applied

with the Gurobi optimization, but the inversion times did not show any noticeable

decrease. Therefore, it was concluded that although the Gurobi optimizer decreases

the weight ∗ distance of edges by a factor of 3, it does not give better performance in

terms of inversion speed. Hence, Gurobi optimization was not included in future BWT

inversion experiments, and only block partitioning and METIS clustering remained

as approaches to optimize the order of blocks. However, the size of the input dataset

was no longer limited by the number of variables in the optimization matrix of the

ILP, and the following inversion tests were conducted on the entire HRG.

The inversion of the BWT of the entire HRG was performed using two different

approaches in order to verify if the optimized layout is more cache or memory efficient

than the traditional layout: a single Huffman-shaped wavelet tree with Ramen Ramen

Rao (RRR) compressing algorithm [30] to represent the traditional layout and the

data structure that uses a table of block Huffman-shaped wavelet trees with RRR

compressing algorithm with optimized layout. The purpose of compressing both types

of wavelet trees with the RRR algorithm was to reduce the space occupied by the

wavelet trees. Both approaches were able to correctly invert the BWT to the original

HRG sequence, but the inversion time using the data structure was slower than using

the single wavelet tree, which indicates that the inversion did not take advantage of

the permuted BWT layout, at least not with the current setup of sufficient memory.

We conjectured that the Waverley server, which has a total memory of 94.132

GB, could potentially store the single wavelet tree of the BWT of the HRG entirely

in memory because the size of the single wavelet tree was only 731 MB. Therefore, a

larger dataset with a limited amount of memory was required in order to guarantee

that the whole single wavelet tree must be stored on disk, leading to significantly more

disk accesses and slowing down the inversion if cache locality is limited. In contrast,

the data structure only has block wavelet trees, which means that only some of the

block wavelet trees would be stored in memory at once, and they were permuted

based on METIS clustering, potentially resulting in fewer disk accesses and achieving

a better inversion speed because the LF steps tend to keep within the cluster as often

as possible.

45

Douglas Fir Genome Inversion

In order to increase the size of the single wavelet tree that was built from the tra-

ditional layout of BWT so that the single wavelet tree can exceed the size of the

available memory, the Douglas Fir genome with 15,703,424,632 bases is chosen as the

new dataset, which requires 14.62 GB of storage [28]. The genome was chosen based

on its length and not relevant to its species, a single wavelet tree with a predicted

length of 4 GB was expected to build from the genome based on its alphabet size.

In practice, the Huffman-shaped RRR-compressed single wavelet tree of the BWT of

Douglas Fir is serialized using SDSL, and its size is 2.67 GB, which could be because

of the Huffman code compression and RRR compression. However, other system pro-

cesses also require memory while performing BWT inversion. Thus, it is anticipated

that BWT inversion would experience increased disk access when conducted with 3

GB of memory or less since the whole wavelet tree cannot fit into memory. The data

structure that employs block wavelet trees would demonstrate a speedup (i.e., im-

provement of inversion time) in comparison to the single wavelet tree due to less disk

access. In terms of limiting the memory that can be allocated by the inversion pro-

cess, the first approach was using commands to limit the amount of memory on the

Waverley server. However, the command did not work well, so the second approach

was to build virtual machines with limited memory.

The first attempt to limit the memory usage of the inversion process on the Wa-

verley server was to use the ulimit command, which provides resource control for

particular processes on systems that allow it [22]; therefore, we were expecting the

ulimit command could limit the amount of memory that can be accessed by the in-

version process. The manual page of ulimit indicates that −Sv provides a soft limit

of “the maximum amount of virtual memory available to the process,” while −Hv

provides a hard limit, where “the soft limit is the value that the kernel enforces for

the corresponding resource and the hard limit acts as a ceiling for the soft limit” [22].

Initially, the memory limit was set to 10 GB using −Sv10000000, which was smaller

than the BWT of the reference genome of Douglas Fir but larger than the single

wavelet tree that was built from it. However, the inversion time using the single

wavelet tree remained the same, indicating that the inversion did not cause more disk

accesses than before. Then the memory limit was changed to a hard limit of 10 GB

46

using −Hv10000000, but the inversion time remained the same. Next, the memory

usage was reduced to 3 GB, which was supposed to be smaller than the total size

of the single wavelet tree combined with other essential processes that support the

system. However, the inversion program threw a ”bad alloc” instance and aborted

for both a soft limit and a hard limit. Such a scenario that cannot limit the amount of

memory used by a process could be because the Waverley server has enough memory

to buffer the inversion process by swapping out the current memory block that has

been occupied by the single wavelet tree during the inversion, even if the process itself

does not have control of that piece of memory. Furthermore, we did not have permis-

sion to stop the server from swapping out the memory block. Therefore, the ulimit

command could not be used to limit the memory usage of the inversion program and

virtual machines built on a laptop were applied.

As the inversion experiments cannot be effectively conducted on the Waverley

server with limited memory, an alternative solution was proposed to run the ex-

periments on a virtual machine where the memory size can be limited during the

installation and configuration of the OS. A virtual machine with Ubuntu 22.04.1 LTS

and kernel 5.15.0-58-generic was created on VMware17 on a Lenovo Legion 5 with

AMD Ryzen 7 5800H at 3.2 GHz, 32 MiB L3 cache, 1 TB Solid-state drive (SSD)

SKHynix-HF001, 32 GiB of DDR4 main memory and an 8 GB swap file. The memory

size of the virtual machine was varied from 8 GB to 1 GB with a decrement of 1 GB to

confirm the hypothesis that the single wavelet tree of the BWT would cause more disk

accesses when the memory size is 3 GB or smaller. The substring extraction method

was used to replace the BWT inversion because the accuracy of backward searches

was confirmed and inverting entire genomes was time-consuming. The length of the

substring was set to 100,000 bases based on the virtual machine’s performance (i.e.,

the substring extraction can be finished within 10 seconds). The substring extractions

were conducted on the single wavelet tree that uses the traditional layout of BWT

and block wavelet trees that use the optimized layout of the BWT with a block size

of 1,500,000 bases, and a cluster number of 10, where the block and cluster size were

preliminary guess of optimal sizes based on the size of the dataset.

As shown in Figure 4.3 , the extraction time using the single wavelet tree signifi-

cantly increases from 4 GB to 3 GB of memory, which is consistent with the earlier

48

worth the effort to optimize the BWT layout. However, the applied block and cluster

sizes were just randomly chosen. More different block and cluster sizes needed to be

tested in order to find the optimal combination of block and cluster size that offers

the most significant speedup. The results of testing different block and cluster sizes

will be presented in the next section.

4.2 BWT Inversion Results

To obtain the most significant improvements in terms of substring extraction speeds,

the virtual machine’s memory size has been set to 1 GB for all subsequent substring

extractions because that is the minimum memory requirement of the OS and the

speedup grows as memory size drops. More block and cluster sizes were explored to

determine if they provide better performance (i.e., bigger speedup). Additionally, a

switch from a solid-state drive (SSD) to a hard disk drive (HDD) was applied for

the purpose of expanding the difference between the extraction time using the single

wavelet tree and the block wavelet tree. This is because block wavelet trees produce

fewer disk accesses, and each disk access using HDD would take a longer time than

using SSD. Furthermore, since a disadvantage of generating block wavelet trees using

SDSL was noticed, an alternative approach for generating block wavelet trees has been

proposed, which is a program implemented by the author of SDSL Gog et al. [11].

4.2.1 BWT Substring Extraction with SSD

In pursuit of optimizing block and cluster sizes for bigger speedup in substring ex-

traction, the range of block sizes was extended from 1500 bases to 150,000,000 bases,

while cluster sizes ranged from 14.98 MB to 1.46 GB when allowed by the current

block size. The experiment began with smaller block sizes, but it was found that

wavelet trees with block sizes of 1500, 15,000, and 150,000 bases were impractical

because they demonstrate slower extraction speeds compared to the single wavelet

tree. This is likely because the total size of the block wavelet trees exceeds the size of

the single wavelet tree when block sizes are that small. Specifically, the total size of

the block wavelet tree with 1500 bases is 31 GB, and it decreases to 2.9 GB when the

block size is 150,000 bases, while the size of the single wavelet tree is 2.67 GB. The

underlying reason is that each wavelet tree included its own universal table, which is

50

below 2%. Conversely, wavelet trees with a block size of 15,000,000 bases only exhibit

a decline to the cluster size of 299.52 MB, after which it demonstrates a significant

increase, contrary to the trend observed with 1,500,000 bases. For block wavelet

trees with a block size of 150,000,000 bases, only a few clusters could be formed, and

the only three scatter points obtained show a declining trend, consistent with the

1,500,000 bases wavelet tree. Therefore, there was no clear pattern shown regarding

the speedup of using the optimized layout and the cluster size.

Nonetheless, the 15 million bases block wavelet tree demonstrates a most signif-

icant average speedup of 9.32% among three block sizes, regardless of cluster size.

Hence, it can be concluded that progress has been made in finding the optimal block

size, which is around 15 million bases. Additionally, the 1.5 million bases block wavelet

trees outperform the 150 million bases when the cluster is 1.46 GB. Since larger block

sizes like 150 million did not provide many options for cluster sizes, which means

the majority of the layout of the BWT was not permuted. There, the subsequent

substring extractions were conducted with block sizes ranging from 1.5 million to 15

million bases.

Since the focus was on block sizes between 1.5 million and 15 million, new test

points were selected with block sizes of 5 million and 10 million in order to cover the

block sizes that have not been tested, while keeping the cluster sizes the same. As seen

from the Figure 4.5, both the 5 million and 10 million block sizes offer better speedups

compared to the previously investigated block sizes, with an average improvement of

13.55% and 10.39%, respectively. However, the improvements still do not demonstrate

a clear pattern of changes in terms of cluster sizes, which leads to some concerns

about whether the cluster sizes have a regular impact on the improvements. As both

5 million bases and 10 million bases block size wavelet trees gave better speedup

compared to the block sizes that have been tested, further substring extractions were

conducted on block sizes between 10 million bases and 5 million bases.

Despite the improvement in substring extractions using block wavelet trees with

optimized layout, 13.55% is still not a notably high percentage. However, it was

realized that the Lenovo Legion 5 does not include an HDD, only an SSD for disk

equipment. It was believed that the block wavelet trees would provide an even better

improvement over the single wavelet tree if substring extraction is conducted on an

53

accesses caused by the single wavelet tree exceeding the block wavelet trees kept the

same, the extraction gap grows in terms of time. In terms of the difference in speedups

between the two block sizes, the 15 million bases block wavelet trees offer an average

speedup of 43.03% and the 1.5 million bases block wavelet trees offer an average

speedup of 30.48%, which confirmed that the optimal block size is around 15 million

bases. The graph also includes the standard deviations of the average improvement

of the extraction, which show that the speedups are relatively stable at 40% and 30%

for the 15 million block size and 1.5 million block size, respectively. However, there is

still no clear pattern of how the cluster sizes affect substring extraction improvement.

The 1.5 million block size shows a decreasing trend, while the 15 million block size

has a peak point in the middle cluster size. Nevertheless, more block sizes were tested

to find a more significant substring extraction speedup from applying the optimized

BWT layout.

Since no clear pattern has emerged in finding a better cluster size for substring

extraction, whether the METIS clustering helped with the speedups or the improve-

ment was solely due to block partitioning the BWT, to address this question, it was

decided to compare the trends of speedup with different block sizes, but the same set

of cluster sizes, to determine if the speedups demonstrated a pattern with respect to

cluster sizes. Table 4.1 lists the new block sizes that were tested, covering the major-

ity of block sizes between 1.5 million and 15 million in increments of 1 million. If no

similar pattern of improvement changes were observed among the cluster sizes in at

least half of the block sizes tested, there would be concerns regarding the effectiveness

of the METIS clustering.

Block size 2000000 4000000 5000000 6000000
Block number 7852 3926 3141 2618
7000000 8000000 9000000 10000000 11000000
2244 1963 1745 1571 1428

Table 4.1: New block sizes for the substring extractions

Figure 4.7 depicts all the substring extraction experiments that were conducted

on block sizes between 1.5 million and 15 million. As observed from the plots, six out

of the 11 plots show a single peak at either cluster size 149.70MB or 29.95MB, while

the remaining five plots show the lowest data point at either cluster size 149.70MB

57

extractions gain a 40% to 50% speedup just by block partitioning the uncompressed

BWT, which is not consistent with the previous assumption of how the layout of

the BWT would affect the speed of backward stepping of the BWT, but it is still a

noticeable increment of the backward search speed. Moreover, the current optimal

block size was bigger than anticipated, and the non-sharing universal table issue of

the block wavelet tree prevented the exploration of smaller block sizes. Therefore, an

alternative approach was needed to produce the block wavelet trees in a different style

so that the universal table is shared between them. Fixed block compression boosting

(FBB), another approach that employs block partitioning to building wavelet trees

that were implemented by Gog et al., was proposed to solve the issue of non-shareable

universal tables.

4.2.3 BWT Substring Extraction Using Fixed Block Compression

Boosting

Due to the renunciation of METIS clustering and the hypothesis that small block

sizes would provide more significant improvements, FBB wavelet trees were applied

to replace the block wavelet trees built from our data structure. The author of SDSL

Gog et al. implemented the FBB technique, which is a simpler and faster alternative

to optimal compression boosting and implicit compression boosting used in previous

FM-indexes, such as the RRR-compression used for both the single wavelet tree and

the block wavelet tree in the BWT inversion experiments [11]. More importantly,

this technique is compatible with SDSL and solves the issue of non-sharing universal

tables among a set of wavelet trees that use the same alphabet. Therefore, FBB

is considered an innovative technique for generating block wavelet trees, especially

for smaller block sizes wavelet trees that the previous substring extractions have

not covered yet. Its performance was compared with the single wavelet tree that

is Huffman-shaped and RRR compressed, the Huffman-shaped single wavelet tree

but uncompressed, and with block wavelet trees that are Huffman-shaped and RRR

compressed with the optimal block size of 9 million bases based on the previous

experimental results. FBB wavelet trees were compared with these three types of

wavelet trees because they were all employed during the inversion experiments that

have been conducted. All substring extractions were performed on the HDD laptop

60

the FBB wavelet trees, they take both more space and time compared to the com-

pressed block wavelet trees, which are an extra 1.1 GB of space and an extra 0.979

seconds, respectively. Hence, the compression ratio of FBB is not as high as the RRR-

compression compression and the block partitioning did not offer a speed-up as much

as the block wavelet trees from the data structure. Even though it was expected that

the extraction time of the FBB wavelet trees would decrease with further block and

superblock size optimizations, the required space remains the same, which means the

block wavelet trees provide the best time and space tradeoff unless the FBB wavelet

trees show a dramatic decrease in extraction time.

Since the FBB wavelet tree did not demonstrate better performance than the

block wavelet trees with default settings, the next round of the experiment involved

testing more block and superblock sizes in order to find a combination that offers

better extraction speedup. According to Gog et al. [11], the maximum block size is

216 and the maximum superblock size is 224. To account for any potential changes

in the dataset, two relatively extreme block and superblock size combinations were

initially tested: a block size of 26 with default superblock size and a superblock size

of 232 with default block size. Despite the warnings that occurred while building the

FBB wavelet trees with these combinations, the wavelet trees were successfully built.

However, both combinations were unsuccessful in extracting the substring, with the

block size of 26 being killed by the system and the superblock size of 232 resulting

in a “segmentation fault (cored dumped)” error. More block and superblock sizes

were tested in the range of 211 to 222 and 220 to 224 respectively, and extractions

were completed without any errors or exceptions when the block size exceeded 216,

but they actually had problems that have not been noticed. The remaining block

and superblock combinations that were tested are listed with their extraction time in

Table 4.2, and their extractions time are recorded in Figure 4.12.

log base 2 block size 11 16 16 19 19 20 20 20 21 22
log base 2 superblock size 24 20 24 21 24 20 21 24 24 24
Extraction time (seconds) 3.2 3.5 3.1 0.7 0.7 0.9 0.8 0.6 0.50 0.7

Table 4.2: Block and superblock sizes of FBB substring extractions

As shown in the plot, the altered block and superblock sizes result in better per-

formances than the default combination. Even the worst combination provides an

62

extraction time of 3.544 seconds, faster than the uncompressed Huffman-shaped sin-

gle wavelet tree that previously outperformed the FBB wavelet trees. The substring

extractions become considerably faster when the block size exceeds 218; all combina-

tions with block size larger than 218 can extract the substring of 5000 bases in under

1 second. The fast combination of block size 221 and superblock size 224 can extract

the substring using just 0.49786 seconds with a small standard deviation of 0.01771.

However, upon verifying the correctness of the extractions using FBB wavelet trees,

it was found that the substrings were all incorrectly extracted when the block size

exceeds 216, indicating that the maximum limit of the block size 216 was still applica-

ble for the Douglas Fir dataset. It was meaningless to search for the optimized block

size beyond 216, some expectations would work though. Therefore, the most rapid

extraction using FBB wavelet trees is actually 3.090 seconds, which is slower than

the block wavelet trees of 2.984 seconds, but just by a small percentage. Moreover,

the most rapid FBB substring extraction used the block size 216 and the superblock

size 224, which are the allowed maximum size of the block and superblock of the FBB

wavelet trees. The performance of the substring extraction decreases along with the

block and superblock size according to the tested combinations. Thus, 3.090 seconds

should be the best result that can be produced with the FBB wavelet trees for 5000

bases.

At this point, all the experiments for optimizing the layout of the uncompressed

BWT were finished, and the best result out of all the experiments is the 50% speedup

with the block wavelet trees by block partitioning the BWT under circumstances. All

the results will be discussed further in the following section.

4.3 Discussion of BWT Experiment

The primary objective of the BWT experiment was to investigate whether an opti-

mized layout of the BWT could offer better access locality over the sequential layout,

similar to the RLBWT experiment. The approach taken to achieve this objective was

to compare the inversion times of the BWT using different wavelet trees constructed

from both the sequential and optimized layouts of the BWT. The experiment was

conducted on three datasets using various techniques to optimize the layout of the

BWT. The results showed a notable decrease in the inversion time of the BWT when

63

an optimized layout was used; however, the reasons for this improvement did not

quite align with the hypotheses before the experiment.

The first dataset used in the BWT inversion experiment was the Hamlet dataset,

and the same techniques used in the RLBWT experiment were applied, which included

block partitioning the BWT and clustering the blocks using METIS. Although no in-

versions were conducted on the Hamlet dataset, block partitioning and clustering the

BWT still generated better results in terms of the sum of edge weights and distances,

where the sum of edge weights decreased by a factor of 2.17 and the sum of jump

distances decreased by a factor of 1.99. Based on these results, it was expected that

the number of cache misses during the inversion would also be decreased. Further-

more, it was also expected that even better results could be achieved if the block

orders within clusters are optimized, two techniques were used for this optimization

with the same objective of reducing the product of all the edge weights and distances.

First, the problem was treated as an MLA problem and solved using an ILP system

by Gurobi; second, the problem was solved using the SA algorithm. Both techniques

showed better results compared to sequential block orders within clusters, but the

ILP gave a more significant decrease of a factor of 3 in the product of edge weights

and distances. As the result, the Gurobi optimizer was chosen as the technique to

permute the block orders within clusters.

After a solid data structure was implemented for the BWT inversion that uses

a lookup table built by the optimized layout of BWT, the backward searches of the

BWT were conducted in order to verify whether the optimized layout of BWT offers

more cache or memory efficiency, which included inversions and substring extractions.

The inversion tests were first conducted on portions of the HRG using the optimized

layout with Gurobi-permuted block orders within clusters. However, the inversion

time remained the same as the inversion with a just blocked partitioned and clustered

layout, which led to the conclusion that the Gurobi optimization did not offer a better

inversion speed of the BWT, despite effectively decreasing the product of the sum of

edge weights and distances. This was contrary to the expectations from optimizing

the block orders within each cluster. It could be due to the decrease in the average

distance of LF steps does not imply an improvement of the inversion speed in practice,

or the decrease is not significant enough to make a difference in terms of the inversion

64

speed. Either way, the Gurobi optimizer with the current setting was not helpful

for achieving a better inversion speed and was suspended for future inversion tests.

However, it is still believed that fully optimized block orders within each cluster would

provide a better inversion time of the BWT.

Due to the suspension of Gurobi, the length of the inversion dataset was no longer

limited. Therefore, the BWT of the whole HRG was used as the dataset for the inver-

sions. Based on the inversion results of the HRG, it was also discovered that larger

datasets and smaller memory setups are required to demonstrate the advantages of

block wavelet trees in terms of memory efficiency. The Douglas Fir genome was chosen

as the dataset, and a virtual machine with different memory sizes was used for future

tests. As the correctness of the inversion data structure was proven, and it takes a

huge amount of time to perform an inversion on an entire BWT, substring extractions

were used to replace the inversions for time efficiency. Various combinations of clus-

ter and block sizes were tested using the BWT of Douglas Fir with different memory

sizes, and the block wavelet tree started to outperform the single wavelet when the

memory size is 3G or smaller. However, the speedup is rather modest, reaching only

about 14% when the block size is 10 million bases. Then, it was discovered that

all the tests so far were conducted on a laptop with SSD and non-HDD, which may

have caused the relatively small speedup. To address this, a new virtual machine was

built on a laptop that offered HDD, and the experiments were re-conducted using the

same range of block and cluster sizes. As expected, the speedup of the block wavelet

trees was found to be bigger on the virtual machine with HDD. The most significant

improvement of 50% occurred with a block size of 9 million bases with 1 GB available

memory.

However, different cluster sizes did not exhibit a uniform trend in terms of speedup

changes along with changes in block sizes. This raised questions about the validity

of METIS clustering. A validation check was performed between block wavelet trees

with and without METIS clustering. It was found that they almost shared the exact

same trend, indicating that METIS clustering was not effective. The reason for this

could be the use of incorrect parameters to estimate the decrease of the number of

cache misses or at least an incorrect ratio of decrease. For instance, assuming that the

decrease in the number of cache misses and the decrease of the sum of edge weights has

65

the same proportion. It could also be that the graph built from the block partitioned

BWT is not as clusterable as expected, which means that the idea of clustering the

graph is not an efficient process to optimize the layout of BWT. Moreover, METIS

may not be the best tool for this particular graph clustering, and other existing graph

clustering tools may give better performances.

Based on the results of previous experiments, it was clear that applying block

wavelet trees offer speedup of the backward searches by simply block partitioning

the BWT. However, the block sizes that were tested did not cover smaller block

sizes that less than 1 million bases. This was due to the issue that the total size of

wavelet trees would be extremely big when the block sizes were relatively too small

compared to the length of BWT because the universal tables of the wavelet trees

were not shared. To address this issue, the FBB technique implemented by Gog et

al. was applied to build the block wavelet trees [11]. The FBB wavelet trees have

two size parameters: block size and superblock size, which have maximum limits of

216 and 220 respectively. The dataset would also be divided into hyperblocks if its

length exceeds 232. After trying different combinations of block and superblock sizes,

the best correct substring extraction speed of 3.090 seconds was achieved by using

a block size of 216 and a superblock size of 220, resulting in a tiny disparity of 3.4%

compared to the best extraction result of the block wavelet tree built from the data

structure with a block size of 9 million bases. Since both block and superblock sizes

have reached the maximum limits and the speedups of substring extractions grew

along with the block and superblock sizes, it concluded that the 3.090 seconds would

be the best result from FBB wavelet trees unless the maximum limit of block and

superblock sizes increase.

Based on the extraction times collected from the FBB wavelet trees, it was sug-

gested that smaller block sizes (i.e., smaller than 1 million bases) do not provide

better performance over block sizes of millions for the Douglas Fir dataset. There-

fore, due to the maximum limit of the block and superblock sizes, FBB wavelet trees

could not outperform the block wavelet tree with a block size of 9 million bases built

from the data structure. However, the extraction time of 3.090 seconds still outper-

formed the block wavelet trees with block sizes that are smaller than 7 million bases,

according to the results of previous extractions. Therefore, if the FBB technique is

66

further optimized to accept bigger block sizes, such as 221, it is likely to show a better

speedup than the block wavelet trees constructed by the data structure. On the other

hand, limited maximum block and superblock sizes could be the nature of the FBB

technique, which means the non-shareable universal table problem has to be solved

by other approaches.

Chapter 5

Conclusion

The project was divided into two major experiments. The primary objective of this

research was to reduce the processing time of BWT by optimizing its layout. The

results of the experiments revealed that the optimized BWT representation was 50%

better than the traditional BWT representation in terms of the time of BWT inver-

sions with only block partitioning under the constraints of 1 GB memory, HDD for

disk equipment, a genome of 14.67 GB, and a block size of 9 million bases.

Our original hypothesis was to improve the performance of RLBWT of pange-

nomic datasets because of the practical application value of pan-genome. Specifically,

we employed inter-cluster edge weights as a proxy measure of the cache misses and

decrease the edge weights using block partitioning and clustering. However, it was ob-

served that the run length compression feature did not contribute to providing lower

inter-cluster edge weights rather than causing extremely large clusters and negatively

affecting the efficiency of clustering. On the other hand, after applying METIS clus-

tering, new RLBWT layouts offered a notably smaller sum of edge weights compared

to the traditional layout of the BWT. As a result, the run-length compression was

discarded and block partitioning and clustering were applied on uncompressed BWT

to seek a layout that provides better access locality. Furthermore, an ILP system with

the Gurobi optimizer was applied to optimize the block order within clusters in order

to gain a better layout since the cluster sizes were relatively big and blocks inside

clusters were still sequentially stored. A data structure was implemented to apply

the optimized BWT layout by using wavelet trees built from each block of the BWT

with a rank header to form a look-up table to track the position of each block in the

optimized layout. Additionally, a single wavelet tree was built from the entire BWT

of the dataset as a comparison with the block wavelet trees with an expectation that

block wavelet trees would outrun the single wavelet tree during backward searches,

so it proves the optimized layout offers better access locality.

67

68

The backward searches were conducted on virtual machines with limited amounts

of memory, and the virtual machines were hosted on two laptops, one with an SSD and

the other with an HDD. The block wavelet trees showed more rapid backward search

speeds than the single wavelet tree on both virtual machines. This indicated that the

optimized BWT layout was causing fewer disk accesses compared to the sequential

layout, making it a more access-friendly layout. A speedup of 14% was observed on

the SSD laptop, while the HDD laptop showed a 50% improvement, with similar block

sizes and setups. These results were consistent with expectations since accessing an

HDD takes much longer time than accessing an SSD. However, the analysis showed

that neither the Gurobi optimization nor the METIS clustering provided any help in

reducing the inversion time of the BWT. Hence, the speedups were solely achieved

by block partitioning the BWT, which was unexpected. In order to cover block sizes

smaller than 1 million bases, which could not be tested using the block wavelet tree

built by the data structure due to the non-shareable universal table, the FBB wavelet

tree was introduced. It almost provided the same amount of improvement as the

block wavelet tree with the optimal block size that was found. However, since the

maximum limit of the block size of FBB is relatively small compared to the size of

Douglas Fir, it could not eventually outperform the block wavelet trees.

The primary limitation of this project is that two of the main techniques that

were proposed to optimize the layout of BWT were invalid. The reasons behind these

invalidations could be that permuting the BWT by blocks is ineffective, but it is more

likely that the layout is not optimized enough to make a visible difference when it

comes to the inversion time. Furthermore, the Gurobi optimization was preset to

abort and show the current result if the process could not finish within a reasonable

time. Therefore, it is believed that there is still much further optimization that can

be done on the optimization of the block order. Besides, due to the limited time for

conducting experiments, some block sizes still have not yet been tested. For example,

block sizes from 100 thousand bases to 1 million bases were too small for building

block wavelet trees using the data structure and SDSL because of the issue of non-

shareable universal tables. Also, they were too big for the FBB wavelet tree due to the

maximum limit of its block size. Hence, the problem of non-shareable universal tables

in the block wavelet tree and the limited block size of the FBB wavelet tree may also

69

limit the speedups. If the block wavelet tree can be built with a shared universal table,

its overhead would be reduced dramatically, leading to an expectation of an even more

rapid inversion process. As for the FBB wavelet trees, they almost outperformed the

block wavelet trees with a much bigger block size. If its block size could be set to

over 216 bases such as 221, it would provide even more significant speedups.

This thesis has demonstrated that block partitioning a BWT and constructing

a set of small block wavelet trees can lead to a better access locality of the BWT

with limited memory, a genome sequence that can build a wavelet tree that exceeds

the size of memory, and an HDD for disk equipment. However, there is still room

for improvement in the performance of BWT backward searches even with the block

partitioned representation. Future research could focus on solving the issue of non-

shareable universal tables of the block wavelet trees or the maximum block limit

of FBB wavelet trees. It is expected that solving either of these two problems will

result in a more significant improvement of the inversion speed gained from block

partitioning the BWT. In addition to the improvement gained from block partitioning

the BWT, permuting the blocks within each cluster for a better layout is still a

research direction that deserves more attention. It has the potential to provide a

valid improvement in access locality with sufficient optimization. Exploring other

software for graph clustering and block order optimization would be a good starting

point. Furthermore, a more intuitive approach for estimating the number of cache

misses could be an excellent alternative to replace the measures used to estimate the

number of cache misses.

The data structure built in this thesis, which employs BWT block partitioning and

the look-up table, can perform BWT inversion and substring extraction in a more

cache-friendly manner. This creates a strong foundation for implementing a truly

cache-friendly BWT. Furthermore, the challenges and invalidations encountered dur-

ing this project provide valuable experiences for researchers intending to implement

similar features on BWT or its other forms.

Bibliography

[1] Nathaniel Brown. Interval mapping of bwt-runs to efficiently compute lf-mapping
in o (r) space. 16th Workshop on Compression, Text and Algorithms, Oct 2021.

[2] Nathaniel Brown. BWT-RUNS COMPRESSED DATA STRUCTURES FOR
PAN-GENOMIC TEXT INDEXING. Msc thesis, Dalhousie University, Dal-
housie University, Apr 2023.

[3] Nathaniel K. Brown, Travis Gagie, and Massimiliano Rossi. Rlbwt tricks. 2022
Data Compression Conference (DCC), 2022.

[4] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Operations Research Forum, 3(1), 2022.

[5] George Bernard Dantzig. Linear programming and extensions. Princeton Univ.
Pr, 1974.

[6] P. Ferragina and G. Manzini. Opportunistic data structures with applications.
Proceedings 41st Annual Symposium on Foundations of Computer Science, 2000.

[7] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of
the ACM (JACM), 52(4):552–581, 2005.

[8] Sven Fiergolla and Petra Wolf. Improving run length encoding by preprocessing.
2021 Data Compression Conference (DCC), 2021.

[9] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees
and optimal text searching in bwt-runs bounded space. J. ACM, 67(1), jan 2020.

[10] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to
practice: Plug and play with succinct data structures. In 13th International
Symposium on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.

[11] Simon Gog, Juha Kärkkäinen, Dominik Kempa, Matthias Petri, and Simon J.
Puglisi. Fixed block compression boosting in fm-indexes: Theory and practice.
Algorithmica, 81(4):1370–1391, 2018.

[12] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-
compressed text indexes. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’03, page 841–850, USA, 2003. Society
for Industrial and Applied Mathematics.

[13] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

70

71

[14] Michael Held and Richard M. Karp. A dynamic programming approach to se-
quencing problems. Journal of the Society for Industrial and Applied Mathemat-
ics, 10(1):196–210, 1962.

[15] G. Jacobson. Space-efficient static trees and graphs. 30th Annual Symposium on
Foundations of Computer Science, 1989.

[16] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-
Hall, Inc., USA, 1988.

[17] Xiaofang Jiang, Qinghui Liu, N. Parthiban, and R. Sundara Rajan. A note on
minimum linear arrangement for bc graphs. Discrete Mathematics, Algorithms
and Applications, 10(02):1850023, 2018.

[18] George Karypis and Vipin Kumar. A fast and high-quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on Scientific Computing,
20(1):359–392, 1998.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[20] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie
2. Nature Methods, 9(4):357–359, Mar 2012.

[21] Heng Li and Richard Durbin. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics, 25(14):1754–1760, 05 2009.

[22] Linux. Ulimit. https://ss64.com/bash/ulimit.html.

[23] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string
searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[24] Giovanni Manzini. An analysis of the burrows—wheeler transform. J. ACM,
48(3):407–430, may 2001.

[25] Alex Murillo, J. Fernando Vera, and Willem J. Heiser. A permutation-translation
simulated annealing algorithm for l1 and l2 unidimensional scaling. Journal of
Classification, 22(1):119–138, 2005.

[26] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Com-
puting Surveys, 39(1):2, 2007.

[27] NCBI. Grch38.p14 - hg38 - genome - assembly - ncbi. https://www.ncbi.nlm.
nih.gov/assembly/GCA_000001405.29.

[28] David B Neale, Patrick E McGuire, Nicholas C Wheeler, Kristian A
Stevens, Marc W Crepeau, Charis Cardeno, Aleksey V Zimin, Daniela Puiu,
Geo M Pertea, U Uzay Sezen, and et al. The douglas-fir genome se-
quence reveals specialization of the photosynthetic apparatus in pinaceae. G3
Genes—Genomes—Genetics, 7:3157–3167, 2017.

72

[29] Takaaki Nishimoto and Yasuo Tabei. Optimal-time queries on bwt-runs com-
pressed indexes. CoRR, abs/2006.05104, 2020.

[30] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dic-
tionaries with applications to encoding k-ary trees and multisets. In Proceedings
of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’02, page 233–242, USA, 2002. Society for Industrial and Applied Mathematics.

[31] Ilya Safro, Dorit Ron, and Achi Brandt. Graph minimum linear arrangement by
multilevel weighted edge contractions. Journal of Algorithms, 60(1):24–41, 2006.

[32] M. Schindler. A fast block-sorting algorithm for lossless data compression. Pro-
ceedings DCC ’97. Data Compression Conference, 1997.

[33] William Shakespeare. Hamlet. https://github.com/second12138/

Master-s-thesis/blob/main/hamlet_short.txt.

[34] William Shakespeare. Hamlet. https://www.gutenberg.org/files/27761/

27761-0.txt.

[35] A. M. Shrestha, M. C. Frith, and P. Horton. A bioinformatician’s guide to the
forefront of suffix array construction algorithms. Briefings in Bioinformatics,
15(2):138–154, 2014.

[36] Jouni Sirén, Erik Garrison, Adam M Novak, Benedict Paten, and Richard
Durbin. Haplotype-aware graph indexes. Bioinformatics, 36(2):400–407, 2019.

[37] William M. Springer. Review of the traveling salesman problem: A computa-
tional study by applegate, bixby, chvátal, and cook (princeton university press).
ACM SIGACT News, 40(2):30–32, 2009.

[38] Chvatal Vasek. Linear Programming. W.H. Freeman and Company, 2002.

[39] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. Surf: Practical range query
filtering with fast succinct tries. Proceedings of the 2018 International Conference
on Management of Data, 2018.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Literature Review
	Succinct Data Structure and SDSL
	Burrows-Wheeler Transform
	Run Length Encoding
	Suffix Array
	Wavelet Tree
	Block Partitioning of pBWT
	A Lookup Table of RLBWT
	Graph Clustering and METIS
	Minimum Linear Arrangement
	Linear Programming and Integer Linear Programming
	Simulated Annealing Algorithm
	FM-Index and Fixed Block Compression Boosting
	A low Out-Degree Proof of the Graph Built from RLBWT Look-up Table

	RLBWT Inversion
	RLBWT Inversion Methodology
	A Graph Building and Clustering Example
	Clustering the RLBWT of Real Genome Data

	RLBWT Inversion Results
	Salmonella Dataset
	Human Chromosome 19 Dataset
	Noisy String Dataset

	Discussion of RLBWT Experiment

	BWT Inversion
	BWT Inversion Methodology
	Previous Approach Validation
	Further Optimization of the Block Orders Inside Clusters
	Building the Data Structure
	The Final BWT Inversion

	BWT Inversion Results
	BWT Substring Extraction with SSD
	BWT Substring Extraction with HDD
	BWT Substring Extraction Using Fixed Block Compression Boosting

	Discussion of BWT Experiment

	Conclusion
	Bibliography

