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Abstract

A teleoperation system extends the human capability to operate in a remote environ-
ment. Humans use this framework to work in hazardous conditions using remotely
operated robotic systems. In recent years, teleoperated systems have shown great
potential in space, underwater, military, industry, robotic-assisted surgery, and min-
ing applications. In case of manipulation tasks, a teleoperation system is required to
be bilateral to execute the task remotely in the presence of time delays. A bilateral
teleoperation system is comprised of five elements namely human operator, master
robot, communication channel, slave robot, and environment. The control objective
in a bilateral teleoperation operation system is defined as the position and force track-
ing error reduction, which can be achieved using an array of control techniques. This
thesis concerns the development of a class of state convergence architectures to de-
velop bilateral control systems. State convergence belongs to a family of model-based
control architectures for establishing bilateral communication between the master
and slave robots in a teleoperation system. The method provides a systematic pro-
cedure to determine the control gains in an elegant way. Originally developed for
linear teleoperation systems with small time delays, the method has been extended
to nonlinear systems with time-varying delays. However, reliance on the model pa-
rameters and a higher number of communication channels remain a limiting factor
for the wide adoption of this bilateral control architecture. This thesis addresses
these limitations and proposes enhancements in the existing state convergence con-
trol architectures to deal with parameter uncertainties and reduce the number of
communication channels. The former task is achieved using extended state and non-
linear disturbance observers while the latter objective is accomplished by introducing
composite variables. The extension of the proposed bilateral control architectures to
the case of multilateral teleoperation systems is also covered. Resultantly, families
of robust state convergence control architectures and composite state convergence
control architectures are obtained. While constructing the improved control architec-
tures, the elegancy of the state convergence design procedure is retained. To validate
the proposed control architectures, simulations, and semi-real-time experiments are
conducted in MATLAB/Simulink/QUARC environment using the geomagic haptic
device on a single-degree-of-freedom time-delayed teleoperation system. In order to
perform semi-real-time experiments, a haptic device is operated along the x-axis to
generate a time-varying force for the teleoperation system running inside the com-
puter’s Simulink/MATLAB environment. The Simulink model is designed such that
the reflected force, as generated by the proposed controller, is also directed to the
haptic device and felt by the operator. In this way, the loop is closed around the
operator, and the operator can feel the slave’s interaction with the environment.
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Chapter 1

Introduction

Teleoperation Systems attract a significant amount of interest from engineering and

healthcare researchers. In the Canadian healthcare system, robot-assisted surgery

is becoming popular in recent times and has many benefits for patients and our

healthcare system. Nova Scotia’s healthcare professionals are able to conduct their

first spinal robotic surgery in Canada using Medtronic’s MAZOR™ X Stealth Edi-

tion. The surgeons are able to perform spinal surgeries through an innovative robotic

arm that offers unparalleled accuracy and consistency leading to less pain, less dam-

age to healthy tissues and structures, shorter recovery times, and fewer complica-

tions. Moving further, Nova Scotia Health’s QEII Health Sciences Centre installed

the Mako SmartRobotics system the second surgical robot of its kind in Canada

to perform arthroplasty surgeries. Surgeons generate motion commands through an

innovative robotic arm to perform hip and knee surgeries and offer unprecedented

precision for the placement of a joint implant [120]. There are numerous applications

of teleoperation, ranging from repairing nuclear plants, exploring underwater ma-

rine environments, space exploration, surgical operations, and monitoring industrial

tasks [6], [5], [121], [79], [29], [30], [76], [102], [163], [139]. Some of the teleoperation

systems are shown in Figure 1.1.

Bilateral teleoperation systems have become increasingly popular and used in diverse

telerobotic applications due to their sense of telepresence. Recently, multilateral tele-

operation systems beyond the bilateral one can be used in telerobotic applications

where more than one robotic device is involved in performing the task. Instead of

using one hand, two hands can help to perform a task using the cooperative ma-

nipulation technique. This thesis explores novel control techniques based on state

convergence methods to control linear and nonlinear bilateral teleoperation systems

and extend to a multilateral teleoperation framework.

1
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Figure 1.1: Different applications of teleoperation. (A) Operator of a space robot
arm, (B) the space robot arm [80]. (C) telesurgery with a research da Vinci surgical
system [136], surgeon side. (D) remote patient side, (E) ground robot control with
aerial view [116] —operator controls ground robots using eye-tracking and (F) the
ground robots [116].
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1.1 Thesis Contributions

The contribution of this thesis can be classified into two parts. The first three chapters

include improved versions of state convergence architectures for bilateral and multi-

lateral teleoperation systems while the rest of the chapters include reduced complexity

versions of state convergence architectures for bilateral and multilateral teleoperation

systems. The following contributions are reported in this thesis:

1. Improved version of the bilateral state convergence architecture has been pro-

posed to counter the effect of parametric uncertainties using disturbance ob-

servers.

2. Improved version of the bilateral state convergence architecture has been pro-

posed based on TS fuzzy models to counter TS fuzzy model approximation

errors and parametric uncertainties using disturbance observers.

3. Improved version of the multilateral state convergence architecture has been

proposed to deal with parametric uncertainties using disturbance observers

4. A novel composite state convergence architecture with a reduced number of

communication channels has been proposed for bilateral teleoperation.

5. A composite state convergence architecture has been proposed with a feedback

linearization scheme for nonlinear bilateral teleoperation.

6. An enhanced version of bilateral composite state convergence architecture has

been proposed to counter parametric uncertainties through disturbance ob-

servers.

7. Extended the composite state convergence control architecture to multil-master/single

slave (MMSS) control architecture.

8. Proposed a composite state convergence controller for teleoperating a multi-

degree-of-freedom manipulator.

9. A composite state convergence architecture with a reduced number of commu-

nication channels has been proposed for multilateral teleoperation.

10. An enhanced version of multilateral composite state convergence architecture

has been proposed to counter the effect of parametric uncertainties through

disturbance observers.
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1.2 Thesis Outline

The thesis is organized into eleven chapters. The current chapter presents an overview

of teleoperation systems and their contributions. The remainder of the thesis is

organized as follows:

Chapter 2: Literature Review

This chapter briefly presents various techniques available to control teleoperation

systems. The state convergence method and composite state convergence method are

presented in detail, as the rest of the thesis is based on this method.

Chapter 3: An Enhanced State Convergence Architecture Incorporating Distur-

bance Observer for Bilateral Teleoperation Systems

This chapter will address the limitations of the SC method and propose an extended

state observer in the existing state convergence architecture. It will compensate for

the modeling inaccuracies by treating them as a disturbance and provide estimates

of the master and slave states. This study has been published in the International

Journal of Advanced Robotic Systems, vol. 16, no. 5, 2019.

Chapter 4 : Disturbance observer-supported fuzzy-model-based controller with ap-

plication to bilateral teleoperation systems

This chapter presents a nonlinear disturbance observer that has been integrated with

a numerator-denominator type TS fuzzy PDC controller to robustify the closed loop

regulation performance against the lumped parametric uncertainties and model ap-

proximation error. This work has been published in the Journal of Intelligent and

Fuzzy Systems, vol. 43, no. 2, pp. 1911-1919, 2022.

Chapter 5: Disturbance Observer-Based Extended State Convergence Architecture

for Multilateral Teleoperation Systems

This chapter presents an improved version of extended state convergence architecture

through the use of disturbance observers. MATLAB simulations as well as experimen-

tal results, prove the validity of the proposed architecture in establishing multilateral

communication between k-master and l-slave systems. To the best of the authors’

knowledge, robustness improvement of extended state convergence architecture has

not been reported in the literature. This work has been published in the International

Journal of Robotics and Automation, ACTA PRESS, Canada vol 37, no. 6, pp. 1-10,
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2023.

Chapter 6: A Composite State Convergence Scheme for Bilateral Teleoperation

Systems

The chapter will discuss a novel composite state convergence scheme that will reduce

the complexity of the state convergence algorithm. This chapter is published in

IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 5, pp. 1166-1178, September

2019.

Chapter 7: A Composite State Convergence Scheme for a Non-Linear Telerobotic

Systems

This chapter is an extension of chapter 6, in which channel simplification of state

convergence controller is accomplished, and here we have considered the case of a

nonlinear telerobotic system. This chapter is published in Acta Polytechnica Hun-

garica Vol. 16, no. 10, pp. 157-172, 2019.

Chapter 8: A Composite State Convergence Architecture for Multi-Degrees-of-

Freedom System

This chapter is devoted to exploring the applicability of the composite state con-

vergence scheme for a multi-degrees-of-freedom bilateral teleoperation system. To

validate the proposed extension, simulations are performed in MATLAB/Simulink

environment on two-link manipulators with time delay in the communication chan-

nel. This chapter is published in the 7th IFAC International Conference on Advances

in Control and Optimization of Dynamical Systems (ACODS 2022), vol. 55, Issue.

1, pp. 126-130, 2022.

Chapter 9 : Disturbance Observer Supported Three-Channel Composite State Con-

vergence Architecture

This chapter will present an improved version of extended state convergence architec-

ture through the use of disturbance observers. To the best of the authors’ knowledge,

robustness improvement of extended state convergence architecture has not been re-

ported in the literature. This chapter is published in the International Journal of

Robotics and Automation (IJRA), ACTA PRESS, Canada, pp 316-324, Issue Jan

2021.



6

Chapter 10 : A Multi-Master-Single-Slave Composite State Convergence Architec-

ture

This chapter explores the possibility of extending the transparent bilateral state con-

vergence architecture to accommodate multiple systems. In addition, we want to

keep the channel complexity at a minimum when multiple systems are communicat-

ing. The proposed work is validated through MATLAB simulation by considering a

single-degree-of-freedom tri-master-single-slave system. This chapter is published in

Communication and Control for Robotic Systems. Smart Innovation, Systems, and

Technologies, vol 229, Aug 2021 Springer, Singapore.

Chapter 11 : A Generalized Composite State Convergence Architecture for Multi-

lateral Teleoperation Systems

This chapter aims to generalize the composite state convergence scheme so that l-

slave systems can follow the weighted motion of k-master systems. To validate

the findings, simulations and semi-real-time experiments are performed in MAT-

LAB/Simulink/QUARC environment by considering different configurations of tele-

operation systems. This chapter is published in Studies in Informatics and Control,

vol. 30, no. 2, pp. 33-42, 2021.

Chapter 12 : An Improved Composite State Convergence Architecture with Dis-

turbance Compensation for Multilateral Teleoperation Systems

This chapter expands the capability of the composite state convergence scheme to

accommodate any number of master and slave systems. It proposes a disturbance

observer-based composite state convergence architecture where k-master systems can

cooperatively control l-slave systems in the presence of uncertainties. MATLAB sim-

ulations are performed and experimental results are obtained using Quanser’s Qube-

Servo systems in QUARC/Simulink environment. This chapter is published in Studies

in Informatics and Control, vol. 31, no. 3, pp. 43-52, 2022.

Chapter 13 : Conclusions and Future Work

This chapter will include the summary of the research work presented in Chapters 3

through 12. In addition, future work directions are also provided.
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Figure 1.2: Ph.D. thesis contributions flow chart



Chapter 2

Literature Review

2.1 Teleoperation System

Teleoperation systems were invented in the mid-1940s by Geortz to enable humans

to manipulate dangerous tasks remotely in hazardous environments via robotic ma-

nipulators with enhanced safety at a lower cost or better accuracy as shown in the

Figure 2.1. However, the remote environment has uncertain and unknown factors

that could degrade any teleoperation system’s performance. Thus human interven-

tion becomes necessary to prevent damage, reduce task completion time, to enhance

the performance and sense of telepresence. It will improve the user’s ability to per-

form complex tasks. The human-in-the-loop system is known as a teleoperator and

has found a wide range of applications ranging from medical and entertainment to

large-scale industries [41], [179], [105], [185], [77], [20], [162], [151], [106], [61], [16],

[182], [87], [152], [181], [100], [60], [62], [7], [49], [131], [66], [98], [4], [19], [59]. A tele-

operation system generally consists of five components: an operator sends the motion

commands to operate the remote task via a master hand controller. A communica-

tion channel (wired/wireless) is used to transmit those motion commands to a slave

robot that will perform the task in a remote environment. In a unilateral teleopera-

tion system, the slave is unable to send the information back to the master; however,

if the slave robot can send the force and position signal back to the operator and

the operator is kinesthetically coupled to the environment and flow of information

is bidirectional, then the teleoperation system is called bilateral. In both cases, the

slave robot is placed at a distant location and exchanges information over a commu-

nication channel which can cause delays and instability in the whole teleoperation

system. Furthermore, a teleoperation system can be classified as either bilateral or

multilateral depending upon the number of the robotic system involved in executing

the required task. Thus, the prime objective of any teleoperation system is to ensure

stability and accuracy in performing the task in the presence of time delays and force

-feedback from the environment [56].

8
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Figure 2.1: Schematic of a teleoperation system [56]

Performance Measures in Teleoperation System

The prime goal of any bilateral teleoperation system is to maintain stability under all

circumstances to accomplish a desired performance. Many researchers have employed

various techniques to investigate the issue of stability of bilateral teleoperation sys-

tems [57], [138], [134], [48], [3], [47], [129], such as Lyapunov theory [173], passivity

based tools [115], [122], Nyquist criterion, routh-hurwitz criterion [67] and Root Lo-

cus. Like stability, transparency or telepresence is another major goal in the design

process of teleoperation systems. It will help the operator better understand the re-

mote environment in the presence of uncertainties and time delays. [88], [135] or in

other words it can be interpreted as precise rendering of the remote environment to

the operator side to fulfills the prime objective of teleoperation. However, there are

certain limitation on achieving the transparency, for instance, system hardware, re-

quired bandwidth, master and slave workspace issues, motion scaling and time-delays

in the communication channel. According to Lawrence, transparency can be defined

as impedance, a quantity that could map input velocity to the output force of the

system [28].

2.2 Control Architectures for Bilateral Teleoperation Systems

Various bilateral control architectures have been proposed in the literature to design a

stable and transparent teleoperation system. These architectures can be categorized

based on the number and type of signals (position, velocity, and/or force) of both

master and slave sides exchanged over communication channels. Therefore, different

sets of signals resulted in two, three, and four-channel architectures.
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Two-Channel Architecture In two-channel architecture, only one signal is sent

via the communication channel to the slave side and vice versa. Based on the type

of signal which is being exchanged between the master and slave side, it has been

classified into four further categories.

1. Position-Position Architecture

In this architecture, position signals of master and slave are transmitted across

a communication channel, and Geortz first implemented it in the 50’s [43]. One

of its variants is position error-based architecture (PEB) which transmits the

function of the position states of both master and slave over communication

channel [118]. In addition, both ends have their local position tracking con-

troller, which ensures that the slave will track the master manipulator [88].

Some other well-known bilateral teleoperation algorithms based on position-

error-based architecture (PEB) are proposed by [15], [119]. The key benefit of

these approaches is to provide the system with a sense of force feedback without

requiring any force sensor. Similarly, a slave tracking error can be used as feed-

back to the master instead of any force measurement signal. In an ideal case,

there would be no tracking error transmitted to the master side because the

slave is able to track the master perfectly, and hence no environmental forces

are perceived on the master’s side. However, in real-time, the slave tracking

error would grow because of its contact with the environment. This error is

translated as a force acting on the slave manipulator to the operator side.

Transparency analyses of position-position architecture are performed by [88]

and [103] to identify the shortcomings of this approach. The findings show

that it does not provide a high degree of transparency even when the slave

is in free motion. Thus, the operator still feels the additional inertia in the

system that is not present. [103] found that force tracking is non-ideal when the

slave is in contact with the environment, which brings a sense of sluggishness

to the system. Hence, the drawback of this architecture is that it exhibits poor

performance at hard contact.

2. Position-Force Architecture

In this architecture, the environmental contact force is sent to the master as

shown in Figure 2.2, and discussed by many researchers [18], [50], [176], [183].

In [52], an impedance controller is used to transmit the reflected forces from
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Figure 2.2: Schematic of position-force architecture [156]

the slave to the master manipulator. To perform the trajectory tracking tasks,

the slave is provided with all the master states information, such as position,

velocity, and acceleration. The control objective for the master manipulator

is to provide a desired closed-loop impedance and apply the reflected force.

Considering the case of free motion, there will be no additional inertial effects

felt on the operator; hence, it provides a better sense of telepresence [103].

In [88], stability analysis is performed and notes that the feedback loop gain is

proportional to environmental stiffness. It means when a slave makes contact

with stiff surfaces, the system experience oscillations, which can be minimized

by reducing the force-feedback gain. Acquiring force feedback requires force

sensors which can complicate implementation, for instance, additional hardware

resources and increased cost [118]. In addition, stability is often an issue in

this architecture due to noisy force sensor measurement, which is addressed

using feedback linearization technique to guarantee the stability of a nonlinear

teleoperation system [174], [189].

3. Force-Force Architecture

This architecture was first introduced [46] in which only the forces of master

and slave are transmitted across a communication channel. The framework

lacks coordination between master and slave positions due to the absence of

position feedback [88].

4. Force-Position Architecture

This architecture is used for haptic simulation systems and rarely implemented

on real-time systems [54].
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Three-Channel Architectures

As discussed earlier, two-channel architectures are preferred due to their simplic-

ity [53]; however, not all two-channel CA are transparent, and achieving the necessary

trade-off between stability and transparency is difficult. The three-channel control ar-

chitecture (3CH CA) has been proposed in the literature, aiming to provide increased

robustness against time delays with increased transparency [158]. In addition, 3-CH

CA offers better optimal transparency than four-channel architecture in the presence

of time delays [117], [34]. In [128], transparency of 3CH CA is improved under time

delays by eliminating one of the position channels rather than the force channels.

In [157], a type of 3CH CA has been tested for multiple robot configurations, known

as a multilateral teleoperation system. In [1], authors presented analyses of all the

3CH CA presented in [53], [55] based on passivity-absolute stability and impedance

bandwidth. It showed that it is impossible to guarantee the absolute stability of any

of the 3CH CA for all sets of frequencies. Furthermore, a comparison of 3CH CA

with two-channel architecture is also reported in the literature [40], [140]. The 3CH

CA has been classified into four categories.

1. Position-Position Force Control Architecture (P-PF)

This architecture has already been used in medical application [11]. It is proved

experimentally that it has better fidelity [10] over P-P and P-F CA. The archi-

tecture structure is shown in Figure 2.3. In [13], the author performed absolute

stability and transparency analyses using different teleoperator parameters on

P-PF architectures as shown in Figure 2.3 (a).

2. Force-Position Force Control Architecture (F-PF)

In [13], the author did analyses in terms of absolute stability margin and trans-

parency for the first time. This architecture, as shown in Figure 2.3 (b), can be

derived from the Extended Lawrence architecture (ELA) by setting the force

feedforward controller on the master side to zero, i.e., C1 = 0. The author

carried out some simulation studies to visualize the characteristics of F-PF CA.

It turns out that this CA has a low stability margin, and the presence of time

delays and efforts to improve the stability margins will reduce the system’s

transparency.

3. Position-Force Position Control Architecture (P-FP)
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Figure 2.3: 3-ch architecture: (a) P-PF architecture (b) F-PF architecture [13]

Figure 2.4: 3-ch architecture: (c) P-FP architecture (d) P-FF architecture [13]



14

This architecture is discussed in [53]. It is a special case deduced from opti-

mized Extended Lawrence architecture (ELA) by applying C6 = −1 as shown in

Figure 2.5. In [13], the author considered impedance-impedance type master-

slave network for performing the absolute stability and transparency analyses.

In addition, the study aims to test three-channel architecture on the surgical

application, which normally requires low impedance and negligible time delay.

This architecture suffers from low stability and performance measure.

4. Position-Force Force Control Architecture (P-FF)

This architecture is derived from Extended Lawrence architecture (ELA) [53]

by setting force feedback gain (slave to master) C4 = 0 as shown in Figure 2.5.

This architecture seems to have a satisfactory performance in terms of stability

and transparency, which is very close to 4-CH [13].

Four-Channel Architecture

In any teleoperation system, stability and transparency are vital in bringing safety

and improving users’ telepresence. However, the presence of a communication time

delay will make it challenging to achieve precise position tracking and high-fidelity

force feedback. In literature, various techniques using four-channel architecture as

shown in Figure 2.5, such as time domain passivity control [93], [130], [94], sliding

mode control (SMC) [99], [165] and disturbance-observer-based sliding mode con-

trol [153], are developed in the presence of time-varying delays, uncertainties, and

external disturbances in order to achieve good performance for bilateral teleoperation

systems. Furthermore, the four-channel architecture is also implemented to control

the multilateral teleoperation to handle dangerous, unknown, and complicated tasks

remotely under time-varying delays in the communication channel. A novel frame-

work is proposed in [23], [85] to meet the demands of communication among multiple

masters and slave robots.

Control Schemes to deal with Time Delay

A number of control schemes have been proposed in the literature that used either

two-channel or four-channel architectures as a baseline to counter time-varying delays,

model parameters, and environmental uncertainties, etc.
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Figure 2.5: Four-channel lawrence architecture [88]
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Time-Domain Passivity Based Control Schemes

In [130], the author proposed an extended version of the time-domain passivity frame-

work using four-channel architecture. The controller can stabilize the teleoperation

system for constant time delays and in the presence of data loss. The approach offers

better performance in terms of transparency and other existing time-domain passivity

architectures. In [149], a new wave-based time-domain passivity approach is applied

to a non-linear four-channel control architecture. This new wave transformation will

help to enhance transparency while maintaining stability in the presence of time-

varying delays. The proposed scheme is validated on a 3-DOF teleoperation system.

In [177], a time-domain passivity approach is proposed for a bilateral teleoperation

system to deal with the instabilities caused by time delays in the communication

channel. In [150], the authors used a neural network to propose a new 4-CH wave-

based time-domain passivity control scheme to address the nonlinear uncertainties

related to the system’s dynamic model. The neural network estimates and eliminates

those uncertainties in the presence of time-varying delays to improve the position and

torque tracking performances. In [27], a study is proposed to minimize the chattering

phenomenon due to time-domain passivity architecture. The authors introduced a

non-zero velocity threshold which will use adaptive damping of the TDPA to miti-

gate the chattering while maintaining stability. The proposed method is validated on

a time-delayed bilateral teleoperation system. The signal flow diagram of TDPC is

shown in Figure 2.6.

Prediction-Based Control Schemes

The concept of prediction-based control in bilateral teleoperation was proposed in

1957 to deal with delays in a chemical plant. The main idea behind the smith con-

trollers is to build a local model on the master side based on the response from the

slave and the environment. The predictive model will help to identify the remote

object, taking out the negative effects of time delay. The basic concept of prediction

control is shown in Figure 2.7.

In most cases, prediction-based control schemes have been designed to reconstruct

the slave robot and remote environment to help model the plant on the master side.

Various types of predictors have been used to identify the model of the master robot.

Some of the popular methods include the smith predictor [145], Kalman filters, linear

predictors [141], adaptive linear predictors, passivity-based predictive control [125],
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Figure 2.6: Time-domain passivity control [108]

Figure 2.7: Concept of prediction based control scheme [188]
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[111], model predictive control [95] and neural network estimation [58]. Other papers

in the literature predict other parts of the system, such as states of the master robot

[45], operator input [146], or environment [180] only. There is also a growing interest

in combining passivity-based control with prediction-based control. Using predictive

control will improve transparency, and wave variables ensure the system’s stability

[168], [137], [25].

Disturbance Observer-Based Control

Disturbance observers (DOBs) have gained popularity in recent years to improve the

system stability and transparency in telerobotic applications [44], [8], [9], [127], [81],

[114]. Parametric and model uncertainties and nonlinearities can severely compromise

the system stability, which must be guaranteed at any cost. In addition, disturbance

rejection capability is of critical importance while designing any teleoperation system

to counter the unknown disturbance. A promising approach would be to use nonlinear

disturbance observers (NDOBs) to suppress those effects. The general structure of

the DOBs is shown in Figure 2.8.

Figure 2.8: Schematic of disturbance observer based control [109]

In [51], [154] a sliding mode control is combined with a disturbance observer for

trajectory tracking application of surgical manipulator. The proposed scheme will

compensate for the disturbances arising from uncertainties of the dynamic model,

frictional forces, and external interaction forces in the control law and eventually

enhances the robustness of the system. In [22], authors developed a new robust

adaptive nonlinear teleoperation system using an improved extended active observer

(IEAOB), adaptive Smith predictor (ASP), and sliding mode control to mitigate the

time-delays and model uncertainties. The proposed scheme showed robustness against
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robot inertial parameter variations, friction, unmodeled dynamics, and measurement

noise. In [187], authors designed a bilateral controller for nonlinear teleoperation

systems to deal with external disturbances. This new composite nonlinear bilateral

control method is proposed to regulate the nonlinear feedback and compensate for

feed-forward disturbances in position and force-tracking error dynamics.

Model-Based Control Design

In the literature, various control schemes used the concept based on master and

slave robot model dynamics. The controllers were built for teleoperation applica-

tions through this method including identified delayed data in their equation. It is a

different strategy a s compared to prediction-based control in which time delay is com-

pletely ignored to preserve stability. The main challenge is to accurately identify the

model of the system despite external disturbances, frictions, payload variations, and

parametric uncertainties. The desired outcome of the controller heavily depends on

accurate model identification. A linear dynamic model of the system can be written

as follow in Eq 2.1: [188]

Mmẍm +Bmẋm +Kmxm + ffm = fh + fmc

Msẍs +Bsẋs +Ksxs + ffs = fe + fsc
(2.1)

where M,B,K are system mass, viscous, and spring coefficient, x, ẋ and ẍ are the

robot end effector’s position, velocity, and acceleration. The nonlinear model can be

expressed using Lagrange’s equation as follows in Eq 2.2:

Dm (xm) ẍm + Cm (xmẋm) ẋm +Gm (xm) + ffm = fh + fmc

Ds (xs) ẍs + Cs (xs, ẋs) ẋs +Gs (xs) + ffs = fe + fsc
(2.2)

where D is the moment of inertia, C is centripetal forces and Coriolis forces, and G

is the gravitational forces. The subscript m in the model represents the master and

subscript s represents the slave robot linear model.

Impedance Control

Impedance control is a typical model-based control technique in which trajectory

tracking is desired to a contact force while considering the robot dynamics. Re-

searchers have combined impedance control with sliding mode control to enhance
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robustness. In sliding mode control, a first-order sliding mode surface S = ė + eλ is

defined for telerobotic applications. The system slide along the designed surface by

first approaching it and then staying on it once it is reached. ė here represents the

error rate between master and slave robots. Several researchers have contributed to

the development of controllers in [124], [26], [90], [91], [92]. Matching impedance is

another form of impedance control used to improve system transparency, as discussed

in [96], [142].

H∞ Based Control

A telerobotic system in real-time will always be exposed to unknown external dis-

turbances such as noise from the sensors, etc. Eventually, these disturbances could

destabilize the system even if the robot model is well-identified with corresponding

parameters. Scholars have developed some robust control to compensate for those un-

predictable external sources of disturbances by using H∞ optimal control, as reported

in the literature [39], [143], [78].

Model Predictive Control (MPC)

Researchers have merged model-based control with predictive control and developed

a very powerful tool known as model-predictive control(MPC) [22], [95], [178], [172],

[78]. In this method, the robot’s internal dynamics are heavily involved. In [144],

the authors proposed a modified version of the model predictive control scheme to

improve the robustness of the bilateral control system in the presence of time delays.

Lyapunov’s method is also used to prove the system stability, as in the case of model

base control.

2.3 State Convergence Architecture

State Convergence architecture presents an elegant and simple model-based control

technique to design controllers for bilateral teleoperation systems. This method uses

state space formulation of the master and slave robot, allowing the slave to follow the

master in the presence of communication time delays. This method can also assign de-

sired dynamics behavior of the teleoperation systems. This scheme is originally used

for linear systems with either no time delay or minimal time delays. Despite these

limitations, the SC method is worth investigating due to its simplicity, modeling eas-

iness, and achieving desired dynamic behavior [73], [72], [71], [17]. Furthermore, the

SC method is also used to control the nonlinear teleoperation system. The literature

has also addressed various techniques such as Lyapunov theory [65], [70], [63], [64],

adaptive control theory [97], feedback linearization techniques [70], fuzzy logic, and
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neuro-fuzzy techniques [164], [169] to control the nonlinear-teleoperation-system using

SC method.

Figure 2.9: State convergence control architecture [72]

Figure 2.9 shows the state convergence architecture. Operator force is provided to

the slave manipulator through the matrices G2 and Rs, which are unknown param-

eters. Slave tries to mimic the master motion commands while interacting with the

environment. The model of the remote environment consists of stiffness ke and vis-

cous friction be. The reaction forces from the slave Fs and force feedback gain kf are

transmitted back to the master via the Rm matrix. Rm is known due to the prior

knowledge of the remote environmental parameters. The stabilizing gains Km and Ks

of the master and slave robot are unknown parameters. The 3n+1 unknown parame-

ters are to be determined through a solution of a set of following design equations [73],

which will help assign desired dynamic behavior of the teleoperation system.
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B1 − B2 = 0, A11 − A21 + A12 − A22 = 0

|sI − (A11 + A12)| |sI − (A22 − A12)| = |sI + P ||sI +Q|
(2.3)

where matrics P and Q are the desired slave and error poles while other entries are

as follow [36]:

A11 = As +BsKs, A12 = BsRs, A21 = BmRm, A22 = Am +BmKm

B1 = BsG2, B2 = Bm

(2.4)

Considering small time delays in the communication channel, the matrix entries in

Eq 2.4 are replaced as:

A11 = S (As +BsKs − TBsRsBmRm) , A12 = S (BsRs − TBsRs (Am +BmKm))

A21 =M (BmRm − TBmRm (As +BsKs)) , A22 =M (Am +BmKm − TBmRmBsRs)

B1 = S (BsG2 − TBsRsBm) , B2 =M (Bm − TBmRmBsG2)

(2.5)

Where matrices S and M can be determined as:

S =
(
I − T 2BmRmBsRs

)−1
,M =

(
I − T 2BsRsBmRm

)−1
(2.6)

Variants of State Convergence Architecture

Transparency Optimized SC Method : Transparency-optimized state conver-

gence is developed to enhance the transparency of bilateral teleoperation systems in

the presence of time delay. The modified version of state convergence aims to reflect

full environmental forces to the operator and achieve desired dynamic behaviour si-

multaneously, which is a bit challenging. This problem is rectified by limiting the

allowable range of time delay and closed loop behaviour [36]. The block diagram of

the transparency-optimized state convergence is shown in Figure 2.10.

SC Method for Unknown Environments: The state convergence method initially

used a known environmental model to compute the telerobotic system’s control gains.

In [68], the authors proposed a modified version of the state convergence architecture
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Figure 2.10: Transparency-optimized standard state convergence control architecture
[72]
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to address the limitation of using it when the environment’s model or parameters are

unknown. In this version, 3n + 2 control gains are needed to control a telerobotic

system modeled by a pair of nth order linear differential equations. The detailed

design procedure to compute the gains is refereed to [73], [68]. The modified version

is shown in Figure 2.11.

Fuzzy-based SC Methodology: In [37], a Takagi-Sugeno (TS) fuzzy model is

used to design a state convergence (SC) based bilateral controller for a nonlinear

teleoperation system. In this method, master and slave systems are represented by

TS fuzzy models. The use of appropriate fuzzy control law makes it capable enough

to control and impose the desired dynamic behaviour of the teleoperation system

in the presence and absence of communication delays using state convergence. The

proposed scheme as shown in Figure 2.12 is validated in MATLAB and compared with

the existing linear scheme. Using this scheme, there is no need to design a Lyapunov

function to prove the system’s stability.

Figure 2.11: State convergence control architecture for unknown environments [68]
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Figure 2.12: SC scheme for bilateral control of a nonlinear teleoperation system using
TS fuzzy models [37]
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2.4 Control Architectures for Multilateral Teleoperation System

The literature on bilateral teleoperation systems is rich, and many researchers have

investigated several algorithms and architectures to address and improve such sys-

tems’ stability, transparency, and performance measures. The extended versions of

these existing architectures to cover the case of multilateral teleoperation systems

have also been reported in the literature. A passivity control scheme based on the

wave variable method [42] has been extended to control dual master/single slave sys-

tem [21] to perform a therapeutic task. It empowers the therapist to perform remote

therapy for patients located at distant locations. In another study [82], the wave

variable approach is used to control the multilateral teleoperation system. In this

control scheme, the authors proposed an architecture with a wave node that con-

nects multiple wave variables transmission lines and a formulation to realize the wave

node. In addition, wave integral error feedback is used to compensate for the posi-

tion drift due to time-varying delays. In [24], [155], a novel multilateral teleoperation

framework is proposed to control n number of slaves through n number of masters

remotely. A time-delay compensator is built using the wave transform method and

four-channel architecture to handle the communication among multiple masters and

slaves in the presence of time-varying delays. Furthermore, the time-domain passiv-

ity concept primarily used for bilateral teleoperation systems is extended to control

multilateral teleoperation systems [84], [12], [133] such as multi-master/single slave

(MM/SS) [101], dual-master/dual-slave [32], and multi-master/multi-slave (MM/MS)

teleoperation systems [126]. The use of disturbances observers to estimate the envi-

ronmental forces is proposed in [107].In [107], the concept of model decomposition is

used to design a multilateral teleoperation system. A position and force control of

master and slave is integrated into the acceleration dimension based on the distur-

bance observer. This type of control is very important in human adaptive mechatron-

ics. In [83], a novel control design is proposed for a multilateral teleoperation system

to solve the problem of motion integration of different DOF and structure through

the use of spatial mode coordinate systems. In [167], a novel passive four-channel

architecture (PFCA) is designed to ensure the system’s stability independent of time

delay. The scheme is tested on dual-master/single-slave and single-master/dual-slave

systems. Similarly, other techniques such as H∞ optimization, adaptive control [184],

sliding mode control [166] and intelligent control [148] are used to control multilateral

teleoperation systems.
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Extension of SC Architecture For Multilateral Systems:

An alpha-modified version of the standard state convergence architecture is developed

for a single-master/single-slave teleoperation system. This method is then extended

to control a multi-master/multi-slave teleoperation system as shown in Figure 2.13.

The proposed multilateral controller is able to control k -master/l -slave nth order

teleoperation system and requires the solution of n(k+ l)+(n+1)kl design equations.

The controller gains will ensure the synchronization of k-master and l-slave systems

in a desired dynamic way [38].

2.5 Summary

In this chapter, various control schemes and architectures for bilateral and multilat-

eral teleoperation systems have been presented. Initially, various control architec-

tures were discussed to give an overview of all the available architectures to control

the time-delay and delay-free teleoperation system. Control schemes such as time-

domain passivity-based approaches and predictive control, adaptive control, etc., were

discussed. Shortly after describing these control schemes, a concept of disturbance

observer-based control was introduced to counter parametric uncertainties and un-

known disturbances while designing a stable teleoperation system. Model-based con-

trol designs were also presented and analyzed the stability of the system considering

the master and slave robot model dynamics. This approach’s major challenge is ac-

curately identifying the system’s model. Other approaches are also presented, such

as impedance, robustness, and model predictive control. Control schemes related to

the multilateral teleoperation framework are also introduced. Finally, the state con-

vergence method, a novel architecture to control a bilateral teleoperation system, is

discussed. Some variants are also developed to enhance transparency and extend their

capability when the environment’s model or parameters of the bilateral teleoperation

systems are unknown. Table 2.1 and Table 2.2 compare different model-based and

model-free control architectures for bilateral teleoperation systems.
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Figure 2.13: Proposed extended state convergence architecture for k -master/ l -slave
systems [38]
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Table 2.1: Model-based teleoperation control approaches [147]

Model-based Control Scheme

Criteria WV/S TDPA/C MMT SC

Input vari-
ables/ in-
formation
transmitted

Force and ve-
locity signals
are linearly
transformed
wave-variables
(u and v) [112]

Velocity, force,
and required
amount of
energy dissi-
pated [132]

Position,
velocity, accel-
eration, force,
and remote
environment
parame-
ters [171]

Operators
force, position,
and velocity
signals [73]

Feedback sig-
nals

Force feedback
signal for force
rendering [42]

Exchange of
energy be-
tween the two
end ports [132]

Non-delayed
force feedback
signal [170]

Position and
velocity sig-
nals

Model type Differential
equation-
based models
are used

Discrete mod-
els wherein the
energy flow is
computed in
real-time

Transfer func-
tion, multi
DOF models

Linear state-
space model

Effects of
model errors

Presence of
wave reflec-
tions decreases
the usefulness
of this ap-
proach

If the obser-
vation period
is longer than
the width of
time intervals,
then the data
set becomes
very large

Due to com-
plex modeling
environments
and confined
resolution of
sensors

Difficult to
get the exact
model of the
system

Stability un-
der time-delay
case

Passive for
fixed time
delay [112],
energy dissi-
pated from
time-varying
gains [89]

Passivity is
regulated by
PO/PC union

When the
estimated
model matches
the remote
environment
structure [171]

Small time de-
lays can affect
the system’s
stability [68]

Performance
criteria in the
presence of
time delay

Performance
deteriorated
due to large
time delays

Transparency
under time-
varying delay
is affected by
a passive leak

Improved
performance
guaranteed
due to locally
updated mod-
els

Pre-assigned
performance
by user
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Model-based Control Schemes

Criteria WV/S TDPA/C MMT SC

Robot Dynam-
ics

Independent
of master and
slave model
parameters
and delay size.

Depends on
the tuning
of damping
parameters

User-centered
dynamics

Modeling
uncertainties
are improved
using dis-
turbance
observers

Position Con-
vergence

Position track-
ing improved
using the Lya-
punov method

Achieved when
all the system
parameters are
known

Greatly af-
fected due to
model mis-
match

Achieved using
control gains
computed
through design
equations

Table 2.2: Model-free teleoperation control approaches [147]

Model-free Control

Criteria NN-based Fuzzy-based

Input variables Variables such as (Position, ve-
locity, and acceleration) are
weights v̄j from the hidden layer
to the output layer [153]

Vector space (x⃗ = [x1 . . . xn]
T
)

also called linguistic variables

Feedback sig-
nals

Estimated environment values
Ŵe

Environment/slave displace-
ment, velocity, and acceleration

Model type Mathematical model of neurons
in y(t) = σ

(∑n
j=1 vjxj(t) + v0

)

[56]

Human reasoning/ linguistic
rules (if-then)

Effects of
model errors

RBFNN method takes care of
system uncertainties, tracking
errors and force feedback errors
[153]

System errors are reduced by in-
troducing adaptive neural meth-
ods

Stability un-
der time-delay
case

NN-based controllers are robust
to external disturbances and un-
modeled dynamics [171]

Membership functions are used
to maintain system stability un-
der unknown time-delay [123]

Performance
criteria in the
presence of
time delay

Transparency is affected due to
the time-varying nature of envi-
ronmental dynamics

Affected by time-delay

Robot Dynam-
ics

Used to approximate unknown
system/robot dynamics along
with environment dynamics

Modelling issues are improved in
Type-2 fuzzy models

Position Con-
vergence

Desired slave and master posi-
tion is converged using slave tra-
jectory creator

With the help of adaptive laws,
position convergence is achieved
[153]



Chapter 3

An Enhanced State Convergence Architecture Incorporating

Disturbance Observer for Bilateral Teleoperation Systems

In order to bilaterally control an nth-order teleoperation system modeled on state

space, state convergence methodology provides an elegant way to design control gains

through a solution of 3n+1 equations. These design conditions are obtained by allow-

ing the master-slave error to evolve as an autonomous system and assigning the de-

sired dynamic behavior to the slave and error systems. The controller, thus obtained,

ensures the motion synchronization of master and slave systems with adjustable force

reflection to the operator. Although simple to design and easy to implement, the

state convergence method suffers from its dependence on model parameters. Thus,

the controller’s performance may degrade in the presence of parametric uncertainties.

To address this limitation, we propose to integrate an extended state observer in the

existing state convergence architecture, which will compensate for the modeling inac-

curacies by treating them as a disturbance and providing the estimates of the master

and slave states. These estimated states are then used to construct the bilateral

controller, which is designed by following the method of state convergence. In this

case, 2n+ 2 additional design equations are required to be solved to fix the observer

gains. To validate the proposed enhancement in the state convergence architecture,

simulations, and semi-real-time experiments are performed in MATLAB/Simulink

environment on a single-degree-of-freedom teleoperation system.

3.1 Review of State Convergence Architecture

State convergence architecture [73], shown in Figure 3.1, establishes a bilateral con-

nection between the master and slave systems which can be represented by nth order

linear differential equation and modeled on state space as:

ẋz = Azxz +Bzuz

yz = Czxz
(3.1)

31
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where, subscript ‘z ’ is to be replaced with ‘m’ for the master system and with ‘s ’ for

the slave system. Various matrix entries in Eq (3.2) are given as:

Figure 3.1: State convergence architecture [73]

Az =




0 1 0 · · · 0

0 0 1 · · · 0
...

0 0 0 · · · 1

−az0 −az1 −az2 · · · −azn−1



, Bz =




0

0
...

0

bz0




Cz =
[
1 0 0 · · · 0

]

(3.2)

Various parameters forming the state convergence architecture are defined as: Km =[
km1 km2 · · · kmn

]
is the feedback stabilizing controller for master system, Ks =
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[
k∗s1 + ke k∗s2 + be · · · ksn

]
is the feedback stabilizing controller for the slave sys-

tem which also includes the stiffness (ke) and damping (be) terms of the environ-

ment to counter the environmental force, Rm =
[
kfke kfbe · · · 0

]
transfers the

scaled effect of slave’s motion to the master system as the slave interacts with the

environment where scaling is achieved through the force feedback gain (kf ), Rs =[
rs1 rs2 · · · rsn

]
transfers the effect of master’s motion to the slave system, and

G2is the force transmission gain from the master to the slave system when the operator

exerts a force (Fm) to move the master system. Of these parameters, G2, Km, Ks, Rs

are unknown and found through a solution of 3n+1 design conditions, as described

in appendix A.

Remark 3.1. State convergence scheme employs the model parameters in Eq (3.2)

for the design of control gains. In practice, parametric uncertainties cannot be avoided

and may degrade the performance of the controller. The effect of these uncertainties

has been numerically evaluated on the performance of the state convergence controller

in [73], [160]. It is found that the bilateral controller is quite robust to more than

50% variations in the model parameters. However, the effect of these parametric

uncertainties has not been explicitly considered during the design phase of the scheme

which has motivated us to perform this study. Note that operator and environment

force estimation will not be undertaken in this study.

3.2 Proposed Enhanced State Convergence Architecture

In order to deal with uncertainties, we propose an enhanced version of the state

convergence architecture, shown in Figure 3.2, where extended state observers are

used to estimate the uncertainties present in the master and slave systems. These

observers also provide estimates of the master and slave systems’ states. The distur-

bance and state estimates are then used to form the bilateral control law. We proceed

by considering the following nonlinear model of the master (z = m) and slave (z = s)

systems:

ẋz1 = xz2

ẋz2 = xz3
...

ẋzn = fz (xz) + bzuz

yz = xz1

(3.3)
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ẋze1 = xze2

ẋze2 = xze3
...

ẋzen = xze(n+1) + bzuz

ẋze(n+1) = hz

yz = xze1

(3.4)

In Eq (3.3), fz is considered to be completely unknown and will be estimated by

using the disturbance observer along with other systems’ states. To this end, we first

rewrite Eq (3.3) by considering the disturbance dz = fz as an additional n+1th state.

Note the slight change of notation in Eq (3.4) where subscript ‘e’ is added to denote

the extended system. Further, the time derivative of the disturbance also appears in

Eq (3.10) i.e., hz = ḋz. Before further development, we write systems in Eq (3.3) and

Eq (3.4) in compact form as in Eq (3.5) and Eq (3.6):

ẋz = Azxz +Bzuz + Ezdz

yz = Czxz
(3.5) ẋze = Azexze +Bzeuze + Ezehz

yz = Czexze
(3.6)

where,

Az =




0 1 0 · · · 0

0 0 1 · · · 0
...

0 0 0 · · · 1

0 0 0 · · · 0



, Bz =




0

0
...

0

bz



, Ez =




0

0
...

0

1



Cz =

[
1 0 0 · · · 0

]

(3.7)

Aze =




0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

0 0 0 · · · 0 0




, Bze =




0

0
...

0

bz

0




, Eze =




0

0
...

0

0

1




Cze =
[
1 0 0 · · · 0 0

]

(3.8)



35

Figure 3.2: State convergence architecture incorporating disturbance observer
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Considering the virtual extended system of Eq (3.6), we construct the real extended

observer as:
˙̂xze = Azex̂ze +Bzeuz + LzeCze (xze − x̂ze)

ŷz = Czex̂ze
(3.9)

In Eq (3.9), x̂ze are the estimated states and Lze is the observer gain given as

Lze =
[
lze1 lze2 lze3 · · · lzen lze(n+1)

]T
. Let us define the observer error for the

master and slave system as:
ezo = xze − x̂ze (3.10)

Observer error dynamics can now be written using Eq (3.6), Eq (3.9) and Eq (3.10)

as:
ėzo = (Aze − LzeCze) ezo + Ezehz (3.11)

We now construct the bilateral state convergence controller using estimated states as:

um = −
1

bm
x̂me(n+1) +Kmx̂m +Rmx̂s (t− T ) + Fm (3.12)

us = −
1

bs
x̂se(n+1) +Ksx̂s +Rsx̂m (t− T ) +G2Fm (t− T ) (3.13)

By plugging Eq (3.12), Eq (3.13) in Eq (3.5) and using Eq (3.10), Eq (3.11) and

noting Bz/bz = Ez, closed loop augmented slave-master system is found to be:

[
I A12ℓ

A2l I

][
ẋx

ẋm

]
=

[
A11α A12α

A21α A22α

][
xx

xm

]
+

[
A1e A12e

A2ke A22e

][
ema

em∞

]
+

[
0 A12h̄

A21h̄ 0

]

h

h

h


+

[
B1

B2

]
Fm

(3.14)

where, A11a = As +BsKs, A12a = BsRs, A21a = BmRm, A22a= Am +BmKm,

A11e = −
(
BsKs −Es

)
, A12e =

(
TBsRs 0

)
(Ame − LmeCme)−

(
BsRs 0

)
,

A21e =
(
TBmRm 0

)
(Ase− LseCse)−

(
BmRm 0

)
, A22e = −

(
BmKm −Em

)
,



37

A12t = TBsRs, A21t = TBmRm, A12h =
(
TBsRs 0

)
Eme,

A21h =
(
TBmRm 0

)
Ese, B1 = BsG2, and B2 = Bm.

By pre-multiplying Eq (3.14) by the inverse of matrix
[
I A12t ; A21t I

]
and

combining the resulting expression with the observer dynamics in Eq (3.11), we have:




ẋs

ẋm

ėso

ėmo



=




A11 A12 A13 A14

A21 A22 A23 A24

0 0 A34 0

0 0 0 A44







xs

xm

eso

emo



+




B11

B21

0

0



Fm+




E11 E12

E21 E22

E31 0

0 E42




[
hs

hm

]

(3.15)

A11 = Ai1A11a + Ai2A21a, A12 = Ai1A12a + Ai2A22a, A13 = Ai1A11e + Ai2A21e,

A14 = Ai1A12e + Ai2A22e, A21 = Ai3A11a+Ai4A12a, A22 = Ai3A12a + Ai4A22a, A23 =

Ai3A11e+Ai4A21e, A24 = Ai3A12e+Ai4A22e, A34 = Ase−LseCse, A44 = Ame−LmeCme,

B11 =Ai1B1 + Ai2B2, B21 = Ai3B1 + Ai4B2,E11 = Ai2A21h, E12 = Ai1A12h, E21 =

Ai4A21h, E22 = Ai3A12h, E31 = Ese, E42 = Eme, Ai1 =I + A12tΞA21t, Ai2 =−A12tΞ,

Ai3 = −ΞA21t, Ai4 = Ξ, Ξ = (I−A21tA12t)
−1. Following the method of state conver-

gence, we replace the master system in (3.15) with the slave-master error system. To

achieve this, we introduce the following linear transformation:




xs

xe

eso

emo



=




I 0 0 0

I −I 0 0

0 0 I 0

0 0 0 I







xs

xm

eso

emo




(3.16)

The time derivative of Eq (3.16) in combination with Eq (3.15) yields the following

augmented system:




ẋs

ẋe

ėso

ėmo



=




Ã11 Ã12 Ã13 Ã14

Ã21 Ã22 Ã23 Ã24

0 0 Ã34 0

0 0 0 Ã44







xs

xe

eso

emo



+




B̃11

B̃21

0

0



Fm+




Ẽ11 Ẽ12

Ẽ21 Ẽ12

Ẽ31 0

0 Ẽ42




[
hs

hm

]

(3.17)
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whereÃ11 = A11 + A12,Ã12 = −A12,Ã13 = A13,Ã14= A14,Ã21 = A11 − A21 + A12 −

A22,Ã22 = −A12 + A22,Ã23 = A13 − A23,Ã24 = A14 − A24,Ã33 = A33,Ã44 = A44,B̃11 =

B11,B̃21 = B11−B21,Ẽ11 = E11,Ẽ12 = E12,Ẽ21 = E11 − E21,Ẽ22 = E12 − E22,Ẽ31 =

E31,Ẽ42 = E42. By eliminating the effect of the slave system’s states and operator’s

force on the error system in Eq (3.17), we obtain the following n+1 design conditions:

Ã21 = 0, B̃21 = 0 (3.18)

Note that the effect of observers’ errors is ignored on the slave-master error system

as fast dynamic behavior will be assigned to the observers. Further, the effect of

disturbance terms is not considered in the design phase which can be associated

with the slow varying nature of the disturbance [74], [75]. Now, by comparing the

characteristic polynomial of the augmented system in Eq (3.17) with the desired

polynomials, we have:

∣∣∣sI − Ã11

∣∣∣ = sn + pn−1s
n−1 + ...+ p1s+ p0∣∣∣sI − Ã22

∣∣∣ = sn + qn−1s
n−1 + ...+ q1s+ q0∣∣∣sI − Ã34

∣∣∣ = sn + rn−1s
n−1 + ...+ r1s+ r0∣∣∣sI − Ã44

∣∣∣ = sn + wn−1s
n−1 + ...+ w1s+ w0

(3.19)

In Eq (3.19), pi, qi, ri, wi are coefficients of the desired polynomials for the slave, error,

slave observer and master observer systems, respectively. Eq (3.18) and Eq (3.19) form

together a set of 5n+3 design conditions which can be solved to find 3n+1 unknown

controller gains (G2, Km, Ks, Rs) and 2n+2 unknown observer (Lse, Lme) gains of the

enhanced state convergence scheme.

3.3 Simulation Results

In order to validate the proposed disturbance observer-based state convergence con-

troller, we perform simulations in MATLAB/Simulink environment by considering a

single-degree-of-freedom master and slave systems as:

ẋz1 = xz2

ẋz2 = fz (xz) + uz

fz = −az1 sin (xz1)− az2xz2 + (bz − 1) uz

(3.20)
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Thus, we have the following model for the design phase:

Az =

[
0 1

0 0

]
, Bz =

[
0

1

]
, Aze =




0 1 0

0 0 1

0 0 0


 , Bze =




0

1

0


 (3.21)

We assume various parameters of the teleoperation system as [73]:

am1 = 1, am2 = 7.1429

as1 = 0.5, as2 = 6.25

bm = 0.2656, bs = 0.2729, T = 0.2s

kf = 1, ke = 20Nm/rad, be = 0.1Nms/rad

(3.22)

Further, we select the coefficients of polynomials in Eq (3.19) as:

p0 = 2, p1 = 15

q0 = 64, q1 = 16

r0 = w0 = 27000

r1 = w1 = 2700

r2 = w2 = 90

(3.23)

Now, by solving the design conditions [175] and [113], we obtain the controller and

observer gains as:

G2 = 1.3436, Km =
[
−40.40 −11.40

]
, Ks =

[
−15.4079 −20.7101

]

Rs =
[
7.9981 1.8524

]
, Lme = Lse =

[
90 2700 27000

]T (3.24)

Note that control gains Ks in Eq (3.24) contains the environment information also,

as pointed out in section 3.1. In the absence of such information, a steady-state

error will exist between the master and slave positions as the slave interacts with the

environment. We now perform simulations of a time-delayed nonlinear teleoperation

system under the control gains of Eq (3.24), and the results are depicted in Figure

3.3, Figure 3.4, Figure 3.5. It can be seen that disturbance is well-estimated by the

observer, and the slave is following the master system. In addition, environmental
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force is also reflected to the operator whose amount can be adjusted through the

coefficient p0.

Figure 3.3: Disturbance estimation

Comparison of Proposed Scheme with RBFNN

In order to show some advantage of the proposed scheme, a comparison has been

made with a recently proposed tele-controller based on radial basis function neural

network (RBFNN) [35]. For the sake of completeness, we mention the RBFNN based

control laws here:

uz = lzsz + Ŵzhz (xz) + ηzsgn (sz)− τz, z = m, s

sz = ėz + kzez, z = m, s
˙̂
Wz =

1
δz
szhz (xz) , z = m, s

(3.25)
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Figure 3.4: Estimated position and velocity states

Figure 3.5: Control input torques and force reflection behavior
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Figure 3.6: Comparison of proposed scheme and RBFNN

By using different parameters of RBFNN controllers as:

ηm = ηs = 0.25,

δm = δm = 0.05,

lm = ls = 15, km = ks = 15,

τf = 0.025, sat = ±0.05, n = 5

bj = 0.5, Ci = −1 : 0.5 : 1

Mr = 1, Cr = 4, Gr = 4,

(3.26)

We simulate the same time-delayed telerobotic system under the control of Eq (3.25).

Various states recorded in Figure 3.6 depict the position error between the master

and slave systems yielded by both the proposed and RBFNN controllers. It can be

seen that the proposed controller offers better transient performance as compared to

the RBFNN controller for the same final master position. However, the proposed

controller is only valid for constant time delays.
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3.4 Experimental Results

Finally, we perform some semi-real-time experiments in QUARC/Simulink environ-

ment using the geomagic haptic device. To this end, the haptic device is oper-

ated along the x-axis to generate a varying time force for the teleoperation sys-

tem running in the Simulink environment. This force is governed by the relation

Fm (t) = kop (xop (t)− x0). Here, the scaling factor is assumed to be kop = 5 while the

operator’s position (xop) lies in the range [0.1, 0.2] which corresponds to the motion

of the link between points ‘2’ and ‘8’ on the cardboard, as shown in Figure 3.7 and

Figure 3.8. The proposed controller parameters are presented in Table 3.1.

Figure 3.7: Experimental framework: layout

Further, the Simulink model is designed such that the reflected force, as generated

by the proposed controller, is also directed to the haptic device. In this way, the

loop is closed around the operator as he will be able to feel the slave’s interaction

with the environment. Now, by using the control gains of Eq (3.24), the nonlinear

time-delayed teleoperation system is run under the control of the haptic device, and

the results are shown in Figure 3.9, Figure 3.10 and Figure 3.11.

It can be seen that the observer has remained successful in estimating the distur-

bance and the observer-based controller has established the convergence of master

and slave states. Further, environmental force is also felt by the operator. These

results suggest that the proposed methodology has indeed enhanced the capability of

state convergence architecture to deal with uncertain nonlinear teleoperation systems.
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Figure 3.8: Experimental framework: More detailed view (observer part is not shown
for simplicity
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Figure 3.9: Experimental results: disturbance estimation

Figure 3.10: Experimental results: estimated position and velocity states



46

Figure 3.11: Experimental results: control input torques and force reflection behavior

Controller
Simulation in MAT-
LAB/Simulink

Semi Real-time
QUARC/Simulink

System 1-DoF (Master/Slave) 1-DoF (Master/Slave)

Operator Force (N) 0.5 (constant)
Time-varying force us-
ing Omni Bundle

Environment Stiffness
ke (Nm/rad)

20 20

Environment Damp-
ing be (Nm/rad)

0.1 0.1

Feedback gain Kf 1 1
Scaling factor Kop 0 5
Time delay (Sec) 0.2 0.2

Table 3.1: Proposed controller parameters for simulation and semi-real time experi-
ment

3.5 Conclusion

This chapter introduced an enhancement in the state convergence architecture for bi-

lateral teleoperation systems through the use of disturbance observers. The proposed

scheme suggests treating uncertainties in the master and slave systems as disturbances

and employing extended state observers to estimate them. State convergence control
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laws are then updated with these estimates. Closed loop stability of the teleoperation

system is finally established by following the method of state convergence. To vali-

date the proposal, simulations and semi-real-time experiments are also performed in

MATLAB/Simulink environment by considering a single-degree-of-freedom nonlinear

time-delayed teleoperation system. Future work involves designing and integrating

the operator and environment estimation laws in the proposed framework with the

consideration of time-varying delays in the communication channel.



Chapter 4

Disturbance Observer Supported Fuzzy-Model-Based

Bilateral Control Architecture

This chapter presents a disturbance observer-supported Takagi-Sugeno (TS) fuzzy

model-based control scheme for uncertain systems. The baseline controller is a guar-

anteed performance fuzzy-model-based parallel distributed controller (PDC) con-

structed using the nominal system’s parameters. The model approximation error

and parametric uncertainties are treated as a lumped disturbance and a nonlinear

disturbance observer (NDOB) is introduced to counter the lumped disturbance. The

applicability of the proposed scheme is demonstrated in the bilateral control of a

nonlinear teleoperation system in MATLAB/Simulink/QUARC environment through

simulations as well as semi-real-time experiments.

4.1 TS Fuzzy Modeling

Consider an affine nth order single input single output (SISO) nonlinear system as:

ẋ1 = x2

ẋ2 = x3
...

ẋn = fn (x) + gn (x) u+∆f (x) + ∆g (x) u

(4.1)

where fn (x) and gn (x) are nonlinear functions with nominal system parameters while

∆f (x) = f (x)−fn (x), ∆g (x) = g (x)−gn (x) represent the respective uncertainties.

An ‘r’ rule TS fuzzy model of nonlinear system in Eq (4.1) can be constructed as:

ẋ1 = x2

ẋ2 = x3
...

ẋn =
∑r

i=1 hi (z)
∑n

j=1 −aijxj + bi1u+ δ

(4.2)

48
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where hi (z) is normalized firing strength of i th fuzzy rule i.e. hi (z) = µi (z) /
∑r

i=1 µi
and µi (z) is determined as minimum of the degrees of memberships of zj(x) (j =

1, 2, ..., l) in fuzzy set Aij for the i
th rule i.e. µi (z) = Ai1 (z1)×Ai2 (z2)× . . .×Ail (zl).

Note that zj (x) (j = 1, 2, ..., l) is a scheduling variable. In Eq (4.2), δ contains the

modeling error and uncertainties as:

δ =
(
(fn (x) + gn (x) u)−

(∑r

i=1 hi (x)
∑n

j=1 −aijxj + bi1u
))

+(∆f (x) + ∆g (x) u)

(4.3)

In Eq (4.3), the first term on the right-hand side is the model approximation error

while the second term includes parametric uncertainties.

4.2 Integrated NDOB TS Fuzzy Controller

We integrate an NDOB with a baseline TS fuzzy PDC controller of [86]. This PDC

controller provides the desired closed-loop performance by introducing time-invariant

coefficients. However, parametric uncertainties are not considered in the design proce-

dure. To address this limitation, we propose to integrate an NDOB that can estimate

the lumped disturbances and ensures robust closed-loop performance. NDOB-based

fuzzy PDC controller is proposed as:

u = −

r∑

i=1

hi (z)
n∑

j=1

dij
bi1
xj − δ̂ (4.4)

{
δ̂ = ξ − λxn

ξ̇ = λ
(
δ̂ −

∑r

i=1 hi (z)
∑n

j=1 aijxj + bi1u
) (4.5)

In Eq (4.4), the denominator part of the control law, bi1 is a known nominal plant

parameter while the numerator part, dij is to be designed against a desired closed-loop

performance. In Eq (4.5), λ is a negative constant whose magnitude can be selected

to be sufficiently large. By substituting Eq (4.4) in Eq (4.2), we obtain the closed

loop system as:

ẋ1 = x2

ẋ2 = x3
...

ẋn = −
∑r

i=1 hi (z)
∑n

j=1 (dij + aij) xj + δe

(4.6)

In Eq (4.6), δe is the disturbance estimation error:
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δe = δ − δ̂ (4.7)

Let cj, j = 1, 2, ..., n be the coefficients that do not depend upon the time-varying

membership functions, i.e.:

cj = dij + aij, j = 1, 2, ..., n (4.8)

By substituting Eq (4.8) in Eq (4.6), we obtain the differential equation representation

of the closed-loop system as:

x(n) + cnx
(n−1) + ...+ c2ẋ+ c1x = δe (4.9)

Now the coefficients cj, j = 1, 2, ..., n can be chosen according to the desired dynamic

response, and the fuzzy implemental gains can then be determined using Eq (4.8).

Eq (4.9) implies that regulation error is governed by the estimation error of NDOB.

Thus, bound on the estimation error translates to the performance of the fuzzy PDC

regulator. Estimation error dynamics can be written as:

δ̇e = λδe + δ̇ (4.10)

Provided that disturbance and its derivative are bounded as ∥δ∥ ≤ ϕ1,
∥∥∥δ̇
∥∥∥ ≤ ϕ2, we

can find a bound on the disturbance estimation error as in [186]:

δe = eλtδe0 +

∫ t

0

eλ(t−τ)δ̇ (τ) (4.11)

≤ εϕ1e
λt + εϕ2

∫ t

0

eλ(t−s)ds

= εϕ1e
λt +

εϕ2

λ

(
eλt − 1

) (4.12)

4.3 Application to Bilateral Teleoperation

Bilateral teleoperation is a key framework to allow human interaction with a remote

environment by providing the force feedback present in the remote environment. Over

the decades, many algorithms have been proposed to improve the time delay present in

the communication channel, uncertainties related to the environment, and modeling

errors, and improve decision support mechanisms [113], [14].
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Consider a single-degree-of-freedom teleoperation system as:

Jmθ̈m +Bmθ̇m +mmglm sin θm = um

Jsθ̈s +Bsθ̇s +msgls sin θs = us
(4.13)

Let the state variables be x1 = θ, x2 = θ̇. By selecting the scheduling variable as

z = sin(x1/x1) and using the nominal system parameters, a two-rule TS fuzzy model

of a system described by Eq (4.13) is constructed as:

ẋm1 = xm2

ẋm2 = −
∑2

i=1 hmi (zm)
mmnglmn

Jmn
zmixm1 −

Bmn

Jmn
xm2 +

1
Jmn

um + δm
(4.14)

ẋs1 = xs2

ẋs2 = −
∑2

i=1 hsi (zs)
msnglsn
Jsn

zsixs1 −
Bsn

Jsn
xs2 +

1
Jsn
us + δs

(4.15)

The degrees of memberships in Eq (4.14) and Eq (4.15) are computed as:

µ1 (z) =

{
1 , x1 = 0
z−zmin

zmax−zmin
, x1 ̸= 0

µ2 (z) = 1− µ1 (z)

(4.16)

where minimum value of the scheduling variable (zmin = 0.827) corresponds to the

link operation around x1 = π/3 while maximum value (zmax = 1) corresponds to the

operation around x1 = 0. The definition and numerical values of different master and

slave systems’ parameters in Eq (4.13) - Eq (4.15) are provided in Table 4.1.

To establish bilateral communication between the master and slave systems, the

method of state convergence is used and proposed NDOB fuzzy PDC regulators are

deployed on both sides, as shown in Figure 4.1. Observer-based control laws for the

master and slave sides are defined as:

um = Jmn

2∑

i=1

hi (zm)
2∑

j=1

dmijxmj +
2∑

j=1

rmjxsj(t− T ) + Fm − Jmnδ̂m (4.17)
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{
δ̂m = ξm − λmxm2

ξ̇m = λm

(
δ̂m −

∑2
i=1 hmi

mmnglmn

Jmn
zmixm1 −

Bmn

Jmn
xm2 +

1
Jmn

um

) (4.18)

Table 4.1: Numerical values for fuzzy controller parameters

No Definition of Master/Slave Param-

eters

Actual

Value

Nominal

Value

1 Mass of master link (kg) mm = 2.2 mmn = 2.0

2 Length of master link (m) lm = 0.35 lmn = 0.5

3 Inertial of master link (kg-m2) Jm = 0.0898 Jmn = 0.16

4 Viscous friction coefficient of mas-

ter link (Nms/rad)

Bm = 5.2 Bmn = 5.0

5 Mass of slave link (kg) ms = 7.8 msn = 80.

6 Length of slave link (m) l s = 0.75 l sn = 1.0

7 Inertial of slave link (kg-m2) J s = 1.4625 J sn = 2.6

8 Viscous friction coefficient of slave

link (Nms/rad)

B s = 10.5 B sn = 10.0

9 Acceleration due to gravity (m/s2) g = 9.8 g = 9.8

un = Jsn

2∑

i=1

hi (zn)
2∑

j=1

dsijxnj +
n∑

j=1

rsjxmj(t− T ) + g2Fm(t− T )− Jsnδ̂s (4.19)

{
δ̂s = ξs − λsxs2

ξ̇s = λs

(
δ̂s −

∑2
i=1 hsi

msmgllm

Jm
znixs1 −

Bmi

Jn+1
xn2 +

1
Jmm

us

) (4.20)

The definition of various parameters in these control laws is included in Table 4.2.

With the help of the above control laws, closed-loop master and slave systems are

computed, and time-invariant coefficients are introduced, as described above:

cmj = dmij − amij, csj = dsij − asij (4.21)

where ai1 = mnglnzi/Jn and ai2 = Bn/Jn. The resulting closed-loop master and

slave systems are now in a suitable form for the method of state convergence to be

applicable. Interested readers are referred to [160], [161] for details on this bilateral
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scheme. To determine the control gains of the scheme including the NDOB-integrated

fuzzy PDC regulators, the following design conditions need to be solved:

g2 (Jmn + Trm2)− (Jsn + Trs2) = 0 (4.22)

(Jmn + Trm2) (rs1 + cs1Jsn)− (Jsn + Trs2) (rm1 + cm1Jmn) = 0 (4.23)

(Jmn + Trm2) (rs2 + cs2Jsn)− (Jsn + Trs2) (rm2 + cm2Jmn)

−T (Jmn + Trm2) rs1 + T (Jsn + Trs2) rm1 = 0
(4.24)

Jmn (rs1 + Jsncs1 − Trs2cm1) + p1
(
JmnJsn − T 2rm2rs2

)
= 0 (4.25)

Jmnrs2 − Trs2rm2 + JmnJsncs2 − TJmnrs2cm2 − TJmnrs1+T
2rs2rm1

+p2 (JmnJsn − T 2rm2rs2) = 0
(4.26)

(Jmn + Trm2) rs1 − Jmn (Jsn + Trs2) cm1 − q1
(
JmnJsn − T 2rm2rs2

)
= 0 (4.27)

(Jmn + Trm2) (rs2 − Trs1)− Jmn (Jsn + Trs2) cm2−q2 (JmnJsn − T 2rm2rs2) = 0

(4.28)

Table 4.2: Parameters of fuzzy state convergence scheme

No Parameters Description

1 Fm Operators force

2 G2 Force feed-forward gain

3 Rm =
[
rm1 rm2

]

rm1 = kfke, rm2 = kfbe

Force feedback gain vector

4 Cm =
[
cm1 cm2

]
Stabilizing gain for the master

5 Cs =
[
cs1 cs2

]
Stabilizing gain for the slave

6
Dm1 =

[
dm11 dm12

]

Dm2 =
[
dm21 dm22

] Fuzzy implemental gains for master

7
Ds1 =

[
ds11 ds12

]

Ds2 =
[
ds21 ds22

] Fuzzy implemental gains for slave

8 Rs =
[
rs1 rs2

]
Effect of master’s motion in slave

9 T Time delay of communication channel
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Figure 4.1: NDOB based fuzzy-model-based state convergence controller for bilateral
teleoperation system
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4.4 Simulation Results

By assuming the stiffness of the environment as ke = 5Nm/rad with kf = 0.1 and

selecting the desired response of the slave as well as error systems as s2+20s+100 = 0

(p1 = q1 = p2 = q2 = −10), we obtain following control gains as a solution of Eq (4.22)

and Eq (4.28).

cm1 = −103.00, cm2 = −19.70

cs1 = −97.0, cs2 = −20.30

rs1 = −8, rs2 = 0, g2 = 16

(4.29)

Control gains for fuzzy PDC regulators are derived using Eq (4.21) along with nominal

parameters as:

dm11 = −44.14, dm12 = 10.30

dm21 = −54.32, dm22 = 10.30

ds11 = −67.57, ds12 = −16.55

ds21 = −72.66, ds22 = −16.55

(4.30)

We now simulate fuzzy PDC-driven bilateral teleoperation by applying a constant

operator’s force of 1N. First, an uncertain teleoperation system is run without utilizing

NDOB, and the system response is plotted in Figure 4.2. It can be seen that position

error exists between the master and slave systems due to the discrepancy in actual

and nominal parameters. Also, differences can be seen in the desired and actual slave

responses.

Now, NDOB (λm = λs = −50) is switched on and simulation results are depicted

in Figure 4.3 - Figure 4.6. It can be seen that NDOB based fuzzy PDC regulator

recovers the performance as the slave tracks the master with zero steady-state er-

ror and exhibits the desired behavior. Disturbances on the master and slave sides

are well estimated and compensated by NDOB as displayed in Figure 4.5 and Fig-

ure 4.6. Results in Figure 4.2 and Figure 4.3 - Figure 4.6 also serve the purpose of

comparison of proposed disturbance observer-based fuzzy PDC technique with fuzzy

PDC. Comparison with other fuzzy PDC techniques involving disturbance observer

is not provided as they do not offer desired dynamic performance and thus state

convergence controller with desired slave response cannot be constructed to establish

bilateral communication.
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Figure 4.2: Fuzzy model-based state convergence convergence controller under pa-
rameter variations without NDOB [31]

Figure 4.3: NDOB-integrated fuzzy model-based control: position tracking
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Figure 4.4: NDOB-integrated fuzzy model-based control: velocity tracking

Figure 4.5: NDOB-integrated fuzzy model-based control: disturbance estimation on
master side
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Figure 4.6: NDOB-integrated fuzzy model-based control: disturbance estimation on
slave side

4.5 Experimental Results

Finally, we perform semi-real-time experiments using QUARC/Simulink environment

using a haptic device and a virtual slave system. The experimental setup is shown in

Fig 4.7. The experiment is initiated by the human operator who drives the haptic de-

vice. The resulting motion and force commands are transmitted over a time-delayed

communication channel to the slave system, which interacts with the environment

and provides force feedback to the master side. The reflected force is provided to

the operator through a haptic device. NDOB-based fuzzy PDC controllers are imple-

mented on both the master and slave sides with the control gains of Eq (4.29) and

Eq (4.30). The recorded position tracking, velocity tracking, disturbance estimation,

and force reflection results are shown in Figure 4.8 - Figure 4.12. The proposed scheme

provides excellent position tracking and disturbance estimation performance and pos-

sesses force reflection ability. The proposed controller parameters are summarized in

Table 4.3.
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Figure 4.7: Experimental setup to implement NDOB TS fuzzy controller

Figure 4.8: NDOB-integrated fuzzy model-based control: position tracking
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Figure 4.9: NDOB-integrated fuzzy model-based control: velocity tracking

Figure 4.10: NDOB-integrated fuzzy model-based control: disturbance estimation on
master side
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Figure 4.11: NDOB-integrated fuzzy model-based control: disturbance estimation on
slave side

Figure 4.12: NDOB-integrated fuzzy model-based control: force reflection behavior
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Controller
Simulation in MAT-
LAB/Simulink

Semi Real-time
QUARC/Simulink

System 1-DoF (Master/Slave) 1-DoF (Master/Slave)

Operator Force (N) 1 (constant)
Time-varying force us-
ing Omni Bundle

Environment Stiffness
ke (Nm/rad)

5 5

Environment Damp-
ing be (Nm/rad)

0.1 0.1

Feedback gain Kf 0.1 0.1
Scaling factor Kop 0 5
Time delay (Sec) 0.2 0.2

Table 4.3: Proposed controller parameters for simulation and semi-real time experi-
ment

4.6 Conclusion

This chapter presents the design of a disturbance observer-based fuzzy PDC controller

for the regulation task in uncertain nonlinear systems. A numerator-denominator type

PDC controller can offer desired dynamic performance. However, its performance de-

teriorates in the presence of parametric uncertainties. To recover its performance,

a nonlinear disturbance observer is designed, which considers the parametric uncer-

tainties and modelling errors. The proposed NDOB-based fuzzy PDC controller is

applied to a bilateral teleoperation system where a slave manipulator is required to

track the master manipulator while exhibiting a desired behaviour. Simulations and

experimental results confirm the validity and effectiveness of the proposed robust

regulation scheme. The proposed regulator will be used to control more complex

systems.



Chapter 5

Disturbance Observer Based Extended State Convergence

Architecture for Multilateral Teleoperation Systems

In the existing extended state convergence architecture [159], k -master systems can

control the motion of l -slave systems to perform a certain task in a remote environ-

ment. However, the dependency of this control framework on systems’ parameters

leads to degraded control performance in the presence of significant parameter vari-

ations. In this study, we have integrated extended state observers in extended state

convergence architecture [159] to counter the effect of uncertainties, which has re-

sulted in a more practical architecture for multilateral teleoperation systems. In

order to validate the proposed enhanced architecture, simulations are performed in

MATLAB/Simulink environment by considering a symmetric (2x2) as well as asym-

metric (2x1) teleoperation system. A comparative assessment with the existing state

convergence architecture proves the superiority of the proposed architecture. In ad-

dition, hardware experimentation is carried out on Quanser QUBE-servo systems by

setting up an asymmetric (1x2) teleoperation system in the QUARC environment.

To the best of the authors’ knowledge, robustness improvement of extended state

convergence architecture has not been reported in the literature. This chapter is

structured as follows: Section 5.1 describes the proposed architecture, and the as-

sociated design procedure is presented in Section 5.2. Simulation and experimental

results are presented in Sections 5.3 and 5.4, followed by conclusions.

5.1 Proposed Architecture

In extended state convergence architecture, n (k + l) + (n+ 1) kl design conditions

are required to be solved to determine the same number of control gains. In the

proposed version, an extra (n+ 1) kl design conditions are required to be solved to

determine disturbance observers’ gains. Although computational cost is increased

in the proposed architecture, however, its ability to deal with parameter variations

is greatly improved. The proposed architecture is shown in Figure 5.1. We include

various notations describing the architecture in Table 5.1.
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Table 5.1: Notations describing observer-based extended state convergence architec-
ture

Notation Description Notation Description
Fhk Force exerted by

k th operator on k th

master system

Gslk Effect of k th oper-
ator’s force in l th

slave system
Kmke Stabilizing ex-

tended gain for k th

master system

Ksle Stabilizing ex-
tended gain for l th

slave system
Rmkl Effect of motion of

l th slave system in
k th master system

Rslk Effect of motion of
k th master system
in l th slave system

Lmke Extended state ob-
server’s gain for k th

master system

Lske Extended state
observer’s gain for
l th slave system

5.2 Design Procedure

The design methodology is a two-stage procedure in which an augmented system

containing closed loop master and error systems is formed at the first step. Then the

augmented system is stabilized by placing the poles in the left half plane with error

systems set as autonomous systems. Let master and slave systems (z = m, s) be mod-

eled on state space given in Eq (5.1). In Eq (5.1), system and input matrices contain

nominal plant values, whereas parametric uncertainties are included as disturbance

terms. We form extended master and slave systems by considering disturbance terms

as additional states given in Eq (5.2):

ẋzi = Azixzi +Bziuzi + dzi

yzi = Czixzi
(5.1) ẋzie = Aziexzie +Bzieuzi

yzi = Cziexzie
(5.2)

To estimate master and slave systems’ states, including disturbances, extended state

observers are designed as follows:

˙̂xzie = Aziex̂zie +Bzieuzi + Lzie (yzi − ŷzi)

ŷzi = Cziex̂zie
(5.3)
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Figure 5.1: Proposed disturbance observer-based architecture for multilateral teleop-
eration systems

The control inputs for the k th master and l th slave systems are introduced as:

umk = Kmkex̂mke +
l∑

i=1

Rmkix̂si (t− Tmki) + Fhk (5.4)

usl = Kslex̂sle +
k∑

i=1

Rslix̂mi (t− Tsli) +
k∑

i=1

GsliFhi (t− Tsli) (5.5)

In Eq (5.4) and Eq (5.5), last element of stabilizing gain, Kzie compensates for the

parameter variations. By plugging Eq (5.4) and Eq (5.5) in Eq (5.1), closed loop

master and slave systems are obtained as:

ẋmk = (Amk +BmkKmk) xmk +
l∑

i=1

BmkRmkixsi (t− Tmki) + BmkFhk + edmk (5.6)
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ẋsl = (Asl +BslKsl) xsl +
k∑

i=1

BslRslixmi (t− Tsli) +
k∑

i=1

BslGsliFhi (t− Tsli) + edsl

(5.7)

In Eq (5.6) and Eq (5.7), edzi contains estimation error terms. Using Taylor expansion

on time-delayed signals in Eq (5.6), Eq (5.7) and discarding higher order terms, we

get:




ẋm1

...

ẋmk

ẋs1
...

ẋsl




=




Am1 +Bm1Km1 . . . 0 Bm1Rm11 . . . Bm1Rm1l

. . .
...

0 . . . Amk +BmkKmk BmkRmk1 . . . BmkRmkl

Bs1Rs11 . . . Bs1Rs1k As1 +Bs1Ks1 . . . 0
...

. . .

BslRsl1 . . . BslRslk 0 . . . Asl +BslKsl







xm1

...

xmk

xs1
...

xsl




−




0 . . . 0 Bm1Tm11Rm11 · · · Bm1Tm1lRm1l

...
...

0 . . . 0 BmkTmk1Rmk1 . . . BmkTmklRmkl

Bs1Ts11Rs11 . . . Bs1Ts1kRs1k 0 . . . 0
...

...

BslTsl1Rsl1 . . . BslTslkRslk 0 . . . 0







ẋm1

...

ẋmk

ẋs1
...

ẋsl




+




Bm1 . . . 0
. . .

0 . . . Bmk

Bs1Gs11 . . . Bs1Gs1k

...

BslGsl1 . . . BslGslk







Fh1
...

Fhk


+




edm1

...

edmk

eds1
...

edsl




(5.8)

Let us define the following matrices:

xm =
[
xm1 . . . xmk

]T
, xs =

[
xs1 . . . xsl

]T
, Am = diag (Am1 . . . Amk)

Ak = diag (As1, . . . .Asl) , Bm = diag (Bm1 . . . , Bmk) , Bs = diag (Bs1, . . . , Bsk)

Km = diag (Km1, . . . , Kmk) , Ks = diag (Ks1, . . . , Ksl)

(5.9)
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Rm =




Rm11 . . . Rm1l

...

Rmk1 . . . Rmkl


 , Rs =




Rn11 . . . Rs1k

...

Rsl1 . . . Rslk


 , Tm =




Tm11 . . . Tm1l

...

Tmk1 . . . Tmkl




Ts =




Ts11 . . . Ts1k
...

Tsl1 . . . Tslk


 , Fh =

[
Fh1 . . . Fhk

]T
, Gs =




Gs11 . . . Gs1k

...

Gsl1 . . . Gslk




edm =
[
edm1 . . . edmk

]T
, eds =

[
eds1 . . . edsl

]T

(5.10)

With the help of Eq (5.9) and Eq (5.10) we can write Eq (5.8) in compact form as:

[
Ink Tm ◦ (BmRm)

Ts ◦ (BsRs) Inl

][
ẋm

ẋs

]
=

[
Am +BmKm BmRm

BsRs As +BsKs

]

[
xm

xs

]
+

[
Bm

BsGs

]
Fm +

[
edn

edv

] (5.11)

In Eq (5.11), operator ‘o’ denotes Hadamard product. By defining, Dm = Tm ◦

(BmRm) , Ds = Ts ◦ (BsRs),we can further simplify Eq (5.11) as:

[
ẋm

ẋs

]
=

[
A11 A12

A21 A22

][
xm

xs

]
+

[
B1

B2

]
Fh (5.12)

A11 = (Ink −DmDs)
−1Km −Dm (Inl −DsDm)

−1BsRs

A12 = (Ink −DmDs)
−1BmRm −Dm (Inl −DsDm)

−1Ks

A21 = −Ds (Ink −DmDs)
−1Km − (Inl −DsDm)

−1BsRs

A22 = −Ds (Ink −DmDs)
−1BmRm − (Inl −DsDm)

−1Ks

B1 = (Ink −DmDs)
−1Bm −Dm (Inl −DsDm)

−1BsGs

B2 = −Ds (Ink −DmDs)
−1Bm − (Inl −DsDm)

−1BsGs

(5.13)

We now transform the augmented system Eq (5.12) into a new augmented system
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with tracking errors defined on the slave systems. To this end, following linear trans-

formation is introduced:

[
xm

xe

]
=

[
Ink 0

−A Inl

][
xm

xs

]
(5.14)

In Eq (5.14), matrix Acontains authority factors exercised by master systems to

influence slave systems and is given as:

A =




α11In α12In ... α1kIn

α21In α22In ... α2kIn
...

αl1In αl2In ... αlkIn




(5.15)

The time derivative of Eq (5.14) along with Eq (5.12) yields transformed augmented

system as:

[
ẋm

ẋe

]
=

[
Ã11 Ã12

Ã21 Ã22

][
xm

xe

]
+

[
B̃1

B̃2

]
Fm (5.16)

Ã11 = A11 + A12A, Ã12 = A12, Ã21 = (A21 − AA11) + (A22 − AA12) A

Ã22 = A22 − AA12, B̃1 = B1, B̃2 = B2 − AB1

(5.17)

According to the method of state convergence, the error should evolve as an au-

tonomous system, and stability of the augmented system is ensured by placing poles

of closed-loop master and error systems on the left half plane. This gives rise to the

following design conditions whose solution returns control gains of the extended state

convergence architecture:

Ã21 = 0, B̃2 = 0,
∣∣∣sInk − Ã11

∣∣∣×
∣∣∣sInl − Ã22

∣∣∣ = |sInk − P | × |sInl −Q| (5.18)

In Eq (5.18), matrices P and Q contain poles locations. Observer gains are found

independently of the controller gains and no augmented system is formed to determine
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these gains.

5.3 Simulation Results

In order to validate the proposed architecture, simulations are performed in MAT-

LAB/Simulink environment by considering symmetric and asymmetric configurations

of teleoperation systems. The following master and slave systems are considered where

x1ziand x
2
zi are position and velocity signals:

mi :

{
ẋ1mi = x2mi

ẋ2mi = −βmi sin (x
1
mi)− 7.1429x2mi + 0.2656umi

si :

{
ẋ1si = x2si

ẋ2si = −βsi sin (x
1
si)− 6.25x2si + 0.2729usi

(5.19)

First, consider a symmetrical 2x2 teleoperation system. To compute the controller

and observer gains for this configuration, following nominal models are assumed:

Am1 =

[
0 1

0 −7.0

]
, Am2 =

[
0 1

0 −5.0

]
, As1 =

[
0 1

0 −4.0

]
, As2 =

[
0 1

0 −6.0

]

Bm1 =

[
0

0.2

]
, Bm2 =

[
0

0.1

]
, Bs1 =

[
0

0.4

]
, Bs2 =

[
0

0.3

]

(5.20)

Further, slaves are interacting with environments having stiffness as kei = 10Nms/rad

and force feedback gains are assumed to be 0.1 which yields, Rmkl =
[
0.1 0

]
.

Time delays are ignored during the computation but will be considered during the

simulations. Characteristic polynomial for the closed loop master system is selected

as s4 + 28s3 + 292s2 + 1344s + 2304 = 0 while for error systems, it is selected as

s4+31s3+354s2+1764s+3240 = 0. Design conditions in Eq (5.18) are solved using

MATLAB symbolic toolbox with nominal models Eq (5.20) and authority factors,

α11 = 0.6, α12 = 0.4, α21 = 0.7, α22 = 0.3, which yields the following control gains:
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Gs11 = 0.3, Gs12 = 0.1, Gs21 = 0.4667, Gs22 = 0.1

Km1 =
[
−321.5036 −45.0226

]
, Km2 =

[
−360.4739 −69.9548

]

Ks1 =
[
−224.6373 −37.5033

]
, Ks2 =

[
−119.4145 −19.9956

]

Rs11 =
[
38.8513 4.4952

]
, Rs12 =

[
54.0875 7.0058

]

Rs21 =
[
−65.7082 −9.3470

]
, Rs22 =

[
0.1736 0.0032

]

(5.21)

Observer gains are determined by placing the poles of the extended master and slave

systems at (s+ 30)3. This, in combination with Eq (5.20), yields the following ob-

server gains:

Lm1e =
[
83 2119 27000

]T
, Lm2e =

[
85 2275 27000

]T

Ls1e =
[
86 2356 27000

]T
, Ls2e =

[
84 2196 27000

]T (5.22)

Simulations are now performed by considering constant operator forces of 1N and

communication time delays as {0.1s, 0.2s}. Results of the proposed as well as ex-

isting architecture are recorded for various levels of disturbances and displayed in

Figure 5.2 and Figure 5.5. It can be observed that existing architecture, which does

not have disturbance observers, offers good tracking performance in the presence of

parameter mismatches of Eq (5.19) and Eq (5.20) with βzi = 0.1 as shown in Fig-

ure 5.2 and Figure 5.3. However, as the magnitude of βzi is increased, the reference

tracking performance of the existing extended convergence architecture is affected

while the proposed disturbance observer-based version of the said architecture main-

tains good performance as demonstrated in Figure 5.4 and Figure 5.5. Note that, in

these simulations, reference for the slaves are set as x1s1,ref = α11x
1
m1 + α12x

1
m2 and

x1s2,ref = α21x
1
m1 + α22x

1
m2.

Now, we consider an asymmetrical 2x1 teleoperation system Eq (5.19) with the fol-

lowing nominal plant models:
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Am1 =

[
0 1

0 −9.2858

]
, Am2 =

[
0 1

0 −8.5715

]
, As1 =

[
0 1

0 −5.0

]

Bm1 =

[
0

0.3187

]
, Bm2 =

[
0

0.3187

]
, Bs1 =

[
0

0.2183

] (5.23)

Let the stiffness of the slave’s environment be ke = 20Nms/rad and let the force

feedback gain be 0.1. This gives rise to Rm11 = Rm12 =
[
2.0 0

]
. Let desired

polynomials for the master and error systems be p (s) : s4+13s3+58.25s2+110s+75 =

0 and q (s) : s2 + 15s + 54 = 0. Communication time delays are assumed to be 1ms

during the design phase while authority factors are taken to be α11 = 0.6, α12 = 0.4.

Figure 5.2: Symmetric teleoperation system: (a) slave systems tracking performance
with low level of disturbance

Disturbance observer gains are computed based on nominal models in Eq (5.23) and

a desired polynomial of o (s) : (s+ 30)3 = 0:
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Figure 5.3: Symmetric teleoperation system: (b) slave systems tracking performance
with low level of disturbance

Figure 5.4: Symmetric teleoperation system: (c) slave systems tracking performance
with increased disturbance activity
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Figure 5.5: Symmetric teleoperation system: (d) slave systems tracking performance
with increased disturbance activity

Lm1e =
[
80.71 1950.5 27000

]T

Lm2e =
[
81.43 2002 27000

]T

Ls1e =
[
85 2275 27000

]T
(5.24)

Simulation results with operator’s forces of 0.2N, time delays of {0.1s, 0.2s} and

varying levels of disturbances are included in Figure 5.6 - Figure 5.9. It can be seen

that the proposed architecture can establish communication between master and slave

systems with good position tracking and force reflection abilities.

We also evaluate the tracking performance when time-varying delays exist in the

communication channel. To this end, the asymmetric teleoperation system in Eq

(5.23)- Eq (5.24) is simulated in the presence of time-varying delays and time-varying

operators’ forces, and results are depicted in Figure 5.10 and Fig 5.11. It can be seen

that the proposed scheme can establish communication between master and slave

systems with varying communication delays.
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Figure 5.6: Asymmetric teleoperation system (a) slave position tracking performance
with parameter mismatches (βzi = 0)

Figure 5.7: (b) Slave tracking performance with additional disturbance (βzi = 0.2)
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Figure 5.8: Asymmetric teleoperation system: force reflection ability of proposed
scheme

Figure 5.9: Asymmetric teleoperation system: control inputs
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Figure 5.10: Asymmetric teleoperation system with time-varying delays (a) time-
varying delays of the communication channel

Figure 5.11: Slave position tracking performance with variable time delays
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5.4 Experimental Results

Finally, experimental results are obtained using Qube-Servos manufactured by Quanser.

Here, the asymmetric configuration is set up by using two real Qube-Servos while the

master is a virtual device. The following nominal models are used for the controller

and observer design:

Am1 =

[
0 1

0 −8.6710

]
, As1 = As2 =

[
0 1

0 −6.67

]

Bm1 =

[
0

179.208

]
, Bs1 = Bs2 =

[
0

149.34

] (5.25)

By assuming a soft environment with a stiffness of 1Nms/rad, force feedback gain of

0.1, unity authority factor, no communication delays, p(s) : (s+ 5)2 = 0 as desired

polynomial for master, q (s) : (s+ 10)4 = 0 as desired polynomial for error systems

and o (s) : (s+ 30)3 = 0 as desired polynomial for observers, we obtain following

controller and observer gains:

Gs11 = Gs21 = 1.2

Km1 =
[
−0.3395 −0.0074

]

Ks1 =
[
−1.0705 −0.1293

]

Ks2 =
[
−0.2687 −0.0492

]

Rs11 =
[
0.9031 0.1070

]

Rs21 =
[
0.1013 0.0269

]

Lm1e =
[
81.329 1994.8 27000

]T

Ls1e = Ls2e =
[
83.33 2144.2 27000

]T

(5.26)

To evaluate the performance of the proposed architecture, a time-varying opera-

tor force profile is generated using ramp signals and time-delayed communication

(Tm11=Ts11=0.1s, Tm12=Ts21=0.2s) is set up using UDP server and client blocks

among three separate QUARC files. Only position signals and force signals are trans-

mitted on the communication channel, while velocity signals are obtained through

derivative filtering of time-delayed position signals with a cut-off frequency of 30rad/s.
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Results of experimentation are recorded using QUARC blocks and displayed in Fig-

ure 5.12 - Figure 5.14. It can be seen that slaves are tracking the motion of the master

system in the presence of uncertainties which validates the proposed enhanced archi-

tecture. The proposed controller parameters are summarized in Table 5.2.

Figure 5.12: Experimental setup to test asymmetric teleoperation system (ATS)

Controller
Simulation in
MATLAB/
Simulink

Simulation in
MATLAB/
Simulink

Semi Real-time
QUARC/Simulink

System

2x2 symmet-
rical system
(2-Master/2-
Slave)

2x1 asymmet-
rical system
(2-Master/1-
Slave)

1x2 asymmet-
rical system
(1-Master/2-
Slave)

Operator Force
(N)

0.2 (constant) 0.2 (constant)
Time-varying
force using Omni
Bundle

Environment
Stiffness ke
(Nm/rad)

10 20 1

Environment
Damping be
(Nm/rad)

0.1 0.1 0.1

Feedback gain Kf 0.1 0.1 0.1

Scaling factorKop 0 0 5

Time delay (Sec) 0.1, 0.2 0.1, 0.2 0

Table 5.2: Proposed controller parameters for simulation and semi-real time experi-
ment
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Figure 5.13: Experimental results on ATS: Position states

Figure 5.14: Experimental results on ATS: velocity states
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5.5 Conclusion

This chapter presented the design of a disturbance observer-based extended state con-

vergence architecture for multilateral teleoperation systems. A systematic procedure

is presented to determine the controller and observer gains for synchronizing k -master

and l -slave systems. The proposed architecture has been validated through MATLAB

simulations on teleoperation systems’ symmetric and asymmetric configurations. Fi-

nally, experimental results are also presented using Quanser’s Qube-Servos platforms.

Comparison with the existing extended state convergence architecture proves the su-

periority of the proposed architecture in dealing with uncertainties. In the future, the

proposed architecture will be tested on multi-degrees-of-freedom systems.



Chapter 6

A Composite State Convergence Architecture for Bilateral

Teleoperation System

The original version of the state convergence controller is applicable to bilateral tele-

operation systems modeled on state space where both the master and slave devices

are considered to be nth order systems [73], [72], [71]. In practice, this controller is

designed for each joint of the master and slave devices, where the joint’s motion is

modeled as a second-order system. To this end, consider a single joint model of the

master and slave systems as shown in Eq (6.1), Eq (6.2):

ẋm1 = xm2

ẋm2 = am1xm1 + am2xm2 + bmum
(6.1)

ẋs1 = xs2

ẋs2 = as1xs1 + as2xs2 + bsus
(6.2)

Where (xm1, xm2)and (xs1, xs2) are the states of the master and slave systems respec-

tively while (am1, am2, bm) and (as1, as2, bs) are the systems’ parameters of master and

slave devices, respectively. To establish the motion synchronization of master and

slave systems, the state convergence scheme considers all the possible interactions

between these systems.

Lowering the complexity of state convergence architecture is proposed here by reduc-

ing the number of communication channels which subsequently reduces the number

of control gains. In addition, it is demonstrated that the method of state convergence

can still be applied to compute the gains of the proposed reduced complexity state

convergence architecture. It is also shown that the attractive feature of assigning the

desired dynamic response is preserved in the proposed scheme. It is further shown

that motion scaling can also be achieved in the proposed scheme, a feature that is

not offered by its standard counterpart.

81
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The proposed scheme is verified through simulations and semi-real-time experiments

in MATLAB/Simulink/QUARC environment by considering a single degree of free-

dom teleoperation system. The proposed scheme is also compared with an equal

complexity error force compensated bilateral control scheme where control parame-

ters of both the schemes are found through a Genetic algorithm by minimizing the

integral time absolute error (ITAE) criterion.

This chapter is structured as follows: The proposed composite state convergence

scheme is presented in Section 6.1. Simulation and experimental results are included

in sections 6.2 and 6.3. Finally, conclusions are drawn in the end.

6.1 Proposed Composite State Convergence Scheme

The essence of the proposed composite state convergence scheme is to reduce the

number of design variables while achieving the objective of motion synchronization of

master and slave systems in a desired dynamic way by following the state convergence

algorithm. The proposed way of reducing the design variables helps transmit fewer

variables across the communication channel and paves the way for motion scaling of

the slave system. This feature is desired for a class of teleoperation systems. The block

diagram of the proposed composite state convergence scheme is shown in Figure 6.1,

and various scalar parameters forming the scheme are defined below:

Fm: This represents the force applied by the human operator onto the master system.

G2: This unknown scalar represents the influence of the operator’s force in slave

system and will be found as a part of the design procedure.

sm: This is the composite variable for the master system and is defined as: sm =

xm2 + λmxm1where λmis a positive constant.

ss: This is the composite variable for the slave system and is defined as: ss = xs2 +

λsxs1where λsis a positive constant.

km: This unknown parameter represents the feedback gain of the master composite

system.

ks: This unknown parameters represents the feedback gain of the slave composite

system.

rm: This known scalar variable feeds the motion of the slave system back to the master

system and is computed as: rm = kfkewhere keis the stiffness of the environment
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whilekf is the force feedback gain.

rs: This unknown parameter feeds the motion of the master system back to the slave

system and will be determined as a part of the design procedure.

T : This known parameter represents the small constant time delay of the communi-

cation channel.

Figure 6.1: Proposed composite state convergence architecture for 1DoF teleoperation
systems

Note that, in the proposed composite state convergence scheme, composite variables

(sm, ss)are transmitted across the communication channel instead of full master and

slave states, which is the case in standard state convergence methodology. These

composite variables are indeed scalars, and consequently, the motion-feedback vari-

ables (rm, rs)are also scalars. Thus, only unknowns in the proposed scheme are
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G2, km, ks, rs. To determine these parameters, a design procedure is presented in

this section to ensure that the states of master and slave systems converge in the

absence and presence of small time delays and the desired dynamic behavior of the

teleoperation system is also achieved. To this end, we present two theorems here.

Theorem 6.1. In the absence of time delays, the slave system in Eq (6.2) will follow

the master system in Eq (6.1) if control gains of the composite state convergence

architecture are found as a solution of the following equations:

bm − bsg2 = 0 (6.3)

km − bsrs + bmrm − ks = 0 (6.4)

km + bmrm = −p (6.5)

bmrm − ks = q (6.6)

Proof. Recall the definitions of composite variables for the master (sm) and slave (ss)

systems:

sm = xm2 + λmxm1 (6.7)

ss = xs2 + λsxs1 (6.8)

By taking the time derivative of master composite variable in Eq (6.7) and using Eq

(6.1), we have:

ṡm = am1xm1 + (am2 + λm) xm2 + bmum (6.9)

The time derivative of slave composite variable in Eq (6.8) in conjunction with Eq

(6.2) yields:

ṡs = as1xs1 + (as2 + λs) xs2 + bsus (6.10)

Let us introduce the control inputs for master and slave systems as:

um =
1

bm
(−am1xm1 − (am2 + λm) xm2 + kmsm) + rmss + Fm (6.11)

us =
1

bs
(−as1xs1 − (as2 + λs) xs2 + ksss) + rssm +G2Fm (6.12)

By plugging Eq (6.11) in Eq (6.9), we obtain the closed loop composite master system
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as:

ṡm = kmsm + bmrmss + bmFm (6.13)

Similarly, by substituting Eq (6.12) in Eq (6.10), we obtain the closed loop composite

slave system as:

ṡs = ksss + bsrssm + bsG2Fm (6.14)

Let us form an augmented system using composite master in Eq (6.13) and composite

slave in Eq (6.14) systems as:

(
ṡm

ṡs

)
=

(
km bmrm

bsrs ks

)(
sm

ss

)
+

(
bm

bsG2

)
Fm (6.15)

Now, we convert the composite master-slave augmented system of Eq (6.15) into a

composite master-error augmented system. For this purpose, we define the following

linear transformation:

(
sm

se

)
=

(
1 0

1 −1

)(
sm

ss

)
(6.16)

where se is the composite error between composite master and composite slave sys-

tems. By taking the time derivative of Eq (6.16) and using Eq (6.15) and Eq (6.16),

we obtain the composite master-error augmented system as:

(
ṡm

ṡe

)
=

(
km + bmrm −bmrm

km − bsrs − ks + bmrm ks − bmrm

)(
sm

se

)
+

(
bm

bm − bsG2

)
Fm

(6.17)

Now, to ensure that the composite error evolves as an autonomous system, following

conditions must hold:

bm − bsG2 = 0 (6.18)

km − bsrs − ks + bmrm = 0 (6.19)

After the conditions Eq (6.18) and (6.19) are met, we assign the desired dynamic

behavior to composite master-error augmented system of Eq (6.17). The desired
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dynamic behavior for Eq (6.17) is specified by selecting the pole for composite master

(s = −p) and composite error (s = −q) systems. Thus, we have obtained the following

polynomial:

(s− (km + bmrm)) (s− (ks − bmrm)) = (s+ p) (s+ q) (6.20)

Eq (6.20) leads to the following design conditions:

km + bmrm = −p (6.21)

ks − bmrm = −q (6.22)

Thus, we have four design equations i.e. Eq (6.18), Eq (6.19), Eq (6.21) and Eq (6.22)

which are the same as Eq (6.3) - Eq (6.6). The solution of these equations will yield

the unknown control gains G2, km, ks, rs. Now, we analyze the convergence of master

and slave states under these control gains. Since composite error has been made

a stable system with dynamics ṡe + qse = 0 so ‘se’ will vanish in a finite time as

determined by the position of the pole ‘q’. This implies that during steady state,

we have sm = ss and ṡm = ṡs = 0 (under the assumption of constant force). By

plugging the master control law Eq (6.11) in Eq (6.1) and using Eq (6.13), we obtain

the closed loop master system as ẋm2 + λmxm2 = ṡm = 0 which shows that xm2 will

converge to zero in a finite time. Similarly, by substituting the slave control law

Eq (6.12) in Eq (6.2) and using Eq (6.14), we obtain the closed loop slave system

as ẋs2 + λsxs2 = ṡs = 0 which implies that xs2 will also approach zero in a finite

time. Now, sm = ss implies (xm2 − xs2) + (λmxm1 − λsxs1) = 0 which further implies

that λmxm1 − λsxs1 = 0 as states xm2, xs2 have been shown to be zero at steady

state. Thus, by selecting the constants λm, λs to be unity, the convergence of states is

ensured, and the slave system will now follow the motion of the master system. This

completes the proof.

Remark 6.1. The standard state convergence scheme does not consider motion scal-

ing of the slave system, which is desired in some teleoperation applications. To add

this extra feature, an alpha-modified version of the state convergence controller is pro-

posed in [2]. However, the same number of design equations are required to be solved
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as that of the standard scheme. The proposed composite controller provides a lower

complexity solution as fewer design equations are involved. In principle, motion scal-

ing can be achieved by adjusting the constants λmandλs. This follows from the steady

state analysis of the proposed composite state convergence controller, which yields the

following expression:

xs1 =
λm
λs
xm1 (6.23)

Remark 6.2. In a standard state convergence scheme, desired dynamic behavior is

directly assigned to the master or slave system. However, in the proposed compos-

ite state convergence scheme, desired dynamic response is indirectly assigned to the

master or slave system. As can be seen from Eq (6.20), desired poles are assigned

to the composite system which implies that the composite master system, and not the

actual master system, shall possess the desired behavior (s+ p = 0) along with com-

posite error system (s+ q = 0). To analyze the behavior of actual master system, we

compute its closed loop dynamics using Eq (6.1), Eq (6.7), Eq (6.11), Eq (6.16), and

Eq (6.21) as:

ẍm1 + (λm + p) ẋm1 + pλmxm1 = −bmrmse + bmFm (6.24)

Since composite error evolves as an autonomous system, the motion of the master

system is governed by the following polynomial:

s2 + (λm + p) s+ pλm = 0 (6.25)

It is evident from Eq (6.25) that the desired dynamic behavior of the master system can

also be guaranteed by choosing appropriate values of ‘p’and ‘λm’. A similar analysis

for the slave system reveals that it also possesses the dynamic behavior determined by

the values of ‘p’ and ‘λs’ as s
2 + (λs + p) s+ pλs = 0.

Remark 6.3. To counter the effect of environmental force, the control input for the

slave system in Eq (6.12) is modified as:

us =
1

bs
((−as1 + bske) xs1 − (as2 + λs) xs2 + ksss) + rssm +G2Fm (6.26)
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Note that the above modification in slave control law will not affect the design proce-

dure.

Remark 6.4. The force reflection behaviour of the proposed composite state con-

vergence controller is imperative to be analyzed. Given that environmental force is

described by Fe = kexs1 and with the knowledge of Eq (6.5) and steady state values of

the composite-master and slave variables i.e. sm = λmxm1 = bmFm/p, ss = λsxs1, we

can write steady-state control input of the master system as:

um = −
1

p

(
am1

λm
+ bmrm

)
Fm + kfλsFe (6.27)

It is evident from Eq (6.27) that human operator will feel the true environmental

force in a steady state if force feedback gain, kf is set as the inverse of motion-

scaling constant, λs and desired pole of the composite master system is chosen as

p = am1

λm
+ bmrm. In this way, the operator’s perception of the remote environment

will be improved.

Remark 6.5. Although the development of a composite state convergence controller

has been shown here purposefully for a second-order system, the procedure can be

readily extended to higher-order systems. For instance, consider a third-order master

system in phase variable form ẋm1 = xm2, ẋm2 = xm3, ẋm3 = am1xm1 + am2xm2 +

am3xm3 + bmum. The composite variable for this system can be defined as sm =

xm3 + λm2xm2 + λm1xm1 which gives rise to the composite master system as ṡm =

am1xm1 + (am2 + λm1) xm2 +(am3 + λm2) xm3 + bmum. Appropriate master control

input can now be selected to transform this composite master system to Eq (6.13) and

thus, the rest of the procedure remains the same.

Theorem 6.2. In the presence of constant time delay, slave system Eq (6.1) will

follow the master system Eq (6.2) if control gains of the composite state convergence

scheme are found as a solution of the following design conditions:

bm − (Tbmrmbs + bs) g2 + Tbsrsbm = 0 (6.28)

km (1 + Tbsrs)− ks (1 + Tbmrm)− bsrs + bmrm = 0 (6.29)

km − Tbmrmks − T (1 + pT ) bmrmbsrs + p+ bmrm = 0 (6.30)

(1 + Tbmrm) ks − T (1 + qT ) bmrmbsrs + q − bmrm = 0 (6.31)
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Proof. Let us define the control inputs for the master Eq (6.1) and slave Eq (6.2)

systems in time-delayed composite state convergence scheme as:

um =
1

bm
(−am1xm1 − (am2 + λm) xm2 + kmsm) + rmss (t− T ) + Fm (6.32)

us =
1

bs
(−as1xs1 − (as2 + λs) xx2 + ksss) + rssm (t− T ) +G2Fm (t− T ) (6.33)

By plugging Eq (6.32) in Eq (6.9), we obtain the closed loop composite master system

as:

ṡm = kmsm + bmrmss (t− T ) + bmFm (6.34)

Also, by substituting Eq (6.33) in Eq (6.9), we obtain the closed loop composite slave

system as:

ṡs = ksss + bsrssm (t− T ) + bsG2Fm (t− T ) (6.35)

Under the assumption of small time delay and constant operator’s force, we approx-

imate the time-delayed variables in Eq (6.34) and Eq (6.35) using Taylor series as:

ss (t− T ) ≈ ss − T ṡs

sm (t− T ) ≈ sm − T ṡm

Fm (t− T ) ≈ Fm

(6.36)

By plugging Eq (6.36) in Eq (6.34), Eq (6.35) and forming the augmented composite

master-slave system, we have:

(
ṡm

ṡs

)
= 1

(1−T 2bmrmbsrs)

(
km − Tbmrmbsrs bmrm − Tbmrmks

bsrs − Tbsrskm ks − Tbsrsbmrm

)(
sm

ss

)

+ 1
(1−T 2bmrmbsrs)

(
bm − TbmrmbsG2

bsG2 − Tbsrsbm

)
Fm

(6.37)

Now, we convert the above augmented system of Eq (6.37) into a composite master-

error augmented system using the transformation in Eq (6.16) as:
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(
ṡm

ṡe

)
= 1

(1−T 2bmrmbsrs)

(
a11 a12

a21 a22

)(
sm

se

)
+ 1

(1−T 2bmrmbsrs)

(
b11

b21

)
Fm (6.38)

where,

a11 = (km − Tbmrmbsrs) + (bmrm − Tbmrmks)

a12 = −bmrm + Tbmrmks

a21 = (km − Tbmrmbsrs)− (bsrs − Tbsrskm) + (bmrm − Tbmrmks)− (ks − Tbsrsbmrm)

a22 = − (bmrm − Tbmrmks) + (ks − Tbsrsbmrm)

b11 = bm − TbmrmbsG2

b21 = (bm − TbmrmbsG2)− (bsG2 − Tbsrsbm)

(6.39)

If the composite error system in Eq (6.38) is to evolve autonomously, the following

conditions must be satisfied:

(bm − TbmrmbsG2)− (bsG2 − Tbsrsbm) = 0 (6.40)

(km − Tbmrmbsrs)− (bsrs − Tbsrskm)+

(bmrm − Tbmrmks)− (ks − Tbsrsbmrm) = 0
(6.41)

We now impose the desired dynamic behavior on the composite master-error system

which is specified by the polynomial (s+ p) (s+ q) = 0 where left-hand plane poles ‘p’

and ‘q’ fix the behavior of composite master and composite error systems respectively.

This pole assignment procedure results in the following conditions:

(km − Tbmrmbsrs) + (bmrm − Tbmrmks) = −p
(
1− T 2bmrmbsrs

)
(6.42)

− (bmrm − Tbmrmks) + (ks − Tbsrsbmrm) = −q
(
1− T 2bmrmbsrs

)
(6.43)

The design conditions Eq (6.40) - Eq (6.43) are the same as Eq (6.28) - Eq (6.31)

which can be solved to find the control gains (G2, km, ks, rs) of the composite state
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convergence scheme. These control gains are displayed in Appendix A. An analysis

similar to that of Theorem 6.1 reveals that the slave system indeed follows the master

system in the presence of constant time delays. This completes the proof

Remark 6.6. Similar to Remark 6.2 of Theorem 6.1, we compute the dynamic be-

havior of the master and slave systems under small constant time delay as s2 +

(λm + ψm) s+λmψm = 0, s2+(λs + ψs) s+λsψs = 0. In addition, the force reflection

behavior of the proposed controller under time delay is also investigated following the

lines of Remark 6.4 of Theorem 6.1. It is found that for full force reflection at steady

state, condition
(
−am1

bm
+ km

)
βm
ψm

= −2 must be satisfied. Note that ψm, ψs, and βm

can be found from the closed loop analysis of the teleoperation system.

6.2 Simulation Results

For the purpose of simulations, parameters of master and slave systems are adopted

from [71]:

am1 = 0, am2 = −7.1429, bm = 0.2656

as1 = 0, as2 = −6.25, bs = 0.2729
(6.44)

It is assumed that the slave system interacts with a soft environment having ke =

10Nm/rad. Let motion scaling constants be unity, i.e., λm = λs = 1, so force feedback

gain is unity as well. Thus, rm is the same as ke. First, we study the performance of

the proposed controller when no time delay exists in the communication channel. To

this end, control gains of the composite state convergence controller are found as a

solution of the design conditions Eq (6.3) - Eq (6.6) where desired pole locations are

selected as p = 2, and q = 6:

G2 = 0.9733

km = −4.6560

ks = −3.3440

rs = 4.9249

(6.45)

By assuming zero initial conditions for master and slave systems, we simulate the

proposed bilateral tele-controller under the control of Eq (6.45), and the results are

shown in Figure 6.2 and Figure 6.3.

It can be seen from Figure 6.2 that composite master and slave variables are indis-

tinguishable and exhibit the desired dynamic response (s+ 2 = 0) as well. It is also



92

Figure 6.2: Convergence of states with delay-free composite state convergence con-
troller

Figure 6.3: Control inputs and force reflection behavior of composite state conver-
gence controller with no communication delay
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evident that the slave system follows the master system as their position and veloc-

ity states remain synchronized. Further, as pointed out in Remark 6.2, the master

system should possess the dynamic behavior of Eq (6.25), which, in the present case,

is s2 + 3s + 2 = 0 and has been plotted in Figure 6.2. The analysis reveals that

the master system indeed displays this behavior, and so does the slave system. The

control inputs for the master and slave system are shown in Figure 6.3 along with the

force reflection behavior of the proposed controller. It can be seen that the proposed

controller indeed establishes a kinesthetic link between the operator and the environ-

ment. However, the environmental force is not fully reflected to the operator even

though the product λskf is unity. This is because of the fact that pole ‘p’ has not

been selected to exactly cancel the term in the parenthesis of Eq (6.27). When exact

cancellation occurs, i.e., the pole is placed at p = 2.6560, operators and environmen-

tal forces match at steady state, as shown in Figure 6.4. Note that control gains are

recomputed as the pole location is changed.

Figure 6.4: Improved force reflection behavior of composite state convergence con-
troller

We now investigate the motion scaling property of the proposed controller. Suppose

that we want the slave system to acquire and maintain a final position that is half

of the master’s final position. To achieve this, we change the slave’s motion scaling

constant to λs = 2, which, according to Remark 6.4, also scales the force feedback
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gain to kf = 1/λs = 0.5 and therefore rm = kfke = 5. By solving the design conditions

Eq (6.3) - Eq (6.6) using the parameters in Eq (6.44) and p = 2.6560, q = 6, λm = 1,

we find the control gains as:

G2 = 0.9733

km = −2.6560

ks = −4.6720

rs = 12.2536

(6.46)

Figure 6.5: Motion scaling property of composite state convergence controller with
no communication time delay

Now we consider the case when constant time delay exists in the communication

channel. We assume that the slave system is interacting with a much stiffer environ-

ment (ke = 50Nm/rad)than the previous case, and the communication channel offers

a time delay of T = 0.5s. By setting the motion scaling constants and force feedback

gain as unity and selecting the pole locations as p = 1.7, q = 4.0, we solve the design

conditions Eq (6.28) - Eq (6.31) for the teleoperation system in Eq (6.44) and obtain

the following control gains:

G2 = 0.0857

km = −26.2680

ks = −0.4903

rs = −2.3961

(6.47)
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Figure 6.6: Control inputs and force reflection behavior of composite state conver-
gence controller with scaled slave motion of Fig 6.5

The teleoperation system is now simulated under the control gains of Eq (6.47), and

results are shown in Figure 6.7 and Figure 6.8. It can be seen that the slave system is

able to follow the master system in the presence of time delay, and a good amount of

environmental force is also reflected to the operator. As pointed out earlier, force error

at steady state can be eliminated by properly choosing the location of pole ‘p’. We

also evaluate the motion scaling performance of the proposed composite controller.

To this end, let the reference for the slave system be set as xs1ref = 0.25xm1. Thus,

the motion scaling constant of the slave system and force feedback gain must be

selected as λs = 4,kf = λ−1
s . To ensure proper force feedback, we roughly select the

pole ‘p’ as p = 1.3 while keeping all other system parameters the same. The solution

of design conditions Eq (6.28) - Eq (6.31) yield the control gains as:

G2 = 0.3116

km = −6.7780

ks = −0.8108

rs = −1.0865

(6.48)

We now simulate the teleoperation system under the control of Eq (6.48), and results
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are shown in Figure 6.9 and Figure 6.10. It can be seen that the slave system has

achieved the set point, and the force reflection behavior of the controller is also

promising.

Figure 6.7: Convergence of states with CSC controller under time-delayed communi-
cation

Comparative Study

In order to show the superiority of the proposed scheme, a comparative study is per-

formed in MATLAB/Simulink environment. Note that the proposed scheme forms

three-channel control architecture owing to the transmission of the operator’s force

as well as composite master and slave variables across the communication channel.

Therefore, three-channel architecture, namely error force compensated scheme [53],

is selected for the purpose of comparison. In this scheme, velocities of the master and

slave systems as well as an environmental force, are transmitted across the commu-

nication channel, and the control laws are defined as:

um = (1 + C6)Fh − CmVm − C2Fe − C4Vs

us = − (1 + C5)Fe − CsVs + C1Vm
(6.49)
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Figure 6.8: Control inputs and force reflection behavior of CSC controller under
communication delay

Figure 6.9: Motion scaling results of CSC controller under communication time delay
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Figure 6.10: Control inputs and force reflection behavior of CSC controller with scaled
slave motion of Figure 6.9

where the compensators Cx are proposed [38] as:

Cm =
(
2ξmωm + ω2

m

s

)
Jm, Cs =

(
2ξsωs +

ω2
s

s

)
Js

C1 =
(
2ξsωs +

ω2
s

s
+ s
)
Js, C4 = −

(
2ξmωm + ω2

m

s
+ s
)
Jm

C5 = −1, C2 = 1 + C6 ̸= 0

(6.50)

where ξm, ξs, ωm, ωs, C2, C6 are the parameters to be determined. It is important to

mention that the proposed composite state convergence scheme offers a systematic

procedure to determine associated control gains, while no such design procedure exists

for the error force compensation scheme. Thus, for a fair comparison, the design

parameters of both schemes are found through a genetic algorithm by employing the

ITAE criterion as:

fobj =

∫ t

0

t (|em|+ |ef |) dt (6.51)

where em = xm − xs is the position error while ef = Fm − Fe is the force error.

We now revisit the teleoperation system of Eq (6.44) with a time delay of 100ms

and an environment stiffness of 50Nm/rad. By executing the genetic algorithm with
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default parameters and a population size of 50 chromosomes, design parameters of

the two schemes are found through minimization of objective function Eq (6.51) as

ξm = 0.3855, ξs = 0.983,ωm = 0.0348, ωs = 3.0386, C6 = 0, C2 = 1, G2 = 0.5377, km =

−10.9353, ks = −7.4588, rs = 0.4489, rm = −8.8197.

With these optimized control gains, simulations are run under a constant operator’s

force of 1N, and the resulting position as well as force errors are recorded which

are depicted in Figure 6.11. Analysis of Figure 6.11 reveals that the composite state

convergence scheme offers better transient performance as compared to the error force

compensated scheme.

Figure 6.11: Comparison of error force compensated and proposed composite state
convergence schemes

6.3 Experimental Results

To further validate the proposed composite state convergence controller, semi-real-

time experiments are performed using the geomagic haptic device in QUARC/Simulink

environment. Since a mathematical model of the haptic device is not available, we

use a haptic device to generate the operator force for the virtual master-slave tele-

operation system. Along with this, reflected environmental force, as generated by

the controller, is also displayed to the haptic device so that the person driving the

haptic device can feel the environment. This implementation framework is depicted
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in Figure 6.12. As the operator moves the device along x-axis between the positions

2 and 8 on the cardboard, force is generated proportional to the position information

as Fm = kopxop where kop = 5 and xop ∈ [0.1, 0.2]. This force is applied to the virtual

master system and the reflected environmental force is provided to the haptic device

in addition to the virtual master system. In this way, the loop is closed around the

operator as reflected force is felt by the operator. We use this setup to perform ex-

periments in the absence and presence of time delays. In both cases, the stiffness

of the environment is considered as ke = 10Nm/rad while motion and force scaling

constants are assumed to be unity. Pole ‘p’ is placed at the position p = 2.6560 in case

of no communication delay while it is placed at the position p = 1.15 in case of time

delay, which is assumed to be T = 0.5s. The location of pole ‘q’ remains the same

in both cases at q = 6. Using the teleoperation system’s parameters in Eq (6.44),

control gains in the absence of time delay are obtained as:

G2 = 0.9733

km = −5.3120

ks = −3.3440

rs = 2.5211

(6.52)

Also, the control gains in the presence of time delay are obtained as:

G2 = 0.4336

km = −5.3332

ks = −1.2670

rs = 0.2721

(6.53)

We first evaluate the performance of the proposed controller in the absence of time

delays. By considering the initial position of the master as 0.05rad, the teleopera-

tion system is run in QUARC/Simulink environment under the control of Eq (6.52)

where the operator exerts a time-varying force on the master system using the haptic

device. Note that the composite state convergence controller is designed under the

assumption of constant applied force but here we are evaluating its performance under

variable operator’s force, which is the case in practice. During the operation, various

system trajectories, as well as forces, are recorded, which are shown in Figure 6.13,

Figure 6.14, Figure 6.15.
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Figure 6.12: Experimental framework to implement CSC controller

Figure 6.13: CSC controller with no delay: composite variables
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Figure 6.14: CSC controller with no delay: position and velocity variables

Figure 6.15: CSC controller with no delay: external forces
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It can be seen that composite states, as well as the original states, are converged after

an initial transient, and thus the slave is following the master while the reaction force

is also being displayed to the operator.

We now run the teleoperation system in the presence of time delays. In this case,

control gains of Eq (6.53) are used, and the operator exerts a time-varying force

through the haptic device. The resulting system states and forces are displayed in

Figure 6.16, Figure 6.17, Figure 6.18.

Figure 6.16: CSC controller with time delay: composite variables

It can be seen that the slave system follows the master system, but error exists

between their states. The error is caused by the fact that the operator’s force is

not constant, and the delayed force received by the slave is, therefore, different from

the transmitted force. Any abrupt change in the applied force, along with long-time

delays, is likely to result in increased position error, a case discussed in [71]. Thus,

the state convergence scheme and the proposed one are viable in the presence of small

time delays, although control gains of the scheme can be found for larger time delays.

The proposed controller parameters are summarized in Table 6.1.
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Figure 6.17: CSC controller with time delay: position and velocity variables

Figure 6.18: CSC controller with time delay: external forces
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Controller
Simulation in MAT-
LAB/Simulink

Semi Real-time
QUARC/Simulink

System 1-DoF (Master/Slave) 1-DoF (Master/Slave)

Operator Force (N) 1 (constant)
Time-varying force us-
ing Omni Bundle

Environment Stiffness
ke (Nm/rad)

10 10

Environment Damping
be (Nm/rad)

0.1 0.1

Force Feedback gain Kf unity unity

Motion Scaling factor
λm/λs

1 1

Time delay (Sec) 0.5 0.5

Table 6.1: Proposed controller parameters for simulation and semi-real time experi-
ment

6.4 Conclusion

This chapter discussed a composite version of the state convergence controller for

bilaterally controlling a teleoperation system. The composite scheme allows trans-

mitting fewer variables across communication channels while still ensuring the con-

vergence of master and slave states in a desired dynamic way. Control gains of the

scheme are found by constructing an augmented system using composite variables and

applying the method of state convergence to this augmented system. The proposed

scheme has been validated through MATLAB/Simulink environment simulations by

considering a single-degree-of-freedom teleoperation system. Moreover, the proposal

is compared with the error force compensated scheme and offers better transient per-

formance than the latter. Semi-real-time experiments using a geomagic haptic device

are finally performed in QURAC/Simulink environment to establish the success of

the proposed scheme.



Chapter 7

A Composite State Convergence Architecture for a

Nonlinear Telerobotic System

This chapter is an extension of our earlier work on the channel simplification of state

convergence controller where we have only considered linear telerobotic system [104].

The design of a reduced complex state convergence controller, termed as compos-

ite state convergence controller, is proposed for a single-degree-of-freedom nonlinear

telerobotic system. To this end, we first utilize feedback linearization theory to trans-

form the nonlinear telerobotic system into a controllable linear system. In the second

stage, composite states are constructed for the transformed master and slave systems.

These composite master and slave states, along with the operator’s force, are then

transmitted across the communication channel instead of full states. In this way,

the complexity of the communication structure is reduced. An augmented system

comprising composite master and slave states is finally constructed, and the method

of state convergence is applied to compute the control gains of the proposed scheme.

It has shown that the position and velocity states of the master and slave systems

still converge in the absence and presence of time delays, even though the design

is based on the reduced-order composite system. In order to validate the proposed

scheme, simulations are performed in MATLAB/Simulink environment where both

the delay-free and delayed communication is considered. Semi-real-time experiments

using the haptic device are also conducted.

7.1 Problem Definition

Consider a single degree-of-freedom nonlinear teleoperation system as:

{
Master : Jmθ̈m + bmθ̇m +mmglm sin θm = u′m + Fm = um

Slave : Jsθ̈s + bsθ̇s +msgls sin θs = u′s − Fe = us
(7.1)

where mx, lx, bx, Jx, θx, θ̇x, θ̈x, g, ux are the mass, length, friction coefficient, inertia,

angular position, angular velocity, angular acceleration, acceleration due to gravity

and torque inputs for the master (x = m)/slave (x = s) systems, respectively. Also,
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Fm and Fe are the operator’s and environment forces, respectively. By defining the

angular position and angular velocity as state variables i.e. x1x = θx, x2x = θ̇x, yx =

x1x, nonlinear dynamics of Eq (7.1) can be written as:

Master :





ẋ1m = x2m

ẋ2m = −mmglm
Jm

sin x1m − bm
Jm
x2m + 1

Jm
um

ym = x1m

Slave :





ẋ1s = x2s

ẋ2s = −msgls
Js

sin x1s −
bs
Js
x2s +

1
Js
us

ys = x1s

(7.2)

The objective of the present study is to design control inputs for the master and slave

system such that the slave is able to follow the master system and the environment

force is also reflected to the operator as the slave interacts with the environment.

Mathematically,

lim
t→∞

x1m − αx1s = 0

lim
t→∞

Fm + βFe = 0
(7.3)

where α, β are scaling constants for the position and force responses, respectively.

To achieve the objective in Eq (7.3), we present a feedback-linearization-supported

composite state convergence controller in the next section.

7.2 Proposed Controller

The proposed tele-controllers for the position and force tracking task in Eq (7.3) are

developed using feedback linearization and composite state convergence theories. To

start with, we recall the fundamentals of exact linearization.

Theorem 7.1. For a nonlinear system ẋ = f (x)+g (x) u, y = h (x) having a relative

degree n where x ∈ R
n, there exists a transformation ϕ (x) such that the resulting

system ż = Az + Bv is linear and controllable in new coordinates. The coordinate

transform, nonlinear input, and the resulting linear system are given as [70]:

z = ϕ(x) =




z1

z2
...

zn



=




ϕ1(x)

ϕ2(x)
...

ϕn(x)



=




h(x)

Lfh(x)
...

Ln−1
f h(x)




(7.4)

u =
1

LgL
n−1
f h(x)

(
−Lnfh(x) + v

)
(7.5)
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ż =




ż1

ż2
...

żn



=




0 1 0 . . . 0

0 0 1 . . . 0
...

0 0 0 . . . 1

0 0 0 . . . 0







z1

z2
...

zn



+




0

0
...

1



v (7.6)

where Lfh (x) is lie-derivative of h (x) in the direction of f (x) and is determined as

Lfh (x) =
∑n

i=1
∂h
∂xi
fi (x).

The application of Theorem 7.1 on the nonlinear master and slave models in Eq (7.2)

yields the following linearized tele-robotic system:

Master :





ϕm =
[
x1m x2m

]T

ż1m = z2m

ż2m = vm

um = bmx2m +mmglm sin x1m + Jmvm

ym = x1m = z1m

Slave :





ϕs =
[
x1s x2s

]T

ż1s = z2s

ż2s = vs

us = bsx2s +msgls sin x1s + Jsvs

ys = x1s = z1s

(7.7)

After the master and slave systems are exactly linearized through Eq (7.7), commu-

nication between them is established using the composite state convergence method-

ology proposed by the authors. The overall control scheme is shown in Figure 7.1.

We now show the convergence of master and slave systems’ states as well as the force

reflection ability of the proposed scheme.

Theorem 7.2. The slave system is able to follow the master system in the absence of

communication time delay if gains of the composite state convergence controller are

found as a solution of the following design conditions:

G2 − 1 = 0 (7.8)
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Figure 7.1: Proposed Scheme using feedback-linearization and CSC theory

ks + rs − km − rm = 0 (7.9)

ks + rs = −p (7.10)

km − rs = −q (7.11)

Proof. Let us define the composite states for the master (sm) and slave (ss) systems

as:
sm = x2m + λmxm1

ss = x2s + λsx1s
(7.12)

The time derivative of Eq (7.12) along with Eq (7.7) yields the composite dynamical

system as:

ṡm = vm + λmxm2

ṡs = vs + λsxs2
(7.13)

Let us define the control inputs for the feedback-linearized telerobotic system as:

vm = −λmxm2 + kmsm + rmss + Fm

vs = −λsxs2 + ksss + rssm +G2Fm
(7.14)
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By plugging Eq (7.14) in Eq (7.13), we get:

ṡm = kmsm + rmss + Fm

ṡs = ksss + rssm +G2Fm
(7.15)

Let se = ss−sm be the composite error. The composite error dynamics can be written

using Eq (7.15) as:

ṡe = (ks + rs − km − rm) ss + (km − rs) se + (G2 − 1)Fm (7.16)

We now form an augmented system comprising composite slave and error systems as:

[
ṡs

ṡe

]
=

[
ks + rs −rs

ks + rs − km − rm km − rs

][
ss

se

]
+

[
G2

G2 − 1

]
Fm (7.17)

We now allow the composite error to evolve as an autonomous system which yields the

design conditions Eq (7.8) and Eq (7.9). The characteristic equation of the remaining

augmented system is finally compared with the desired polynomial (s+ p) (s+ q) = 0

which yields the design condition Eq (7.10) and Eq (7.11). Now, it is left to show that

states of the slave system converge to the states of the master system with the control

gains in Eq (7.8) - Eq (7.11). These control gains yield the closed loop master as well

as slave system as ẍ1z+(λz + p) ẋ1z+λzp = Fm which implies that slave position can

be made to track the master position with the scaling factor as α = λm/λs which also

implies the zero convergence of the velocity states. This completes the proof.

Theorem 7.3. The motion of the slave system will be synchronized with the master

system in the presence of communication time delay (T) if control gains of the com-

posite nonlinear controller are found as a solution of the following design conditions:

G2 (1 + Trm)− Trs = 1 (7.18)

ks + (1− Tkm) rs − km + (Tks − 1) rm = 0 (7.19)

ks − Trsrm + rs − Trskm = −p (7.20)

rs − Trskm − rm + Trmks = −q (7.21)
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Proof. Consider the tele-robotic system of Fig. 7.1 with time delay, T in the commu-

nication paths. Let the virtual inputs for the master and slave systems be introduced

as:

vm = −λmxm2 + kmsm + rmss (t− T ) + Fm (7.22)

vs = −λsxs2 + ksss + rssm (t− T ) +G2Fm (t− T ) (7.23)

The delayed dynamical composite master and slave systems can be derived as:

ṡm = kmsm + rmss (t− T ) + Fm

ṡs = ksss + rssm (t− T ) +G2Fm (t− T )
(7.24)

Let us now use the first-order Taylor series expansion on the time-delayed signals

with the assumption of constant operator force i.e.

sx (t− T ) ≈ sx − T ṡx, x = m, s

Fm (t− T ) ≈ Fm − T Ḟm = Fm
(7.25)

Based on the above Taylor expansion and using the definition of composite error, the

closed loop delayed composite master and slave systems can be written as:

ṡm =
1

(1− T 2rsrm)
((km − Trsrm + rm − Trmks) ss − (rm − Trmks) se

+ (1− TrmG2)Fm

(7.26)

ṡs =
1

(1− T 2rsrm)
((ks − Trsrm + rs − Trskm) ss − (rs − Trskm) se

+ (G2 − Trs)Fm

(7.27)

We now write the composite slave-error augmented system:

[
ṡs

ṡe

]
=

1

(1− T 2rsrm)

([
a11 a12

( a21 ) ( a22 )

][
ss

se

]
+

[
b11

( b21 )

]
Fm

)
(7.28)

where,
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a11 = ks − Trsrm + rs − Trskm, a12 = −rs + Trskm,

a21 = ks + rs − Trskm − km−rm + Trmks, a22 = rs − Trskm−rm + Trmks,

b11 = G2 − Trs, b21 = G2 − Trs − 1+TrmG2

The composite error system is now allowed to evolve as an autonomous system which

leads to the design conditions Eq (7.18) - Eq (7.19). The rest of the augmented system

is then assigned the desired dynamics formed from the poles s = −p, s = −q. This

assignment leads to the design conditions in Eq (7.20) - Eq (7.21). An analysis similar

to Theorem 7.2 reveals that the slave system indeed follows the master system. The

proof is now completed.

7.3 Simulation Results

The proposed composite nonlinear state convergence controller is simulated in MAT-

LAB/Simulink environment to evaluate its effectiveness in motion synchronization of

master and slave systems. For the purpose of simulations, parameters of the teler-

obotic system are adopted from [69]:

Master : mm = 1, lm = 0.2, bm = 10, Jm = 0.33mml
2
m

Slave : ms = 10, ls = 1, bs = 15, Js = 0.33msl
2
s

Environment : ke = 10, kf = 1

(7.29)

We first perform simulations when no time delay exists in the communication channel.

To this end, let the desired poles be placed at s+ p = s+2, s+ q = s+20 and let the

motion scaling constants be selected as unity. The design conditions in Theorem 7.1

are then solved, and the following control gains are obtained:

G2 = 1, km = −12, ks = −10, rs = 8 (7.30)

By assuming zero initial conditions for both the master and slave systems, the teler-

obotic system is simulated under a constant operator’s force of 0.2N and the control

gains of Eq (7.30). The result is depicted in Figure 7.2 and Figure 7.3. It can be

seen that the composite states converge, and this leads to the convergence of master

and slave systems’ states. The motion scaling property of the proposed controller is

also evaluated in simulations. It is desired that the slave’s motion converges to 50%

of the motion of the master system, which leads to the selection of the slave’s scaling

constant as λs = 2. The simulations are now run with the control gains of Eq (7.30),

and the result is shown in Figure 7.4. It can be seen that the slave’s position response
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is indeed 0.5 times the position profile of the master system.

Figure 7.2: Position synchronization with no communication time delay

We now test the proposed controller when a time delay exists in the communication

channel. Let the time delay be 0.2s in each direction. With the parameters of the

telerobotic system in Eq (7.29) and using the same desired dynamics as in the delay-

free case, control gains are found based on the design conditions of Theorem 7.3

as:

G2 = 0.3521, km = −16, ks = −2.3944, rs = 0.2817 (7.31)

By selecting xm (0) = xs (0) = 0, λm = λs = 1 and with a constant operator’s force of

0.2N, we run the time-delayed telerobotic system under the control gains of Eq (7.31)

and the results are shown in Figure 7.5 and Figure 7.6. The analysis reveals that

the composite slave system follows the composite master system, which leads to the

convergence of the position and velocity states of the master and slave systems. The

motion scaling ability of the time-delayed telerobotic system is also investigated. To

this end, the reference for the slave system is set as 0.25xm1, which implies λs = 4.

The simulation result, as obtained under the control gains of Eq (7.31), is shown in

Figure 7.7. It can be seen that the motion of the slave system has been achieved as

desired.
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Figure 7.3: Velocity synchronization with no communication time delay

Figure 7.4: Motion scaling with no communication time delay
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Figure 7.5: Position synchronization with communication time delay

Figure 7.6: Velocity synchronization with communication time delay
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Figure 7.7: Motion scaling with communication time delay

7.4 Experimental Results

We now include some semi-real-time results of the proposed nonlinear controller,

which are obtained using the haptic device in the QUARC/Simulink environment.

A time-varying operator’s force is generated by operating the haptic device along a

single axis, and trajectories of the resulting master and slave systems are recorded in

a time-delayed environment under the control of Eq (7.31). The results are shown in

Figure 7.8 and Figure 7.9 and controller parameters are summarized in Table 7.1.

Controller
Simulation in MAT-
LAB/Simulink

Semi Real-time
QUARC/Simulink

System 1-DoF (Master/Slave) 1-DoF (Master/Slave)

Operator Force (N) 0.2 (constant)
Time-varying force us-
ing Omni Bundle

Environment Stiffness
ke (Nm/rad)

10 10

Environment Damping
be (Nm/rad)

0.1 0.1

Force Feedback gain Kf unity unity

Scaling constant λm/λs 1 1

Time delay (Sec) 0.2 0.2

Table 7.1: Proposed controller parameters for simulation and semi-real time experi-
ment
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Figure 7.8: Position synchronization with communication time delay under time-
varying applied force

Figure 7.9: Velocity synchronization with communication time delay under time-
varying applied force
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7.5 Conclusion

This chapter presented the design of a composite state convergence controller for a

one-degree-of-freedom nonlinear telerobotic system. To deal with the nonlinearity

in the master and slave systems, a feedback linearization algorithm is used. The

exactly linearized master and slave systems are then used to form the lower complexity

composite systems. Through the use of a similarity transformation, a composite slave-

error augmented system is constructed. After the composite error is made to evolve as

an autonomous, desired behavior is assigned to the telerobotic system. This results

in four design conditions which are solved to determine the four unknown control

gains. Simulations, as well as semi-real-time experiments, are finally performed in

MATLAB/Simulink environment, which shows good performance of the telerobotic

system in the absence and presence of communication time delays.



Chapter 8

A Composite State Convergence Architecture for

Multi-Degrees-of-Freedom System

This chapter is devoted to exploring the applicability of the composite state conver-

gence scheme for multi-degrees-of-freedom bilateral teleoperation systems. The com-

posite state convergence scheme presents an elegant design procedure for computing

the control gains by allowing the composite error to evolve as an autonomous system

and imposing the desired dynamical behavior to the augmented composite master-

error system [104]. Here, the composite variables corresponding to the joints of the

master and slave manipulators as well as the operator’s force, are transmitted across

the communication channel. A similar design procedure has been followed to com-

pute the gains for a multi-degrees-of-freedom teleoperation system and have shown

that the closed-loop system is Lyapunov-stable. The control laws for the master and

slave systems are defined according to the composite state convergence scheme with

the addition of cancellation terms containing the nonlinear dynamics of master and

slave manipulators. It is shown that the convergence of composite variables of respec-

tive master and slave joints guarantees the convergence of respective joint positions

of the master and slave systems under the composite state convergence control laws.

To validate the proposed extension, simulations are performed in MATLAB/Simulink

environment on two-link manipulators with time delay in the communication channel.

8.1 Composite State Convergence Scheme

Consider a bilateral teleoperation system that is comprised of second-degree-of-freedom

robotic manipulators as:

Mm (qm) q̈m + Cm (qm, q̇m) q̇m +Gm (qm) = um + Fm

Ms (qs) q̈s + Cs (qs, q̇s) q̇s +Gs (qs) = us − Fe
(8.1)
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where inertia, coriolis/centrifugal, and gravity matrices are given as:

Mz =

(
m2zl

2
z + (m1z +m2z) l

2
z + 2m2zl

2
z cos (q2z) m2zl

2
z +m2zl

2
z cos (q2z)

m2zl
2
z +m2zl

2
z cos (q2z) m2zl

2
z

)
(8.2)

Cz =

(
−q̇2zm2zl

2
z sin (q2z) − (q̇1z + q̇2z)m2zl

2
z sin (q2z)

−q̇1zm2zl
2
z sin (q2z) 0

)
(8.3)

Gz =

(
gm2zlz sin (q1z + q2z) + g (m1z +m2z) lz sin (q1z)

gm2zlz sin (q1z + q2z)

)
(8.4)

where subscript ‘z’ represents either master or slave manipulators, m1z is the mass

of link 1, m2z is the mass of link 2, lz is length of both links, qz = (q1z, q2z)
T are the

joint angles, q̇z = (q̇1z, q̇2z)
T are the joint velocities, and q̈z = (q̈1z, q̈2z)

T are the joint

accelerations.

To establish the bilateral communication between master and slave manipulators as

per the composite state convergence scheme, composite variables are transmitted

across the communication channel along with the operator’s force from the mas-

ter side. Thus, a total of 6 variables are transmitted over the channel, i.e., Sm =

(sm1, sm2)
T , Ss = (ss1, ss2)

T and Fm = (Fm1, Fm2)
T . The composite variables for the

master and slave are defined as:

Sm = q̇m + Λmqm (8.5)

Ss = q̇s + Λsqs (8.6)

where Λm = diag (λm1, λm2) ,Λs = diag (λs1, λs2) are the auxiliary constants. The

time derivative of composite variables in conjunction with manipulator dynamics

yields the following composite master and slave systems:

Ṡm =M−1
m (−Cmq̇m −Gm + um + Fm) + Λmq̇m (8.7)

Ṡs =M−1
s (−Csq̇s −Gs + us − Fe) + Λsq̇s (8.8)

The control inputs for the master and slave systems are introduced:

um = Cmq̇m +Gm + (MmBm − I)Fm+Mm (−Λmq̇m +KmSm +BmRmSs) (8.9)
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us = Csq̇s +Gs + Fe +Ms (−Λsq̇s +KsSs +BsRsSm +BsG2Fm) (8.10)

where Km = diag (km1, km2) and Ks = diag (ks1, ks2) are the stabilizing gains for

the master and slave manipulators respectively. The force feedback gain matrix is

Rm = diag (rm1, rm2) while force feed-forward gain matrix is G2 = diag (G21, G22).

The motion-affecting gain matrix from the slave to master is Rs = diag (rs1, rs2).

Here, we need to determine Km, Ks, Rs, and G2 gain matrices to synchronize the

master and slave manipulators while calculation of Rmis based on the environment

information, Rm = KfKe.

By plugging Eq (8.9) in Eq (8.7) and Eq (8.10) in Eq (8.8), we obtain the following

closed-loop composite master and slave systems as:

Ṡm = KmSm +BmRmSs +BmFm (8.11)

Ṡs = KsSs +BsRsSm +BsG2Fm (8.12)

Now, let us define the composite error as:

Se = Sm − Ss (8.13)

By re-writing Eq (8.11) in terms of the composite error, we have:

Ṡm = (Km +BmRm)Sm − BmRmSe +BmFm (8.14)

Let Sm,ss denote the steady state values of the composite master states. As will be

shown later, the composite error can be driven to zero by the appropriate selection

of control gains. Thus, the steady-state value of the composite master state can be

computed as:

Sm,ss = − (Km +BmRm)
−1BmFm (8.15)

Let S̃m be the deviation of the composite master state from its steady state value:

S̃m = Sm − Sm,ss (8.16)

The time derivative of the perturbed composite master system Eq (8.16) along with
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Eq (8.14) and Eq (8.15) yields:

˙̃Sm = (Km +BmRm) S̃m − BmRmSe (8.17)

The time derivative of Eq (8.13) along with Eq (8.12), Eq (8.14) - Eq (8.17) yields:

Ṡe = (Km +BmRm −Ks − BsRs) S̃m + (Ks − BmRm)Se−

(Km +BmRm −Ks − BsRs) (Km +BmRm)
−1BmFm+

(Bm − BsG2)Fm

(8.18)

Next, we show that the composite master and slave systems can be synchronized by

selecting appropriate stabilizing gains, force feed-forward, and motion-affecting gains.

Theorem 8.1. The convergence of the composite error Eq (8.18) and perturbed com-

posite master systems Eq (8.17) to zero is guaranteed after the gains of the composite

state convergence scheme are selected as:

Km = −P − BmRm

Ks = −Q+BmRm

Rs = B−1
s (−P +Q− BmRm)

G2 = B−1
s Bm

(8.19)

Proof. Consider the Lyapunov function as:

V
(
S̃m, Se

)
=

1

2
S̃TmS̃m +

1

2
STe Se

The time derivative of Lyapunov function yields:

V̇ = S̃Tm
˙̃Sm + STe Ṡe

By plugging the closed loop composite systems of Eq (8.17) and Eq (8.18) in V̇ , we

obtain

V̇ = S̃Tm

(
(Km +BmRm) S̃m − BmRmSe

)
+

STe

(
(Km +BmRm −Ks − BsRs) S̃m + (Ks − BmRm)Se

)
−

STe
(
(Km +BmRm −Ks − BsRs) (Km +BmRm)

−1BmFm
)
+

STe (Bm − BsG2)Fm
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By substituting the control gains of Eq (8.19) and using the matrix inequality, XY +

Y TXT ≤ δXXT + δ−1Y TY we have:

V̇ = −S̃TmPS̃m − S̃TmBmRmSe − STe QSe

Since V̇ < 0, the errors
(
S̃m, Se

)
are bounded and

(
S̃m, Se

)
→ 0 as t → ∞. This

implies that the composite slave system does converge to the composite master system

i.e., Sm → Sm,ss and Ss → Sm. This completes the proof.

Theorem 8.2. The joint positions of the slave system converge to the joint positions

of the master system iff the convergence of the respective composite systems is ensured.

Proof. By plugging the control inputs Eq (8.9), Eq (8.10) in Eq (8.1), we have:

q̈m + Λmq̇m = Ṡm, q̈s + Λsq̇s = Ṡs (8.20)

Theorem 8.1 states that Sm = Ss = Sm,ss are in a steady state with the assumption

of constant operator’s force. Thus, joint velocities converge to zero since Ṡm, Ṡs → 0.

Recall that Sm = q̇m + Λmqm, Ss = q̇s + Λsqs and q̇m, q̇s → 0, so qs = Λ−1
s Λmqm. If

the auxiliary matrices are the same, then qs = qm in steady state. The proof is now

completed.

Remark 8.1. The closed loop analysis also shows that the proposed composite state

convergence scheme can yield a desired dynamic response. This can be verified for the

master system by plugging the control gains in Eq(8.19) in q̈m+Λmq̇m = (Km +BmRm)

Sm +BmFm with the assumption that composite error system is driven to the origin.

Thus, we have: q̈m + Λmq̇m + PΛmqm = BmFm.

Let us now consider that time delay exists in the communication channel with the

assumption of constant operator force. The control inputs in this case are modified

as:

um = Cmq̇m +Gm + (MmBm − I)Fm+Mm (−Λmq̇m +KmSm +BmRmSs (t− T ))

(8.21)

us = Csq̇s +Gs + Fe+Ms (−Λsq̇s +KsSs +BsRsSm (t− T ) + BsG2Fm) (8.22)

By using Eq (8.21), Eq (8.22) with Eq (8.7), (8.8), the augmented closed loop com-

posite master and error system in the absence of operator’s forces can be written
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as:

Ż = AZ + AdZ (t− T ) ,Z =
(
Sm Se

)T

A =

(
Km 0

0 Ks

)
, Ad =

(
BmRm −BmRm

BmRm − BsRs −BmRm

)
(8.23)

The stability of the time delayed system Eq (8.23) can now be guaranteed by using

the delay-independent methodology.

Theorem 8.3. The stability of the composite state convergence scheme is established

with time delay in the communication channel if there exist two symmetric positive

definite matrices L1, L2 such that the following LMIs are satisfied [33]:

L1 > 0, L2 > 0(
ATL1 + L1A+ L2 L1Ad

ATdL1 −L2

)
< 0

(8.24)

Proof. Consider the following Krasovskii-Lyapunov function:

V (xt) = ZT (t)L1Z (t) +

∫ t

t−T

ZT (τ)L2Z (τ) dτ

The time derivative of V along the trajectories of Eq (8.23) and imposing V̇ < 0

yields the LMIs in Eq (8.24). The detailed proof can be found in [33].

Remark 8.2. The stability of the composite time-delayed system refers to the stability

of the master and slave manipulators of the teleoperation system. We use the control

gains of Eq (8.19) in Eq (8.23) and then use the LMIs in Eq (8.24) to find the matrices

L1and L2. In case of success, the control gains Eq (8.19) can also be used in case of

time delay in the communication channel.

8.2 Simulation Results

In order to validate the theoretical findings, simulations are conducted in MAT-

LAB/Simulink environment on a time-delayed teleoperation system. The parame-

ters for the master and slave manipulators are chosen as m1z = m1z = 2kg and

lz = 1m. The control gains for the composite state convergence scheme are found

to be Km = diag (−2.2,−2.2), Ks = diag (−5.8,−5.8), Rs = diag (3.8, 3.8) and

G2 = diag (0.2, 0.2). Simulations are run by considering a time delay of 0.5s in the

communication channel, and recorded results are displayed in Figure 8.1, Figure 8.2,

Figure 8.3.
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Figure 8.1: Composite and position signals for joint 1 of master and slave manipula-
tors

Figure 8.1 shows that composite variables for joint #1 of the master and slave manip-

ulators converge in the steady state with a constant operator’s force of 1N. A similar

trend can be located in Figure 8.2 for joint #2 of master and slave manipulators. The

convergence of velocity states can be seen in Figure 8.3.

The stability of the composite state convergence controller is confirmed through LMI

conditions Eq (8.24), which yield the following positive definite matrices as shown in

Eq (8.25) and Eq (8.26):

L1 =




10.8258 0 0.1672 0

0 10.8258 0 0.1672

0.1672 0 3.1263 0

0 0.1672 0 3.1263




(8.25)

L2 =




23.2592 0 0.4458 0

0 23.2592 0 0.4458

0.4458 0 19.4699 0

0 0.4458 0 19.4699




(8.26)
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Figure 8.2: Composite and position signals for joint 2 of master and slave manipula-
tors

Figure 8.3: Velocity signals for joint no.1 and 2 of master and slave manipulator
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8.3 Conclusion

This chapter presents the extension of the composite state convergence scheme for

teleoperation systems to multi-degrees-of-freedom manipulators. The structure of

control laws for the master and slave systems is in line with the composite state

convergence scheme. The convergence of composite variables of the master and slave

manipulators leads to the convergence of respective joint positions under the proposed

framework. MATLAB simulations are performed to validate the proposal.



Chapter 9

Disturbance Observer Supported Three-Channel Composite

State Convergence Architecture

Based on composite variables, three-channel state convergence is a novel architecture

for the bilateral control of teleoperation systems modeled on state space. Although

simple to design and easy to implement, this bilateral control algorithm relies on

model parameters. To lower this dependence, this chapter proposes a disturbance

observer-supported three-channel state convergence architecture. At first, extended

state observers are used to estimate the position and velocity states of the master and

slave systems along with their lumped uncertainties. These position and velocity es-

timates are then fused to form composite variables, which are transmitted along with

the operator’s force. With the knowledge of composite variables and the estimates of

uncertainties, bilateral control laws are developed for the master and slave systems

by following the method of state convergence. To validate the proposal, simulations,

as well as semi-real-time experiments, are performed in MATLAB/Simulink environ-

ment by considering a single-degree-of-freedom time-delayed teleoperation system.

9.1 Review of Composite State Convergence Architecture

Like state convergence architecture, its composite version also establishes a joint-to-

joint bilateral motion between the master and slave robots during the contact phase

of the teleoperation system. Each joint is modeled as a second-order system on state

space:

ẋz = Azxz +Bzuz

yz = Czxz
(9.1)

where subscript ‘z’ is to be replaced with ‘m’ and ‘s’ for the master and slave systems,

respectively, while various matrix entries in Eq (9.1) are given as:

Az =

[
0 1

az1 az2

]
, Bz =

[
0

bz

]
Cz =

[
1 0

]
(9.2)

128
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The communication framework provided by the state convergence architecture is

shown in Fig 9.1, and various parameters defining the architecture are listed below:

Figure 9.1: Composite state convergence scheme [104]

km is the stabilizing gain for the composite master system, ks is the stabilizing gain for

the composite slave system, which also takes into account the interaction of the slave

with the environment where the environment is modeled by a stiffness (ke) element,

rm = kfke transfers the scaled effect of the slave’s motion to the master system as

the slave interacts with the environment where scaling is achieved through a force

feedback gain (kf ), rs models the effect of master’s motion into the slave system, T is

the time delay offered by the communication channel, Fm is the force applied by the

operator onto the master system which is assumed to be constant and G2 transfers

the effect of this force into the slave system. Of these parameters, km, ks, rs and G2

are unknown scalars and determined by a design procedure provided by the composite

state convergence scheme.
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9.2 Proposed Disturbance Observer Based Composite State

Convergence Architecture

The proposed composite state convergence architecture establishes bilateral com-

munication between the master and slave systems by transmitting three variables,

namely the operator’s force, the observed composite-master state, and the observed

composite-slave state. At the same time, nonlinear dynamical models of the master

and slave systems are considered as opposed to linear dynamic models in the case

of standard composite state convergence architecture. The lumped nonlinearities are

estimated through extended state observers which also provide estimates of the po-

sition and velocity states. Fig 9.2 displays the proposed architecture, and various

parameters defining the architecture are listed below:

1. sm = x̂m2+λmx̂m1 is the composite-master state constructed from the observed

master’s position (x̂m1) and velocity (x̂m2) states where λm serves the purpose

of scaling the master’s position.

2. ss = x̂s2 + λsx̂s1 is the composite-slave state constructed from the observed

slave’s position (x̂s1) and velocity (x̂s2) states where λs serves the purpose of

scaling the slave’s position.

3. Other parameters km, ks, rm, rs, G2, Fm, T are the same as in standard composite

state convergence architecture.

4. The design of control gains km, ks, rs, G2 along with disturbance observer gains

is discussed in the sequel.

To this end, we first consider a more general form of the master and slave systems as:

ẋz1 = xz2

ẋz2 = dz (t) + bzuz
(9.3)

where dz = fz (xz) encapsulates the nonlinearities of the master and slave systems.

By considering dz (t) as an extra state, system in Eq (9.3) can be equivalently written

as:

ẋz = Azxz +Bzuz + Ezhz

yz = Czxz
(9.4)
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Figure 9.2: Proposed composite state convergence architecture

where hz (t) = ḋz (t) and various matrix entries are given as:

Az =




0 1 0

0 0 1

0 0 0


 , Bz =




0

0

bz


 , Ez =




0

0

1


Cz =

[
1 0 0

]
(9.5)
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To estimate the disturbance terms as well as the systems’ states of Eq (9.3), we

introduce extended state observers based on Eq (9.4) as:

˙̂xz = Azx̂z +Bzuz + LzCz (xz − x̂z)

ŷz = Czx̂z
(9.6)

In Eq (9.6), Lz =
[
lz1 lz2 lz3

]T
are observer gains while other matrix entries are

given in Eq (9.5). Let us define the observer error ezo =
[
ezo1 ezo2 ezo3

]T
as:

ezo = xz − x̂z (9.7)

Observer error dynamics can be found using Eq (9.4), Eq (9.6), and Eq (9.7) as:

ėzo = (Az − LzCz) ezo + Ezhz (9.8)

Control laws for the master and slave systems in three-channel state convergence

architecture are proposed as:

um =
1

bm

(
−d̂m − λmx̂m2 + kmsm

)
+ rmss (t− T ) + Fm (9.9)

us =
1

bs

(
−d̂s − λsx̂s2 + ksss

)
+ rssm (t− T ) +G2Fm (t− T ) (9.10)

Here, we will construct the augmented system using composite-master and composite–

slave states instead of full position and velocity states of master and slave robots. To

this end, derivative of the composite-master state along with Eq (9.9) yields:

ṡm = kmsm + bmrmss (t− T ) + bmFm + (lm2 + λmlm1) emo1 (9.11)

Similarly, by taking the time derivative of composite-slave state and using Eq (9.10),

we get:

ṡs = ksss + bsrssm (t− T ) + bsG2Fm (t− T ) + (ls2 + λsls1) eso1 (9.12)



133

By applying first order Taylor approximation on time-delayed signals in Eq (9.11),

Eq (9.12) with constant operator’s force assumption and simplifying the resulting

expressions, we have:

ṡs = A11ss + A12sm + A13eso + A14emo +B1Fm (9.13)

ṡm = A21ss + A22sm + A23eso + A24emo +B2Fm (9.14)

where

A11 = D (ks − Tbsrsbmrm) , A12 = D (bsrs − Tbsrskm)

A13 = D
(
ls2 + λsls1 0 0

)
, A14 = D

(
−Tbsrs (lm2 + λmlm1) 0 0

)

A21 = D (bmrm − Tbmrmks) , A22 = D (km − Tbmrmbsrs)

A23 = −D
(
Tbmrm (ls2 + λsls1) 0 0

)
, A24 = D

(
lm2 + λmlm1 0 0

)

B1 = D (bsG2 − Tbsrsbm) , B2 = D (bm − TbmrmbsG2) , D =
(
1− T 2bmrmbsrs

)−1

(9.15)

Now, we form an augmented system using Eq (9.13), Eq (9.14) and Eq (9.8) as:



ṡs

ṡm

ėso

ėmo



=




A11 A12 A13 A14

A21 A22 A23 A24

0 0 A33 0

0 0 0 A44







ss

sm

eso

emo



+




B1

B2

0

0



Fm +




0 0

0 0

Es 0

0 Em




[
hs

hm

]

(9.16)

Let us introduce a linear transformation to replace the composite-master system in

Eq (9.16) with the composite-error system, se = ss − sm:




ss

se

eso

emo



=




I 0 0 0

I −I 0 0

0 0 I 0

0 0 0 I







ss

sm

eso

emo




(9.17)

The time-derivative of Eq (9.17) along with Eq (9.16), Eq (9.17) yields the trans-

formed augmented system as:
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


ṡs

ṡe

ėso

ėmo



=




Ã11 Ã12 Ã13 Ã14

Ã21 Ã22 Ã23 Ã24

0 0 Ã34 0

0 0 0 Ã44







ss

se

eso

emo



+




B̃1

B̃2

0

0



Fm +




0 0

0 0

Ẽ31 0

0 Ẽ42




[
hs

hm

]

(9.18)

where

Ã11 = A11 + A12, Ã12 = −A12, Ã13 = A13, Ã14= A14, Ã21 = A11 − A21 + A12 − A22,

Ã22 = −A12+A22, Ã23 = A13−A23, Ã24 = A14−A24, Ã33 = A33, Ã44 = A44, B̃1 = B1,

B̃2 = B1 − B2, Ẽ31 = Es, Ẽ42 = Em.

Based on the assumption that disturbance observers have much faster dynamics than

the composite-error system, following conditions must hold for composite-error to

evolve as an autonomous system:

Ã21 = 0, B̃2 = 0 (9.19)

The characteristic polynomial of the augmented system in Eq (9.18) can now be

compared to the desired polynomial to yield the following conditions:

∣∣∣sI − Ã11

∣∣∣ = s+ p∣∣∣sI − Ã22

∣∣∣ = s+ q
(9.20)

∣∣∣sI − Ã34

∣∣∣ = s3 + r2s
2 + r1s+ r0∣∣∣sI − Ã44

∣∣∣ = s3 + w2s
2 + w1s+ w0

(9.21)

Design conditions in Eq (9.20) fix the dynamics of composite-slave and composite-

error systems while disturbance observers for master and slave systems are designed

according to Eq (9.21). The solution of design conditions Eq (9.19) - Eq (9.21) yields

the control gains km, ks, rs, G2 and observer gains lm1, lm2, lm3, ls1, ls2, ls3. Thus, the

composite slave system will follow the composite-master system under the control

laws Eq (9.9) and Eq (9.10). However, the convergence of position and velocity states

of the master and slave systems needs to be investigated. To this end, first note that
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se = 0 ⇒ sm = ss and ṡm = ṡs = 0 under constant operator’s force assumption. This

leads to x̂m2 + λmx̂m1 = x̂s2 + λsx̂s1. Thus, convergence of x̂m2 and x̂s2 to zero has

to be ensured. By plugging control laws from Eq (9.9) and Eq (9.10) in Eq (9.3) and

using Eq (9.7), Eq (9.11), Eq (9.12), we have:

ẋm2 + λmxm2 = ṡm + ξmemo

ẋs2 + λsxs2 = ṡs + ξseso
(9.22)

where ξm =
(

−lm2 − λmlm1 λm 1
)

and ξs =
(

−ls2 − λsls1 λs 1
)

Since ob-

servers have fast dynamics as compared to the composite states and under the assump-

tion of slowly varying disturbances, we arrive at ẋm2+λmxm2 = 0 and ẋs2+λsxs2 = 0.

Thus, velocity states xm2 and xs2 will converge to zero along with their estimates and

we have: λmx̂m1 = λsx̂s1 and λmxm1 = λsxs1 which implies that slave system will

follow the master system. These results further suggest that the motion of the slave

system can also be scaled by adjusting the constant λs.

Let us now investigate the closed-loop dynamic behavior of the master system in the

proposed three-channel state convergence architecture. By plugging the control law

from Eq (9.9) in Eq (9.3) and ignoring the effects of composite error plus observer

error dynamics, we have the following simplified closed loop master system driven by

the operator’s force:

ẍm1 +
(
λm + p1 + Tbmrm

)
ẋm1 + λmp (1 + Tbmrm) xm1 = bmFm (9.23)

This result suggests that master system response can indeed be adjusted by varying

constant λm and pole location p. The selection of pole p also controls the force-

reflection behaviour of the proposed state convergence architecture. By choosing the

pole location to be p = bmrm/(1 + Tbmrm) and kf = 1/λs, full force reflection can be

guaranteed at steady state. However, this requires the time delay and environment

stiffness to be exactly known. This result can be verified from the steady state analysis

of master control law in Eq (9.9) which yields

um,kn = −
bmrm

p (1 + Tbmrm)
Fm + kfλnFk. (9.24)
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9.3 Simulation Results

In order to validate the proposed disturbance observer based three-channel state con-

vergence architecture, simulations are performed in MATLAB/Simulink environment

by considering master and slave systems with single degree-of-freedom motion. Let

the nonlinearities in these systems be

fz = −az1xz1 sin (xz1)− az2xz2 (9.25)

By assuming the parameters as

am2 = 7.1429, as2 = 6.25

bm = 0.2656, bs = 0.2729

ke = 50, λm = 1, λs = 1

kf = 1, T = 0.1s, q = 10, p = 5

r0 = w0 = 27000, r1 = w1 = 2700, r2 = w2 = 90

(9.26)

Now solve the design conditions in Eq (9.19) - Eq (9.21) and obtain the controller

and observer gains as:

G2 = 0.3084

km = −26.5496

ks = −1.5829

rs = −9.6092

Lme = Lse =
[
90 2700 27000

]T

(9.27)

The nonlinear time-delayed teleoperation system is now simulated under the control

of Eq (9.27) with an operator’s force of 0.5N and results are shown in Figure 9.3

and Figure 9.4. It can be seen that motion synchronization of the master and slave

systems is achieved. Further, full environmental force is also reflected to the operator

at a steady state.

9.4 Experimental Results

To further validate the proposed architecture, semi-real-time experiments are per-

formed using geomagic haptic device. The device is driven by the operator along

x-axis to generate the time varying-force, Fm (t) = kop (xop (t)− x0) with kop = 10
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Figure 9.3: Simulation results: convergence of teleoperation system’s states

Figure 9.4: Simulation results: control torques
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and xop ∈ [0.1, 0.2]m. This force is provided as an input to the master-slave teleoper-

ation system running in QUARC/Simulink environment. At the same time, reflected

force as generated by the controller is also fed back to the haptic device. Thus, the

loop is closed around the operator as he/she will feel the virtual environment during

teleoperation. The experimental results are shown in Figure 9.5, Figure 9.6, Fig-

ure 9.7. It is evident that disturbances are well-estimated by the observers and the

systems remain synchronized with proper force reflection to the operator.

Figure 9.5: Semi-real time results: disturbance estimation

Finally, a comparison of the proposed tele-control algorithm with a proportional-

derivative (PD) controller is drawn to show superiority of the former scheme. Here,

PD controller employs delayed position signals mentioned in Eq (9.28):

(em = ys (t− T )− ym, es = ym (t− T )− ys) (9.28)

With environment force compensation (EFC-PD) in the slave side in (9.29):

um = kpmem + kdmėm, us = kpses + kdsės + τe (9.29)

For a fair comparison, gains of EFC-PD controller are optimized through Genetic
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Figure 9.6: Semi-real time results: convergence of teleoperation system’s states

Figure 9.7: Semi-real time results: Control torques

algorithm by minimizing an integral-time-absolute-error (ITAE) criterion defined in

Eq (9.31).
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fobj =

∫
t (|ym − ys|+ |fm − fe|) dt (9.30)

Here, Genetic algorithm is run with a population size of 50 and control gains are

found to be in Eq (9.31)

kpm = 15.8996

kdm = 2.3574

kps = 0.0005

kds = 7.1134

(9.31)

With the teleoperation system parameters reported earlier, MATLAB simulations

are performed under a time-varying operator’s force and the results are depicted in

Figure 9.8 and Figure 9.9.

Figure 9.8: Comparative assessment: EFC-PD controller

It can be seen that the proposed controller offers better position and force tracking

performance than the EFC-PD controller. The proposed controller parameters are

summarized in Table 9.1.



141

Figure 9.9: Comparative assessment: proposed controller

Controller
Simulation in MAT-
LAB/Simulink

Semi Real-time
QUARC/Simulink

System 1-DoF (Master/Slave) 1-DoF (Master/Slave)

Operator Force (N) 0.5 (constant)
Time-varying force us-
ing Omni Bundle

Environment Stiffness
ke (Nm/rad)

50 10

Environment Damping
be (Nm/rad)

0.1 0.1

Force Feedback gain Kf unity unity

Scaling constant λm/λs 1 1

Time delay (Sec) 0.1 0.1

Table 9.1: Proposed controller parameters for simulation and semi-real time experi-
ment

9.5 Conclusion

This chapter presented the design of disturbance observer-based three-channel state

convergence architecture for bilateral teleoperation systems. It is shown that state

convergence between the master and slave systems can still be achieved by transmit-

ting composite variables instead of full states, which helps in reducing the number

of channels. Further, state convergence architecture is made capable of dealing with
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non-linearities by integrating extended state observers into it. Simulations and semi-

real-time experiments show the effectiveness of the proposed architecture.



Chapter 10

A Multi-Master-Single-Slave Composite State Convergence

Architecture

The aim of the chapter is to explore the possibility of extending the transparent bilat-

eral state convergence architecture to accommodate the case of a multi-master-single-

slave (MM/SS) teleoperation system. In addition, the channel complexity is kept at

a minimum when multiple systems are communicating. To achieve the former objec-

tive, multiple masters-slave interconnections are considered with a new set of control

gains while the later objective is achieved by adopting composite variables from au-

thors’ earlier work [104], [160]. In this proposed architecture, composite variables are

transmitted across the communication channel instead of full systems’ states. In ad-

dition, control gains are defined to consider masters-slave interactions. Through the

method of state convergence, design conditions are derived to determine the control

gains by allowing the tracking error to evolve as an autonomous system. To validate

the findings, a single-degree-of-freedom tri-master-single-slave system time-delayed

system is simulated in MATLAB/QUARC/Simulink environment. It is found that

the proposed architecture can establish communication between multiple systems to

achieve position and force tracking.

This chapter is organized as follows: Section 10.1 describes the architecture of the

proposed multilateral system. Section 10.2 presents the design methodology, while

simulation results are included in Section 10.3 followed by conclusions and references.

10.1 Proposed MM/SS Architecture

The proposed MMSS architecture is shown in Figure 10.1. Interactions between

masters and slaves are modeled by different control gains, which will be determined

by using the method of state convergence. Different parameters associated with the

proposed architecture are defined below:

F k
m: It represents the force exerted by the kth operator

gks1: It represents the influence of the kth operator’s force on the slave system

143
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skm: It represents the composite variable of kth master system and is formed by fusing

the velocity and position signals of the respective master system

s1s: It represents the composite variable of the slave system and is formed by fusing

the velocity and position signals of the slave system

rks1: It models the effect of the motion of kth master system onto the slave system

r1mk: It models the effect of the motion of slave system onto kth master system. It

also carries environment information to the masters

g1mk: It scales the environmental force as it is reflected to the kth master system

T 1
mk: It represents communication time delay from the slave to the kth master system

T ks1: It represents communication time delay from the kth master system to the slave

system

k1s : It represents the stabilizing gain for the slave system

Of these, 2k + 1 parameters, k1s , g
k
s1, r

k
s1 are designed through state convergence

methodology as detailed in next section.

Figure 10.1: Proposed multi-master single slave architecture
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10.2 Design Procedure for MM/SS Teleoperation System

Consider a single degree of freedom MM/SS teleoperation system:

ẋ1m1 = x1m2

ẋ1m2 = a1m1x
1
m1 + a1m2x

1
m2 + b1mu

1
m

...

ẋkm1 = xkm2

ẋkm2 = akm1x
k
m1 + akm2x

k
m2 + bkmu

k
m

ẋ1s1 = x1s2

ẋ1s2 = a1s1x
1
s1 + a1s2x

1
s2 + b1su

1
s

(10.1)

Let composite variables for the participant systems be defined as:

s1m = x1m2 + λm1x
1
m1

...

skm = xkm2 + λmkx
k
m1

s1s = x1s2 + λs1x
1
s1

(10.2)

We now introduce control inputs for the participant systems as:

u1m = 1
b1m

(
−a1m1x

1
m1 − a1m2 + λm1x

1
m2

)
− g1m1r

1
m1s

1
s (t− T 1

m1) + F 1
m

...

ukm = 1
bkm

(
−akm1x

k
m1 − akm2 + λmkx

k
m2

)
− g1mkr

1
mks

1
s (t− T 1

mk) + F k
m

u1s =
1
b1s

(
−a1s1x

1
s1 − a1s2 + λs1x

1
s2 + k1ss

1
s

)
+
∑k

j=1 r
j
s1s

j
m

(
t− T js1

)

+
∑k

j=1 g
j
s1F

j
m

(
t− T js1

)

(10.3)

The time-derivative of the composite variables Eq (10.2) along with control inputs

Eq (10.3) yields the following closed loop composite systems:

ṡ1m = −b1mg
1
m1r

1
m1s

1
s (t− T 1

m1) + b1mF
1
m

...

ṡkm = −bkmg
1
mkr

1
mks

1
s (t− T 1

mk) + bkmF
k
m

ṡ1s = k1ss
1
s +

∑k

j=1 b
1
sr
j
s1s

j
m

(
t− T js1

)
+
∑k

j=1 b
1
sg
j
s1F

j
m

(
t− T js1

)
(10.4)
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By linearizing Eq (10.4) and employing constant operators’ force assumption, we

obtain:

ṡ1m = −b1mg
1
m1r

1
m1s

1
s + b1mg

1
m1r

1
m1T

1
m1ṡ

1
s + b1mF

1
m

...

ṡkm = −bkmg
1
mkr

1
mks

1
s + bkmg

1
mkr

1
mkT

1
mkṡ

1
s + bkmF

k
m

ṡ1s = k1ss
1
s +

k∑

j=1

b1sr
j
s1s

j
m −

k∑

j=1

b1sr
j
s1T

j
s1ṡ

j
m +

k∑

j=1

b1sg
j
s1F

j
m

(10.5)

Further processing of Eq (10.5) yields the following:

ṡ1m = −b1mg
1
m1r

1
m1s

1
s + b1mg

1
m1r

1
m1T

1
m1ṡ

1
s + b1mF

1
m

...

ṡkm = −bkmg
1
mkr

1
mks

1
s + bkmg

1
mkr

1
mkT

1
mkṡ

1
s + bkmF

∗
m

ṡ1s =
1(

1 +
∑k

j−1 b
1
sr
j
s1T

j
s1b

j
ms1mr

1
mjT

1
mj

)
((

k1s +
k∑

j=1

b1sr
j
s1T

j
s1b

j
mg

1
mjr

1
mj

)
s1s+

k∑

j=1

b1sr
j
s1s

j
m +

k∑

j=1

(
b1sg

j
s1 − b1sr

j
s1T

j
s1b

j
m

)
F j
m

(10.6)

Let us define a composite error as:

se = s1s −
k∑

j=1

α1js
j
m (10.7)

The time derivative of Eq (10.7) along with Eq (10.6) yields composite error dynamics

as:
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ṡe =
(
k1s +

(
b1sr

j
s1T

j
s1 + α1j

)
bjmg

1
mjr

1
mj

)
s1s +

k∑

j=1

b1sr
j
s1s

j
m−

k∑

j=1

(
b1sr

j
s1T

j
s1 + α1j

) (
bjmg

1
mjr

1
mjT

1
mj

)
ṡ1s +

k∑

j=1

(
b1sg

j
s1 −

(
b1sr

j
s1T

j
s1 + α1j

)
bjm
)
F j
m

(10.8)

Further processing of Eq (10.8) yields:

ṡe =




k1s +
(
b1sr

j
s1T

j
s1 + α1j

)
bjmg

1
mjr

1
mj

−
∑k

j=1(b1sr
j
s1T

j
s1+α1j)(bjmg1mjr

1
mjT

1
mj)

(1+
∑k

j=1
b1sr

j
s1T

j
s1b

j
mg

1
mjr

1
mjT

1
mj)

(
k1s +

∑k

j=1 b
1
sr
j
s1T

j
s1b

j
mg

1
mjr

1
mj

)

 s1s

+
k∑

j=1

b1sr
j
s1


1−

∑k

j=1

(
b1sr

j
s1T

j
s1 + α1j

) (
bjmg

1
mjr

1
mjT

1
mj

)
(
1 +

∑k

j=1 b
1
sr
j
s1T

j
s1b

j
mg1mjr

1
mjT

1
mj

)


 sjm

+
k∑

j=1




(
b1sg

j
s1 −

(
b1sr

j
s1T

j
s1 + α1j

)
bjm
)

−
∑k

j=1(b1sr
j
s1T

j
s1+α1j)(bjmg1mjr

1
mjT

1
mj)

(1+
∑k

j=1
b1sr

j
s1T

j
s1b

j
mg

1
mjr

1
mjT

1
mj)

∑k

j=1

(
b1sg

j
s1 − b1sr

j
s1T

j
s1b

j
m

)


F j

m

(10.9)

Let us introduce the following assignments:

k1s +
(
b1sr

j
s1T

j
s1 + α1j

)
bjmg

1
mjr

1
mj −

∑k

j=1

(
b1sr

j
s1T

j
s1 + α1j

) (
bjmg

1
mjr

1
mjT

1
mj

)
(
1 +

∑k

j=1 b
1
sr
j
s1T

j
s1b

j
mg1mjr

1
mjT

1
mj

)

(
k1s +

k∑

j=1

b1sr
j
s1T

j
s1b

j
mg

1
mjr

1
mj

)
= −q

(10.10)

b1sr
j
s1


1−

∑k

j=1

(
b1sr

j
s1T

j
s1 + α1j

) (
bjmg

1
mjr

1
mjT

1
mj

)
(
1 +

∑k

j=1 b
1
sr
j
s1T

j
s1b

j
mg1mjr

1
mjT

1
mj

)


 = α1jq (10.11)
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∑k

j=1

(
b1sr

j
s1T

j
s1 + α1j

) (
bjmg

1
mjr

1
mjT

1
mj

)
(
1 +

∑k

j=1 b
1
sr
j
s1T

j
s1b

j
mg1mjT

1
mjT

1
mj

)
k∑

j=1

(
b1sg

j
s1 − b1sr

j
s1T

j
s1b

j
m

)

= b1sg
j
s1 −

(
b1sT

j
s1T

j
s1 + α1j

)
bjm

(10.12)

The above assignments allow the composite error to evolve as an autonomous system.

Thus, convergence of composite error is ensured i.e. s1s −
∑k

j=1 α1js
j
m → 0. Since,

ẋ1s2 + λs1x
1
s2 = ṡ1s → 0, we have x1s1 =

∑k

j=1 α1jx
j
m1 in steady state. In this way,

position coordination is achieved. A similar analysis shows that force reflected to all

the masters converges to the environmental force when applied forces are the same.

10.3 Simulation Results

To validate the proposed framework, 3MSS is adopted and tested in MATLAB

Simulink environment. The following system parameters are assumed:

akm1 = 0, akm2 = −7.1429, bkm = 0.2656, g1mk = 1

a1s1 = 0, a1s2 = −6.25, bkm = 0.2729

k1e = 10, α11 = 0.1, α12 = 0.5, α13 = 0.4

T 1
m1 = T 1

s1 = 0.1, T 1
m2 = T 2

s1 = 0.15, T 1
m3 = T 3

s1 = 0.2

(10.13)

The control gains are obtained as a solution of design conditions Eq (10.10) - Eq (10.12):

g1s1 = 0.7824, g2s1 = 4.5637, g3s1 = 4.1726

k1s = −52.7717

r1s1 = 9.8187, r2s1 = 49.0936, r3s1 = 39.2749

(10.14)

Now, under constant operators’ forces of F k
m=0.25N, we simulate 3MSS system and

the results are shown in Figure 10.2, Figure 10.3, Figure 10.4, Figure 10.6.

Slave is following the weighted motion of the master system while environment force is

also reflected to the operators. It is also evident that transient phase of force reflection

behavior is not appropriate while steady state phase truly reflects the environment

to the operators.
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Figure 10.2: Simulation results of 3MSS teleoperation system (a) position response

Figure 10.3: Simulation results of 3MSS teleoperation system: (b) velocity signals
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Figure 10.4: Simulation results of 3MSS teleoperation system: (c) control inputs

Figure 10.5: Simulation results of 3MSS teleoperation system: (d) force reflection
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10.4 Experimental Results

We have also performed semi-real-time experiments in MATLAB/QUARC /Simulink

environment, where one haptic device is used to drive three master systems. During

the operation, the force from the virtual slave environment is transmitted to the hap-

tic device via the time-delayed communication channel. The recorded experimental

results are displayed in Figure 10.7, Figure 10.8, Figure 10.9.

Figure 10.6: Experimental results of 3MSS teleoperation system (a) position response

It is evident that the slave is synchronized to the combined motion of the master

systems while environment force is also being reflected in the masters. The results

obtained from both the simulations and experiment validate the proposed extended

architecture.
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Figure 10.7: Experimental results of 3MSS teleoperation system (b) velocity signals

Figure 10.8: Experimental results of 3MSS teleoperation system (c) control inputs
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Figure 10.9: Experimental results of 3MSS teleoperation system (d) force reflection

10.5 Conclusion

In this chapter, the design of a multilateral teleoperation system is presented by

considering the case of multiple masters and single slave systems. The proposed ar-

chitecture is an extended version of transparent state convergence architecture which

is developed earlier for bilateral control. The extension is realized by considering

additional interactions and control gains. At the same time, the concept of a bilat-

eral composite state convergence scheme is employed to reduce the control gains and

simplify the communication channel. Method of state convergence is finally utilized

to derive the design conditions, and control gains are determined as a solution of cou-

pled equations. MATLAB simulations show that the proposed architecture possesses

position and force tracking ability. Future works involve robustifying the proposed

architecture against parameter variations.



Chapter 11

A Generalized Composite State Convergence Architecture

for Multilateral Teleoperation Systems

A composite state convergence scheme is a reduced-complexity version of the state

convergence controller for the teleoperation system. It employs a smaller number

of control gains and communication channels to synchronize the motion of a single

master-slave system in a desired dynamic way. The chapter aims to generalize the

composite state convergence scheme so that l-slave systems can follow the weighted

motion of k-master systems. To achieve this, at first, composite variables of all master

and slave systems are transmitted across the communication channel along with oper-

ators’ forces, and a set of k+ l+2kl control gains are defined. In the second stage, the

design procedure of the existing composite state convergence scheme is extended for

multiple systems, and control gains are determined through the solution of coupled

equations. Finally, to validate the findings, simulations and semi-real-time exper-

iments are performed in MATLAB/Simulink/QUARC environment by considering

different configurations of teleoperation systems. This chapter reported a generaliza-

tion of the composite state convergence scheme, which enables l -slave systems to track

k -master systems. In addition, the number of communication channels are reduced as

compared to the extended state convergence architecture [159]. In addition, the num-

ber of control gains are also reduced as compared to the extended state convergence

architecture. It is shown that synchronization of l - composite-slave systems to k -

composite- master systems guarantee the synchronization of original l -slave systems

to the original k -master systems under the proposed systematic design procedure. In

addition, the stability of the proposed scheme is verified through Lyapunov analysis.

The proposed scheme is validated through simulations and semi-real-time experiments

in MATLAB, Simulink, and QUARC environments.

Remark 11.1. Although the composite state convergence scheme offers lower com-

plexity (three communication channels and four design variables) as compared to its

standard counterpart (2n+1 communication channel and 3n+1 design variables), a
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generalization is desired in order for the scheme to accommodate any number of mas-

ter and slave systems involved in the joint task. This has motivated us to investigate

the possibility of extending composite state convergence scheme for multiple systems.

The rest of the chapter is organized as follows: The proposed generalization is pre-

sented in Section 11.1, while MATLAB simulations and experimental results are in-

cluded in Section 11.2 and 11.3, respectively. Conclusions are given in Section 11.4

and stability analysis is provided in Appendix B.

11.1 Proposed Scheme for Multilateral Teleoperation Systems

The proposed extension enables composite state convergence scheme to synchronize l -

slave systems to the reference motions generated by k -master systems. The objective

is to allow j th slave system to track combined motions of k -master systems as:

xjs −

k∑

i=1

αisjx
i
m → 0, t→ ∞ (11.1)

where x denotes the states while αisj are defined as authority factors for the master

systems affecting j th slave system such that
∑k

i=1 α
i
sj = 1.

Communication Structure

To achieve this objective, communication is first established by transmitting compos-

ite variables from all the master systems (sjm, j = 1, 2, ..., k) to all the slave systems

as well as from all the slave systems (sjm, j = 1, 2, ..., k) to all the master systems

over the communication channel, which offers constant time-delays to the incoming

signals. Here, T jmi is the time delay from the j th slave system to the i th master system

while T jsi is the time delay from the j th master system to the i th slave system. Thus,

j th slave system will receive delayed copies of composite variables of all k -master sys-

tems
(
simjd = sim

(
t− T isj

)
, i = 1, 2, ..., k

)
while j th master system will receive delayed

copies of composite variables of all l -slave systems
(
sisjd = sis

(
t− T imj

)
, i = 1, 2, ..., l

)
.

In addition, all the operators’ forces (F j
m, j = 1, 2, ..., k) are also transmitted to the

slave systems over the communication channel. Thus, j th slave system will receive

delayed copies of all k -operators forces
(
F i
mjd, i = 1, 2, ..., k

)
.

After transmitting the composite variables and force signals over the channel, control

gains are introduced in line with the composite state convergence scheme. First, j th

slave system is stabilized with kjs, j = 1, 2, ..., l. Since j th slave system also receives
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delayed composite variables from all the master systems, gains risj, i = 1, 2, ..., k are

introduced to scale the incoming composite variables from the master systems. In

addition, operators’ forces are also scaled at j th slave system with Gi
sj, i = 1, 2, ..., k.

We proceed in the same manner and introduce control gains for the master systems.

First, j th master system is stabilized with kjm, j = 1, 2, ..., k. Since, j th master system

also receives delayed composite variables from all the slave systems, gains rimj, i =

1, 2, ..., l are introduced to scale the incoming composite variables. These rimj gains

are pre-computed as rimj = kifjk
i
e where kifj is the force-feedback gain from the i th

slave to the j th master system while kie is the environment stiffness associated with

the i th slave system. All other control gains will be determined through the proposed

design procedure, which is an extended version of the composite state convergence

methodology. The proposed scheme is depicted in Figure 11.1.

11.2 Design Procedure

Let us consider single-degrees-of-freedom master and slave systems as (z = m, s):

ẋiz1 = xiz2

ẋiz2 = aiz1x
i
z1 + aiz2x

i
z2 + bizu

i
z

(11.2)

The composite variables for the master and slave systems are defined as:

siz = xiz2 + λizx
i
z1 (11.3)

The control inputs for the master systems are proposed as in Eq (11.4):

u1m = 1
b1m

(−a1m1x
1
m1 − (a1m2 + λ1m) x

1
m2 + k1ms

1
m) +

∑l

j=1 r
j
m1s

j
s1d + F 1

m

...

ukm = 1
bkm

(
−akm1x

k
m1 −

(
akm2 + λkm

)
xkm2 + kkms

k
m

)
+
∑l

j=1 r
j
mks

j
skd + F k

m

(11.4)

The control inputs for the slave systems are proposed as in Eq (11.5):

u1s =
1
b1s
(−a1s1x

1
s1 − (a1s2 + λ1s) x

1
s2 + k1ss

1
s) +

∑k

j=1 r
j
s1s

j
m1d +

∑k

j=1G
j
s1F

j
m1d

...

uls =
1
bls

(
−als1x

l
s1 −

(
als2 + λls

)
xls2 + klss

l
s

)
+
∑k

j=1 r
j
sls

j
mld +

∑k

j=1G
j
slF

j
mld

(11.5)
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Figure 11.1: Proposed generalized state convergence scheme for multiple systems

Using the master control input, the closed-loop composite-master systems can be

written as:
ṡ1m = k1ms

1
m + b1m

∑l

j=1 r
j
m1s

j
s

(
t− T jm1

)
+ b1mF

1
m

...

ṡkm = kkms
k
m + bkm

∑l

j=1 r
j
mks

j
s

(
t− T jmk

)
+ bkmF

k
m

(11.6)

Using the slave control inputs, the closed loop slave composite systems can be given

as:
ṡ1s = k1ss

1
s + b1s

∑k

j=1 r
j
s1s

j
m

(
t− T js1

)
+ b1s

∑k

j=1G
j
s1F

j
m

(
t− T js1

)
...

ṡls = klss
l
s + bls

∑k

j=1 r
j
sls

j
m

(
t− T jsl

)
+ b1s

∑k

j=1G
j
slF

j
m

(
t− T jsl

)
(11.7)
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Now, we approximate the time-delay entities using first order Taylor expansion as:

sjm
(
t− T jsl

)
≈ sjm (t)− T jslṡ

j
m (t)

sjs
(
t− T jmk

)
≈ sjs (t)− T jmkṡ

j
s (t)

F j
m

(
t− T jsl

)
≈ F j

m − T jslḞ
j
m = F j

m

(11.8)

The closed loop composite-systems under the above approximations can be written

as:




ṡ1m
...

ṡkm

ṡ1s
...

ṡls




=




k1m . . . 0 b1mr
1
m1 . . . b1mr

l
m1

. . .
...

0 . . . kkm bkmr
1
mk . . . bkmr

l
mk

b1sr
1
s1 . . . b1sr

k
s1 k1s . . . 0

...
. . .

blsr
1
sl . . . blsr

k
sl 0 . . . kls







s1m
...

skm

s1s
...

sls




−




0 . . . 0 b1mT
1
m1r

1
m1 · · · b1mT

l
m1r

l
m1

...
...

0 . . . 0 bkmT
1
mkr

1
mk . . . bkmT

l
mkr

l
mk

b1sT
1
s1r

1
s1 . . . b1sT

k
s1r

k
s1 0 . . . 0

...
...

blsT
1
slr

1
sl . . . blsT

k
slr

k
sl 0 . . . 0







ṡ1m
...

ṡkm

ṡ1s
...

ṡls




+




b1m . . . 0
. . .

0 . . . bkm

b1sG
1
s1 . . . b1sG

k
s1

...

blsG
1
sl . . . blsG

k
sl







F 1
m

...

F k
m




(11.9)

To write above expression in a compact form, we introduce the following notations:

sm =
[
s1m . . . skm

]T
, ss =

[
s1s . . . sls

]T

Bm = diag
(
b1m, . . . , b

k
m

)
, Bs = diag

(
b1s, . . . , b

l
s

)

Km = diag
(
k1m, . . . , k

k
m

)
, Ks = diag

(
k1s , . . . , k

l
s

)
(11.10)
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Rm =




r1m1 . . . rlm1
...

r1mk . . . rlmk


 , Rs =




r1s1 . . . rks1
...

r1sl . . . rksl


Tm =




T 1
m1 . . . T lm1

...

T 1
mk . . . T lmk


 ,

Ts =




T 1
s1 . . . T ks1

...

T 1
sl . . . T ksl


Fm =

[
F 1
m . . . F k

m

]T
, Gs =




G1
s1 . . . Gk

s1
...

G1
sl . . . Gk

sl




(11.11)

The closed loop composite system in Eq (11.9) can now be written as:
[

Ik Tm ◦ (BmRm)

Ts ◦ (BsRs) Il

][
ṡm

ṡs

]
=

[
Km BmRm

BsRs Ks

][
sm

ss

]
+

[
Bm

BsGs

]
Fm

(11.12)

where ‘◦’ denotes the Hadamard product. By letting Dm = Tm ◦ (BmRm) , Ds =

Ts ◦ (BsRs) in above equation and using matrix inversion lemma, we obtain:
[
ṡm

ṡs

]
=

[
A11 A12

A21 A22

][
sm

ss

]
+

[
B1

B2

]
Fm (11.13)

where:

A11 = (Ik −DmDs)
−1Km −Dm (Il −DsDm)

−1BsRs

A12 = (Ik −DmDs)
−1BmRm −Dm (Il −DsDm)

−1Ks

A21 = −Ds (Ik −DmDs)
−1Km − (Il −DsDm)

−1BsRs

A22 = −Ds (Ik −DmDs)
−1BmRm − (Il −DsDm)

−1Ks

B1 = (Ik −DmDs)
−1Bm −Dm (Il −DsDm)

−1BsGs

B2 = −Ds (Ik −DmDs)
−1Bm − (Il −DsDm)

−1BsGs

Now, we define the following linear transformation:

[
sm

se

]
=

[
Ik 0kl

−A Il

][
sm

ss

]
(11.14)

where matrix A governs the set-points for the slave systems:

A =




α1
s1 . . . αks1

...

α1
sl . . . αksl


 (11.15)
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In addition, se =
[
s1e . . . sle

]T
is the composite-error system with l -entries de-

scribed as sie = sis −
∑k

j=1 α
j
sis

j
m. The time-derivative of the transformed composite

master-error system in conjunction with the earlier composite master-slave system

yields:

[
ṡm

ṡe

]
=

[
Ã11 Ã12

Ã21 Ã22

][
sm

se

]
+

[
B̃1

B̃2

]
Fm (11.16)

where:
Ã11 = A11 + A12A

Ã12 = A12

Ã21 = (A21 − AA11) + (A22 − AA12) A

Ã22 = A22 − AA12

B̃1 = B1

B̃2 = B2 − AB1

(11.17)

As per the guidelines provided by the composite state convergence method, we allow

the composite error to evolve as an autonomous system. This leads to the following

2kl design conditions:

Ã21 = 0, B̃2 = 0 (11.18)

The remaining k+ l design conditions are obtained by assigning the desired dynamic

behavior to the composite master-error system with Eq (11.19) enforced:

∣∣∣sIk − Ã11

∣∣∣×
∣∣∣sIl − Ã22

∣∣∣ = |sIk − P | × |sIl −Q| (11.19)

where P and Q are diagonal matrices with the desired poles for the composite-

master and composite-error systems, respectively i.e. P = diag (p1, ..., pk) , Q =

diag (q1, ..., ql).

Now, it is left to show that the slave systems indeed follow the weighted reference

motions of the master systems with the proposed algorithm. To this end, observe

that the composite-error system has a closed loop dynamic of ṡe + Qse = 0 which

implies that ss −Asm = 0 in steady state. Thus, composite-slave systems will attain

the weighted reference composite-master states. Since poles of the composite master

systems have also been placed on the left half plane, the composite master states

will reach to some final value as determined by the constant operators’ forces. This
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implies that composite slave states will converge, which ascertains the stability of

composite master and slave systems (ṡm = ṡs = 0). Based on these results, we can

investigate the stability and convergence of the original master and slave systems.

Let λm, λs be diagonal matrices and xm1 =
(
x1m1, ..., x

k
m1

)T
, xm2 =

(
x1m2, ..., x

k
m2

)T

,xs1 =
(
x1s1, ..., x

l
s1

)T
, xs2 =

(
x1s2, ..., x

l
s2

)T
. In steady state, we have ṡz = ẋz2+λzxz2 =

0 (z = m, s) which implies that xz2 will go to zero. This finding combined with earlier

result ss−Asm = 0 yields xs1 = λs
−1Aλmxm1. By selecting the same diagonal entries

in λm, λs, reference tracking of slave systems is achieved.

Remark 11.2. The proposed algorithm requires fewer equations,k + l + 2kl, to be

solved for synchronizing l-slaves to the references set by k-masters as compared to the

extended state convergence architecture [38] which requires the solution of n×(k + l)+

(n+ 1)× kl design conditions for achieving the same task.

11.3 Simulations Results

The proposed algorithm is validated in MATLAB Simulink environment by consid-

ering two types of teleoperation systems. In the first case, same numbers of master

and salve systems are considered while different numbers of master and slave systems

are considered in the second instance. It will be shown that slave systems are able to

follow the weighted motion of the master systems and synchronization is, therefore,

achieved.

First, a square teleoperation system is set up in simulations where two masters are

communicating with two slaves in the proposed framework. The parameters of the

master systems are assumed to be aim1 = 0, aim2 = −7.1429, bim = 0.2656 while slave

systems are identified as ais1 = 0, ais2 = −6.25, bis = 0.2729. The time delays in the

communication channel are assumed as T imi = 0.1s, T isi = 0.3s, T jmi
∣∣
i ̸=j

= T jsi
∣∣
i ̸=j

=

0.2s. It is further assumed that the slaves are interacting with soft environments

having stiffness kie = 20Nm/rad and all force feedback gains are considered as kjfi =

0.1. The alpha factors are selected as α1
s1 = 0.7, α2

s1 = 0.3, α1
s2 = 0.6, α2

s2 = 0.4 while

poles are placed at p1 = −2, p2 = −10, q1 = −4, q2 = −10. The design conditions

are solved using MATLAB symbolic toolbox by discarding the time delays and the

following gains are obtained:

G1
s1 = 0.6813, G2

s1 = 0.2920, G1
s2 = 0.5840, G2

s2 = 0.3893

k1m = −10.6583, k2m = −2.4041, k1s = −3.5162, k2s = −9.4214

r1s1 = −15.7894, r2s1 = 2.5851, r1s2 = −0.1891, r2s2 = 11.6481

(11.20)
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Note that although time delays are ignored in the above calculations, these are being

considered during simulations. This will establish the robustness of the proposed

scheme to time delays of the communication channel. Now, we run the simulations

with the control gains in Eq (11.20), and the synchronization results are shown in

Figure 11.2 and Figure 11.3. It can be observed that both the slaves are following

the weighted motion of the master systems. Here weighted composite references,

s1s,ref = α1
s1s

1
m + α2

s1s
2
mand s

2
s,ref = α1

s2s
1
m + α2

s2s
2
m are defined for the first and second

slaves, respectively while corresponding position references for the slaves are obtained

through the proposed algorithm and are being tracked effectively.

Figure 11.2: Reference tracking by first slave in 2x2 teleoperation system

We now consider a teleoperation system where three slaves are being operated by

a single master. The parameters for the master and slave systems are the same as

used in previous example. The poles are placed at p1 = −1.6, q1 = −4, q2 = −6, q3 =

−10. Also, stiffness of the environments are assumed as k1e = 10Nm/rad, k2e =

20Nm/rad, k3e = 30Nm/rad. The design conditions are solved with unity alpha fac-

tors and ignoring time delay information and the following control gains are obtained:

G1
s1 = G1

s2 = G1
s3 = 0.9733

k1m = −3.1936, k1s = −5.7444, k2s = −3.5943, k3s = −9.0677

r1s1 = 15.1863, r1s2 = 7.3080, r1s3 = 27.3642

(11.21)
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Figure 11.3: Reference tracking by second slave in 2x2 teleoperation system

The teleoperation system is now setup in MATLAB/Simulink environment with the

time delays in the communication channel being T 1
m1 = T 1

s1 = 0.1s, T 2
m1 = T 1

s2 =

0.15s, T 3
m1 = T 1

s3 = 0.2s. By running the simulations under the control of Eq (??), we

obtain the results as shown in Figure 11.4. It can be observed that slave systems are

following the master system. The force-reflecting behavior of the 1x3 teleoperation

system is also shown in Figure 11.6. It can be seen that weighted force from slaves,

0.1×
∑3

i=1 F
i
e is reflected to the master in a steady state.

The above results show that the proposed scheme can indeed accommodate arbitrary

number of master and slave systems. A comparison of the proposed scheme with [38]

is shown in Table 11.1. It can be seen that the proposed scheme requires fewer control

gains and communication channels as compared to the extended state convergence

architecture while offering similar performance.

11.4 Experimental Results

The proposed scheme is also validated through semi-real-time experiments. Owing

to the availability of a single OMNI device, a 1x3 teleoperation system is set up, as

shown in Figure 11.6. Only the block connections are shown, as the detailed setup

follows Figure 11.1. The motion of the haptic device is constrained to the x-axis, and
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Figure 11.4: Reference tracking by three slaves in 1x3 teleoperation system

Figure 11.5: Force reflection behaviour of 1x3 teleoperation system
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Table 11.1: Comparison with [38]

Sr.
No

System
Con-
fig.

Number of Con-
trol Gains (n=2)

Number of
Communication
Channels

[38] Proposed [38] Proposed
01 2x2 20 12 20 12
02 1x3 17 10 15 9

an operator’s force is generated to drive the master system as given in Eq 11.2. The

master communicates with slaves on time-delayed channels. The reflected force from

the slaves is provided to the haptic device, and thus the force feedback loop is closed

around the operator.

To initiate the experiment, the operator applies a time-varying force onto the master

by moving the haptic device in the reachable x-direction. The resulting motion of all

the slaves is recorded along with the reflected force as sensed by the operator. These

data are displayed in Figure 11.7, Figure 11.8. It can be seen that slave systems are

tracking the reference motion of the master system while a weighted force is sensed

by the operator as well.

11.5 Conclusion

This chapter presents a generalization of the composite state convergence schemes

with respect to the number of master and slave systems. First, possible interactions

between the master and slave systems are considered, and the closed-loop composite-

master and composite-error systems are computed. Second, the composite-error

systems are made autonomous, and the desired responses are assigned to both the

composite-master and composite–error systems, giving rise to a total of k + l + 2kl

design conditions. MATLAB simulations show that the proposed scheme can success-

fully synchronize l− slave systems with the references set by k−master systems. In

the future, the robustness of the scheme to parametric uncertainties will be analyzed

by considering multi-degrees-of-freedom teleoperation systems.
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Figure 11.6: Semi real-time experimental setup for 1x3 system
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Figure 11.7: Reference tracking by slaves in 1x3 teleoperation system

Figure 11.8: Force reflection behaviour of 1x3 teleoperation system



Chapter 12

An Improved Composite State Convergence Architecture

with Disturbance Compensation for Multilateral

Teleoperation Systems

Composite state convergence is a novel scheme for bilaterally controlling a teler-

obotic system. The scheme offers an elegant design procedure and employs only three

communication channels to establish synchronization between a single master and a

single-slave robotic system. This chapter expands the capability of the composite

state convergence scheme to accommodate any number of master and slave systems.

It proposes a disturbance observer-based composite state convergence architecture

where k−master systems can cooperatively control l−slave systems in the presence

of uncertainties. A systematic method is presented to compute the control gains,

while observer gains are determined in a standard way. MATLAB simulations are

performed on symmetric and asymmetric arrangements of single-degree-of-freedom

teleoperation systems to validate the proposed architecture. Finally, experimental

results are obtained using Quanser’s Qube-Servo systems in QUARC/Simulink envi-

ronment.

12.1 Improved CSC Scheme for Multilateral Teleoperation Systems

The proposed scheme offers an improvement over the existing composite state con-

vergence scheme in that the lumped uncertainties can be estimated and compensated

to improve the tracking performance. In addition, measurement of velocity signals

is not required as disturbance observers also estimate these signals. The proposed

enhancement transmits composite variables constructed from the estimated position

and velocity signals. However, measurement of operators’ and environmental forces

is still required for the implementation of the controller. The block diagram of the

proposed scheme is shown in Figure 12.1. Let us consider a single-degree-of-freedom

master and slave system as:

168
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ẋim1 = xim2

ẋim2 = aim1x
i
m1 + aim2x

i
m2 + bimu

i
m + f im

}
, i = 1, 2, ..., k (12.1)

ẋis1 = xis2

ẋis2 = ais1x
i
s1 + ais2x

i
s2 + bisu

i
s + f is

}
, i = 1, 2, ..., l (12.2)

where, subscript ‘z’ is used to denote either master (z = m) or slave (z = s) systems,

and superscript ‘i’ is used to number the master (i = 1, 2, . . ., k) and slave (i =

1, 2, . . ., l) systems. The term f iz contains lumped uncertainty i.e.

f iz =
(
aiz1o − aiz1

)
xiz1 +

(
aiz2o − aiz2

)
xiz2 +

(
bizo − biz

)
uiz

uim = 1
bim

(
−aim1x̂

i
m1 − (aim2 + λim)

x̂im2 + kims
i
m − f̂ im

)
+
∑l

j=1 r
j
mks

j
sid + F i

m

˙̂xim1 = x̂im2 + lim1 (x
i
m1 − x̂im1)

˙̂xim2 = aim1x̂
i
m1 + aim2x̂

i
m2 + bimu

i
m + lim2 (x

i
m1 − x̂im1) + f̂ im

˙̂
f im = lim3 (x

i
m1 − x̂im1)





, i = 1, 2, ..., k

(12.3)

The objective of the proposed controller is to make the slave systems follow the

combined motion of the master systems in the presence of uncertainties. Precisely,

the position of l th slave system will converge to the weighted position of k -master

systems in the presence of uncertainties following the introduction of control inputs

and disturbance observers in Eq (12.3) and Eq (12.4), and the application of the

method of state convergence.

uis =
1
bis

(
−ais1x̂

i
s1 − (ais2 + λis) x̂

i
s2 + kiss

i
s − f̂ is

)

+
∑k

j=1 r
j
sls

j
mid +

∑k

j=1G
j
slF

j
mid

˙̂xis1 = x̂is2 + lis1 (x
i
s1 − x̂is1)

˙̂xis2 = ais1x̂
i
s1 + ais2x̂

i
s2 + bisu

i
s + lis2 (x

i
s1 − x̂is1) + f̂ is

˙̂
f is = lis3 (x

i
s1 − x̂is1)





, i = 1, 2, ..., l

(12.4)

Let us now perform a closed-loop analysis to verify the claims. Let us first introduce
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the composite variables for the master systems as:

sim = xim2 + λimx
i
m1, i = 1, 2, ..., k (12.5)

Taking the time derivative of Eq (12.5) and introducing the control inputs yields the

following closed-loop composite master systems:

ṡim = kims
i
m + bim

l∑

j=1

rjmis
j
sid + bimF

i
m + ξime

i
m, i = 1, 2, ..., k (12.6)

where

eim =
[
eim1 eim2 eim3

]T
=
[
xim1 − x̂im1 xim2 − x̂im2 xim3 − x̂im3

]T

i = 1, 2, ..., k constitute observation errors for the master systems with

ξim =
[
aim1 aim2 + λim 1

]
. The observer error dynamics of master systems can be

written as:

ėim1 = −lim1e
i
m1 + eim2

ėim2 = (aim1 − lim2) e
i
m1 + aim2e

i
m2 + eim3

eim3 = −lim3e
i
m1 + ḟ im




, i = 1, 2, ..., k (12.7)

Linearizing the time delayed terms in Eq (12.6), we obtain:

ṡim = kims
i
m + bim

∑l

j=1 r
j
mis

j
s − bim

∑l

j=1 r
j
miT

j
miṡ

j
s + bimF

i
m + ξime

i
m

i = 1, 2, ..., k
(12.8)

By stacking composite master systems in Eq (12.8), we obtain Eq (C.1). This can be

conveniently written as:

ṡm = kmsm + brmss − brmT ṡs + bmFm + ξmem (12.9)

Combining the closed loop composite master system in Eq (12.9) with observer error

dynamics in Eq (12.7), we obtain:
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[
ṡm

ėm

]
=

[
km ξm

0 om

][
sm

em

]
+

[
brm −brmT

0 0

][
ss

ṡs

]
+

[
bm

0

]
Fm

+

[
0

hm

]
ḟm

(12.10)

It can be seen that observer design can be carried out separately from controller

design. It is assumed that lumped disturbance is slowly varying and therefore con-

vergence of observation error to origin is ensured by comparing the characteristic

equation with the desired polynomial which yields the observer gains.

pm (s) : s3 + (lim1 − aim2) s
2 + (lim2 − aim1 − aim2l

i
m1) s+l

i
m3 = 0, i = 1, 2, ..., k

(12.11)

Now, we define composite variables for the slave systems as:

sis = xis2 + λisx
i
s1, i = 1, 2, ..., l (12.12)

Time-derivative of Eq (12.12) along with control inputs yields closed loop composite

slave systems as:

ṡis = kiss
i
s + bis

∑k

j=1 r
j
sis

j
mid + bis

∑k

j=1G
j
siF

j
mid + ξise

i
s, i = 1, 2, ..., l (12.13)

where eis =
[
xis1 − x̂is1 xis2x̂

i
s2 xis3 − x̂is3

]T
, i = 1, 2, ..., l constitute observation er-

rors for the slave systems with ξis =
[
ais1 ais2 + λis 1

]
. The observer error dynamics

of slave systems can be written as:

ėis1 = −lis1e
i
s1 + eis2

ėis2 =
(
ais1 − lis2

)
eis1 + ais2e

i
s2 + eis3

eis3 = −lis3e
i
s1 + ḟ is

(12.14)

where i = 1, 2, ..., l

The linearization of time-delay entities in Eq (12.13) leads to:
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ṡis = kiss
i
s + bis

∑k

j=1 r
j
sis

j
m − bis

∑k

j=1 r
j
siT

j
sis

j
m + bis

∑k

j=1G
j
siF

j
mi + ξise

i
s

i = 1, 2, ..., l
(12.15)

By stacking the composite slave systems in Eq (12.15), we obtain Eq (C.2). This can

be written in compact form as:

ṡs = ksss + brssm − brsT ṡm + bsGFm + ξses (12.16)

By augmenting closed loop slave composite systems in Eq (12.16) with observer error

dynamics, we obtain:

[
ṡs

ės

]
=

[
ks ξs

0 os

][
ss

es

]
+

[
brs −brsT

0 0

][
sm

ṡm

]
+

[
bsG

0

]
Fm +

[
0

hs

]
ḟs

(12.17)

The above system implies that observers for slave systems can be designed separately

from controllers. To determine the observer gains for slave systems, the characteristic

equation is compared with the desired polynomial. The convergence of observation

error follows from the assumption of slowly varying lumped uncertainties.

ps (s) : s
3 + (lis1 − ais2) s

2 + (lis2 − ais1 − ais2l
i
s1) s+l

i
s3 = 0, i = 1, 2, ..., l (12.18)

Now that observer design is performed separately for the master and slave systems, we

can manipulate composite master and slave system without considering observation

error terms for the purpose of designing control gains. To this end, we plug Eq (12.16)

in Eq (12.9) and rearrange to obtain closed loop composite master systems as:

ṡm = (I − brmT brsT )
−1




(km − brmT brs) sm

+(brm − brmTks) ss

+(bm − brmT bsG)Fm


 (12.19)

We now plug Eq (12.9) in Eq (12.16) and do some algebraic manipulations to get:

ṡs = (I − brmT brsT )
−1




(ks − brsT brm) ss

+(brs − brsTkm) sm

+(bsG − brsT bm)Fm


 (12.20)
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Let α contain the authority factors for the slave systems. Now, we introduce com-

posite state convergence error as:

se = ss − αsm (12.21)

By taking time-derivative of composite state convergence error and using Eq (12.21),

we obtain:

ṡe =

(
(I − brmT brsT )

−1 (ks − brsT brm)

−α (I − brmT brsT )
−1 (brm − brmTkn)

)
se+




(I − brmIbrsT )
−1 (ks − brsT brm)α

−α (I − brmT brsT )
−1 (brm − brmTks)α+

(I − brmT brsT )
−1 (brs − brsTkm)

−α (I − brmT brsT )
−1 (km − brmT brs)



sm+

(
(I − brmT brsT )

−1 (bsG − brsT bmm)

−α (I − brmT brsT )
−1 (bm − brmT bsG)

)
Fm

(12.22)

We now let the composite state convergence error to behave as an autonomous system.

This leads to the following conditions:

(I − brmT brsT )
−1 (ks − brsT brm)α−α (I − brmT brsT )

−1 (brm − brmTks)α

+(I − brmT brsT )
−1 (brs − brsTkm)−α (I − brmT brsT )

−1 (km − brmT brs) = 0
(12.23)

(I − brmT brsT )
−1 (bsG − brsT bm)−α (I − brmT brsT )

−1 (bm − brmT bsG) = 0 (12.24)

We now write augmented system comprising of composite master and composite error

systems as:

[
ṡm

ṡe

]
=

[
a11 a12

a21 a22

][
sm

se

]
+

[
(I − brmT brsT )

−1 (bm − brmT bsG)

0

]
Fm (12.25)
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Figure 12.1: Detailed diagram of disturbance observer-based composite state conver-
gence architecture
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Figure 12.2: Wiring diagram of 2x2 composite state convergence architecture

where,

a11 = (I − brmT brsT )
−1 (km − brmT brs + brm − brmTks)

a12 = − (I − brmT brsT )
−1 (brm − brmTks)

a21 = 0

a22 = (I − brmT brsT )
−1 (ks − brsT brm)−α (I − brmT brsT )

−1 (brm − brmTks)

We now impose desired dynamic behavior onto this augmented system which results

in the following additional design conditions:

(I − brmT brsT )
−1 (km − brmT brs + brm − brmTks) = −p (12.26)

(I − brmT brsT )
−1 (ks − brsT brm)−α (I − brmT brsT )

−1 (brm − brmTks) = −q (12.27)

The design conditions lead to the conclusion that composite errors converge to zero,

implying that composite slave states converge to the weighted composite master

states while their derivatives converge to zero. Based on this, we arrive at xs2 +

λsxs1 = α (xm2 + λmxm1). In addition, closed loop analysis reveals that xs2+λsxs1 =

ṡs, xm2 + λmxm1 = ṡm. Therefore, velocity states converge to zero which implies

xs1 = λ−1
s αλmxm1. By assuming unity scaling factors, the convergence of slave po-

sitions to the weighted positions of master systems is ensured in the presence of

uncertainties.
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12.2 Simulation Results

The proposed enhanced composite state convergence scheme is simulated in MAT-

LAB/Simulink environment on a 2x2 teleoperation system. The nominal parameters

for the master and slave systems are given as:

a1m =

[
0 1

0 −7.8572

]
, b1m =

[
0

0.3187

]

, a2m =

[
0 1

0 −6.4286

]
, b2m =

[
0

0.2125

]

a1s =

[
0 1

0 −7.500

]
, b1s =

[
0

0.3275

]
,

a2s =

[
0 1

0 −8.1250

]
, b2s =

[
0

0.3275

]

(12.28)

In addition, slaves interact with environments having stiffness as k1e = k1e = 20Nms/rad.

The closed loop poles of the augmented system are placed at p = diag (2, 4), q =

diag (2, 10) and design conditions in Eq (12.23), Eq (12.24), Eq (12.26), Eq (12.27)

are solved which yields the following controller and observer gains:

g1s1 = 0.6813, g2s1 = 0.1947, g1s2 = 0.5840, g2s2 = 0.2595

k1m = −4.6967, k2m = −2.4294, k1s = −1.4661, k2s = −9.4077

r1s1 = −4.6281, r2s1 = 0.3438, r1s2 = 10.8245, r2s2 = 9.7045

(12.29)

L1
om =

[
0.0082 0.2055 2.70

]
× 104,

L2
om =

[
0.0084 0.2163 2.70

]
× 104

L1
os =

[
0.0083 0.2081 2.70

]
× 104,

L2
os =

[
0.0082 0.2035 2.70

]
× 104

(12.30)

After computing the gains, we run simulations with the following plant parameters:

a1rm = a2rm =

[
0 1

0 −7.1429

]
, b1rm = b2rm =

[
0

0.2656

]

a1rs = a2rs =

[
0 1

0 −6.25

]
, b1rs = b2rs =

[
0

0.2729

] (12.31)
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In Eq (12.31), superscript ‘r’ is added to denote real plant parameters, which differ up

to 30% from the nominal parameters. The simulation results with constant operators’

forces of 0.5N are depicted in Figure 12.3 and Figure 12.5. It can be seen that the

composite reference is well-tracked by the composite slave systems, and the slave

positions also converge to the composite reference, which is in line with the theoretical

results.

Figure 12.3: Reference tracking by first slave system

The proposed scheme is also compared with the existing composite state convergence

scheme for the multilateral teleoperation system [110]. The existing composite state

convergence scheme does not utilize disturbance observers. The same control gains

are used to simulate both the proposed and existing schemes, while the former scheme

employs observer gains as well. The uncertainty levels in the control input coefficients

of both slaves are increased, and simulations are performed. The position tracking

errors of the slaves are recorded in Figure 12.5 and Figure 12.6. It can be seen that

the proposed scheme offers fast transient performance as compared to the existing

scheme. In this way, the superiority of the proposed scheme is established over the

existing one.
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Figure 12.4: Reference tracking by second slave system

Figure 12.5: Tracking error for the first slave by the proposed and existing schemes
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Figure 12.6: Tracking error for the second slave by the proposed and existing schemes

12.3 Experimental Results

The proposed scheme is verified through experimentation on three Qube servo-2 plat-

forms which are arranged to form a 1x2 teleoperation system as shown in Figure 12.7.

In order to determine controller and observer gains for the master and slave systems,

the following nominal models are utilized:

Figure 12.7: Experimental setup to test improved CSC architecture on multilateral
teleoperation system
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aiz =

[
0 1

0 −6.67

]
, biz =

[
0

149.34

]
(12.32)

It is assumed that slaves are interacting with a soft environment having a stiffness

of 1Nms/rad. It is further assumed that time delay between the master and first

slave is 0.1s while it is 0.2s between the master and second slave. The closed loop

poles are selected as p = 27.4, q1 = 10, q2 = 40 and design conditions are solved using

MATLAB symbolic toolbox which yields the following control gains:

k1m = −180.025, k1s = −8.445, k2s = −17.938

G1
s1 = 0.090, G1

s2 = 0.1292

r1s1 = −0.0339, r1s2 = −0.0098

(12.33)

In order to compute the observer gains, we utilize the nominal models and place all

the observer poles at 30 which yield the following master and slave observer gains:

Loz =
[
0.0083 0.2144 2.70

]
× 104 (12.34)

The teleoperation system is now set up in Simulink/QUARC environment such that

the master system communicates its composite signal on the time-delayed channels

to the two slave systems via two stream serves having IDs ‘0’ (udp : //localhost :

18000? peer =′ any′) and ‘1’ (udp : //localhost : 18001? peer =′ any′). In addition to

the composite signal, the master system also sends the operator’s force on the time-

delayed channels to the slave systems via two stream serves to have IDs ‘2’ (udp :

//localhost : 18002? peer =′ any′) and ‘3’ (udp : //localhost : 18003? peer =′ any′).

In response, slave systems send their composite signals to the master system via

stream clients having IDs ‘4’ (udp : //localhost : 18000) and ‘6’ (udp : //localhost :

18001). Slave systems also send force feedback to the master system using stream

clients having IDs ‘5’ (udp : //localhost : 18002) and ‘7’ (udp : //localhost : 18003).

The data received by stream servers is demultiplexed to read composite and force

signals from the two slave systems. Two additional stream servers having IDs ‘10’

(udp : //localhost : 18004? peer =′ any′) and ‘11’ (udp : //localhost : 18005? peer =′

any′) are installed on the master side for the purpose of recording slave position

signals. This also needs the deployment of two additional stream clients at the slave
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sides with IDs ‘8’ (udp : //localhost : 18004) and ‘9’ (udp : //localhost : 18005).

During the experiment, the operator moves the master’s servo-disk while slave-servo

disks interact with their virtual environments. The operator starts experiencing a

greater environmental force as he continues to increase the rotational angle of the

servo disk. The experiment is run for 300 seconds, and the recorded results are

displayed in Fig Figure 12.8 and Figure 12.9, Figure 12.10.

Figure 12.8: Composite states of 1x2 teleoperation system

It can be seen from Figure 12.8 that composite signals of the slave systems follow the

master’s composite signal. In theory, this should imply the convergence of position

signals, which can be verified from Figure 12.9. In addition to position tracking, force

reflection results in Figure 12.10 suggest that the proposed scheme can be used to

design teleoperation systems.
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Figure 12.9: Position states of 1x2 teleoperation system

Figure 12.10: Force reflection behaviour of 1x2 teleoperation system
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12.4 Conclusion

This chapter has proposed a disturbance observer-based scheme for controlling a

multi-master, multi-slave teleoperation system through a composite state convergence

methodology. At first, composite variables are constructed through estimated position

and velocity states, and closed-loop composite master and composite slave systems

are found. By augmenting the composite master and composite error systems and

employing the method of state convergence, control gains, and observer gains are

determined. The stability of the scheme is guaranteed under fixed-time delays. The

proposed scheme is validated through simulations as well as experimentation in MAT-

LAB/Simulink/QUARC environment by considering different arrangements of master

and slave systems. Comparison with the existing scheme shows that the proposed

scheme can indeed counter the effect of disturbances while ensuring the tracking of

references by slave systems, which are set by the master systems. Future work in-

volves designing force observers to eliminate the dependence of design procedures on

environmental parameters.



Chapter 13

Conclusions and Future Work

13.1 Conclusions

This thesis presents modified versions of state convergence architecture for control-

ling bilateral and multilateral teleoperation systems. In addition, a novel composite

state convergence architecture to reduce the complexity of existing state convergence

architecture for both bilateral and multilateral teleoperation systems is presented.

In the first part of the thesis, modifications in SC architecture have been proposed

to address the shortcomings in the original SC architecture. The first modification

is proposed to counter the effect of parametric uncertainties using disturbance ob-

servers. Secondly, a nonlinear disturbance observer is introduced to ensure large

range operation of SC architecture based on TS fuzzy description of master and slave

systems. The same extended state observer-based approach is used to develop state

convergence architectures for multilateral teleoperation systems. The second part of

the thesis discusses the novel composite state convergence scheme, which lowers the

complexity by reducing the number of communication channels in the existing SC

architecture for a bilateral teleoperation system. Furthermore, the CSC architecture

is investigated with a feedback linearization scheme for non-linear bilateral teleoper-

ation. Moreover, another enhancement is proposed in CSC architecture to counter

parametric uncertainties through disturbance observers. The CSC architecture is

also extended to a multilateral teleoperation framework with reduced communication

channels to testify to its efficacy. In conclusion, the prominent features of the pro-

posed control architectures are summarized in Table 13.1 based on certain criteria

which include mainly the number of communication channels, variables transmitted

over communication channels, number of design equations, model type, comparison

with other architecture, the impact of time delay, position tracking behavior, state

estimation and disturbance compensation, force reflection behavior, motion scaling

feature, and extension to a multilateral teleoperation system. The comparison be-

tween the proposed architectures and their advantages and limitations is also stated

in Table 13.1.

184
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13.2 Future Work

1. In the future, potential research will be to estimate the parameters of the re-

mote environments and consider those parameters in the control design. These

parameters will be fed back to the master controller to improve a better contact

sensation to the user in the presence of time delays. This approach to design-

ing a controller will have direct access to the model of the remote environment

rather than sending slave sensory data to the operator, which will eventually

provide a better sense of telepresence for improved user feedback without any

lag under communications delays.

2. There is a need to search for a new composite variable that could be transmitted

over the communication channel to reduce the number of design variables. It

will help in reducing the complexity of overall architecture.

3. There is room to update the method of state convergence with different safety

limits keeping in view the workspace of manipulators for different applications.

4. Different variants of state convergence can be introduced to perform collabora-

tive tasks such as multi-master/multi-slave (MM/MS) and single-master/multi-

slave (SMMS).

5. Linear matrix inequalities (LMI) can be used to perform the stability analysis

of the state convergence method for a multilateral teleoperation system.

6. Different optimization techniques can be used to compute the control gains for

the state convergence method.

7. More rigorous analysis is required for the force-tracking behavior of the state

convergence method.
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Table 13.1: Proposed state convergence-based teleoperation control architectures during Ph.D.

Criteria
Enhanced SC
Arch with Distur-
bance Observer

Improved SC
Architecture with
TS-Fuzzy Control

Composite SC
Architecture

Composite SC
Architecture for
Nonlinear System

DoB-based
Three-Channel
Composite SC
Architecture

Number of Comm
channel

Five Five Three Three Three

Variables trans-
mitted over
Comm Channel

Operator’s Force,
Master Position,
Master Velocity,
Slave Position,
Slave Velocity

Operator’s Force,
Master Position,
Master Velocity,
Slave Position,
Slave Velocity

Operator’s Force,
Master Compos-
ite, Slave Com-
posite

Operator’s Force,
Master Compos-
ite, Slave Com-
posite

Operator’s Force,
Master Compos-
ite, Slave Com-
posite

Number of Design
equations

5n+ 3 3n+ 1
Four (indepen-
dent of n)

Four (indepen-
dent of n)

5n+ 3

Model Type
nth order SISO
nonlinear system

nth order SISO
nonlinear system

nth order SISO
linear system

nth order SISO
nonlinear system

nth order SISO
nonlinear system

Comparison With
Other Architec-
tures

Radial basis
function Neu-
ral Network
(RBFNN) con-
troller

No Fuzzy PDC
with DOB tech-
nique exists with
desired dynamic
feature

Three-Channel
Error Force Com-
pensated (EFC)
Control Scheme

Comparison is not
carried out in this
study

Genetically Opti-
mized PD Based
Error Force
Compensated
(EFC-PD) Con-
troller

Impact of Time
Delay

System is stable
under small con-
stant time delay
by virtue of pole
assignment

System is stable
under small con-
stant time delay
by virtue of pole
assignment

System is stable
under small con-
stant time delay
by virtue of pole
assignment

System is stable
under small con-
stant time delay
by virtue of pole
assignment

System is stable
under small con-
stant time delay
by virtue of pole
assignment
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Criteria

Enhanced SC

Arch with Distur-

bance Observer

Improved SC

Architecture with

TS-Fuzzy Control

Composite SC

Architecture

Composite SC

Architecture for

Nonlinear System

DoB-based

Three-Channel

Composite SC

Architecture

Position tracking

behavior

Position tracking

is established un-

der constant oper-

ator’s force

Position tracking

is established un-

der constant oper-

ator’s force

Position tracking

is established un-

der constant oper-

ator’s force

Position tracking

is established un-

der constant oper-

ator’s force

Position tracking

is established un-

der constant oper-

ator’s force

State Estimation

and Disturbance

Compensation

ESO is used

to estimate the

states and com-

pensate for the

disturbances on

the master and

slave sides

Nonlinear Distur-

bance Observer is

used to estimate

the states and

compensate the

disturbances on

the master and

slave sides

State estimators

and disturbance

compensators are

not deployed

State estimators

and disturbance

compensators are

not deployed

ESO is used to es-

timate the states

and compensate

the disturbances

on the master

and slave sides

Force Reflection

behavior

Reaction force is

displayed to the

operator through

a haptic device

Reaction force is

displayed to the

operator through

a haptic device

Reaction force is

displayed to the

operator through

a haptic device

Reaction force is

displayed to the

operator through

a haptic device

Reaction force is

displayed to the

operator through

a haptic device

Motion Scaling

Motion Scaling

feature is not

available

Motion Scaling

feature is not

available

Motion Scaling

feature is avail-

able

Motion Scaling

feature is avail-

able

Motion Scaling

feature is not

available
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Criteria

Enhanced SC

Arch with Distur-

bance Observer

Improved SC

Architecture with

TS-Fuzzy Control

Composite SC

Architecture

Composite SC

Architecture for

Nonlinear System

DoB-based

Three-Channel

Composite SC

Architecture

Extension to Mul-

tilateral System

Extension to mul-

tiple systems is

carried out

Extension to mul-

tiple systems is

not carried out

Extension to mul-

tiple systems is

carried out

Extension to mul-

tiple systems is

not carried out

Extension to mul-

tiple systems is

carried out



Appendix A

State Convergence Design Equations

The solution of design conditions Eq (6.28) - Eq (6.31) yields the following control

gains:

G2 =
bm (Tq + 1)

bs (Tp+ 2Tbmrm + T 2bmprm + T 2bmqrm + 1)
(A.1)

km = −p− bmrm − Tpbmrm (A.2)

ks =
−bmpqrmT

2 − pqT − q + bmrm
Tp+ 2Tbmrm + T 2pbmrm + T 2qbmrm + 1

(A.3)

rs =
−p+ q − bmrm − Tpbmrm

bs + Tpbs + 2Tbsbmrm + T 2pbsbmrm + T 2qbsbmrm
(A.4)
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Appendix B

Stability of 2x2 and 1x3 Teleoperation Systems

Proposition 1 :

The closed loop composite master-error system of Eq (11.17) under the control gains

found as a solution of Eq (11.19), Eq (11.20) is Hurwitz-stable if and only if there

exists a symmetric positive definite matrix P∈R(k+l)×(k+l) such that

[
P11 P12

P T
12 P22

]
> 0

[
Ã11 Ã12

Ã21 Ã22

]T [
P11 P12

P T
12 P22

]
+

[
P11 P12

P T
12 P22

]T [
Ã11 Ã12

Ã21 Ã22

]
< 0

(B.1)

The Hurwitz stability of composite master-error system Eq (11.17) implies the sta-

bility of master-error system as closed loop analysis yieldsṡz = ẋz2+λzxz2 (z = m, s).

Therefore, the teleoperation system with small constant time delays of the communi-

cation channel remains stable as long as Eq (B.1) is satisfied.

We will investigate the stability of 2x2 and 1x3 teleoperation systems through the

application of Eq (B.1) in section 11.3. By plugging the control gains of Eq (11.21) in

Eq (11.17) and considering time delays, the system matrix of a composite master-error

system of 2x2 teleoperation setup is obtained as:

[A =




−8.1069 0.2066 0.7583 1.5217

3.0295 −2.1322 0.8564 0.8796

−12.9114 0.7136 −3.4446 0.5139

−5.0248 2.1746 −1.6064 −11.5093




(B.2)

The feasibility of LMI in Eq (B.1) yields the following symmetric positive definite

matrix, which establishes the stability of a closed-loop teleoperation system:
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P =




0.3062 0.0150 −0.1533 0.0186

0.0150 0.3529 0.0575 0.0367

−0.1533 0.0575 0.1693 −0.0096

0.0186 0.0367 −0.0096 0.0531




(B.3)

Now, let us analyze the stability of the 1x3 teleoperation setup. By substituting

Eq (11.21) and time delay values in Eq (11.17), following system matrix is obtained:

A =




−1.6160 0.5751 1.1244 3.0831

0.6857 −6.5578 −1.5904 −4.3608

0.4994 −0.7471 −5.0551 −4.0054

2.4295 −1.4340 −2.8037 −16.7554




(B.4)

The solution of LMI in (B.1) yields the following symmetric positive definite matrix,

and hence stability is verified under small time delays:

P =




0.5292 0.0215 0.0528 0.0799

0.0215 0.0908 −0.0119 −0.0132

0.0528 −0.0119 0.1378 −0.0182

0.0799 −0.0132 −0.0182 0.0544




(B.5)



Appendix C

Composite Master and Slave Systems for Multilateral

Teleoperation Systems




ṡ1m

ṡ2m
...

ṡkm



=




k1m 0 · · · 0

0 k2m · · · 0
...

0 0 · · · kkm







s1m

s2m
...

skm



+




b1mr
1
m1 b1mr

2
m1 · · · b1mr

l
m1

b2mr
1
m2 b2mr

2
m2 · · · b2mr

l
m2

...

bkmr
1
mk bkmr

2
mk · · · bkmr

l
mk







s1s

s2s
...

sls



−




b1mr
1
m1T

1
m1 b1mr

2
m1T

2
m1 · · · b1mr

l
m1T

l
m1

b2mr
1
m2T

1
m2 b2mr

2
m2T

2
m2 · · · b2mr

l
m2T

l
m2

...

bkmr
1
mkT

1
mk bkmr

2
mkT

1
mk · · · bkmr

l
mkT

l
mk







ṡ1s

ṡ2s
...

ṡls



+




b1m 0 · · · 0

0 b2m · · · 0
...

0 0 · · · bkm







F 1
m

F 2
m

...

F k
m



+




ξ1m 0 · · · 0

0 ξ2m · · · 0
...

0 0 · · · ξkm







e1m

e2m
...

ekm




(C.1)




ṡ1s

ṡ2s
...

ṡls



=




k1s 0 · · · 0

0 k2s · · · 0
...

0 0 · · · kls







s1s

s2s
...

sls



+




b1sr
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Atashzar. Review of advanced medical telerobots. Applied Sciences, 11(1):1–
48, 2021.

[109] Alireza Mohammadi. Disturbance Observer Design for Robotic and Telerobotic
Systems. PhD thesis, 09 2011.

[110] U Farooq V. E. Balas Z. Chen C. Chang A. Hanif M.U. Asad, J. Gu. A com-
posite state convergence scheme for multilateral teleoperation systems. Studies
in Informatics and Control, 30(2):33–42, 2002.

[111] S. Munir and W.J. Book. Wave-based teleoperation with prediction. In Proc
American Control Conf., volume 6, pages 4605–4611 vol.6. IEEE, 2001.

[112] S. Munir and W.J. Book. Internet-based teleoperation using wave variables with
prediction. IEEE/ASME Transactions on Mechatronics, 7(2):124–133, 2002.

[113] R. Muradore and P. Fiorini. A review of bilateral teleoperation algorithms.
Acta Polytechnica Hungarica, 13(1):191–208, 2016.

[114] K. Natori N. Iiyama and K. Ohnishi. Bilateral teleoperation under time-varying
communication time delay considering contact with environment. Electronics
and Communications in Japan, 92(7):38–46, 2009.

[115] M. Xia V. Gupta N. Kottenstette, M. J. McCourt and P. J. Antsaklis. On rela-
tionships among passivity, positive realness, and dissipativity in linear systems.
Automatica, 50(4):1003–1016, 2014.

[116] A. K. Pandya N. P. Lucas and R. D. Ellis. Review of multi-robot taxonomy,
trends, and applications for defense and space. Unmanned Systems Technology
XIV, SPIE Defense, Security, and Sensing, 8387, 2012.

[117] E. Naerum and B. Hannaford. Global transparency analysis of the lawrence
teleoperator architecture. In Proc. IEEE Int. Conf. Robot. Auto, pages 4344–
4349. IEEE, 2009.



209

[118] L. Ni and D. W. L. Wang. A gain-switching control scheme for position-error-
based bilateral teleoperation: Contact stability analysis and controller design.
International Journal of Robotics Research,, 23(3):255–274, 2004.

[119] G. Niemeyer and J.-J. E. Slotine. Towards force-reflecting teleoperation over
the internet. In Proc. Int. Conf. Robot. Auto. IEEE, 1998.

[120] NSHA. Robot-assisted surgery at the qeii nova scotia: Medtronic surgical robot
for spinal surgeries, August 2022.

[121] J. Barrio M. Ferre R. Aracil P. G-Borras, P. G-Robledo. Technofusion re-
mote handling laboratory: contributions to nuclear fusion facilities maintenance
tasks. In Proc. Intl. Conf. on Applied Robotics for the Power Industry, pages
1–6. IEEE, 2010.

[122] V. Gupta M. J. McCourt Y. Wang P. Wu M. Xia H. Yu P. J. Antsaklis,
B. Goodwine and F. Zhu. Control of cyber-physical systems using passivity
and dissipativity-based methods. European J. of Control, 19(5):379–388, 2013.

[123] D. Mikolajewski L. Apiecionek D. Sl zak P. Prokopowicz, J. Czerniak. The-
ory and applications of ordered fuzzy numbers: A tribute to professor witold
kosinski. In Proc. Springer Nature. Springer, 2017.

[124] J.H. Park and H.C. Cho. Sliding-mode-based impedance controller for bilateral
teleoperation under varying time-delay. In Proc. IEEE/RSJ Intl. Conf. Rob.
and Auto., page 1025–1030. IEEE, 2001.

[125] Nicola Piccinelli and Riccardo Muradore. A passivity-based bilateral teleop-
eration architecture using distributed nonlinear model predictive control. In
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 11466–11472. IEEE, 2020.

[126] H. Van Quang and J. H. Ryu. Stable multilateral teleoperation with time
domain passivity approach. In Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5890–5895. IEEE, 2013.

[127] J. Zhao R. Hao, J. Wang and S. Wang. Observer-based robust control of 6-
dof parallel electrical manipulator with fast friction estimation. IEEE Trans.
Autom. Sci. Eng., 13(3):1399–1408, 2016.

[128] K. Natori K. Ohnishi R. Kubo, N. Iiyama and H. Furukawa. Performance
analysis of a three-channel control architecture for bilateral teleoperation with
time delay. IEEE Transactions on Industry Applications, 127(12):1224–1230,
2007.



210

[129] W. Gu R. Wang, C. Xia and K. Li. Fuzzy singularly perturbed model and stabil-
ity analysis of bilateral teleoperation system. 30th Chinese Control Conference,
pages 3664–3668, 2011.

[130] J. Rebelo and A. Schiele. Time domain passivity controller for 4-channel time
delay bilateral teleoperation. IEEE Transactions on Haptics, 8(1):79–89, 2015.

[131] B. Rosa. Intuitive teleoperation of active catheters for endovascular surgery. In
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Hamburg, pages 2617–2624. IEEE, 2015.

[132] Jee-Hwan Ryu, Jordi Artigas, and Carsten Preusche. A passive bilateral control
scheme for a teleoperator with time-varying communication delay. Mechatron-
ics, 20(7):812–823, 2010. Special Issue on Design and Control Methodologies in
Telerobotics.

[133] Jee-Hwan Ryu, Quang Ha-Van, and Aghil Jafari. Multilateral teleoperation over
communication time delay using the time-domain passivity approach. IEEE
Transactions on Control Systems Technology, 28(6):2705–2712, 2020.

[134] D. Stipanovic S. Deka and T. Kesavadas. Stable bilateral teleoperation with
bounded control. IEEE Trans. Control Syst. Technol, 27(6):2351–2360, 2019.

[135] W.-H. Zhu S. E. Salcudean, M. Zhu and K. Hashtrudi-Zaad. Transparent bilat-
eral teleoperation under position and rate control. Int. J. Robot. Res, 19:1185–
1202, 2000.

[136] A.K. Pandya S. Eslamian, L. A. Reisner. Development and evaluation of an
autonomous camera control algorithm on the da vinci surgical system. Int J
Med Robot, 16(2):29–39, 2020.

[137] H. Momeni S. Ganjefar and F. Janabi-Sharifi. Teleoperation systems design
using augmented wave-variables and smith predictor method for reducing time-
delay effect. In Proc Symposium on Intelligent Control, pages 333—-338. IEEE,
2002.

[138] A. E. Saddik S. Islam, P. X. Liu and Y. B. Yang. Bilateral control of teleopera-
tion systems with time delay. IEEE/ASME Trans. Mechatronics, 20(1):155–159,
2015.

[139] B. J. Buckham S. Soylu, F. Firmani and R. P. Podhorodeski. Comprehen-
sive underwater vehicle-manipulator system teleoperation. In Proc. MTS/IEEE
OCEANS, Seattle, WA, pages 1–8. IEEE, 2010.

[140] K. Natori S. Susa and K. Ohnishi. Three-channel micro-macro bilateral control
system with scaling of control gains. In Proc. IEEE Int. Conf. Indus. Electr.,
pages 2598–2603. IEEE, 2008.



211

[141] Y. Jia S. Wang, B. Xu and Y. Liu. Real-time mobile robot teleoperation over
ip networks based on predictive control. pages 2091—-2096. IEEE, 2007.

[142] S. Tafazoli S.P. DiMaio S.E. Salcudean, K. Hashtrudi-Zaad and C. Reboulet.
Bilateral matched impedance teleoperation with application to excavator con-
trol. control systems. IEEE, 1999:29–37, 2004.

[143] O. Sename. H-infinity control of a teleoperation drive-by-wire system with
communication time-delay. In Proc. Conf. on Control and Automation. IEEE,
2006.

[144] J. Sheng and M.W. Spong. Model predictive control for bilateral teleoperation
systems with time delays. In Canadian Conference on Electrical and Com-
puter Engineering 2004 (IEEE Cat. No.04CH37513), volume 4, pages 1877–
1880 Vol.4. IEEE, 2004.

[145] A.C. Smith and K. Hashtrudi-Zaad. Smith predictor type control architectures
for time delayed teleoperation. The International Journal of Robotics Research,
25(8):797–818, 2006.

[146] C. Smith and H. Christensen. A minimum jerk predictor for teleoperation
with variable time delay. In Proc IEEE/RSJ Intl. Inteli. Rob. and Syst., pages
5621—-5627. IEEE, 2009.

[147] S. S.N.F. Nahri, S. Du and B.J. Van Wyk. A review on haptic bilateral teleop-
eration systems. J Intell Robot Syst, 104(13), 2022.

[148] Da Sun, Qianfang Liao, Xiaoyi Gu, Changsheng Li, and Hongliang Ren. Mul-
tilateral teleoperation with new cooperative structure based on reconfigurable
robots and type-2 fuzzy logic. IEEE Transactions on Cybernetics, 49(8):2845–
2859, 2019.

[149] Da Sun, Fazel Naghdy, and Haiping Du. Wave-variable-based passivity con-
trol of four-channel nonlinear bilateral teleoperation system under time delays.
IEEE/ASME Transactions on Mechatronics, 21(1):238–253, 2016.

[150] Da Sun, Fazel Naghdy, and Haiping Du. Neural network-based passivity con-
trol of teleoperation system under time-varying delays. IEEE Transactions on
Cybernetics, 47(7):1666–1680, 2017.

[151] T. Doi M. Oda T. Yoshikawa T. Imaida, Y. Yokokohji. Ground-space bilateral
teleoperation of ets-vii robot arm by direct bilateral coupling under 7-s time
delay condition. IEEE Transactions on Robotics and Automation, 20(3):499–
511, 2004.



212

[152] X. X. Huang T. J. Hu and Q. Tan. Active disturbance rejection controller for
space teleoperation. In Proc. International Conference on Automatic Control
and Artificial Intelligence (ACAI 2012), Xiamen, pages 334–337. IEEE, 2012.

[153] Huang Fanghao Chen Zheng Wang Tao Gu Jason Zhu Shiqiang Tang,
Jianzhong. Disturbance-observer-based sliding mode control design for nonlin-
ear bilateral teleoperation system with four-channel architecture. IEEE Access,
PP:1–1, 05 2019.

[154] Jianzhong Tang, Fanghao Huang, Zheng Chen, Tao Wang, Jason Gu, and
Shiqiang Zhu. Disturbance-observer-based sliding mode control design for non-
linear bilateral teleoperation system with four-channel architecture. IEEE Ac-
cess, 7:72672–72683, 2019.

[155] Yuan Tangqing, Zheng Min, and Zhang Ke. Control of multilateral teleopera-
tion system based on the generalized wave variables. In 37th Chinese Control
Conference (CCC), pages 132–136. IEEE, 2018.

[156] L.Kovacs andZ.Benyo T.Haidegger, B.Benyo. Force sensing and force control
for surgical robots. In IFAC Proceeding, volume 42, pages 401–406. IFAC, 2009.

[157] U. Tumerdem. Three-channel control architecture for multilateral teleoperation
under time delay. Turkish Journal of Electrical Engineering Computer Sciences,
27(1):120–138, 2019.
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