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Abstract 

Apple and cannabis are two economically and culturally important crops grown around 
the world for a diversity of end uses. Both apple and cannabis stand to benefit immensely 
from genomics assisted breeding. Discovering the genetic control of key traits is 
necessary to advance genomics assisted breeding of both apple and cannabis. The 
objective of this thesis was to characterize genomic and phenotypic diversity across apple 
and cannabis and leverage insights from genotype-phenotype associations to uncover the 
genetic control of key traits. To accomplish the outlined objectives, I first undertook a 
phenomic characterization of Canada’s Apple Biodiversity Collection (ABC) to quantify 
apple phenotypic diversity across 39 fruit quality and phenology traits from over 20,000 
individual apples sampled from 1,000 accessions. I measured a wide range of phenotypic 
variation that can be leveraged for future apple improvement. For example, apples varied 
61-fold in weight, 18-fold in acidity, and 100-fold in phenolic content. I measured 
dramatic changes to apple physiology that occurred during 3 months of cold storage: on 
average, apples lost 39% of their firmness, 31% of their acidity, and 9% of their weight, 
but gained 7% in soluble solids. Next, I paired the apple phenotype data with over 
260,000 genetic markers sequenced across the ABC and conducted genome-wide 
association studies (GWAS) to uncover genetic markers associated with fruit quality and 
phenology traits. I identified novel associations for phenolic content and an association 
for softening that overlapped with a previously reported locus. In addition, I identified 
that allelic variation at the NAC18.1 transcription factor was associated with numerous 
ripening related traits including harvest date, firmness at harvest, and firmness after 
storage. Next, I used over 100,000 genetic markers across more than 137 Cannabis 
samples to conduct GWAS for 40 chemical compounds. In addition, I examined the 
genetic and chemical basis for cannabis labelling. I found that overall Indica/Sativa 
labelled samples were genetically and chemically indistinct. However, I identified 
variation in the content of three sesquiterpenes that was associated with Indica/Sativa 
labels and was also controlled by genetic variation at tandem arrays of terpene synthase 
genes. Finally, in Chapter 5, I use apple as a case study to outline a pathway for how 
putatively causal genetic variants identified from GWAS can be leveraged to develop 
new cultivars through gene editing. While cannabis and apple each face unique 
challenges in their cultivation and breeding, the research presented here provides a solid 
foundation for the genomics-assisted improvement of new cultivars in both crops.  
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Chapter 1: Introduction 

Introduction 
 
Over the course of the 10,000 years of agriculture, humans have domesticated and 

improved numerous crop species for food, fiber, fuel, and medicines. The improvement 

of crops, through plant breeding, continues today to meet changing climates, taste 

preferences and evolving pest and disease pressures. The global population is expected to 

reach 9 billion by 2050 and with this growing population comes increasing demands for 

high quality food and plant products, all while overcoming the threats posed by climate 

change (Tian et al. 2021). Plant breeding requires new tools and innovations to rapidly 

develop improved cultivars that can meet the growing challenges faced by agriculture. 

Since the sequencing of the first plant genome, the Arabidopsis genome in 2000 

(Arabidopsis Genome Initiative 2000), a new era of plant breeding began that aimed to 

capitalize upon the insights provided by the study of plant genomics (Y. Sun et al. 2021). 

Genomics assisted breeding is one such innovation that involves using information 

regarding an organism’s genome to make informed decisions through the breeding 

process to facilitate faster and more efficient breeding (Varshney et al. 2021). Although 

over two decades have passed since the first plant genome was sequenced, not all crops 

have reaped the benefits of genomics assisted breeding. To secure a future of sustainable 

crop production, emphasis should be placed on advancing genomic resources across 

diverse crop species to enable efficient breeding of improved cultivars. Two such crops 

that can benefit from the application of genomics assisted breeding, are apple and 

cannabis. 
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The apple (Malus domestica) has been cultivated for over 3,000 years across many 

temperate regions around the world (Zohary, Hopf, and Weiss 2012; Cornille et al. 2014). 

The apple is one of the most widely produced and consumed fruits in the world, ranking 

second in economic value among fruit crops with an estimated global production of $67 

billion US in 2021 (FAOSTAT 2021). Apples are valued for their numerous end-uses, 

including for cider production, processing, and fresh consumption. Breeding improved 

apple cultivars is necessary to meet demands fruit quality fruit, especially in the face of 

climate change. Breeding new apple cultivars is challenging due to the long juvenile 

phase of 3-7 years. For example, it can take over 25 years for breeding programs to go 

from an initial cross to commercial release (Peil et al. 2008). Furthermore, the factors that 

control fruit quality and phenology traits are complex and our understanding of these 

traits is limited to only a few elite varieties that account for most of the world’s apple 

production. For example, in 2018, over half of apple production in the USA was 

accounted for by only 4 cultivars (“US Apple and Pear Forecast” n.d.). Furthermore, 

genetic analysis has revealed that many of the commercially available apples are closely 

related to one another (Migicovsky, Gardner, et al. 2021). Understanding how fruit 

quality and phenology quality traits vary across the diversity of Malus domestica is vital 

to identifying unique phenotypes that can be bred into new cultivars. Overall, the 

elucidation of the genetic control of fruit quality and phenology traits is essential for the 

successful application of genomics assisted breeding for apple cultivar development.  

Cannabis (Cannabis sativa) is another important crop that has been cultivated 

since Neolithic times and is grown around the world (G. Ren et al. 2021). Cannabis is a 

diverse plant species that is grown for food, fiber, medicine and most notably for its use 
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as a psychoactive substance. People have been consuming cannabis for its psychoactive 

effects for over 2,500 years (Lawler 2019). However, in modern times cannabis 

cultivation has been prohibited due to its popular use as a recreational drug. In recent 

years, the genetic study of cannabis has increased due to the more favourable regulations 

surrounding its cultivation and due to the renewed interested in fiber-type cultivars for 

fiber and grain (Fike 2016). In a small number of countries, legalization of cannabis 

products for recreational and medicinal use has occurred in recent years, leading to 

growing global market that has an estimated value of over US$340 billion (Naville 2019). 

Along with cannabis legalization, increased focused is being placed on determining the 

genetic control of quality traits, such as aroma, for the targeted breeding of drug-type 

cannabis. However, studies on cannabis have for the most part been limited to the 

examination of fiber-type cannabis (Petit, Salentijn, Paulo, Denneboom, and Trindade 

2020; Petit, Salentijn, Paulo, Denneboom, van Loo, et al. 2020). Despite the growing 

commercial market, cannabis genomics research continues to lag behind others crops due 

to the historical and present day restrictions on its cultivation, even for research purposes 

(G. Ren et al. 2021). Overall, cannabis has arguably been left behind in the genomics 

revolution compared to other crops (Hesami et al. 2020).  

 

Cannabis and apple are similar in that they are both valued for the diversity in their 

quality attributes and end uses. To advance genomics assisted breeding in apples and 

cannabis, the genetic control of commercially relevant traits must be characterized. 

Genetic mapping, specifically genome-wide association studies (GWAS), has served as 

an important approach for identifying genes controlling traits by uncovering genotype-
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phenotype associations. Cannabis and apple both stand to benefit from increased 

examination of the genetic control of commercially relevant traits through GWAS. Given 

the importance placed upon quality attributes that are sought after and expected from 

apple and cannabis cultivars, elucidating the genetic control of these traits, and targeting 

them using genomics assisted breeding is valuable for the development of improved 

cultivars. 

 

Literature Review 

 
Apple breeding 

 

Apple breeding is expensive and time-consuming: large orchards are required, and it can 

take over 25 years from seedling to commercial release (Peil et al. 2008). In addition to 

taking a long time to reach maturity, perennial crops such as the apple are costly to 

maintain and evaluate for desirable traits (Migicovsky and Myles 2017). In traditional 

apple breeding programs, evaluation for desirable traits cannot take place until after the 

long juvenile phase of 3-7 years. Thousands of seedlings may be produced from a cross, 

but only a few will be commercially viable at the end of decades of quality evaluation 

(Myles 2013). To meet changing climates and consumer tastes there is a need to improve 

the efficiency of the apple breeding process. 

 

The focus of many apple breeding programs has been on developing cultivars with 

improved disease and pest resistance as well fruit quality. Apple fruit quality is 

determined by numerous different factors, such as taste, texture, aroma, nutritional value 
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and appearance (Musacchi and Serra 2018). Consumers value tasty, well textured apples, 

and producers value apples that maintain fruit quality year-round in storage. Overall, 

consumers’ “likeness” of fruit cultivars is strongly associated with texture traits such as 

fruit firmness (Szczesniak 2002). However, the factors that contribute to fruit apple 

quality are complex and under-characterized (Amyotte et al. 2017). Given that apples are 

often consumed after spending time in storage, it is essential that they maintain their 

texture and overall fruit quality until they are sold (Ben Sadok et al. 2015). Therefore, 

breeding for improved fruit quality both at harvest and post-storage is a high priority for 

apple breeders. Due to the close relationship between fruit quality and phenology traits, 

such as harvest time and ripening, phenology traits are also important targets for 

breeding. Furthermore, breeding for specific phenology traits is essential in order to adapt 

cultivars to shifting growing seasons due to climate change (Gottschalk and van Nocker 

2013). As one of the most valuable fruit crops grown globally, advancing the apple 

breeding process is essential to efficiently produce new cultivars with improved quality, 

nutrition, and climate resilience.  

 

Apple genome and domestication history 

 
The center of origin of the domesticated apple is thought to be in Central Asia (Velasco et 

al. 2010). There are 25 – 47 recognized species of Malus, one of which is Malus 

domestica. The Malus sieversii species, found in Kazakhstan, is thought to be the main 

wild progenitor of the domesticated apple. However, other Malus species have also 

contributed to the genetic pool of the domesticated apple (Velasco et al. 2010). It has 

been proposed that M. sieversii was carried west along the Silk Road and hybridized 
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along the way with other Malus species as it evolved into the domesticated apple (Wang 

et al. 2018). In 2010, the assembly of the first reference genome for apple was completed 

for ‘Golden Delicious’ (Velasco et al. 2010). The results from this assembly suggested 

that the apple genome underwent a whole genome duplication which resulted in the 

domesticated apple having a distinct 17 chromosomes (Troggio et al. 2012). Cultivated 

apples are diploid (2x = 34), however there are some triploid (3x = 51) cultivars that 

spontaneously arise (Brown and Maloney 2003). The release of additional apple genomes 

has further spurred research into the genetic control of commercially relevant traits 

(Daccord et al. 2017; L. Zhang et al. 2019; X. Sun et al. 2020; A. Khan et al. 2022). In 

apple, fruit quality traits have been characterized at the genetic level, such as fruit 

firmness, acidity and ripening (Kenis, Keulemans, and Davey 2008; Xu, Wang, and 

Brown 2012; Costa et al. 2005). However, there are advances still to be made by 

examining fruit quality and phenology across diverse apple populations to fully 

characterize the genetic control of previously identify genes and to identify additional 

genetic elements that could be impacting phenotypic variation. 

 

Cannabis breeding 

 

As one of the first plants to be cultivated by humans, cannabis has been used for 

thousands of years for fiber, food, and medicine. For example, in China, cannabis has 

been grown for textiles for over 6000 years and consumed for its psychoactive properties 

for over 2500 years (H.-L. Li 1973; M. Ren et al. 2019). Selective breeding of cannabis 

has resulted in the differentiation of cannabis based on the content of two major 
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cannabinoid compounds, cannabidiolic acid (CBDA) and Δ9-tetrahydrocannabinolic acid 

(THCA). Fiber-type cannabis (often referred to as hemp) is usually classified based on a 

THC content of less than 0.3%, while drug-type cannabis has higher levels of CBD and 

THC (E. Small and Beckstead 1973; de Meijer et al. 2003). Beyond the over 150 

cannabinoid compounds that are responsible for psychoactive effects, cannabis is also 

well known for its diversity of terpene compounds that impart distinctive aromas (Booth 

and Bohlmann 2019; Mudge, Brown, and Murch 2019). Aromas provided by terpene 

compounds have been shown to drive consumer preferences for cannabis strains (Gilbert 

and DiVerdi 2018). Furthermore, there is increasing evidence to suggest that terpenes 

may interacted with cannabinoids to mediate psychoactive effects through what is called 

an ‘entourage’ effect (Russo 2011; Koltai and Namdar 2020). Identifying the control of 

cannabinoid and terpene compounds is important to advance our understand of their 

psychoactive effects and for targeted breeding of cultivars with desirable aroma profiles. 

 

The uncertainty surrounding classification of cannabis has been viewed as one of the 

major challenges that breeding programs face (Barcaccia et al. 2020; Hurgobin et al. 

2020). The clandestine nature of cannabis breeding has allowed numerous label and 

naming conventions to be used with little oversight to ensure consistency (Schwabe and 

McGlaughlin 2019). For example, the labels ‘Indica’ and ‘Sativa’ have routinely been 

applied to cannabis strains to attempt to capture differences in cannabinoid content, 

psychoactive effects, plant morphologies and aromas. However, the degree to which 

‘Indica’ and ‘Sativa’ labels accurately differentiate cannabis strains on a genetic level 

appears to be inconsistent (Sawler et al. 2015; Lynch et al. 2017). To complicate cannabis 
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nomenclature further, the use of strain names is not reserved for genetically unique 

cultivars (Sawler et al. 2015). Unlike other clonally propagated crops, like apples, strain 

names are still assigned to cannabis plants derived from seed. Studies have shown that 

neither reported ancestry or strain names can reliably predict the genetic identity of 

cannabis strains (Sawler et al. 2015). As cannabis shifts away from clandestine 

cultivation, consistent labelling and naming conventions are required to provide accurate 

product differentiation. Genomic analyses can help resolve cannabis labelling practices 

that have for too long remained convoluted due to clandestine breeding practices. Given 

its use as a medicine and recreational drug, understanding the genetic control of the 

chemical compounds produced by cannabis is essential to advance breeding for desirable 

phenotypes. 

 

Cannabis genome and domestication history 

 

For many years the domestication history of cannabis remained unclear due to the lack of 

formal and documented breeding and the tendency of domesticated cultivars to feralize 

and potentially admix with wild populations (G. Ren et al. 2021; Ernest Small 2015). 

However, Recent whole-genome resequencing of over 110 cannabis accessions from 

around the world, showed that cannabis was domesticated during Neolithic times in East 

Asia (G. Ren et al. 2021). As mentioned previously, cannabis cultivars are often 

distinguished based on ‘Indica’/‘Sativa’ labels. The use of the vernacular 

‘Indica’/‘Sativa’ labels has arisen from the view that they represent distinct species. For 

example, studies have proposed the existence of multiple species within the Cannabis 
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genus, including Cannabis sativa, Cannabis indica, Cannabis ruderalis (Hillig 2005). 

However, the prevailing consensus based on recent studies is that Cannabis sativa is a 

monotypic species that displays a large amount of phenotypic and genetic diversity (Guy 

and McPartland 2017; Hurgobin et al. 2020). 

 

Cannabis is a dioecious crop, with occasional monoecious forms arising, and has a 

diploid genome (2n = 20) with 9 pairs of autosomes and one pair of sex chromosomes 

(Sakamoto et al. 1998; Hurgobin et al. 2020). In 2011, the first draft cannabis genome 

was published and since then multiple new genomes have been released with increasing 

quality (van Bakel et al. 2011; Grassa et al. 2018; Laverty et al. 2019; S. Gao et al. 2020). 

Following the release of the genome references for cannabis, attention has largely been 

focused on identifying the genetic control of cannabinoid compounds, while the genetic 

control of terpene compounds has remained largely unexplored (Booth, Page, and 

Bohlmann 2017; Zager et al. 2019; Günnewich et al. 2007; Livingston et al. 2020). 

 

Genomic assisted breeding 

 
Genomics assisted breeding techniques, such as marker assisted selection (MAS), uses 

genetic information to accelerate the breeding process (K. A. McClure et al. 2014; Ru et 

al. 2015). MAS is a technique used to genotype plants at the seedling stage for genetic 

markers associated with desirable traits, and only the plants with desirable genetic 

profiles are grown to full maturity, while the rest are discarded (Ru et al. 2015). Markers 

for MAS have been developed for many annual and perennial crops, including apple and 

cannabis, positioning MAS as a promising approach for making breeding more efficient. 
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In apple, numerous markers have already been developed for fruit quality traits 

(Baumgartner et al. 2016). The application of MAS for storability within the Washington 

State apple breeding program was estimated to lead to a 60% reduction in costs compared 

to conventional selection methods (Edge-Garza, Peace, and Zhu 2010). In cannabis, 

markers have been developed to distinguish flower sex and drug- versus fiber- type 

cannabis (Sawler et al. 2015; Mendel et al. 2016; Borin et al. 2021). Despite the existence 

of markers for traits in apple and cannabis, there are still numerous commercially relevant 

traits for which markers have not been identified. Furthermore, in certain cases existing 

markers have been found to hav variable success in predicting phenotypes. For example, 

studies in apple have shown that existing markers for firmness-related traits displayed 

low predictive power for firmness phenotypes (K. A. McClure et al. 2018; Migicovsky, 

Yeats, et al. 2021; Costa et al. 2013; Nybom et al. 2013). Therefore, continuing to query 

the apple and cannabis genomes for genetic markers associated with relevant traits is 

crucial for the development and improvement of markers that can be leveraged for MAS.  

 

Although the development of genetic markers for MAS has been a key approach for 

genomic assisted breeding, advances in genome editing now allow for the direct, targeted 

manipulation of genomes. CRISPR-Cas9 is a relatively new and powerful gene-editing 

tool that can be used to edit the DNA of any organism (Doudna and Charpentier 2014). 

Gene editing enables the introduction of numerous forms of targeted mutations that have 

otherwise been difficult to achieve with trans- and cis-genic approaches. For example, 

gene editing allows direct alterations of the genomes without the introduction of 

transgenes and can induce these alterations with high specificity. Despite successful 
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applications of gene editing to alter genes in apples and cannabis, there remain numerous 

technical challenges that prevent the routine use of gene editing for the development of 

improved cultivars (Osakabe et al. 2018; Nishitani et al. 2016; X. Zhang et al. 2021). 

These challenges include but are not limited to, difficulties in regeneration, editing 

efficiency and overall limitations of the current editing tools. Despite the challenges, 

gene-editing tools, like CRISPR, hold promise to accelerate the breeding process by 

bypassing years of bi-parental crossing by instead editing genes directly to achieve a 

desired phenotype. To advance genomics assisted breeding in apple and cannabis, 

whether for the development of gene editing targets or markers for MAS, it is necessary 

to identify genomic regions associated with key traits. 

 

Genome-wide association studies 

 
Genetic mapping is a useful approach that aims to locate quantitative trait loci (QTLs) 

that control phenotypic variation. There are several methods to conduct genetic mapping, 

such as linkage mapping and association mapping. Association mapping takes advantage 

of historical recombination events to link genome fragments to phenotypes (C. Zhu et al. 

2008). An increasingly popular association mapping technique is genome-wide 

association studies (GWAS) (C. Zhu et al. 2008). GWAS makes use of genetic and 

phenotypic data from diverse populations in which relatedness is not controlled to 

identify associations between genetic variants and phenotypic traits (Myles et al. 2009). 

These associations then may allow for causal genetic loci of the traits to be identified 

(Myles et al. 2009). In comparison to other genetic mapping approaches, GWAS are able 
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to query a large amount of genetic diversity, thereby capturing numerous recombination 

events and thus providing high mapping resolution (M. A. Khan and Korban 2012). 

 

An important concept in GWAS is linkage and linkage disequilibrium (LD). Linkage is 

the physical connection of loci on a chromosome that results in correlated inheritance. 

This connection can be broken between successive generations by recombination that 

breaks the chromosomal segments apart resulting in linkage decay (Bush and Moore 

2012). Linkage disequilibrium is an allelic relationship within a population whereby the 

alleles at two or more loci are correlated and inherited together, in other words it is the 

degree of non-random association of alleles at different loci (Bush and Moore 2012). 

GWAS aims to exploit LD to identify marker-trait associations of SNPs that are either in 

LD with the gene that causes the trait or is the causal variant itself so that the genetic 

cause of an observed phenotype can be elucidated (A. Khan and Korban 2012). GWAS 

allows for higher mapping resolution and power to detect genetic effect for traits 

compared to linkage mapping, because it makes use of accumulated recombination events 

that have taken place over time in a population (C. Zhu et al. 2008). The higher resolution 

is due to the fact that over successive generations, LD decays due to recombination and 

the markers used within the GWAS are able to more closely tag causal genetic elements 

(Walsh and Jannink, n.d.). 

 

There are numerous different methods employed to conduct GWAS, one such method 

that has risen to popularity is the unified mixed linear model (MLM) (Tibbs Cortes, 

Zhang, and Yu 2021). The MLM was developed to take into account population structure 
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and relatedness amongst individuals within the studied population (J. Yu et al. 2006). 

Accounting for population structure and relatedness is important in GWAS, because traits 

that correlate with the underlying population structure will contribute to higher numbers 

of false positives and detection of spurious associations (Bradbury et al. 2007) (Hall, 

Tegström, and Ingvarsson 2010).  The MLM therefore includes population structure (Q) 

as a fixed effect and relatedness (K) as random effect within the model to account for 

multiple levels of relatedness (J. Yu et al. 2006). The bioinformatic program TASSEL 

(Trait Analysis by Association, Evolution and Linkage) is widely used to execute unified 

MLM Q+K model for the purpose of genetic mapping in plants (Bradbury et al. 2007). 

The MLM is employed a single-locus test, however, recent advances have been made to 

develop multi-locus mixed models (MLMM) that are capable of testing multiple markers 

simultaneously as covariates within the model (Tibbs Cortes, Zhang, and Yu 2021). 

Segura et al. developed the first MLMM that is especially useful for GWAS on traits 

suspected to have complex genetic architectures that could be controlled by multiple 

large-effect loci (Segura et al. 2012). New tools and software are rapidly being developed 

for conducting GWAS, and careful consideration of the examined population as well as 

the trait of interest dictates which methodologies are most appropriate. 

 

Genotyping and Phenotyping 

 

To capitalize on the power of GWAS to detect genotype-phenotype associations and 

unravel the genetic architecture of key traits, sufficient high-quality genetic and 

phenotypic data must be collected. Fortunately, genome-wide marker data are becoming 
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more economical to collect and are increasingly easily available due to advances made 

with next-generation sequencing technologies. Genotype-by-sequencing (GBS) is an 

approach that uses restriction enzymes to generate reduced representation libraries that 

can enable fast and cost-effective next-generation sequencing of diverse species (Elshire 

et al. 2011). Unlike SNP arrays, which have commonly been used for genetic mapping 

purposes, GBS avoids ascertainment bias and therefore is highly amenable approach for 

sequencing high diversity species (Peace et al. 2019; Elshire et al. 2011). SNPs make up 

one of the most common forms of genetic variation, however, structural variation is 

increasingly being shown to control phenotypic variation in plants (Saxena, Edwards, and 

Varshney 2014). Whole genome sequencing (WGS) not only allows for the exhaustive 

identification SNPs but also structural variants. Although cost of WGS has been 

decreasing, and is expected to continue to do so (Nordborg and Weigel 2008; C. Zhu et 

al. 2008), WGS currently remains prohibitively expensive especially for GWAS aimed at 

sequencing large populations.  

 

A major barrier to high-powered GWAS is high-quality trait data from suitable 

populations. This limitation is often referred to as “the phenotyping bottleneck” because 

the collection of trait data will remain expensive and time consuming, while the cost of 

collecting DNA sequence data continues to drop (Furbank and Tester 2011). To 

overcome the phenotyping bottleneck many breeders have turned to high-throughput 

methods, using robotics and imaging technologies to speed up phenotyping (Rouf et al. 

2019). In addition, existing phenotyping databases that contain historical phenotype data 

have been leveraged for use in GWAS of multiple apple traits (Migicovsky et al. 2016). 
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Similarly, there exists publicly available databases that have catalogued phenotype data 

for numerous cannabis strains and recent studies have proposed using these databases for 

the purpose of conducting GWAS (Aardema and DeSalle 2021). Despite the 

advancement in phenotyping technologies and strategies, challenges still exist, especially 

when attempting to measure a large number in phenotypes from diverse germplasm 

collections (Rouf et al. 2019).  

 

GWAS Challenges 

 

Due to the large number of markers that are involved in GWAS and the subsequent high 

number of statistical tests between markers and traits, the rate of false positives is high 

(Bush and Moore 2012). It is therefore important to correct for multiple testing to reduce 

the rate type I errors from GWAS results (Bush and Moore 2012). One method to correct 

for multiple testing in GWAS is with the Bonferroni correction that adjusts the p-values 

based on the number of SNPs tested. However, the Bonferroni correction tends to be 

conservative and leads to increased false negative results (de Kluiver et al. 2018). SNPs 

are generally considered significant with a P-value <5 X 10-8 (Schaid, Chen, and Larson 

2018). However, a SNP with a significant p-value in association with a trait does not 

confirm that it is the causal variant for the phenotypic trait (Schaid, Chen, and Larson 

2018). This is one of the major pitfalls of GWAS because the causal variant can remain 

elusive do to the fact that the causal SNP for the phenotype might not have been 

genotyped, rather a SNP that is in LD with the causal SNP is identified, thus only an 

indirect association is demonstrated (Bush and Moore 2012). Due to the possibility of 
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identifying only an indirect association between a SNP and the phenotype, further work 

fine-mapping is often required to find the causal genetic variant responsible for the 

phenotype (Schaid, Chen, and Larson 2018). Fine-mapping involves searching the region 

in which the indirect SNP is located to find the causal genetic loci based on the region’s 

LD structure and other known genes in the area (Schaid, Chen, and Larson 2018). 

 

In apple and cannabis, the development of genomic resources and thus the ability to 

perform GWAS has not been without shared challenges. A particular challenge is the 

high levels of heterozygosity present within the apple and cannabis genomes (X. Sun et 

al. 2020; Hurgobin et al. 2020). Both the apple and cannabis genomes are highly 

heterozygous due to their outcrossing nature that typically prevents selfing, and this 

heterozygosity renders the assembly of reference genomes and SNP calling challenging 

(Velasco et al. 2010; Xuewei Li et al. 2016; Hurgobin et al. 2020). Despite the 

challenges, the development of additional reference genomes holds promise to advance 

the genomic resources available for undertaking high-powered GWAS of these 

economically and culturally important crops.  

 

Concluding remarks 
 

Apple and cannabis share unique similarities, they both possess a diversity of end uses, 

are commonly clonally propagated, and widely cultivated around the world. This thesis 

aimed to advance genomics assisted breeding in apple and cannabis by characterizing 

genomic and phenotypic diversity and conducting GWAS to identify the genetic control 

of key traits in both crops. In Chapter 2, I carried out a phenomic characterization of a 
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diverse collection of apples to quantify apple diversity across fruit quality and phenology 

traits both at harvest and after three months of storage. In Chapter 3, I paired the 

phenotypic data from Chapter 2 with over 260,000 genetic markers sequenced across 

over 1000 accessions in the Apple Biodiversity Collection (ABC) to conduct GWAS to 

uncover genetic markers associated with fruit quality and phenology traits. In Chapter 4, I 

used over 100,000 genetic markers across over a 100 cannabis samples to conduct 

GWAS for over 40 chemical compounds and examine the genetic and chemical basis for 

cannabis labelling. Finally, in Chapter 5, I used apple as a case study to outline a pathway 

of how putatively causal genetic variants from genetic mapping studies can be acted upon 

to develop new cultivars through gene editing. While cannabis and apple each face 

unique challenges in their cultivation and breeding, the development of new cultivars, in 

both crops, can benefit immensely from the advancement of genomics resources. 
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Abstract 
 
A future with a secure and safe food supply requires humanity to preserve and exploit the 

vast variation available across agricultural plant species. Apples are one of the most 

widely consumed fruits and provide significant nutritional value worldwide. Here, we 

characterize key agricultural traits in a diverse collection of apples to provide a 

foundation for future apple improvement. We show that commercially successful apple 

varieties capture only a small fraction of apple diversity and demonstrate that significant 

https://doi.org/10.1002/ppp3.10211
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improvement is possible by tapping into existing genetic diversity. Here we present a 

comprehensive evaluation of apple diversity through phenotyping of Canada's Apple 

Biodiversity Collection (ABC) which contains over 1000 apple accessions. We assessed, 

over a 4-year period, more than 20,000 individual apples and quantified variation across 

39 phenotypes, including phenology and fruit quality both at harvest and after 3 months 

of cold storage. We observe that apples in the ABC display a wide range of phenotypic 

variation that may prove useful for future apple improvement. For example, apples can 

differ by nearly 61-fold in weight, 18-fold in acidity, and 100-fold in phenolic content. 

We quantified the dramatic changes to apple physiology that occur during 3 months of 

cold storage: on average, apples lost 39% of their firmness, 31% of their acidity, and 9% 

of their weight, but gained 7% in soluble solids. Harvest date, flowering date, and time to 

ripen were all positively correlated with firmness, which suggests that the developmental 

pathways that drive phenological events throughout the growing season may play a role 

in determining an apple's texture. Finally, we show that apple breeding has selected for a 

significant decline in phenolic content over the past 200 years: apple cultivars released 

after 1940 had a 30% lower median phenolic content than cultivars released before 1940. 

The data and analyses presented here not only provide a comprehensive quantification of 

the range across, and relationships among diverse apple phenotypes, but they also enable 

genetic mapping studies that will provide the foundation for future apple improvement 

via genomics-assisted breeding. 
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Introduction 

The domesticated apple (Malus domestica) is thought to have been cultivated for over 

3,000 years (Zohary, Hopf, and Weiss 2012). Genetic evidence suggests that the main 

progenitor species of the domesticated apple is Malus sieversii from Central Asia 

(Velasco et al. 2010); however, significant gene flow from Malus sylvestris has also been 

detected (X. Sun et al. 2020; Duan et al. 2017; Cornille et al. 2012). Red color, reduced 

acidity, larger fruit, and firmness appear to have been under selection during apple 

domestication and improvement (Ma et al. 2015; Migicovsky, Gardner, et al. 2021). The 

apple's widespread geographic distribution and long-standing popularity have resulted in 

over 10,000 named apple cultivars with a fascinating diversity of phenotypes (Liang et al. 

2015). Despite this tremendous diversity, a small number of cultivars make up a 

significant proportion of production. For example, in 2018, only four cultivars accounted 

for over 50% of apple production in the United States (“US Apple and Pear Forecast” 

n.d.). In addition, commercial apples have been shown to be closely related to each other 

genetically (Migicovsky, Gardner, et al. 2021; Noiton and Alspach 1996). Reliance on a 

limited number of closely related cultivars means that consumers experience an 

extremely limited fraction of the apple's genetic diversity. However, the extent of 

phenotypic diversity captured by the top commercial cultivars remains to be quantified. 

 

Fruit firmness is strongly associated with consumers “likeness” of cultivars and is, 

therefore, a key target for breeders (Szczesniak 2002; Nybom et al. 2013). In addition, 

breeding apples that retain their firmness after long-term storage have been a key 

breeding target (Kouassi et al. 2009). Not only is it important for breeders to select for 
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firmness and firmness retention, but it is also crucial to breed for the phenological traits 

associated with firmness and firmness retention. This is especially important given that 

the optimal phenological breeding targets are expected to shift over time due to climate 

change. Characterizing how fruit texture and phenological traits are associated with each 

other can enable the development of new cultivars that adapt to climate change and meet 

consumer preferences. 

 

Germplasm collections serve as important reservoirs of genetic diversity for crop 

improvement. They contain the high levels of diversity that are essential for identifying 

valuable phenotypes that can be leveraged to develop improved cultivars (Bramel and 

Volk 2019). Extensive germplasm resources are already available for major crops such as 

maize and rice which can be stored as seeds, but resources for perennial fruit crops are 

lacking as they are expensive to establish and maintain (Flint‐Garcia et al. 2005; Jackson 

1997; Migicovsky and Myles 2017). Despite the high cost, living germplasm collections 

are essential for woody perennials which are difficult to conserve in seed banks or tissue 

culture. There is increasing interest in using germplasm collections to not only preserve 

biodiversity and exploit valuable phenotypes but also to perform genetic mapping 

(Migicovsky et al. 2019). The high genetic diversity and sample sizes present in many 

germplasm collections can result in well-powered genetic mapping studies that identify 

genetic markers useful for genomics-assisted breeding (C. Zhu et al. 2008). In addition, 

germplasm collections often contain wild relatives with novel traits that can be 

introgressed into elite cultivars (Migicovsky and Myles 2017). 
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There are numerous apple germplasm collections that have been established worldwide 

(e.g., USA (Gross et al. 2013), China (Yuan Gao et al. 2015), New Zealand (Kumar et al. 

2010), and Europe (Jung et al. 2020)). Within Canada, there are apple collections located 

across the country, for example, in Ontario and British Columbia (Hampson et al. 2009; 

Ward 1978). Most recently, Canada's Apple Biodiversity Collection (ABC) was 

established in Nova Scotia, Canada, with over 1,000 accessions that includes trees 

primarily belonging to the domesticated apple, M. domestica, and its primary wild 

ancestor, M. sieversii. The ABC was established as a dual-purpose orchard. The first 

purpose of the ABC is to preserve and maintain potentially valuable apple genetic and 

phenotypic diversity. Second, the ABC is specifically designed to enable accurate 

measurements of phenological and fruit quality traits primarily for the purposes of 

genetic mapping. The trees in the ABC were grafted at the same time to the same 

rootstock and planted in duplicate in a randomized block design to control for positional 

effects in the orchard. The result is an apple population that is ideally suited to 

accomplish a phenome-wide characterization of apples. Here we present a comprehensive 

evaluation of Canada's ABC through phenotyping of phenological traits and fruit quality 

traits both at harvest and after 3 months of cold storage. 

 

Materials and Methods 

The Apple Biodiversity Collection 

 

The Apple Biodiversity Collection (ABC) is located at the Agriculture and Agri-Food 

Canada (AAFC) Kentville Research and Development Centre in Nova Scotia, Canada 
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(45.071767, −64.480466). The ABC contains 1,119 apple accessions that were grafted to 

M.9 rootstock in August 2011 and allowed to grow outdoors until November 2012 when 

they were removed from the orchard and stored in moist sawdust at 2°C until planting. 

On May 31, 2013, we planted each of the 1,119 accessions in duplicate in a 5-acre 

orchard that was tile drained and fumigated with Telone® soil fumigant. The trees were 

spaced 1.5 m within rows and 5 m between rows. The trees were trained to a trellis 

system with wires at 1.5 and 2.4 meters above the ground. Soil amendments, training, 

thinning, and pruning were performed to industry standards. 

 

The ABC consists of apple accessions from the United States Department of Agriculture 

(USDA) Plant Genetic Resources Unit apple germplasm collection in Geneva, New 

York, USA; commercial cultivars from the Nova Scotia Fruit Growers’ Association 

Cultivar Evaluation Trial; and advanced breeding material from the AAFC Kentville 

breeding program. The collection contains mostly M. domestica accessions including 

cider, dessert, processing, heritage, and elite cultivars. The orchard also contains 78 

accessions of the wild progenitor species M. sieversii from Central Asia. It is possible 

that pairs of accessions within the ABC may be clonally related in some cases. Here we 

treat each accession as a unique sample in downstream analyses and future genetic 

investigation will reveal the degree of clonal relatedness in the collection. The trees in the 

ABC are not available for propagation as most of the material was imported from the 

USDA under a section 43 import permit from the Canadian Food Inspection Agency 

(Permit #P-2011–00222) which prohibits the sale or distribution of the germplasm. 

Experimental design 
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The ABC was planted in an incomplete randomized block design with a North and South 

block (Appendix I: Figure I-I). Each block is divided into grids that include nine trees 

within a row across three adjacent rows. Within each grid is a “check tree” of 

“Ambrosia”, “SweeTango”, or “Honeycrisp”, amounting to 18 check trees of each of 

these cultivars across the orchard. These “check trees” are used as standards in the 

restricted maximum likelihood (REML) model that accounts for phenotypic variation due 

to position in the orchard. We used the following model to generate phenotype values: 

 

𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒	~	𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛 + (1|𝐵𝑙𝑜𝑐𝑘) + (1|𝑟𝐺𝑟𝑖𝑑) + (1|𝑐𝐺𝑟𝑖𝑑) + (1	|𝑐𝐺𝑟𝑖𝑑: 𝑟𝐺𝑟𝑖𝑑) 

 

This mixed-model accounts for fixed effects of an accession and the random effects of 

position depending on Block (north/south), north-to-south position within the block 

(rGrid), east-to-west position within the block (cGrid), and the interactions between these 

random effects. The measurements resulted in 39 phenotypic variables collected from 

2014 to 2018, which are summarized in Appendix I: Table I-I. 

 

Phenology 

 

All phenology traits that were recorded as dates (e.g., harvest date and flowering date) 

were converted into Julian days. Harvest date was recorded for the 2016 and 2017 harvest 

seasons. During both seasons, 20 apples were picked randomly from each tree. Trees 

ready for harvest were flagged at the beginning of the week and harvested over the 
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subsequent days of that week. Due to the diversity of the accessions and the variation in 

ripening time, a variety of methods were used to determine when to harvest. Dropped 

apples or changes in background skin color were indicators of harvestable trees (Watkins 

2003). In addition, a sample apple was taken from each tree and touched to assess 

firmness, tasted to assess starch and sweetness, cut in half to check browning of seeds, 

and sprayed with iodine solution to evaluate starch content (Blanpied and Silsby 1992). 

The combination of these indicators was used to determine whether an accession was 

ready to be harvested. Flowering date was measured as the date when the youngest wood 

displayed >80% of flowers at the king bloom stage (K. McClure 2017). Flowering date 

was recorded in 2016, with trees being assessed every 3 days during this period. Time to 

ripen was calculated as the time (in days) between flowering date and harvest date. 

Precocity was recorded as the year in which a tree first bloomed after establishment in the 

orchard and converted into a score: a score of 1 corresponded to 2014, a score of 2 

corresponded to 2015, a score of 3 corresponded to 2016, and a score of 4 indicated that 

the tree had not yet bloomed as of 2016. 

 

Fruit quality 

 

The fruit quality traits measured included weight (g), firmness (kg/cm2), acidity (g/L 

malic acid), soluble solids content (SSC) (°Brix), and juiciness ((weight of juice/total 

fruit weight) × 100). In 2017, measurements were taken from 5 apples, while a sample of 

10 apples was used in 2016 whenever possible and a mean measurement for each tree 

was calculated. Measurements were not recorded for trees with fewer than three 
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representative apples available for assessment. In 2016, an automated phenotyping 

machine was used (the Pimprenelle, Setop Giraud Technologie, France—

https://www.setop.eu/fr/produit/pimprenelle) to collect fruit quality data. In 2017, 

measurements were collected manually as described below. Since the measuring 

techniques differed slightly between 2016 and 2017, we assessed the correlation between 

years for each trait (Appendix I: Figure I-II). 

 

Total weight (g) of all the apples in a sample were measured (Mettler-Toledo, MS3002S), 

and an average weight per apple was calculated by dividing the recorded total weight by 

the number of apples in the sample. Firmness measurements (kg/cm2) for five individual 

apples were recorded using a penetrometer (Guss Fruit Texture Analyser, GS-14). Using 

a vegetable peeler, a small section of skin along the side of the apple was removed to 

allow the penetrometer to enter the apple flesh. Each apple was then placed on the 

penetrometer platform so that the piston entered the middle of the apple where the skin 

had been shaved off. There was no preference for the side of the apple from which the 

measurement was taken. The firmness measurements were averaged to get a mean value 

for the tree. 

 

To measure acidity in a sample of apples, a quarter of each apple was juiced using a 

handheld garlic press. The juice from the apples belonging to a single tree was combined 

to make a composite juice sample. Titratable acidity was measured using the 865 

Dosimat Plus (Metrohm). This involved titrating 1 ml of the composite juice sample with 

0.1 M of NaOH. Soluble solids content (SSC) was measured on the composite juice 

https://www.setop.eu/fr/produit/pimprenelle
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sample using the Pocket Refractometer (Atago, PAL-1). The SSC/acid ratio was 

calculated by dividing SSC measurements by acidity measurements. 

 

After harvest, apples that were not phenotyped were placed in cold storage (4°C). After 

3 months in storage, these apples were removed and placed at room temperature until 

fruit quality could be measured on the following day using the same methods described 

above. Thus, apples from each accession were assessed for fruit quality both at harvest 

and after 3 months of storage. Post-storage measurements were taken from a minimum of 

3 and a maximum of 10 apples per accession. 

 

During the 2016 harvest, whole fruit samples were collected and ground into a fine 

powder using liquid nitrogen and stored at −80°C. Frozen ground samples 

(approximately 0.5 g each) were extracted in duplicate for the quantification of phenols 

using sonication in an 80% methanol solution in two 2 ml microcentrifuge tubes. A 

ferric-reducing antioxidant power (FRAP) assay for total antioxidant capacity (TAC) was 

performed to detect the reduction potential of compounds by measuring the intensity of 

the violet-blue color produced. FRAP reagents were prepared as described previously 

(Benzie and Strain 1996; Rupasinghe et al. 2008). The ferric reducing antioxidant powers 

of apple extracts were reported in micromolar of Trolox equivalents (TE) per gram fresh 

weight of an apple. The Folin–Ciocalteu assay estimates the total phenolic content (TPC) 

present in plant foods and was carried out as previously described (Huber and 

Rupasinghe 2009; Singleton, Orthofer, and Lamuela-Raventós 1999). TPC of apple 

extracts was reported in micromolar of gallic acid equivalents (GAE) per gram fresh 



 28 

weight of an apple. TPC and TAC were strongly correlated (ρ = 0.948; p < 1 × 10−15; 

Appendix I: Figure I-III), so we only present TPC in the main body of the manuscript. 

 

Apple classification 

 

Apple accessions were classified into binary categories based on species 

(M. domestica vs. M. sieversii), geographic origin (new world vs. old world), and end use 

(cider vs. dessert) using information retrieved primarily from the USDA Germplasm 

Resource Information Network (GRIN; https://www.ars-grin.gov/), as well as online 

sources. Accessions classified as M. pumila (N = 5) in the GRIN database were 

considered M. domestica in our analyses since these terms are synonymous. Accessions 

classified by GRIN as M. sylvestris (N = 3) or hybrids (N = 5) were excluded from 

analysis of comparisons between species. All accessions that were listed as dessert, 

cooking, or eating were classified as “dessert” (N = 804) while only those labeled as cider 

were classified as “cider” (N = 104). Accessions labeled as wild (N = 78), crab (N = 5), 

and rootstock (N = 1) cultivars were excluded from the analysis of comparisons between 

cider and dessert. For geographic origin, accessions that originated in Europe or Asia 

were classified as “old world” (N = 450), while those that originated in North America, 

South America, South Africa, Australia, and New Zealand were classified as “new 

world” (N = 529). The year of release was also retrieved from the GRIN database or from 

online sources for 343 accessions that were introduced as named cultivars. 

 

https://www.ars-grin.gov/
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Statistical analysis 

 

All data curation, handling, and analysis were performed in R (R Core Team 2018). Each 

accession was planted in duplicate, but if one of an accession's two trees died or did not 

produce fruit, then the data came from only a single tree. The phenology and fruit trait 

measurements before storage were adjusted for their location in the orchard by running 

the REML model (see above) using the “lme4” package (Bates et al. 2015) in R, which 

resulted in one adjusted mean measurement per accession. Phenolic measures (TPC and 

TAC) were not adjusted since, most often, only a single tree was sampled per accession. 

Fruit quality measurements taken after storage were also not adjusted for location in the 

orchard because, for each accession, the fruit from the two duplicate trees was combined 

before being placed in cold storage. Thus, post-storage measurements are simply the 

mean value across apples within an accession. To evaluate how fruit quality changed 

during storage, the difference between the measurements before storage (adjusted) and 

after storage (unadjusted) was calculated for each accession. 

 

Linear correlations between phenotypes were assessed using Pearson correlations via the 

“cor.test” function in R. To assess how the most commercially successful cultivars differ 

from the remainder of the collection, we compared phenotypes from 9 of the top 10 

cultivars produced in the USA (“US Apple and Pear Forecast” n.d.) that are found in the 

ABC to the phenotypes of the remaining accessions in the ABC. The 9 of the top 10 

cultivars that are present in the ABC are as follows: “Red Delicious,” “Gala,” “Fuji,” 

“Granny Smith,” “Honeycrisp,” “Golden Delicious,” “McIntosh,” “Cripps Pink,” and 
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“Empire.” The median, standard error, minimum, and maximum trait measurements were 

calculated for the “Top 9” and for the other ABC accessions. Mann–Whitney U tests 

were performed to determine whether measurements of the “top 9” differed significantly 

from the measurements of the other ABC accessions. The proportion of the ABC’s range 

in trait measurements encompassed by the “top 9” cultivars was calculated by dividing 

the range in measurements of the “Top 9” by the range of the entire ABC. Mann-Whitney 

U tests were also performed to determine whether phenotypic traits differed significantly 

among Malus species, geographic origin, and end use classifications. Standard error was 

calculated using “std.error” function from the plotrix package in R (Lemon 2006). The 

Bonferroni correction was applied to account for multiple testing where appropriate. 

 

Results 

 

Canada's Apple Biodiversity Collection (ABC) aims to capture much of the world's 

diversity of apples and contains 1,119 accessions from 47 countries, with a strong 

emphasis on apples from Canada (N = 278) and the USA (N = 234) (Figure 2-1). The 

measurements from over 20,000 individual fruit from more than 1,000 unique apple 

accessions across 2 years are presented in Appendix I: Table I-I. Numerous phenotypes 

were measured in both 2016 and 2017. With the exception of flowering date, juiciness, 

and precocity, all other phenotypes presented in the main body of the manuscript are 

from 2017 due to the larger sample size in that year. The correlations between years for 

phenotypes ranged from 0 to 0.69, and 13 of 17 of the phenotypes had significant (p < 

0.05) between-year correlations (Appendix I: Figure I-II). The weakest correlations were 



 31 

for the phenotypic changes observed during storage. For example, the weakest correlation 

was for change in weight during storage (R2 = 1.2 × 10−4, p = 1). The strongest 

correlation between years was for harvest date (R2 = 0.691, p < 1 × 10−15). 

 

 

Figure 2-1. World map showing geographic origins of apple accessions from Canada's 

Apple Biodiversity Collection. 

 

Phenology and fruit quality traits 

 

The distributions of phenology and fruit quality traits are shown in Figure 2-2. The 

distributions of these traits for the year 2016 are provided in Appendix I: Figure I-IV. The 

summary statistics for each of the phenotypes are provided in Appendix I: Table I-II. 

Flowering date spanned 21 days with “Kaz 95 18-02P-33,” a M. sieversii accession, 

flowering first on May 22nd and “Frostproof,” a M. domestica cultivar, flowering last on 
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June 12th. Harvest spanned 65 days; more than three times as long as flowering. The 

earliest harvested accession was “C.P. Close” on August 12th and the latest harvested 

accession was “Red Spy” on October 17th. Time to ripen spanned 68 days. “Lunost” had 

the shortest time to ripen (71 days) and “KAZ 7” had the longest time to ripen (139 days). 
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Figure 2-2. Distribution of apple phenotypes from Canada's Apple Biodiversity 

Collection. Shaded grey areas represent the range of values observed across the "top 9" 

cultivars grown in the USA. 

 
We observed a 61-fold difference in apple weight among accessions, ranging from 7.57 g 

to 460 g. The lightest accession was “Uralskoje Nalivnoje” and the heaviest was 

“Bietigheimer.” Acidity varied by 18-fold: the least acidic (1.41 g/L) accession was 

“Dunning” and the most acidic (26.35 g/L) was “Barenhecke 3 Klipphausen” 

a M. sylvestris accession. There was a sevenfold difference in firmness among accessions 

at harvest: the softest accession was “Miron Sacharanij” with a measurement of 

1.99 kg/cm2, whereas the firmest accession was “Oekonomierat Echter-meyer” at 

14.21 kg/cm2. The least sweet accession was “Julyred” at 7.04 °Brix, and the sweetest 

accession, “Golden Delicious,” was more than twice as sweet at 16.4 °Brix. Phenolic 

content varied by nearly two orders of magnitude from 0.293 to 27.9 μmol/g. The two 

accessions with the lowest phenolic content were “Zestar” and the advanced breeding line 

“S19–23–52,” while the cider apple cultivar “Marachal” had the highest phenolic content. 

None of the phenotypes of the “top 9” cultivars differed significantly from the rest of the 

accessions in the ABC after accounting for multiple tests. The phenotype measurements 

of the “top 9” cultivars capture between 10.6% and 70.6% of the total variation in the 

ABC across phenotypes. For phenolic content, the “top 9” cultivars are found close to the 

median of the ABC and capture only 14.2% of the ABC’s total variation in phenolic 

content. In contrast, 70.6% of the total variation in soluble solids is captured by the “top 

9”, and values for the “top 9” tend to be above the median of the ABC. Precocity ranged 
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from 1 year to over 4 years across all accessions, but all of the "top 9" cultivars fruited in 

the first 2 years after establishment in the orchard. 

 

Fruit quality after storage 

 

Significant correlations were observed between measurements taken before and after 

storage for all fruit quality traits (Figure 2-3, Appendix I: Figure I-V). On average, apples 

lost 31% of their acidity, 39.9% of their firmness, and 9.1% of their weight, but increased 

in soluble solids by 7.1% during 3 months of cold storage (Appendix I: Table I-II). The 

change in acidity, firmness, soluble solids, and weight for the "top 9" cultivars did not 

differ significantly from the rest of the accessions. However, the “top 9” cultivars tended 

to experience a less severe loss of firmness (29%) and acidity (25.9%) compared to the 

rest of the ABC. 
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Figure 2-3. Fruit quality measurements before and after 3 months of cold storage. 

Correlations of fruit quality measures taken before and after storage are found in the left 

column (a, c, e, g). Distributions of the percent change of each trait during storage are 

shown in the right column (b, d, f, h). The shaded grey areas represent the range occupied 

by the “top 9” cultivars. 

 

Relationships among traits 

 

We calculated correlations among all the fruit quality, phenology, and storage traits 

(Figure 2-4, Appendix I: Table I-III). Correlations for the 2016 phenotype data are 

provided in Appendix I: Figure I-VI and Table I-IV. Of the 105 pairwise comparisons, 32 

were significant after correcting for multiple comparisons (p < .01). Of those significant 

correlations, 28 were positive and 4 were negative. Harvest date was significantly 

correlated with weight (R2 = 0.11, p < 1 × 10−15), juiciness (R2 = 0.04, p = 1.85 × 10−4), 

percent change in SSC (R2 = 0.33, p < 1 × 10−15), and percent change in acidity 

(R2 = 0.18, p = 1.14 × 10−3). Juiciness and weight at harvest were significantly correlated 

(R2 = 0.06, p = 2.05 × 10−6). Phenolic content and weight at harvest were negatively 

correlated (R2 = 0.06, p = 1.1 × 10−4). Acidity and flowering date were negatively 

correlated (R2 = 0.04, p = 4.4 × 10−7). Firmness at harvest was correlated with phenology 

traits, including flowering date (R2 = 0.0292, p = 5 × 10−7), harvest date 

(R2 = 0.246, p < 1 × 10−15), and time to ripen (R2 = 0.259, p < 1 × 10−15) (Figure 2-5). 

Change in firmness during storage was positively associated with flowering date 
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(R2 = 0.0263, p = 1.7 × 10−4), harvest date (R2 = 0.0847, p = 5.8 × 10−12), and time to 

ripen (R2 = 0.0939, p = 7.8 × 10−13) (Figure 2-5). 

 

 

Figure 2-4. Heat map of pairwise correlations among phenology, fruit quality, and 

storage traits. Significant correlations (p < .01) after correcting for multiple comparisons 

are indicated with an asterisk. 
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Figure 2-5. Correlation of firmness at harvest with (a) flowering date, (b) harvest date, 

and (c) time to ripen. Correlation of firmness loss during storage with (d) flowering date, 

(e) harvest date, and (f) time to ripen. 

 

Phenotypes according to apple classifications 

 

For 9 of the 15 phenotypes, we observed significant differences between apples classified 

according to species, geographic origin, and/or use (Figure 2-6). When comparing 

median values between groups, M. domestica accessions flowered 3 days later (p < 

1 × 10−15), ripened 14 days later (p = 1.78 × 10−9), were harvested 15 days later 

(p = 5.35 × 10−13), were 250% heavier (p < 1 × 10−15), and had 67% less phenolic content 

(p = 5.63 × 10−3) than M. sieversii accessions (Appendix I: Table I-V). New world apples 

flowered 0.76 days earlier (p = 1.39 × 10−4), were 20% heavier (p = 7.45 × 10−3), and had 
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22% less phenolic content (p = 3.20 × 10−4) than old world apples. Finally, dessert apples 

flowered 0.75 days earlier (p = 6.36 × 10−6), were 43% heavier (p = 3.59 × 10−9), were 

11% softer (p = 1.74 × 10−4), and had 34% less phenolic content than cider apples 

(p = 1.12 × 10−7). 

 

 

Figure 2-6. Comparisons of fruit quality traits among species, geographic origins, and 

uses. The arrows indicate phenotypes where the difference between groups was 

significant. The arrow points to the group with the higher value. Apple accessions were 

classified into binary categories based on species (M. domestica vs. M. sieversii), 

geographic origin (new world vs. old world), and end use (cider vs. dessert) using 

information retrieved primarily from the USDA Germplasm Resource Information 

Network, as well as online sources. 
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Phenotypic changes over time 

 

Phenolic content was the only phenotype of the 39 tested that showed a significant 

change over historical time after correcting for multiple comparisons: the year of release 

of named cultivars was negatively correlated with phenolic content 

(R2 = 0.12; p = 1.0 × 10−4) (Appendix I: Table I-VI). Apple cultivars released after 1940 

had a median phenolic content of 3.38 μmol/g, which is 30% lower than cultivars 

released before 1940 (4.86 μmol/g) (Figure 2-7). 
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Figure 2-7. Apple phenolic content decreased over the past 200 years. Each dot 

represents a named cultivar. A cultivar's “year of release” refers to its year of 

commercialization, release to the public, or initial mention in historical records. 

 

Discussion 

Humanity's food security, and the long-term sustainability of agriculture, relies on the 

preservation and characterization of germplasm collections that house the genetic 
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diversity required for future crop improvement. Detailed quantification of the phenotypes 

within these germplasm collections is vital to enabling breeders to more rapidly and 

efficiently generate improved plant varieties. To this end, our comprehensive apple 

phenome evaluation involved phenotyping of Canada's Apple Biodiversity Collection 

(ABC), which contains over 1000 apple accessions. The degree of phenotypic variation in 

the ABC was substantial for some traits (Figure 2-2). For example, apples can differ by 

61 -fold in weight, 18-fold in acidity, and nearly 100 -fold in phenolic content. 

Phenological traits, such as harvest date, also varied considerably across the orchard, 

spanning 66 days. In contrast, flowering took place within a 21-day window. Our 

findings are in line with observations from diverse apples planted throughout Europe 

where harvest season was also approximately three times longer than the flowering 

period (Jung et al. 2020). Cultivars that are prone to early floral development under warm 

temperatures are at increased risk of damage from spring frosts, and late flowering may, 

therefore, be a desirable breeding target (Gottschalk and van Nocker 2013). Time to ripen 

is also a critical phenotype for apple producers and we observed a nearly twofold 

difference in the time to ripen between the cultivar with the shortest (71 days) and longest 

(139 days) times to ripen. There is a strong preference among producers for fruit that 

ripens quickly: the longer fruit hangs on the tree exposed to potentially adverse weather 

events or pests and disease, the higher the risk of fruit damage and yield loss. Therefore, 

there is interest in breeding late flowering and fast ripening cultivars to reduce the risks 

imposed by adverse environmental events (Gottschalk and van Nocker 2013; Seeley and 

Anderson 2003). Our observations provide not only an overall view of the levels of 
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variation across apple phenotypes but also quantifies phenotypic variation that is 

informative for breeding improved apple cultivars. 

 

Widening the apple breeding pool to include lesser-known cultivars, as well as wild 

relatives such as M. sieversii, can lead to the development of elite cultivars with 

improved health benefits, tastes, and fruit quality. The “top 9” cultivars sold in the USA 

did not differ significantly from the entire collection as a whole for any phenotype, 

suggesting that the most popular apples in the USA are not outliers in terms of their 

phenotypes compared to the variation found within the ABC. However, there is 

considerable room for improvement through conventional breeding to move toward more 

desirable values for numerous phenotypes. For instance, there are apples within the ABC 

with acidity levels, phenolic content, ripening times, and flowering dates that lie beyond 

the values observed within the “top 9” cultivars. With the exception of soluble solids, 

where “Golden Delicious” was the sweetest accession in the ABC, none of the “top 9” 

cultivars had extreme values for fruit quality and phenology measurements. In addition, 

the range of trait measurements for the “top 9” spanned a median of 37% of the variation 

displayed by the broader collection. “Marachal” had the highest phenolic content, a value 

five times higher than “Granny Smith,” which had the highest phenolic content among 

the “top 9” cultivars. In addition, the “top 9” only captured 10.6% of the range in 

flowering date observed across the entire collection, and the “top 9” cultivars took a 

median of 13 days longer to ripen than the average apple in the orchard. This indicates 

that the most popular apples in the USA capture only a fraction of the phenotypic 

diversity in the ABC, and that most phenotypic variation remains largely unavailable to 
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consumers and producers. In addition, recent genetic analysis of the USDA apple 

collection showed that over half the collection is related through a series of first-degree 

relationships due to the prolific use of the most popular cultivars in breeding programs 

(Migicovsky, Gardner, et al. 2021). A review of the US apple genetic resources indicates 

that, despite the relatively robust germplasm resources available, the apple industry 

remains vulnerable due to the limited number of cultivars employed in commercial 

production (Volk et al. 2015). Although apples did not experience a diversity-reducing 

domestication bottleneck like many crops, if breeding programs continue to make use of 

only a small fraction of apple diversity, it could lead to reductions in genetic and 

phenotypic diversity in the future (Gross et al. 2014; Noiton and Alspach 1996). 

Exploiting the diversity of M. domestica and M. sieversii is not only useful to avoid 

narrowing the genetic base, but it is also critical for introducing novel traits into new 

cultivars that can meet apple growers’ challenges and the demands of consumers. 

 

Storability is a critically important target for breeders because consumers generally eat 

apples that have been stored for months. Accessions within the ABC that performed well 

during storage with minimal losses of firmness, acidity, and weight may serve as useful 

breeding material to develop cultivars with superior storability. When examining how 

acidity, soluble solids, firmness, and weight changed over 3 months of storage, we found 

that the direction of change in each trait was not universal across cultivars. For example, 

while firmness loss is expected during storage, a small number of cultivars appeared to 

gain firmness during storage (Figure 2-3). These rare observations can be explained by 

the destructive nature of our assays: the apples from a particular accession measured at 
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harvest were destroyed, so the apples measured after storage from that accession were not 

the same apples as those measured at harvest. However, the overall direction of 

phenotypic change during storage was consistent with previous studies: firmness, acidity, 

and weight decrease during storage, while SSC increases (Guerra, Sanz, and Casquero 

2010). For example, apples generally lost about a third (31%) of their acidity during 

storage, which is consistent with previous work (Kouassi et al. 2009; Verma et al. 2019). 

Apple flavor is strongly influenced by acidity, most predominantly malic acid content, 

and the loss of acidity during storage leads to decreased fruit quality (Harker, Gunson, 

and Jaeger 2003; Y. Zhang, Li, and Cheng 2010). One of the other key determinants of 

fruit quality both at harvest and after months of storage is fruit firmness (Guerra, Sanz, 

and Casquero 2010; Johnston, Hewett, and Hertog 2010). Despite the apple's superior 

ability to retain its firmness during storage compared to many other horticultural crops, 

there is still tremendous opportunity to improve apples by breeding novel cultivars that 

soften very little during extended periods of storage. We observed significant softening 

during storage: on average, apples lost 39% of their firmness over 3 months of storage at 

4°C. However, there were 14 accessions that experienced ≤10% firmness loss (Figure 2-

3). Our results suggest that apple breeders’ use of cultivars with superior acid and 

firmness retention during storage could result in novel cultivars with superior eating 

quality after storage. 

 

Post-storage fruit quality is key to an apple cultivar's commercial success and its biggest 

threat is loss of firmness due to softening. Here, we focused on the relationship between 

firmness and phenological traits, such as flowering date, time to ripen, and harvest date. 
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Previous work has found that late flowering and late harvested apples tend to be firmer 

(Migicovsky et al. 2016; Nybom et al. 2013; Oraguzie et al. 2004), and we confirmed this 

relationship here. We found that later harvested apples are firmer at harvest and soften 

less over 3 months of storage than early harvested apples (Figures 2-4, 2-5). We 

determined that, on average, for every week of on-tree ripening, an apple experiences a 

25% increase in firmness at harvest. It has been observed that early harvested apples have 

larger cells with greater intercellular space and, therefore, weaker tissue, which may 

account for their softer texture both at harvest and after storage (A. A. Khan and Vincent 

1990; Johnston et al. 2002). In addition, early harvested cultivars produce higher levels of 

ethylene than late-harvested cultivars, which likely contributes to their softer texture after 

storage (Watkins 2003). Firmness at harvest is also a strong predictor of firmness after 

storage (R2 = 0.54, p < 1 × 10−15), indicating that the texture of an apple after storage is 

largely dictated by how firm it was when picked. 

 

The time it takes an apple to ripen is the period of time between its flowering date and its 

harvest date. While long ripening periods may appear beneficial because they result in 

firm fruit that soften less, they also result in increased exposure to disease pressures and 

potential adverse weather events. In addition, late flowering cultivars are desirable 

because they are less prone to frost damage (Mehlenbacher and Voordeckers 1991). 

While growers may desire cultivars with short ripening periods, selection for rapid 

ripening will likely result in apples with poor texture attributes that make them 

undesirable to consumers. Apple cultivars with short ripening periods (i.e., late-flowering 

and early-harvested cultivars) would certainly be selected for by breeders if they had 
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desirable texture. It is possible that a few of the outlier cultivars we analyzed here that 

ripen relatively quickly but also possess desirable firmness attributes (e.g., “Tayeshnoe” 

and “Ivan”) may hold the key to decoupling ripening time from firmness. Genomic 

techniques that enable the relationship between ripening time and firmness to be broken 

could deliver novel apple cultivars in the future that ripen quickly, are harvested early, 

and are firm both at harvest and after storage. 

 

Comparisons between domesticated crops and their wild ancestors can reveal which traits 

were targeted during domestication and improvement (Meyer, DuVal, and Jensen 2012). 

We found that the domesticated accessions (M. domestica) flower later, ripen slower, are 

harvested later, are heavier, less acidic, higher in soluble solids, and lower in phenolics 

than accessions belonging to the apple's primary wild progenitor, M. sieversii. These 

findings are consistent with studies of apple domestication showing that larger fruit, low 

acidity, and high SSC content appear to have been selected for during apple 

domestication and improvement (Duan et al. 2017; Ma et al. 2015; Miller and Gross 

2011). Examples of fruit enlargement over the course of domestication can be seen in 

other crops as well, such as tomato, peach, and pear (Frary et al. 2000; Xiaolong Li et al. 

2019; Y. Li et al. 2019). Our results suggest that a decrease in phenolics and later 

flowering and harvest times may have also been targets of selection during apple 

improvement. 

 

Consistent with previous work (Migicovsky et al. 2016), we determined that New World 

cultivars are larger and have lower phenolic content than Old World cultivars. These 
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differences may be due to a difference in breeding targets between regions. It is well 

known that consumer preferences for fruit quality can be influenced by cultural factors 

like geography, as seen in peach, for instance (Y. Li et al. 2019), and this may explain the 

divergent apple phenotypes between different geographic regions observed here. 

 

While most of the apples we evaluated are intended for fresh eating and are, thus, 

classified as “dessert apples”, about 10% of the ABC consists of “cider apples” that have 

attributes that make them desirable for fermenting into cider. We found that dessert 

apples flower earlier, are heavier, are less firm, and have lower phenolic content than 

cider apples. Higher phenolic content in cider apples compared to dessert apples is 

consistent with previous work (Sanoner et al. 1999; Valois, Merwin, and Padilla-Zakour 

2006) and reflects the desire of cider makers to use apples with high astringency, a juice 

quality imparted by phenolics (Thompson-Witrick et al. 2014). Furthermore, genomic 

regions associated with flavonoid biosynthesis in dessert apples showed signatures of 

recent positive selection, suggesting that there was perhaps intentional breeding for 

reduced phenolic content in dessert apples (Migicovsky, Gardner, et al. 2021). Previous 

work is also consistent with our observation that dessert apples are generally larger than 

cider apples (Migicovsky et al. 2016). 

 

We investigated whether the traits we measured changed over historical time and 

determined that, over the past 200 years, commercial apples have experienced a reduction 

in phenolic content. Apple cultivars released after 1940 have 30% lower phenolic content 

than those released prior to 1940. Phenolic compounds impart many health benefits and 
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apples are one of the major sources of phenolics in the human diet. It is estimated that 

apples provide 22% of the phenolics that North Americans consume, therefore, a 

reduction in these compounds during modern cultivar development may be a health 

concern (Vinson et al. 2001). Breeding apples with increased phenolic content is 

predicted to be relatively simple since phenolic content is highly heritable and has a 

simple genetic architecture (K. McClure et al. 2019). Similar to a previous study 

(Kschonsek et al. 2018), we hypothesize that the observed decline in phenolic content of 

newly released apple cultivars is due to active selection against astringent taste and 

enzymatic browning. Enzymatic browning is driven by high phenolic content (Amiot et 

al. 1992; Holderbaum et al. 2010; Murata, Noda, and Homma 1995) and is associated 

with undesirable color and flavor, and reduced browning has been a target for selection 

by apple breeders (Toivonen 2006). In fact, the only genetically modified apple on the 

market today has been engineered to be non-browning (Armstrong and Lane 2014). It is, 

thus, possible that the decrease in phenolics over the past 200 years is due to selection for 

reduced browning, a phenotype that we did not measure but that is correlated with 

phenolic content. However, breeding can be both the problem as well as the solution, and 

the present study provides the foundation for the development of novel apple cultivars 

that forfeit neither nutrition nor quality. 
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Abstract 

Apple quality traits such as fruit texture, sugar content, and firmness retention during 

storage are key targets for breeders. Understanding the genetic control of fruit quality 

traits can enable the development of genetic markers, useful for marker-assisted breeding 

of new apple cultivars. We made use of over 260,000 single nucleotide polymorphisms 

(SNPs) genotyped across 1,054 apple accessions from Canada’s Apple Biodiversity 

Collection to perform genome-wide association for 21 fruit quality and phenology traits. 

We identified two loci on chromosome 15 and 16 associated with phenolic content and a 

locus on chromosome 10 associated with softening. In addition, we determined that 

allelic variation at the NAC18.1 transcription factor was associated with numerous traits 

including harvest date, firmness at harvest, and firmness after storage. Our analyses 

suggest that NAC18.1 independently acts as a high level regulator of multiple ripening 

related traits and we propose a model for the allelic effects at NAC18.1 on apple ripening 

and softening.  
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Introduction 

Apple is an important perennial fruit crop with a broad distribution worldwide: it ranks 

second in economic value among fruit crops with an estimated global production of $67 

billion US in 2021 (FAOSTAT 2021). Developing new apple cultivars that are disease 

resistant and have improved fruit quality has been a major focus of apple breeding 

programs. Due to a prolonged juvenile stage, a highly heterozygous genome and self-

incompatibility, apple breeding is a challenging and laborious process. Genomics assisted 

breeding offers a way to more efficiently develop improved apple cultivars. One such 

approach is the implementation of marker-assisted selection (MAS) in breeding 

programs. MAS can inform what progeny of a cross possess specific alleles that are 

associated with a trait so that only the germplasm likely to express the desired phenotype 

are moved forward in the breeding pipeline. 

 

One of the most important traits to be targeted using genomics-assisted breeding in apple 

is fruit firmness (Laurens et al. 2018). Consumers value apples that are firm at harvest 

and soften minimally during storage. Softening is one of the hallmarks of apple ripening 

and is just one of many ripening related traits that indicates when a cultivar is ready to 

harvest. Apple ripening is characterized by a climacteric rise that leads to numerous 

biochemical changes such as softening, expression of aroma, change in color and 

carbohydrate metabolism (Johnston et al. 2009). The climacteric rise involves an increase 

in respiration and synthesis of the gaseous plant hormone ethylene (G.-S. Liu et al. 2022). 

During fruit maturation, ethylene production is inhibited by feedback until the climacteric 
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rise (Klee and Clark 2010). After the climacteric rise, autocatalytic ethylene production 

begins due to the introduction of 1-aminocyclopropane-1-carboxylic acid synthase 

(ACS). This initiates the onset of ripening and oxidation of ACC by ACC-oxidase 

(ACO), which leads to the production of ethylene (Klee and Clark 2010; Pech, Latché, 

and Bouzayen 2010). The desirable alleles of ACO1 and ACS1 have been developed into 

markers for MAS for firmness related phenotypes (Baumgartner et al. 2016). In addition 

to ACO1 and ACS1, polygalacturonase (PG1) has been identified as a key gene 

controlling apple firmness (Atkinson et al. 2012). PG1 encodes an enzyme that degrades 

pectin within cell walls and the middle lamella of apple fruit leading to loss of firmness 

(Atkinson et al. 2012). Although multiple markers have been developed for ripening and 

firmness related traits, their utility across diverse germplasm remains questionable 

(Migicovsky, Yeats, et al. 2021). Additional genetic mapping of key traits in apple can 

further advance the ability to efficiently select germplasm with promising fruit quality 

phenotypes. 

 

Recent genome-wide association studies (GWAS) have identified additional candidate 

genes associated with ripening and firmness related traits in apple. Migicovsky et. al. 

(2016) first identified an association between a SNP in a NAM, ATAF1,2 and CUC2 

(NAC) transcription factor, NAC18.1, and fruit firmness and harvest date. This SNP has 

been named the D5Y mutation since it involves a non-synonymous mutation from 

aspartate (D) to tyrosine (Y) at the fifth amino acid position of the NAC18.1 protein 

sequence. Since then, GWAS in other apple collections have uncovered associations 

between variants in and around NAC18.1 and fruit firmness and harvest date (Urrestarazu 
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et al. 2017; Larsen et al. 2019; Jung et al. 2020). NAC transcription factors (TF) are 

involved in a wide array of biological processes and form one of the largest TF families 

within plants (G.-S. Liu et al. 2022). Specifically, NAC TFs are associated with the 

regulation of ripening processes, such a sugar accumulation and softening, in numerous 

fruit species (Forlani, Mizzotti, and Masiero 2021) including tomato (Ying Gao et al. 

2018), strawberry (Martín-Pizarro et al. 2021), banana (B. Li et al. 2020), peach (Pirona 

et al. 2013; Tan et al. 2021), kiwifruit (Nieuwenhuizen et al. 2015), sweet cherry (Qi et 

al. 2022) and apricot (García-Gómez et al. 2019). NAC18.1 has been shown to be 

ethylene independent and the D5Y marker within NAC18.1 has higher predictive power 

for firmness related traits compared to ACO1, ACS1 and PG1 markers (Migicovsky, 

Yeats, et al. 2021). Markers that can identify breeding lines with desirable firmness and 

ripening phenotypes can aid breeding programs that are focused on developing new apple 

cultivars with superior quality. 

 

Here, we performed a large-scale GWAS in apple with a particular focus on ripening and 

firmness related traits using Canada’s Apple Biodiversity Collection (ABC). The ABC is 

an orchard of over 1,000 apple accessions that was established in order to enable high 

resolution GWAS of fruit quality traits. The phenotypic diversity across the ABC was 

previously quantified by Watts et al. (2021) through the phenotyping of over 1,000 apple 

accessions for 39 fruit quality traits. The ABC was genotyped using genotype-by-

sequencing, resulting in 278,231 genetic markers (Migicovsky, Douglas, and Myles 

2022). By pairing the genotypic and phenotypic data collected from the ABC, we 
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identified genetic markers associated with commercially relevant fruit quality traits to 

advance genomics assisted breeding in apple. 

 

Results 

 

Figure 3-1. Population genomic analysis of 1054 diverse apple accessions. A) Principal 

components analysis of genome-wide SNP data, with accessions coloured by harvest date 

and with shape representing species. B) Boxplot of the PC 1 values between M. sieversii 

and M. domestica. C) Pearson correlation of PC 2 values with harvest date. 
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Principal components analysis (PCA) of the genome-wide SNP data revealed that PC1 

explained 5.5% and PC2 explained 3.1% of the overall genetic variance (Figure 3-1A). 

We observed separation of M. domestica and M. sieversii along PC1: the two species had 

significantly different PC1 values (W = 69789, P<1x10-15) (Figure 3-1B, Appendix II: 

Table II-I). We investigated the degree to which population structure correlated with 

phenotypes and determined that PC2 was strongly correlated with harvest date (R2=0.16, 

P<1x10-15) (Figure 3-1C, Appendix II: Table II-II). 

 

 

Figure 3-2. Genome-wide association study for phenolic content. A) Manhattan plot of 

GWAS results for phenolic content. The horizontal red line represents the significance 

threshold. (B) Boxplot of the distribution of phenolic content measurements across the 

genotypes of the top SNPs on chromosomes 15 and 16, with a black line indicating the 

median phenolic content measurement for each genotype. 

 

GWAS were conducted for 21 fruit quality and phenology traits using a standard mixed-

linear model (Appendix II: Figure II-I). The top SNP from the GWAS for phenolic 

content was Chr15:3806070 (P=2.22x10-26) and it explained 27.3% of the phenotypic 

variation (Figure 3-2A, Appendix II: Table II-III). A second peak was observed on 
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chromosome 16, with the top SNP at Chr16:5256210 (P=2.41x10-12) which explained 

11.9% of the phenotypic variation (Figure 3-2A, Appendix II: Table II-III). 
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Figure 3-3. Genome-wide association studies of ripening related traits. Manhattan plots 

of GWAS results for (A) harvest date, (B) juiciness, (C) firmness at harvest, (D) firmness 

after storage, (E) change in SSC during storage and (F) SSC after storage. The horizontal 

red lines in each Manhattan plot represent the significance threshold. The distributions of 

trait measurements across the NAC18.1 D5Y genotypes are also shown adjacent to each 

Manhattan plot with median values for each genotype indicated by a horizontal line. 

 

The SNP with the strongest association with harvest date was the D5Y SNP within the 

NAC18.1 gene (P=3.24x10-46; Figure 3-3A). There was an additional peak on 

chromosome 16, with the top SNP being Chr16:8852649 (P=4.56x10-9). The D5Y SNP 

was also the top hit for juiciness, firmness at harvest, SSC during storage and SSC after 

storage  (Figures 3-3B, C, E, F). For firmness after storage, the top GWAS hit was found 

on chromosome 16 (Chr:16:9235229; P=6.85x10-9), while the second most significant 

association was with D5Y (P=1.05x10-8; Figure 3-3D). We observed no significant 

associations for SSC at harvest (Appendix II: Figure II-I).  

 

D5Y genotypes explained 18.1%, 7.8%, 11.9%, 6.1%, 13.3% and 10.3% of variation in 

harvest date, juiciness, firmness at harvest, firmness after storage, change in SSC during 

storage and SSC after storage, respectively (Appendix II: Table II-III). Harvest date, 

which was the trait most significantly associated with D5Y, was also correlated with the 

other 5 traits associated with D5Y (Appendix II: Figure II-II). We therefore re-ran the 

GWAS with harvest date as a covariate for all the other phenotypes with significant hits 

at D5Y (Appendix II: Figure II-III). After accounting for variation in harvest date, D5Y 
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remained the top SNP associated with firmness at harvest and change in SSC during 

storage, but was no longer significantly associated with juiciness, SSC after storage and 

firmness after storage (Appendix II: Figure II-III). 

 

We did not find any noteworthy associations with the other traits measured except for 

malic acid. The well-characterised SNP within the MA1 gene (Bai et al. 2012) was the 

most significant SNP from the GWAS for acidity at harvest (P=1.97x10-40) and acidity 

after storage (P=3.97x1019) (Appendix II: Figure II-I). 

 

Figure 3-4. Genome-wide association study for softening during storage. (A) Manhattan 

plot from a GWAS for softening during storage. The horizontal red line represents the 

significance threshold. (B) A Manhattan plot showing only the genomic region around 
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the GWAS peak on chromosome 10. The purple SNP is the most significant SNP 

associated with softening. The PG1 SNP is shown in pink. The horizontal dotted line 

represents the significance threshold. (C) Distributions of softening measurements across 

PG1 genotypes. (D) Distributions of softening measurements across genotypes of the 

most significant SNP from the GWAS. Horizontal black lines indicate the median value 

within each genotype. 

 

The top SNP from the GWAS for softening during storage was Chr10:27438934 

(P=4.02x10-8) and it explained 7.3% of the phenotypic variation (Figure 3-4A, Appendix 

II: Table II-III). The commonly used marker for apple softening, PG1 (Chr10:27285866), 

was not significantly associated with softening (P=1.62x10-4) and was 153,068 bp 

downstream of the top GWAS hit observed here (Figure 3-4B). 

 

 

Figure 3-5. A summary of the allelic effects of NAC18.1 D5Y genotypes on ripening 

phenotypes, both at harvest and after 3 months of cold storage.  (A) Median measures of 

firmness at harvest and firmness after storage for apple accessions with different D5Y 
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genotypes. (B) The median soluble solids content at harvest and after storage for apple 

accessions with different D5Y genotypes. 

 

The median SSC and firmness measurements, at harvest and after storage, were 

calculated across the three D5Y genotypes. D5Y genotypes had no effect on softening 

during storage: all three genotypic classes experienced similar degrees of softening 

during storage. However, the at harvest and after storage firmness measurements did vary 

across the genotypic classes at D5Y. Accessions homozygous for the C allele at D5Y had 

the highest median firmness measurements both at harvest (8.8 kg/cm2) and after storage 

(5.5 kg/cm2) (Figure 3-5A, Appendix II: Table II-IV). The D5Y heterozygotes were 

slightly more firm at harvest (7.4 kg/cm2) and after storage (4.2 kg/cm2) compared to the 

AA homozygotes, which were the accessions with the lowest firmness measurements at 

harvest (6.4 kg/cm2) and after storage (3.5 kg/cm2) (Figure 3-5A, Appendix II: Table II-

IV). 

 

Accessions that were homozygous for the A allele or heterozygous for D5Y declined in 

SSC during storage (Figure 3-5B). SSC decline was less severe, however, for D5Y 

heterozygotes compared to AA homozygotes, with median losses of 12.6% and 3.3% 

SSC, respectively (Appendix II: Table II-IV). In contrast, accessions homozygous for the 

C allele at D5Y gained SSC during storage, with a median increase of 10.5% SSC 

(Appendix II: Table II-IV). 
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Discussion 

 

Genetic structure of the ABC 

 

The genetic structure of the ABC is strongly influenced by the inclusion of the apple's 

primary wild progenitor species, M. sieversii (Figure 3-1). A recent study of the same 

collection studied here found that several phenotypes differ between the two species, and 

that domestication and breeding likely resulted in apples today that are larger, less acidic 

and less phenolic than their wild progenitors (Davies et al. 2022). The use of wild 

progenitors in crop breeding is important because it can expand the phenotypic diversity 

available for  cultivar improvement (Migicovsky and Myles 2017). Wild relatives of 

domesticated crops may possess improved fruit quality and disease resistance traits, so 

the GWAS population studied here intentionally includes dozens of M. sieversii 

accessions to capture genetic and phenotypic diversity that may be unavailable within M. 

domestica. Figure 3-1 also shows that there is a correlation between population structure 

and harvest date, which has been previously shown in a similar apple population 

(Migicovsky et al. 2016). The correlation between population structure and harvest date 

likely reflects the fact that harvest date is a proxy for geographic ancestry, which is 

frequently a major determinant of population genetic structure (Novembre et al. 2008). 

Overall, our population genomic analysis suggests that the genetic structure in this apple 

population is primarily shaped by the inclusion of two different species and diverse 

cultivated germplasm that ripens over a considerable 65 day window. 
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Phenolic content is associated with loci on chromosome 15 and 16 

 

Future apple improvement may benefit from an augmentation of bioactive compounds 

that impart health benefits. Phenolic compounds are a large family of secondary 

metabolites commonly found in plants that possess antioxidant and antimicrobial 

properties (Aires 2017). Consumption of phenolic compounds from apples has been 

shown to impart health benefits due to their antidiabetic properties (C. H. J. Yu et al. 

2023). From our GWAS, we identified two significant peaks associated with phenolic 

content on chromosomes 15 and 16 (Figure 3-2). We did not identify any noteworthy 

candidate genes within 50 kb of the top hit on chromosome 15. However, within the 50 

kb surrounding the top SNP on chromosome 16 is a bHLH protein gene and TCP family 

transcription factor gene which have been implicated in plant flavonoid biosynthesis 

(Appendix II: Table II-V;(Shutian Li and Zachgo 2013). Previous GWAS and linkage 

mapping studies have identified a quantitative trait locus (QTL) on chromosome 16 for 

polyphenols within which the leucoanthocyanidin reductase (LAR1) gene is located (K. 

McClure et al. 2019; Chagné et al. 2012; S. A. Khan et al. 2012). LAR1, which converts 

leucocyanidin to catechin, has been proposed as a candidate gene involved in phenolic 

content variation in apple. Despite the presence of markers in close proximity to the 

LAR1 gene within our GWAS SNP set, the top SNP on chromosome 16 from our GWAS 

was 1.8 Mb from LAR1.  

 

We suspect that the inability to identify signals near previously reported QTLs for 

phenolics may be due to different methods for measuring phenolics that makes it 
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challenging to compare results across studies. Here, total phenolic content was measured 

using the Folin–Ciocalteu assay (FCA) which uses a reduction reaction to estimate the 

total amount of phenolics and phenolic acids within a sample (Singleton, Orthofer, and 

Lamuela-Raventós 1999). In contrast to chromatography methods, the FCA lacks 

specificity to distinguish among classes of phenolics and instead groups phenolic 

compounds into one total measurement (Samara, Nasser, and Mingelgrin 2022). The 

FCA can also reduce other compounds, such as sugars and ascorbic acid, thereby 

contributing to an inaccurate measurement of total phenolic content (Aires 2017). Despite 

the differences in methods used to measure phenolics, we identify signals on 

chromosome 15 and 16 associated with total phenolic content. Further work should 

include measurements of individual phenolic compounds using chromatography methods 

to discern the specific compounds driving the associations between phenolic content and 

the loci identified here. 

 

NAC18.1 is major locus associated with multiple ripening traits 

 

Apple ripening involves the coordination of various biochemical changes such as 

softening, aroma development, color change and carbohydrate metabolism that render the 

fruit ready for harvest (Johnston et al. 2009). Previous apple GWAS, across multiple 

germplasm collections, have identified strong signals near and within NAC18.1 for 

harvest date and firmness (Migicovsky et al. 2016; Urrestarazu et al. 2017; Larsen et al. 

2019; Jung et al. 2020). We observed a strong signal at the D5Y SNP within NAC18.1 for 

harvest date, juiciness, firmness at harvest, firmness after storage, SSC change during 
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storage and SSC after storage. These observations suggest that the allelic effects at the 

NAC18.1 locus are highly pleiotropic.  

 

Harvest date, the trait most strongly associated with variation at NAC18.1, was correlated 

with the other phenotypes that show a GWAS signal at NAC18.1, such as juiciness, SSC 

after storage, SSC change during storage, firmness at harvest and firmness after storage 

(Appendix II: Figure II-II). We reasoned that the signal observed at NAC18.1 across other 

traits may be driven entirely by the effect of NAC18.1 on harvest date. After controlling 

for harvest date, however, the D5Y SNP in NAC18.1 was still the most significantly 

associated SNP with firmness at harvest and percent change in SSC during storage 

(Appendix II: Figure II-III). This suggests that variation at NAC18.1 independently 

affects multiple ripening related traits. 

 

Allelic effects of NAC18.1 on ripening 

 

A hallmark of apple ripening is the conversion of starch to sugar that signals fruit is ready 

to be picked (Brookfield et al. 1997). Within apple fruit, carbohydrates are converted to 

starch and stored within amyloplasts of developing fruit (Noronha et al. 2018). During 

the later stages of fruit maturation and at the onset of ripening, starch is degraded leading 

to an accumulation of sugar (Brookfield et al. 1997). Previous studies have uncovered 

significant associations for individuals sugars, sucrose and fructose, with a locus on 

chromosome 1 (Larsen et al. 2019; Guan et al. 2015). While other studies examining 

SSC, rather than individual sugars, have found associations on chromosomes 8 and 3 



 67 

(Liebhard et al. 2003; Amyotte et al. 2017; Jung et al. 2022). We did not identify any 

significant SNP associations with SSC, similar to other GWAS in apple (Kumar et al. 

2014). Our inability to detect significant associations for sugar content compared to other 

studies is likely due to low marker density surrounding key loci and differences in 

measurement of sugar content (individual sugars vs. SSC). Future investigation of the 

genetic control of sugar content in apple will likely benefit from improved genomic data 

and more precise measurement of individual sugars. 

 

The degradation of starch continues once the fruit is picked and provides a source of 

carbohydrate for respiration and synthesis of aroma compounds and leads to an increase 

in sugar. Although we did not identify any significant SNPs associated with SSC at 

harvest, we did identify significant associations between D5Y and change in SSC during 

storage and SSC after storage. We observed a mostly co-dominant pattern for the effects 

of D5Y genotypes on SSC change during and after storage. During storage, accessions 

homozygous AA at D5Y lost the largest amount of soluble solids, heterozygotes lost 

slightly less, while accessions homozygous CC at D5Y gained soluble solids. We 

hypothesise that, although apples were harvested at similar SSC levels, accessions with 

an A allele at D5Y continue on an accelerated ripening path post-harvest. Once starch is 

converted to sugar, accessions on the accelerated ripening path metabolise available 

sugars in order to further fuel metabolic processes, leading to an observable decline in 

SSC during 3 months of cold storage. In contrast, we hypothesise that accessions that are 

homozygous CC at D5Y convert starch to sugars at a slower rate: during 3 months of 

storage, SSC gradually increases in these accessions as conversion of starch to sugar is 
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still underway. Additionally, the demand for sugar substrates could be lower in the 

homozygous CC accessions compared to the homozygous AA accessions due to a lower 

demand of substrates for respiration, as has been suggested to occur in slow ripening 

peach accessions (Giné-Bordonaba et al. 2020). An evaluation of our proposed model can 

be performed in the future by measuring starch content and SSC through a pre-harvest 

and post-harvest time series. 

 

In addition to changes in SSC, changes in texture are a key aspect of fruit ripening. We 

identified significant associations between genetic variation at NAC18.1 and firmness at 

harvest and firmness after storage (Figures 3-3C,D). The early harvested AA genotypes at 

D5 were less firm than the late harvested CC genotypes. The association with firmness 

after storage is likely driven primarily by the correlation with firmness at harvest: a firm 

apple at harvest will be firmer after three months of storage than a soft apple at harvest. 

No significant association was identified between D5Y and softening, indicating that 

ethylene-mediated post-harvest softening likely occurs independently of genetic variation 

at the NAC18.1 locus (Figure 3-4). This is consistent with previous observations that 

NAC18.1 transcript levels were affected neither by exposure to ethylene, nor to an 

ethylene inhibitor, 1-MCP (Migicovsky, Yeats, et al. 2021). Thus, our observations 

suggest that alleles at NAC18.1 mediate apple firmness via an ethylene independent on-

tree ripening program rather than a post-harvest, ethylene-dependent softening 

mechanism.  
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In addition to the critical role of NAC18.1 variants in determining firmness, we found 

that genetic variation on chromosome 10 mediated the degree to which apples softened 

during storage (Figure 3-4). Previous studies have also identified significant associations 

between firmness and markers on chromosome 10, most of which suggest that the signal 

arises from variants at the polygalacturonase (PG1) gene, whose expression is ethylene-

dependent  (Kumar et al. 2013; Di Guardo et al. 2017). A functional marker for PG1 has 

been developed and employed in breeding to predict softening, and this PG1 marker was 

genotyped and included in our GWAS (Costa et al. 2010; Baumgartner et al. 2016; 

Migicovsky, Douglas, and Myles 2022). We did not find a significant association 

between softening and the PG1 marker. Nor did we find significant associations with 

markers in the ACO1 and ACS1 genes used to predict firmness, consistent with recent 

work questioning the utility of these markers across diverse germplasm (Migicovsky, 

Yeats, et al. 2021). Our top SNP for softening was located 153 kb downstream of PG1 

Results from a recent pooled-sequencing GWAS identified a signal upstream of PG1 for 

softening (Davies et al. 2023). Overall, these results suggest that functional genetic 

variants affecting softening on chromosome 10 may lie in long-range regulatory elements 

affecting the PG1 expression as hypothesised by Di Guardo et al. (2017).  

 

Although ACO1, ACS1, and PG1 have been extensively validated as key genes involved 

in controlling aspects of apple ripening, our observations suggest that NAC18.1 may be a 

high-level regulator orchestrating the overall tempo of ripening. Lü et al. (2018) proposed 

a model for peach ripening where a NAC TF impacts a cascade of ripening traits by 

binding to the promoters of important ripening genes, such as ACO1 and ACS1 (Lü et al. 
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2018). In a slow ripening peach cultivar, it has been suggested that the ripening cascade 

is disrupted by loss-of-function deletions  in two NAC TFs (Giné-Bordonaba et al. 2020). 

Given these observations in peach, we hypothesise that genetic variation at NAC18.1 in 

apple affects transcriptional regulation of its downstream targets and thereby modulates 

both firmness related traits and SSC. We suggest that NAC18.1 functions as a ripening 

“throttle”, and alleles of NAC18.1 differentially control the timing of ripening and rate at 

which an apple moves through the biochemical changes associated with ripening. 

Accessions that are homozygous AA at the NAC18.1 D5Y SNP are “rapid ripeners'' as 

they move through the stages of ripening at a faster pace than their homozygous CC 

counterparts, the “slow ripeners”. Heterozygous accessions fall between these two 

extremes, suggesting a predominantly co-dominant model of inheritance at this locus 

(Figure 3-5A). The rapid ripeners tend to be harvested earlier in the season, are softer at 

harvest and post-storage, lose SSC during storage and have lower levels of SSC post-

storage compared to the slow ripeners. Here we demonstrated that genetic variation at 

NAC18.1 is correlated with variation in multiple ripening related traits, however the 

mechanism by which this variation affects these traits remains unknown. Although the 

D5Y may be considered a putatively causal NAC18.1 variant, recent results suggest that it 

is more likely mutations in the promoter region of NAC18.1 that mediate ripening 

(Davies et al. 2023). This suggests that our GWAS signal at NAC18.1 arises because of 

cis-regulatory variation affecting NAC expression, which subsequently impacts the 

expression of downstream target genes that mediate the ripening process. Future work 

will include an exhaustive search for genetic elements impacting the expression of 

NAC18.1 using whole-genome sequencing of this diverse collection of apples. In 
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addition, the downstream genomic target(s) of NAC18.1 must be identified in order to 

fully elucidate  NAC18.1’s role in the apple ripening process. 

 

Although NAC18.1 clearly stood out in the present work as a large effect locus for 

ripening traits, it is likely that other loci also contribute to variation in ripening traits. As 

demonstrated in other GWAS studies (Zhao et al. 2011), it is possible we could be 

missing associations with loci of small effect due to the way in which mixed model 

association analyses correct for population structure and relatedness. This is particularly 

applicable here since harvest date is strongly associated with population structure (Figure 

3-1A,C). In addition to the signal at DY5, we uncovered a significant, albeit weaker, 

signal on chromosome 16 for harvest date and firmness after storage (Figure 3-3A,D). 

The top SNP for harvest date was at Chr16:8852649 (P=4.56x10-9) and the top SNP for 

firmness after storage was 383 kb away at Chr16:9235229 (P=4.56x10-9). Previous 

GWAS studies have identified significant associations for harvest date and fruit firmness 

on chromosome 16 that co-locate to the same region of chromosome 16 that we identified 

here (Jung et al. 2022; Urrestarazu et al. 2017; Chagné et al. 2014). To date, the 

involvement of the chromosome 16 locus on harvest date and firmness traits remains 

undefined and should be further examined along with other small effect loci that could be 

impacting in ripening traits. 

 

Identifying both large and small effect loci impacting key traits is especially important 

for breeding purposes. Although NAC18.1 appears to be a large effect locus impacting 

apple ripening, there are two important considerations for targeting this locus with MAS 
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for breeding improved cultivars. The first concerns the allele frequencies at D5Y SNP 

across existing elite apple germplasm. A study of the apples used here showed that 66% 

of accessions, including the majority of elite commercial cultivars, are homozygous for 

the late-ripening C allele at D5Y, and this desirable allele may have been selected for by 

generations of apple breeders (Migicovsky, Yeats, et al. 2021). Therefore, the genomics-

assisted improvement of firmness across elite germplasm will likely require the 

identification of additional loci that are not already fixed within elite germplasm. The 

second consideration is the pleiotropic nature of the NAC18.1 locus. For example, 

harvest date is strongly correlated with firmness at harvest. Therefore, the development of 

an earlier ripening cultivar by selecting for the early A allele at D5Y will likely lead to 

unfavourable changes such as softer fruit at harvest. The fixation of the favourable alleles 

at NAC18.1 across elite germplasm and the pleiotropic effects of the NAC18.1 locus 

further emboldens the search for additional loci involved in controlling ripening traits.  

 

Here, we confirmed previous associations between genetic loci and ripening related traits, 

and identified new variants associated with polyphenol content and softening. 

Uncovering the causal genetic variant(s) controlling variation across key fruit quality and 

phenology traits in apple requires improved genetic mapping resolution. Future work 

should incorporate whole-genome sequence data of large samples in order to increase the 

resolution necessary to move beyond the development of genetic markers for MAS and 

towards the identification of causal alleles. Given the importance of health compounds, 

fruit texture and ripening traits both for production management and fruit quality, there is 
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value in continuing to pursue a comprehensive characterization of the genetic variation 

underlying commercially relevant traits in apple.  

 

Materials and Methods 

 

Phenotype data 

 

The phenotype data were collected from 1,1119 accessions in the ABC and  are described 

in Watts et al. (2021). In short, 39 traits were measured from 2014-2017. These traits 

included phenology traits such as flowering time, harvest date, time to ripen and 

precocity. The fruit quality traits measured at harvest included titratable acidity, soluble 

solids content (SSC) (degrees Brix), SSC/acidity ratio, firmness, weight, total phenolic 

content and juiciness. In addition, acidity, SSC, SSC/acidity ratio, firmness and weight 

were also measured after 3 months of cold storage and the percent change in these 

phenotypes during storage were calculated. Apple accessions from the ABC were also 

classified based on their reported species (M. domestica or M. sieversii), release year, end 

use (cider or dessert) and country of origin.  

 

Genetic data 

 

The ABC was genotyped using genotyping-by-sequencing (GBS; (Elshire et al. 2011) 

and the methods and resulting genetic data were recently published (Migicovsky, 

Douglas, and Myles 2022). In short, DNA from young leaf tissue was extracted from 
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accessions in the ABC and then GBS libraries were prepared using two restriction 

enzymes and libraries were then sequenced using Illumina Hi-Seq 2000. The final SNP 

set after imputation and pooling across SNP callers was 278,231 SNPs from 1,175 unique 

accessions (Migicovsky, Douglas, and Myles 2022). An additional 8 markers were 

genotyped using high resolution melting (HRM) and were added to the SNP set using the 

--merge function in PLINK (Purcell et al. 2007). The HRM markers included Ma1 for 

acidity (Bai et al. 2012) and three markers for scab resistance, Rvi2, Rvi6, Rv15 (Jänsch 

et al. 2015). In addition, four texture markers were genotyped with HRM, these included 

PG1, ACO1, ACS1 and NAC18.1 as described previously (Migicovsky, Yeats, et al. 

2021). The HRM genotype call for NAC18.1 was retained, while the GBS SNP for 

NAC18.1 was removed using PLINK. The final SNP set from Migicovsky et al. 

(Migicovsky, Douglas, and Myles 2022) included 278,231 SNPs from 1,1175 accessions 

and the data can be found Dryad: 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.zkh1893cd. 

 

The final SNP set was filtered to only include the 1,054 accessions which had data for at 

least one phenotype (Watts et al. 2021). SNPs with heterozygosity >90% and a minor 

allele frequency <0.01 were removed, resulting in a final SNP set of 260,399 SNPs across 

1,054 apple accessions. All filtering steps were performed using PLINK (Purcell et al., 

2007). 

  

Principal components analysis 

 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.zkh1893cd
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For principal components analysis (PCA), only SNPs anchored to an assembled 

chromosome were considered and LD pruning was then performed using PLINK (-indep-

pairwise 10 3 0.5) (Purcell et al. 2007), resulting in 164,992 SNPs that were used to 

perform PCA in TASSEL (version 5.0). The correlation of principal component (PC) 1 

values with harvest date was calculated in R using ‘cor.test’ and p-values were multiple 

test corrected with a Bonferroni correction. Wilcoxon test statistics of the comparison of 

PC2 values across M. domestica and M. sieversii were calculated in R using the 

‘wilcox.test’ function. 

 

Genome-wide association studies 

 

GWAS was performed on trait data from 2017 due to the larger sample sizes, unless the 

trait data was only collected in 2016, which resulted in analysis of 21 of the 39 traits from 

Watts et al. 2021 (See supplementary file). For each phenotype’s filtered genotype file, 

kinship matrices and PCA were run using TASSEL (version 5.0). GWAS was then run 

using the ‘mlmm’ R package (Segura et al. 2012). We present GWAS results from the 

single-locus model where no SNPs are included as cofactors (equivalent to a mixed-linear 

model GWAS). Kinship matrices and the first 5 PCs were used to account for relatedness. 

Quantile–quantile plots were created using the ‘qqman’ package in R (D. Turner 2018). 

Manhattan plots for the 21 phenotypes were plotted using the `mlmm` package and are 

available in the supplementary material. However, the Manhattan plots presented in the 

main manuscript (Figure 3-2,3-3, 3-4) were plotted using the ‘qqman’ package in R. All 

unassembled contigs were concatenated into a single chromosome labeled "R" 
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throughout the manuscript. The effective number of independent tests (Meff) was 

calculated to be 211,156 based on the 260,399 SNP set using the simpleM package in R. 

The Meff value was then used to calculate the threshold for significance for all GWAS 

using -log(α/Meff), where α = 0.05. 

 

Jitter plots of the distribution of trait measurements across the genotype classes of top 

GWAS SNP hits were visualized using the `ggplot` package in R. Gene annotations from 

the GDDH genome were retrieved for regions within 50 kilobases of either side of the top 

GWAS hits. The distribution of trait measurements across the genotypes of the SNPs of 

interest from the GWAS were visualized using the ‘ggplot’. Pearson correlation tests 

between phenotypes were run and visualized using the ‘ggpairs’ function from the 

GGally R package. The variation explained by the top SNPs from the GWAS was 

calculated by subtracting the R2 from a linear model with only the top 5 PCs included as 

explanatory variables from the R2 from a linear model including the top 5 PCs and the 

top GWAS SNP as explanatory variables. The difference in R2 between the two models 

was reported as the variance of a trait explained by a particular SNP. 
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Abstract 
 
Analysis of over 100 Cannabis samples quantified for terpene and cannabinoid content 

and genotyped for over 100,000 single nucleotide polymorphisms indicated that Sativa- 

and Indica-labelled samples were genetically indistinct on a genome-wide scale. Instead, 

we found that Cannabis labelling was associated with variation in a small number of 

terpenes whose concentrations are controlled by genetic variation at tandem arrays of 

terpene synthase genes. 

 

Introduction 

Cannabis has been consumed for its psychoactive properties for over 2,500 years, and its 

estimated global market value is US$340 billion (Lawler 2019; Naville 2019; Bonini et 

al. 2018). Because it is a widely used drug that is increasingly being legalized for 
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medicinal and recreational use, it is critical that Cannabis’s genetic and chemical 

variation be accurately quantified and communicated. The vernacular labels Sativa and 

Indica (not to be confused with the taxonomic names C. sativa sativa L. and C. sativa 

indica Lam.) are routinely assigned to Cannabis cultivars by breeders, retailers and users 

to describe a cultivar’s morphology, aromas and/or psychoactive effects (Guy and 

McPartland 2017). However, it is unclear whether these labels capture meaningful 

information about Cannabis genetic and chemical variation. 

 

Cannabis genomics research has thus far largely focused on the characterization of genes 

underlying the production of the cannabinoids cannabidiol (CBD) and 

tetrahydrocannabinol (THC) (Laverty et al. 2019; McKernan et al. 2020; Vergara et al. 

2019; Grassa et al. 2021). However, Cannabis produces hundreds of aromatic terpenes 

that drive consumer preference and are frequently associated with Sativa and Indica 

labels (Guy and McPartland 2017; Gilbert and DiVerdi 2018). In addition, there is 

evidence to suggest that a cultivar’s terpene profile affects its psychoactive properties 

(Russo 2011; Koltai and Namdar 2020). To date, various terpene synthase genes have 

been identified in Cannabis; however, the genetic control of terpene variation 

across Cannabis cultivars remains largely unexplored (Booth, Page, and Bohlmann 2017; 

Zager et al. 2019; Günnewich et al. 2007; Livingston et al. 2020). 

 

Here we re-analysed 297 samples of drug-type Cannabis that were previously quantified 

for 40 terpenes and cannabinoids using gas chromatography–mass spectrometry (GC–

MS) (Hazekamp, Tekalova, and Papadimitriou 2016) (Appendix III: Table III-I Figure 
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IV-I), and we paired these data with 116,296 newly generated single nucleotide 

polymorphisms (SNPs) from 137 of these samples from which sufficient high-quality 

DNA could be extracted. We determined the degree to which the genomic and GC–MS 

data corresponded to a five-point labelling scale ranging from 1 (100% Sativa) to 5 

(100% Indica) as reported by sample sources. 

 

Materials and Methods 

Samples 

 

The samples come from a previous study of 460 Cannabis chemotypes (Hazekamp, 

Tekalova, and Papadimitriou 2016). The samples were collected from Bedrocan 

International BV (n = 37), HempFlax (n = 205) and Dutch ‘coffee shops’ either directly or 

indirectly through the TRIMBOS Institute (n = 55). Samples labelled as ‘Hemp’ were 

excluded from the analysis. We retained and analysed 297 samples that were classified 

along a five-point scale according to ancestries reported by the sources: ‘Sativa’ (100% 

Sativa), ‘Hybrid-Sativa’ (75% Sativa, 25% Indica), ‘Hybrid’ (50% Sativa, 50% Indica), 

‘Hybrid-Indica’ (25% Sativa, 75% Indica) and ‘Indica’ (100% Indica). These five groups 

were encoded as 1 (100% Sativa) to 5 (100% Indica) for the statistical analyses described 

below. 

 

Gas chromatography 
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A total of 297 samples were previously quantified for terpene and cannabinoid content, 

and we conduct a re-analysis of these data here. The chemical analyses of the samples are 

described in detail in ref. Hazekamp, Tekalova, Papadimitriou (2016). Briefly, for each 

sample, 500 mg of ground homogenized dried flower material was mixed with 40 ml of 

ethanol, agitated for 10 minutes and centrifuged. The supernatant was collected, and the 

process was repeated twice more on the pellet. An internal standard consisting of 200 μl 

of 1% solution of 1-octanol was added to the combined supernatant, the volume was 

adjusted to 100 ml with ethanol and the combined sample was centrifuged again. The 

combined sample was analysed using an Agilent GC 6890 series (Agilent Technologies) 

equipped with a 7683 autosampler and a flame ionizing detector. The instrument was 

equipped with a DB-5 column (length, 30 m; internal diameter, 0.25 mm; film thickness, 

0.25 μm; J&W Scientific). Peaks from the sample chromatograms were manually 

integrated, and the peak area was recorded with correction for the internal standard peak 

area. Peak identification was conducted by analysing selected samples using gas 

chromatography mass spectrometry (GC-MS) and then comparing compounds’ mass 

spectra and retention times with authentic standards and literature reports as described in 

ref. Hazekamp, Tekalova, Papadimitriou (2016). Compounds without authentic standards 

are marked with an asterisk in the figures to indicate that they were tentative 

identifications. Peak areas of monoterpenes, sesquiterpenes and cannabinoids were 

quantified (in mg per g of plant material) using calibrated standards of β-pinene, α-

humulene and CBD, respectively. We re-assessed the compound identifications in 

Hazekamp, Tekalova, Papadimitriou (2016) and in certain cases we renamed compounds 

on the basis of the inability to distinguish stereoisomers using a DB-5 column. For 
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example, in the case of the compound listed by Hazekamp, Tekalova, Papadimitriou 

(2016) as ‘(−)-linalool’, we renamed this to ‘linalool’. There are also two compounds that 

could not be reliably identified; they are listed as ‘unidentified compounds’ (Appendix 

III: Table III-II). THC, δ-8-THC and CBN were combined into a single value, ‘Total 

THC’, because δ-8-THC and CBN are degradation products of THC. Peaks of R-

limonene and β-phellandrene were indistinguishable and were therefore combined into a 

single value and reported as ‘limonene’. Thymoquinone, geraniol, thymol and carvacrol 

were removed because they were not present in any samples, and cineol was removed 

because it was present in only one sample. Pearson correlations were calculated between 

each pair of chemicals using the cor.test function in R v.3.5.1 (R Core Team 2018). 

According to previous work (Ernest Small, H. D. Beckstead, and Chan 1975), the 

samples analysed here were nearly all drug-type Cannabis (that is, type I) (Appendix III: 

Figure III-I), except nine samples with THC > 0.3% and CBD > 0.5% (that is, type II). 

 

Genomic analysis 

 

Whole-genome DNA was extracted using a NucleoSpin 96 Plant II kit (Machery-Nagel) 

and quantified using the QuantiFluor dsDNA System and the GloMax-Multi + Microplate 

Multimode Reader with Instinct (Promega). Genotyping-by-sequencing libraries were 

prepared using the restriction enzyme ApeKI (Elshire et al. 2011), and the libraries were 

sequenced on two lanes of an Illumina Hi-Seq 4000 (Illumina). The DNA sequence data 

are available as NCBI BioProject PRJNA713792. Calling of SNPs was performed in 

TASSEL (v.5.0)(Bradbury et al. 2007) by aligning to the CBDRx reference genome 

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA713792
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(Grassa et al. 2021). SNP calling was performed before the implementation of the new 

chromosome numbering of the CBDRx genome in April 2020. Chromosomes were 

recoded for analyses to reflect the new chromosome numbering system. We used 

VCFtools (v.0.1.15) (Danecek et al. 2011) to retain only bi-allelic SNPs and samples with 

<70% missing data, which resulted in 155 remaining samples and 284,988 SNPs. 

Genotype imputation was performed using LinkImputeR (Money et al. 2017) with a 

minor allele frequency threshold of 0.01, a minimum read depth for masking of 20 and 

the number of masked genotypes set to 5,000. We chose to impute with a minimum read 

count of 2 and a maximum missingness threshold of 70%, which resulted in an 

imputation accuracy of 92.88%. After imputation, 149 samples remained. An additional 

12 samples were removed because they had no phenotype data. This resulted in a final set 

of 137 samples with both genetic and chemical data. The SNP data were filtered using 

PLINK (v.1.90) (Purcell et al. 2007) to exclude SNPs with a minor allele frequency less 

than 0.05 and SNPs with excess heterozygosity resulting in Hardy–Weinberg P values 

less than 1 × 10−5. The final SNP dataset used for GWAS consisted of 116,296 SNPs 

from 137 samples. For PCA, 1,257 unanchored SNPs were removed, and the remaining 

115,039 SNPs were LD-pruned using PLINK (command: –indep-pairwise 10 3 0.5), 

resulting in 80,939 SNPs. 

 

Genetic and chemical analysis 

 

The chemical distance between cultivars was calculated as the Euclidean distance using 

the ‘dist’ function in R from the matrix of metabolomic data—that is, 40 terpenes and 
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cannabinoids quantified across 297 samples. The genetic similarity between samples was 

calculated as an inverse identity-by-state matrix generated in PLINK. The correlations 

between the matrices were computed using a Mantel test in R (R Core Team 2018) by 

first reducing the chemical matrix to the 137 samples with both chemical and genetic 

datasets. PCA was performed on the scaled genetic and chemical data using the prcomp 

function in R. To calculate the variance in labelling explained by the chemical and 

genetic data, linear models including the top ten PCs from the genetic data, the chemical 

data and both the chemical and genetic datasets together were performed. Pearson 

correlations between chemical concentration and the 1-to-5 Sativa–Indica scale were 

performed with the cor.test function in R. A Bonferroni correction was applied to 

the P values from the correlation test between chemical concentration and the Sativa–

Indica scale. 

 

Genome-wide association 

 

We performed GWAS for 40 terpene and cannabinoid phenotypes, using both normalized 

and non-normalized data. Normalizing was conducted to generate values for a chemical 

concentration in a sample relative to the total abundance of its chemical class (that is, 

monoterpene, sesquiterpene or cannabinoid) in that sample. Thus, a sample’s myrcene 

content was divided by the total concentration of all monoterpenes in that sample to 

generate a normalized value for myrcene. GWAS was performed using an MMLM 

(Segura et al. 2012) accounting for relatedness using a kinship matrix created in TASSEL 

(v.5.0) (Bradbury et al. 2007). The MLMM incorporates significant SNPs as cofactors 
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using stepwise regression (maxsteps = 10), and the optimal model was chosen on the 

basis of the extended Bayesian information criterion. We also present the first step of the 

MLMM, which is equivalent to an MLM where relatedness is accounted for but no SNPs 

are included as cofactors. Using the simpleM40 package in R, the effective number of 

independent tests (Meff) was generated, and the threshold for significance was then 

calculated using −log10(α/Meff), where α = 0.05. Quantile–quantile and Manhattan plots 

were created using the qq function in R. Genomic regions with significant GWAS hits 

were explored, and the physical locations of genes within these regions were retrieved 

using annotations from the CBDRx reference genome (Grassa et al. 2021) in Geneious 

Prime (v.2020.1.2). The GWAS results and LD regions of interest were visualized using 

code adapted from ref. (Hu et al. 2019). 

 

Results and Discussion 

Principal component analysis (PCA) of the genomic data showed no clear clustering 

according to sample labels (Figure 4-1A). Even though PC1 and PC2 were significantly 

correlated with the Sativa–Indica scale, the variance explained by the primary PCs was 

low (PC1: R2 = 0.12, P = 2.1 × 10−5; PC2: R2 = 0.12, P = 1.8 × 10−5). Furthermore, the 

overall genetic structure (captured by including the first ten PCs of the genomic data in a 

linear model) explained only 37% of the variance in labelling (Figure 4-1C). Sativa–

Indica labels thus do not accurately reflect genetic relatedness, which is consistent with 

previous work (Sawler et al. 2015; Lynch et al. 2017). In addition, we determined that 

pairs of samples with identical cultivar names (for example, OG Kush) were often as 

genetically and chemically distant from each other as pairs of samples with different 

https://www.nature.com/articles/s41477-021-01003-y#ref-CR40
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names (Appendix III: Figure III-II). This is consistent with previous studies indicating 

that cultivar names were not reliable indicators of a sample’s genetic or chemical identity 

(Sawler et al. 2015; Henry et al. 2020; Schwabe and McGlaughlin 2019; Smith et al. 

2021). 

 

 

Figure 4-1. PCA. A) Genome-wide SNP data. B) Terpenes and cannabinoids. Each dot 

represents a Cannabis sample and is coloured by the labelling scale ranging from 100% 

Sativa to 100% Indica. C) The percent variance explained by PCs from the genome-wide 

SNP data (blue), from the terpene and cannabinoid data (green) and from both the genetic 

and chemical data (purple). The y axis shows the percent variance explained as PCs are 

added to linear models where the Sativa–Indica labelling scale is the dependent variable. 

 

Similar to the PCA of the genome-wide SNP data, the PCA of the terpene and 

cannabinoid profiles provided poor separation of samples according to their Sativa–

Indica labels (Figure 4-1B). Nevertheless, we observed significant correlations between 

the first two PCs and the Sativa–Indica scale (PC1: R2 = 0.049, P = 7.5 × 10−5; 

PC2: R2 = 0.24, P = 3.7 × 10−19). Including the first ten PCs from the terpene and 

cannabinoid profiles in a linear model accounted for only 41% of the variance in labelling 
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(Figure 4-1C). The pairwise genetic and chemical relatedness matrices were correlated 

(Mantel r = 0.21, P = 1 × 10−3, Appendix III: Figure III-III), and a linear model including 

the first ten PCs from both the genomic and chemical profiles captured only 41% (Figure 

4-1C; P = 3.1 × 10−10) of the variance in labelling. Since the overall patterns of genetic 

and chemical relatedness could not fully account for the labels applied 

to Cannabis samples, we aimed to determine which individual chemicals were the 

strongest predictors of Sativa–Indica labelling. 

 

Of the 40 measured terpenes and cannabinoids, 12 (30%) were correlated with the 

Sativa–Indica scale at P < 0.01 (Figure 4-2A and Appendix III: Figure III-IV). Sativa 

content was positively correlated with the concentrations of bergamotene 

(R2 = 0.12, P = 9.26 × 10−8) and farnesene (R2 = 0.11, P = 1.09 × 10−7), which impart tea-

like and fruity aromas, respectively (“Compound Card for α-Trans-Bergamotene” 2020; 

Russo and Marcu 2017). This is consistent with descriptions of Sativa cultivars as having 

a ‘sweet’ or ‘herbal’ aroma (Guy and McPartland 2017; Gilbert and DiVerdi 2018). The 

strongest correlation was between Indica content and myrcene, whose concentration 

explained 21.2% of the variation in labelling (P = 2.29 × 10−15; Figure 4-2A). The 

sedative effect and earthy aroma attributed to high myrcene content are often reported by 

recreational users to be characteristic of Indica cultivars (Russo 2011; Pearce, Mitsouras, 

and Irizarry 2014; Temple and Leikin 2020; Hartsel et al. 2016). We also observed 

significant positive correlations between Indica labelling and three sesquiterpenes: guaiol 

(R2 = 0.18, P = 7.7 × 10−13), γ-eudesmol (R2 = 0.11, P = 3.8 × 10−7) and β-eudesmol 

(R2 = 0.21, P = 8.2 × 10−15). Hillig (Hillig 2004) found that these three sesquiterpenes 
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were associated with plants from Afghanistan, which is considered the region of origin 

for Indica cultivars. 

 

 

Figure 4-2. A) The percent variance of the five-point Sativa–Indica labelling scale that is 

explained by terpene and cannabinoid concentrations from Pearson correlations. 

The P values were Bonferroni-adjusted for multiple comparisons. The asterisks denote 

chemicals with tentative identifications. GWAS results are shown for chemicals 

https://www.nature.com/articles/s41477-021-01003-y/figures/1
https://www.nature.com/articles/s41477-021-01003-y/figures/1
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highlighted in grey. B) Manhattan plots of mixed linear model (MLM) GWAS for 

myrcene on chromosome 5 (C) Manhattan plots of mixed linear model (MLM) GWAS 

for guaiol, γ-eudesmol and β-eudesmol on chromosome 6. The significance thresholds 

from the MLM are shown as horizontal dashed lines. Significant SNPs from the MLMM 

GWAS are red. Terpene synthase gene clusters are green. Below the Manhattan plots are 

heat maps of the pairwise LD (R2) between pairs of SNPs that appear in the Manhattan 

plots. 

 

Previous chemical analyses of Cannabis have suggested that the distinction between 

Sativa and Indica is best explained by differences in the concentrations of specific 

monoterpenes and sesquiterpenes (Henry et al. 2020; Elzinga et al. 2015; Casano et al. 

2011; Fischedick et al. 2010). In addition, the contrasting aromas that have been 

associated with Sativa (that is, sweet) and Indica (that is, earthy) were key discriminators 

in a sensory evaluation of Cannabis cultivars and mediated customers’ perceptions of 

potency and quality (Gilbert and DiVerdi 2018). As a previous study suggested (Mudge, 

Brown, and Murch 2019), we hypothesize that Cannabis growers and breeders have been 

assigning labels to cultivars primarily on the basis of aroma profiles and purported 

effects, rather than genetic ancestry or overall chemical similarity. The primary 

differences between cultivars labelled as Sativa and Indica may thus be driven by a small 

set of genomic regions controlling the concentrations of a small number of contrasting 

aromas. To examine this, we conducted a genome-wide association study (GWAS) of the 

40 chemicals examined here (Appendix III: Figure III-V and Table III-III). 
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We identified three regions of the Cannabis genome associated with the four terpenes 

most strongly associated with Sativa–Indica labelling (Figure 4-2). The optimal model 

from the multilocus mixed linear model (MLMM) GWAS for myrcene identified two 

significantly associated SNPs 1.2 megabases apart that tag independent blocks of linkage 

disequilibrium (LD) on the proximal end of chromosome 5 (Figure 4-2B). The first SNP 

(chr5:1348048) is located 6.4 kilobases (kb) from a block of terpene synthase genes 

composed of four copies of TPS30, which is known to encode myrcene synthase (Booth, 

Page, and Bohlmann 2017) (Appendix III: Table III-III). The second SNP 

(chr5:2576403) is 46.7 kb from another tandem array of terpene synthase genes spanning 

~200 kb (Appendix III: Table III-III). Within this gene cluster are two sequences highly 

similar to the myrcene synthase gene, TPS3 (Booth, Page, and Bohlmann 2017; Zager et 

al. 2019). These observations suggest that myrcene synthesis is mediated by genetic 

variants at two independent terpene synthase gene clusters on chromosome 5. The other 

three sesquiterpenes (guaiol, β-eudesmol and γ-eudesmol) strongly associated with 

Sativa–Indica labelling are correlated with each other (Appendix III: Figure III-VI) and 

share a common GWAS hit on chromosome 6: the single SNP identified from the 

MLMM (chr6:76790611) is 51.9 kb from a gene cluster comprising sesquiterpene 

synthase genes related to TPS7FN (δ-selinene synthase), TPS8FN (γ-eudesmol/valencene 

synthase) (Booth, Page, and Bohlmann 2017) and TPS20CT (Zager et al. 2019) 

(hedycaryol synthase) (Figure 4-2C and Appendix III: Table III-III). 

 

Our results demonstrate that the Sativa–Indica scale currently used to 

label Cannabis poorly captures overall genomic and metabolomic 
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variation. Cannabis labelling is instead probably driven primarily by a small number of 

key terpenes whose concentrations contribute to the characteristic aromas commonly 

associated with Sativa and Indica and whose variation we genetically mapped to tandem 

arrays of terpene synthase genes on chromosomes 5 and 6. While the vernacular labels 

‘Sativa’ and ‘Indica’ are derived from taxonomic names that were originally used to 

categorize plants according to ancestry (Guy and McPartland 2017), these terms have 

been co-opted by contemporary Cannabis culture and now probably reflect locus-specific 

genetic variation affecting terpene synthesis. Our results suggest that a practical and 

reliable classification system for Cannabis that is consistent with contemporary 

understanding of the terms ‘Sativa’ and ‘Indica’ may be achievable by quantifying a 

small number of terpenes and/or genotyping genetic markers associated with 

key Cannabis aromas. 
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Chapter 5: From GWAS to CRISPR: a direct route to the gene-edited 

orchard. 

 

Introduction 

Sustainable and resilient food systems rely on the cultivation of a diversity of agricultural 

crops (McCouch et al. 2013). Although the majority of the calories consumed globally 

come from a small number of annual crops (i.e. corn, rice and wheat), perennial crops 

remain important contributors to nutritious diets and healthy agroecosystems (Vinson et 

al. 2001). Due to their multi-year lifecycle, perennial crops sequester more carbon and 

have lower risk of soil erosion compared to annuals (Kreitzman et al. 2020; Vallebona, 

Mantino, and Bonari 2016). Furthermore, perennial crops fill important nutritional niches 

and are key economic sources for small scale farmers (Kreitzman et al. 2020). 

Unfortunately, perennial fruit crops are especially susceptible to the detrimental effects of 

climate change due to specific temperature requirements and prolonged life cycles 

(Winkler et al. 2013; Leisner 2020).  

 

Apple is an important perennial crop with a broad distribution worldwide: it ranks second 

in economic value among fruit crops with an estimated global production of $98 billion 

US in 2018 (FAOSTAT http://faostat.fao.org). Apple breeding has traditionally been a 

long and labour intensive process: it takes upwards of 25 years to commercialize new 

cultivars from seed (Peil et al. 2008). The slow breeding pipeline for apples is in part due 

to its self-incompatibility, prolonged juvenile phase and costly cultivation. Although 

traditional breeding has resulted in the improvement of apple flavour and texture, much 

http://faostat.fao.org/
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improvement remains to be made for traits such as disease and pest resistance, abiotic 

stress, storability and nutrition. The development of new apple cultivars with a 

combination of these desirable traits is crucial to ensuring sustainable production in the 

future.  

 

Genomic technologies hold promise to accelerate crop improvement in order to enhance 

agricultural sustainability and resiliency. Over the past decade, next generation 

sequencing has enabled genomics assisted breeding of numerous agricultural crops 

leading to the development of new cultivars with superior traits. The first reference 

genome for apple was published in 2010 (Velasco et al. 2010). Since then, numerous 

assembled apple genomes have become available (Peace et al. 2019) and a major 

outcome of genomic analyses has been the development of markers useful for marker-

assisted selection (MAS) (Chagné et al. 2019, 2016; Jänsch et al. 2015; Baumgartner et 

al. 2016). These markers are linked to quantitative trait loci (QTL) for key fruit quality 

and disease resistance traits and their use can help reduce the cost of apple improvement 

by allowing breeders to select for traits of interest at an early juvenile phase (Luby and 

Shaw 2001). However, while MAS can help breeders identify promising new varieties at 

lower costs, its use has little effect on the time it takes to commercialize an apple from 

seed: apple breeding still remains a long process that is both labour intensive and costly. 

The fact that the apple is recalcitrant to rapid improvement even when employing modern 

MAS methods suggests that additional approaches are needed for the apple to truly 

benefit from the genomics revolution. 
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As an alternative genomic tool to MAS, gene editing is capable of directly introducing 

deletions, insertions and other alterations to any organism’s DNA sequence (Doudna and 

Charpentier 2014). By inducing precise alterations to plant genomes, gene editing has 

already been used to develop higher yielding rice varieties and wheat with improved 

disease resistance (Zaidi et al. 2019). The basis of many gene editing systems relies on 

the use of programmable nucleases that are capable of targeting specific regions of a 

genome to introduce double stranded breaks (DSBs). Although numerous editing systems 

exists, like zinc-finger nucleases (ZFNs) and transcription activator-like effector 

nucleases (TALENs), the most popular system due to its simplicity and efficiency is the 

RNA guided clustered regularly interspaced short palindromic repeats (CRISPR) and 

CRISPR-associated protein (Cas) system (CRISPR/Cas) (Hsu, Lander, and Zhang 2014; 

Doudna and Charpentier 2014). A crucial component of the CRISPR-Cas system is the 

single guide RNA (sgRNA) that is designed to be complementary to the target genomic 

region and therefore determines the specificity of the induced edits. The sgRNA directs 

the Cas enzyme to the target region and the Cas enzyme introduces a DSB in the DNA at 

the desired location. Then, through repair mechanisms, mutations are introduced at the 

DSB site (Doudna and Charpentier 2014). The rapid development of gene editing 

systems has allowed for targeted editing of numerous perennial fruit crops including 

apple as well as citrus, grape, banana, pomegranate, cacao and kiwifruit (Jia et al. 2016; 

C. Ren et al. 2016; Pompili et al. 2020; Naim et al. 2018; Chang, Wu, and Tian 2019; 

Fister et al. 2018; Varkonyi‐Gasic et al. 2019). Thus far, in apple, studies have 

demonstrated successful editing of genes involved in fire blight resistance, phytoene 

desaturase, shoot regeneration, flowering and herbicide resistance (Nishitani et al. 2016; 
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Malnoy et al. 2016; Charrier et al. 2019; Pompili et al. 2020; Malabarba et al. 2020; H. Li 

et al. 2023). By introducing novel mutations directly into the apple genome, gene editing 

is a promising tool for apple improvement that could dramatically accelerate the time it 

takes to commercialize novel apple cultivars. 

 

With CRISPR now widely available, researchers are rapidly exploring traits that can be 

improved with this promising new technology. However, to expand the list of phenotypic 

changes that can be made with gene editing in apples, there are numerous technical 

barriers that must be overcome. The key challenge that arguably precedes all others is 

identifying causal genetic variants that impact phenotypic traits. Nasti and Voytas (2021) 

described this dilemma rather succinctly: “An editor, of course, has no value unless there 

is text to edit.” Editable text is elucidated through genotyping of an organism’s genome 

and determining the causal genetic variants that underlie phenotypic variation. This 

sounds simple in principle, but pinpointing causal genetic variants for relevant 

phenotypes in crop genomes remains a major challenge in agricultural genomics. The 

most common methods to detect genotype-phenotype associations in apple have resulted 

in the identification of numerous QTL, but very few causal genetic variants have been 

discovered. Very few mapping studies have yielded actionable gene editing targets 

because experimental designs and populations used to perform most genetic mapping in 

apple were not established with the purpose of identifying causal genetic variants. 

Instead, these “mapping” populations were usually breeding populations: breeders 

generated bi-parental crosses to generate novel cultivars and then subsequently used data 

from the offspring to identify markers that could be used for MAS. This has led to an 
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abundance of low-resolution genetic mapping experiments in apple: most studies result in 

large QTL regions containing thousands of potential causal genetic variants (Kenis, 

Keulemans, and Davey 2008; K. A. McClure et al. 2016; Kostick et al. 2021). 

Researchers must then generally perform years of fine mapping, candidate gene 

guesswork, and laborious functional assays in order to narrow their search from a large 

QTL interval to a shortlist of potentially causal genetic variants. Much of the effort put 

into identifying causal genetic variants could be avoided with careful experimental 

design: a single, optimally-designed mapping population can deliver the mapping 

resolution required to efficiently identify gene editing targets. 

 

Given the intense focus of recent research on developing gene editing tools, the value of 

the precise genomic coordinates of genetic variants that result in desirable phenotypes has 

increased dramatically. Here I present a framework for rapidly advancing apple breeding 

using gene editing (Figure 5-1). I propose that large GWAS populations maximizing 

species diversity should undergo whole-genome sequencing (WGS) and comprehensive 

phenotyping to identify causal alleles that are responsible for phenotypic variation. From 

GWAS, I propose directly undertaking CRISPR mutagenesis based on a small number of 

candidate functional variants across multiple genetic backgrounds to both validate 

genotype-phenotype relationships and create novel cultivars in a single step. Although 

this approach requires a large investment up front, if designed correctly, it may enable a 

fast pipeline to shortlist candidate causal genetic variants that can be introduced into 

germplasm and field tested. Below is a description and discussion of the steps involved in 



 97 

this approach, from the discovery of putatively causal genetic variants to the 

commercialization of gene edited apples. 

 

 

 

Figure 5-1. GWAS to CRISPR approach. A) Establish a large, diverse population to map 

traits of interest. B) Conduct genome-wide association studies. C) Identify putatively 

causal alleles. In this example, three different genes have been identified. D) Design 

CRISPR sgRNAs to edit and introduce novel alleles. Edits are represented by the blue 

shapes (ie. insertions, deletions or alleles swaps). E) Introduce CRISPR sgRNAs into 
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multiple genetic backgrounds and regenerate plantlets from tissue culture. Here, one edit 

is introduced into one genetic background, however this step can be multiplexed to 

introduce edits into multiple genes within a genetic background to stack traits or target a 

gene family. In addition, this process can be performed across multiple genetic 

backgrounds. F) Evaluate edited germplasm to determine if edits generated the desirable 

phenotypes. G) Select improved accessions with desirable phenotypes for 

commercialization. 

 

Genetic Mapping 

 

The purpose of much research undertaken in agricultural genomics since high-throughput 

genotyping methods were developed has been to link phenotypes to genotypes. To edit 

the genome of a crop to express a specific phenotype, the causal alleles conferring the 

desired phenotype must be identified. The initial mapping approach has been described as 

the “rate-limiting” step in causal allele identification (Weigel and Nordborg 2005). 

Therefore, it is necessary to consider what experimental designs and mapping populations 

are needed to best exploit a future where genome editing will be ubiquitous. Within this 

section, I compare different mapping approaches and finish by providing a streamlined 

mapping approach for identifying gene editing targets in apple. 

 

Linkage mapping 
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Linkage mapping makes use of populations of closely related individuals to identify 

genetic loci associated with phenotypic traits. The experimental designs adopted to 

identify phenotype-genotype relationships through linkage mapping were often 

established with the intention of finding markers useful for MAS. In apple, numerous 

linkage mapping studies have been conducted to identify QTL for fruit quality, disease 

resistance and phenology traits (Verma et al. 2019; Kostick et al. 2021; Chagné et al. 

2014).  Most populations used for linkage mapping are derived from bi-parental crosses 

where limited recombination events have occurred leading to extended linkage 

disequilibrium (LD) (Myles et al. 2009). The resulting extended LD limits the mapping 

resolution and results in the identification of large genomic intervals associated with the 

measured phenotype, and these intervals are often millions of base pairs in length. 

Attempting to find the causal genetic variants within these large intervals frequently 

involves considerable effort. Thus, although linkage mapping is sufficient for identifying 

markers associated with a phenotype, it is unlikely to pinpoint the causal genetic 

variant(s) underlying that phenotype. For example, a recent linkage mapping study 

identified three QTL associated with fire blight resistance (Kostick et al. 2021). The QTL 

intervals ranged from 4.8 to 11.7 Mbp long and each had over 70 genes that were 

annotated as disease resistance genes. To find gene editing targets from long QTL 

intervals, additional fine mapping is required to further reduce the size of the QTL 

interval, and this is time consuming and, in many cases, impractical. Overall, linkage 

mapping has been useful in the development of markers useful for MAS, but higher 

resolution genetic mapping methods are needed to identify robust gene editing targets. 
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GWAS 

 

Genome-wide association studies (GWAS) make use of diverse, largely unrelated, 

individuals to uncover significant associations between phenotypic traits and genetic 

variants. GWAS have been used to map numerous traits in apple (Migicovsky et al. 2016; 

K. A. McClure et al. 2018; Larsen et al. 2019; Urrestarazu et al. 2017; Kumar et al. 2013; 

Jung et al. 2022). In contrast to linkage mapping, GWAS query a far greater amount of 

genetic diversity, which means that GWAS captures more recombination events and thus 

provides higher mapping resolution than linkage mapping (M. A. Khan and Korban 

2012). In addition, due to the genotypic and phenotypic diversity within GWAS 

populations, a single population can be used to identify multiple genetic variants 

underlying multiple traits (C. Zhu et al. 2008). In contrast, linkage mapping is usually 

limited to assessing only QTL that segregate between the parents of the initial cross. 

Therefore, to identify gene editing targets for multiple traits, association mapping is more 

efficient and cost-effective than linkage mapping. However, GWAS has limited power to 

detect associations when a trait is highly correlated with population structure or when the 

trait is low in frequency in the population (Yang et al. 2014). Therefore, allele 

frequencies and the genetic architecture of a trait should be considered when designing an 

association mapping experiment. 

 

At present, only a few single large effect loci have been identified using GWAS in apple. 

These include loci for harvest date and acidity, which have been mapped to chromosomes 

3 and 16, respectively. The chromosome 3 locus for harvest date was a novel association 
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first identified through GWAS of 689 diverse apple accessions (Migicovsky et al. 2016). 

It was found that at the chromosome 3 locus, a single-nucleotide polymorphism (SNP) in 

a NAC transcription factor was the most significant variant associated with harvest date 

(Migicovsky et al. 2016). The large effect of this locus on harvest date was further 

demonstrated in a larger population where the SNP at NAC explained over 40% of the 

variance in harvest date (Migicovsky, Yeats, et al. 2021). The harvest date locus on 

chromosome 3 has since been mapped in multiple germplasm collections around the 

world using GWAS (Urrestarazu et al. 2017; Larsen et al. 2019; Jung et al. 2022). The 

chromosome 3 locus was missed by previous linkage mapping studies due to the fact that 

most of the popular cultivars used in breeding programs, which are the parents of most 

linkage mapping populations, are fixed for the late-harvested allele at this locus 

(Migicovsky, Yeats, et al. 2021; Jung et al. 2022). If all accessions within a mapping 

population have the same genotype at a QTL, then the QTL cannot be mapped using that 

population. Thus, it was the highly diverse nature of the mapping population in the initial 

GWAS for harvest date that enabled the identification of the chromosome 3 locus. This 

underscores the ability of GWAS to exploit the apple’s tremendous natural genetic 

diversity to uncover novel genotype-phenotype associations controlling key traits. 

 

While GWAS is a preferred method due to the high mapping resolution it can offer, in 

some cases linkage mapping has led to the identification of causal genetic variants. For 

example, the involvement of the Ma1 locus in malic acid content in apples was first 

identified in 1998 through linkage mapping (Maliepaard et al. 1998). Subsequent fine 

mapping refined the Ma1 locus to a 150kb region within the Golden Delicious genome 
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(Xu, Wang, and Brown 2012). The Ma1 locus was further reduced to a 65kb region 

within which a SNP in the malate transporter-like gene was identified as the causal 

variant leading to variation in malic acid content (Bai et al. 2012). It is worth noting that 

the Ma1 locus was first identified using linkage mapping in 1998, but it took 14 years to 

fine-map the locus and identify the causal mutation (Maliepaard et al. 1998; Xu, Wang, 

and Brown 2012). In contrast, the causal allele at the Ma1 locus was easily identified in a 

single GWAS experiment that used WGS of 497 diverse apple accessions (Liao et al. 

2021). This highlights the power of GWAS to directly identify causal variants when 

coupled with WGS. WGS has only started to become feasible for hundreds or sometimes 

thousands of samples, but it is likely that the price of sequencing will continue to 

decrease, making GWAS an even more cost-efficient method for identifying causal 

alleles. 

 

These two examples demonstrate that GWAS of large, diverse populations coupled with 

WGS data is a mapping approach that is ideally suited to identify regions of the apple 

genome that can be edited to introduce key phenotypic changes. It is important to note 

that WGS enables the discovery of not only SNPs, but structural variants as well. 

Structural variants are increasingly being found to control phenotypic variation in plants 

(Saxena, Edwards, and Varshney 2014). A recent GWAS used WGS data from 417 peach 

accessions to uncover three causal structural variants controlling fruit shape, harvest date 

and flower morphology, for example (Tan et al. 2021). To identify gene editing targets in 

apple, exhaustive WGS of large numbers of accessions should be conducted in order to 

exhaustively catalog causal genetic variation that can be targeted with gene editing. 
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Short-listing candidate targets 

 

If the mapping approach, whether linkage mapping or GWAS, is unable to pinpoint the 

exact locations of causal alleles, then functional analysis may be conducted to try to 

validate putatively causal variants. Functional analyses may involve, for example, 

transgenic complementation, functional studies of different alleles, knock-out 

experiments or mutational analysis (Weigel and Nordborg 2005). The default procedure 

is to continue amassing evidence until one can conclude definitively that a genetic variant 

has a phenotypic effect (Ogura and Busch 2015; Weigel and Nordborg 2005). In apple, 

where a trait may need to be evaluated at the adult fruiting stage, these experiments can 

take between 5 and 10 years (Maliepaard et al. 1998; Xu, Wang, and Brown 2012). Even 

testing transgenic complementation in a rapidly growing model organism, such as 

tomato, requires considerable time and effort and may not reveal the precise causal 

genetic variant or molecular mechanism leading to phenotypic variation (Migicovsky, 

Yeats, et al. 2021). The functional validation of putatively causal genetic variants for a 

particular trait is difficult and time consuming even in crops with advanced genomic 

resources, and it is particularly burdensome in a long-lived woody perennial like the 

apple.   

 

Although the gold standard would be to identify causal alleles directly from GWAS, even 

with large and diverse mapping populations, high quality reference genomes, reliable 

phenotype data, and WGS, it may not be possible to identify causal alleles with absolute 
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certainty. Wherever possible, in silico analysis should be conducted to assess the 

potential function of putatively causal variants identified via GWAS. In silico analyses 

make use of available databases to prioritize causal alleles and typically involve 

surveying functional annotation data or analyzing cross-species annotation data (Hassani-

Pak and Rawlings 2017). Evidence provided by in silico analyses is orthogonal to the 

GWAS mapping results, and can thus lead to a refinement, and an improved ranking, of 

the shortlist of candidate targets (Broekema, Bakker, and Jonkers 2020). 

 

With a shortlist of putatively causal variants in hand, one can then skip the traditional 

functional analyses and conceivably begin gene editing immediately by producing edits 

in various combinations, targeting multiple phenotypes across diverse genetic 

backgrounds (Figure 5-1). The main purpose of this approach is to move as quickly as 

possible to gene editing and this is beneficial for multiple reasons. First, for many 

desirable fruit quality traits in apple, the strongest piece of evidence confirming causality 

will be the assessment of the fruit. Therefore, establishing edited trees in the ground as 

soon as possible is critical because it will take 5 years for those trees to produce fruit for 

commercial evaluation. Second, the route of identifying targets and then trying to validate 

the mechanism of phenotypic change before planting is simply delaying the inevitable 

need for field validation. If a gene edited apple cultivar is to be commercialized, end 

users (e.g. growers, nurseries, variety rights management companies) will require the trait 

improvement to be quantified and demonstrated in the orchard over the course of 

multiple years in any case. Therefore, in the context of advancing crop improvement, 

there is potentially a distinct advantage to forgoing functional validation for the sake of 
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understanding the molecular basis of a trait in favor of immediately generating orchards 

of gene edited trees for commercial evaluation. 

 

Gene editing challenges 

 

To move rapidly towards the commercialization of gene edited apple trees, it is critical 

that short-lists of targets identified via genetic mapping are introduced quickly into 

multiple desirable genetic backgrounds. As outlined in the previous section, one of the 

primary challenges with realizing the potential of gene editing in apple is the 

identification of reliable editing targets that elicit desirable phenotypic changes. 

However, with reliable editing targets in hand, there remains several technical hurdles to 

introducing edits into germplasm and regenerating plants. Here, we focus on two of the 

technical challenges that follow the identification of editing targets; difficulties with 

regeneration of edited plants through tissue culture and the current limitations of editing 

technologies in apples. 

 

In vitro tissue culture 

 

The foundation of any transformation system, whether it be for gene editing or trans/cis-

genesis, is a tissue culture system that can successfully regenerate transformed plants. 

Unfortunately many clonally propagated tree species are difficult to regenerate, and 

successful regeneration of one cultivar does not mean that all cultivars are amenable to 

regeneration (Birch 1997; Nagle et al. 2018; Goralogia, Redick, and Strauss 2021). 
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Although there are numerous examples of successful regeneration of transformed apple 

tissue, the regeneration efficiency varies significantly between cultivars (Aldwinckle and 

Malnoy, n.d.). However, innovative ways to improve regeneration in apple are being 

developed. For example, a recent study used gene editing to introduce mutations within 

the MdSPL6II gene in apple which led to improved shoot regeneration (H. Li et al. 2023). 

The transformation of plant tissue with developmental regulators, such as BABYBOOM 

(BBM), WUSCHEL (WUS), and GROWTH REGULATOR FACTOR 4 (GRF4), can 

help improve regeneration (Debernardi et al. 2020; Gallois et al. 2002; Lian et al. 2022; J. 

Chen et al. 2022). Recently, the transformation of apple tissue with BBM led to 

significantly higher rates of transformed apple shoot production (J. Chen et al. 2022). 

However, the insertion of developmental regulator genes into the genome can become 

problematic for regulations of gene edited plants further down the line (discussed below 

in Transgene-free editing) (Goralogia, Redick, and Strauss 2021). Furthermore, without 

careful control of expression, developmental regulators can lead to adverse effects in later 

developmental stages (Nagle et al. 2018; Gallois et al. 2002). 

 

There are also growing concerns surrounding the random mutations that can be 

introduced into germplasm through the process of in vitro tissue culture. A recent study 

of a fire blight resistant cis-genic apple line revealed that the cis-genic and wild type lines 

that underwent tissue culture experienced a loss of red skin colour compared to the wild 

type lines that were not propagated through tissue culture (Schlathölter et al. 2023). 

Schlathölter et al. suggested that the loss of red skin colour was likely due to somaclonal 

variation within the apple flavonoid pathway (2023). Overall, the mechanism through 
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which in vitro tissue culture can lead to unintended effects is an important issue that 

warrants further investigation. 

 

Gene editing technology 

 

Since its discovery in 2012, CRISPR technology has enabled us to introduce diverse 

types of changes to plant genomes (Doudna and Charpentier 2014). The majority of gene 

editing in plants involves the introduction of knock-out mutations since gain-of-function 

allele swaps and large insertions are more challenging (Nasti and Voytas 2021). The 

DSBs introduced by Cas proteins are repaired most commonly through non-homologous 

end joining (NHEJ). NHEJ results in the incorporation of small, random insertions or 

deletions into the targeted region and is therefore often used to induce knockout 

mutations. To date, published examples of gene editing in apple have primarily involved 

inducing knockout mutations that cause albino phenotypes (MdPDS), early flowering 

(MdTF1) and fire blight resistance (MdDIPM) (Pompili et al. 2020; Nishitani et al. 2016; 

Charrier et al. 2019; Dalla Costa et al. 2020; Malnoy et al. 2016). 

 

It is worth noting that at present, gene editing cannot be used to alter all traits because of 

the nature of the underlying genetic changes that are required to alter the phenotype. For 

example, many sought after traits require gain-of-function mutations that depend on the 

insertion of new sequence segments or changes in nucleotide sequence. Achieving 

disease resistance, for example, often requires the insertion of resistance genes from 

closely related species. In order to achieve this, a donor DNA template can be supplied 
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and homology directed repair (HDR) can incorporate the desired substitution and 

insertion. However, there are few instances of HDR being used to edit plants, as HDR 

produces edits only at relatively low frequency and is therefore inefficient (Shaoya Li and 

Xia 2020; Nasti and Voytas 2021). Furthermore, HDR can only handle insertions of up to 

50 nucleotides, which severely limits its ability to introduce sequences that will lead to 

phenotypic changes. Recent progress has been made with twin prime editing to introduce 

larger deletions, substitutions and insertions, but its efficacy in plants has yet to be 

demonstrated (Anzalone et al. 2021). 

 

Although insertions are often necessary to induce many forms of gain-of-function 

mutations, there is also a need to perform single nucleotide changes that lead to 

phenotypic changes. The ability to make single nucleotide changes is critical for editing 

genes that are essential for the organism to live: these genes cannot be completely 

disrupted via a knockout but may produce desirable phenotypic changes when altered 

slightly by a single nucleotide change. For example, gene editing could be used to 

introduce precise alterations, rather than knockouts, to ripening genes to create apples 

with varied ripening times. CRISPR base editors, composed of adenine and cytosine 

deaminases, have been shown to introduce precise base alterations without the need for 

DSBs. To date, only one report of base editing has been published in apple: a single 

nucleotide change was introduced in an ALS gene that confers herbicide resistance 

(Malabarba et al. 2020). At present, base editors are only capable of inducing transition 

mutations (i.e. A↔G, or C↔T) which limits their ability to introduce the full spectrum of 

nucleotide changes (Anzalone et al. 2019). Prime-editors have further expanded the scope 



 109 

of gene editing by enabling all 12 types of nucleotides substitutions without the need for 

donor DNA or DSBs, but their use has only been demonstrated in a small number of 

crops such as rice, tomato and maize (Hao, Pu, and Song 2021) .  

 

The difficulty in inducing some forms of mutation using gene editing begs the question: 

why not just use transgenic methods to induce phenotypic changes in apple? Although 

examples of transgenic apples exist (e.g. the non-browning Arctic® apple (Armstrong 

and Lane 2014), a red-fleshed apple (Espley et al. 2013), and an early flowering apple 

(Kotoda et al. 2006)), there is potential value in attempting to recreate these phenotypes 

using gene editing rather than relying on transgenic approaches. Below I highlight four 

benefits of gene editing that can advance apple improvement. 

 

Gene editing advantages 

 
Transgene-free editing 

 

One of the major benefits of gene editing is that it allows for genomes to be altered 

without the permanent introduction of transgenes into the recipient genome (Gu, Liu, and 

Zhang 2021). In countries like the United States, Canada and Brazil, it is possible for 

transgene-free gene-edited crops to bypass stringent regulations that often plague 

genetically modified crops. This is because these countries have adopted regulations 

based on the final product (i.e. the new cultivar), rather than the process used to develop 

the new cultivar (Turnbull, Lillemo, and Hvoslef-Eide 2021; Entine et al. 2021). The 

foundation of product-based regulation is the premise that the resulting gene-edited plant 
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could have, in theory, arisen from random genetic mutations (Turnbull, Lillemo, and 

Hvoslef-Eide 2021). While gene editing can produce plants that are transgene-free, it is 

the method of delivering the gene editing machinery that determines how the resulting 

plant will ultimately be classified by regulators.  

 

For decades, biolistic bombardment and agrobacterium have been the primary methods 

used for stable transformation of plant genomes, but these methods lead to the stable 

integration of transgenes that must be segregated out via selfing or crossing to achieve 

DNA-free edited plants (Altpeter et al. 2016; C. Gao 2021). The removal of transgenes in 

this manner is not feasible with many perennial fruit crops due to self-incompatibility and 

long juvenile phases (Gu, Liu, and Zhang 2021). Methods have been developed to excise 

CRISPR machinery and selectable markers after stable agrobacterium transformation. For 

example, removal of the T-DNA expressing the CRISPR/Cas9 cassette has been 

successfully demonstrated in apple using a heat-inducible FLP/FRT system resulting in 

transgene-free apple lines with reduced susceptibility to fire blight (Pompili et al. 2020; 

Dalla Costa et al. 2020). An additional method that has been tested in apple is to place 

Cas9 cleavage target sites on the borders of the T-DNA insertion so that the Cas9 enzyme 

excises the T-DNA cassette after making the desired target site edit (Dalla Costa et al. 

2020). These methods for excising T-DNA after stable integration still require refinement 

in order to be routinely used to generate transgene free edited apples. 

 

An alternative to stable transformation is transient expression of editing machinery that 

does not involve integration into the plant genome. One method of transient 
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transformation is through the delivery of preassembled Cas proteins and sgRNAs that are 

delivered as ribonucleoproteins (RNPs). RNPs are delivered directly into protoplast cells. 

In apple, Malnoy et al. (2016) targeted fire blight susceptibility genes, by delivering 

CRISPR machinery using RNPs. Although delivery of editing reagents through RNPs is 

advantageous for developing transgene free edited cells, work still remains to 

successfully regenerate full plants from protoplast in apple (Malnoy et al. 2016). 

Agrobacterium-mediated transient transformation is another method to generate 

transgene-free edited plants and can be achieved by various methods that favour transient 

expression over stable integration (Goralogia, Redick, and Strauss 2021). Charrier et al. 

(2019) successfully regenerated transgene-free PDS edited apple lines via transient 

agrobacterium transformation, however the editing rate was extremely low at 0.26%. 

Although the generation of transgene-free edited apples remains a major challenge, it is 

likely that these technical hurdles will be overcome given the magnitude of the efforts 

currently dedicated to solving these challenges across diverse agricultural species. 

 

Introducing novel variation 

 

Gene editing has expanded the repertoire of plant variation beyond the confines of natural 

variation and conventional breeding methods (Nasti and Voytas 2021). Through 

CRISPR-driven mutagenesis, it is possible to introduce novel genetic changes (i.e. not 

observed in nature) into plant genomes to determine if they alter phenotypes in desirable 

ways (Q. Li, Sapkota, and Knaap 2020). Cis-regulatory elements, including non-coding 

elements like enhancers and promoters, have been identified as ideal targets for CRISPR 
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mutagenesis as they control the timing and patterns of gene expression (Wittkopp and 

Kalay 2011). Altering cis-regulatory elements is an avenue to fine tune the expression of 

genes, an approach Rodiguez-Leal et al. (2017) described as an “untapped resource for 

expanding allelic diversity for breeding”. In tomato, Rodiguez-Leal et al. (2017) used 

CRISPR to introduce multiple edits into the promoter regions of genes for fruit size, 

inflorescence and architecture, and these changes resulted in a continuum of phenotypic 

variation for these traits. The phenotypic changes induced by the edits to the tomato 

promoters were conducted without detailed knowledge of the promoter's structure or 

regulatory pathway, so researchers aptly named this method “promoter bashing” 

(Rodríguez-Leal et al. 2017).  Similarly, cis-regulatory elements were targeted with 

CRISPR in rice to increase yield (L. Liu et al. 2021). This supports the notion that full 

validation of function is not always necessary to successfully gene edit a genetic element 

and achieve a desirable phenotypic change. The power of gene editing comes from its 

ability to not only introduce variation that has been previously identified within a species, 

but to also induce novel genetic variation that does not exist in nature. Therefore, 

CRISPR-driven mutagenesis could be used to edit regions of the apple genome that are 

likely to control key traits to generate a continuum of phenotypic variation that can be 

harnessed for apple improvement. 

 

Target Specificity 

 

In comparison to other forms of genetic transformation, gene editing has the potential to 

target a very specific region of the genome. CRISPR-Cas9 targeting specificity is in part 
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due to the requirement of the NGG protospacer-adjacent motif (PAM) to be present at the 

3’ end of the 20 nucleotide target sequence in order for Cas9 to cleave the DNA (Jinek et 

al. 2012; K. Chen et al. 2019). Although the NGG PAM for Cas9 aids in target 

specificity, it also contributes to a more constrained editing space (Endo et al. 2019). For 

instance, if the target sequence is not located near a required CRISPR-Cas9 PAM, then 

that region is inaccessible to the Cas9 protein (Endo et al. 2019). Fortunately, recent 

developments have expanded the targetable regions of genomes through the development 

of Cas proteins with expanded PAM recognition, or proteins that do not require a PAM at 

all (Q. Ren et al. 2021). Beyond the popular Cas enzymes that have been used extensively 

for editing, there is a large number of currently unutilized enzymes with similar editing 

capabilities and potentially novel capabilities that could expand the gene editing toolbox 

(Rousset and Sorek 2021). 

 

Another important consideration is that CRISPR specificity is not always faultless and 

it’s possible for the sgRNAs to edit regions of the genome that were not the intended 

target due to sequence similarity (H. Zhang et al. 2017). To overcome this, there are 

numerous software programs that can help design guide RNAs with high specificity (Xie 

et al. 2017; H. Liu et al. 2017). In addition, selection of different Cas9 variants can also 

aid in reducing off-targets (Mao et al. 2019). Furthermore, target specificity can be 

increased by designing sgRNAs specifically for the genetic background in which editing 

is desired. However, this requires the availability of sufficient genomic data for the 

cultivar so that the target sequence can be assessed. The framework suggested here of 

moving from GWAS to CRISPR addresses this issue because it recommends collecting 
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WGS for the purposes of GWAS, and this WGS can then later be further leveraged to 

inform the design of guides that are specific to any cultivar in the initial GWAS 

population. The proposed dual use of the WGS data can thereby make the process of 

moving from mapping to edited orchard more efficient and cost-effective. 

 

Multiplexing 

 

A major advantage of gene editing over previous methods of genetic transformation is the 

ability to multiplex CRISPR’s sgRNA system to target multiple traits at once (Mao et al. 

2019). Multiplexing involves targeting multiple genomic regions using multiple sgRNAs 

that are derived from one CRISPR array (Cong et al. 2013). Due to challenges that 

remain in introducing edits into plant species, multiplexing is particularly promising to 

efficiently “stack” multiple traits by targeting multiple genes in one CRISPR array. 

Multiplexing is also useful when attempting to alter a trait that is controlled by multiple 

genes within a gene family. For example, the apple genome contains multiple PPO genes 

that vary slightly in genetic sequence, but each contribute to enzymatic browning of apple 

flesh. Therefore, a gene-edited non-browning apple, similar to the transgenic non-

browning Arctic® apple (Armstrong and Lane 2014), could be developed by targeting 

multiple PPO genes with one CRISPR construct containing sgRNA for each PPO. Here I 

propose taking multiplexing a step further: I aim to consider multiplexing across multiple 

genes and across multiple cultivars so that potentially causal genetic mutations can be 

introduced and tested across diverse genetic backgrounds.  
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Evaluate  

 

The final stage of the proposed approach is to evaluate the gene edited plants in the field 

(Figure 5-1F). Similar to CRISPR libraries that are developed to screen the potential of 

sgRNAs to alter a gene and subsequent phenotype (H. Zhu, Li, and Gao 2020), I propose 

assessing a refined CRISPR library in vivo within an orchard. Assessment of the edited 

orchard will require comprehensive phenotyping of not only the targeted traits, but many 

others to ensure there are no unintended effects on other important traits (i.e. pleiotropic 

effects). For example, if plants are edited to produce red-fleshed apples, phenolic content 

and flesh browning should be measured in the edited plants in addition to flesh colour 

since all of these traits have been shown to be correlated with one another (Espley et al. 

2019). For certain targeted traits, like fruit quality, it may take up to 6 years before 

reliable phenotype data can be acquired, while it may be possible to phenotype disease 

resistance and abiotic stress tolerance at earlier stages of development.  

 

Ideally, the outcome of evaluating the gene edited orchard is the identification of 

cultivars with novel traits along with a validation of the underlying genetic variation 

causing each novel trait. With phenotype data from the gene edited population, it is 

possible to make comparisons back to the original mapping population. In a sense, 

verifying that the edits introduced into the orchard resulted in desirable phenotypes is 

somewhat like genetic mapping: it involves associating genotypes with phenotypes. Thus, 

while at first genetic mapping is used to enable gene editing, this final evaluation can be 

understood as the reverse process: using gene editing to enable genetic mapping. This 
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final evaluation step serves to validate causal alleles, and these then represent a refined 

list of editing targets that can be repeatedly introduced into other cultivars in the future. 

The approach proposed here therefore does not end at the evaluation stage, but instead is 

the first step in a future of iterative improvement through multiple rounds of mapping, 

editing and apple improvement.  

 

Conclusion  

 

The goal of every apple breeding program is to rapidly develop improved cultivars that 

positively impact farmers and consumers through increased sustainability and quality. 

Here I propose a model of accelerating apple improvement by exploiting two recent 

technological innovations: next-generation DNA sequencing and CRISPR gene 

editing.  By pairing high-resolution genetic mapping with modern gene editing tools, I 

propose a framework that accelerates breeders through the steps from genomic targets, to 

edits, to field trials. The proposed approach attempts to shorten the interval between 

GWAS and CRISPR by forgoing functional validation in favour of directly editing a 

short-list of putatively causal alleles. The success of this approach relies upon the 

appropriate design of genetic mapping populations that capture large amounts of 

phenotypic and genetic diversity to deliver high-resolution gene editing targets using 

GWAS. This approach demands that CRISPR gene editing not be relegated to the final 

piece of the breeding pipeline, but instead be used throughout the process to introduce 

novel variation and induce diverse mutations to advance apple improvement. The 
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proposed GWAS to CRISPR approach provides a direct route to a gene edited orchard 

with the goal of advancing apple breeding in the era of genome editing. 
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Chapter 6: Conclusion 

 

Summary of Findings 

The objective of this thesis was to advance genomics assisted breeding in apple and 

cannabis by using GWAS to uncover the genetic underpinnings of key traits in both 

crops. The approach employed in the thesis was to first demonstrate the utility of 

germplasm collections for quantifying apple diversity and for the collection of 

phenotypic data necessary for GWAS. Following a phenotypic characterization of apple 

diversity, GWAS was conducted for fruit quality and phenology traits in apple to identify 

phenotype-genotype associations. Then, I applied a similar GWAS approach to identify 

associations between chemical content and genetic markers across the cannabis genome. 

Finally, the thesis concluded by detailing a framework for how insights gathered from 

GWAS can be capitalized upon to develop gene edited cultivars. 

 

In Chapter 2, I characterized phenotypic diversity across over 20,000 apples from over 

1,000 apple accessions within Canada’s Apple Biodiversity Collection (ABC). This 

phenotypic characterization involved measuring phenology and fruit quality traits both at 

harvest and after 3 months of cold storage. I found that trait measurements across apples 

within the ABC varies considerably, with apples displaying a 61-fold difference in 

weight, 18-fold difference in acidity, and a 100-fold difference in phenolic content. I 

found that 3 months of cold storage had significant impacts on fruit quality with apples 

losing 39% of their firmness, 31% of their acidity, and 9% of their weight, but gained 7% 

in soluble solids during the storage period. Firmness was positively correlated with 
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numerous phenological traits such as harvest date, flowering time and time to ripen which 

indicates that apple texture is impacted by developmental pathways that cause 

phenological changes throughout the growing season. In addition, I also gathered meta 

data information on each apple accession, such as species, year of release and end use. I 

found that phenolic content of apples has declined by 30% over the last 200 years of 

apple breeding apples, likely due to selection by breeders for non-browning flesh and 

lower tannin levels. The phenotypic characterization of the ABC highlighted germplasm 

with exceptional fruit quality and phenology phenotypes that could be of value in 

breeding programs to enable the introduction of novel traits into new cultivars. The 

phenotypic data collected within this chapter is foundational for the GWAS conducted in 

the subsequent chapter. 

 

In Chapter 3, I aimed to identify genetic markers associated with fruit quality and 

phenology traits in the ABC. Using genetic data comprised of over 260,000 SNPs 

sequenced using GBS, I conducted GWAS for 21 fruit quality and phenology traits across 

1,054 apple accessions. I identified two novel loci associated with phenolic content on 

chromosome 15 and 16. I identified a significant locus associated with softening on 

chromosome 10. The top SNP from the softening GWAS was located approximately 153 

kb downstream of a well characterized candidate gene for softening, PG1, confirming 

that there is a large effect locus on chromosome 10 for softening. In addition, I 

determined that allelic variation at the NAC18.1 transcription factor was associated with 

numerous traits including harvest date, firmness at harvest, and firmness after storage. 

Given our results I proposed a model for the allelic effects on variation at NAC18.1 on 
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ripening related traits. The results indicate that NAC18.1 acts a high-level regulator of 

multiple ripening traits by impacting the timing and rate at which apples move through 

the ripening process. In addition to the GWAS results, analysis of population structure 

within the ABC revealed that population structure is primarily shaped by harvest date and 

species. The results of this chapter broaden our understanding of the genetic control of 

multiple fruit quality and phenology traits in apple that can help inform breeding of 

improved apple cultivars.  

 

In Chapter 4, I aimed to identify genetic markers associated with chemical content across 

cannabis samples. In addition, I also aimed to examine the chemical and genetic 

differences between Indica/Sativa labels that are commonly used to distinguish cannabis 

strains. I analyzed a genetic dataset comprised of over 100,000 SNPs that were genotyped 

across 100 cannabis samples using GBS and a chemical dataset of over 40 chemical 

compounds measured using GC-MS. Using the chemical and genetic data, I performed 

GWAS and identified two loci on chromosome 5 that were associated with myrcene 

content and a locus on chromosome 6 associated with three sesquiterpenes: guaiol, beta-

eudesmol and gamma-eudesmol. By examining the genetic and chemical profiles of 

cannabis strains, I found that Indica/Sativa labelled samples were genetically and 

chemically indistinct. However, I identified significant correlations between terpenes 

with significant GWAS hits and cannabis labels. The results of this chapter indicate that 

cannabis labels are associated with variation in a small number of terpene concentrations 

that are driven by genetic variation at tandem arrays of terpene synthase genes. This work 
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was the first published GWAS conducted on drug-type cannabis and therefore lays the 

foundation for future genetic mapping studies in this important crop. 

 

In Chapter 5, I proposed a framework for harnessing the results of GWAS to develop 

improved, gene edited apple cultivars. The framework consists of conducting high-

powered GWAS to identify a short list of causal alleles responsible for phenotypic 

variation and then immediately targeting the short list of genes using gene editing. I 

outlined the challenges associated with a GWAS to CRISPR approach, which mainly 

involves issues with tissue culture and the current capabilities of gene editing 

technologies in apple. I argued that despite the present challenges associated with gene 

editing in apple, there are numerous benefits that this approach has over traditional 

genetic modification. These benefits include the ability to perform transgene-free editing, 

introduce novel variation, edit a gene target with high specificity and target multiple 

genes with relatively ease. The framework I proposed involves pairing high-resolution 

genetic mapping with modern gene editing tools to develop improved apple cultivars 

more rapidly. 

 

In conclusion, the phenotypic and genetic data analyzed here, across apple and cannabis, 

furthers our basic understanding of variation across these important agricultural crops. 

Given the widespread importance of cannabis and apple cultivation it’s crucial that these 

crops can capitalize upon the advancements being made in genomics to develop new 

improved cultivars. Here, I demonstrated that GWAS is a powerful method to identify 

loci of large affect controlling key traits in both apple and cannabis. The research 
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presented here contributes to our understanding of the genetic control of key quality traits 

in both apple and cannabis, which is necessary to develop markers for MAS and elucidate 

causal genetic variants that can be targeted with gene editing. While cannabis and apple 

each face unique challenges in their cultivation and breeding, the research presented here 

provides a solid foundation for the genomics-assisted improvement of new cultivars in 

both crops. 

 

Future directions 

The results of this thesis confirm previously identified phenotype-genotype associations 

and uncover novel associations with key traits both in apple and cannabis. However, from 

both GWAS with apple and cannabis presented within this thesis, the genetic resolution is 

limited due to the relatively sparse genetic data collected using GBS. Given the 

decreasing costs of sequencing, future genetic mapping work in apple and cannabis 

should undertake comprehensive sequencing, such as whole-genome sequencing, to 

improve the ability to develop superior markers for MAS and detect causal genetic 

variants for gene editing. Improved genetic resolution is necessary to further dissect the 

genetic control of key traits in apple and cannabis and capitalize on the power of 

genomics-assisted breeding.  

 

Within this thesis a large amount of genotypic and phenotypic data was collected for the 

purpose of undertaking GWAS. However, both the cannabis and apple datasets each 

revealed additional insights into the biology of these crops. For example, one of the key 

findings from the analysis of the apple phenotype data in Chapter 2 was the significant 
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decline in phenolic content over the last 200 years of apple breeding. Given the benefits 

that phenolics provide to human health, future work should examine the complex trade-

offs that exist between key traits to minimize unintended effects during breeding. The 

findings from Chapter 4 reveal important insights regarding strain labelling practices 

currently employed throughout the cannabis industry. We found that Indica labelled 

samples were largely indistinguishable from Sativa labelled samples based on their 

overall genetics and chemistry. This insight is valuable as it helps to clarify the labelling 

uncertainty which has been highlighted as major challenge for cannabis breeding and the 

industry as a whole (Barcaccia et al. 2020). Therefore, the value of these datasets to 

uncover additional insights between genotype-phenotype associations cannot be 

understated. As publicly available datasets, the genotype and phenotype data generated 

from this thesis can be continually leveraged to advance our understanding of apple and 

cannabis biology. 

 

The focus for many years of genomics assisted breeding has been the development of 

genetic markers linked to desirable phenotypes that can be selected for using MAS. With 

the advent of gene editing technology, is it now possible to extend the genomics-assisted 

toolbox to include technologies that allow us to make precise change to the genomes of 

plants. Within this thesis, I proposed an approach for identifying short lists of gene 

editing targets from GWAS to rapidly develop new apple cultivars with desirable 

phenotypes. Although I focused on describing this framework for apple, it also is a 

potentially useful approach for enabling the genetic improvement of cannabis via gene 

editing and arguably could be more rapidly applied given the shorter live cycle of 
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cannabis. As outlined in chapter 5, challenges remain for the routine application of gene 

editing in apple that can deliver improved apple cultivars to producers and consumers. 

Given that numerous high-quality apple cultivars are currently available on the market, 

the role of gene editing in apple is likely not to “re-invent the wheel” but rather to 

introduce a small number of gene edits to generate variation in select traits across existing 

elite germplasm. In conclusion, the application of gene editing technology for plant 

improvement should focus on “piggy-backing” on what centuries of traditional breeding 

has already achieved in order to improve existing cultivars.  

 

In conclusion, to fully realize the potential of genomics assisted breeding it is necessary 

to continue the advancement of multiple genomic approaches. There is value in the 

continued development of markers for MAS in conjunction with the identification of 

causal genetic variants for gene editing. Given the multitude of breeding challenges, the 

future of apple and cannabis breeding will benefit from a multi-pronged approach that 

leverages multiple genomics tools and approaches to generate improved cultivars. 
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Appendix I: Quantifying apple diversity: a phenomic characterization 

of Canada’s Apple Biodiversity Collection (Chapter 2) 

 

 

Figure I-I. The orchard design of Canada’s Apple Biodiversity Collection. 
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Figure I-II. Correlation plots of fruit quality and phenology traits between 2016 and 

2017. 
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Figure I-III. Correlation of total phenolic content and total antioxidant capacity. 
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Figure I-IV: Distribution of apple phenotypes from 2016. Shaded grey areas represent 

the range of values observed across the top 9 cultivars grown in the USA. 
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Figure I-V. Fruit quality measurements before and after 3 months of cold storage in 

2016. Correlations of fruit quality measures taken before and after storage are found in 

the left column (a, c, e, g). Distribution of the percent change of each trait during storage 
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are shown in the right column (b, d, f, h). The shaded grey areas represent the range 

occupied by the “top 9” cultivars. 

 

 

Figure I-VI. Heat map of pairwise correlations between phenology, fruit quality and 

storage traits from 2016. Significant correlations (p < 0.01) after correcting for multiple 

comparisons are indicated with an asterisk.  

 

Table I-I. Phenotype data for 1119 accessions of apple from Canada’s Apple 

Biodiversity Collection. [ELECTRONIC SUPPLEMENT] 
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Table I-II. Summary statistics for the distribution of phenotype measurements from 

2017. [ELECTRONIC SUPPLEMENT] 

 

Table I-III. Correlation coefficients and p-values from Pearson correlations between 

phenotypic trait measurements from 2017. [ELECTRONIC SUPPLEMENT] 

 

Table I-IV. Correlation coefficients and p-values from Pearson correlations between 

phenotypic trait measurements from 2016. [ELECTRONIC SUPPLEMENT] 

 

Table I-V.  Median, standard error and Wilcoxon p-values for comparisons of 

phenotypic measurements between geographic origin, species and end use. 

[ELECTRONIC SUPPLEMENT] 

 

Table I-VI. Correlation of release year with phenotypic traits. [ELECTRONIC 

SUPPLEMENT] 
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Appendix II: Large-scale GWAS in apple reveals NAC18.1 as a master 

regulator of ripening traits (Chapter 3) 

 

Figure II-I. Manhattan and QQ plots from GWAS for phenology and fruit quality traits. 

[ELECTRONIC SUPPLEMENT] 

 

Figure II-II. Correlations between phenotypes with significant GWAS hits at NAC18.1. 

[ELECTRONIC SUPPLEMENT] 

 

Figure II-III. Manhattan and QQ plots from GWAS with harvest date as a covariate. 

[ELECTRONIC SUPPLEMENT] 

 

Table II-I. R-square and p-values from the correlations between PC1 values and fruit 

quality and phenology traits. [ELECTRONIC SUPPLEMENT] 

 

Table II-II. R-square and p-values from the correlations between PC2 values and fruit 

quality and phenology traits. [ELECTRONIC SUPPLEMENT] 

 

Table II-III. Phenotypic variance explained by the top SNPs from the GWAS. 

[ELECTRONIC SUPPLEMENT] 

 

Table II-IV. Ripening model statistics. [ELECTRONIC SUPPLEMENT] 
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Table II-V. List of gene models within 50 kilobases of either side of the top GWAS 

SNPs. [ELECTRONIC SUPPLEMENT]  
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Appendix III: Cannabis labelling is associated with genetic variation in 

terpene synthase genes (Chapter 4) 

 

 

Figure IV-I. Plot of percent CBD versus percent THC content. 
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Figure IV-II. Histograms of a) pairwise chemical distances and b) pairwise genetic 

distances among all pairs of samples. Vertical lines indicate the median distance between 

pairs of samples with the same name. 
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Figure IV-III. Plot of genetic distance versus chemical distance between pairs of 

samples. The Mantel r statistic and p-value are reported. 

 

Figure IV-IV. Boxplots of chemical concentrations across the Sativa-Indica scale, n= 

68 ‘Sativa’, n= 27 ‘Sativa-Hybrid’, n= 115 ‘Hybrid’, n= 25 ‘Indica-Hybrid’ and n= 62 

‘Indica’ samples. The lower and upper bounds of the boxplots correspond to the 25% and 

75% quantiles, the minima and maxima of whiskers extend to the lowest and largest 

value, respectively, within 1.5 times the inter-quartile range, and the centre of the boxes 
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represent the median value. Outliers beyond the whiskers are plotted individually. Y-axis 

is expressed as milligrams per gram. Asterisks denote chemicals with tentative 

identifications. [ELECTRONIC SUPPLEMENT] 

 

Figure IV-V. Manhattan plots from the standard mixed linear model (MLM) and the 

multi-locus mixed-linear model (MLMM) GWAS and QQ plots from the standard MLM 

GWAS. Asterisks denote chemicals with tentative identifications. [ELECTRONIC 

SUPPLEMENT] 

 

 

Figure IV-VI. Heatmap displaying the Pearson correlation between the concentrations of 

the 40 terpenes and cannabinoids. 
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Table IV-I. Chemical concentrations and labels across 297 Cannabis samples. The 

asterisks denote chemicals with tentative identifications. [ELECTRONIC 

SUPPLEMENT] 

 

Table IV-II. A list of compound names identified by Hazekamp et al. (2016), a list of 

authentic standards used for compound identification and a list of compound names based 

on re-analysis of the methods used in Hazekamp et al. (2016). [ELECTRONIC 

SUPPLEMENT] 

 

Table IV-III. Significant SNPs from the MLMM GWAS for myrcene and three 

sesquiterpenes. Only SNPs identified as significantly (P < 6.69 × 10−7) associated with a 

trait according to the MLMM GWAS are shown. The genomic coordinates and 

annotations, P value, R2 value and nearby candidate genes are shown. [ELECTRONIC 

SUPPLEMENT] 
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